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BACKGROUND & AIMS: Barrett’s esophagus (BE) increases
risk for esophageal adenocarcinoma (EAC). Increased risk for
BE has been associated with single nucleotide polymorphisms
(SNPs) on chromosome 6p21 (within the HLA region) and on
16q23, where the closest protein-coding gene is FOXF1. The
Barrett’s and Esophageal Adenocarcinoma Consortium (BEA-
CON) identified risk loci for BE and esophageal adenocarcinoma
in CRTC1 and BARX1, and within 100 kb FOXP1. We aimed to
identify SNPs that increased risk for BE in a genome-wide as-
sociation study (GWAS) and to validate previously reported
associations. METHODS: We performed a GWAS to identify
variants associated with BE and further analyzed promising
variants identified by the BEACON. We performed genotype
analysis of 10,158 patients with BE and 21,062 controls.
RESULTS: We identified 2 SNPs not previously associated with
BE: rs3072 (2p24.1; odds ratio [OR] ¼ 1.14; 95% CI: 1.09–1.18;
P ¼ 1.8 � 10�11) and rs2701108 (12q24.21; OR ¼ 0.90; 95%
CI: 0.86–0.93; P ¼ 7.5 � 10�9). The closest protein-coding
genes were GDF7 (rs3072), which encodes a ligand in the
bone morphogenetic protein pathway, and TBX5 (rs2701108),
which encodes a transcription factor that regulates esophageal
and cardiac development. We also identified 3 SNPS already
identified by the BEACON (rs2687201, rs11789015, and
rs10423674). Meta-analysis of all data identified another
SNP associated with BE and esophageal adenocarcinoma:
rs3784262, near ALDH1A2 (OR ¼ 0.90; 95% CI: 0.87–0.93;
P ¼ 3.72 � 10�9). CONCLUSIONS: We identified 2 loci asso-
ciated with risk for BE and provide data to support a locus
previously associated with risk in the BEACON. The genes we
found to be associated with risk for BE encode transcription
factors involved in thoracic, diaphragmatic, and esophageal
development or proteins involved in the inflammatory
response.

Keywords: EAC; Intestinal Metaplasia; Susceptibility; Cancer.
FLA 5.2.0 DTD � YGAST59419_proof �
arrett’s esophagus (BE) is a common premalignant
Bcondition that affects up to 2% of the adult popu-
lation in the Western world.1 BE comprises the second stage
in the esophagitis–metaplasia–dysplasia–adenocarcinoma
sequence. BE confers a 2%–4% lifetime risk of esophageal
adenocarcinoma (EAC).1 Chronic gastric acid reflux is the
predominant etiologic factor for BE. In addition, BE co-
occurs with conditions such as intestinal metaplasia, hiatal
hernia, obesity, and hypercholesterolemia.2–5 Several fac-
tors, including the degree of acid reflux, hiatal hernia size,
and the percentage of intestinal metaplasia–positive glands,
can affect the progression to cancer. A role for genetics in
the pathogenesis of gastroesophageal reflux disease,
including BE and EAC, has been implicated on the basis of 3
observations: concordance in monozygous and dizygous
twins6–8; the increased risk of disease in those with a pos-
itive family history9,10; and, recently, the identification of
single nucleotide polymorphisms (SNPs) associated with BE
in Genome-Wide Association Studies (GWAS).11,12 The pro-
portion of variation in BE risk explained by common vari-
ants has been estimated to be 35%.13

Our GWAS previously identified 2 SNPs, on chromo-
somes 6p21 (rs9257809; P ¼ 4.1 � 10�9) and 16q24
12 December 2014 � 1:48 am � ce
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(rs9936833; P ¼ 2.7 � 10�10), that are associated with
BE.11 One of these loci lies within the HLA region and the
other close to FOXF1, which is involved in esophageal
structure and development. Both SNPs have also been
shown to be associated with risk for EAC.14 More recently,
in a combined analysis of BE and EAC cases, the Barrett’s
and Esophageal Adenocarcinoma Consortium (BEACON)
identified susceptibility SNPs near CRTC1, BARX1, and
FOXP1.12 The last 2 of these genes are known to be involved
in esophageal development.15,16

We aimed to identify further BE predisposition SNPs
from our GWAS by performing wider and deeper indepen-
dent replication of existing SNPs that had promising disease
associations.

Methods
Patient and Sample Collection Criteria

Figure 1 outlines this study and the numbers of samples that
contributed to each phase. As described previously,11 Discovery
Figure 1.Outline of the phases of this study and the SNPs ana
genotyped in Replication Phase 2 and BEACON/BEAGESS samp
as is the genotyping of additional SNPs in phases 2 and 3. Dut
(Phase 3 Replication) is one cohort in our analyses for the SNPs
rs3072, rs6751791, rs2731672, rs2701108, rs189247, rs20436
rs254348, rs3784262, and rs4523255. þ8 SNPs: Our SNPs: rs30
and Levine et al SNP: rs3784262. D7 SNPs: Our SNPs: rs3072, r

