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The macroscopic behavior of air and water in porous
media is often approximated using Richards’ equation
for the fluid saturation and pressure. This equation is
parametrized by the hydraulic conductivity and water
release curve. In this paper we use homogenization to
derive a general model for saturation and pressure in
porous media based on an underlying periodic porous
structure. Under an appropriate set of assumptions,
i.e., constant gas pressure, this model is shown to
reduce to the simpler form of Richards’ equation.
The starting point for this derivation is the Cahn-
Hilliard phase field equation coupled with Stokes’
equations for fluid flow. This approach allows us, for
the first time, to rigorously derive the water release
curve and hydraulic conductivities through a series
of cell problems. The method captures the hysteresis
in the water release curve and ties the macroscopic
properties of the porous media to the underlying
geometrical and material properties.

1. Introduction
The macroscopic flow of multiple fluid phases in
porous media, for example soil, is often described by
Richards’ equation [1–3]. This equation describes the
local saturation under the influence of saturation and
pressure gradients and is parametrized by the water
release curve and the saturation dependent hydraulic
conductivity which are both measured experimentally
[4]. Richards’ equation offers significant challenges both
in terms of parameterization [4–6] and the numerical
solution [7,8].

Mathematically it has been shown, using the method
of homogenization [9,10], that the hydraulic conductivity
in saturated porous media can be derived from Stokes
equations describing the fluid flow in the pore space
[3,11,12]. Such techniques have been applied in single
porosity materials [3,11,13,14], dual porosity materials
[15–17] and vuggy porous structures [18–22]. However,
the homogenization process in partially saturated porous
media is less well defined and relies on assumed

c⃝ The Author(s) Published by the Royal Society. All rights reserved.

Page 1 of 20

http://mc.manuscriptcentral.com/prsa

Submitted to Proceedings A

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:krd103@soton.ac.uk


For Review Only
2

rspa.royalsocietypublishing.org
Proc

R
Soc

A0000000
..........................................................

knowledge of the interface location (Chapter 5 in [3]). Knowledge of the air-water interface is
often hard to obtain. Studies using X-ray Computed Tomography have been carried out [23].
However, these are computationally intensive and require scans to be carried out across the
whole range of saturation. To overcome the need for repeated scanning various researchers
have suggested different empirical or approximate formula to describe the water release curve
[2,3,24–26]. However, these parameters exhibit multi-branched hysteresis loops [6] and need to
be parametrized with experimental measurements which can take months to gather even for a
single branch of the hysteresis curve [5].

In order to derive the water release curve and saturation dependent hydraulic conductivity the
dynamic interaction of the two fluid phases must be considered. One way to capture the physics
of the two fluids is to use the Cahn-Hilliard phase field model coupled to Stokes equations [27–29].
The Cahn-Hilliard model can be derived through a free energy minimization [30,31] and has been
widely applied to study moving contact lines and bubbles in a two fluid system [32]. This model
overcomes the difficulties of a sharp interface by using the assumption that the interface between
the two phases is of finite thickness which is assumed to be small in comparison to the geometry
considered. By taking the limit that the interface thickness goes to zero the phase field model can
be shown to reduce to standard free–boundary problems [32–34]. Homogenization of the Cahn-
Hilliard model in porous media has previously only been studied only for the case in which the
interface thickness is comparable to the characteristic pore size [35,36]. This results in an effective
Cahn-Hilliard equation where the interface mobility is derived through a set of cell problems.

In this paper we consider the case of two immiscible fluids separated by an interface of finite
width. This width is assumed small relative to the pore size and, hence, may be considered the
smallest length scale in the problem. We use the method of homogenization to derive a coupled set
of equations which describe the macroscopic flow properties of these fluids in partially saturated
porous media. These equations, which are based on fundamental physical assumptions, are
shown to reduce to Richards’ equation in an appropriate parameter regime, i.e., the gas pressure is
assumed constant. We assume that, to leading order, the interface positions and, hence, the water
release curve are determined by capillary forces. The hydraulic conductivity is then determined
by studying the perturbation due to a weak pressure gradient. The result is that the water release
curve and the saturation dependent hydraulic conductivity are determined through a series of
cell problems which capture the porous geometry and the effects of the pressure gradients.

To capture the physics associated with two phase flow in porous media the correct behavior
of the contact angle between the solid and the two fluid phases must be included in the Cahn-
Hilliard formulation. The contact angle is one of many factors associated with the hysteresis
observed in the water release curve [37]. There have been numerous studies on the effect of the
contact angle in the Cahn-Hilliard formulation [38–40]. Here we make use of the more recent
boundary conditions which are derived geometrically, [40].

This paper is arranged as follows, in Section 2 we derive the Cahn-Hilliard fluid model using a
free energy minimization and apply the method of homogenization to derive the two fluid model.
The cell problems, which result from the calculations, allow the hydraulic conductivity and water
release curves to be calculated based entirely on the underlying geometry. In section 3 we study
the solution properties of the cell problems and consider the limit in which the interface thickness
tends to zero. In Section 4 we solve the cell problems for the example case of air and water flowing
in soil. Finally, in section 5, we discuss our results and draw conclusions.

2. Derivation of homogenized equations
(a) Deriving the two–fluid Cahn-Hilliard equation
We consider the interaction of two single component fluids, for example air and water, in a
porous geometry as illustrated in figure 1. Throughout this derivation we use ·̃ to denote that
· is a dimensional quantity. A list of the dimensional quantities used in this derivation is given in
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Figure 1. Schematic of porous domain (left) with length scales L̃y , the scale of one periodic unit cell, and L̃x, the
macroscopic length scale. The box (right) shows a zoomed in view of one periodic unit cell of the fluid domain, Ω, the
boundary of the porous structure ∂B and the two different fluids φ= 0 and φ= 1 with interface width λ̃.

Symbol Units Description

L̃x, L̃y m macroscopic and microscopic length scales.
λ̃ m Fluid–fluid interface thickness.
η̃(0), η̃(1), η̃ Pa s Viscosity of phase 0, phase 1 and the combined phase.
ρ̃(0), ρ̃(1) kg m−3 Density of phase 0 and phase 1.
γ̃ N m−1 Surface tension at fluid–fluid interface.
F̃b, F̃s, F̃ N m Bulk, surface and total free energies.
ũ
(0), ũ(1), ũ m s−1 Velocity of phase 0, phase 1 and the combined phase.

ζ̃ kg m−3 s−1 Fluid–fluid drag coefficient.
p̃ kg m−1 s−2 Combined fluid pressure.
σ̃ kg m−1 s−2 Combined stress tensor.
R̃ N m s−1 Rayleighian.
µ̃ kg m−1 s−2 Capillary pressure.
t̃ s Time coordinate.
x̃ m Space coordinate.

Table 1. Dimensional variables

Table 1. We consider a porous domain Ω composed of a solid matrix S and a fluid part Bϵ with
boundary ∂Bϵ. We assume that Bϵ is connected and that ∂Bϵ is smooth. The geometry of the
porous structure is of typical size L̃x and is composed of a series of regular repeating units of size
(0, L̃3

y), where L̃y/L̃x = ϵ≪ 1.
To model the interaction between two fluids we use the Cahn-Hilliard model [27–29]. We

define the fluid phase φ, a dimensionless variable which takes the value φ= 1 in fluid 1 and φ= 0

in fluid 0. At the interface between the two fluids φ changes smoothly from φ= 0 to φ= 1 over
a distance λ̃ which we refer to as the interface thickness. We define the viscosity and density of
fluid j as η̃(j) and ρ̃(j) respectively for j = {0, 1}. We consider the case ρ̃(1) ≫ ρ̃(0) corresponding
to, for example, air and water. However, we note that this is not a limitation of the model, it is
instead used to simplify the notation and algebra used in the remainder of the paper.

