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Abstract Surrogate models or metamodels are com-
monly used to exploit expensive computational simula-
tions within a design optimization framework. The ap-

plication of multi-fidelity surrogate modeling approaches
has recently been gaining ground due to the potential
for further reductions in simulation effort over single fi-

delity approaches. However, given a black box problem
when exactly should a designer select a multi-fidelity
approach over a single fidelity approach and vice versa?

Using a series of analytical test functions and engineer-
ing design examples from the literature, the following
paper illustrates the potential pitfalls of choosing one

technique over the other without a careful consideration
of the optimization problem at hand. These examples
are then used to define and validate a set of guidelines

for the creation of a multi-fidelity Kriging model. The
resulting guidelines state that the different fidelity func-
tions should be well correlated, that the amount of low

fidelity data in the model should be greater than the
amount of high fidelity data and that more than 10%
and less than 80% of the total simulation budget should

be spent on low fidelity simulations in order for the re-
sulting multi-fidelity model to perform better than the
equivalent costing high fidelity model.
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1 Introduction

Design optimization processes within a variety of indus-
tries often require the use of expensive computational

simulations at their heart to determine a measure of the
effectiveness or quality of a design. Such simulations
can, in some instances, take several days to perform

thereby ruling out the use of direct global optimization
algorithms, such as genetic algorithms[8] or simulated
annealing[15], within the optimization process. The use
of surrogate modeling techniques within a design op-

timization loop, however, can dramatically reduce the
number of actual simulations required and make the
optimization process feasible.

Although there are a number of different surrogate

modeling techniques[4,19,22], Kriging[16] is perhaps one
of the most popular due to it’s flexibility and the pro-
vision of a useful error metric. Since its initial applica-

tion to the optimization of deterministic computational
experiments by Sacks et al.[21], Kriging has grown in
popularity and has been applied successfully to design

problems in a variety of fields.

Kennedy and O’Hagan[14] extended the basic Krig-
ing formulation to combine information from multiple
levels of simulation fidelity into a more accurate surro-

gate model than would be created from employing only
high fidelity data. As the performance of any surrogate
based optimization is determined by the accuracy of

the model a more accurate model can significantly re-
duce the total number of simulations required for an
optimization. Such multi-fidelity approaches have been

successfully employed throughout the literature in the
design optimization of airfoils[17,24,26], wings[3], com-
pressor rotors[2], combustors[25] and the creation of

aerodynamic models[7,9–11,26].
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Fig. 1 An example of single and multi-fidelity Kriging[5]

Figure 1 is a simple example, recreated from For-
rester et al.[5], of the advantages that multi-fidelity
Kriging can offer if used to create a surrogate model. A

Kriging model constructed from a four point design of
experiments (DoE) of the expensive function (fe(x))
is illustrated by the dashed line. Plainly this surro-

gate model does not represent the true function very
well and any attempt to optimize using this model is
hampered by this inaccurate prediction. Augmenting

the four data points from the expensive function with
an additional 11 data points from the ‘cheap’ function
(fc(x)) within a multi-fidelity Kriging model however,

results in a very accurate model. In this case the sur-
rogate model, represented by the dotted line, almost
exactly matches the expensive function. Employing this

surrogate within an optimization would greatly improve
performance over the traditional Kriging model with
the first update simulation being placed at almost the

true global optimum.

Whilst this simple example illustrates the clear ad-

vantages that a multi-fidelity approach can bring, which
has been mirrored by results presented within the lit-
erature[2,3,7,17,24], to date a number of important

questions relating to the general application of such ap-
proaches have yet to be addressed:

1. Does the correlation between the low and high fi-
delity functions play a role in the effectiveness of a
multi-fidelity Kriging model?

2. What role does the relative expense of the low and
high fidelity functions play?

3. Does the total available budget of evaluations im-

pact performance?
4. Given functions of similar cost what impact does

the split between cheap and expensive evaluations

have?

5. By considering these issues together is it possible

to define a set of general guidelines for the use of a
multi-fidelity Kriging model?

The following paper aims to investigate each of the
above issues in turn and commences by briefly review-
ing the formulation of both single and multi-fidelity

Kriging models. The four analytical test functions used
to investigate the above issues are then introduced.
The impact of correlation between low and high fidelity

functions and the magnitude of the cost ratio are then
investigated. This is followed by an investigation into
the effect of the total evaluation budget and the im-

pact of the split between the number of low and high
fidelity function evaluations for a fixed total budget.
These investigations are then combined with additional

results to produce a set of guidelines for effectively using
multi-fidelity Kriging models. Finally, these guidelines
are assessed with respect to three real life case studies

taken from the literature, an engine SFC optimization,
a compressor rotor optimization and a multi-point air-
foil optimization.

2 Single & Multi-fidelity Kriging

The construction of a Kriging model is based upon the
assumption that when two design points are close to-
gether the difference between their respective objective

function values is small. This is modeled statistically by
assuming that the correlation between two points,

Rij = Corr [Y (xi), Y (xj)] , (1)

is given by,

Rij = exp

(
−

d∑
l=1

10θ
(l)

∥x(l)
i − x

(l)
j ∥p

(l)

)
, (2)

where θ(l) and p(l) represent the, so called, hyperpa-

rameters of the lth design variable. These hyperparam-
eters are selected in order to maximize the likelihood
on the observed dataset, y, which equates to,

ϕ = −n

2
ln(σ̂2)− 1

2
ln(|R|), (3)

after simplification[12]. The equations,

σ̂2 =
1

n
(y − 1µ̂)TR−1(y − 1µ̂), (4)

and

µ̂ =
1TR−1y

1TR−11
, (5)
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give maximum likelihood estimates of the variance, σ̂2

and mean, µ̂, respectively, which can be used to cal-
culate the likelihood function. In both the single and
multi-fidelity Kriging models used here the hyperpa-

rameters are optimized using a hybridized particle swarm
algorithm similar to that of Toal et al.[23].

With an optimal set of hyperparameters obtained
the mean and the vector of correlations, r(x∗) , between

an unknown point, x∗ and the known sample points can
be used to calculate the Kriging prediction,

y(x∗) = µ̂+ rTR−1(y − 1µ̂). (6)

Using the approach of Kennedy and O’Hagan[14] the
high fidelity response is approximated by multiplying
the low fidelity response by a scaling factor, ρ, and a

Gaussian process representing the difference between
the high and low fidelity data,

Ze(x) = ρZc(x) + Zd(x). (7)

If Xe and Xc represent the expensive and cheap data
respectively, then the covariance matrix C is,

C =
(

σ2
cRc(Xc,Xc) ρσ2

cRc(Xc,Xe)
ρσ2

cRc(Xe,Xc) ρ2σ2
cRc(Xe,Xe) + σ2

dRd(Xe,Xe)

)
(8)

where the correlations are of the same form as Eq. 2.

Now, however, there are twice as many hyperparame-
ters to determine, a set each for the Gaussian processes
representing the cheap data and the difference between

the cheap and expensive data and the scaling parame-
ter, ρ.

As the low fidelity data and the differences between
the low and high fidelity data are considered to be inde-

pendent the hyperparameters defining the low fidelity
Gaussian process can be determined in an identical
manner to that of traditional Kriging. The hyperpa-

rameters defining the difference model are then deter-
mined by optimizing the log-likelihood as before, but
using the difference between the cheap and expensive

data,

d = ye − ρyc(Xe), (9)

instead of y in equations 3, 4 and 5. With the hyperpa-
rameters optimized the covariance matrix, Eq. 8, can
be calculated and used in conjunction with a column

vector, c, of covariances of an unknown point to the
known points to predict the high fidelity response at
that unknown point,

ye(x
∗) = µ̂+ cTC−1(y − 1µ̂), (10)

where the mean is now given by,

µ̂ =
1TC−1Y

1TC−11
, (11)

where Y is a combination of the known low and high

fidelity responses, Y T = [yT
c ,y

T
e ]. It should be noted

that the upper and lower bounds on the θ and p hyper-
parameters are identical in both the single and multi-

fidelity Kriging models with θ permitted to vary be-
tween -10 and 3 and p permitted to vary between 1.5
and 1.99. Note that the bounds of θ are equivalent to

1 × 10−10 and 100 respectively in the classical nota-
tion of Jones et al.[13] with the 10θ term used in Eq. 2
to prevent values of 0 and improve the stability of the

optimization. The scaling parameter ρ is permitted to
vary between ±5.