FLA 5.2.0 DTD � YGAST59419_proof �
Phase caseswere diagnosedwith histologically confirmed BE and
ascertained through the UK-based Aspirin Esomeprazole Che-
moprevention Trial (AspECT) in Barrett’s Metaplasia, a clinical
trial of proton-pump inhibitor (esomeprazole) and aspirin as
preventive agents for progression of BE to EAC.17 Replication
PhaseUK, Irish,Dutch, andBelgianpatient sampleswereobtained
from the Chemoprevention Of Premalignant Intestinal Neoplasia
(ChOPIN) genetic study and the Esophageal Adenocarcinoma
GenEtics (EAGLE) consortium.1 Replication Phase patients were
diagnosedwith BEwith lengths of�1 cm (C1M1) circumferential
disease or �2 cm tongue patterns (C0M2), according to the Pra-
gue criteria.18 Patient collection was in accordance with British
Society of Gastroenterology criteria for BE19 and followed veri-
fication of endoscopic findings and proven BE on histopathologic
records. Presence of EAC at presentation or subsequently was
recorded, but was not an inclusion criterion.
Sample Sets
Discovery Phase. BE patients (n ¼ Q1852) were UK

participants in the AspECT study (Clinical Investigator:
lyzed. Two SNPs described in Su et al11 had previously been
les. All other replication phase 3 samples are new to this study,
ch Replication (Phase 1 Replication) and the Dutch extension
taken through to Replication Phase 3. *11 SNPs: Our SNPs:
33, and rs12985909 and Levine et al12 SNPs: rs1497205,
72, rs6751791, rs2731672, rs2701108, rs189247, rs2043633,
s6751791, rs2731672, rs2701108, rs189247, rs2043633.
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Jankowski), HANDEL study (Clinical Investigator: Jankowski),
ChOPIN study (Clinical Investigator: Jankowski), and popula-
tion controls of white Caucasian origin (n ¼ 5172) were from
the common Wellcome Trust Case Control Consortium 2
(WTCCC2) set.11

Replication Phase 1. UK Replication 1 totaled 1105 BE
patients from ChOPIN and 6819 controls. The controls
comprised People of the British Isles (Clinical Investigator:
W. Bodmer) (n ¼ 2578) and WTCCC2 (Clinical Investigator:
P. Donnelly) samples (n ¼ 4241) that were not genotyped in
the Discovery Phase. The Dutch replication samples consisted
of 473 BE patients and 1780 controls from the University
Medical Centre, Groningen. An additional 64 Dutch cases and
206 controls, provided since 2012 from Nijmegen and Rotter-
dam as part of EAGLE, were genotyped for the 7 SNPs taken
into Replication Phase 3.

Replication Phase 2. UK Replication 2 comprised 1765
BE patients from the ChOPIN study. Controls (n ¼ 1586) were
from the Colorectal Tumour Gene Identification (CoRGI) Con-
sortium20 (Clinical Investigator: Tomlinson), comprising spou-
ses or partners unaffected by cancer and without a family
history (to 2nd-degree relative level) of colorectal neoplasia. All
were of white UK ethnic origin. The Irish replication samples
were 245 BE patients and 473 controls of white Caucasian
origin from St James’s Hospital and Mater Misericordiae Uni-
versity Hospital, Dublin. Healthy donor controls were provided
by Trinity Biobank.

Replication Phase 3. UK Replication 3 comprised 997
BE patients from the ChOPIN study and 974 female controls
from the Genetics of Lobular Carcinoma In Situ in Europe
(GLACIER) study (Clinical Investigators: Sawyer, Roylance)
with no personal or family history of breast cancer and of white
Caucasian origin.21 The Belgian replication samples consisted of
362 cases and 848 controls from Leuven. Finally, 3295 BE
patients and 3204 controls predominantly of northern Euro-
pean descent from the BEACON consortium GWAS (Clinical
Investigators: Vaughan, Whiteman, Levine) were included.12 All
studies received ethical board approval (details in
Supplementary Material). Two SNPs described in Su et al11 had
been genotyped previously in Replication Phase 2 and BEA-
CON/BEAGESS samples. All other Replication Phase 3 samples
were new to this study.
461
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Genotyping
For all samples, genomic DNA was extracted from pe-

ripheral blood. Various genotyping methods were used,
depending on the phase of the study and on pre-existing data
from some sample sets. In brief, Discovery Phase genotyping
was performed using the Illumina 660W-Quad array for cases
and a custom Human 1.2M-Duo array for controls at the
Wellcome Trust Sanger Institute.11 Replication Phase 1 geno-
typing was performed using the Illumina Immunochip at the
Wellcome Trust Sanger Institute11 or as described in Trynka
et al.22

In Replication Phase 2, samples underwent custom
genotyping for SNPs that met one of the following criteria:
Passociation < 10�4 in combined Discovery and Replication
Phase 1 analysis (n ¼ 63); Passociation < 10�4 in Discovery
Phase, but not included in Replication Phase 1 (n ¼ 12); and
Passociation < 10�4 in a sex-stratified analysis of the Discovery
phase (n ¼ 5); and candidate polymorphisms previously
FLA 5.2.0 DTD � YGAST59419_proof �
reported as associated with BE and not well tagged by
the Discovery Phase or Immunochip arrays, specifically,
MSR1 p.Arg293Gly,23 and variants in IGF1R and GHR24