To derive the equations which describe the interaction between these two fluids we write an
appropriate fluid free energy which we will then minimize, [27–31]. Specifically we write the bulk
and surface free energies of the fluid as

F̃b =

∫
Bϵ

[

αγ̃

(

λ̃−1f(φ) +
λ̃
2
|∇̃φ|2

)]

dx̃, and F̃s =

∫
∂Bϵ

αγ̃h(φ) dx̃, (2.1)

where f(φ) = φ2(1− φ)2, γ̃ is the surface tension and α= 6
√
2 scales the free energy such that γ̃

is the total excess free energy. It can be shown, [40], that h(φ) satisfies h′(φ) =
√
2 cos(θ)

√

f(φ),
where θ is the contact angle between the fluid–fluid interface and the surface of the porous matrix
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which is assumed constant and h′(φ) is the variational derivative δh/δφ. The fluid free energy
consists of two terms: the bulk free energy which has minima at φ= 0 and φ= 1 and the interface
energy which acts to minimize the total fluid volume over which φ is changing. We now proceed
as in [30,31] and derive the momentum equations describing the fluid motion by minimizing the
Rayleighian

R̃=
∂F̃
∂ t̃

+

∫
Bϵ

[

1
2
ζ̃
(

ũ
(0) − ũ

(1)
)2

+ (σ̃ − p̃− ρ̃x̃3g̃) ∇̃ · ũ
]

dx̃ (2.2)

where F̃ = F̃b + F̃s is the total fluid free energy, ũ(0) and ũ
(1) are the fluid velocities of fluid 0 and

1 respectively, ũ= φũ(1) + (1− φ)ũ(0) is the combined velocity, ζ̃ is the drag coefficient between
the two fluids, σ̃= η̃[(∇̃ũ) + (∇̃ũ)T ] is the combined stress tensor, g̃ is the acceleration due to
gravity and η̃(φ) is the phase dependent viscosity which takes the values η̃(0) = η̃(0) and η̃(1) =
η̃(1) in fluid 0 and fluid 1 respectively. Similarly ρ̃(φ) is the phase dependent density which takes
the values ρ̃(0) = ρ̃(0) and ρ̃(1) = ρ̃(1) in fluid 0 and fluid 1 respectively. Finally p̃ is a Lagrange
multiplier, effectively a combined or reduced fluid pressure, used to enforce incompressibility of
the overall mixture. Assuming conservation of mass for each fluid we also have

∂φ

∂ t̃
=−∇̃ · (φũ(1)) and

∂ (1− φ)

∂ t̃
=−∇̃ ·

[

(1− φ)ũ(0)
]

. (2.3)

Differentiating equation (2.1) with respect to time, using equation (2.3) and assuming the fluid
velocity vanishes on the porous structure boundary we find

R̃ =

∫
Bϵ

1
2
ζ̃
(

ũ
(0) − ũ

(1)
)2

+ (σ̃ − p̃− ρ̃x̃3g̃) ∇̃ · ũ dx̃

+

∫
Bϵ

φũ(1) · ∇̃
{

γ̃α
[

λ̃−1f ′(φ)− λ̃∇̃2φ
]}

dx̃+

∫
∂Bϵ

[

αγ̃
(

n̂ · λ̃∇̃φ+ h′(φ)
)] ∂φ

∂ t̃
dx̃,

(2.4)
where n̂ is a unit vector normal to the surface of the porous medium. We minimize the
Rayleighian with respect to p̃, ũ

(1) and ũ
(0) and, after some algebra and application of the

divergence theorem, obtain the following system of equations

∂φ

∂ t̃
+ ∇̃ · (φũ) = ∇̃ ·

{[

φ2(1− φ)2

ζ̃

]

∇̃µ̃

}

, x̃∈B
ϵ, (2.5a)

∇̃ · σ̃ − φ∇̃µ̃− ∇̃p̃= ρ̃g̃ê3, x̃∈B
ϵ, (2.5b)

ζ̃(ũ(0) − ũ
(1)) = (1− φ)φ∇̃µ̃, x̃∈B

ϵ, (2.5c)

µ̃= α
(

λ̃−1f ′(φ)− λ̃∇̃2φ
)

, x̃∈B
ϵ, (2.5d)

∇̃ · ũ= 0, x̃∈B
ϵ, (2.5e)

combined with the no slip condition on the surface of the porous matrix

ũ= 0, x̃∈ ∂Bϵ, (2.5f )

the contact angle boundary condition derived from (2.4)

n̂ · λ̃∇̃φ=−h′(φ), x̃∈ ∂Bϵ (2.5g)

and a zero flux condition to ensure each phase is conserved

n̂ ·
{[

φ2(1− φ)2

ζ̃

]

∇̃µ̃

}

= 0, x̃∈ ∂Bϵ. (2.5h)
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Here µ̃ is the capillary pressure which is defined in equation (2.5d) and ê3 is a unit vector in
the direction x̃3. We shall discuss the relationship between the capillary pressure and the specific
fluid pressures in section (c). The additional condition, equation (2.5h), ensures the conservation
of mass of each fluid on the boundary of the porous structure. Equations (2.5) combined with the
initial condition φ(x̃, 0) = φ̄(x̃) describe the two fluid behavior in the porous structure.

(b) Non-dimensional equations
We non-dimensionalise equations (2.5) by first scaling space with the microscopic length scale L̃y

such that x̃= L̃yy and ∇= L̃y∇̃. Using this scaling we define the unit cell Y = (0, 1)3 composed
of a fluid part B with boundary ∂B. We introduce the non-dimensional velocity u= [u]−1

ũ,
pressure p= [p]−1p̃, capillary pressure µ= [µ]−1µ̃ and time t= [t]−1 t̃, where

[u] =
ρ(1)g̃L̃2

y

4η̃(1)
, [p] =

[u]η̃(1)

L̃x
, [µ] =

αγ̃

L̃y
, [t] =

L̃y

[u]
. (2.6)

We also introduce the dimensionless Capillary number (Ca)), Peclet number (Pe), Cahn number
(λ) and scaled gravitational force (g):

Ca=
L̃x

L̃y

η(1)[u]
αγ̃

, P e=
L̃yL̃xζ̃[u]

αγ̃
, λ=

λ̃

L̃y
, g= 4

ρ̃(1) − ρ̃(0)

ρ̃(1)
, (2.7)

where we have used ρ̃(0)/ρ̃(1) ∼O(ϵ), Physically this is equivalent to neglecting the influence of
gravity on the phase φ= 0. Finally we define the phase dependent viscosity

η(φ) =
η̃(0)

η̃(1)
+
η̃(1) − η̃(0)

η̃(1)
φ. (2.8)

