
From Event-B Models to Dafny Code Contracts

Mohammadsadegh Dalvandi, Michael Butler, Abdolbaghi Rezazadeh

Electronic and Computer Science School, University of Southampton
Southampton, United Kingdom

{md5g11,mjb,ra3}@ecs.soton.ac.uk

Abstract. The constructive approach to software correctness aims at
formal modelling and verification of the structure and behaviour of a
system in different levels of abstraction. In contrast, the analytical ap-
proach to software verification focuses on code level correctness and its
verification. Therefore it would seem that the constructive and analytical
approaches should complement each other well. To demonstrate this idea
we present a case for linking two existing verification methods, Event-B
(constructive) and Dafny (analytical). This approach combines the power
of Event-B abstraction and its stepwise refinement with the verification
capabilities of Dafny. We presented a small case study to demonstrate
this approach and outline of the rules for transforming Event-B events
to Dafny contracts. Finally, a tool for automatic generation of Dafny
contracts from Event-B formal models is presented.

Keywords: Event-B, Dafny, Formal Methods, Program Verification,
Methodologies

1 Introduction

The constructive approach to software correctness focuses on early stages of
the development and aims at formal modelling of the intended behaviour and
structure of a system in different levels of abstraction and verifying the formal
specification of it. In contrast, the analytical approach focuses on code level and
its target is to verify the properties of the code level. In other words, the con-
structive approach is concerned with the derivation of an algorithm from the
specifications of the desired dynamic behaviour of that, in a way that the algo-
rithm satisfies its specification [5] while the analytical approach is concerned with
verifying that a given algorithm satisfies its given specifications. Both approaches
are supported through a range of verification tools from groups worldwide. At a
high level it would seem that the constructive and analytical approaches should
complement each other well. However there is little understanding or experience
of how these approaches can be combined at a large scale and very little tool sup-
port for transitioning from constructive formal models to annotated code that
is amenable to analytical verification. This represents a wasted opportunity, as
deployments of the approaches are not benefiting from each other effectively.

This paper presents work in progress on a tool-supported development ap-
proach by linking two existing verification tools, Rodin [2] and Dafny [4]. The

2 Mohammadsadegh Dalvandi, Michael Butler, Abdolbaghi Rezazadeh

Rodin platform supports the creation and verification of Event-B formal mod-
els. The Dafny tool is an extension to Microsoft Visual Studio for writing and
verifying programs written in the Dafny programming language. Event-B in its
original form does not have any support for the final phase of the develop-
ment(implementation phase). On the other hand, Dafny has a very little sup-
port for abstraction and refinement. Our combined methodology is beneficial
for both Event-B and Dafny users. It makes the abstraction and refinement of
Event-B available for generating Dafny specifications which are correct with re-
gards to a higher level of abstract specification in Event-B and allows Event-B
models to be implemented and verified in a programming language. We dis-
cuss our approach for transforming Event-B formal models to annotated Dafny
method declarations. Our focus here is only on generating code contracts (pre-
and post-conditions) from Event-B models rather than implementations. Gener-
ated method contracts with this approach can be seen as an interface that can be
implemented and verified later against the high level abstract specification. We
also present a tool for automatic generation of Dafny annotations from Event-B
models. We have validated our transformation rules by applying our tool to an
Event-B model of a map abstract datatype which is presented in this paper.

The organisation of the rest of the paper is as follows: in section 2, back-
ground information on Event-B and Dafny is given. Section 3 contains an ex-
ample of transformation of an Event-B model of a map abstract datatype to
Dafny contracts. Transformation rules for transforming an Event-B machine to
an annotated Dafny class are described in section 4. In section 5 related and
future work are presented and finally section 6 contains conclusions.

2 Background

2.1 Event-B

Event-B is a formal modelling language for system level modelling based on set
theory and predicate logic for specifying, modelling and reasoning about sys-
tems, introduced by Abrial [1]. Modelling in Event-B is facilitated by a platform
called Rodin [2]. Rodin is an extensible open source software which is built on
top of the Eclipse IDE. A model in Event-B consists of two main parts: contexts
and machines. The static part (types and constants) of a model is specified in a
context and the dynamic part (variables and events) is specified in a machine.
To describe the static part of a model there are four elements in the struc-
ture of a context: carrier sets, constants, axioms, and theorems. Carrier sets
are represented by their name and they are distinct from each other. Constants
are defined using axioms. Axioms are predicates that express properties of sets
and constants. Theorems in contexts can be proved from axioms. A machine in
Event-B consists of three main elements: (1) a set of variables, which defines the
states of a model (2) a set of invariants, which is a set of conditions on state
variables that must hold permanently by all events and (3) a number of events
which model the state change in the system. Each event may have a number of
assignments called actions and also may have a number of guards. Guards are

From Event-B Models to Dafny Code Contracts 3

predicates that describe the necessary conditions which should be true before an
event can occur. An event may have a number of parameters. Event parameters
are considered to be local to the event. Figure 1 illustrates machine m0 with
two events Add and Remove.