(Supplementary Table 1). Sequenom iPLEX assays were suc-
cessfully designed for 65 of these SNPs and genotyping was
performed at the Wellcome Trust Sanger Institute. Genotypes
were assigned using MassArray TyperAnalyzer 4.0 (Seque-
nom). Samples with sex discrepancies between manifests or
with overall call rates <95% were excluded, as were SNPs with
call rates of <95%. Where a SNP was in the top 40 of the
prioritized SNPs (by P value) and had failed at the design stage
of the iPLEX (n ¼ 3), genotyping was performed by KASPar in
the full Replication Phase 2 sample set. Seventy-seven of two
hundred and forty-five Irish cases passing quality control were
genotyped using iPLEX assays, and the other cases were gen-
otyped using the Immunochip. Eighteen iPLEX SNPs were not
analyzed in the Irish cohort, as the SNPs were not present on
the Immunochip. The samples were also genotyped for 4 SNPs
after publication of Levine et al.12

Replication Phase 3 samples (Supplementary Table 2) were
genotyped using KASPar for 7 SNPs prioritized after analysis of
the previous phases. The samples were also genotyped for 4
SNPs after publication of Levine et al.12 All SNPs had call rates
>95%. Sample exclusions were as for Replication Phase 2.

We had previously demonstrated >99% concordance be-
tween genome-wide array, Immunochip, and KASPar assays for
other SNPs.11 Sequenom call rate was >96%. For samples
analyzed only by KASPar, genotyping QC was tested using
duplicate DNA samples within studies and SNP assays, together
with direct sequencing of subsets of samples to confirm geno-
typing accuracy. For all SNPs, >98% concordant results were
obtained.
Association Analysis
Case-control analysis was performed using frequentist tests

under a missing data logistic regression model, as implemented
in SNPTEST (version 2.4.1). Principal component analysis was
performed for all samples typed on GWAS arrays (Discovery
Phase) and has been described in Su et al.11 As described
previously, principal component 1 (PC1) was included as a
covariate in all analyses of the Discovery Phase. Each SNP was
tested as a quantitative explanatory variable, coded as 0, 1, 2.
We used GWAMA (version 2.1) to implement fixed inverse
variance-based methods for meta-analysis.25 The software tests
for heterogeneity of effects between studies26 and enables sex-
specific meta-analysis.
Replication and Validation of Single Nucleotide
Polymorphisms From BEACON/BEAGESS
Meta-analysis

In order to examine the 4 genome-wide significant BEþEAC
SNPs and 83 other SNPs with Passoc < 10�4 in the BEACON/
BEAGESS data, we performed association testing using AspECT
Discovery Phase cases. Because our Discovery Phase controls
overlapped with those used by Levine et al,12 we used 1898
white European controls from colorectal cancer GWAS studies
CoRGI and Colon Cancer Family Registry.27 Genotypes were
imputed where necessary, with strict cut-offs for imputation
quality.28,29
12 December 2014 � 1:48 am � ce

480



- 2015 Barrett’s Esophagus SNPs Near TBX5 and GDF7 5

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544
Other Analyses
Details of imputation, fine mapping, pathway analyses,

estimation of heritability, and URLs are provided in the
Supplementary Material.
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Results
Identification of Two New Barrett’s Esophagus
Predisposition Single Nucleotide Polymorphisms

In order to identify further loci associated with BE, we
prioritized 65 SNPs (Supplementary Table 1) with the best
evidence of association with BE from our previous GWAS
Discovery Phase and Replication Phase 1 (details in
Methods).11 These SNPs were genotyped in an additional
1765 cases and 1586 controls from the UK and in an Irish
cohort of 245 cases and 473 controls (Replication Phase 2,
previously used to genotype rs9257809 and rs9936833
described in Su et al11). After meta-analysis of these new
data together with Discovery Phase and Replication Phase 1,
seven SNPs showing evidence of associations with BE risk at
Pmeta <5 � 10�6 were identified and genotyped in Repli-
cation Phase 3 samples (Table 1). After Replication Phase 3,
two SNPs—rs3072 and rs2701108 on chromosome 2p24
and 12q24, respectively—reached the level of significance
conventionally used for GWAS (P ¼ 5 � 10�8) (Table 1).
Combined Pmeta values were 1.8 � 10�11 for rs3072 (OR ¼
1.14; 95% CI: 1.09–1.18) and 7.5 � 10�9 for rs2701108
(OR ¼ 0.90; 95% CI: 0.86–0.93), derived from a total sample
of 10,158 BE cases and 21,062 controls (Supplementary
Table 3). The associations remained at or near genome-
wide significance upon restricting the analysis to the 8521
cases with histologically proven intestinal metaplasia
(rs3072: P ¼ 1.3 � 10�9; OR ¼ 1.13; 95% CI: 1.09–1.17;
rs2701108: P ¼ 6.2 � 10�8; OR ¼ 0.90; 95% CI: 0.86–0.94).
There was no evidence of sex heterogeneity for either SNP
(Supplementary Table 4).

