Characterisation of the oxide film on the taper interface from retrieved large diameter metal on polymer modular total hip replacements

P. Zeng, W.M. Rainforth, R.B. Cook

Department of Materials Science and Engineering, University of Sheffield, UK
National Centre for Advanced Tribology at Southampton, University of Southampton, UK

ABSTRACT

Many metal joint failures have been associated with adverse local tissue reactions due to the response of the body to wear debris and corrosion products, released from the bearing surfaces or the taper interfaces. The oxide film on the CoCrMo plays an important role in the electrochemical behaviour, however, there is a lack of quantitative data on the structure and distribution of oxides following in vivo operation. In the present study, detailed analysis of the surface layer on the taper interfaces is provided. Two retrieved taper interfaces were analysed. Site-specific FIB/TEM cross-sections show evidence of the oxide film and the carbonaceous layer. High resolution TEM results show the oxide film has porous texture and EELS confirmed it is chromium oxide.

1. Introduction

Metal debris and ions released from cobalt chromium molybdenum alloys have become a subject of interest due to the higher than expected failure rate of metal on metal (MoM) hip replacements which use these alloys [1,2]. The Medicines and Healthcare Products Regulatory Agency (UK) and the Food and Drug Administration (US) issued alerts for all MoM hip replacement in 2010 and 2011, respectively, with concerns about the adverse local tissue reactions (ALTR) from the bearing surfaces. Hart et al. [15] studied 53 large head taper debris may be more biologically active than that derived from the taper interface. The oxide film on the CoCrMo plays an important role in the corrosion resistance of CoCrMo alloy [21–28]. Also, a tribo-layer due to tribochemical reactions has been widely observed in MoM prostheses by several authors [25–28]. However, there is a lack of quantitative data about the structure of these layers. In the present study, detailed analysis of near surface layers on the taper interfaces is provided using advance electron microscopies, such as focused ion beam (FIB), high resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS).

2. Material and methods

2.1. Retrieved implants

The two retrieved femoral heads were a 40 mm (Case 1) and a 44 mm (Case 2) diameter zero offset Low Friction Ion Treatment
(LFIT™) CoCrMo anatomic heads which were both retrieved after 4 years in vivo. The bearing was a MoP articulation against a zero degree X3® polyethylene liner in a Trident® HA (hydroxyapatite) coated acetabular shell made of Ti6Al4V ELI (Extra Low Interstitial). The stem was an Accolade® Femoral stem, made of a β-Titanium alloy (TMZF: titanium, molybdenum, zirconium and iron) [13].

In both Cases the stem and acetabular shell were left in vivo as they were considered well fixed, with no malposition or evidence of macroscopic damage during revision. Ethical approval was granted by the National Research Ethics Service Committee South Central-Southampton A. The samples were sterilised and stored separately in 10% buffered formalin.

2.2. Surface and cross-section characterisation

Surface morphologies of taper interfaces were initially characterised by scanning electron microscopy (SEM), using InspectF (FEI, the Netherlands) operating at 15 kV and Nova (FEI, the Netherlands) operating at 5 kV. Case 1 was initially sectioned using an electrical discharge machine cut, followed by a more accurate cut using an IsoMet precision cutter (Buehler, UK) with a SiC saw and water cooling. Case 2 was sectioned only by IsoMet.

Site-specific TEM cross-sections of taper interfaces were prepared using a Quanta 200D FIB-SEM (FEI, The Netherlands). For Case 2, a gold coating was sputtered on the taper interfaces prior
to FIB milling to label the original surface. For both Case 1 and Case 2, a carbon layer was deposited on top of the area of interest before Ga\(^{+}\) milling to protect the worn surface layer from exposure to the Ga\(^{+}\) beam.

Various TEMs were used to examine site-specific TEM cross-sections of taper interfaces, including Tecnai 20 (FEI, the Netherlands) operating at 200 kV, Jeol 3010 (JEOL, Japan) operating at 300 kV and Jeol 2010F (JOEL, Japan) operating at 200 kV. Electron energy loss spectroscopy (EELS, Gatan GIF, USA) equipped on the Jeol 2010F was employed to analyse the cross-section samples. EELS measurements were made in conventional TEM diffraction mode (image coupling to the spectrometer). For each area, C K, N K, Ca L\(_{3,2}\), O K, Cr L\(_{3,2}\) and Co L\(_{3,2}\) edges and associated low loss spectra were collected.