Fig. 1. Machine m0 : the Most Abstract Level of Map ADT Model

Modelling a complex system in Event-B can benefit from refinement. Refine-
ment is a stepwise process of building a large system starting from an abstract
level towards a concrete level [1]. This is done by a series of successive steps in
which, new details of functionality are added to the model in each step. The ab-
stract level represents key features and the main purpose of the system. Refining
an Event-B machine may involve adding new events or new variables(concrete
variables). Concrete variables are connected to abstract variables through gluing
invariants. A gluing invariant associates the state of the concrete machine with
that of its abstraction. All invariants of a concrete model including gluing invari-
ants should preserve by all events. The built-in mathematical language of the
Rodin platform is limited to basic types and constructs like integers, boolean,
relations and so on. The Theory Plug-in [3] has been developed to make the core
language extension possible. A theory, which is a new kind of Event-B compo-
nent, can be defined independently from a particular model and it is the mean
by which the mathematical language and mechanical provers may be extended.

2.2 Dafny

Dafny [4] is an imperative sequential programming language which supports
generic classes, dynamic allocation and inductive datatypes and has its own
specification constructs. A Dafny program may contain both specification and
implementation details. Specifications are omitted by the compiler and are used
just during the verification process. Programs written and specified in Dafny
can be verified using the Dafny verifier which is based on an SMT-solver. Stan-
dard pre- and post-conditions, framing construct and termination metrics are
included in the specifications. The language offers updatable ghost variables,

4 Mohammadsadegh Dalvandi, Michael Butler, Abdolbaghi Rezazadeh

recursive functions, sets, sequences and some other features to support specifica-
tion. The verification power of Dafny originates from its annotations (contracts).
A program behaviour can be annotated in Dafny using specification constructs
such as methods’ pre- and post-conditions. The verifier then tries to prove that
the code behaviour satisfies its annotations. This approach leads to producing
correct programs not only in terms of syntax but also in terms of behaviour. A
basic program in Dafny consists of a number of methods. A method in Dafny is a
piece of imperative, executable code. Dafny also supports functions. A function
in Dafny is different from a method and has very similar concept to mathe-
matical functions. A Dafny function cannot write to memory and consists of
just one expression. A special form of functions which returns a boolean value
is called predicate. Dafny uses the ensures keyword for post-condition declara-
tion. A post-condition is always a boolean expression. Each method can have
more than one post-condition which can either be joined with boolean and (&&)
operator or be defined separately using the ensures keyword. To declare a pre-
condition the requires keyword is used. Like post-conditions, adding multiple
pre-conditions is allowed in the same style. Pre- and post-conditions are placed
after method declarations and before method bodies. Dafny does not have any
specific construct for specifying class invariants. Class invariants are specified in
a predicate named Valid() and this predicate is incorporated in all methods pre-
and post-conditions so the verifier checks if each method preserve all invariants
or not.

3 Case Study: A Map Abstract Data Type

In this section we present a map abstract datatype as a case study and show
the Event-B formal model and its transformation to Dafny contracts that is per-
formed by our tool. A map (also called associated array) is an abstract data type
which associates a collection of unique keys to a collection of values. This case
study is originally taken from [6] where the map ADT is specified, implemented
and verified in Dafny. The most abstract model of the map in Event-B (machine
m0) is illustrated in Figure 1. The map is simply modelled using a partial func-
tion from KEYS to VALUES. KEYS and VALUES are generic types which are
defined in a context (not shown here) as carrier sets. There is only one invariant
in this model which says that the variable map is a partial function. The model
contains two events for add and removing keys and values to the map. By prov-
ing that these events preserve the invariant of the model, the uniqueness of the
map’s keys is verified.