In Silico Fine Mapping and Annotation of the
Chromosome 2p24 and 12q24 Loci. rs3072 lies be-
tween 2 genes, mapping 7.5 kb downstream of GDF7 (also
known as BMP12) and 6.5 kb downstream of C2orf43
(Figure 2). rs2701108 is 117 kb downstream of TBX5 and
270 kb upstream of RBM19. We imputed in our Discovery
Phase all SNPs in 1-Mb regions flanking each of the lead
SNPs. At chromosome 2p24, rs3072 remained the most
strongly associated SNP, but at chromosome 12q24,
rs1920562 was more strongly associated with disease risk
(PDiscovery ¼ 1.4 � 10�5; OR ¼ 0.84) than the lead genotyped
SNP (PDiscovery ¼ 1.4 � 10�3; OR ¼ 0.88). rs1920562
(linkage disequilibrium [LD] with rs2701108; r2 ¼ 0.6) lies
131 kb downstream of TBX5 and 256 kb upstream of
RBM19. Nonsynonymous SNPs in the genes flanking the
signals on chromosomes 2 and 12 were not in strong LD (r2

< 0.4; D’ < 0.8) with the lead genotyped or imputed SNPs,
suggesting that the functional variants may have effects on
gene expression and regulation rather than protein
sequence. Haploregv230 and Annovar31 were used to
annotate SNPs in strong LD (r2 > 0.4) with the 2 lead
tagging SNPs.
FLA 5.2.0 DTD � YGAST59419_proof �
rs3072, which may alter a GATA binding motif, lies
within a region of histone modifications, such as H3K4Me1,
which mark enhancers (data from lymphoblastoid cell line
GM12878). Three other SNPs in LD with rs3072 map to the
enhancer region detected in GM12878. One of these, rs7255,
maps to a site of high evolutionary conservation/constraint;
another SNP, rs9306894, whilst not at a conserved site
(Supplementary Table 5), is predicted as “likely to affect
protein binding and linked to expression of a gene target”
according to RegulomeDB.32 We examined associations be-
tween SNPs in this region and gene expression in The
Cancer Genome Atlas (TCGA) EAC data.33 Genotypes were
only available for rs9306894 in the chromosome 2 locus
and gene expression data had been obtained using RNASeq.
After correcting for copy number, we determined associa-
tions between rs9306894 genotype and total RNA levels for
expression quantitative trait locus (eQTL) analysis and bias
in allelic expression of coding SNPs (allele-specific expres-
sion [ASE]/ASE analysis). There was no significant associa-
tion with expression of the closest genes GDF7, HS1BP3 and
C2orf43 (PeQTL > .20; PASE > .38; n ¼ 62) and no genome-
wide association with expression of any other gene was
present (q > .05, details not shown). In public data sets
based on monocytes34 and on lymphoblastoid cell lines and
adipose tissue,35 C2orf43 is the suggested target of
rs9306894 following eQTL studies (GENevar; P ¼ 7 �
10�4). rs9306894 genotype was not associated with GDF7
expression in these cell types.

rs2701108 itself is not likely to be a functionally regu-
latory SNP, but rs1920562, which showed the strongest
regional association after imputation, is a more promising
candidate (Supplementary Table 6). This SNP maps to a
highly conserved base and a region containing enhancer
marks in human embryonic stem cells (h1-ESC) and lung
fibroblasts (NHLF). rs1920562 and an additional SNP
(rs1247938) in moderate LD (r2 ¼ 0.52) with rs2701108,
are highlighted by Regulome DB as being the most likely
SNPs in this region to affect protein binding. CTCF and
RAD21 binding are predicted to be affected by rs1247938
and the ability of IKZF1 to bind is predicted to be altered by
rs1920562. Expression analyses were performed for the
rs2701108 region, in the same way as for rs9306894.
However, none of the three rs2701108 region SNPs was
associated with TBX5, TBX3 or RBM19 expression in the
TCGA data (PeQTL > .39; PASE > .43; n ¼ 62), was an eQTL in
whole-transcriptome analysis, or was an eQTL in the public
databases (details not shown).
Pathway/Geneset Enrichment Analysis
Improved Gene Set Enrichment Analysis for Genome

Wide Association Study (iGSEA4GWAS) and SNP ratio test
respectively found 26 and 34 pathways significantly
enriched in cases at False Discovery Rate–corrected P < .05.
Genetic Genomics Analysis of Complex Data (Gengen) did
not identify any pathways with corrected P < .05, but 10
pathways had P < .25 (Supplementary Table 7). Three
pathways (type 1 diabetes mellitus, KEGG antigen pro-
cessing and presentation, and KEGG autoimmune thyroid
12 December 2014 � 1:48 am � ce
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Table 1.Meta-analysis of Discovery and Replication Phase Sample Sets for SNPs Taken Into Replication Phase 3

SNP Chr
Position
(build 37)

Minor/
major

Discovery MAF
(cases /controls) Discovery

Replication
phase 1 (rep 1)

Meta 1
(discovery þ

rep 1)
Replication

phase 2 (rep 2)

Meta 2
(meta 1þ
rep 2)

Replication
phase 3 (rep 3)

Final meta
(meta 2 þ rep 3)

