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Abstract 22 

In the Izu Peninsula (Japan), the Pliocene pumice-rich Dogashima Formation (4.55 Ma +/- 23 

0.87 Ma) displays exceptional preservation of volcaniclastic facies that were erupted and 24 

deposited in a below wave-base marine setting. It includes high-concentration density current 25 

deposits that contain clasts that were emplaced hot, indicating an eruption-fed origin. The 26 

lower part of the Dogashima 2 unit consists of a very thick sequence (<12 m) of massive grey 27 

andesite breccia restricted to the base of a submarine channel, gradationally overlain by 28 

pumice breccia, which is widespread but much thinner and finer in the overbank setting. 29 

These two breccias share similar mineralogy and crystal composition, and are considered to 30 

be co-magmatic, and derived from the destruction of a submarine dome by an explosive, 31 

pumice-forming eruption. The two breccias were deposited from a single, explosive eruption-32 

fed, sustained, sea-floor-hugging, water-supported, high-concentration density current in 33 

which the clasts were sorted according to their density. At the rim of the channel, localised 34 

good hydraulic sorting of clasts and stratification in the pumice breccia are interpreted to 35 

reflect local current expansion and unsteadiness rather than to be the result of hydraulic 36 

sorting of clasts during fall from a submarine eruption column and/or umbrella plume. A 37 

bimodal coarse (>1 m) pumice- and ash-rich bed overlying the breccias may be derived from 38 

delayed settling of pyroclasts from suspension. In Dogashima 1 and 2, thick cross- and 39 

planar-bedded facies composed of sub-rounded pumice clasts are intercalated with eruption-40 

fed facies, implying inter-eruptive erosion on the flank of a submarine volcano, and below 41 

wave-base resedimentation. 42 

 43 

 44 

 45 
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 46 

Introduction 47 

The explosive nature of submarine volcanic activity is clearly evident from uplifted 48 

successions (e.g. Fiske and Matsuda 1964; Fiske 1969; Cas and Wright 1991; McPhie et al. 49 

1993; Kano et al. 1994, 1996; Kano 1996, 2003; Allen and McPhie 2000, 2009; Raos and 50 

McPhie 2003; White et al. 2003; Stewart and McPhie 2004) and historical eruptions 51 

(Reynolds et al. 1980; Fiske et al. 1998; Kano 2003; Rivera et al. 2013; Jutzeler et al. 2014), 52 

and can be inferred from the presence of modern calderas on the sea-floor (Wright and 53 

Gamble 1999; Fiske et al. 2001; Tani et al. 2008; Carey et al. 2014). A wide spectrum of 54 

pyroclastic facies has been reported in submarine successions (e.g. Wright 1996; Wright and 55 

Gamble 1999). An emerging problem is related to distinguishing eruption-fed submarine 56 

pyroclastic facies from those produced by resedimentation and reworking processes (Cas et 57 

al. 1990; Cas and Wright 1991; McPhie et al. 1993; Allen and McPhie 2000, 2009; White 58 

2000; Schneider et al. 2001; Kano 2003; White et al. 2003; Allen and Freundt 2006; Jutzeler 59 

2012; Jutzeler et al. 2014). For eruptions that have not been witnessed, a careful facies 60 

analysis of the deposits, together with clast vesicularity and compositional data, offer a means 61 

of reconstructing the eruptive activity and making the eruption-fed versus resedimented 62 

distinction. In particular, submarine explosive eruption-fed facies are thought to be 63 

characterised by thick to extremely thick, laterally extensive beds composed mainly of 64 

angular pyroclasts; the beds may be massive or show weak normal (dense clasts) or reverse 65 

(vesicular clasts) grading (McPhie et al. 1993). 66 

The Dogashima Formation on the Izu Peninsula, Japan, was part of the open-marine, rear-67 

Izu-Bonin arc (Tani et al. 2011) during the Pliocene (Fiske 1969; Cashman and Fiske 1991; 68 

Tamura et al. 1991; Tamura 1994). Palæo-temperature measurements on dense clasts in an 69 

iconic unit of massive grey andesite breccia in the Dogashima Formation (Tamura et al. 70 
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1991), hereafter named D2-2, indicate that these clasts were hot at deposition. This unit 71 

grades into white pumice breccia (D2-3), implying synchronous deposition of both units and 72 

an eruption-fed origin. Therefore, the facies characteristics exposed at Dogashima provide a 73 

guide to infer the critical distinction between explosive eruption-fed and resedimented 74 

pumice-rich facies. 75 

High-intensity subaqueous explosive eruptions that produce abundant low-density pumice 76 

clasts ("neptunian eruptions"; Allen and McPhie 2009) involve eruption columns that are 77 

prone to collapse as a result of the rapid increase in density of single pumice clasts and of the 78 

eruption column as the gas (magmatic steam) cools and condenses as a result of mixing with 79 

sea water (Kato 1987; Kano 1996; Kano et al. 1996; Allen et al. 2008). The pumice lapilli are 80 

then transported away from the vent in cold or lukewarm, water-supported, sea-floor hugging 81 

density currents (e.g. Allen et al. 2008; Allen and McPhie 2009). In some cases, temperature 82 

and textural data demonstrated that part of the clasts were hot during transport and deposition 83 

(Tamura et al. 1991; Kano et al. 1994). In some cases, eruptions may be sufficiently powerful 84 

that some of the erupted pyroclasts reach the water surface before being sufficiently 85 

waterlogged to sink, creating pumice rafts, such as during the July 2012 Havre eruption 86 

(Carey et al. 2014; Jutzeler et al. 2014). Subaqueous pumice-rich eruption columns may 87 

produce neutrally buoyant, laterally spreading suspensions of pyroclasts, but these 88 

suspensions are composed almost exclusively of pyroclasts with slow settling velocities, such 89 

as fine (<2 mm) glass shards, crystals and insufficiently waterlogged, coarse pumice clasts 90 

(Kano 2003; Allen and McPhie 2009). Clast rounding may not significantly change during 91 

transport in pumice-rich density currents in below wave-base environments, as clast impacts 92 

are buffered by water (White 2000), and saturated pumice clasts have specific gravities only 93 

slightly above that of water (e.g. Manville et al. 1998, 2002) and are therefore easily 94 

mobilised.  95 
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The Dogashima Formation exposes outstanding outcrops allowing detailed reconstruction of 96 

the eruption sequence from facies analysis. The Dogashima Formation was generated by a 97 

combination of pumice-forming explosive eruptions, lava dome growth and destruction, and 98 

inter-eruptive sedimentation. In particular, this study examines the relationship between lava 99 

clasts issued from the destruction of a hot lava dome, and pumice clasts formed by a 100 

submarine explosive eruption that destroyed the lava dome.  101 

The Dogashima Formation is also very important because it was deposited in a submarine 102 

channel and its overbank, which are well exposed in cross-section. In such island arc settings, 103 

the submarine flanks of volcanoes are incised by channels and canyons that focus the 104 

downslope movement of sediment and water (e.g. Cas et al. 1990; Gardner 2010; Watt et al. 105 

2012). Complex, channelled sea-floor bathymetry and large-scale dune fields are clearly 106 

observed around the submerged portions of modern volcanic arcs in swath bathymetry and 107 

submarine camera data (e.g. Wright 2001; Gardner 2010). However, access to these modern 108 

settings is limited and cross-sections are rarely exposed. Detailed lithofacies information on 109 

the volcaniclastic facies that form in and around submarine channels are best obtained from 110 

well exposed and accessible uplifted successions. In the Dogashima Formation, the channel is 111 

filled by pumice-rich pyroclastic deposits emplaced by eruption-fed, sea-floor hugging, high-112 

concentration density currents, and overlain by cross- and planar bedded, pumice-rich facies 113 

interpreted to result from reworking and resedimentation by high-energy tractional currents in 114 

a below wave-base environment. 115 

We present new high-resolution stratigraphic, geochemical, U-Pb ages from zircons, 116 

componentry and grain size data for the Dogashima Formation. We use facies characteristics 117 

to reconstruct the eruption style and sequence, and explore the sedimentation processes 118 

operating in the submarine channel in response to the voluminous influx of pyroclasts. 119 

 120 
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Terminology 121 

The term breccia is non-genetic and used for a clastic aggregate composed mostly of angular 122 

clasts >2 mm (Fisher 1961). Matrix is used for components <2 mm. Fine breccia is used 123 

hereafter for breccia with an average clast size <10 cm. Fine grained facies are referred to as 124 

pumice sandstone (1/16–2 mm) and shard-rich siltstone (1/256–1/16 mm) without implying 125 

genesis. Non- to poorly vesicular (<20 vol.% vesicles) clasts are termed dense clasts. Bed 126 

thickness terms follow Ingram (1954); the term “extremely thick” refers to beds >10 m thick. 127 

Volume percentages of clasts and grain size distributions of the volcaniclastic facies were 128 

calculated by image analysis and functional stereology (Jutzeler et al. 2012). Geochemical 129 

and geochronological analyses were carried out at the University of Tasmania (Australia); 130 

clast compositions were determined by X-ray fluorescence (XRF) with a Philips PW1480, 131 

whereas crystal analyses were performed on a Cameca 100X electron microprobe; the age of 132 

the formation was calculated from U-Pb in zircons by LA-ICP-MS. 133 

 134 

Geological setting of the Dogashima Formation 135 

The Dogashima Formation is part of the Miocene-early Pliocene volcanogenic Shirahama 136 

Group that covers 500 km2 on the Izu Peninsula, Honshu, Japan (Ibaraki 1981; Tamura 1994; 137 

Geological Survey of Japan 2010; Tani et al. 2011). The Shirahama Group is part of the 138 

northern extension of the Izu-Bonin arc, which is related to the westward subduction of the 139 

northwestern margin of the Pacific plate under the Philippine plate (Taylor 1992; Tani et al. 140 

2011). Northwestern subduction of the Philippine plate beneath the Eurasian plate (including 141 

Japan) resulted in collision and uplift of the northern segment of the Izu-Bonin arc (including 142 

the Shirahama Group) at ~1 Ma (Huchon and Kitazato 1984). 143 
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The Shirahama Group spans 5.5–1.7 Ma (U-Pb in zircons; Tani et al. 2011) and comprises 144 

diverse volcanic and subvolcanic facies (lavas, dykes, cryptodomes and volcaniclastic facies). 145 

The succession is little deformed and virtually unaltered. Most lavas and intrusions range in 146 

composition from basaltic andesite to dacite; basalt and rhyolite are rare (Tamura 1994). This 147 

group is thought to include the products of at least six scattered and overlapping eruption 148 

centres (Sawamura et al. 1970; Kano 1983, 1989; Yamada and Sakaguchi 1987). 149 

Although the environments of eruption and deposition of the Shirahama Group are poorly 150 

constrained, the widespread presence of numerous planktonic foraminifera species (e.g. 151 

Ibaraki 1981) suggests that an open-marine environment predominated. The abundance of 152 

hyaloclastite and pillow lavas throughout the Shirahama Group and in particular in the 153 

Matsuzaki Formation (Kano 1983, 1989; Tamura 1990, 1994) also attests to a submarine 154 

environment. An undated island may have been present near Shimoda and Shirahama towns, 155 

<20 km southeast of the present Dogashima, because conglomerate occurs in the late 156 

Miocene Asahi Formation, and the early Pliocene Harada Formation includes cross-bedded, 157 

coastal channel facies, calcarenite and limestone (Matsumoto et al. 1985). Gordee et al. 158 

(2008) reported undated conglomerate beds that contain charcoal fragments and shells 11 km 159 

south of Dogashima, reflecting input from a subaerial island. From rare earth element 160 

abundances and mineral assemblages in lavas, Tani et al. (2011) proposed a rear-arc setting 161 

for the Shirahama Group, >20 km from the Izu-Bonin volcanic front. This distance from the 162 

arc is consistent with the Shirahama Group having accumulated in an open-marine setting. 163 

The paucity of subaerially sourced components in formations above and below the 164 

Dogashima Formation is also consistent with an open-marine, below wave-base environment 165 

that included mostly underwater volcanoes. 166 

 167 

The Dogashima Formation 168 
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The Dogashima Formation is exposed over 1.5 km2 and is 5 to >80 m thick, suggesting a 169 

volume of at least ~107 m3 (Fig. 1). It includes four main subdivisions (Fiske 1969; Tamura 170 