Dafny does not support relations (and functions) as data structures so we
cannot directly transform machine m0 to Dafny annotations. Machine m0 should
be refined in order to reduce the abstraction and syntax gap between the Event-
B model and Dafny specification. In the refined machine two new variables keys
and values are introduced to model. Variable keys is a sequence of type KEYS
and variable values is a sequence of type VALUES. Sequences are built-in data
structures in Dafny but they are not part of the built-in mathematical language

From Event-B Models to Dafny Code Contracts 5

Fig. 2. Event Add is refined to two events Add1 and Add2

of Rodin. However sequences are available through the standard library of the
Rodin theory plug-in. As the name suggests sequence keys stores keys and the
other sequence stores values where a value in position i of sequence values is
associated with the key that is stored in position i of sequence keys. An invariant
is needed in this refinement to state that both sequences have the same size. A
gluing invariants is also needed to prove the consistency between refinements.
Figure 2 shows that the event Add from machine m0 is refined to two events
Add1 (for adding new keys to the map) and Add2 (for updating an associated
value to an existing key). Refinement of event Remove and other elements of
the refined machine are omitted here because of the space limitation. Listing
1.1 shows the transformation of events of the refined machine to an annotated
Dafny method called Add.

method Add(k:KEYS , v:VALUES)

requires Valid ();

ensures (k !in old(keys) && keys ==[k] + old(keys) &&

values ==[v] + old(values))

||

(exists i :: i in (set k0| 0<=k0 && k0 <|old(keys)|) &&

old(keys)[i]==k && values ==old(values)[i:= v] &&

keys == old(keys));

Listing 1.1. Transformation of Machine m1 to a Dafny Contract

Post-conditions of the Add method are directly derived from those events
that form the method and they specify the behaviour of the method. Method
Add is specified by two events in Event-B therefore two ensures clauses are
generated (beside ensures Valid();). The reason for specifying a method with
two Event-B events is that each event represents a separate case of the method
and each case in a Dafny method is represented with a separate post-condition
in the method contract. The keyword old which is used in the post-conditions
of methods represents the value of the variable on entry to the method. Internal
variables of each event are defined using existential quantifier with regards to
the event’s guards. The class declaration, predicate Valid() and other details of
the generated class are not shown here. The transformation of Event-B events
to annotated Dafny methods is discussed in the next section.

6 Mohammadsadegh Dalvandi, Michael Butler, Abdolbaghi Rezazadeh

4 Transforming Event-B Models to Dafny Contracts

In this section we describe how we generate Dafny contracts from Event-B events.
In order to be able to merge different Event-B events together to form a single
method from them in Dafny, we have introduced a new element to Event-B
machines called constructor statement. A constructor statement has the following
form:

method mtd name(pi 1, pi 2,...) returns(po 1, po 2,...) {evt 1, evt 2,...}

In the above statement, mtd name is the name of the target method in Dafny,
(pi 1, pi 2,...) represents the list of input parameters, (po 1, po 2,...) represents
the list of output parameters, and evt 1, evt 2,... represents the list of Event-B
events that must be merged together to form the target method.

A method may or may not have input/output parameters. Input parameters
which are stated in the constructor statement must exist in all events which are
listed in the the statement and also the type of the parameters must be explicitly
declared in Event-B events as guards of the event. If a method in a constructor
statement has a parameter which is not listed as a method’s input/output pa-
rameter, it should be treated as an internal parameter. An internal parameter is
a local variable to the method and will be specified using an existential quanti-
fier. A number of post-conditions can be generated from before-after predicates
of the actions of the events together with their guards. A before-after predi-
cate denotes the relation that exists between the value of a variable just before
and just after the execution of an action. In the example shown in the previous
section, the method Add was generated as a result of the following constructor
statement:

method Add(k,v) returns() {Add1, Add2}

Consider act1 of event Add1 from Figure 2. The before-after predicate associ-
ated with this action is keys′ = seqPrepend(keys, k) where the primed variable
denotes the value of the variable just after the execution and the unprimed
variables denote the value of the variables before the execution. The following
expression can be derived from event Add1 by conjunction of all non-typing
guards of the event before-after predicates of all actions of the event. The result
would be for event Add1 :

k/∈ ran(keys) ∧ keys′ = seqPrepend(keys, k) ∧ values′ = seqPrepend(values, v)
(1)

The same should be done for event Add2. As it is obvious from the action
of event Add2, variable keys is not changed by this event therefore the value
of this variable after the execution of the event is equal to its value before the
execution. The following expression is derived from this event:

i ∈ 1..seqSize(keys) ∧ keys(i) = k ∧ values′(i) = v ∧ keys′ == keys (2)

From Event-B Models to Dafny Code Contracts 7

Note that event Add2 has a third parameter i which is not listed as Add
method parameter in constructor statement so it is an internal parameter and
should be specified using an existential quantifier:

∃i·i ∈ 1..seqSize(keys) ∧ keys(i) = k ∧ values′(i) = v ∧ keys′ == keys (3)

The disjunction of (1) and (3) becomes the post-condition for method Add
and specifies the desirable behaviour of the method. In addition to the generated
contracts from events of the Event-B model, predicate Valid()(which contains
the conjunction of machines invariants) must be a pre-condition for all method
declarations. This is necessary as the verifier needs this information to be able
to verify the post-conditions.