We note that the definition of the Peclet number, which relates the diffusive motion of the interface
to the advection by the fluid, is not, strictly speaking, a conventional Peclet number. However, as
this is widely used in the literature we have chosen to keep this terminology [36,40]. Using these
equations the scaled Cahn-Hilliard fluid equations are

∂φ
∂t

+ u ·∇φ=
1
ϵPe

∇ ·M∇µ, y ∈B, (2.9a)

∇ · σ − 1
ϵ
∇p− 1

ϵCa
φ∇µ= φgê3 y ∈B, (2.9b)

∇ · u= 0 y ∈B, (2.9c)

µ= λ−1f ′(φ)− λ∇2φ, y ∈B, (2.9d)

where σ= η
[

(∇u) + (∇u)T
]

and M = φ2(1− φ)2. We solve these equations subject to the
boundary conditions

u= 0, y ∈ ∂B, (2.9e)

n̂ · λ∇φ=−h′(φ), y ∈ ∂B, (2.9f )

n̂ ·M∇µ= 0, y ∈ ∂B (2.9g)

and the initial condition φ(y, 0) = φ̄(x). We have scaled such that Ca∼O(1) and Pe∼O(1) and
the only small parameters in the final equations are ϵ and λ, i.e., the interface is narrow and we
are considering a porous geometry with well defined micro and macro scales. The result of the
scaling given in equations (2.6) is that a unit change in µ drives a fluid velocity of order ϵ−1. This
velocity corresponds to the movement of the fluid–fluid interface which decays rapidly to zero.
Hence, the first non-zero contribution to the scaled velocity is order 1.
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We are considering a problem with two different small parameters ϵ, the ratio of the
microscopic and macroscopic length scales, and λ, the ratio of the interface thickness to the
microscopic length scale, see Figure 1. Before we proceed it is useful to discus the role of these two
parameters. The first of these, ϵ, is standard in the homogenization literature [9] and will form the
basis of the asymptotic expansion we will use in section (c) to derive the averaged equations. The
second small parameter λ is the non-dimensional interface thickness which must be small with
respect to the minimum radius of curvature of the porous structure. We shall show in section
3 that, in the limit λ→ 0, this model reduces to existing models where the fluid–fluid interface
location is known (Chapter 5 in [3]).

(c) Homogenizing the Cahn-Hilliard fluid equation
We consider the geometry illustrated in Figure 1. This geometry consists of a solid structure
surrounded by pore-space which contains two fluids. Our aim is to derive a set of macroscopic
equations which are applicable on the length scale L̃x and describe the movement of these two
fluids averaged over the length scale L̃y , where L̃y/L̃x = ϵ≪ 1. Due to the separation in length
scales, and the periodicity of the geometry, the behavior of the two fluids is, to first approximation,
assumed periodic on the pore scale. Using this assumption and considering the solution to
equations (2.9) in successive powers of ϵ we will derive a set of equations which describe the
slow variation of these periodic solutions on the lengthscale L̃x.

We define two different spatial coordinate systems; x denotes position on the macroscopic
length scale and y denotes position on the microscopic length scale. The key assumption used
in the following homogenization procedure is that these two length scales may be treated as
independent [9]. Hence, we expand ∇=∇y + ϵ∇x, where ∇x denotes the gradient operator
on the macroscopic length scale and ∇y denotes the gradient operator on the microscopic
length scale. We also consider a set of different time scales τ−1 = ϵ−1t, τ0 = t and τ1 = ϵt. These
timescales correspond to the fast equilibration of the fluid-fluid interface, the medium timescale
movement of the fluid fluid interface on the scale L̃y and the slow variation in saturation due to
applied pressure gradients respectively.

Intuitively it may seem natural, as a first approximation, to neglect terms of order in λ and
write λ in terms of ϵ before expanding as in, for example, [41]. However, if we do this then
the leading order solution is φ= const and multiple phases cannot co-exist. This is because
the terms of order λ multiply the highest derivatives in equation (2.9) resulting in a singular
perturbation scheme [42]. In order to accommodate the two phases there must be a region of
thickness λ in which the function φ changes rapidly. As the interface position can change it is
not straightforward to construct an analytic solution in the interface region and match it to the
solution in the regions of constant phase. Therefore, to leading order we must consider terms of
order λ such that λ∇2φ balances λ−1f ′(φ). Hence, we expand the velocity, pressure and phase
only in powers of ϵ,

u=u0 + ϵu1 +O(ϵ2), p= p0 + ϵp1 +O(ϵ2), φ= φ0 + ϵφ1 + ϵ2φ2 +O(ϵ3). (2.10)

We also expand the stress tensor, σ= σ0y +O(ϵ), and the mobility M =M0 + ϵM1 +O(ϵ2),
where

σ0y = (∇yu0) + (∇yu0)
T , (2.11a)

M0 =M(φ0) = φ20(1− φ0)
2, (2.11b)

M1 =

(

δM
δφ

∣

∣

φ=φ0

)

φ1 = 2φ0(1− φ0)(1− 2φ0)φ1 (2.11c)

and µ= µ0 + ϵµ1 +O(ϵ2), where

µ0 = λ−1f ′(φ0)− λ∇2
yφ0, (2.11d)
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µ1 = λ−1f ′′(φ0)φ1 − λ
(

∇2
yφ1 +∇y ·∇xφ0 +∇x ·∇yφ0

)

, (2.11e)

We now substitute (2.10) and (2.11) into (2.9) and solve for ascending powers of ϵ.

(i)O(ϵ−1) problem
Substituting equations (2.11) into (2.9) and collecting terms of order ϵ−1 we obtain

∂τ
−1φ0 − Pe−1

∇y ·M0∇yµ0 = 0, y ∈B, (2.12a)

∇yp0 + Ca−1φ0∇yµ0 = 0, y ∈B, (2.12b)

with the boundary conditions

n̂ · λ∇yφ0 =−h′(φ0), y ∈ ∂B, (2.12c)

n̂ ·M0∇yµ0 = 0, y ∈ ∂B, (2.12d)

the intitical condition φ0(x,y, 0) = φ̄(y) and p0, µ0 and φ0 are periodic with period 1. Physically
equations (2.12) describe the location of the fluid–fluid interface and are satisfied at steady state
for any µ0 and p0 which are constant in y. We note in passing that, at steady state, φ0 is a function
of both x and y which we write as φ0 = S(x) + φ

(n)
0 (y) where φ(m)

0 is the modulated part of φ0
with zero average. Hence, the saturation is defined as

S =
1

||B||

∫
B

φ0 dy, (2.13)

where ||B||=
∫
B

dy, S takes value S = 1 for a fully saturated region and S = 0 for a
fully unsaturated region. Therefore, we write µ0 ∼ µ0 [S(x)] where S(x) varies only on the
macroscopic scale.