Final
meta I2 n

rs3072 2 20878406 G/A 0.41/0.36 1.23
(1.14–1.33)
2.64 3 10L7

1.10
(1.02–1.19)
1.33 3 10L2

1.16
(1.10–1.23)
8.13 3 10L8

1.13
(1.03–1.24)
7.00 3 10L3

1.16
(1.10–1.21)
2.27 3 10L9

1.11
(1.04–1.17)
1.02 3 10L3

1.14
(1.09–1.18)
1.75 3 10L11

Q140.42 8

rs6751791 2 35581997 A/G 0.51/0.48 1.15
(1.06–1.23)
5.03 3 10L4

1.16
(1.07L1.25)
1.45 3 10L4

1.15
(1.09L1.21)
2.68 3 10L7

1.07
(0.97L1.16)
1.64 3 10�1

1.13
(1.08L1.18)
2.91 3 10L7

0.99
(0.93L1.05)
7.99 3 10L1

1.08
(1.04L1.12)
7.65 3 10L5

0.60 8

rs2731672 5 176842474 A/G 0.27/0.24 1.18
(1.09L1.28)
1.64 3 10L4

1.14
(1.04L1.24)
3.87 3 10L3

1.16
(1.09L1.23)
2.54 3 10L6

1.09
(0.99L1.21)
8.20 3 10�2

1.14
(1.08L1.20)
8.33 3 10L7

0.95
(0.89L1.02)
1.81 3 10L1

1.07
(1.03L1.12)
1.66 3 10L3

0.63 8

rs2701108 12 114674261 G/A 0.38/0.41 0.88
(0.81–0.95)
1.00 3 10L3

0.87
(0.81–0.94)
4.40 3 10L4

0.87
(0.83–0.92)
1.51 3 10L6

0.89
(0.81–0.97)
1.10 3 10L2

0.88
(0.84–0.92)
5.68 3 10L8

0.93
(0.87–0.99)
1.42 3 10L2

0.90
(0.86–0.93)
7.48 3 10L9

0.14 8

rs189247 15 97586630 A/G 0.41/0.37 1.18
(1.09L1.27)
5.67 3 10L5

1.14
(1.05L1.23)
1.25 3 10L3

1.15
(1.09L1.22)
2.91 3 10L7

1.10
(1.00L1.20)
4.90 3 10�2

1.14
(1.09L1.19)
6.12 3 10L8

0.96
(0.90L1.02)
1.73 3 10L1

1.10
(1.06L1.14)
3.55 3 10L7

0.20 8

rs2043633 16 5819274 C/A 0.37/0.41 0.85
(0.79L0.92)
6.04 3 10L5

0.88
(0.82L0.95)
9.80 3 10L4

0.87
(0.82L0.92)
2.49 3 10L7

0.88
(0.80L0.96)
5.00 3 10L3

0.87
(0.83L0.91)
4.74 3 10L9

0.99
(0.94L1.05)
8.39 3 10L1

0.92
(0.88L0.95)
2.25 3 10L6

0.58 8

rs12985909 19 18439383 G/A 0.48/0.45 1.12
(1.04L1.21)
2.94 3 10L3

1.12
(1.04L1.21)
2.73 3 10L3

1.12
(1.06L1.18)
2.45 3 10L5

1.11
(1.01L1.21)
2.70 3 10L2

1.12
(1.07L1.17)
1.99 3 10L6

1.07
(1.01L1.13)
2.63 3 10L2

1.10
(1.06L1.14)
3.28 3 10L7

0.00 8

NOTE. For each phase, association data show (top to bottom) OR, (95% CI), and Passoc. Results are presented with respect to the minor allele. rs3072 and rs2701108
reached genome-wide significance. In BEACON, rs7598399 was used as a proxy for rs6751791 (r2 ¼ 1) and rs189247 was imputed from 4 genotyped SNPs (rs991757,
rs2670927, rs2670930, and rs234540) with accuracy approximately 98%. The Dutch extension samples were analyzed with the previously described Dutch replication
samples as part of Rep 1. The P value threshold for including a SNP in Phase 2 was 1 � 10�4 and that for inclusion in Phase 3 was 5 � 10�6.
Chr, chromosome; I2, I2 heterogeneity index; MAF, minor allele frequency; N, number of studies.
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Figure 2. Regional plots of association (left y-axis) and
recombination rates (right y-axis) for the chromosomes 2p24
and 12q24 loci after imputation. The lead genotyped SNP is
marked with a purple square. Imputed SNPs are plotted as
circles and genotyped SNPs as squares.
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disease) were identified by all methods and the SNPs
mapping to each pathway were subjected to set-based as-
sociation tests using PLINK, producing empirical P values of
.0021, .025, and .0317, respectively. The SNPs within these
pathways that showed replication at P < .05 in Replication
Phase 1 all mapped to chromosome 6p21, either close to or
within HLA genes. Upon removal of the HLA genes from all
the pathways, 20/26 pathways originally with False Dis-
covery Rate P < .05 according to the iGSEA4GWAS
approach remained significant, but only 1/34 pathways
identified by SNP ratio test remained significant. No HLA-
depleted pathways were even suggestive of enrichment
(all P > .25) by Gengen. The top networks identified by
Ingenuity Pathway Analysis were Cardiovascular System
Development and Function, Embryonic Development and
Organ Development (Supplementary Figure 1). The 5 genes
implicated by the BE susceptibility SNPs here are all
involved in development at a cellular, embryonic, organ,
and organism level. Bone morphogenetic protein 4
was the most significant upstream regulator (Poverlap ¼
1.99 � 10�6).
FLA 5.2.0 DTD � YGAST59419_proof �
Barrett’s Esophagus Heritability
Genome-wide haplotype-tagging SNP data on the 1852

cases and 5172 controls in the Discovery Phase of this study
were used in Genome-wide Complex Trait Analysis to esti-
mate the proportion of variation in risk of BE that can be
explained by common genetic variants. In line with our
previous, disease score test analysis,11 we found a statisti-
cally significant component of BE risk to be polygenic
(9.99% [SE 1.2%]). This was a lower estimate than that
recently derived by Ek et al.13
Replication Testing of Previously Reported
Barrett’s Esophagus Susceptibility Single
Nucleotide Polymorphisms at Candidate Loci