4.1 Tool Support for Automatic Transformation

We have developed a Rodin plug-in for automatic transformation of Event-B
machines to annotated Dafny classes. The plug-in builds an abstract syntax tree
(AST) with regards to the Event-B machine and contexts that it sees and con-
structor statements that are provided by the user. The AST then is translated
to Dafny code by a number of translation rules that are encoded in the plug-in
source code. The tool only supports the translation of those Event-B mathe-
matical constructs that have a counterpart in Dafny and ignores the rest. So
it is important that the model should be refined to a level that only has those
constructs that have a Dafny counterpart.

5 Related and Future Work

To the best of our knowledge, no research has been carried out in order to
generate annotated Dafny programs from Event-B models and there is very
little research on generating verifiable code from Event-B models. EventB2Dafny
[7] is a Rodin plug-in for translating Event-B proof obligations to Dafny code
to use Dafny verifier as an external theorem prover for proving Event-B proof
obligations. Another research has been carried out in order to translate Even-B
models to JML-specified JAVA code. A Rodin plug-in called EventB2JML [8]
has been developed to automate the translation from Event-B models to Java
specified code. Tasking Event-B [9] is a code generator that generates code from
Event-B models to a target language but it does not support verification of the
generated code.

Our current transformation rules allow us to generate Dafny contracts for
abstract data types. We plan to extend our rules and the tool to be able to
generate code contracts from Event-B model of complex algorithms. We have
already done another case study for transforming an Event-B model of a model
checking algorithm to Dafny contracts.

8 Mohammadsadegh Dalvandi, Michael Butler, Abdolbaghi Rezazadeh

6 Conclusion

We have presented an approach for generating Dafny code contracts from Event-
B models. This approach allows us to start the development with a very high level
specification of the program in Event-B and use the Rodin platform facilities to
prove the correctness and consistency of specification and refine the specifica-
tion to a level that is suitable for transformation to Dafny. The implementation
can be done later manually and verified against the abstract specification. The
abstraction level that can be achieved in a modelling language like Event-B is
not achievable at Dafny level therefore using the stepwise manner of Event-B for
building specification will help to tackle the complexity that is associated with
this task.

Acknowledgments. This work was funded in part by a Microsoft Research
2014 Software Engineering Innovation Foundation Award.

References

1. Abrial, J. R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

2. Abrial, J. R., Butler, M., Hallerstede, S., Hoang, T. S., Mehta, F., & Voisin, L.:
Rodin: an open toolset for modelling and reasoning in Event-B. International journal
on software tools for technology transfer, 12(6), 447-466. (2010)

3. Butler, M., & Maamria, I.: Practical theory extension in Event-B. In Theories of
Programming and Formal Methods (pp. 67-81). Springer Berlin Heidelberg. (2013)

4. Leino, K. R. M.: Dafny: An automatic program verifier for functional correctness.
In Logic for Programming, Artificial Intelligence, and Reasoning (pp. 348-370).
Springer Berlin Heidelberg. (2010)

5. Dijkstra, E. W.: A constructive approach to the problem of program correctness.
BIT Numerical Mathematics, 8(3), 174-186. (1968)

6. Leino, K. R. M., & Monahan, R.: Dafny meets the verification benchmarks challenge.
In Verified Software: Theories, Tools, Experiments (pp. 112-126). Springer Berlin
Heidelberg. (2010)

7. Catano, N., Leino, K. R. M., & Rivera, V.: The eventb2dafny rodin plug-in. In
Developing Tools as Plug-ins (TOPI), 2012 2nd Workshop on (pp. 49-54). IEEE.
(2012)

8. Catano, N., Rueda, C., & Wahls, T.: A Machine-Checked Proof for a Translation
of Event-B Machines to JML. arXiv preprint arXiv 1309.2339. (2013)

9. Edmunds, A., & Butler, M.: Tasking Event-B: An Extension to Event-B for Gen-
erating Concurrent Code. Programming Language Approaches to Concurrency and
Communication-cEntric Software, 1. (2011)