1990, 1994), here named Kamegoiwa, and Dogashima 1, 2 and 3 up stratigraphy (Fig. 2). The 171 

formation is dominated by white pumice clasts (overall 80 vol.%) and crystals fragments. The 172 

succession is little deformed and virtually unaltered; numerous joints and faults have a 173 

constant northerly strike over the whole area, and overall show little or no displacement. The 174 

stratigraphy of the Dogashima Formation was logged at twelve localities, mostly along the 175 

coast. The beds in the Dogashima Formation from localities A-F have a ~5 m vertical offset 176 

above the beds of localities G-J, suggesting a sub-vertical fault south of locality G (Fig. 1). 177 

Beds in the Dogashima Formation are tilted ~10° northeastwards. The mapped area (Fig. 1) is 178 

delimited by subvertical faults and intrusions to the north, and by the Matsuzaki Formation to 179 

the south (Tamura 1994). The Matsuzaki Formation comprises coherent andesite, monomictic 180 

andesite breccia and mafic scoria lapilli. Some clasts derived from the Matsuzaki Formation 181 

are present in the Dogashima Formation. The Dogashima Formation is intercalated with the 182 

Matsuzaki Formation, and is distinguished from it by the presence of tabular, pumice-rich 183 

units. 184 

 185 

Components of the Dogashima Formation 186 

The Dogashima Formation contains numerous, mainly andesitic clast types that differ in 187 

colour, vesicularity, mineralogy and composition (Fig. 3; Table 1). Dogashima 1 and 188 

Dogashima 2 are dominated by white andesitic pumice lapilli (Fig. 4; Table 1), whereas the 189 

underlying Kamegoiwa pumice breccia is dominated by aphyric rhyolitic pumice clasts; 190 

Dogashima 3 is dominated by andesite breccia. Many of the coarsest white andesitic pumice 191 

clasts (>30 cm) have remnants of quenched margins. Grey andesite clasts are dense; mostly 192 

coarse (10-50 cm) and equant, and a few outsized clasts (up to 10 m) occur in groups. 193 
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Numerous grey andesite clasts are ovoid, have quenched margins and radial joints (Fig. 3 194 

a,b,c); rare (<0.1 vol.%) clasts are fluidal (Table 1). In unit D2-2 near the base of Dogashima 195 

2, the thermoremanent temperatures of very coarse, ovoid grey andesite clasts indicate 196 

deposition at 450°C (Tamura et al. 1991). Plagioclase-phyric andesitic inclusions within the 197 

grey andesite clasts are tholeiitic and follow the compositional trend of the Dogashima 198 

Formation although they differ petrographically (Fig. 4). Red andesite clasts can be 199 

differentiated from the grey andesite clasts only by the colour of their groundmass; both are 200 

dense and plagioclase-pyroxene-phyric (15-20 vol.% phenocrysts), although the red andesite 201 

has slightly higher FeO and lower K2O compared with the grey andesite (Online Resource 1). 202 

The matrix in units of the Dogashima Formation is typically composed of crystals fragments 203 

(plagioclase, pyroxene) and other particles of identical aspect and composition to the clasts 204 

(Table 1); fine (<1/16 mm) components are mostly minor (<5 vol.%). 205 

The bulk clast and feldspar compositions of the Dogashima Formation (Fig. 4a,b; Online 206 

Resources 1, 2) match the compositional range of the Shirahama Group (Tamura 1995), and 207 

are transitional between its tholeiitic and calc-alkaline series. The white pumice clasts of 208 

Dogashima 1 are very similar in mineralogy and composition to those of Dogashima 2, 209 

whereas the grey andesite clasts are slightly less evolved than the white pumice clasts (Fig. 210 

4). Rarely, elongate blebs of grey andesite occur within white pumice (Fig. 3e). These 211 

similarities strongly suggest that the white pumice, grey andesite and red andesite were co-212 

magmatic. In addition, microprobe analyses of plagioclase phenocrysts in white pumice clasts 213 

and grey andesite clasts, plagioclase crystal fragments, and plagioclase microlites in the grey 214 

andesite clasts from Dogashima 2 are similar and define a single trend (Fig. 4c; Online 215 

Resource 2). Overall, the pumice clasts have a higher loss on ignition (LOI; 6-12.5 wt.%; 216 

Online Resource 1) compared with dense clasts (LOI ≤3 wt.%), and are also higher in the 217 

mobile major elements K2O and Na2O. Zircons in the white pumice clasts and grey andesite 218 
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clasts in Dogashima 1 and 2 give an age of 4.55±0.87 Ma (U-Pb analysed by LA-ICP-MS; 219 

Online Resource 3), consistent with the age of other nearby formations in the Shirahama 220 

Group (Tani et al. 2011). 221 

Hydrothermally altered volcanic clasts are a minor but ubiquitous component in the 222 

Dogashima Formation, and are up to >2 m in diameter. Many units in Dogashima 1 and 2 223 

include clasts identical to those present in the underlying successions, such as white aphyric 224 

pumice from the Kamegoiwa pumice breccia and dark andesite clasts from the Matsuzaki 225 

Formation. The dark andesite clasts of the Matsuzaki Formation and the coarsely porphyritic 226 

andesite clasts in Dogashima 3 are similar in composition to the grey andesite clasts of 227 

Dogashima 2 (Fig. 4). White aphyric pumice clasts are angular tube pumice up to 40 cm 228 

diameter. The grey scoria clasts and white aphyric pumice clasts are distinct from the 229 

compositional field of the other clasts of the Dogashima Formation, although they fall within 230 

the overall trend of the Shirahama Group (Fig. 4). The coarsely porphyritic andesite clasts in 231 

Dogashima 3 contain more phenocrysts and have a coarser groundmass than the grey andesite 232 

clasts in Dogashima 2. No palæo-temperature data are available for the coarsely porphyritic 233 

andesite clasts. 234 

 235 

Kamegoiwa pumice breccia 236 

The Kamegoiwa pumice breccia is up to 10 m thick and exposed over few outcrops in the 237 

southern part of the studied area (Locality K, Figs 1, 5, 6). It is intercalated within the 238 

Matsuzaki Formation, overlying brown scoria beds and underlying lavas. The Kamegoiwa 239 

pumice breccia consists of two internally stratified pumice breccia beds composed of white 240 

aphyric pumice clasts. At the base, there is a high concentration of brown scoria clasts 241 

derived from the Matsuzaki Formation (Fig. 7). The matrix is chiefly composed of crystal 242 
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fragments; grey banded pumice and hydrothermally altered volcanic clasts are common. 243 

Although bed contacts are hidden by sea level, lavas/intrusions of the Matsuzaki Formation, 244 

and faults, the presence of white aphyric pumice clasts from the Kamegoiwa pumice breccia 245 

in Dogashima 1 and 2 indicates it was unlithified and exposed on the sea floor at the time of 246 

deposition of Dogashima 1 and 2. 247 

 248 

Dogashima 1 249 

The pumice-rich Dogashima 1 is >15 m thick, mostly exposed in the southern part of the 250 

studied area, and overlies the Matsuzaki Formation at locality A with an erosional contact 251 

(Figs 1, 2, 5, 6; Table 2). Dogashima 1 is composed of multiple, laterally extensive or 252 

lenticular, thick graded beds of pumice breccia (Fig. 8a,b), thin to very thick cross-bedded, 253 

planar-bedded and normally graded pumice breccia/sandstone (Fig. 8c,d), medium to very 254 

thick beds of polymictic volcanic breccia (Fig. 8b,e,f) and thin to medium beds of shard-rich 255 

siltstone (Table 2). From localities A to E, the bases of two polymictic volcanic breccia beds 256 

in Dogashima 1 are sharp, discordant surfaces that truncate the underlying beds, indicating 257 

erosion, in particular at localities A and B (Figs 2a,b, 8b,e). 258 

 259 

Dogashima 2 260 

Dogashima 2 is 15 to 30 m thick, covers the whole area, and is composed of eight 261 

stratigraphic units (Figs 5, 6; Table 2). It is dominated by white pumice clasts (chiefly 60–95 262 

vol.%). The most prominent units are the grey andesite breccia (D2-2) and the overlying 263 

pumice breccia (D2-3) that are separated by a gradational to sharp contact (Fig. 2c, 3a, 9a). 264 

The basal contact of Dogashima 2 is a 600-m-wide, 15-m-deep disconformity carved into 265 

beds of Dogashima 1. At locality A (Fig. 2a), Dogashima 2 directly overlies a disconformable 266 
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contact on coherent andesite and monomictic andesite breccia of the Matsuzaki Formation. 267 

Palæo-lows (>50 m wide) are visible at localities G-east and G-west (Fig. 9), and between 268 

localities A and B. The disconformity is less pronounced in the northern localities H and I 269 

where Dogashima 2 overlies the stratified pumiceous facies of Dogashima 1. 270 

The main basal unit (D2-2) is very thick (up to 7 m) massive grey andesite breccia (D2-2) 271 

that occurs over the southern and central part of the study area between localities A to G-east 272 

(Figs 3a, 5, 9a; Table 1). Unit D2-2 has a sharp, discordant contact with Dogashima 1, and is 273 

dominated (up to 90 vol.%) by coarse, grey andesite clasts, some of them with quenched 274 

margins and rare fluidal shapes. Very coarse (1-10 m) grey andesite clasts occur in clusters 275 

that show overall coarse-tail reverse grading. At locality A, D2-2 overlies polymictic volcanic 276 

breccia (D2-1) that contains dark andesite clasts of the Matsuzaki Formation (Fig. 2a). Here, 277 

D2-2 also contains conspicuous hydrothermally altered volcanic clasts as well as grey 278 

andesite clasts, and is finer grained (average 16 cm) than at the other localities (average 25-50 279 

cm). The presence of chilled margins on grey andesitic clasts in massive grey andesite 280 

breccia in the middle of the formation (unit D2-2 in this paper; Fig. 3) and thermoremanent 281 

temperatures of 450°C in clast rims (at 5 cm depth in the clast) at deposition led Tamura et al. 282 

(1991) to interpret this unit as the deposit of a “hot pyroclastic debris flow”. 283 

D2-2 is overlain by a 6-to 10-m-thick pumice breccia unit (D2-3) with a sharp to gradational 284 

lower contact, depending on the locality (Table 2; Figs 2c, 3c, 5, 9a). The pumice breccia is 285 

exposed over the central and northern parts of the study area, between localities C and I; its 286 

original distribution to the south (localities A, B) is unknown as D2-2 is the uppermost 287 

preserved layer (Fig. 2a). D2-3 mostly consists of white pumice clasts (>20-30 vol.%) in a 288 

matrix of finer (<2 mm) pumice and plagioclase and pyroxene crystal fragments; sub-ordinate 289 

grey andesite clasts and minor hydrothermally altered volcanic clasts occur throughout 290 

(Tables 1, 2). D2-3 exhibits very strong lateral facies variations. It is massive to normally 291 
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graded in its southernmost exposures (localities C to F), stratified and reversely graded at 292 

locality G-east, and internally stratified and finer grained in the northern part of the studied 293 

area (localities G-west, H and I; Figs 6, 9b,c). The upper part of the pumice breccia (beds D2-294 

3d and D2-3-e) at locality G-east is reversely graded, and shows strong bimodality in the size 295 

of pumice (coarse) and dense (fine) clasts, reflecting a hydraulically well-sorted deposit (Fig. 296 

10c,d). In general, D2-3 overlies D2-2, however at locality G-east, a 1-m-thick, ~5-m-long 297 

lens of pumice breccia with similar texture and composition to D2-3 occurs below D2-2 (Fig. 298 

11). At G-east, D2-3 is overlain with a gradational contact by medium to thick beds of planar 299 

stratified pumice breccia (D2-4; Fig. 9a,c) and by a very thick, diffusely stratified, fine 300 

pumice breccia (D2-5; Fig. 9a,b) in sharp contact with D2-4. 301 

Localities G-west to I provide the most complete exposure of the upper part of Dogashima 2, 302 

which comprises tabular to lenticular, cross-bedded pumice breccia-conglomerate (D2-6), 303 

planar bedded pumice breccia (D2-7) and cross-bedded pumice breccia-conglomerate (D2-8) 304 

at the top (Table 2; Figs 5, 6, 9b, 12). At locality H and I, exceptional bimodality in the size 305 

of pumice clasts characterises the planar bedded pumice breccia (D2-7); very coarse pumice 306 

clasts (up to 1 m) occur in a diffusely stratified matrix chiefly composed of white pumice 307 

clasts (mostly <2 mm). At localities C, I and J, Dogashima 2 is separated from the weakly 308 

stratified andesite breccia of Dogashima 3 by a sharp erosional contact (Figs 2c, 5). 309 