3. Results:

3.1. Plan view studies of the taper interfaces microstructure of Case 1 and Case 2

Fig. 1a is a SEM plan view of the CoCrMo taper surface of Case 1. From the distal (open) end of the surface to the proximal (central head) end (left to right) (as shown in Fig. 1g), five different areas

![Image of SEM plan view](image_url)

Fig. 2. (a) SEM plan-view of the CoCrMo taper interface from Case 2 (left to right: distal end of the taper to the proximal taper trunnion). Five different areas are classified due to various microstructures as: Area 1 (b), Area 2 (c), Area 3 (d), Area 4 (e) and Area 5 (f). Arrows in Fig. 2 b, c and f indicate where site-specific FIB TEM cross-section were taken. Note Fig. 2b–f are taken perpendicular to Fig. 2a.
can be identified, labelled Areas 1–5. Of these regions, Areas 2–4 are where the taper and trunnion were overlapping. Magnified SEM images of Areas 1–5 are shown in Fig. 1b–f, respectively. Area 1 (Fig. 1b) is the distal end of the taper and shows original machining marks. Area 2 (Fig. 1c), which was about 6 mm wide, shows similar machining marks to those observed in area 1, however, there was evidence of some smoothing of the machining marks and microstructural features could be seen through etching of the grain and or phase boundaries. Area 3 (Fig. 1d), about 3 mm wide, exhibited denatured protein piling up on the surface, which obscured the underlying material. Area 4, which about 18 mm wide, was the largest area of the taper-trunnion overlap. This area exhibited evidence of extensive plastic deformation in the surface (Fig. 1a), but when viewed at higher magnification, Fig. 1e, there was evidence of pitting within the adzed texture of the surface, with all evidence of the original machining marks lost. Area 5, the proximal end of the taper trunnion, exhibited some evidence of the original machining marks, but otherwise a smooth surface with some evidence of fine scale corrosion (Fig. 1f).

Case 2 provided similar observations to Case 1 (Fig. 2). As with Case 1, five different regions could be classified as Areas 1–5, from the distal end of the taper to the proximal taper trunnion (left to right). Area 1 (Fig. 2b), the distal end of the taper, exhibited the original machining marks. Area 2 (Fig. 2c) was similar to Area 1, except the high points had been smoothed presumably through overlapping with the counterface. Area 3 (Fig. 2d) exhibited extensive pile up of denatured protein which obscured the metal subsurface. Area 4 (Fig. 2e) also showed extensive denatured protein, but also evidence of wear debris was observed. The wear debris (e.g. in the lower right of Fig. 2e) comprised particles that had a sheet like appearance, typically 10–30 μm in diameter. Area 5 (Fig. 2f) exhibited the original machining grooves, but with wear debris randomly distributed across the surface. Interestingly, areas 1, 2, 3 and 5 of Case 1 show similar surface microstructures to Areas 1, 2, 3 and 5 of Case 2, except more surface debris is observed in Areas of Case 2. In contrast, Area 4 looked quite different in Cases 1 and 2.

3.2. Cross-sectional studies of the taper interfaces

A number of different wear/corrosion processes were observed from SEM images, but it is difficult to fully understand the
mechanisms from plan view SEM images alone. Therefore, site-specific TEM cross-sections were taken from Areas 1, 2 and 5 for both Case 1 and Case 2. Arrows in Fig. 1b, c and f and Fig. 2b, c and f, indicate where FIB TEM cross-sections were taken.

3.2.1. Case 1

Fig. 3 is a bright field TEM montage taken from a FIB cross-section from Area 1 of Case 1. The sample was removed in the region indicated in Fig. 1b, i.e. parallel to the original machining marks. A nanocrystalline structure was observed under the surface, with the grain size of the order of 50 nm. The inset diffraction pattern indicates that the nanocrystalline region exhibited a strong crystallographic texture. The nanocrystalline layer extended to about 5 μm below the surface. Beneath the nanocrystalline layer the structure was a mixture of the face centred cubic (FCC) CoCrMo with plates of ε-martensite, which is the classical structure of CoCrMo alloys after low strain deformation.