3 Analytical Test Functions

The Branin function is an analytical test function com-
monly used throughout the literature to test the perfor-
mance of different surrogate modeling strategies. Here

this function is the first of four such analytical functions
used to test the performance of multi-fidelity Kriging
under a variety of circumstances.

The traditional formulation of the Branin function,

fe = (x2−
5.1

4π2
x2
1+

5

π
x1−6)2+10(1−

1

8π
) cos(x1)+10, (12)

here plays the role of the response of an expensive, high
fidelity simulation. Rather than having a single low fi-

delity response, as is the case in Figure 1, we consider
a range of different low fidelity responses given by,

fc = fe − (A1 + 0.5)(x2 −
5.1

4π2
x2
1 +

5

π
x1 − 6)2, (13)

where the variable A1 varies between 0 and 1 and effec-

tively controls the level of correlation and error between
the low and high fidelity responses. Figure 2 illustrates
graphically the variation in both the r2 correlation and

the root mean square error (RMSE) as A1 is varied
where r2 and RMSE are defined as

r2 =

( ∑n
i=1(yei − ȳe)(yci − ȳc)√∑n

i=1(yei − ȳe)2
√∑n

i=1(yci − ȳc)2

)2

(14)

and

RMSE =

√√√√ 1

n

n∑
i=1

(yei − yci)
2

(15)

respectively where ye and yc are a set of n observations
of the expensive and cheap data for identical inputs

with the bar denoting the mean of these sets. In this
case the r2 correlation varies from a maximum of 0.985
when A1 = 0 to a minimum of approximately 3.8×10−4

when A1 = 0.514.
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Fig. 2 Variation in r2 and RMSE between the ‘cheap’ and
‘expensive’ Branin functions as A1 varies

By varying A1 and attempting to construct a multi-

fidelity model using the resulting ‘low’ fidelity response
and the Branin function, the impact of the correlation
between the different fidelities on the accuracy of the

resulting prediction can be ascertained. Interestingly,
as A1 is varied and the r2 correlation increases be-
yond A1 = 0.514 the RMSE continues to rise indicating

that the cheap function is returning towards the general
trend of the expensive function but with a considerable
scaling error. Cases where A1 > 0.514 therefore also

enable the impact of RMSE between fidelity levels on
multi-fidelity surrogate model accuracy to be examined.

The second analytical test function considered is the

Paciorek function described by,

fe = sin

(
1

x1x2

)
, (16)

where the ‘cheap’ version of this function is defined by,

fc = fe − 9A2
2 cos

(
1

x1x2

)
, (17)

with the parameter A2 permitted to vary between 0 and
1 and causing the variation in r2 correlation and RMSE

between fe and fc shown in Figure 3.

The third analytical test function considered here is

the three variable Hartmann H34 function defined by,

fe = −
4∑

i=1

αi exp

− 3∑
j=1

βij(xj − Pij)
2

 , (18)

where,

α =

 1
1.2
3
3.2

 β =

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

P =

3689 1170 2673
4699 4387 7470
1091 8732 5547
381 5743 8828

 × 10
−4

,
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Fig. 3 Variation in r2 and RMSE between the ‘cheap’ and
‘expensive’ Paciorek functions as A2 varies
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Fig. 4 Variation in r2 and RMSE between the ‘cheap’ and
‘expensive’ Hartmann H34 functions as A3 varies

and the associated parametric ‘cheap’ function is given

by,

fc = −
4∑

i=1

αi exp

− 3∑
j=1

βij(xj −
3

4
Pij(A3 + 1))2

 ,

(19)

where by varying A3 from 0 to 1 the variation in r2 and
RMSE shown in Figure 4 is achieved.

The fourth and final analytical test function is the
10 variable Trid function defined by,

fe =
10∑
i=1

(xi − 1)2 −
10∑
i=2

xixi−1, (20)

where, xi ∈ [−100, 100], and the associated ‘cheap’ para-
metric function is given by,

fc =

10∑
i=1

(xi −A4)
2 − (A4 − 0.65)

10∑
i=2

ixixi−1. (21)
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Fig. 5 Variation in r2 and RMSE between the ‘cheap’ and
‘expensive’ Trid functions as A4 varies

As with the previous analytical test functions the pa-
rameter A4 varies between 0 and 1 resulting in the vari-

ation in r2 and RMSE illustrated in Figure 5.
As was the case with the Branin function the para-

metric ‘cheap’ Trid function permits cases where there

exist relatively high correlations and high errors be-
tween the fidelity levels to be investigated (when A4 <
0.4 in Figure 5). This parametric function also further

permits the impact of RMSE to be investigated by in-
cluding instances where the error between the functions
is relatively small but the correlation is low, i.e. when

0.7 < A4 < 0.8.

4 The Impact of Function Correlation & Cost
Ratio

Given a set of parametric analytical test functions, let
us now utilise these models to investigate the impact of
both the level of correlation between the cheap and ex-

pensive functions and the cost ratio on the performance
of a multi-fidelity Kriging model. In this investigation
the four A parameters are varied for each function and

a multi-fidelity surrogate model is constructed using a
variety of function evaluation cost ratios and compared
to a single fidelity Kriging model of equivalent cost.

In all cases the multi-fidelity models are compared
to a single fidelity model constructed from 5d sample
points, where d is the number of dimensions in the un-

derlying problem. In the case of the Branin, Paciorek,
Hartmann H34 and Trid functions this equates to a to-
tal of 10, 10, 15 and 50 sample points respectively.

The multi-fidelity surrogate models are constructed
by replacing d ‘expensive’ function evaluations with
‘cheap’ evaluations. That is to say that 4d ‘expensive’

sample points are used in each multi-fidelity model. In

the case of the Branin, Paciorek, Hartmann H34 and

Trid functions this equates to a total of 8, 8, 12 and 40
‘expensive’ sample points respectively.

The total number of cheap sample points is then
defined by multiplying the number of expensive points

replaced, d, by the cost ratio of the expensive to cheap
functions. A cost ratio of 4:1, for example, indicates
that an evaluation of the cheap function is assumed to

be one quarter the cost of an evaluation of the expen-
sive function. The total number of cheap evaluations
in a multi-fidelity surrogate employing such a ratio is

therefore 4d.

To help illustrate this more clearly lets consider a

few simple examples. As noted above, the single fidelity
model of the Branin function is assumed to have 10
expensive sample points. Assuming a cost ratio of 4:1

therefore means that the single fidelity model is com-
pared to a multi-fidelity model consisting of 8 expen-
sive sample points and 4d = 8 cheap sample points. In

the case of a 15:1 cost ratio an evaluation of the cheap
function is assumed to be one fifteenth the cost of an
expensive function evaluation. The multi-fidelity surro-

gate model in this instance will consist of 8 expensive
sample points, as before, but these are now augmented
by 15d = 30 cheap function evaluations. Extending this

to the ten dimensional Trid function, the single fidelity
model will consist of 50 expensive function evaluations
whereas a multi-fidelity model constructed, assuming

a 10:1 cost ratio, will consist of 40 expensive function
evaluations and 10d = 100 cheap function evaluations.

For both the single and multi-fidelity cases a ran-
dom Latin-Hypercube sampling plan is used to define

the sample points from which the surrogate models are
constructed. In the case of the multi-fidelity surrogate
models an initial large sampling plan is constructed for

the cheap function with an optimal space filling sub-set
of this sampling plan defined using a max-min crite-
ria[6]. This optimal sub-set is then evaluated using the

expensive test function.

Both the single and multi-fidelity Kriging models,
once constructed, are assessed for accuracy using a set
of test points evaluated from the true high fidelity func-

tion. These test points are separate to the sampling
plans used to construct the surrogate. In the case of
the Branin and Paciorek functions 1000 test points are

used while 5000 points are used for the Hartmann H34
function and 10,000 for the Trid function. With the
surrogate model predictions at these points determined

the r2 correlation and RMSE of the prediction is calcu-
lated. To mitigate the impact of the sampling plan the
results are averaged over 50 different sampling plans for

the Branin, Paciorek and Hartmann H34 functions and
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Fig. 7 r2 correlation between the low fidelity Kriging pre-
diction and the cheap Branin function

over 25 different plans for the Trid function due to the

expense of constructing a 10 dimensional model.