 310 

Dogashima 3 311 

Dogashima 3 is made of a >50–m-thick, weakly stratified andesite breccia. The breccia 312 

comprises coarsely porphyritic andesite clasts in a white pumice sandstone matrix (Table 2). 313 

It is mostly preserved in the northern part of the area; a 5-m-thick remnant occurs at the top 314 
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of locality C (Fig. 2c). Its upper boundary has not been identified due to vegetation cover 315 

and/or erosion.  316 

 317 

Grain size and components of Dogashima 2 at locality G-east 318 

The coarse (modes mostly >2 mm) grain size fraction of 10 nested (assemblage of images at 319 

different magnifications) samples from D2-2 to D2-6 at locality G-east has been documented 320 

with image analysis and functional stereology (Jutzeler et al. 2012) to quantify the grain size 321 

distribution in volume and weight percent (Fig. 13). Three samples (base, middle, top) were 322 

analysed from bed D2-3e where Cashman and Fiske (1991) identified good hydraulic sorting. 323 

Samples from the massive grey andesite breccia at the base (D2-2) to the middle of the D2-3 324 

pumice breccia (D2-3e base) show normal size grading in dense components (Fig. 13a), 325 

whereas beds D2-3 c-d and D2-3e are reversely graded in pumice clast size. Dense clasts 326 

decrease continuously in abundance from the basal unit D2-2 (50 vol. %) upwards to unit D2-327 

5 (<10 vol.%; Fig. 13c), and are more abundant (20 vol.%) in D2-6. Pumice clasts are almost 328 

absent (<5 vol.%) in unit D2-2, but make up to 20–30 vol.% of the overlying pumice breccia 329 

units. The matrix and cement (<2 mm) proportion ranges between 50–80 vol.%. Coarse (>16 330 

mm) clasts are abundant only in the lower part of the succession (D2-2; 40 vol.%), and their 331 

volume decreases to <5 vol.% in D2-2; they form a small percentage of the clasts (<2 vol.%) 332 

in D2-6. Most units have a unimodal grain size distribution between -2 and -3 phi (4-8 mm), 333 

although D2-2 is coarser (-5 phi; 32 mm) and in unit D2-3c, pumice clasts show a bimodal 334 

grain size distribution (-4 and -2.25 phi; 16 and 5 mm). In the middle of bed D2-3e, the grain 335 

size distribution in weight percent shows that pumice clasts are consistently coarser than 336 

dense clasts (Fig. 13a). 337 

 338 
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A submarine channel in the Dogashima Formation 339 

Between the southern localities A and G-east, the basal disconformity and internal 340 

architecture of Dogashima 2 indicate deposition in a palæo sea-floor channel more than 600 341 

m wide and up to 15 m deep eroded into beds of Dogashima 1 and filled by units of 342 

Dogashima 2 (Fig. 11). Within the channel, the massive grey andesite breccia (unit D2-2) is 343 

especially thick and has a fully gradational to sharp contact with the overlying pumice breccia 344 

(unit D2-3, localities B, C and F). Further north (localities G-east to I), the overbank setting is 345 

characterised by much thinner (<1 m), finer grained and commonly stratified pumice breccia 346 

(D2-3) and cross-bedded pumice breccia-conglomerate (D2-6). In particular, the coarse grey 347 

andesite clasts and the massive grey andesite breccia (unit D2-2) are absent. At locality A, 348 

Dogashima 1 pinches out, reducing from ~10 m to <3 m thick, and the massive grey andesite 349 

breccia (D2-2) is thinner (at the expense of D2-1) where it onlaps the constructional 350 

morphology of the Matsuzaki Formation andesite (Fig. 2a). 351 

The submarine channel floor between localities A and G-east includes two palæo-bathymetric 352 

lows. The main palæo-low occurs at localities E, F and G-east, and a less pronounced, ~5-m-353 

deep palæo-low occurs between localities A and B (Fig. 14). A palæo-high is present between 354 

the two palæo-lows, over localities C, D and E, where Dogashima 1 is 15–25 m thicker than 355 

at localities A, F and G-east (Fig. 5). However, the difference in thickness is exaggerated on 356 

the sub-vertical cliffs by a general tilt of the whole Dogashima Formation by ~10° towards 357 

the east. 358 

Elongate pumice clasts that show parallel orientation and/or imbrication of clast long axes 359 

(Table 3) were used as palæo-current indicators. Throughout the Dogashima area (Fig. 1), 360 

these palæo-current indicators imply an overall northeast to southwest palæo-current 361 

direction and, at locality B, an east to west current direction. The channel axis (though not 362 

known in detail) appears to have been roughly parallel to this palæo-current trend, so it is 363 
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reasonable to infer that the currents producing the palæo-currents indicators were focussed in 364 

the channel (Fig. 14). Syn-depositional normal faults in Dogashima 1 at locality D (Fig. 12f) 365 

indicate a palæo-slope towards the southwest, which is consistent with southwesterly directed 366 

palæo-currents. However, many cross beds imply opposite palæo-current directions 367 

(northeast to southwest and southwest to northeast), including some small-scale (<50 cm 368 

thick) compound (i.e. internally cross-stratified; McKee and Weir 1953; Allen 1963) cross 369 

beds in unit D2-8 (Fig. 12e). Opposite palæo-current directions are interpreted to be 370 

associated with current reflections and/or up- and down-currents within the channel, backsets, 371 

and/or anti-dunes. Pumice clasts in cross bedded and planar bedded facies do not show 372 

extensive rounding textures characteristic of abrasion in above wave-base setting (e.g. White 373 

et al. 2001; Manville et al. 2002). We interpret that Dogashima 2, and in fact all of the 374 

Dogashima Formation, was deposited in a below wave-base region where strong ocean 375 

currents occurred, consistent with a submarine channel setting. This interpretation matches 376 

the open-marine setting and absence of above-wave-base facies (e.g. conglomerate) in 377 

proximity to the Dogashima Formation. 378 

 379 

Transport and depositional processes in Dogashima 2 380 

Facies characteristics indicate that most units in Dogashima 2 were deposited from 381 

cohesionless, water-supported high-concentration density currents (e.g. Lowe 1982; Mulder 382 

and Alexander 2001; Talling et al. 2012). The units are laterally extensive, non- or weakly 383 

normally graded, and clast supported, and clay and silt matrix is very minor (<5 vol. %). 384 

Many contacts are erosive, and outsized, dense clasts are common. This transport mode lies 385 

within the spectrum of “high-density turbidity currents” of Lowe (1982). Similar density 386 

currents have also be named “high-density turbulent flows” by Postma et al. (1988), and 387 

“concentrated density flows” by Mulder and Alexander (2001). Other modes of subaqueous 388 
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transport and deposition identified in Dogashima 2 are traction currents, rolling and sliding, 389 

suspension settling and turbidity currents (Table 2). 390 

 391 

High-concentration density current deposits in Dogashima 2 392 

Units D2-1 to D2-5 show an overall normal grading and a decrease in dense clasts upwards. 393 

The very thick beds of massive grey andesite breccia (D2-2) and pumice breccia (D2-3) at or 394 

near the base are tabular and laterally continuous, and have gradational contacts at locations 395 

B, C and F (within the palæo-channel). Units D2-2 to D2-3 have marked concentrations of 396 

dense clasts and thicken in topographic lows. Rounding of pumice clasts in D2-2 implies 397 

abrasion of these delicate clasts in the lower dense-clast-dominated part of the current. The 398 

overall gradational contact between the andesite breccia D2-2 and pumice breccia D2-3 399 

strongly suggests deposition from a single, sustained density current (e.g. Kokelaar et al. 400 

2007). The high abundance of dense grey andesite clasts in D2-2 could have resulted from (1) 401 

preferential concentration of the densest components at the base of an initially heterogeneous 402 

current producing a complementary concentration of white pumice clasts higher up, and/or 403 

(2) a temporal change in clast composition being supplied to the current from the source. 404 

Either way, clasts deposited from the current in the studied area changed from being mainly 405 

dense andesite to mainly white pumice. The basal unit D2-1 is dominated by dark andesite 406 

clasts derived from the underlying Matsuzaki Formation. These clasts were incorporated by 407 

shear-induced erosion in the lower part of the high-concentration density current that 408 

deposited units D2-2 and D2-3. 409 

Very coarse (1-10 m) grey andesite clasts occur in local clusters in the middle and upper parts 410 

of the massive grey andesite breccia (D2-2) at all localities, and define overall coarse-tail 411 

reverse grading. The biggest clasts were probably big enough to locally modify the 412 
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transporting current, favouring deposition of other coarse clasts, In addition, size segregation 413 

could have resulted from hindered settling during flowage, excluding some of the coarse 414 

clasts from the depositional boundary layer (e.g. Sohn and Chough 1993; Sohn 1997). 415 

Temporal increase in the size of clasts may have occurred in response to an increase in 416 

current velocity (waxing current) during progressive aggradation (e.g. Kneller and Branney 417 

1995; Branney and Kokelaar 2002; Sumner et al. 2012), and/or “gliding” of out-sized clasts 418 

between a basal laminar inertia-flow and an upper turbulent flow may have been enhanced by 419 

flow confinement in channels (e.g. Postma et al. 1988). Alternatively, the supply of material 420 

at source may have become coarser through time, thus contributing to the reverse grading. 421 

The absence of stratification in units D2-2 and D2-3 in the centre of the channel indicates that 422 

the clast concentration was high enough to suppress turbulent segregation (e.g. Kokelaar et al. 423 

2007; Talling et al. 2007). However, at the rim of the channel (locality G-east; Figs 9a, 11), 424 

there is a sharp contact between units D2-2 and D2-3, at least five well-graded beds separated 425 

by weak bed boundaries are present in unit D2-3, and the top of unit D2-3 is hydraulically 426 

well-sorted and bimodal in clast componentry (Figs 10, 13). These features indicate local 427 

current unsteadiness, and expansion and an increase in turbulence, which reduced the particle 428 

concentration and shear in the depositional boundary layer in the density current, promoting 429 

hydraulic sorting of the particles sedimenting from the current. Thus, the density current 430 

depositing D2-3 was affected by the uneven bathymetry. Most effects were focussed on the 431 

rim of the submarine channel, where it caused a flow transformation similar to a hydraulic 432 

jump (e.g. Komar 1971; Fisher 1983; Sumner et al. 2013). In addition, a pumice-rich lens is 433 

locally present below the dense-clast-rich unit of D2-2 at locality G-east (Fig. 11), which 434 

suggests complex deposition and by-passing currents associated with uneven palæo-435 

bathymetry. This part of the Dogashima Formation was previously interpreted by Cashman 436 
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and Fiske (1991) to be the result of hydraulic sorting of clasts during fallout from a 437 

submarine eruption column and/or umbrella plume. 438 

The increase in pumice clast size in the pumice breccia (unit D2-3) at localities C and G-east 439 

(Figs 5, 13) could be a depositional response to a flow surge (e.g. Lowe 1982; Mulder and 440 

Alexander 2001), or result from a change in the grain size of clasts supplied, or reflect palæo-441 

bathymetry effects, such as proposed for the underlying units. The strong preferred 442 

orientation of the coarse white pumice clasts at the top of unit D2-3e at locality G-east, was 443 

probably caused by syn-depositional shear in the depositional boundary layer of the flow (e.g. 444 

Branney and Kokelaar 2002). Furthermore, the size of the extremely coarse (up to ~10 m), 445 

dense, grey andesite and hydrothermally altered volcanic clasts within the massive grey 446 

andesite breccia (unit D2-2) and pumice breccia (unit D2-3) implies a relatively short 447 

distance of transport. At locality G-east, the internal stratification and clast imbrication in the 448 

planar stratified pumice breccia (D2-4) indicate the development of traction, unsteadiness or 449 

turbulence, all of which are typically associated with lower clast concentrations, and this unit 450 

may have been deposited from the tail or waning phase of the current that deposited units D2-451 