Finally, we observe that, by defining the fluid pressure ps(x,y) = p0(x) + Ca−1φ0(y)µ0(x),
we can rewrite equation (2.12b) as

∇yps − Ca−1µ0∇yφ0 = 0. (2.14)

Following the method outlined in [32] we integrate equation (2.14) over a cylinder of height
2hλ where h≫ 1 centered about the interface and, after some algebra, obtain the Young–Laplace
equation relating the capillary pressure to the pressure drop across the interface:

n̂φ0
ps|φ0=1 − n̂φ0

ps|φ0=0 = n̂φ0
Ca−1µ0. (2.15)

Here n̂φ0
is a unit vector normal to the fluid fluid interface. Hence we can write

p0(x) = p
(0)
s (x) + φ0

(

p
(1)
s (x)− p

(0)
s (x)− Ca−1µ0(x)

)

, (2.16)

where p
(j)
s is the specific pressure in the j–th fluid and, using equation (2.15), we find p0 = p

(0)
s ,

i.e., p0 represents the specific pressure of phase 0.
In order to obtain a macroscopic theory which is valid for all saturation levels we will have to

solve equations (2.12) for all possible initial saturation values. In reality this can be achieved using
a discrete set of different saturation values and interpolating. It is also clear that the resulting
value µ0(S) is dependent not only on the initial saturation, but the initial conditions, φ̄. For now
we shall assume that we know φ̄ and, hence, µ0(S) can be determined and will revisit this point
in Section 4.
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(ii)O(ϵ0) problem
To proceed we collect terms of O(ϵ0) from the expansion of equation (2.9). First we consider the
expansion of equation (2.9a) and the correpsonding boundary condition (2.9g):

∂τ
−1φ1 + ∂τ0φ0 + u0 ·∇yφ0

−Pe−1 [∇y ·M0∇yµ1 +∇y ·M0∇xµ0 +∇y ·M1∇yµ0] = 0,
y ∈B, (2.17a)

n̂ ·M1∇yµ0 + n̂ ·M0∇yµ1 + n̂ ·M0∇xµ0 = 0, y ∈ ∂B. (2.17b)

Before we proceed we note that µ0 ∼ µ0(x) such that ∇yµ0 = 0 and the terms involving M1

in equations (2.17) vanish. We now check for solvability by integrating equations (2.17) over B

and applying the divergence theorem. Hence, by the Fredholm alternative, [9], for a solution to
equations (2.17a) to exist, we require

∫
B

(

∂τ
−1φ1 + ∂τ0φ0

)

dy= 0. (2.18)

This is an equation for the τ−1 dependence of φ1 if we denote the volume average over the unit
cell as ⟨·⟩=

∫
B

· dy and integrate in τ−1 between 0 and T−1 we obtain

⟨φ1(T−1, τ0, . . . )⟩ − ⟨φ1(0, τ0, . . . )⟩= T−1∂τ0⟨φ0(T−1, τ0, . . . )⟩ (2.19)

where we have taken T−1 ≫ 1 such that φ0 has been in steady state for a long time. In order that
φ1 does not grow linearly in time we require that ∂τ0φ0 = 0 and, hence, φ0 is independent of τ0
and φ1 is independent of τ−1. The result is a set of equations for u0, p1, φ1 and µ1:

u0 ·∇yφ0 − Pe−1 [∇y ·M0∇yµ1 +∇y ·M0∇xµ0] = 0, y ∈B, (2.20a)

∇y · σ0y −∇yp1 −∇xp0 − Ca−1 [φ0∇yµ1 + φ0∇xµ0] = φ0gê3, y ∈B, (2.20b)

∇y · u0 = 0, y ∈B, (2.20c)

with boundary conditions

u0 = 0, y ∈ ∂B, (2.20d)

n̂ ·M0∇yµ1 + n̂ ·M0∇xµ0 = 0, y ∈ ∂B, (2.20e)

the correction to the phase can be found using the following equation for φ1,

µ1 = λ−1f ′′(φ0)φ1 − λ
(

∇2
yφ1 +∇y ·∇xφ0 +∇x ·∇yφ0

)

, y ∈B, (2.20f )

n̂ · λ∇yφ1 + n̂ · λ∇xφ0 + h′′(φ0)φ1 = 0, y ∈ ∂B (2.20g)

and are u0, p1, µ1 and φ1 periodic with period 1.We note however, that we do not need to
explicitly calculate φ1 in order to obtain the averaged equations. Equations (2.20) are linear in
u0, p1, φ1 and µ1 and depend on x, y and S. Specifically µ0 is a function of saturation and, hence,
x, p0 is a function of x only and φ0 is a function of y and S. In order to find u0, p1, φ1 and µ1

we consider the effects of the pressure and saturation gradients in equations (2.20) separately. We
note that, as φ0 = S(x) + φ

(m)
0 (y) the terms of the form ∇x ·∇yφ0 = 0. We write the solution in

the form

u0 =
N
∑

k=1

κ
µ
k∂xk

µ0 + κ
p
k∂xk

p0 + κ
gg, µ1 =

N
∑

k=1

χµk∂xk
µ0 + χpk∂xk

p0 + χgg,

p1 =
N
∑

k=1

ωµ
k∂xk

µ0 + ωp
k∂xk

p0 + ωgg, φ1 =
N
∑

k=1

ψµ
k∂xk

µ0 + ψp
k∂xk

p0 + ψgg,

(2.21)
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where χjk, κj
k, ωj

k and ψj
k for j = {µ, p, g} are assumed periodic with period 1. The functions χµk ,

κ
µ
k , ωµ

k and ψµ
k satisfy the cell problem originating from ∇xµ0

κ
µ
k ·∇yφ0 − Pe−1 [

∇y ·M0∇yχ
µ
k +∇y ·M0êk

]

= 0, y ∈B, (2.22a)

∇y · σµk −∇yω
µ
k − Ca−1φ0∇yχ

µ
k =Ca−1φ0êk, ∇y · κµ

k = 0, y ∈B, (2.22b)

κ
µ
k = 0, n̂ ·M0∇yχ

µ
k + n̂ ·M0êk = 0, y ∈ ∂B, (2.22c)

χµk = λ−1f ′′(φ0)ψ
µ
k − λ∇2

yψ
µ
k , y ∈B, (2.22d)

n̂ · λ∇yψ
µ
k =−h′′(φ0)ψ

µ
k , y ∈ ∂B (2.22e)

where σµk = η
[

(∇yκ
µ
k ) + (∇yκ

µ
k )

T
]

. The functions χpk, κp
k, ωp

k and ψp
k satisfy the cell problem

originating from ∇xp0

κ
p
k ·∇yφ0 − Pe−1

∇y ·M0∇yχ
p
k = 0, y ∈B, (2.23a)

∇y · σpk −∇yω
p
k − Ca−1φ0∇yχ

p
k = êk, ∇y · κp

k = 0, y ∈B, (2.23b)

κ
p
k = 0, n̂ ·M0∇yχ

p
k = 0, y ∈ ∂B, (2.23c)

χpk = λ−1f ′′(φ0)ψ
p
k − λ∇2

yψ
p
k, y ∈B, (2.23d)

n̂ · λ∇yψ
p
k =−h′′(φ0)ψ

p
k, y ∈ ∂B (2.23e)

where σpk = η
[

(∇yκ
p
k) + (∇yκ

p
k)

T
]

. The remaining functions χg , κg , ωg and ψg satisfy the cell
problem originating from g:

κ
g ·∇yφ0 − Pe−1

∇y ·M0∇yχ
g = 0, y ∈B, (2.24a)

∇y · σg −∇yω
g − Ca−1φ0∇yχ

g = φ0ê3, ∇y · κg = 0, y ∈B, (2.24b)

κ
g = 0, n̂ ·M0∇yχ

g = 0, y ∈ ∂B, (2.24c)

χg = λ−1f ′′(φ0)ψ
g − λ∇2

yψ
g, y ∈B, (2.24d)

n̂ · λ∇yψ
g =−h′′(φ0)ψ

g, y ∈ ∂B (2.24e)

where σg = η
[

(∇yκ
g) + (∇yκ

g)T
]

.