A similar nanocrystalline layer was observed in the longitudinal cross-sections of Areas 2 and 5 from Case 1 (Fig. 4). However, the thickness of the nanocrystalline layer was smaller in those regions, being ~1 μm in Area 2 and ~2 μm in Area 5. The sizes of the substructure in the nanocrystalline region also varied, being ~100 nm in Area 2 and ~30 nm in Area 5.

![Image](image_url)
In some cases the nanocrystalline region extended up to the surface, but in most cases, the outer surface had a different structure. Fig. 4 details the surface region of Areas 1, 2 and 5 of Case 1. Fig. 4a is from Area 1 of Case 1. Two layers can be seen on the surface, namely an outer layer that appeared homogenous and exhibited uniform contrast, but with varying thickness, and beneath this a ~200 nm thick porous layer. EELS results, which will be presented later, suggest that the outer layer was a carbonaceous layer, while the porous inner layer was an oxide film. Fig. 4b is a HRTEM image of the interface between the oxide film and the nanocrystalline substrate, which shows that the oxide layer was amorphous.

Fig. 4c shows the near surface zone in Area 2 of Case 1. Again, an outer carbonaceous layer is present, followed by an inner oxide film, although in this case it was only ~100 nm thick. The oxide layer was attached directly to the nanocrystalline layer. Fig. 4d is HRTEM image of the nanocrystalline layer.

In Area 5 of Case 1, the surface layers could not be observed in conventional bright field images, with Fig. 4e just showing the nanocrystalline layer. However, HRTEM image, Fig. 4f, indicated that a thin, ~20 nm, surface layer existed.

Fig. 5a compares normalised EEL spectra from the carbonaceous layer, oxide film and substrate of Area 1 of Case 1. In addition, a standard carbon K-edge for amorphous carbon is provided in Fig. 5b. The C K-edge was only observed in the outer carbonaceous layer and was not found in the adjacent oxide film or substrate (spectrum is not shown here). The carbon K-edge observed here is very similar in fine structure to the standard amorphous carbon spectrum. This is also consistent with the high resolution imaging of this region.

Fig. 5 also shows EEL spectra taken from the oxide film. The O K-edge and Cr L_{3,2}-edge are clearly present, but no trace of Co L_{3,2}-edge was observed, suggesting the oxide film is chromium oxide. Not surprisingly, strong peaks of Cr L_{3,2} and Co L_{3,2} are seen in the substrate, with fine structure in the Cr L_{3,2}-edge similar in the substrate and oxide.

Fig. 6 compares normalised EEL spectra from carbonaceous layer and oxide film of Area 2 of Case 1. In the oxide film, clear O K- and Cr L_{3,2}-edges can be seen with small C K-edge (which might be the contamination), confirming that the oxide film is chromium oxide. In the carbonaceous layer, a strong C K-edge was observed, but interestingly, there were also small peaks of Ca L_{3,2}-edge and N K-edge.

As Fig. 4e shows, no obvious surface layer can be seen in Area 5 of Case 1, therefore, random point analysis was performed on the near surface zone close to the substrate. Fig. 7 compares
normalised EEL spectra from four points in the near surface zone close the substrate, as indicated in Fig. 4e. Point 1 shows clear C K-edge, O K-edge and Cr L$_{3,2}$-edge, together with weak Co L$_{3,2}$-edge, suggesting there is a surface layer comprising a mixture of carbonaceous material and chromium oxide. Point 2 is similar to point 1. Points 3 appears to be just chromium oxide, with no carbon present. Point 4 only shows Cr L$_{3,2}$ and Co L$_{3,2}$ peaks suggesting the spectrum came from the substrate.