2 and D2-3. The fine pumice breccia unit (D2-5) is also weakly internally stratified, 452 

indicating current unsteadiness. Because of its similar componentry and stratigraphic 453 

proximity to units D2-3 and D2-4, it may be related to the density current that deposited the 454 

underlying units D2-1 to D2-4. 455 

 456 

Traction currents in a submarine channel environment 457 

The upper part of Dogashima 2 (units D2-6, D2-7 and D2-8) is planar and cross- stratified, 458 

and very similar to the cross-bedded, planar bedded and normally graded pumice 459 

breccia/sandstone (D1-1, D1-4, D1-7, D1-9 and D1-12) in Dogashima 1. In addition, some 460 
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beds in these units contain sub-rounded white pumice clasts that indicate minor clast-clast 461 

interactions. Planar- and cross-stratification are commonly attributed to high-energy, semi-462 

continuous traction currents that typically operate in above wave-base settings (e.g. DiMarco 463 

and Lowe 1989; Kano 1991; Allen et al. 1994; White et al. 2001). However, similar 464 

depositional structures can be formed on the deep sea-floor around submarine volcanoes and 465 

in submarine canyons or channels, or on steep slopes (Wright 2001; Gardner 2010). 466 

Widespread siliciclastic dune fields in which single dunes have amplitudes up to several m 467 

have been observed in submarine channels, and origins including tidal forces, internal waves 468 

and storm currents have been proposed (e.g. Valentine et al. 1984; Shanmugam 2008). Cross-469 

beds in D2-6 and D2-8 locally show opposite palæo-current directions (Fig. 1; Table 3), 470 

which suggest complex sedimentation from up- and down-slope currents, and/or reflection of 471 

currents on the margins of the channel, backsets, and/or antidunes. A further consideration is 472 

that water-saturated, highly vesicular pumice clasts have a low specific gravity (~1.3; Allen 473 

et al. 2008), and are thus easily re-entrained compared to siliciclastic components of identical 474 

size (e.g. Manville et al. 2002). The angular to sub-rounded pumice clasts imply weak clast 475 

abrasion, thus does not match reworking in an above wave-base setting, where pumice clasts 476 

would be quickly rounded (White et al. 2001; Manville et al. 2002). 477 

 478 

Other transport processes 479 

The strongly bimodal grain size of pumice clasts versus matrix in some of the tabular, 480 

laterally extensive beds of unit D2-7 at localities H and I suggests that the coarse pumice 481 

clasts (~1 m) settled from suspension synchronously with finer-grained clasts (<2 cm), 482 

waterlogging being delayed by their large size (e.g. Allen and McPhie 2009). The overall 483 

lateral continuity, local scouring, internal grading, relatively fine grain size, and medium 484 

thickness of many beds in unit D2-7 are features consistent with lateral transport and 485 
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deposition from sea-floor-hugging, low-concentration turbidity currents (e.g. Shanmugam 486 

2002; Piper and Normark 2009; Talling et al. 2012). 487 

 488 

Eruption-fed vs. Resedimented facies 489 

Clast source in the Dogashima Formation 490 

The high abundance, high vesicularity, relatively fine size (mostly <10 cm) and overall 491 

angular shape of all types of pumice clasts in the Dogashima Formation imply they are 492 

pyroclasts. The coarsest white pumice clasts (>30 cm) have remnants of quenched margins, 493 

implying quenching with seawater. The still-hot clasts of grey andesite, many with quenched 494 

margin remnants (Fig. 3b,c), and some with fluidal shape (Fig. 10a,b), indicate brecciation of 495 

a hot magma body (active lava, dome, crypto-dome or other intrusion) that generated a 496 

coarse, dense, monomictic clast population. The significant volume of relatively fine, highly 497 

vesicular pumice clasts in pumice breccia D2-3 and the single thick emplacement unit in the 498 

lower part of Dogashima 2 (D2-1 to D2-3), together with crystal fragments in the matrix, 499 

indicate that the succession D2-1 to D2-3 was directly fed by an explosive eruption. Shard-500 

rich siltstone units in Dogashima 1 (D1-6, D1-10) also strongly attest to a pyroclastic origin. 501 

In contrast, clasts derived from probable autobrecciation and/or quench fragmentation of lava 502 

include the coarsely porphyritic andesite clasts of Dogashima 3 and the dark andesite clasts 503 

resedimented from the Matsuzaki Formation. 504 

 505 

Style of the eruption that produced Dogashima 2 506 

The thickness and grainsize of the D2-1 to D2-3 sequence indicate that this part likely 507 

represents the highest magnitude eruption amongst the units of the Dogashima Formation. As 508 

a result of confining pressure which reduces magmatic volatile exsolution, subaqueous 509 
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magmatic volatile-driven explosive eruptions are inherently weaker than their subaerial 510 

counterparts (Head and Wilson 2003; Allen et al. 2008; Allen and McPhie 2009). In addition, 511 

rapid quenching and waterlogging of hot pumice clasts and condensation of steam promote 512 

eruption column collapse (Allen et al. 2008). The overall inferred transport in water-513 

supported pumice-rich density currents, normal density grading through units D2-1 to D2-3, 514 

and the presence of suspension deposits (D2-7) show strong similarities with the products of 515 

‘neptunian’ eruptions as defined by Allen and McPhie (2009). However, the high abundance 516 

of originally hot dense grey andesite clasts in D2-1 (0-60 vol.%), D2-2 (>90 vol.%) and D2-3 517 

(>20 vol.%) indicates a close association with a still-hot, co-magmatic lava dome. In 518 

addition, the coarseness of the dense clasts within the D2-3 pumice breccia suggests that 519 

collapse and quenching occurred from relatively low heights within the eruption column and 520 

at only moderate eruption intensities, favouring transport in a single density-stratified density 521 

current. The presence of scattered large dense grey andesite clasts within D2-3 indicates the 522 

proximity of the Dogashima exposures to the vent and that destruction of the dome continued 523 

during deposition of the pumice-rich facies. 524 

 525 

Below wave-base, eruption-fed pyroclastic pumice-rich facies 526 

The lower units (D2-2, D2-3) of Dogashima 2 have been previously interpreted as being the 527 

products of a pyroclastic eruption (Fiske 1969; Cashman and Fiske 1991; Tamura et al. 528 

1991). The most direct evidence for an eruption-fed origin is that dense grey andesite clasts in 529 

D2-1 and D2-2 were hot on emplacement (Tamura et al. 1991). The presence of similar 530 

scattered coarse grey andesite clasts in the overall gradationally overlying pumice breccia 531 

(D2-3) implies that it is also eruption-fed. The characteristics of D2-3 can thus be taken to 532 

reliably indicate an explosive eruption-fed origin, confirming previous work aimed at 533 

identifying such facies (e.g. Cas and Wright 1991; McPhie et al. 1993; Kano et al. 1994, 534 
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1996; Kano 1996, 2003; Schneider et al. 2001; McPhie and Allen 2003). The characteristics 535 

of explosive-eruption-fed facies include (1) very thick and extensive beds emplaced by 536 

density currents reflecting the rapid aggradation of a relatively large volume of pyroclasts; (2) 537 

being mainly composed of pyroclasts of uniform texture, mineralogy and composition; (3) 538 

the dominant clasts are moderately to highly vesicular, reflecting the role of magmatic 539 

volatiles in fragmentation; (4) the dominant clasts and overall grain size are relatively fine 540 

(coarse ash to lapilli); (5) the dominant clasts are angular; some may have complete or partial 541 

quenched margins; clasts surfaces may be curviplanar and/or ragged. 542 

The planar stratified pumice breccia (D2-4) has a gradational lower contact with D2-3. This 543 

context implies that it was also eruption-fed even though it is only moderately thick and 544 

planar stratified, both of which suggest that the clast supply and aggradation rates were less 545 

extreme than for D2-3. On the basis of context, the fine pumice breccia D2-5 is likely to be 546 

eruption-fed though probably related to a weaker eruption or eruption pulse, because it is 547 

planar stratified and relatively fine and thin (Table 2), and the proportion of dense clasts is 548 

lower than in the units below. 549 

Three units of Dogashima 1, the pumice breccia D1-2, D1-5 and D1-11, do not contain grey 550 

andesite clasts but are otherwise very similar to D2-3 and have characteristics that strongly 551 

suggest they were also explosive eruption-fed. They are unstratified, widespread, and graded, 552 

implying deposition from subaqueous density currents, and mainly composed of fine, angular 553 

white pumice and crystal fragments. 554 

By their thickness, lateral extent, grading, and large volume of pyroclasts (including crystal 555 

fragments), the two Kamegoiwa breccias (K1-1 and K1-2) are also considered to be deposits 556 

from high-concentration eruption-fed density currents. In addition, loose substrate from the 557 

Matsuzaki Formation was picked-up by the high-concentration density current, attesting to its 558 
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ability to erode. Their stratified facies are interpreted to result from interaction with uneven 559 

palæo-bathymetry, in a similar way to D2-3 at locality G-east. 560 

 561 

Below wave-base, resedimented pyroclastic pumice-rich facies 562 

Four units in Dogashima 2 (D2-4, D2-6, D2-7 and D2-8) and five units in Dogashima 1 (D1-563 

1, D1-4, D1-7, D1-9 and D1-12) are mainly composed of highly vesicular white pumice 564 

clasts identical to those in the explosive eruption-fed pumice breccia D2-3. These units are 565 

internally planar bedded or cross bedded, not laterally continuous, and individual beds are 566 

generally much less than 1 m thick. Importantly, the white pumice clasts are sub-rounded to 567 

rounded in many of these units. The dominance of relatively fine pumice clasts indicates a 568 

link to a subaqueous, magmatic volatile-driven explosive eruption, as for D2-3. However, in 569 

these nine units, rounding and sorting of pumice clasts, and the relatively thin, well-bedded 570 

depositional units indicate that aggradation was intermittent, and involved relatively dilute, 571 

small-volume modes of transport, chiefly producing multiple, stratified, thin beds. These 572 

units are interpreted to be the products of down-slope resedimentation from more proximal, 573 

primary pumice-rich facies (e.g. McPhie et al. 1993; Manville et al. 1998; Wright and 574 

Gamble 1999; Allen and Freundt 2006; Gardner 2010). The presence of resedimented facies 575 

interbedded with eruption-fed units throughout the Dogashima Formation indicates that syn- 576 

and/or post-eruption resedimentation was an important process. Interestingly, these units are 577 

not significantly more polymictic than eruption-fed facies, representing (surficial?) 578 

resedimentation of pumice-rich deposits from further upslope that had already been 579 

hydraulically sorted. 580 

Comparison of resedimented and eruption-fed facies in the Dogashima Formation indicates 581 

that resedimentation involved small-volume, surficial, unconsolidated deposits, and generated 582 
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multiple sedimentation pulses, probably over large time scales, producing small-volume units 583 

bounded by sharp erosional surfaces. Given the long-time scales available for 584 

resedimentation, the total thickness (and volume) of resedimented units at the scale of an 585 

outcrop or at a locality can be equal to or larger than the actual underlying eruption-fed 586 

deposits. For example, the volume ratio of eruption-fed to resedimented deposits in D1 and 587 

D2 over the mapped area is at ca. 50:50. 588 

 589 

Mass-wasting events 590 

Partial destruction of an edifice is likely to remobilise clasts from various origins, histories 591 

and compositions, producing a polymictic, possibly multiple-bed deposit. Several causes can 592 

generate such collapse, such as mass-wasting events, or explosive eruptions. Volcanic breccia 593 

units (D1-3 and D1-8) include numerous clast types, and basal contacts scour the underlying 594 

beds of Dogashima 1. Both units are therefore interpreted as the products of mass-wasting 595 

events, or product of partial collapse of a volcanic cone. 596 

The very coarse, overall monomictic, weakly stratified andesite breccia of Dogashima 3 is 597 

interpreted as resedimented autoclastic breccia, derived from collapse of a dome (or near-vent 598 

lava; Jutzeler 2012). The weakly stratified pumiceous sandstone matrix in Dogashima 3 is 599 

interpreted to have been deposited after the andesite clasts, from raining down and filtering of 600 

clasts brought by marine currents through the interstices between the clasts in the 601 

unconsolidated clast-supported breccia (e.g. Gifkins et al. 2002). 602 

 603 

Eruption narrative 604 

The Dogashima Formation is a combination of products from explosive eruptions, dome 605 

destruction, and inter-eruptive resedimentation. From detailed facies analysis, we reconstruct 606 
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the various eruption and transport processes involved in the accumulation of the 607 

volcaniclastic facies (Fig. 14). 608 

 609 

Phase 1: Explosive activity (Kamegoiwa) 610 

Kamegoiwa pumice breccia (units K1-1 and K1-2) records the lowermost known part of the 611 