(iii)O(ϵ1) problem
We now expand the phase equation and the incompressibility condition to O(ϵ) and use the
results of the previous expansions to write

∂τ
−1φ2 + ∂τ0φ1 + ∂τ1φ0 + u1 ·∇yφ0 + u0 ·∇yφ1 + u0 ·∇xφ0

−Pe−1 [∇y ·M0(∇yµ2 +∇xµ1) +∇y ·M1(∇yµ1 +∇xµ0)

+∇x ·M0(∇yµ1 +∇xµ0) +∇x ·M1∇yµ0 +∇y ·M2∇yµ0] = 0,

y ∈B, (2.25a)

∇y · u1 +∇x · u0 = 0, y ∈B, (2.25b)

with the relevant boundary conditions

u1 = 0, y ∈ ∂B, (2.25c)

n̂ ·M0 (∇yµ2 +∇xµ1) + n̂ ·M1 (∇xµ0 +∇yµ1) + n̂ ·M2∇yµ0 = 0, y ∈ ∂B, (2.25d)

where φ2 and µ2 are periodic with period 1. As in the O(ϵ0) case the final terms in equation (2.25a)
which contain multiples of ∇yµ0 vanish as µ0 ∼ µ0(x). Integrating equation (2.25a), applying the
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divergence theorem, and using equations (2.25b), (2.25c), (2.25d) with equations (2.20c) and (2.20d)
we find by the Fredholm alternative, [9], that

∫
B

[

∂τ
−1φ2 + ∂τ0φ1 + ∂τ1φ0 +∇x · (u0φ0)− Pe−1

∇x ·M0 (∇yµ1 +∇xµ0)
]

dy= 0.

(2.26)
Before continuing, we need to consider the time dependence of equation (2.26). Integrating in τ−1

as before, using the notation ⟨·⟩=
∫
B

· dy and assuming T−1 ≫ 1 is large enough that φ0 has been
in steady state a long time allows us to write

⟨φ2(T−1)⟩ − ⟨φ2(0)⟩
+T−1

{

∂τ0⟨φ1⟩+ ∂τ1⟨φ0⟩+ ⟨∇x · (u0φ0)− Pe−1
∇x ·M0 (∇yµ1 +∇xµ0)⟩

}

= 0.
(2.27)

In order for φ to be conserved we require that φ2 does not grow linearly with T−1. Hence, the total
fluid volume is conserved. Therefore, for a solution to exist, we require that the terms in the curly
brackets are zero. Repeating the process and, after some algebra, integrating over τ0 we obtain

||B|| ∂S
∂τ1

−∇x · [a(S)K(S)∇xS − b(S)∇xp0 − bg(S)ê3g] = 0. (2.28)

Similarly we integrate equation (2.25b) over B and, using the divergence theorem, obtain

∇x ·
[

a(S)K̄(S)∇xS − b̄(S)∇xp0 − b̄g(S)ê3g
]

= 0, (2.29)

where the saturation dependent parameters in equation (2.28) are

a(S) =−δµ0

δS
, K(S) =

∫
B

(

φ0κ
µ
k ⊗ êk

)

dy +O(λ),

b(S) =

∫
B

(

φ0κ
p
k ⊗ êk

)

dy +O(λ), bg(S) =

∫
B

(

φ0κ
g ⊗ ê3

)

dy +O(λ).
(2.30)

Here we have used the method of matched asymptotics, [42], and taken the limit λ→ 0. Using
results obtained in [34] we find that, as M0 is only non-zero in a region of width λ,

∫
B

M0 dy∼
λ→ 0. The parameters in equation (2.29) are

K̄(S) =

∫
B

κ
µ
k ⊗ êk dy, b̄(S) =

∫
B

κ
p
k ⊗ êk dy, b̄g(S) =

∫
B

κ
g ⊗ ê3 dy. (2.31)

Equations (2.28) and (2.29), with (2.30) and (2.31), form a pair of coupled equations for the
macroscopic saturation and pressure. These are parametrized by the cell problems, equations
(2.22), (2.23) and (2.24), which must be solved for a range of saturation.

We note that if φ0 = 1 everywhere, corresponding to full saturation, then b(S) = b̄(S) is the
hydraulic conductivity of phase 1 and equations (2.28) and (2.29) become degenerate. Hence, we
obtain Darcy’s law for single phase flow. Similarly if φ0 = 0 everywhere then b(S) = 0 and b̄(S)

is the hydraulic conductivity of phase 0. Again, we obtain Darcy’s law for single phase flow. By
applying the assumptions used in deriving Richards’ equation, i.e.,that the pressure of phase 0 is
constant in Ω we can write

||B|| ∂S
∂τ1

−∇x · {a(S)K(S)∇xS + bg(S)ê3g}= 0. (2.32)

Equation (2.32) is the saturation form of Richards’ equation which is valid assuming K̄(S)≪ b̄(S)

and b̄g(S)≪ b̄(S) such that equation (2.29) is approximately satisfied for constant pressure. We
note that we could also have derived the mixed form of Richards’ equation simply by leaving
equations (2.28) and (2.29) in terms of µ0. The functions φ0, κµ

k , χµk and δµ0
δS must be found

for all saturation values. In reality it is enough to compute them for a subset of values and
interpolate between them. The function µ0 is the scaled capillary pressure which is a function
of geometry, contact angle and is history dependent. We investigate these effects using two and
three dimensional examples in Section 4.
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3. Analysis of homogenized equations
(a) High and low saturation limit
Before we study the numerical solution of equations (2.12) for arbitrary saturation we first
consider the limits of high and low saturation. Equations (2.28) and (2.29) are valid across the
whole range of saturation values. Physically the high and low saturation limits correspond to the
case where either the water or the air collects in the sampled geometry to form bubbles which are
attached to the soil aggregate surface through capillary pressure.

These bubble solutions are found by considering a single droplet of fluid attached to the porous
structure. These droplets are assumed to be sufficiently small that the surface to which they are
attached may be considered planar, i.e., the radius of curvature of the droplet is much large than
the radius of curvature of the porous structure. We start by following the method in presented
in [34] and considering a steady state radially symmetric solution to equations (2.11d), for µ0 =C

and C is a constant, in the absence of the porous structure. The solution is then patched onto the
porous structure such that the contact angle which the droplet makes with the surface is correct
and, hence, equations (2.12) are solved. Rewriting equation (2.11d) in radial coordinates we obtain

λ2
{

∂2φ

∂r2
+

N − 1
r

∂φ
∂r

}

− f ′(φ) = λC, (3.1)

where N is the number of dimensions considered, i.e., N = 2 for 2D or N = 3 for 3D. We consider
the case of a bubble of dimensionless radius rb, where λ≪ rb, which is defined by the saturation.
We solve equation (3.1) using the method of matched asymptotics [42]. We define two outer
regions, r < rb and r > rb and an inner region r∼ rb. In order to obtain the full solution we are
required to solve equation (3.1) in each region and match the solutions. However, as we are only
interested in obtaining the value of the constant C in terms of radius, it is enough to consider only
the leading order solution and the first order correction in the inner region.