Figures 6(a) and 6(b) illustrate the variation in both
the r2 correlation and the RMSE of the multi-fidelity
prediction of the Branin function as A1 is varied for

a number of different cost ratios. The dashed line of
Figures 6(a) and 6(b) illustrate the accuracy achieved
by the baseline single fidelity Kriging approach using

a 10 point Latin-Hypercube sampling plan. Figure 7
illustrates the prediction accuracy of the Kriging model
describing the low fidelity function with varying A1 and

function cost ratio.

Comparing Figures 6(a) and 6(b) to Figure 2 the im-
pact of the correlation between the low and high fidelity
functions for the Branin function is immediately obvi-

ous. The results presented in Figures 6(a) and 6(b) show
a clear trend whereby those cases with a much better
correlation tend to produce more accurate multi-fidelity

surrogate models. For those cases where the r2 corre-
lation between the different function fidelities is above
approximately 0.6 the resulting multi-fidelity model can

be more accurate than the single fidelity model. We can
also observe from Figure 6 the tendency for the perfor-
mance of the multi-fidelity model to closely match the

correlation between the two fidelity levels and not the
RMSE. For the case when A1 = 1.0 the correlation be-
tween the two functions is high and so to is the RMSE,

however, the multi-fidelity model is considerably more
accurate than the single fidelity model for this case.

The results presented in Figures 6(a) and 6(b) also
demonstrate that the number of cheap simulations used

in the construction of a multi-fidelity model also has
a clear impact on its accuracy. With a cost ratio of
4:1 there are as many cheap as expensive simulations

within the surrogate and the performance is extremely

poor with the r2 in the majority of cases half that of

the baseline Kriging model. Increasing the cost ratio
to 7:1 increases the amount of low fidelity data to 14
points and greatly improves the accuracy of the result-

ing model so that in some instances it outperforms the
baseline Kriging model.

Generally performance continues to improve as more
low fidelity data is included. This improvement in per-

formance begins to plateau when a total of 30 low fi-
delity data points are included. This indicates that multi-
fidelity Kriging performance is dependent on the accu-

racy of the Gaussian process representing the low fi-
delity model. Within a multi-fidelity Kriging model the
low fidelity model helps to guide the high fidelity model

in regions where there is no high fidelity data available,
the more accurate this model the better it can guide
the high fidelity data and the presented results confirm
this.

This is further confirmed when one considers the ac-

curacy to which the low fidelity response is represented
by the low fidelity Gaussian process, Figure 7. For the
case when A1 = 0 where fc is highly correlated with

fe and for an assumed cost ratio of 4:1 the mean r2

was 0.296 with a mean RMSE of 25.170. The 15:1 case,
with 30 cheap data points, represents the true response

of the cheap model much more accurately with a mean
r2 of 0.996 and a mean RMSE of 1.584 hence we ob-
serve a corresponding improvement in the accuracy of

the multi-fidelity Kriging model in Figure 6.

Setting A1 = 0.5 so that the correlation between fc
and fe is very low, r2 ≈ 0, provides an interesting case.
Here the 4:1 case is better able to represent the low

fidelity response with a mean r2 of 0.585 and a mean
RMSE of 4.229 likewise the 15:1 case is also more ac-
curate with a mean r2 of 1.000 and a mean RMSE of

6.1 × 10−3. However, even with such a large difference
in surrogate accuracy there is very little improvement
in the quality of the multi-fidelity prediction for these

two cases. This indicates that for cases with a poor cor-
relation between cheap and expensive data additional
cheap information may not help improve overall accu-

racy.

Figures 8(a) and 8(b) illustrate the variation in the
accuracy of a multi-fidelity Kriging model as the num-
ber of ‘cheap’ data points varies and with varying A2

for the Paciorek function. Figure 9 illustrates the ac-
curacy with which the low fidelity Kriging model is
constructed with varying cost ratio for different values

of A2. As with the Branin function the results of Fig-
ure 8 also demonstrate that the overall accuracy of the
multi-fidelity model is dependent on both the correla-

tion between the cheap and expensive functions and the
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Fig. 9 r2 correlation between the low fidelity Kriging pre-
diction and the cheap Paciorek function

amount of low fidelity data which controls the accuracy

to which the underlying cheap function is represented.

However, unlike the Branin function where the ad-
ditional accuracy of the cheap response improved the
quality of models created using poorly correlated func-

tions, the results here indicate that the improvement in
the accuracy of the cheap function can actually exac-
erbate a reduction in the accuracy of the multi-fidelity

model. For the case when A2 = 1 and the true r2 is ap-
proximately 0 an increase in the number of data points
improves the accuracy of the cheap model from a r2 of

0.289 and RMSE of 4.512 when there are 8 cheap points
to a r2 of 0.754 and RMSE of 2.597 when there are 30
points, see Figure 8. But as illustrated in Figures 8(a)

and 8(b) there is a reduction in r2 and an increase in
RMSE of the resulting multi-fidelity model when the
number of data points is increased.

Figures 10(a) and 10(b) illustrate the variation in

the accuracy of a multi-fidelity model of the Hartmann
H34 function when the correlation between functions
as well as the cost ratio and therefore the number of

cheap data points varies. Figure 11 illustrates the accu-
racy with which the low fidelity surrogate model repre-
sents the low fidelity function with varying A3 and cost

ratio. Unlike the Branin and Paciorek functions, in all
cases there are now a total of 12 expensive data points
used with the equivalent of three expensive points con-

verted into cheap data evaluations. The 15:1 cost ratio
case therefore employs 45 cheap and 12 expensive data
points. Once again the accuracy of each multi-fidelity

model is compared to the accuracy of the equivalent
Kriging model, which, in this case employs 15 data
points.

As for the previous cases, both the correlation be-

tween the cheap and expensive functions and the num-
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Fig. 11 r2 correlation between the low fidelity Kriging pre-
diction and the cheap Hartmann H34 function

ber of data points used to represent the cheap response
play an important role in the accuracy of the multi-

fidelity model. As was also demonstrated by the Pa-
ciorek test function, the performance of those cases
where there is a poor correlation actually degrades as

the accuracy of the cheap function is increased.

For the case when A3 = 0.35 and the cost ratio is
4:1 and there are 12 cheap data points, the cheap model
has a r2 of 0.556 and a RMSE of 0.685. Increasing the

number of points to 60, as in the 20:1 case, improves the
accuracy of the cheap response with the r2 now 0.989
and the RMSE now 0.101. As clearly illustrated in Fig-

ures 10(a) and 10(b) there is a corresponding improve-
ment in the accuracy of the final multi-fidelity model.
However, for the case when A3 = 1 and the functions

are poorly correlated, whilst the accuracy of the cheap
model also improves with the r2 increasing from 0.320
to 0.922 and the RMSE decreasing from 0.211 to 0.060

the accuracy of the resulting multi-fidelity model no-
ticeably reduces.

Figures 12(a) and 12(b) illustrate the variation in
the accuracy of a multi-fidelity model when the num-

ber of cheap data points and correlation between the
cheap and expensive function varies varies for the Trid
function. While Figure 13 illustrates the accuracy with

which the low fidelity function is recreated by the low
fidelity surrogate model with varying cost ratio and
A4. In this case the benchmark single fidelity Kriging

model is constructed using a total of 50 expensive sam-
ple points while each of the multi-fidelity models are
constructed from 40 expensive sample points with the

remaining budget of 10 expensive points converted into
cheap sample points according to the defined cost ra-
tio. A surrogate model constructed using the 4:1 cost

ratio therefore consists of 40 expensive sample points
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Fig. 13 r2 correlation between the low fidelity Kriging pre-
diction and the cheap Trid function

and 40 cheap sample points while a model constructed

using the 20:1 ratio employs 40 expensive and 200 cheap
sample points.

The trends illustrated by Figures 12(a) and 12(b)
are very similar to those observed for the previous three

test functions. The performance of the multi-fidelity
model closely follows the level of correlation between
the cheap and expensive functions with the number of

cheap simulations and hence the accuracy of the cheap
model also impacting the performance.

As stated in equation 9 the multi-fidelity model is
constructed from a low fidelity model multiplied by a

scaling factor and added to a second model of the differ-
ence between the low and high fidelity data. The results
presented above seem to suggest that even when the low

fidelity model is quite accurate the log-likelihood opti-
mization of the hyperparameters, which includes the
scaling factor ρ, is producing surrogate models where

the low fidelity model appears to be more important
than it should be. To investigate this further, consider
therefore the variation in ρ for the cases presented pre-

viously where a large amount of cheap data is available.
For the Branin and Paciorek functions, this is when a
15:1 cost ratio is used while for the H34 and Trid func-

tions this is when a 20:1 cost ratio is used. Considering
only these cases reduces the impact of an inaccurate
low fidelity surrogate model on the analysis of ρ.