Dogashima Formation. The high abundance of highly vesicular, white aphyric pumice lapilli 612 

and crystal fragments records deposition of at least two high-concentration density currents 613 

derived from magmatic-volatile driven explosive eruptions. The magma composition being 614 

different from the other clasts of the Dogashima Formation, its magmatic source and vent are 615 

likely to be distinct from the overlying units. K1-2 is locally overlain (intruded?) by lavas 616 

from the Matsuzaki Formation. There is a stratigraphic gap (sea level, fault, intrusions) 617 

between outcrops of K1-2 and Dogashima 1. 618 

 619 

Phase 2: Intermittent explosive activity and resedimentation (Dogashima 1) 620 

Dogashima 1 comprises three units (D1-2, D1-5 and D1-11) that record direct deposition 621 

from subaqueous, explosive eruption-fed density currents, and two units (D1-6 and D1-10) 622 

that were deposited from suspension settling associated with explosive eruptions. These 623 

pyroclastic units are intercalated with seven units (D1-1, D1-3, D1-4, D1-7, D1-8, D1-9, D1-624 

12; Table 2; Fig. 5) that are resedimented equivalents of the eruption-fed units. The eruption-625 

fed units are relatively thin (<3 m) and composed of highly vesicular pumice lapilli, implying 626 

that the eruptions were magmatic volatile-driven though relatively small volume. There is no 627 

evidence for the presence of a dome at the vent during this phase. Phase 2 is interpreted to 628 

record earlier (precursory?) explosive activity to the climactic eruption recorded by D2-3. 629 

 630 



27 of 45 

  

Phase 3: Effusive eruption (D2-1, D2-2) 631 

The basal units of Dogashima 2 overlie an erosional disconformity interpreted to be 632 

submarine channel in the beds of Dogashima 1. The two lowest units, D2-1 and D2-2 are 633 

breccias composed of dense grey andesite clasts that were hot at deposition. These clasts 634 

must have been derived from an active lava dome (or near-vent lava flow) that had a volume 635 

in the order of ~1x106 m3 (Fig. 14b; Jutzeler 2012). The grey andesite clasts have a slightly 636 

less evolved composition than the white pumice clasts in the eruption-fed units of Dogashima 637 

1, but the compositions are similar enough to infer that they came from closely related 638 

magmas at the same volcano, and probably the same vent. The grey andesite clasts in 639 

Dogashima 2 are dense, non-vesicular and massive (i.e. no flow bands). A white pumice clast 640 

containing a blob of dense grey andesite in D2-3e suggests very minor magma mingling in a 641 

shared conduit/vent. 642 

Subaqueous domes and crypto-domes commonly have a poorly vesicular core and a rim that 643 

is flow banded and/or pumiceous (e.g. Gifkins et al. 2002; Goto and Tsuchiya 2004; Allen et 644 

al. 2010) although the volume of flow-banded and vesicular facies can be minor in 645 

comparison to the massive, poorly vesicular core (Goto and Tsuchiya 2004). The absence of 646 

vesicles in the grey andesite clasts suggests that the source andesite had a low volatile 647 

content. Another possibility is that the clasts came from a cryptodome sufficiently deep to 648 

prevent vesiculation. If the grey andesite clasts were derived from an intrusion, then non-649 

juvenile clasts representing the cover ought to be present in the breccias. However, <5 vol.% 650 

of hydrothermally altered volcanic clasts occur in D2-2 suggesting that a cryptodome source 651 

is unlikely. Therefore, we favour the interpretation that a gas-poor, andesitic lava dome was 652 

extruded on the same volcano that generated the eruption-fed pumice breccia units in phase 2, 653 

and was subsequently destroyed while still hot. Dome growth probably occurred during the 654 
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pause in aggradation recorded by the disconformity at the top of Dogashima 1, although no 655 

deposit at Dogashima attest of this growth. 656 

 657 

Phase 4: Climactic explosive pumice-forming eruption (D2-2 to D2-5) 658 

Units D2-3 to D2-5 are thick and dominantly composed of andesitic pumice clasts and 659 

crystals fragments generated by a small-volume magmatic-volatile-driven explosive eruption. 660 

This eruption was initially dome-seated and destroyed the active lava dome (Fig. 14c). The 661 

sequence D2-1 to D2-4 shows overall normal grading in clast density and gradational 662 

contacts, reflecting continuous deposition from a single density current composed of juvenile 663 

pumice clasts and hot-dome-derived (Tamura et al. 1991) dense clasts (Fig. 14c,d). The 664 

componentry in D2-2 and D2-3 implies that the density current was first overloaded with hot 665 

dense grey andesite clasts, but gradually changed to be dominated by white pumice clasts 666 

(Fig. 14c, d). However, the current was heterogeneous enough to locally deposit a lens of 667 

pumice breccia below grey andesite breccia (Fig. 11). The very good hydraulic sorting of 668 

waterlogged white pumice clasts and dense clasts in D2-3 at the margins of the channel is the 669 

result of local increase in turbulence and flow expansion of the high-concentration density 670 

current. The planar stratified pumice breccia (D2-4) overlying D2-3 was probably deposited 671 

from the less-concentrated waning tail of the current (Fig. 14d). The fine pumice breccia (D2-672 

5) may have been produced by an eruption similar to that responsible for D2-3, but less 673 

intense, generating a weaker and unsteady density current.  674 

 675 

Phase 5: Resedimentation and suspension settling (D2-6 and D2-8) 676 

The units of cross-bedded pumice breccia-conglomerate (D2-6 and D2-8) record downslope 677 

resedimentation of the freshly erupted pyroclasts from a more proximal site by strong 678 
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currents in a submarine channel. The laterally continuous bed of planar bedded pumice 679 

breccia (D2-7) that is part of this sequence comprises coarse white pumice clasts and ash 680 

settled from suspension. The pyroclasts were either erupted at the same time as the white 681 

pumice clasts of D2-3, or from a subsequent eruption. 682 

 683 

Phase 6: Effusive eruption (Dogashima 3) 684 

The andesite clasts in the weakly stratified, coarsely porphyritic andesite breccia of 685 

Dogashima 3 have a distinctive composition and record extrusion and disintegration of a new 686 

lava dome, such as by lava flow front or dome collapse. The lack of vesicular clasts suggests 687 

that the magma was relatively volatile-poor. The pumiceous sand that forms the matrix of 688 

Dogashima 3 was probably derived from the pumice-rich products of the main explosive 689 

eruption of D2-3, which were subsequently resedimented. 690 

 691 

Discussion 692 

A submarine fall deposit in the Dogashima Formation? 693 

Cashman and Fiske (1991) interpreted the pumice breccia at locality G-east (beds D2-3d and 694 

D2-3e in this study) to be a submarine fall deposit from a submarine eruption, drawing 695 

attention in particular to the good hydraulic sorting of white pumice and dense grey andesite 696 

clasts (Figs 10c,d, 13). However, the hydraulically well-sorted facies in beds D2-3d and D2-697 

3e is only present at locality G-east; it can be traced for no more than 10 m laterally over the 698 

hundreds of m of exposures. D2-3 pinches out at the rim of the palæo-channel and in the 699 

overbank (localities G-west, I, J; Figs 9, 11), where it is almost exclusively composed of 700 

pumice lapilli and feldspar crystal fragments. In the channel (localities A-F; Figs 1, 5), unit 701 

D2-3 is very thick, tabular and massive, contains minor lenses of coarse pumice clasts, and 702 



30 of 45 

  

has a gradational lower contact with the massive grey andesite breccia (D2-2), and no 703 

coexistence of pumice and density-equivalent dense clasts could be detected. 704 

Subaqueous fall deposits should mimic some of the major characteristics of fall deposits from 705 

subaerial explosive eruption columns (e.g. Pyle 1989), including non-erosive lower contacts, 706 

lateral continuity over substantial distances, and systematic thickness and grain size changes 707 

with distance from source. None of these characteristics are displayed by either the interval of 708 

the submarine fall deposit of Cashman and Fiske (1991) (D2-3d, D2-3e in this study) or by 709 

the gradationally enclosing D2-1 to D2-3 succession. In addition, the high concentration of 710 

pyroclasts present in a submarine eruption column (such as for Dogashima 2) will promote 711 

formation of vertical density currents (Manville and Wilson 2004). In vertical density 712 

currents, clast velocity and sorting conditions are strongly different in comparison to low 713 

clast concentration, such as used for the experiments by Cashman and Fiske (1991). 714 

This study shows that D2-3, and in fact much of Dogashima 2, was deposited from sea floor-715 

hugging, eruption-fed density currents in a submarine channel setting. Locality G-east occurs 716 

on the rim of the submarine channel that lies between localities A and G-east. The uneven 717 

palæo-bathymetry may have caused current unsteadiness and expansion that increased 718 

turbulence, in a similar way to a hydraulic jump (e.g. Komar 1971; Fisher 1983; Sumner et al. 719 

2013), depositing the locally stratified and hydraulically sorted facies studied by Cashman 720 

and Fiske (1991). 721 

 722 

Production and deposition of shards 723 

The very low abundance of juvenile glass shards in eruption-fed facies of the Dogashima 724 

Formation may be characteristic of the products of subaqueous explosive eruptions where the 725 

column remains underwater (Allen et al. 2008; Allen and McPhie 2009) and subsequent 726 
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pyroclast transport occurs in water-supported density currents. A fines-poor character could 727 

be due to a combination of factors such as: (1) reduced explosivity of subaqueous explosive 728 

eruptions under confining pressure compared to their subaerial counterparts (Head and 729 

Wilson 2003; Allen et al. 2008); (2) reduced production of shards through clast-clast 730 

interactions in the eruption column and during outflow because of the higher viscosity of 731 

water compared to air (e.g. White 2000); and (3) segregation and advection of fine buoyant 732 

shards with low settling velocities into buoyant plumes of seawater heated by the eruption 733 

and/or during lateral transport (e.g. Cantelli et al. 2008), and deposition elsewhere. 734 

 735 

Water-settled facies in the Dogashima Formation 736 

Shard-rich siltstone units (D1-6 and D1-10) and a bed in the planar bedded pumice breccia 737 

(unit D2-7) extend tens of m laterally and best exemplifies the kind of water-settled fall facies 738 

generated by subaqueous magmatic volatile-driven explosive eruptions. D1-6 and the bed in 739 

D2-7 contain very coarse (~1 m) white pumice clasts. The coarse pumice clasts in these units 740 

probably cooled slowly as a result of their size, and remained buoyant until sufficiently 741 

waterlogged to sink, along with shards which have slow settling velocities (e.g. suspension 742 

deposits, Allen and McPhie 2009). The shard-rich units D1-10 and D2-7 do not directly 743 

overlie eruption-fed density current deposits; however, the distinctive componentry, bimodal 744 

grain size (shards vs. coarse white pumice clasts) and lithofacies characteristics suggest they 745 

are suspension deposits generated by subaqueous explosive eruptions; any related density 746 

currents are inferred to have left their deposits elsewhere. The bimodal (ash and crystals vs. 747 

coarse white pumice clasts) bed in D2-7 could be related to the explosive eruption that 748 

formed units D2-1 to D2-5. If correct, the presence of unit D2-7 at the same site as the 749 

density current deposits D2-1 to D2-5 suggests that deposition of the entire Dogashima 2 750 

sequence was relatively rapid and broadly syn-eruptive. However, the presence of cross-751 
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bedded pumice breccia-conglomerate (unit D2-6) immediately beneath unit D2-7 indicates a 752 

time break in the eruptive activity after deposition of D2-5. Therefore, D2-7 may be related to 753 

another subaqueous explosive eruption that did not produce a density current deposit at 754 