We denote the solutions in the outer regions φ(o−) for r < rb and φ(o+) for r > rb. The solution
in the inner region is denoted φ(i). Neglecting terms O(λ) we find f ′(φ(o−)) = f ′(φ(o+)) = 0. For
the inner region we rescale ρ= λ−1(r − rb) to obtain

∂2φ(i)

∂ρ2
+
λ(N − 1)
rb − λρ

∂φ(i)

∂ρ
− f ′(φ(i)) = λC, (3.2)

with the boundary conditions φ(i) → φ(o−) as ρ→−∞ and φ(i) → φ(o+) as ρ→∞. We expand
φ(i) = φ

(i)
0 + λφ

(i)
1 +O(λ2) and substitute into equation (3.2) to obtain the planar interface

solution at leading order, i.e., φ(i)0 satisfies

∂2φ
(i)
0

∂ρ2
− f ′(φ

(i)
0 ) = 0, (3.3)

with φ(i)0 → φ(o−) as ρ→−∞ and φ(i)0 → φ(o+) as ρ→∞. Solving for φ(i)0 we find

φ
(i)
0 =

1
2

[

1 + tanh

(

ρ√
2

)]

. (3.4)

Expanding to order λ we obtain

∂2φ
(i)
1

∂ρ2
− f ′′(φ

(i)
0 )φ

(i)
1 =C − (N − 1)

rb

∂φ
(i)
0

∂ρ
, (3.5)

with φ(i)1 → φ
(o±)
1 for ρ→±∞. Equation (3.5) is a linear equation of the form Lφ(i)1 = S. In order

that a solution exists we require that ⟨ψ, S⟩= 0 for ψ ∈ ker(L†), where the superscript † denotes

the adjoint. In this case L is self adjoint and its kernel is spanned by the function ∂φ
(i)
0

∂ρ . Therefore,
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after some algebra, we find

µ0 =

√
2(N − 1)
6rb

+O(λ2). (3.6)

The partial bubble solution, where the fluid droplet is attached to a planar surface with contact
angle θ, can be derived using simple geometric arguments. The droplet is assumed to be a partial
sphere of volume V = S||B|| for low saturation and V = (1− S)||B|| for saturation close to 1,
hence,

rb =

[

3V

2 + 3 sin θ − sin3 θ

]
1
3

. (3.7)

We will make use of the bubble solution as the limit of high and low saturation in Section 4.

(b) Comparison to existing models
We now compare our model to existing two fluid homogenized models which are, for example,
presented in (Chapter 5 in [3]). In these models the interface location is assumed to be known and
the interface width is zero. The fluid velocity at the interface is assumed to be continuous in the
directions tangential to the interface and zero in the direction normal to it. Finally these equations
are closed by assuming an unknown capillary pressure across the interface. These models can be
homogenized using standard methods presented in, for example, [9]. The resulting cell problems
can then be used to determine the macroscopic flow properties. In order to compare the equations
we have derived to these models we consider the limit of (2.22), (2.23) and (2.24), as λ→ 0.

We consider cell problem (2.22) in detail as the same procedure can be applied easily to cell
problem (2.23). Far from the interface M0 = 0 and equations (2.22) simplify to the Stokes problem

∇y · σµk −∇yω
µ
k = 0, ∇y · κµ

k = 0, y ∈B0, (3.8a)

∇y · σµk −∇yω
µ
k =Ca−1

êk, ∇y · κµ
k = 0, y ∈B1, (3.8b)

κ
µ
k = 0 y ∈ ∂B, (3.8c)

where B1 is the region in which φ0 = 1 and B0 is the region in which φ0 = 0. We note that at
this point χµk and ψµ

k are undefined. Equations (3.8) require a pair of boundary conditions at the
interface between B0 and B1. To determine these conditions we rescale space with the interface
thickness, ∇y = λ−1

∇z , to obtain

λ−1
κ
µ
k ·∇zφ0 − Pe−1

[

λ−2
∇z ·M0∇zχ

µ
k + λ−1

∇z ·M0êk

]

= 0, z ∈B, (3.9a)

∇y · σµk − λ−1
∇zω

µ
k − λ−1Ca−1φ0∇zχ

µ
k =Ca−1φ0êk, λ−1

∇z · κµ
k = 0, z ∈B, (3.9b)

κ
µ
k = 0, n̂λ−1 ·M0∇zχ

µ
k + n̂ ·M0êk = 0, z ∈ ∂B, (3.9c)

χµk = λ−1
(

f ′′(φ0)ψ
µ
k −∇2

zψ
µ
k

)

, z ∈B, (3.9d)

n̂ ·∇zψ
µ
k = g′′(φ0)ψ

µ
k , z ∈ ∂B. (3.9e)

We find a balance by scaling ωµ
k = λω̄µ

k and χµk = χ̄µkλ. In order to obtain the appropriate interface
conditions we integrate equation (3.9b) over a cylinder of volume V and height 2hλ, where h≫ 1,
centered about the interface. Applying the divergence theorem and taking the limit λ→ 0 we
obtain the condition

n̂φ0
·
[

σµk − Iωµ
k

]
∣

∣

φ0=1 − n̂φ0
·
[

σµk − Iωµ
k

]
∣

∣

φ0=0 = n̂φ0
χ̄µk , (3.10)

where we recall n̂φ0
is a unit vector normal to the fluid–fluid interface and I is the identity matrix.

Similarly we integrate equation (3.9a) over V to obtain∫
V
κ
µ
k ·∇zφ0 − Pe−1 [

∇z ·M0∇zχ̄
µ
k +∇z ·M0êk

]

dz = 0. (3.11)
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We denote the end facets of the cylinder S0 in the region φ0 = 0 and S1 in the region φ0 = 1

and the cylinder side surface ∆S. Applying the divergence theorem, using equation (3.9b) and
M0(1) =M0(0) = 0 gives us the condition∫

S1
n̂ · κµ

k dz − Pe−1
∫
∆S

n̂ ·
(

M0∇zχ̄
µ
k +M0êk

)

dz = 0, (3.12)

where we have used continuity of velocity to simplify the integrals. Finally, observing that
variation in χµk tangential to the boundary is small and may be neglected at this order we obtain
the boundary condition

n̂φ0
· κµ

k |φ0=1 = 0. (3.13)

Hence, if we define the fluid–fluid interface as ∂BI we obtain the cell problem in the limit λ→ 0

∇y · σµk −∇yω̄
µ
k = 0, ∇y · κµ

k = 0, y ∈B0, (3.14a)

∇y · σµk −∇yω̄
µ
k =Ca−1

êk, ∇y · κµ
k = 0, y ∈B1 (3.14b)

κ
µ
k = 0, y ∈ ∂B, (3.14c)

n̂φ0
·
[

σµk − Iω̄µ
k

]
∣

∣

φ0=1 − n̂φ0
·
[

σµk − Iω̄µ
k

]
∣

∣

φ0=0 = n̂φ0
χ̄µk , y ∈ ∂BI , (3.14d)

τ̂ q · κµ
k |φ0=0 = τ̂ q · κµ

k |φ0=1, y ∈ ∂BI (3.14e)

n̂φ0
· κµ

k |φ0=1 = 0, y ∈ ∂BI (3.14f )

where τ̂ q for q= {1, 2} is a unit vector tangent to the interface ∂BI . Similarly, we find that
κ
g =Caκµ