Figures 14 and 15 illustrate the mean and standard

deviation in the magnitude of ρ as the A parameters
are varied for all four test functions. Comparing these
figures to those of the correlations between the low and

high fidelity versions of each analytical function a num-
ber of trends can be observed. As suggested above, in
the majority of cases the optimum value of ρ determined

through the likelihood optimization does not approach
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Fig. 14 Variation in ρ with A1 and A2 for the Branin and
Paciorek functions
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Fig. 15 Variation in ρ with A3 and A4 for the Hartmann
H34 and Trid functions

zero. For the Branin, Hartmann H34 and Trid function
when there is little correlation between the low and high
fidelity functions the magnitude of ρ can be significant.

Only with the Paciorek function does the magnitude
of ρ appear to tend towards zero as the correlation re-
duces. The second observable trend is the tendency for

there to be a much higher variation in the magnitude of
ρ in cases with very low correlation between the fidelity
levels. In the case of the Branin and Hartmann H34

functions there is a considerable spread in the values of
ρ resulting from the hyperparameter optimization when
the functions are poorly correlated. These observations

suggest that the above multi-fidelity Kriging formula-
tion takes little notice of the correlation between func-
tions and can tend put emphasis on the low fidelity

model when it should not.

The above investigations point to a number of in-

teresting conclusions. Firstly the level of correlation be-
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Fig. 16 Plot of mean r2 correlation of the multi-fidelity pre-
diction against the r2 correlation between the low and high
fidelity functions for cases with large amounts of low fidelity
data
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Fig. 17 Plot of mean r2 correlation of the multi-fidelity pre-
diction against the r2 correlation between the low and high
fidelity functions for cases with little low fidelity data

tween the low and high fidelity functions defining a
multi-fidelity model is extremely important in deter-
mining the accuracy of the model. This is reinforced

via Figure 16 which plots the mean r2 correlation re-
sulting from a multi-fidelity model against the r2 cor-
relation between the low and high fidelity function for

all four test functions. This figure demonstrates a clear
link between the function correlation and the accuracy
of the model. Secondly, a high number of cheap data

points is also beneficial to the accuracy of the multi-
fidelity model but only for closely correlated functions.
Figure 17 is a recreation of Figure 16 but for those in-

stances when there is very little low fidelity data. This
plot clearly illustrates much less of a correlation be-
tween the correlation of the two fidelities and the accu-

racy of the resulting multi-fidelity model. In some in-

stances for badly correlated functions a large number of

cheap data points can actually have a negative impact
on model accuracy. The above results also indicate that
there should always be more cheap data points than ex-

pensive, that the formulation of a multi-fidelity Kriging
model can put emphasis on inappropriate low fidelity
models and that the RMSE between the fidelity levels

plays much less of a role compared to the correlation
between the fidelities.

5 The Impact of the Number of Expensive
Evaluations

An alternative way of increasing the accuracy of any

surrogate model is to increase the amount of data used
in its construction. Increasing the amount of high fi-
delity data within a multi-fidelity Kriging model there-
fore increases the amount of data used to construct

the difference model. In theory the more data within
this model the more accurate the difference model and
the better the multi-fidelity predictor, as a whole, can

overcome the differences in the correlation between the
cheap and expensive data.

Figures 18(a) and 18(b) illustrate the variation in
both r2 and RMSE as the number of expensive function
evaluations is increased for the Branin function. In all

cases 30 cheap evaluations form the basis of the model
with an optimal expensive subset selected from it. As
before the accuracy of each model is averaged over 50

different sampling plans.

These figures illustrate that more expensive data

does indeed improve the quality of the model even when
constructed between considerably uncorrelated functions.
For the case where A1 = 0.5 and the correlation be-

tween the low and high fidelity functions is approxi-
mately zero, as more expensive data is added both the
r2 correlation and RMSE of the resulting model improve

considerably.

Of course, as the amount of high fidelity data is
increased so too is the amount of data which can be

used in an equivalent costing single fidelity model. A
series of Kriging models were therefore constructed us-
ing the number of expensive function evaluations used

in the multi-fidelity Kriging model plus an additional
two. A multi-fidelity model with 18 expensive evalua-
tions is therefore compared to a single fidelity model

constructed from 20.

Both Figures 18(a) and 18(b) include a dashed line

representing the point at which the multi-fidelity mod-
els perform better than their equivalent costing Kriging
models. Those models inside of this dashed line are less

accurate than the Kriging model while those outside of
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this line are more accurate. Clearly, even though the

accuracy of the multi-fidelity model improves as more
expensive data is employed the Kriging model is still
performing better for a significant range of A1 values.

In this case for the range 0.33 < A1 < 0.7, or when the
correlation between the functions is less than 0.8, no
matter how many cheap or expensive function evalua-

tions are employed in the multi-fidelity model the single
fidelity model will be more accurate. In other words, for
these cases the addition of cheap data actually misleads

the predictor reducing its accuracy.

Figures 19(a) and 19(b) illustrate the variation in

the accuracy of the multi-fidelity model when the num-
ber of expensive data points is varied but a constant 30
cheap data points are employed for the Paciorek func-

tion.

As with the results for the Branin function, the in-

crease in the amount of expensive data improves the ac-
curacy of the model, even when poorly correlated data
is employed. However, when compared to an equiva-

lent costing single fidelity Kriging model, as with the
Branin function, there is a clearly defined region where
the multi-fidelity model performs better than Kriging

no matter the number of expensive data points used.
For the Pacoriek function this occurs when A2 < 0.35
or when the correlation between the low and high fi-

delity functions is greater than approximately 0.5.

Figure 20 illustrates the change in both r2 corre-
lation and RMSE as the amount of expensive data is
increased for the Hartmann H34 function. In this case
a cost ratio of 20:1 is assumed throughout with three

expensive points assumed to be sacrificed for 60 cheap
data points. A multi-fidelity model with 60 cheap and
15 expensive data points is therefore compared to a sin-

gle fidelity model with 18 expensive data points.

As with both the Branin and Paciorek functions,
increasing the amount of expensive data improves the
accuracy of the multi-fidelity model no matter the cor-

relation between the cheap and expensive data. How-
ever, when the accuracy of these models is compared
to the equivalent costing Kriging model there is a clear

region where the Kriging model performs better. In this
case the multi-fidelity model is only more accurate be-
tween the two dotted lines equating to 0.17 < A3 < 0.55

which equates the region where the correlation between
the two functions is greater than 0.53.

Figure 21 illustrates the change in both r2 corre-
lation and RMSE as the amount of expensive data is
increased for the Trid function. In this case 10 expen-

sive simulations have been replaced by 150 cheap sim-
ulations. The 15:1 cost ratio is used as Figure 12 il-
lustrated very little difference in performance between

a cost ratio of 15:1 and 20:1. In Figure 21 the per-

formance of a Kriging model constructed from 40 ex-

pensive function evaluations is therefore compared to a
multi-fidelity model with 30 expensive and 150 cheap
function evaluations.

The dashed lines of Figure 21 indicate a clear re-
gion, when A4 < 0.6, or when the correlation between
the low and high fidelity functions is greater than 0.72,

where the multi-fidelity model out performs the equiv-
alent costing single fidelity model. As with the other
test functions the more expensive data points that are

included in the model the more accurate the model gen-
erally becomes. However, it is only when correlation be-
tween the cheap and expensive functions is greater than

0.72 that in general the multi-fidelity model is more ac-
curate than the Kriging model.

The dashed line in the top left corner of Figure

21 indicates a region where the Kriging model outper-
forms the expensive model even though Figure 5 indi-
cates that the functions are very well correlated. Even
though the mean r2 of a Kriging model with 100 sample

points is 0.72, higher than the multi-fidelity model in
this region, the consistency in the quality of the model
is greatly reduced. The standard deviation of the r2 of

the equivalent multi-fidelity model when A4 = 0.0 is
0.12 whereas that for the Kriging model is 0.35, a con-
siderable increase.