3.2.2. Case 2

Bright field TEM images from FIB cross-sections of Areas 1, 2 and 5 of Case 2 are shown in Fig. 8. All the samples were taken in a longitudinal direction along the machining lines, as indicated in Fig. 2b, c and f. Fig. 8a and b are cross-sections of Area 1 of Case 1. A nanocrystalline layer of about 2 μm thick, with a crystallite size was ~50 nm, was observed under the surface (Fig. 8a). In the near surface zone, two layers were observed between the metal surface and sputtered gold coating that acted as a label for the original outer surface (Fig. 8b). This is similar to the observation in Areas 1 of Case 1. The thickness of the carbonaceous layer was about 80 nm with oxide film about 40 nm. Again, the carbonaceous layer appeared uniform and amorphous, while the oxide layer appeared both amorphous and porous. However, in Area 2 of Case 2, only a thick layer, which is later confirmed to be carbonaceous layer by EELS (Fig. 10), was observed (Fig. 8c). HRTEM image (Fig. 8d) reveals a very thin layer, less than 10 nm, between the carbonaceous layer and the substrate. This layer was later confirmed to be oxide film by EELS (Fig. 10). Fig. 8e shows an area between the metal surface and the gold label for Area 5 of Case 2. The region of bright contrast in this image is shown at high resolution in Fig. 8f, revealing an amorphous structure to this material.

Fig. 9 compares normalised experimental EEL spectra from the carbonaceous layers and oxide films from Area 1 of Case 1. It is interesting to note that in the carbonaceous layer, the majority of the C K-edges have a π* pre-peak (see Fig. 9 for such an example of from the carbonaceous layer 2), however, some of C K-edges do not exhibit the π* pre peak (for example, the carbonaceous layer...
Fig. 10 compares normalise EEL spectra from carbonaceous layer and oxide film from Area 2 of Case 2. It is worth noting that in the carbonaceous layer, a weak N K-edge is seen as well as a strong C K-edge, which might be caused by contamination.

Fig. 11 compares normalised EEL spectra from three points in the region of bright contrast in Fig. 8e, taken from Area 5 of Case 2. A strong C K-edge and weak O K- and Cr L3,2-edges were observed at all three points, suggesting a mixture of carbonaceous and oxide material with carbonaceous material the most dominant.

4. Discussion

4.1. Surface morphologies of the taper interfaces

Goldberg and Gilbert [29] analysed 231 modular hip implants to investigate corrosion and fretting of modular taper surfaces. The study presented a scoring range from 1 to 4 (mild to severe) to describe the severity of corrosion and fretting on the taper...
interfaces. According to this scale, Case 1 and Case 2 would have scored a 4.

Five different areas were classified in this study: 1) Area 1, the distal end of the taper showing original machining marks; 2) Area 2, showing similar machining marks compared with Area 1 which is also where the taper and the trunnion started overlapping, 3) Area 3, showing denatured protein piling up on the surface: 4) Area 4, dominated by heavy deformed materials; 5) Area 5, at the proximal end of the taper showing a highly polished region. Areas 1, 2, 3 and 5 of Case 1 and Case 2 show similar surface morphologies, however, different morphologies are seen in Area 4 of Case 1 and Case 2, which might be due to machine cutting damage to Case 1.

4.2. Subsurface changes of the taper interfaces

The visualisation of subsurface deformation is important if an understanding of balance between corrosion and wear process of retrieved taper surfaces are to be differentiated. Fig. 12 shows a schematic diagram of the subsurface changes on the taper interfaces. In the near surface zone, three layers were present, namely (from top to bottom): a carbonaceous layer, an oxide film and a nanocrystalline layer in the surface of the metal. The thickness of various layers is different from area to area, as summarised in Table 1. In Area 5, a tribo-layer of carbonaceous material mixed with chromium oxide was present, in contrast to the separate carbonaceous layer and oxide films seen elsewhere. The thickness of this layer was of the order of 20 nm and could only be observed in high resolution TEM, and not visible in conventional TEM (Fig. 4e and f and Fig. 8e and f). EELS results show C K-, O K- and Cr L3,2-edges in the tribo-layer, indicating this layer is carbonaceous material mixed with metal and oxide particles, a result in agreement with Wimmer et al. [30]. The results are also in agreement with Bryant et al. [28] who studied retrieved cemented MoM prostheses and demonstrated that films on the worn surface were a complex mixture of chromium oxide, protein and amorphous carbon.

The existence of a carbonaceous layer in Area 1 (where the taper and trunnion were not overlapping) of both Case 1 and Case 2 suggests that the layer is not the product of tribochanical reaction, but as a result of normal protein adsorption to the surface. EELS results indicated only a C K-edge in the carbonaceous layer in Area 1 of both Cases 1 and 2. The majority of the C K-edges had a strong π* pre-peak, which in the agreement with Liao et al. [27,31]. However, there were exceptions to this, such as the carbonaceous layer 1 in Area 1 of Case 2 (Fig. 9) which does not show the π* pre-peak. It is difficult to say that this π* pre-peak is a product of the wear process, however, it is commonly seen in amorphous carbon surface layers resulting from frictional surface contact [32], and is not present in carbon resulting from contamination, e.g. during sample preparation.