Dogashima (similar to D1-10). 755 

 756 

Conclusions 757 

The Pliocene Dogashima Formation (4.55±0.87 Ma; Izu Peninsula, Japan) records 758 

subaqueous effusive and magmatic volatile-driven explosive volcanic activity, and inter-759 

eruptive resedimentation in a below wave-base, open-marine setting. The similar bulk 760 

compositions, mineralogy and feldspar compositions of the white pumice and grey andesite 761 

clasts in D1 and D2 in the Dogashima Formation suggests that these components were co-762 

magmatic and erupted from the same or closely adjacent subaqueous vent(s). 763 

Thermoremanent temperatures (Tamura et al. 1991), and well-preserved quenched margins 764 

and fluidal textures on dense grey andesite clasts in the lower part of Dogashima 2 show 765 

these clasts were hot when deposited. The high abundance of the dense grey andesite clasts in 766 

the lowermost units of Dogashima 2, D1-1 and D2-2, implies that these units record 767 

destruction of an active submarine andesite dome. Pumice breccia D2-3 also contains the 768 

coarse, originally hot, grey andesite clasts though the dominant components are highly 769 

vesicular andesitic pumice. We infer that dome destruction involved a magmatic-volatile 770 

driven, subaqueous, explosive eruption. The explosive eruption fed a sea-floor-hugging 771 

water-supported density current that changed in composition from being dense andesite-772 

dominated (D2-1, D2-2) to being andesitic pumice-dominated (D2-3), and from being highly 773 

concentrated (D2-1, D2-2, D2-3) to more dilute (D2-4, D2-5). 774 
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Explosive eruption-fed, water-supported, high-concentration density current deposits are 775 

recognised by their occurrence in thick and extensive depositional units that were aggraded 776 

rapidly, and are dominated by an angular, relatively fine (coarse ash to lapilli), highly 777 

vesicular pyroclasts of uniform texture; massive to graded units are common, and 778 

stratification may be present, depending partly on substrate morphology. Local incorporation 779 

of the loose substrate, erosional basal contacts, and channel-filling context are additional 780 

indicators of deposition from sea floor-hugging high-concentration density currents. Other 781 

units in the Dogashima Formation (e.g. K1-1, K1-2, D1-2, D1-5, D1-11), and indeed in 782 

subaqueous successions elsewhere that show similar facies characteristics but lack the 783 

originally hot clasts are also likely to be explosive eruption-fed subaqueous density current 784 

deposits. Coarse pumice clasts and ash in overlying planar bedded pumice breccia (D2-7) are 785 

also interpreted to have an explosive eruption-fed origin but one involving settling of 786 

pyroclasts from suspension rather than suspension from a density current. 787 

Relatively well-sorted, planar bedded and cross bedded facies between the eruption-fed units 788 

are also composed of highly vesicular pumice clasts, but contain sub-rounded pumice clasts. 789 

The weak rounding of clasts, relatively thin units and well bedded character indicate that 790 

these facies were resedimented from more proximal, but below wave-base locations. 791 

Resedimentation is a predictable consequence of the presence of a large volume of relatively 792 

fine, low density pyroclasts on the sea-floor. 793 

Dogashima 2 accumulated in a broad (650 x 15 m) submarine channel. The internal 794 

stratification and good hydraulic sorting within the pumice breccia (D2-3) at the rim of the 795 

palæo-channel (locality G-east) are attributed to local current expansion and an increase in 796 

unsteadiness and turbulence from wall effects affecting the density current, and are not 797 

indicative of a submarine fall deposit sensu Cashman and Fiske (1991). Well-developed 798 
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planar and cross stratification suggests that traction currents operated within the submarine 799 

channel. 800 
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 811 

Figures 812 

Fig. 1 Location, geology and stratigraphy in the Dogashima Formation. a Simplified map of 813 

the Izu Peninsula (Japan) and the Izu-Bonin arc. Thin line is the 3,000 mbsl contour. b Local 814 

geological map of the Dogashima Formation at Dogashima, Japan; capital letters are studied 815 

localities; arrows show palæo-current directions, their colours correspond to the studied unit; 816 

dip symbol for syn-sedimentary faults, thick black lines for roads; dashed red lines for 817 

inferred faults. On land contour (in green) spacing is 20 m.  818 

 819 

Fig. 2 Coastal outcrops of the Dogashima Formation. 820 
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a Onlap and interfingering contact between the Dogashima Formation and the Matsuzaki 821 

Formation (M) at locality A. The formations have a regional ~10° tilt eastwards (to the right) 822 

but here shows gentle primary dip to the west. Dark andesite clasts (blue arrows) of the 823 

Matsuzaki Formation are present in the polymict volcanic breccia beds (D1-3 and D1-8) of 824 

Dogashima 1. Massive grey andesite breccia (D2-2) has an irregular contact with the basal 825 

polymict volcanic breccia (D2-1); photo courtesy S.M. Gordee. b Major tabular units in 826 

Dogashima 1 (D1) and Dogashima 2 (D2) at locality D (Fig. 1): pumice breccia (D1-2, D1-827 

5), cross-bedded pumice breccia (D1-1, D1-12), dark-grey polymictic volcanic breccia (D1-828 

3), and massive grey andesite breccia (D2-2). Coarse white pumice clasts (white arrows) at 829 

the base of the polymictic volcanic breccia (D1-3) in Dogashima 1 were eroded from 830 

underlying bed D1-2. c Dogashima Formation at locality C (Fig. 1). Note sharp contacts at 831 

the base and top Dogashima 2 (D2). Black arrows show coarse grey andesite clasts in 832 

massive grey andesite breccia (D2-2), white arrow points to lens of coarse white pumice 833 

clasts in pumice breccia (D2-3). Note the gradational contact between the massive grey 834 

andesite breccia (D2-2) and the pumice breccia (D2-3) in Dogashima 2. Blue arrow points to 835 

coarse white pumice clasts in polymictic volcanic breccia of Dogashima 1. Dogashima 3, D3. 836 

 837 

Fig. 3 Examples of clasts of Dogashima 2. a Outsize grey andesite clast (G), in the massive 838 

grey andesite breccia (D2-2), overlain by pumice breccia (D2-3), locality F. Note the weak 839 

columnar joints (blue arrow). b Outsize grey andesite clast in the pumice breccia (D2-3) with 840 

well-developed quenched rim (blue arrows). c Sharp transition from the massive grey 841 

andesite breccia (D2-2) to basal beds of the pumice breccia (D2-3). The coarse grey andesite 842 

clast has a quenched rim (blue arrow), locality G-east. White pumice, P; grey andesite, G; red 843 

andesite, R. d Coarse white pumice clasts (P) with rough radial joints (blue arrows) and much 844 

smaller grey andesite (G) and red andesite (R) clasts in pumice breccia (D2-3). e Rare clast of 845 
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white pumice containing an elongate blob of grey andesite; contact of the two magmas is 846 

sharp. D2-3e, locality G-east. 847 

 848 

Fig. 4 Clast analyses in the Dogashima Formation and Shirahama Group (Online Resources 849 

1, 2). a Total alkalis vs. silica (TAS) diagram for clasts in the Dogashima Formation; 850 

compositional fields after Le Bas et al. (1986); Shirahama Group data from Tamura (1990, 851 

1994, 1995). b, c TiO2 vs. MgO and Zr vs. SiO2 diagrams for clasts in the Dogashima 852 

Formation, compared with Shirahama Group analyses, respectively. Plotted compositions are 853 

recalculated to 100 wt.% anhydrous. D1, D2 and D3 for Dogashima 1, Dogashima 2, and 854 

Dogashima 3, respectively. d Microprobe analyses of rims and cores of plagioclase crystals 855 

in Dogashima 2. Compositions of plagioclase phenocrysts from various origins define a 856 

single trend, consistent with a co-magmatic source. 857 

 858 

Fig. 5 Stratigraphic logs of the southern part of the Dogashima Formation (localities A to G-859 

east), displayed north (left) to south (right). Inset shows localities and palæo-flow directions 860 

on a simplified map (Fig. 1). All log bases start at sea level; d for dense clast, p for white 861 

pumice clast. 862 

 863 

Fig. 6 Stratigraphic logs of the northern part of the Dogashima Formation (localities G-east to 864 

I), displayed north (left) to south (right). Inset shows localities and palæo-flow directions on a 865 

simplified map (Fig. 1). Bases of logs H and I start at sea level; d for dense clast, p for white 866 

pumice clast; see Figure 5 for symbol key. 867 

 868 
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Fig. 7 Kamegoiwa pumice breccia, locality K. a Base of Kamegoiwa pumice breccia (K1-1) 869 

is strongly stratified and includes high abundance of clasts from the underlying Matsuzaki 870 

Formation (blue arrow). K2-2 is coarser grained, weakly stratified, and locally reversely 871 

graded. b White aphyric pumice (p) and crystal fragments are the dominant clast types in the 872 

upper unit of the Kamegoiwa pumice breccia (K2-2). Grey banded pumice clasts (g) and 873 

hydrothermally altered volcanic clasts are common. Note the near-absence of matrix. 874 

 875 

Fig. 8 Facies in Dogashima 1 a Top of the reversely graded pumice breccia (D1-5), locality 876 

E. Margins of the coarse white pumice clasts are very irregular and have been quenched; 877 

cauliflower textures occur in some clasts (left arrow). Image has been darkened to increase 878 

contrast. b Reversely graded pumice breccia (D1-2), locality B, with coarse white pumice 879 

clasts (blue arrow). Unit D1-2 has a discordant contact with overlying polymictic volcanic 880 

breccia (D1-3 and D1-8). D1-3 and D1-8 include similar coarse white pumice clasts. c 881 

Laminae of pyroxene crystals fragments and white pumice clasts in a stratified lens of planar-882 

bedded pumice breccia (D1-1), locality D. d Cross-bedded pumice breccia (D1-1), locality B. 883 

Margins of coarse white pumice clasts (blue arrows) are interpreted to have been quenched. e 884 

Polymictic volcanic breccia (D1-3), locality D. The unit contains coarse white pumice clasts 885 

(beside notebook) derived from underlying pumice breccia units. f Polymictic volcanic 886 

breccia (D1-3), locality D. Grey scoria (blue arrows), white pumice clasts (orange arrow) and 887 

numerous types of hydrothermally altered volcanic clasts. 888 

 889 

Fig. 9 Outcrops of Dogashima 2. a Locality G-east. Note the sharp boundary between the 890 

massive grey andesite breccia (D2-2) and the pumice breccia (D2-3), the locally graded units 891 

within the lower beds of the pumice breccia (beds a to e in D2-3), and the isolated grey 892 
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andesite clast at the top (arrow 1) and in the fine pumice breccia (D2-5; arrow 2). b Lateral 893 

transition from the rim of the submarine channel (right) to overbank setting (left), locality G-894 

west; this photo is a view just to left of picture a. Dogashima 1 (D1) is overlain by a relatively 895 

thin bed of pumice breccia (D2-3). D2-4 and D2-5 are stratified and partially eroded in this 896 

section. The cross-bedded pumice breccia-conglomerate (D2-6) and planar bedded pumice 897 

breccia (D2-7) overlie the entire section. Minor coarse grey andesite and hydrothermally 898 

altered volcanic clasts are present in D2-3 (blue arrow). Green arrow shows location of 899 

picture c. c Dogashima 2 at locality G-west, showing the rim of the submarine channel. Fine-900 

grained facies of the pumice breccia (D2-3) overlies a disconformity with Dogashima 1 (D1). 901 

Note that unit D2-3 is relatively thin and stratified at the top (arrows); the basal polymictic 902 

volcanic breccia (D2-1) and massive grey andesite breccia (D2-2) beds are absent. 903 

 904 

Fig. 10 a, b Elongate, fluidal-shape, grey andesite clasts in the massive grey andesite breccia 905 

(D2-2), amongst other angular clasts of grey andesite (G), white pumice (P) and red andesite 906 

(R); birds-eye view, arrow indicates inferred flow direction from clast imbrication above in 907 

the stratigraphy; locality G-east. c Scan of a ground rock slab from the upper part of the 908 

pumice breccia (D2-3d) at locality G-east. The coarser white pumice clasts (P) are in 909 

hydraulic equivalence (Cashman and Fiske 1991) with the finer dense clasts of grey andesite 910 

(G), red andesite (R) and hydrothermally altered volcanic clasts (H). Fine-grained 911 

components are crystals fragments. Note the absence of fine (<1/16 mm) components. d 912 

Photomicrograph of white pumice clasts (P) in a matrix chiefly made of crystal fragments 913 

(plagioclase, minor pyroxene), unit D2-3e; plane polarised light. 914 

 915 
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Fig. 11 a Reconstruction of the original geometry of the Dogashima Formation, which shows 916 