3 , ωg =Caωµ
3 , and χg =Caχµ3 and we obtain the cell problem for the pressure driven

velocity field

∇y · σpk −∇yω̄
p
k = êk, ∇y · κp

k = 0, y ∈B0, (3.15a)

∇y · σpk −∇yω̄
p
k = êk, ∇y · κp

k = 0, y ∈B1, (3.15b)

κ
p
k = 0, y ∈ ∂B, (3.15c)

n̂φ0
·
[

σpk − Iω̄p
k

]
∣

∣

φ0=1 − n̂φ0
·
[

σpk − Iω̄p
k

]
∣

∣

φ0=0 = n̂φ0
χ̄pk, y ∈ ∂BI , (3.15d)

τ̂ q · κp
k|φ0=0 = τ̂ q · κp

k|φ0=1, n̂φ0
· κp

k|φ0=1 = 0, y ∈ ∂BI (3.15e)

(3.15f )

which are the standard cell problems derived for a fixed interface (Chapter 5 in [3]). Hence, we
see that taking the limits with respect to λ and ϵ commute for a fixed interface location.

4. Example
In this section we solve the cell problems (2.12), (2.22) and (2.23) to obtain the macroscopic
parameters used in equations (2.28) and (2.29). As shown in section 3, in the limit λ→ 0, the
solution to the cell problem (2.24) is proportional to the solution to (2.22), hence we do not
consider the solution to this cell problem explicitly. We consider, as an example, the flow of air
and water in soil.

We first derive the capillary pressure for a simplified two dimensional example. The advantage
to studying a simplified two dimensional geometry is that it allows us to easily relate the
calculated properties of the capillary pressure to the geometrical features. However, in this case
we are only interested in the capillary pressure as the air and water phases can each easily
form a plug for a large range of saturation resulting in zero hydraulic conductivity. In order to
understand how contact angle affects the capillary pressure we do this for range of contact angles.
The air-water contact angle with soil has been measured to be approximately 90o [43]. Hence, we
consider contact angles of 70o, 90o and 110o as this range of angles provides a clear picture of how
the capillary pressure varies near 90◦. We then consider a simplified three dimensional geometry
with 90o contact angle and obtain the capillary pressure and hydraulic conductivities.
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(A) (B) (C) (D)

Figure 2. Figure showing interface position for increasing saturation, dark region is fluid 0 and light region is fluid 1. The
geometry shown is periodic in the x and y directions with a shaded region representing a soil particle in the center of the
cell. (A) shows 95% saturation, (B) 55% saturation, (C) 40% saturation and (D) 5 % saturation.
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Figure 3. Water release curve for 70o, 90o and 110o contact angle, showing the wetting and drying curves for the three
different contact angles. Each subplot shows three regions which are separated by the black dotted lines: R1 (the left
most region) and R3 (the right most region) in which the bubble solution is valid and R2 (the middle region) which exhibits
hysteresis and is strongly geometry dependent.

We note that the solution to the equations (2.12) is dependent on the initial condition.
Therefore, the interface location and the capillary pressure are history dependent. In order to
accommodate this we calculate the capillary pressure curves for increasing saturation. We start
from the water bubble solution and integrate equations (2.12) to steady state. The saturation is
then increased by weakly perturbing the solution and equations (2.12) are solved again using
the perturbed solution as the initial condition. By slowly increasing the saturation till the air
bubble solution is reached the whole capillary pressure curve can be calculated. The equations
are implemented in comsol multiphysics 4.3 using a combination of coefficient form PDEs and
CFD modules. The equations are solved using a direct PARDISO method on a single 16 core node
of the Iridis 4 supercomputing cluster at the University of Southampton. For the both the 2D and
the 3D case the total simulation time is less than 20 hours.

(a) 2D Soil
We derive water release curves, which show capillary pressure as a function of saturation, for
the geometry shown in Figure 2A for a range of different contact angles using the following
method. We start by considering an initial partial air bubble attached to the soil. The size of the
initial bubble is chosen to give 5% saturation. Equations (2.12) are solved to find the steady state
interface profile and, hence, value of µ0 corresponding to 5% saturation. The saturation is then
increased by 1% and the process is repeated until 95% saturation is reached. The drying curve
curve is captured by reversing the process and decreasing the saturation to 5%.
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Figure 4. Interface position for decreasing saturation and the corresponding water release curve. The geometry shown
is periodic in the x, y and z directions with a soil particle in the center of the cell. (A) shows 95% saturation, (B) 75%
saturation, (C) 55% saturation, (D) 35 % saturation and (E) 5 % saturation. The black dotted lines on the water release
curve (right hand image) show 5% and 95% saturation respectively. These correspond to the point at which the bubble
solution is valid, this point is discussed further in the main text.

The water release curve which results from this process is shown in Figure 3 for contact angles
of 70o, 90o and 110o. These curves are used to parametrize equations (2.28) and (2.29) through
the parameter (2.30) and are valid on a timescale much slower than τ−1. The bubble solution,
equation (3.6), is used for < 5% or > 95% saturation. The corresponding interface profiles as
calculated using equations (2.12) are shown for the 90o contact angle in Figure 2. It can be seen that
at high and low saturation the water release curve follows the 1/rb dependence that we would
expect for a partial bubble solution.

In the geometry dependent part of the water release curve there are several discontinuities,
shown with a dashed line. These jumps correspond to the saturation values at which the interface
changes topology. As an example we follow the drying curve for the 90o contact angle in figure 3.
At high saturation S > 0.75 the interface forms a half bubble on the surface of the porous structure,
see Figure 2A. As the saturation is decreased below S = 0.75 the volume of water contained in
the bubble becomes to large to fit in the pore and the topology of the solution changes to the
one shown in Figure 2B. This solution remains valid for 0.75>S > 0.43. For S < 0.43 the solution
topology changes again giving rise to the one shown in Figure 2C. This solution remains valid
until the air film becomes too thin and the solution collapses to the air bubble solution shown in
Figure 2D. In our simulations we have taken this point to be S = 0.95.

Increasing the contact angle away from normal incidence acts to increase the capillary pressure
whilst maintaining the same set of topological solutions. The overall shape of the water release
curve is unaffected by these changes.

(b) 3D Soil
For the three dimensional case the same algorithm is used as in the two dimensional case to
determine the water release curve. Once the steady state interface location has been derived the
cell problems given in equations (2.22) and (2.23) are solved to obtain the hydraulic conductivities.
We use η̃(0) = 20× 10−6 Pa s and η̃(1) = 10−3 Pa s corresponding to the viscosity of air and water
respectively. For simplicity we take Ca= Pe= 1 and θ= 90o.

The water release curve is calculated as in the 2D case. Starting from the bubble solution
at 95% saturation we find 5 topologically different solutions, these are shown in Figure 4. The
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Figure 5. Effective diffusivity as a function of saturation for wetting and drying curves. Note the function b̄(S) uses a
different scale to b(S), K(S) and K̄(S). The functions are calculated by solving equations (2.22) and (2.23) for 0.05<
S < 0.95 in steps of 0.01 and for S = 0 and S = 1. The values for 0<S < 0.95 and 0.95<S < 1 are calculated
through interpolation. The black dotted lines show S = 0.05 and S = 0.95.

corresponding water release curve is also shown in Figure 4 and the diffusivity curves, K(S),
b(S), K̄(S) and b̄(S) are shown in Figure 5.