From the above investigation into the impact of the
number of expensive function evaluations it is clear that
increasing the amount of expensive data improves the

accuracy of any multi-fidelity surrogate model irrespec-
tive of the level of correlation between the low and high
fidelity functions. However, an equivalent costing single

fidelity surrogate model will still perform better than a
multi-fidelity model if the correlation between the un-
derlying functions is low. It is interesting to note that

the bounds of the regions illustrated in Figures 18, 19,
20 and 21 where the multi-fidelity model performs bet-
ter are generally along lines of constant A i.e. a constant

correlation between the underlying functions. This sug-
gests that when such a surrogate model is employed in
a cyclic process where additional infill points are gen-

erated and included within the model, as is the case
in an optimization, an underlying poor correlation will
always put the multi-fidelity model at a disadvantage

no matter how many additional points are added.

6 The Impact of the Ratio of Expensive to
Cheap Evaluations

The results presented in Figures 18, 19, 20 and 21 as-
sumed that the low fidelity function was considerably
less expensive than the high fidelity function. Of course

in reality the costs of these functions may be relatively
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similar. Consider now the worst case scenario for each

of the above analytical functions where the cheap func-
tion is only half the cost of the expensive function.

As already indicated above, the results of Figures 6,

8, 10 and 12 demonstrated that there must always be
more cheap data than expensive. For the test functions
considered above and assuming that the total evalua-

tion budget remains 5d this somewhat constrains the
number of potential ways in which the simulation bud-
get can be split up when the cost ratio is 2:1. For the

Branin and Paciorek functions at most, six high fidelity
evaluations can be combined with eight low fidelity eval-
uations, for the Hartmann H34 this means that at most

nine high fidelity evaluations can be combined with 12
low fidelity evaluations and for the Trid function 33
high fidelity evaluations can be combined with 34 low

fidelity.

Figure 22 is a recreation of Figure 6 with a fixed 2:1

cost ratio and different splits between the number of
cheap and expensive function evaluations for the Branin
function. The legend of both graphs indicate the num-

ber of cheap and expensive evaluations respectively and
as per the previous investigations all results are aver-
aged over 50 different sampling plans.

As per the results of Figure 6, Figure 22 clearly indi-
cates the importance of having a large amount of low fi-
delity information in the multi-fidelity model. The more

cheap data the more accurate the low fidelity surrogate
and the better it can guide the high fidelity prediction.

However, unlike Figure 6, Figure 22 better illus-
trates the pitfalls of creating a multi-fidelity model us-
ing low and high fidelity objective functions of similar

costs. In such a case it is even more important for the
low and high fidelity functions to be well correlated.
Only then will it be worthwhile foregoing high fidelity

function evaluations for low fidelity function evalua-
tions.

Even if the functions are closely correlated Figure
22 also indicates that it’s very important to get the split
between cheap and expensive evaluations correct. Fig-
ure 22 suggests that a split of three expensive and 14

cheap function evaluations will outperform the equiva-
lent costing single fidelity model if the r2 correlation be-
tween the two functions is greater than approximately

0.95.

Figure 23 illustrates the variation in the accuracy of

multi-fidelity models constructed for the Paciorek func-
tion using a fixed 2:1 cost ratio when different numbers
of expensive function evaluations are used. As with the

Branin function, the assumption of similar costing ob-
jective functions makes it extremely important for the
cheap and expensive functions to be well correlated.

Figure 8 indicates that only when the r2 correlation is

above 0.9 is there any advantage to employing a multi-

fidelity model and even then the split between the num-
ber of expensive and cheap function evaluations must be
carefully considered. As with the Branin function three

expensive function evaluations in combination with 14
cheap function evaluations performs best out of those
strategies considered here.

Figure 24 illustrates a similar trend for the Hart-

mann H34 function. As with the Branin and Paciorek
functions, these illustrate the importance of highly cor-
related cheap and expensive functions when the costs

of those functions are relatively similar.

Only when the r2 correlation is greater than approx-
imately 0.95 are both the RMSE and r2 correlation of
the resulting multi-fidelity prediction better than the

equivalent costing single fidelity model. Similarly, the
split between the number of expensive and cheap func-
tion evaluations plays an important role with the strat-

egy with the smallest number of expensive evaluations
performing best.

The Trid function, Figure 25, also illustrates the
need for a careful consideration of the split between

the expensive and cheap functions and the importance
of the close correlation of these functions when they are
of a similar cost. As with the previous example it is only

those cases where the functions are highly correlated
and there is a large amount of cheap data that perform
better than the equivalent costing Kriging model.

The results for these four test functions therefore

tend to suggest that when the functions are of a similar
cost the level of correlation plays even more of a role in
the accuracy of the resulting multi-fidelity model and

that in these cases it’s important to be well correlated
thereby permitting to use of a much smaller number of
expensive function evaluations.

7 Derivation of a Best Practice

The previous investigations have investigated the im-
pact of function correlation, total evaluation budget,
evaluation cost ratio and the split in the global evalua-

tion budget between cheap and expensive simulations.
However, it could be argued that these factors are them-
selves interlinked and to develop a more general set of

best practice rules one should consider the simultane-
ous impact of each of these aspects on the creation of
a multi-fidelity model.

Towards that end let us now consider the perfor-

mance of a multi-fidelity Kriging model constructed for
each of the above analytical test functions but simul-
taneously taking into account the level of function cor-

relation, r2 the relative expense of the cheap function
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evaluation, Cr, and the fraction of the expensive func-

tions replaced by cheap functions, fr. By relative ex-
pense we mean,

Cr =
Cc

Ce
, (22)

where Cc is the cost of a cheap function evaluation and
Ce is the cost of an expensive function evaluation. A

Cr = 0.1, for example, indicates that an expensive eval-
uation is 10 times the cost of a cheap evaluation. The
fraction of expensive function evaluations replaced by

cheap evaluations, fr, is defined as,

fr = 1− nme

nse
, (23)

where nme is the number of expensive evaluations in the
multi-fidelity model and nse is the number of expen-

sive evaluations in the equivalent costing single fidelity
model. If a total of 10 expensive simulations can be af-
forded then an fr of 0.8 means that two of these will be

replaced by cheap evaluations of equivalent cost where
the number of cheap evaluations is then dependent on
the cost ratio Cr.

The previous investigations illustrated that the im-
pact of the level of function correlation with increasing
numbers of expensive evaluations is relatively constant

therefore allowing us to ignore it in the following study.
This leaves, what is essentially, a three dimensional hy-
percube of potential multi-fidelity Kriging settings with

the previous studies presented in Sections 4 and 6 form-
ing lines through this space.

For each test function let us perform what is es-

sentially a full factorial sampling plan within this hy-
percube of settings. For both the Branin and Paciorek
functions 10-90% of the total evaluation budget will be

replaced with cheap data. For each of these settings,
cases will be run for which the cheap simulations are
assumed to cost 1/2, 1/3, 1/4, 1/7, 1/10 and 1/15 times

the cost of an expensive evaluation. For each of these
cases the A parameters are varied in an identical man-
ner to that of Figures 6 and 8 thereby adjusting the cor-

relation between the low and high fidelity functions. As
with the previous cases the results are averaged over 50
different sampling plans and a total budget of 5d sample

points is assumed. The Branin and Paciorek functions
will therefore have a full factor sampling plan within the
settings hypercube of 720 and 672 points respectively.

A similar process is carried out for both the Hartmann
H34 and Trid function but as there are more sample
points in both of these cases it is possible to consider a

much wider range of percentages of the total evaluation
budget replaced with cheap simulations. For the Hart-
mann H34 function 14 different percentages are con-

sidered ranging from 6.7% to 93%. In the case of the
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Fig. 26 Overview of settings for better multi-fidelity than
single fidelity performance for all four test functions.

Trid function an even greater range of replacement per-
centages is investigated from 6% to 94%. The relative

simulation costs considered for both of these functions
are the same as those used for the Branin and Paciorek
functions with the A parameters varying in an identical

manner to the previous studies.

With the average performance of the multi-fidelity
surrogate model at each of these conditions calculated it
can be compared to the equivalent costing single fidelity
Kriging model. Figure 26 illustrates only those points of

these sampling plans for each function where the multi-
fidelity model outperforms the equivalent costing Krig-
ing model in terms of both r2 and RMSE. Figures 27,

28 and 29 illustrate the same points but collapsed down
onto two dimensions. Analyzing these figures and con-
sidering only those regions where performance is con-

sistently better for all four test functions a number of
important results can be observed.