Dogashima 2 filling a submarine channel in Dogashima 1 (localities A to G-east). The 917 

submarine channel includes a palæo-high at localities C to E and two palæo-lows (localities 918 

A to B; F to G-east) carved into Dogashima 1. b Lateral changes in Dogashima 2 from 919 

localities G-west to G-east. A medium to thick, stratified bed of pumice breccia (D2-3) 920 

occurs at G-west (interpreted overbank setting; left), and overlies Dogashima 1 (D1) with a 921 

discordant contact. At G-east (interpreted submarine channel, right), thick beds of massive 922 

grey andesite breccia (D2-2) overlie D1 with a discordant contact. Locally, a lens of D2-3 923 

occurs below D2-2 (extreme right). This lateral section is interpreted to represent the rim of 924 

the submarine channel carved in Dogashima 1. The logs are restricted to lower part of the 925 

cliff; all logs are ~5 m apart, and start at sea level. The red arrows show the position of the 926 

“submarine fallout layer” from Cashman and Fiske (1991); person in yellow ellipse for scale. 927 

 928 

Fig. 12 a Normally graded beds in planar bedded pumice breccia (D2-7), locality I. Grey 929 

andesite and hydrothermally altered volcanic clasts are abundant at the bases of the beds, 930 

whereas white pumice clasts are concentrated at the tops (density grading). b Large-scale 931 

planar and trough cross beds in cross-bedded pumice breccia-conglomerate (D2-6) and planar 932 

beds of the planar bedded pumice breccia (D2-7), locality G-west. c Coarse pumice clasts 933 

(orange arrows) randomly distributed in a weakly stratified matrix of pumiceous sand, in 934 

planar bedded pumice breccia (D2-7), locality I. d Large-scale trough cross-beds (blue arrow) 935 

in cross-bedded pumice breccia-conglomerate (D2-8), locality H. e Small-scale compound 936 

(i.e. internally cross-stratified) cross-beds in through cross-bedded pumice breccia-937 

conglomerate (D2-8) at locality I. Dashed lines define beds with similar current direction; 938 

white arrows give the dominant bedding plane surface; west, W; east, E. f Syn-depositional 939 
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normal faults (blue line and arrows; 75/110) cutting a very thick (>2 m) section of planar 940 

bedded pumice breccia (D1-1) in Dogashima 1, locality D. 941 

 942 

Fig. 13 Component volume and grain size distribution of white pumice and dense clasts (grey 943 

andesite and hydrothermally altered volcanic clasts) at locality G-east, in Dogashima 2. a 944 

Grain size distribution in weight percent for pumice and dense clasts, from image analysis 945 

and functional stereology (Jutzeler et al. 2012); bin at ¼ phi. b Stratigraphic log of the basal 946 

part of Dogashima 2 at locality G-east. c Volume percent of clast types from image analysis. 947 

d Volume percent for size classes, from functional stereology data. e Volume modes for 948 

pumice and dense clasts from functional stereology data. 949 

 950 

Fig. 14 Model involving destruction of a subaqueous dome by a magmatic volatile-driven 951 

explosive eruption; the vertical scale of the volcanic edifice is strongly exaggerated. a 952 

Geometry of the palæo-channel just before deposition of Dogashima 2, N-S section. The 953 

palæo-channel (sections A–G) and overbank locations (sections H–I) are at a lower elevation 954 

than the vent. Dogashima 1, (green). Palæo-channel is centred on localities E, F and G, 955 

palæo-high at C and D, and palæo-low between A and B. Matsuzaki Formation (M, blue) 956 

forms a palæo-high to the south. b Effusive subaqueous eruption (1), producing an andesitic 957 

lava dome. c Destruction of the hot dome by a magmatic volatile-driven explosive eruption 958 

(2). Dense hot dome fragments (3) fall out rapidly. The eruption column collapses, producing 959 

(4) a water-supported, subaqueous density current of grey andesite dome clasts and white 960 

pumice clasts (units D2-1 and D2-2). d Fewer dome clasts are available, and vesicular 961 

pumice clasts (5) become the dominant clast type in the collapsing eruption column (unit D2-962 

3). Dense dome clasts are concentrated near the base of the water-supported high-963 
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concentration density current (6). Coarse pumice clasts are temporarily buoyant (7) and 964 

deposited from suspension later (unit D2-7). Waning stages of the eruption (D2-4, D2-5) and 965 

pumice resedimentation (D2-6 and D2-8) are not shown in cartoon. Red for explosive jet 966 

sustained by magmatic gases; greenish blue for water-supported region dominated by 967 

waterlogged pumice lapilli; pale blue for water-supported region with a lower concentration 968 

of finer grained clasts. 969 

 970 

 971 

 972 

Tables 973 

Table 1  974 

Characteristics of clasts in the Dogashima Formation. 975 

 976 

Table 2  977 

Characteristics of facies in the Dogashima Formation. 978 

 979 

Table 3  980 

Bearing (true North) of long axes of elongate pumice clasts, interpreted to be deposited 981 

parallel to flow direction, in Dogashima 1 and 2. Flow direction inferred from clast 982 

imbrication. Dip direction of syn-depositional faults indicates palæo-downslope direction. 983 

 984 

Online Resource 1 985 
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 Major and trace element compositions analysed by XRF for various clasts of the Dogashima 986 

and Matsuzaki formations. Concentrations recalculated to 100 wt.% anhydrous. 987 

 988 

Online Resource 2 989 

Composition of major elements in plagioclase phenocrysts and microlites in white pumice 990 

and grey andesite clasts in Dogashima 2; analysed on a Cameca 100X electron microprobe. 991 

 992 

Online Resource 3 993 

U/Pb analyses on zircons by LA-ICP-MS; data and Concordia. 994 
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Table  Clasts in the Dogashima Formation   
Clast Occurrence Colour; shape Size; vesicularity Phenocryst assemblage 
 
White pumice 

 
Abundant in D1 and D2, 
rare in base of D3 

 
White, slight yellowish hue. 
Mostly angular and 
curviplanar, rounded in D2-
2 and sub-angular to sub-
rounded in D2-6 and D2-8. 
Common quenched rim 
and rare bread-crust 
texture in coarse (>50 cm) 
clasts. 

 
Mostly <8 cm; max. 
1.50 m. 
Elongate vesicles (>60 
vol.%) partially 
preserved. 

 
<40 vol.% phenocrysts. Plagioclase is dominant 
(25-35 vol.%, average ~1 mm, max 3 mm; An48-
70). Clinopyroxene, orthopyroxene and opaque 
phases are subordinate (<5 vol.%) and are no 
more than 0.5 mm in size; quartz phenocrysts are 
very rare (<0.1 vol.%). Phenocrysts are equant 
and typically broken on one face, and are also 
found as clusters. Glass is chiefly devitrified. 

Grey andesite Dominant in D2, minor 
in lower D3 

Grey to dark grey, 
unaltered and chiefly 
equant. Coarse clasts (>50 
cm) are equant to ovoid, 
have quenched rims 
several cm wide and 
internal radial joints. Rare 
(<1 vol.%) fluidal clasts are 
present. 

Mostly 10-50 cm (but 
up to 10 m) in D2-2; 
<10 cm in D2-3. Non-
vesicular. 

15-20 vol.% phenocrysts, which is similar to 
dense rock equivalent of white pumice clasts. 
Plagioclase crystals (10-15 vol.%; An49-57) are 
equant, euhedral and 1-2 mm long, although rare 
clusters are up to 10 mm across. Clinopyroxene 
(2 mm), orthopyroxene (1 mm) and oxides (1 mm) 
are subordinate (<5 vol.%), and form aggregates. 
Trachytic groundmass texture defined by 0.5-1 
mm feldspar microlites (An53-69). Scattered, 
ovoid weakly porphyritic inclusions up to a few cm 
across occur. 

Crystal fragments D1 and D2 Commonly equant in 
shape, broken on one to 
many faces. 

Mostly 1/16–2 mm. Mostly plagioclase (An51-70); minor 
clinopyroxene and orthopyroxene. 

Red andesite D2-1, D2-2 and D2-3 Red, angular to sub-
rounded, equant in shape. 

Mostly <10 cm. 
Maximum size 30 cm. 
Non-vesicular 

Phenocryst content and plagioclase composition 
(An64-78) match those of grey andesite clasts. 

Hydrothermally 
altered volcanic 
clasts 

D1, D2, minor in base 
of D3 

Ochre-yellow, brown, dark 
red, or red; angular to sub-
rounded andesite, scoria 
and rare sub-rounded 
clasts of pumice breccia. 

Mostly <10 cm. 
Outsized  (>3 m) 
altered pumice breccia 
in D2-2.  
Dense to formerly 
vesicular. 

Variable mineralogy; mostly composed of 
plagioclase. 

Dark andesite Minor in beds of D1 at 
locality A and bed D1-
3/8 at locality B. 
Dominant in Matsuzaki 
Fm. 

Black, with brown, glassy 
groundmass; very angular. 

Mostly 10-20 cm. 
Poorly vesicular (<10 
vol.%). 

Dominantly plagioclase and opaque phases (0.5-
1.5 mm; 20 vol.%). Lath-shaped plagioclase 
micro-phenocrysts (0.1–0.2 mm; >50 vol.%) also 
occur. 

 
 

 
 

 
 

 
 

 
 

Table 1



White aphyric 
pumice 

Rare to minor in some 
D1 and D2 beds. 
Dominant in 
Kamegoiwa and some 
other beds. 

White, commonly rounded 
but angular in some beds. 

Mostly <6 cm. 
Tube vesicles (~60-80 
vol.%) overall finer and 
more elongate than in 
the white pumice. 

Almost aphyric; rare plagioclase (<1 vol.%) is 0.1 
mm (1 mm max). The glass is chiefly devitrified. 

Grey scoria Minor in D1-3 and D1-8. 
Minor in some beds of 
Matsuzaki Fm. 

Pale grey; broken angular 
pieces of fluidal clasts. 

Mostly <6 cm. 
Maximum ~10 cm. 
Moderately vesicular 
(<50 vol.%); vesicles 
mostly ellipsoidal, 
weakly aligned (<0.2 
mm, max 3 mm). 

Minor phenocrysts (<10 vol.%) including 
plagioclase (max 2 mm), clino- and orthopyroxene 
and rare hornblende.  

Coarsely porphyritic 
andesite 

Dominant in D3. Grey; angular.  Almost exclusively 20-
50 cm. 
Very poorly vesicular 
(<0.5 vol.%) 

Phenocrysts (>25 vol.%) are mostly plagioclase (1 
mm and few crystals up to 10 mm), with minor 
clino- and ortho-pyroxene and opaques. 
Groundmass is fine-grained (<0.1 mm) and 
composed of feldspar and subordinate clino- and 
ortho-pyroxene and opaques. 

Grey banded pumice Common in 
Kamegoiwa. 

Grey, flow-banded with 
dark and pale domains; 
angular 

3-12 cm long, 
porphyritic. 

Phenocrysts (>25 vol.%, up to 3 mm) are mostly 
feldspath and ferromagnesians.  

 



Beds, occurrence Bed characteristics Clast characteristics Origin 
 
Kamegoiwa  
 
Pumice breccia 
K1-1, K1-2 
Locality: K 

 
 
 
Very thick (up to 10 m) sequence made of two stratified units 
separated by sharp contact boundary. K1-1 occurs locally, 
whereas K1-2 is present at all outcrops. The pumice breccia is 
in erosional contact with underlying units of the Matsuzaki 
Formation and lowermost beds (up to 2 m thick) contain high 
concentration of scoria clast picked up from the Matsuzaki 
Formation. The lowermost unit K1-1 (5 m) is fine stratified 
breccia ; K1-2 (5 m) is reversely graded, stratified pumice 
breccia. 
 

 
 
 
Angular white aphyric pumice (>70 vol. %), sub-dominant crystal 
fragments, hydrothermally altered volcanic clasts (10 vol. %) and 
flow-banded pumice clasts (<5 vol. %). Up to 50 vol.% of grey scoria 
at contact with the Matsuzaki Formation. 
Average grain size: 1 - 2 cm (K1-1) and 1 - 16 cm (K2-2); maximum: 
40 cm. 