As in the two dimensional case we see discontinuities in the water release curve where the
interface location jumps between topologically different solutions. Following the drying curve
we see that the bubble solution, Figure 4A is valid for a small range of saturation values S >

0.91 before the droplet spans the gap between adjacent soil particles. At this point the solution
topology changes to the one shown in Figure 4B which is valid for 0.91>S > 0.68. In contrast to
the two dimensional case an additional topological state is observed for 0.68>S > 0.53, shown in
figure 4C. This is observed when the air trapped between a pair particles expands so much that it
interacts with the air trapped between an adjacent pair of particles. As the saturation continues to
decrease the solution changes again to the one shown in 4D for 0.53>S > 0.05 before collapsing
to the bubble solution at low saturation S < 0.05.

The corresponding diffusivity curves, neglecting terms of order λ, are plotted in Figure 5 for
the wetting and drying cycle. The functions b(S), K(S) and K̄(S) are zero for S = 0 and increase
to give the saturated hydraulic conductivity of the φ= 1 phase at S = 1. The function b̄(S) moves
from the hydraulic conductivity of the φ= 0 phase at S = 0 to the hydraulic conductivity of the
φ= 1 phase at S = 1.

As with the water release curve the diffusivities are discontinuous corresponding to the
solution switching between topologically different solutions. We note that the diffusivities are
non-zero providing that there is a connected flow pathway for either phase. To illustrate this
we follow the drying curves for all 4 diffusivities. At full saturation S = 1 we obtain simply the
diffusivity of phase 1 in all directions and all 4 diffusivity values are identical. Decreasing the
saturation we observe the half bubble solution 4A and the diffusivity in the x direction begins
to differ from the solution in the y and z directions. Decreasing further we move through the
solution shown in Figure 4B and 4C with discontinuities visible in the diffusivity curves. These
are most visible in the K(S) and K̄(S) curves, however, they are present in all four curves. In
all four cases the diffusivity increases as the lower viscosity phase, phase 0, acts to lubricate
the flow of the higher viscosity phase, phase 1. At S = 0.53 the solution changes to the one
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shown in Figure 4C. At this point neither phase 0 nor phase 1 are connected in the x direction
and the diffusivity values all drop to zero in this direction. The corresponding values of b(S),
K̄(S) and K(S) decrease monotonically from this point to 0 at S = 0. The function b̄(S) increases
monotonically from this point to reach the phase 0 diffusivity at S = 0.

The value of b̄(S) is much larger than the other diffusivity curves and in the region 0.05<S <

0.95 will dominate the behavior of the flow. In the high and low saturation regimes this will not
be the case as a(S) grows rapidly will act to amplify the role of K(S) and K̄(S). Hence, in the
intermediate saturation region, the final equations (2.28) and (2.29) could be simplified to neglect
K̄(S) and b̄g(S) such that equation (2.32) becomes valid under the constant pressure assumption.

5. Discussion
In this paper we have used the method of homogenization to derive, for the first time, a set
of macroscopic equations for coupled saturation and pressure driven fluid flow based entirely
on the underlying geometry. The presence of multiple phases is described by the Cahn-Hilliard
equation and fluid flow is governed by Stokes equations. The final equations are parametrized
by the water release curve and four different diffusivity curves. These curves are captured by
solving a series of different cell problems over a range of different saturation values. We have
shown that these cell problems, and the resulting macroscopic equations, reduce to standard,
simplified homogenizaiton models where the fluid–fluid interface is assumed to be known.

We have used several key assumptions in developing our model. The first is that the porous
medium may be considered as a periodic structure. This approximation may be valid for
man-made porous structures. However, for natural ones, such as soil, this is clearly only an
approximation with the structure being quasi–periodic at best. This assumption has been tested
for the case of two–fluid flow in imaged soil geometries [23], for the case in which the air–
water interface is obtained directly via imaging. In this case the cell problems were solved on
geometries of increasing size and the hydraulic properties were seen to converge. It is expected
that the same will apply in this case and, hence, quasi-periodicity is enough for the model to
remain valid. Secondly, based on the scaling used in equations (2.9) we require that the capillary
forces dominate flow such that there is a separation in timescales between the movement of
the fluid–fluid interface and the fluid velocity. This assumption is valid for sufficiently small
pores as the fluid velocity shrinks with pore radius whilst the capillary pressure grows. Thirdly,
we have modeled the interface between the two fluids using the Cahn-Hilliard equation in
which the interface width is assumed non-zero. We have shown that, as the interface width
tends to zero, the cell problems derived in section (a) converge to those traditionally used for
two fluid flow (Chapter 5 in [3]), [22]. For this approximation to be valid we have implicitly
assumed that the interface width used in the numerical calculations is significantly less than
the smallest geometrical feature observed. This assumption neglects the effects of small scale
surface roughness which could induce contact angle hysteresis. These effects could, in principle,
be included through an effective contact angle dependent on the small scale surface geometry.

Using these assumptions we have been able to capture the main features of two fluid flow
and, for a given periodic geometry and predict the water release and diffusivity curves of the two
fluids. There are three distinct regions observed in these curves, the low and high concentration
regimes, in which we find an approximate analytic solution for the water release curve, and
an intermediate region, in which the water release curve becomes geometry dependent. In this
intermediate region the water release curve is discontinuous due to the topologically different
solutions obtained at different saturation. Even in simple cases such as those considered in Section
4 the simulations we have done show that the macroscopic features are strongly related to the
geometry studied.

The resulting complexity and discontinuities in both the water release curve and the diffusivity
requires some attention. The solutions obtained in Section 4 are based around a chosen initial
condition. However, it is clear that, even for the two dimensional case, the solutions pictured are
not the only possible ones. A different initial condition would have resulted in a different solution
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structure. For example, the solution shown in Figure 2 would be equally valid if the images were
simply rotated by 90◦. Similarly the solutions pictured for the three dimensional case, see Figure
4, are equally valid if the solution is rotated by 90◦ about any of the three coordinate axis. Hence,
in general, we expect that the calculated solution will be a combination of topologically different
states and that the observed properties of the two fluids will be an average of all possible states.

The water release and diffusivity curves obtained for the sample geometries exhibit hysteresis.
This hysteresis is entirely due to the non-linear behavior of the fluid–fluid interface, i.e., for a given
saturation there are multiple stationary solutions. For increasing saturation a different solution is
obtained to decreasing saturation. In principle other sources of hysteresis such as contact angle
hysteresis could be included in the model. However, excluding these does not prevent the model
from capturing the main observable effects of the two fluid–fluid interaction in a porous geometry.

Finally we note that the ability to directly predict the water release curves directly from a
porous geometry, for example soil, enables a much more precise set of macroscopic equations to
be derived without the need for time consuming measurements. Whilst we have demonstrated
this method in using parameters appropriate to the flow of air and water in soil, it is applicable
to a variety of two fluid systems. In the context of soil, this method, combined with image based
modeling, can be used as a tool to study the effects of different microscopic soil properties on
the macroscopic behavior. This in turn will directly feed back into how soil structure may be
optimized in order to maximize flow and transport properties.
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