Figures 27 and 29 illustrate that converting more
than 80% of the total evaluation budget into cheap sim-

ulations appears to result in poorer performance in two
out of the four test functions. Only when predicting the
Branin and Trid functions is the multi-fidelity approach

better when more that 80% of the total budget is con-
verted to cheap simulations and this is only at relatively
high levels of correlation.

Unlike the previous more restricted investigations,
Figures 27 and 29 also illustrate that at least 10% of

the evaluation budget should always be converted to
cheap function evaluations. Both the investigations of
the H34 and Trid functions included cases where less

that 6% of the budget was converted to cheap evalu-
ations with the assumption of very cheap 15:1 simula-
tions. Even though these cases resulted in more cheap

than expensive simulations the resulting multi-fidelity
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Fig. 27 Overview of settings (ignoring r2 correlation) for
better multi-fidelity than single fidelity performance for all
four test functions.
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Fig. 29 Overview of settings (ignoring Cr) for better multi-
fidelity than single fidelity performance for all four test func-
tions.

model was less accurate than the baseline single fidelity

model.

Figure 27 clearly illustrates the importance of hav-

ing more cheap data in a multi-fidelity model than ex-
pensive data. This rule of thumb, defined in the previ-
ous investigations, should lead to a case where fr >

1
1+ 1

Cr

. However, upon investigating the results illus-

trated in Figure 27 it is clear that this rule of thumb

is not quite conservative enough to meet the require-
ments of all of the test functions. The inequality of
f > 1.75

1+ 1
Cr

is a much better fit to those cases where

the multi-fidelity model performs better. Both of these
constraints have been plotted in Figure 27 where the
fr > 1.75

1+ 1
Cr

constraint can clearly be observed to be a

much better fit to the performance data especially when
a low fidelity evaluation is of a similar cost to a high

fidelity evaluation.

Both Figures 28 and 29 clearly demonstrate the im-

pact of the correlation between the low and high fi-
delity functions on the performance of the multi-fidelity
model. Of all of the cases tested there is no point where

a multi-fidelity model performs better than a single fi-
delity model if the r2 correlation of the underlying func-
tion is less than 0.5 and even then with a few exceptions

it is only the models of the Trid function which perform
consistently better when the r2 correlation is less than
0.9.

Analyzing the results of this investigation therefore
produces four conditions which it could be considered

that if fulfilled a multi-fidelity model should out per-
form an equivalent costing single fidelity model:

1. The correlation between the low and high fidelity

function should be reasonably high, r2 > 0.9.
2. No more than 80% of the total evaluation budget

should be converted to cheap evaluations, fr < 0.8.

3. More than 10% of the total evaluation budget should
be converted to cheap evaluations, fr > 0.1.

4. There should always be slightly more cheap data

points than expensive with the inequality, fr > 1.75
1+ 1

Cr

,

giving a conservative bound for this condition.

If these conditions are not met for an unfamiliar
black box function it is recommended that a single fi-
delity surrogate modeling strategy should be adopted.

8 Engine SFC Optimization

In the previous sections analytical test functions have
been employed to ascertain a set of best practice guide-
lines to help determine when a multi-fidelity surrogate

model can be used instead of a single fidelity surrogate
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Circumferential Position

Fig. 30 High pressure compressor casing with modified
thrust linkages

model. Three engineering design problems from the lit-
erature will now be considered to see if they conform to
the inferences made using the analytical test functions.

The first of these engineering test problems is a sim-
pler multi-fidelity version of the high pressure compres-

sor optimization taken from Bettebghor et al.[1]. In this
optimization the specific fuel consumption (SFC) of the
engine is optimized by altering the location of the thrust

linkages on the exterior of the high pressure compressor
casing, shown in Figure 30. Both the setting angle and
circumferential position of these linkages are permitted

to vary by ±15 degrees.

Each engine casing design can be analyzed in two
different ways using the propitiatory Rolls-Royce fi-

nite element package, SC03. A high fidelity transient
thermo-mechanical analysis of the engine can be per-
formed taking approximately 6 days or a low fidelity

steady-state mechanical analysis, as used by Bettebghor
et al.[1], can be performed in 1/30th the time. In both
cases the displacements around the circumference of

the casing for each compressor stage are extracted and
with a fixed set of rotor platform displacements used to
calculate the tip clearance of the compressor. This tip

clearance is then used to calculate compressor efficiency
and therefore the effect on the SFC of the engine can
also be determined.

Figure 31 indicates the ‘true’ variation in SFC as
the thrust linkage setting angle and circumferential po-

sition are altered. Given the cost of the high fidelity
simulations it is infeasible to perform a full factorial
sampling plan of this design space to create an exact

representation of the variation in SFC throughout. In-
stead the surface plot of Figure 31 represents a Kriging
model constructed from 30 expensive simulations, indi-

cated by the black dots.
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Table 1 Comparison of expensive and cheap engineering
simulations used in multi-fidelity examples within the litera-
ture

Objective Function r2

Specific Fuel Consumption (SFC) 0.972
Compressor Adiabatic Efficiency[2] 0.866
Compressor Massflow Rate[2] 0.849
Compressor Pressure Ratio[2] 0.940
Multi-point Drag Coefficient (M0.75)[24] 0.950
Multi-point Drag Coefficient (M0.2)[24] 1.2× 10−4

Even though there is a significant difference in the

cost of the finite element simulations used for each fi-
delity, the results of these simulations are extremely
well correlated. Table 1 presents the r2 correlations be-

tween the high and low fidelity models for all of the
engineering test problems considered within this paper.
Comparing the SFC values resulting from the 30 expen-

sive simulations shown in Figure 31 with their cheap
equivalents indicates a relatively high r2 correlation of
0.972.

Table 2 indicates the accuracy of three surrogate
models constructed using three different strategies. Pre-
sented in this table is the number of whole engine tran-

sient thermo-mechanical simulations (WETTM), the
number of whole engine steady-state mechanical (WESM)
simulations along with the r2 correlation, root mean

square error (RMSE) and maximum absolute error (MAE)
of the surrogate models constructed using these simu-
lations. The three strategies differ in the number of ex-

pensive and cheap simulations used in their construc-
tion. Cases 1 and 2 use only high fidelity simulations
and are therefore Kriging models whereas case 3 uses

high and low fidelity simulations and therefore employs



Some Considerations Regarding the Use of Multi-fidelity Kriging in the Construction of Surrogate Models 15

a multi-fidelity model. The sampling plans defining each

of the surrogate modeling strategies presented in Table
2 are consistent across all cases. The 5 point sampling
plans used in case 2 are optimal subsets of the 10 point

sampling plans used in case 1. Likewise the 4 point sam-
pling plans used in case 3 are optimal subsets of the 5
point sampling plans. Case 3 is therefore case 2 with

one expensive point replaced by 30 cheap data points
of total equivalent cost. A different 10 point ‘seed’ sam-
pling plan is employed in each of the three tests for

each surrogate modeling strategy. The accuracy of the
resulting surrogate models are compared to SFC values
at the points illustrated in Figure 31.

Given the best practice guidelines defined based on
the analytical test functions in this case the multi-fidelity
surrogate model would be expected to perform better

than a single fidelity model of equivalent cost. The low
fidelity simulations are very cheap, the correlation be-
tween the models is quite high and only 20% of the

total evaluation budget is replaced by cheap simula-
tions. As illustrated by the results presented in Table
2 this is indeed the case. These results indicate that

a multi-fidelity model constructed from four expensive
simulations and 30 cheap simulations is considerably
more accurate than an equivalent costing single fidelity

model employing five expensive simulations. The r2 cor-
relation, RMSE and MAE values are all better for the
multi-fidelity model. The accuracy of these models even

begins to approach that of a Kriging model constructed
from a total of 10 expensive simulations and is therefore
twice as expensive.

9 Compressor Rotor Optimization

Brooks et al.[2] compared single and multi-fidelity Krig-

ing in the aerodynamic design optimization of a tran-
sonic compressor rotor. The NASA compressor rotor
37[20] was used as the initial design with modifications

made to this geometry via 28 design variables control-
ling blade sweep, lean and skew as well as leading and
trailing edge re-cambering at five locations along the

blade.
Each design was analyzed using three-dimensional

computational fluid dynamics (CFD), in this case em-

ploying the HYDRA flow solver[18]. The overall aim of
the optimization was to maximize the stage isentropic
efficiency of the rotor whilst minimizing the variation in

the stage pressure ratio to within 1% and the massflow
rate to within 0.5% of those of the baseline rotor.