 
 
 
Explosive 
eruption-fed 

 
Dogashima 1 
 

    

Pumice breccia 
D1-2, D1-5, D1-11 
Localities: B, C, D, 
E 

Thick to very thick; reversely or normally graded. Tabular, 
massive and in sharp contact with other units; the top contact is 
discordant at many localities. Contains lenses of coarse white 
pumice clasts. 

Mostly angular white pumice (>60 vol.%), sub-dominant crystal 
fragment, minor angular hydrothermally altered volcanic clasts, rare 
white aphyric pumice (<1 vol.% clasts). Commonly consist of 20-40 
vol.% of sand-sized clasts. 
Average grain size: 0.05 - 20 cm; maximum: 120 cm. 

Explosive 
eruption-fed 

Shard-rich 
siltstone 
D1-6, D1-10 
Localities: A, B, C, 
D, E, F 

Thin to medium. Massive to laminated; load, liquefaction-
convolution (Table 1) and ball-and-pillow structures occur. 
Overlies other beds at sharp boundaries. The top contact is 
commonly an erosion surface. 

Mostly devitrified glass shards; minor coarse white pumice clasts and 
free broken plagioclase crystals. 
Average grain size: <0.0063 cm. 

Explosive 
eruption-fed 

Polymictic 
volcanic breccia  
D1-3, D1-8 

Localities: A, B, C, 
D, E, F 

Medium to very thick (max 5 m); stratified, normally or reversely 
graded, or cross bedded. Well sorted. Tabular and laterally 
continuous and merge into a single <50-cm-thick coarse bed at 
100 m southeastward of locality C. Basal contact is sharp, 
discordant and erosional; pinches out above Matsuzaki 
Formation at locality A. Coarse white pumice clasts can occur in 
D1-3, probably derived from top of D1-2. 

Very angular to angular hydrothermally altered volcanic clasts, grey 
scoria, white aphyric pumice, white pumice, dark andesite. D1-8 rich 
in rounded white pumice clasts (max 40 cm). 
Average grain size: 0.5 - 4 cm; max. 120 cm. 

Resedimented 

Cross-bedded, 
planar bedded 
and normally 
graded pumice 
breccia/sandstone 
D1-1, D1-4, D1-7, 
D1-9 and D1-12 
Localities: A, B, C, 
D, E, F 

Thin to very thick (max >2 m); cross-bedded in trough or planar 
bedded, commonly laminated, or normally graded. Occur in 
stacks of low angle, lenticular sets of trough cross beds with m 
to 10 m wavelengths and amplitudes up to 2 m. Numerous 
subvertical syn-sedimentary normal faults occur in a ~2-m-thick 
cross-bedded pumice sandstone bed in unit D1-1 at locality D. 
The faults dip towards the SE, and have a vertical displacement 
of <20 cm.  

Mostly angular to sub-rounded white pumice; minor hydrothermally 
altered volcanic clasts, crystal fragments, white aphyric pumice. Out-
sized white pumice and white aphyric pumice clasts (both up to 1.5 
m) spread throughout the beds, or concentrated in single-clast-thick 
beds. Scattered dark andesite clasts occur in beds in contact with the 
Matsuzaki Formation at locality A. 
Average grain size: <0.2 - 6 cm; max. 150 cm. 

Resedimented 

 
 
 
 

     

Table 2



 
Dogashima 2 
 
Basal polymictic 
volcanic breccia 
D2-1 

Locality: A 

Thick to very thick (<3 m); massive, in lense (<10 m long). Basal 
erosive contact that scours (1 m deep, 2 m wide) D1. Contact 
with overlying D2-2 is sharp and irregular. 

Mostly angular dark andesite (0–60 vol.%) and grey andesite (20-30 
vol.%); minor hydrothermally altered volcanic clasts, red andesite 
and rounded white pumice (<3 vol.%) crystal fragments. Dark 
andesite absent from lowermost 30 cm of the unit.  
Average grain size: 5 - 50 cm; max. 80 cm. 

Explosive 
eruption-fed 

Massive grey 
andesite breccia 
D2-2 

Localities: A, B, C, 
D, E, F 

Very thick (up to 7 m); massive to reversely graded. The basal 
contact is sharp and discordant with D1 and with D2-1 at locality 
A; it onlaps the Matsuzaki Formation at locality A. Minimum 
volume estimated at 1x106 m3. 

Mostly angular grey andesite (>90 vol.%); minor hydrothermally 
altered volcanic clasts, rounded white pumice (up to 5 vol.%), red 
andesite; fluidal grey andesite (0.1 vol.%) at locality F. Outsized grey 
andesite clasts (up to ~10 m diameter) mainly occur in groups in the 
upper part of the unit at all localities. Locality F: thermoremanence of 
some of the coarse grey andesite clasts show deposition at >450°C 
(Tamura et al. 1991). 
Average grain size: 5 - 50 cm. 

Explosive 
eruption-fed 

Locality: G-east Very thick; massive to normally graded, with groups of 
quenched out-sized andesite clasts. Basal contact is sharp and 
erosive with D1. Pinches out sharply at this locality. 

Mostly angular grey andesite; minor hydrothermally altered volcanic 
clasts (<5 vol.%), rounded white pumice (up to 5 vol.%), red 
andesite, fluidal grey andesite (<1 vol.%). Outsized grey andesite 
clasts (up to ~5 m diameter) mainly occur in groups in the upper part 
of the unit at all localities. 
Average grain size: 5 - 50 cm; max. 400 cm.  

 

Pumice breccia 
D2-3 

Localities: B, C, F 

Very thick (6-10 m); overall massive to normally graded, with 
diffuse, coarse lenses of white pumice clasts. Top of unit 
commonly stratified. Conformable with D2-2, fully gradational. 
Gradational contact with D2-2 shown by high concentrations of 
grey andesite and hydrothermally altered volcanic clasts 
identical to those found in D2-2. Minimum volume estimated at 
2.5x106 m3. 

Mostly angular white pumice, grey andesite, crystal fragment. Minor 
hydrothermally altered volcanic clasts and white aphyric pumice. 
Average grain size: 0.2 - 60 cm; max. 120 cm. 

Explosive 
eruption-fed 

Locality: G-east Very thick (up to 7 m); overall reversely graded and stratified 
into five well-preserved 1-2.5 m thick, normally or reversely 
graded beds separated by weak bed boundaries. Bed 
boundaries become less distinct upwards in the unit. 
Conformable with D2-2, in gradational to sharp contact. 
Gradational contacts are shown by decrease in size and 
abundance of major clasts of D2-2 in lower beds of D2-3. 
Coarse white pumice clasts at top of unit are aligned NE-SW. 
Locally, unit D2-3 can be found as a 1-m-thick lense below unit 
D2-2.  

Dominated by angular white pumice (mostly 70-95 vol.%), grey 
andesite (mostly <30 vol.%) and crystal fragment. Minor 
hydrothermally altered volcanic clasts and white aphyric pumice. D2-
3a, b are rich in grey andesite and hydrothermally altered volcanic 
clasts (30–50 vol.%). The base of bed D2-3b contains abundant 
coarse white pumice clasts as well as grey andesite clasts. 
Abundance of grey andesite clasts diminishes progressively in D2-
3c, d, e (60 to <20 vol.% upwards). Outsized grey andesite (3.5 m) 
with white pumice (30 cm) in bed D2-3e; hydrothermally altered 
pumice breccia (1 and >3 m) in various places in base to middle of 
unit D2-3. 
Average grain size: 0.2 - 60 cm. 

 

Localities: G-west, 
H, I 

Medium thick to very thick (up to 1 m), stratified. Basal contact 
sharp and discordant with D1. Locality G-west: medium bedded, 
normally graded; locality H: thickly bedded, normally graded; 
locality I: the 1-m-thick, reversely graded bed; lenses of coarse 
white pumice clasts at top. 

Mostly angular white pumice (>80 vol.% of the clasts), with sub-
dominant grey andesite, crystal fragment; rare outsized 
hydrothermally altered volcanic clasts (up to 60 cm) and white 
aphyric pumice clasts. Average grain size: 0.2 - 1 cm. 

 

 Medium to thick; stratified, reversely to normally graded or Mostly white pumice (10 mm; up to 15 vol.%) and common white Explosive 



Planar stratified 
pumice breccia 
D2-4 
Localities: G, H 

massive; laminated at top. Gradational basal contact with D2-3. 
Multiple parallel laminations occur in the top 10 cm of each of 
the two beds. 

aphyric pumice (platy shape, imbricated towards SW, up to 3 cm; up 
to 35 vol.%), crystal fragment, grey andesite, hydrothermally altered 
volcanic clasts. 
Average grain size: 0.2 - 80 cm; max. 5 cm. 

eruption-fed 

Fine pumice 
breccia 
D2-5 
Localities: G, H 

Very thick (<3 m), diffusely stratified, overall reversely graded 
bed. Sharp and conformable basal contacts. Diffuse lenses of 
coarse (up to 45 cm) white pumice clasts are common. 

Mostly angular white pumice (>80 vol.%, mostly <2 mm; max 5 cm) 
and crystal fragment; minor grey andesite (>10 vol.%, up to 1 cm). 
Rare out-sized grey andesite clasts (<1 vol.%; 6–40 cm) and 
hydrothermally altered volcanic clasts (<1 vol.%) are present. 
Average grain size: 0.2 - 6 cm; max. 50 cm. 

Explosive 
eruption-fed 

 
Cross-bedded 
pumice breccia-
conglomerate 
D2-6 and D2-8 

Localities: G, H, I, J 

 
Thin to very thick tabular and stratified units; cross-bedding in 
trough (several m in wavelengths) that can be compound (i.e. 
internally cross-stratified (McKee and Weir, 1953; Allen, 1963) 
and show opposite palæo-flow directions (Fig. 1). The basal 
contacts of both units are sharp and commonly cut across 
stratification in the beds beneath. 

 
Mostly sub-angular to sub-rounded white pumice (10–60 vol.%; up to 
150 cm), sub-dominant grey andesite, hydrothermally altered 
volcanic clasts and crystal fragment (up to 20 vol.%), minor white 
aphyric pumice. 
Average grain size: 0.2 - 3 cm; max. 150 cm. 

 
Resedimented 
and reworked 

Planar bedded 
pumice breccia 
D2-7 

Localities: G, H, I 

Very thin to very thick; planar bedded, tabular to lenticular, 
massive, or reversely or normally graded. Planar cross beds 
attesting of traction currents commonly occur, and graded beds 
can be stratified at their top. Sharp basal contact, some 
scouring. Strong bimodality occurs in medium to very thick beds 
at localities H and I, with randomly distributed, very coarse white 
pumice clasts (up to 1 m) in a diffusely stratified matrix mostly 
composed of white pumice clasts. 

Mostly white pumice (>80 vol.%) and sub-dominant hydrothermally 
altered volcanic clasts and crystal fragment (up to 20 vol.%), grey 
andesite (<1 vol.%), white aphyric pumice. 
Average grain size: 0.2 - 1.6 cm; max. 100 cm. 

Explosive 
eruption-fed 

 
Dogashima 3 
 

     

Weakly stratified 
andesite breccia 
D3 

Localities: C, I, J 

Extremely thick and clast supported. Weakly stratified to 
massive, with disorganised, weakly stratified pumiceous matrix. 
Minimum volume estimated at 2x106 m3. 

Overall monomictic with coarsely porphyritic andesite; minor white 
pumice and hydrothermally altered volcanic clasts at base. 
Average grain size is: 20-50 cm; max. 100 cm. 

Resedimentation 
from effusive 
eruption 

 



   

Unit Locality 
Long axis  
orientation (°) 

Number of  
measures 

Inferred flow  
orientation 

Syn-
deposition
al faults 

    Primary Secondary   
Clast 

 imbrication 
Cross 
beds 

Dip/Dip 
direction 

D1-1 B 265-285 215 7  E to W   
D1-1 D     >20    75/210 
D1-3 D 235-245 225 & 275 18      

D1-8 D     3 E to W 
E to W; 
W to E   

D2-3e G-east 235-245   8      
D2-4 G-east 235-245   >10 E to W E to W   

D2-6 G-west   >10  
E to W; 
W to E  

D2-6 H 220   3      

D2-8 G-west   >10  
E to W; 
W to E  

D2-8 I 245-265   6      
D2-8 I   >10 E to W   

D2-8 I   >10 
E to W;  
W to E 

 
 

D2-8 J   >10 
E to W;  
W to E 

 
 

 

Table 3