Using a systematic review, we identified 26 poly-
morphisms reported in the literature to be associated with
BE (Supplementary Table 8). In our Discovery Phase samples,
20 of 26 SNPs were directly genotyped or were in strong LD
(r2 > 0.7) with a directly genotyped SNP. Only one of these
SNPs showed a nominally significant association (P < .05) in
our data (rs909253, proxy for rs1041981, r2 ¼ 0.93; OR ¼
1.12; P ¼ .005). This SNP was also present on the Immu-
nochip and showed additional evidence of replication
(Pmeta ¼ 3.1 � 10�4, OR ¼ 1.07). rs909253 maps to a highly
conserved base (based on SiPhy score) in an intron of LTA
(tumor necrosis factor–b) where histone marks associated
with both promoters and enhancers are present in LCL Qs.30

PBX3, PU1, POL2, YY1, and nuclear factor–kB have all been
found to bind here in ENCODE ChIP-seq experiments. No data
were available for this SNP in RegulomeDB. We were able to
genotype 3 other candidate SNPs previously reported for BE
susceptibility (rs41341748, rs2715425, rs6898743) on the
Sequenom iPLEX panel used to genotype UK Replication 2.
None of these SNPs showed associations with BE risk
(Supplementary Table 1). Because rs41341748 (MSR1
p.Arg293Gly) has a low minor allele frequency (<5%) and
consequently our power to detect an association was rela-
tively low, we additionally genotyped it in UK Replication 3.
After meta-analysis of Replication 2 and 3, we remained
unable to replicate the previously reported association23

between this SNP and BE risk (OR ¼ 1.07; 95% CI:
0.70–1.43; P ¼ .79).
Assessment of Previously Reported Barrett’s
Esophagus þ Esophageal Adenocarcinoma
Single Nucleotide Polymorphisms and
Meta-analysis With BEAGESS Data

Three new genome-wide significant BE þ EAC loci
(4 SNPs) were recently identified by Levine et al12 in a
combined analysis of EAC and BE: rs10419226 and
rs10423674 in CRTC1, rs11789015 in BARX1 and
rs2687201 within 100 kb of FOXP1. None of these associa-
tions was genome-wide significant at P < 5 � 10�8 when
Levine et al restricted their analysis to BE cases alone,
although one SNP, rs10419226, near CRTC1, reached
P ¼ 5.5 � 10�8. In our datasets, only rs10423674 had been
directly genotyped, but the remaining SNPs were all reliably
12 December 2014 � 1:48 am � ce
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imputed in our Discovery Phase samples (Info scores
>0.95). However, the controls used in the replication phase
of the Levine et al12 study overlapped entirely with the
controls used in our Discovery phase (WTCCC2 controls)
and we therefore used alternative UK controls from the
CoRGI study (see Methods).

Of the 4 Levine SNPs, rs10423674, 1 of 2 SNPs in CRTC1
and rs2687201 near FOXP1, were supported in this study
(P¼ 0.02; OR ¼ 1.14; 95% CI: 1.03–1.27 and P ¼ 0.05; OR ¼
0.94; 95% CI: 0.88–1.00, respectively). There was also some
support for rs11789015, near BARX1 (P ¼ 0.07; OR ¼ 0.90;
95% CI: 0.81–1.01). However, the association at
rs10419226, near CRTC1, was not replicated in our data
(P ¼ 0.87; OR ¼ 1.01; 95% CI: 0.91–1.11). All 4 SNPs still
reached genome-wide significance (P < 5 � 10�8) upon
meta-analysis of our BE and Levine’s BE þ EAC datasets. In
a BE-only meta-analysis, the associations improved with the
inclusion of our data for 3 out of the 4 SNPs, with 1
(rs2687201, FOXP1) reaching genome-wide significance for
BE (Table 2).

We then addressed the other 87 other SNPs with
Passoc < 10�4 in the Levine data (Supplementary Table 3 of
Levine et al12). Of these, 73 were directly genotyped in our
samples or could be imputed with an IMPUTE2 info score of
>0.95. Of the 10 SNPs that could not be imputed with high
quality, only one had Passoc < 10�5 in the original Levine
data; we therefore genotyped this SNP (rs11771429) using
KASPar in our cases and controls. We did not obtain geno-
types for the remaining 9 SNPs. On performing a meta-
analysis of the Levine BE þ EAC cases with our UK Dis-
covery Phase, 4 SNPs (rs1497205, rs254348, rs3784262,
and rs4523255) showed Pmeta < 10�5 and were not
strongly correlated with 1 of the 4 BE þ EAC SNPs reported
previously. We therefore genotyped these 4 SNPs in our
Replication Phase samples; rs3784262 (near ALDH1A2) was
associated with BE þ EAC (OR ¼ 0.90; 95% CI: 0.87–0.93;
P ¼ 3.72 � 10�9). No SNP was formally associated with BE
alone (Table 2). eQTL and ASE analysis (see XXX) did not
show associations for the rs3784262 proxy rs7165247 in
TCGA data or other public data sets (details not shown).
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Discussion
We have added 2 new BE predisposition SNPs, rs3072