In order to perform a multi-fidelity optimization

cheap data was obtained using a coarse mesh model

whilst expensive data was obtained using a fine mesh.

A 2.5mm fillet at the hub blade intersection was in-
cluded in the expensive simulation but absent in the
cheap simulation. In this case the cheap model is ap-

proximately one third the cost of the expensive model.

Brooks et al.[2] compared the accuracy of the sur-
rogate models created via cross-validation. The multi-
fidelity models of the objective function and constraints

were observed to be more accurate than the equivalent
single fidelity models at the end of the optimization.
The final multi-fidelity model of adiabatic efficiency for

example had a r2 of 0.93 and a RMSE of 2.2×10−3 while
the single fidelity model had a r2 of 0.67 and a RMSE
of 6.5 × 10−3. The results for the pressure ratio were

even better with the multi-fidelity model exhibiting a
r2 of 0.99 and a RMSE of 1.4 × 10−3 compared to the
single fidelity model’s r2 of 0.025 and RMSE of 0.164.

The massflow rate also showed a considerable improve-
ment with the r2 rising from 8.6× 10−5 to 0.96 and the
RMSE reducing from 0.29 to 6.4× 10−4. Of course not

only were the surrogate models more accurate but the
final design was also better with a 2.34% improvement
in efficiency obtained compared to a 1.79% improve-

ment with standard Kriging.

The application of multi-fidelity Kriging by Brooks
et al.[2] was obviously a considerable success but how

does the cheap data used in this optimization correlate
to the expensive data? Table 1 presents the r2 correla-
tion between the adiabatic efficiencies, massflow rates

and pressure ratios obtained from the cheap and expen-
sive simulations1. These results indicate that there is
a very good correlation between the design metrics ob-

tained from the cheap and expensive simulations. Com-
paring this to the results of the analytical test func-
tions it is observed that this is well within the bounds
for creating a useful multi-fidelity model observed ear-

lier. The correlations between each of the objectives and
constraints are high, although a little short of the pre-
viously defined r2 constraint. Half of the total evalu-

ation budget is replaced by cheap simulations for the
initial DoE which means that fr = 0.5 which falls
within the fr > 0.1 and fr < 0.8 bounds and given that

Cr = 0.333, this case also falls within the fr > 1.75
1+ 1

Cr

bound.

10 Multipoint Airfoil Optimization

Consider now the multipoint aerodynamic design opti-
mization of a two-dimensional airfoil section taken from
Toal and Keane[24]. In this case 2D CFD simulations,

1 The sampling plan data for this calculation has been
kindly provided by Brooks, Forrester, Keane and Shahpar
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Table 2 Comparison of SFC predictions using single & multi-fidelity Kriging models

Case 1 Case 2 Case 3

WETTM sims 10 5 4
WESM sims 0 0 30
r2 0.970 0.954 0.935 0.815 0.756 0.029 0.979 0.925 0.846
RMSE 0.138 0.153 0.134 0.253 0.243 0.599 0.093 0.169 0.555
MAE 0.329 0.306 0.232 0.543 0.591 1.521 0.159 0.418 1.407

employing the Fluent flow solver, were used to analyze a
2D airfoil section at three different design points, Mach

0.2, Mach 0.75 and Mach 0.8 at fixed lift coefficients of
1.2, 0.5 and 0.45, respectively. A weighted combination
of the drag at these three points was then used as a

metric of design quality. The baseline RAE-2822 airfoil
section was modified by deforming the computational
grid using a freeform deformation approach with ten

design variables controlling the vertical displacement
of ten control points.

Unlike the compressor rotor optimization the fidelity
of the CFD simulation remained constant for both lev-
els of the multi-fidelity surrogate model. Instead the

number of design points evaluated was altered. The low
fidelity data comprised of the airfoil drag coefficient at
only Mach 0.75 while the high fidelity data comprised

of the weighted drag coefficient at all three Mach num-
bers. Low fidelity data could therefore be obtained for
one third the cost of the high fidelity data although

the actual number of low fidelity simulations was much
higher given that the drag at Mach 0.75 must be cal-
culated anyway to determine the weighted drag coeffi-

cient.

In this example the multi-fidelity optimizations were
observed to offer a much faster rate of convergence than
the traditional single fidelity approach obtaining be-

tween a 10.4% and 15.7% improvement in the weighted
drag coefficient for the equivalent of 60 multipoint sim-
ulations whereas the single fidelity approach obtained

between 0% and 10.4% improvement for the same sim-
ulation cost.

As with the previous examples let us consider the
adherence of this real world test case to the guidelines
defined using the analytical test cases. Assuming a total

budget of 150 high fidelity simulations, all of which are
used to construct a baseline Kriging model, one third
of these are replaced by low fidelity simulations in an

equivalent costing low fidelity model, fr = 0.333. This
results in a multi-fidelity model constructed from 100
high fidelity simulations and 250 low fidelity simula-

tions, 100 of which correspond to the high fidelity lo-
cations with the remaining 150 low fidelity simulations
spread throughout the design space. Given that 50 ex-

pensive simulations have been replaced by 250 low fi-

delity simulations, Cr = 0.2. This is perhaps slightly
counter intuitive given that a low fidelity simulation is

one third the cost of a high fidelity simulation but as
a simulation at Mach 0.75 is part of the weighted drag
coefficient calculation, the 100 high fidelity evaluations

that have been carried out provide 100 additional ‘free’
low fidelity data points.

As with the previous cases Table 1 shows the r2 cor-
relation between the airfoil drag at Mach 0.75 and the

weighted drag coefficient. The Mach 0.75 drag coeffi-
cient is clearly very well correlated with the weighted
drag coefficient with r2 = 0.95, this case study is there-

fore well within our r2 > 0.9 guideline. As fr = 0.333
this case study also meets the upper and lower fixed
bounds on fr and given that Cr = 0.2 the case study

also meets the fr > 1.75
1+ 1

Cr

bound which states that

fr > 0.29. Based on these guidelines the multi-fidelity

model should be more accurate than the equivalent
costing single fidelity model and indeed it is. The above
multi-fidelity model achieves a r2 of 0.957 and RMSE of

2.04× 10−3 while the equivalent costing Kriging model
employing 150 expensive data points has a r2 of 0.937
and RMSE of 2.59× 10−3.

For the above case the multi-fidelity prediction of

the weighted drag coefficient clearly works. However,
what would happen if we considered breaking some of
the guidelines that have been defined? As the weighted

drag coefficient is constructed via a weighted summa-
tion of three different drag coefficients the other drag
coefficients could feasibly be used to provide the cheap

data for the multi-fidelity model instead. The drag co-
efficient at Mach 0.2, for example, contributes a rela-
tively small amount to the overall objective function.

This, in conjunction with its relative distinctness in
terms of its flow regime, compared to the other design
points, means that the drag at Mach 0.2 is badly cor-

related to the weighted coefficient, as shown in Table
1. When the drag values of 250 simulations at Mach
0.2 are combined with 100 expensive simulations in a

multi-fidelity model, the r2 drops significantly to 0.221
while the RMSE increases to 4.18× 10−2. As expected,
whilst the other guidelines are still met, the correlation

has fallen significantly below the acceptable level re-
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Table 3 Impact of variation in number of expensive data
points replaced on weighted drag coefficient surrogate model
performance

fr DoE (Exp + Chp) r2 RMSE

0 150 + 0 0.937 2.59× 10−3

0.007 149 + 152 0.893 3.96× 10−3

0.033 145 + 160 0.891 3.63× 10−3

0.067 140 + 170 0.942 2.76× 10−3

0.1 135 + 180 0.950 2.57× 10−3

0.13 130 + 190 0.966 1.86× 10−3

0.167 125 + 200 0.954 2.47× 10−3

0.20 120 + 210 0.941 3.08× 10−3

0.333 100 + 250 0.957 2.04× 10−3

sulting in a multi-fidelity model which performs poorly

compared to the equivalent single fidelity model.

Given the formulation of this test case and the ‘free’
cheap data from the expensive simulations the con-
straint to ensure that the number of low fidelity data

points is greater than the number of expensive points
is never broken. Even if only one of the 150 expensive
points is replaced there will still be a total of 152 cheap

data points as 149 are calculated as part of the high
fidelity evaluations. Instead, let us investigate the ap-
plicability of the lower bound on fr, that is at least 10%
of the expensive function evaluations should be replaced

with cheap function evaluations. To investigate this let
us consider the cases presented in Table 3.