on chromosome 2p24 and rs2701108 on chromosome
12q24, to the 2 BE SNPs on chromosome 6p21 (HLA region)
and chromosome 16q23 (near FOXF1) that we reported
previously.11 Both of the new SNPs remained at or very near
genome-wide significance when analysis was restricted to
cases with intestinal metaplasia. In silico fine mapping
provided evidence that rs3072 and/or 1 of 3 nearby SNPs
might be functional because they map to putative enhancer
regions. The nearby gene, GDF7, is the best functional
candidate, because this encodes the BMP12 protein and the
BMP pathway has previously been implicated in the devel-
opment of BE.36 The importance of this pathway in BE is
also suggested in Ingenuity Pathway Analysis, where bone
morphogenetic protein 4 acts upstream of proteins encoded
by genes close to the BE predisposition SNPs. GDF7 plays a
FLA 5.2.0 DTD � YGAST59419_proof �
role in the neural system and tendon/ligament development
and repair,37,38 and also regulates Hedgehog and Wnt
signaling pathways that impact on esophageal development
through FOXF1 and TBX5. In the chromosome 12q24 region,
rs1920562 (the top imputed SNP) provided the strongest
association signal and maps to a possible enhancer. Gene
expression analysis did not suggest the target of the chro-
mosome 12q24 variation, although TBX5 is a very strong
functional candidate. It is involved in cardiac development
and its deficiency causes thoracic malformations and ab-
normalities of the diaphragmatic musculature,39,40 which
could predispose patients to hiatus hernia and acid reflux, 2
subphenotypes of BE.

Messenger RNA expression analysis using TCGA EAC
data and public data from leukocytes and adipocytes pro-
vided little evidence that rs3072 or rs2701108 (or other
SNPs in strong LD) were eQTLs or influenced ASE. The
absence of these associations is typical for GWAS or cancer
or precancerous traits. Even for the “prototypic” multi-
cancer SNP rs6983267, convincingly demonstrating the ef-
fects of SNP alleles on gene expression has required
considerable additional work in a variety of systems, and
even now, consistent eQTL and ASE associations have not
been shown.41–44 The likely major reason for the lack of
eQTLs at GWAS SNPs is that the SNPs have their effects in a
restricted set of cells or at a particular time. There is, for
example, evidence that the forkhead box (FOX) proteins are
most strongly expressed during embryogenesis, and that the
levels of these transcription factors are critical for proper
development.45–47 Given this, our first choice in searching
for eQTLs would be cells in the developing human thorax.
Unfortunately, such sample collections do not currently
exist.

We showed rs2687201 (FOXP1) to be associated with
disease in a BE-only analysis. Our data generally support the
report by Levine et al12 of associations between BE þ EAC
and SNPs on chromosome 3 (FOXP1), chromosome 9
(BARX1), and one of the SNPs on chromosome 19 (CRTC1).
However, we were not able to replicate the association
observed for another SNP (rs10419226) in CRTC1. For this
last SNP, the meta-analysis showed evidence of significant
heterogeneity between the BEACON/BEAGESS data and our
data (Table 2), and in the absence of clear reasons for this
difference, we caution against drawing firm conclusions
here.

We found another SNP, rs3784262 (ALDH1A2), to be
formally associated with BE þ EAC upon meta-analysis of
our data with the Levine BE þ EAC dataset. ALDH1A2 en-
codes retinaldehyde dehydrogenase 2, which catalyzes the
synthesis of retinoic acid and may also be involved in
alcohol metabolism.48 Of the candidate SNPs we assessed
(Supplementary Table 8), we found supporting evidence,
albeit short of genome-wide significance, for rs909253
(P ¼ 3.1 � 10�4), mapping to an intronic region of LTA
within the HLA region, but not in LD with rs9257809, the
other HLA BE SNP.

We previously reported that our original GWAS provided
evidence that multiple common variants, each with small
effects contribute to BE susceptibility.11 Ek et al13 recently
12 December 2014 � 1:48 am � ce
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Table 2.Meta-analysis With Our Data for 4 BE/EAC SNPs and 4 Other Selected SNPs with P < 1 � 10�4 from Levine et al12

SNP Chr Position
Nearby
genes

Minor/
major
allele

BEþ/
�EAC

Levine et al
meta OR (95% CI) PLevine et al

This study
meta OR (95% CI) PThis Study

This study þ
Levine et al12

meta OR (95% CI) Pmeta Meta I2
No. of
studies

rs2687201 3 70928930 FOXP1 T/G BE 1.18 (1.10–1.26) 2.00 � 10�6 1.14 (1.03–1.27) 1.18 � 10�2 1.16 (1.10�1.23) 4.61 � 10�8 0.00 3
BE/EAC 1.18 (1.12�1.25) 5.47 � 10�9 1.17 (1.11�1.23) 6.70 � 10�10 0.00 3