Table 3 presents the accuracy of the weighted drag
coefficient prediction for a variety of different fractions

of the total simulation budget used to calculate addi-
tional cheap sample points. Included in Table 3 is the
single fidelity Kriging model with 150 sample points and

the multi-fidelity case with 100 expensive and 250 cheap
data points. In addition to these, seven other cases are
presented where the fraction of expensive points re-

placed by cheap data points is varied from 0.7% to 20%.
In all cases the Mach 0.75 simulations are used to pro-
vide low fidelity data. Comparing these additional cases

to the baseline single fidelity surrogate model it is clear
that once the 10% threshold is reached the accuracy of
the resulting multi-fidelity model, in terms of both r2

and RMSE, is superior to the baseline model thereby
supporting the guideline minimum.

11 Conclusions

The construction of a multi-fidelity Kriging model is
often, and quite correctly, presented within the surro-
gate modeling literature as an effective way of improv-

ing the accuracy of surrogate models and therefore the

performance of any surrogate based optimization em-

ploying them. The results of the present article, how-
ever, go some way to illustrating that such models are
not a panacea for the improvement of any blackbox op-

timization problem and should in fact be applied with
some caution otherwise the surrogate models produced
may actually be less accurate than their single fidelity

equivalent.

In the current article four analytical test functions

and three engineering design problems have been used
to investigate a number of the key influences on the per-
formance of a multi-fidelity Kriging model relative to a

single fidelity model of equivalent cost. In particular the
impact of the correlation between the low and high fi-
delity functions, the relative expense of the functions,

the total evaluation budget and how the total evalua-
tion budget should be divided up between low and high
fidelity simulations has been investigated. The results of
these individual investigations lead to a more extensive

study of the interactions between the most important
influences on performance thereby resulting in a set of
guidelines to help determine if a multi-fidelity model

should be used or not. The guidelines derived using the
analytical functions were then assessed with respect to
three engineering problems from the literature.

The results of the analytical test function investiga-
tions indicated that the correlation between the differ-

ent function fidelities is extremely important in deter-
mining if a multi-fidelity model will be more accurate
than a single fidelity model and that a large number

of cheap data points is beneficial to the accuracy of
the multi-fidelity model but only for closely correlated
functions. Similarly, there should always be more lower

fidelity data used to construct the model than high fi-
delity data.

Investigating the impact of the number of expen-
sive function evaluations illustrated that while increas-
ing the amount of expensive data improves the quality

of a multi-fidelity model regardless of the correlation
between cheap and expensive functions a single fidelity
model constructed using the same equivalent budget of

simulations will still perform better if the correlation
between the functions is poor. The level of correlation
between the functions therefore overrides the positive

impact of including more expensive data.

Varying how the total evaluation budget is split be-

tween the cheap and expensive functions demonstrated
that for functions of similar costs the level of correla-
tion plays an even more important role in the accuracy

of the final multi-fidelity model. In such cases the evi-
dence suggests that the high level of correlation enables
the surrogate to cope with the much smaller amount of

high fidelity data available.
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A further, more in-depth analysis of the simultane-

ous impact of function r2 correlation, relative function
cost, Cr, and fraction of expensive simulations replaced
with cheap simulations, fr, helped to defined a set of

simple guidelines which can be used to help determine
whether a single or multi-fidelity Kriging model should
be used:

1. The correlation between the low and high fidelity

function should be reasonably high, r2 > 0.9.
2. No more than 80% of the total evaluation budget

should be converted to cheap evaluations, fr < 0.8.

3. More than 10% of the total evaluation budget should
be converted to cheap evaluations, fr > 0.1.

4. There should always be slightly more cheap data

points than expensive with the inequality, fr > 1.75
1+ 1

Cr

,

giving a conservative bound for this condition.

Successful multi-fidelity surrogate models of specific
fuel consumption, compressor rotor performance and
multipoint drag performance from the literature were

observed to closely follow the above guidelines. Varia-
tions in the definition of the multipoint drag case study
which led to a model not meeting the above guide-

lines in terms of minimum r2 correlation and minimum
amount of expensive data replaced by cheap data were
also demonstrated to result in a multi-fidelity surrogate

model less accurate than the equivalent costing single
fidelity model. These results therefore add some weight
to the validity of the presented guidelines.

While the above study attempts to be quite thor-

ough there are a number of aspects of multi-fidelity
Kriging which could be investigated further. Firstly, the
impact of problem complexity was not taken into ac-

count in the present study and may play some role in
the variation in the results observed for the Trid func-
tion compared to the other three analytical functions.

The Branin, Paciorek and Hartmann H34 functions are
relatively complex in terms of their response, they are
multi-modal with a number of local minima, the Trid

function however, is convex with a single minima. This
may help to explain the ability of the multi-fidelity
model to represent the Trid function even when the

correlation between the two functions is relatively low.
This result suggests that the above guidelines might be
somewhat conservative if the underlying shape of the

function is relatively simple.

Another interesting result of the above investiga-
tions is the demonstration that the scaling parameter
of a multi-fidelity Kriging model takes no considera-

tion of the fact that the underlying correlation between
the two functions might be poor. The optimization of
this hyperparameter therefore tends to give the low fi-

delity Kriging model more importance than it should.

An area of further study might therefore be to investi-

gate alternative formulations for the multi-fidelity pre-
diction which would inherently take the level of corre-
lation between the functions into account thereby pre-

venting the multi-fidelity model becoming worse than
a single fidelity model constructed from just the high
fidelity data used in the multi-fidelity model.

Of course the presented guidelines have been derived
with respect to the “true” correlations between the two
levels of function fidelity and in a real design optimiza-

tion this would have to be estimated from a more lim-
ited subset. Never-the-less the presented results point
towards an effective heuristic which may be embedded

within a surrogate modelling toolset in order to auto-
matically select an appropriate single or multi-fidelity
approach.
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9. Han, Z., Görtz, S.: Hierarchical kriging model for
variable-fidelity surrogate modeling. AIAA Journal
50(9), 1885–1896 (2012)
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Fig. 6 Multi-fidelity Kriging prediction r2 (a) and RMSE (b) of the Branin function with changing cost ratio
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Fig. 8 Variation in multi-fidelity Kriging prediction of the Paciorek function with changing ‘cheap’ function cost ratio and
A2
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Fig. 10 Variation in multi-fidelity Kriging prediction of the Hartmann H34 function with changing ‘cheap’ function cost ratio
and A3
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Fig. 12 Variation in multi-fidelity Kriging prediction of the 10D Trid function with changing ‘cheap’ function cost ratio and
A4
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Fig. 18 Multi-fidelity prediction r2 (a) and RMSE (b) of the Branin function with changing no. of expensive simulations, the
region outside of the dotted line is where the multi-fidelity model is more accurate than an equivalent cost single fidelity model
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Fig. 19 Multi-fidelity prediction r2 (a) and RMSE (b) of the Paciorek function with changing no. of expensive simulations,
the region to the left of the dotted line is where the multi-fidelity model is more accurate than an equivalent cost Kriging
model
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Fig. 20 Multi-fidelity prediction r2 (a) and RMSE (b) of the Hartmann H34 function with changing no. of expensive simula-
tions, the region bound by the dotted lines is where the multi-fidelity model is more accurate than an equivalent cost Kriging
model
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Fig. 21 Multi-fidelity prediction r2 (a) and RMSE (b) of the Trid function with changing no. of expensive simulations, the
region bound by the dotted lines is where the multi-fidelity model is more accurate than an equivalent cost Kriging model
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Fig. 22 Multi-fidelity Kriging prediction r2 (a) and RMSE (b) of the Branin function with changing no. of expensive and
cheap simulations for a fixed 2:1 cost ratio
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Fig. 23 Multi-fidelity Kriging prediction r2 (a) and RMSE (b) of the Paciorek function with changing no. of expensive and
cheap simulations for a fixed 2:1 cost ratio
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Fig. 24 Multi-fidelity Kriging prediction r2 (a) and RMSE (b) of the Hartmann H34 function with changing no. of expensive
and cheap simulations for a fixed 2:1 cost ratio
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Fig. 25 Multi-fidelity Kriging prediction r2 (a) and RMSE (b) of the Trid function with changing no. of expensive and cheap
simulations for a fixed 2:1 cost ratio