rs11789015 9 96716028 BARX1 G/A BE 0.85 (0.79�0.91) 5.08 � 10�6 0.90 (0.81�1.01) 6.63 � 10�2 0.86 (0.81�0.92) 1.38 � 10�6 0.00 3
BE/EAC 0.83 (0.79�0.88) 1.02 � 10�9 0.85 (0.81�0.89) 1.14 � 10�10 0.00 3

rs10419226 19 18803172 CRTC1 A/C BE 1.19 (1.12�1.26) 5.54 � 10�8 1.01 (0.91�1.11) 8.65 � 10�1 1.13 (1.08�1.20) 2.14 � 10�6 0.82 3
BE/EAC 1.18 (1.12�1.24) 3.55 � 10�10 1.14 (1.09�1.19) 1.17 � 10�8 0.82 3

rs10423674 19 18817903 CRTC1 T/G BE 0.85 (0.80�0.91) 1.92 � 10�6 0.94 (0.88�1.00) 4.88 � 10�2 0.89 (0.85�0.93) 2.99 � 10�7 0.40 5
BE/EAC 0.84 (0.80�0.89) 1.75 � 10�9 0.88 (0.84�0.91) 4.87 � 10�11 0.49 5

rs1497205 4 76169067 PARM1,
RCHY1

C/T BE 0.86 (0.80�0.92) 2.86 � 10�5 0.92 (0.87�0.98) 7.59 � 10�1 0.90 (0.86�0.94) 2.57 � 10�6 0.00 6
BE/EAC 0.87 (0.82�0.93) 1.28 � 10�5 0.90 (0.86�0.94) 3.68 � 10�7 0.00 6

rs254348 16 65980789 T/C BE 0.88 (0.83�0.94) 1.15 � 10�4 0.95 (0.91�1.01) 8.88 � 10�2 0.93 (0.89�0.97) 5.49 � 10�4 0.53 6
BE/EAC 0.89 (0.84�0.94) 1.40 � 10�5 0.92 (0.89�0.96) 2.81 � 10�5 0.53 6

rs3784262 15 58253106 ALDH1A2 G/A BE 0.85 (0.80�0.90) 3.62 � 10�7 0.93 (0.89�0.98) 5.13 � 10�3 0.91 (0.87�0.94) 1.37 � 10�6 0.12 9
BE/EAC 0.88 (0.83�0.92) 6.72 � 10�7 0.90 (0.87�0.93) 3.72 � 10�9 0.16 9

rs4523255 8 8713038 MFHAS1 A/G BE 1.13 (1.06�1.21) 2.46 � 10�4 1.07 (1.01�1.12) 2.11 � 10�2 1.09 (1.05�1.14) 2.48 � 10�5 0.36 6
BE/EAC 1.13 (1.07�1.20) 4.15 � 10�5 1.09 (1.05�1.14) 9.24 � 10�6 0.46 6

NOTE. The minimum meta-analysis comprised the Levine et al12 Discovery and Replication Phases and our Discovery Phase (with amended controls, as described in
Methods). rs10423674 was additionally genotyped in our UK and Dutch Replication Phase 1. rs1497205, rs254348, rs3784262, and rs4523255 were genotyped in our UK
and Dutch Replication Phase 1 and UK Replication Phase 2. rs3784262 was also genotyped in Irish Replication Phase 2 samples and UK and Belgium Replication Phase 3
samples. For rs10419226, which shows evidence of inter-study heterogeneity, random effects model P values for BE and BE/EAC are .10 and .04, respectively.
Chr, chromosome.
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estimated that the heritability of BE is 35% (SE 6%). We
also found that the heritability of BE is highly significant, but
explains only 9.99% of BE risk (SE 1.2%). Our GWAS con-
sisted of UK cases and controls, and the BEACON/BEAGESS
samples used by Ek et al originated from 3 continents
(Europe, North America, and Australia). Cryptic population
stratification could perhaps explain the larger estimate of
heritability obtained using the BEACON/BEAGESS GWAS. In
addition, we used software to calculate LD-adjusted kin-
ships, such that the SNPs used in the heritability analysis
were weighted according to local LD structure. It has been
found that heritability estimation from genome-wide SNPs
is highly sensitive to uneven LD; causal SNPs in regions of
high LD can lead to overestimation of heritability and
conversely causal SNPs in regions of low LD can result in an
underestimation of heritability.49

Although the BE GWAS have not yet identified the
functional SNPs in each region or their gene targets, the
information generated already permits the generation of
hypotheses regarding processes that may be involved in BE.
First, transcription factors involved in development and
structure of the thorax, diaphragm, and esophagus may be
important: the SNPs near FOXF1, FOXP1, BARX1, and TBX5
might act in this way and the genes appear to be function-
ally related (Supplementary Figure 1). Second, the inflam-
matory response may be important: the SNPs within the
HLA region (rs9257809 and, perhaps, rs909253) might act
in this way and pathway analysis provided suggestive evi-
dence of a role for type 1 diabetes genes in BE etiology. A
plausible, testable hypothesis is that these 2 groups of SNPs
respectively influence the tendency to gastroesophageal
reflux disease, perhaps through thoracic and diaphragmatic
structure (hiatal hernia defect), and the inflammatory
response to the refluxed gastric acid. Given the limited
scope for clinical intervention in the former processes, we
await with interest the outcome of trials such as AspECT
that target the inflammatory response to gastric reflux.1,17
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