Interestingly, there was a significant increase in the thickness of the carbonaceous layer in Area 2 compared with Areas 1 and 5, for both Cases 1 and 2. Also, Ca L3,2-edges and N K-edge were observed in the carbonaceous layer in Area 2 of Case 1 and Case 2 in EELS (Figs. 6 and 9), suggesting tribochemical reactions between the carbonaceous layer and body fluid when the taper and trunnion were overlapping. Wimmer et al. believed that in vivo, tribochemical reactions between metal and surrounding synovial fluid result in the generation of this metallo-organic carbonaceous layer [30]. In addition, Wimmer et al. [30] also demonstrated that a tribofilm with embedded carbonaceous material can be generated by mechanically polishing the surfaces with bovine calf serum (BCS) as a lubricant. In our case, the carbonaceous layer only contained C, Ca or N, with no metal or metal oxide particles and therefore it was not formed through a mechanically mixing mechanism. The observation that the carbonaceous layer was thicker in Area 2 compared to Area 1 and that the layer contained Ca and N in Area 2 but not in Area 1 suggests that, although the formation mechanism was probably the same, there was local differences in pH and oxygen content leading to differences in the formation of this layer.

In Areas 1 and 2 of Cases 1 and 2, a porous oxide film was observed, as indicated in Fig. 4a and c and Fig. 8a and c. EELS results (Figs. 5, 6, 9, and 10) show only O K-edge and Cr L3,2-edges, suggesting that it is only chromium oxide. However, the oxide is amorphous with unknown stoichiometry, and does not correspond to Cr2O3, which has been assumed to be present by other researchers [28,30]. The thickness of this oxide film varies over small distances, being as thick as 100 nm in some Areas 1 and 2 of Case 1 (Fig. 4), but equally around half that value at ~50 nm, in Area 1 of Case 2 (Fig. 8) and as small as 10 nm in Area 2 of Case 2 (Fig. 8). Orthopaedic metals are artificially over-passivated [31] to build up a protective oxide film before implantation, which explains the thick oxide film observed in Area 1 of both Case 1 and Case 2. However, during service, the passive oxide film can be damaged by fretting wear, like in Area 2 of Case 2; or new passive film can be formed and serve as a barrier to further corrosion, such as Area 2 of Case 1. The extent of reformation depends on the local pH and the extent of oxygen depletion, which are not known. The passivation and repassivation of the oxide film explain the various thickness of the oxide film.

A layer of nanocrystalline material with a grain size of 10 nm have been widely observed in CoCrMo bearing surfaces by various authors [33–36] and has even been observed on the surface of an alumina femoral head [37]. Buscher et al. [34] examined the cross-section surface of retrieved low-carbon CoCrMo hip replacement, as well as pin-on-disc test. Fine granular crystals of ~50 nm in size were present in the outer ~1 μm of the surface. Pourzal et al. [35] studied a retrieved hip resurfacing and reported a nanocrystalline layer with a thickness of 250–400 nm and grain size of 25–40 nm. Rainforth et al. [36] examined both in-vivo and in-vitro MoM prostheses and found grain sizes of 35 ± 8 nm with some equiaxed grains but mainly elongated grains, but with no evidence of any preferred crystallographic orientation.

In the current work, the nanocrystalline layer at the surface of the taper will have been formed during the machining operation. The full role of this layer is not entirely clear [36], but it is believed to have a significant effect on the tribological and tribocorrosion performance of the surface. The depth of this layer in a non-overlap part of the taper extended to around 5 μm below the
surface. However, in other regions that had been overlapped, the depth was greatly reduced (1–4 μm). This strongly suggests that a significant amount of the surface layer had been removed by corrosion and wear, which will contribute to the metal ion and wear debris release. Moreover, the resultant structure that was left was different, with a different surface activity (see the microstructural gradation in Fig. 3).

5. Conclusions

(a) The taper interface varies along the length of the tapers. The original machining marks from the manufacture process were observed at the distal end of the taper. Distal to this region, evidence of mechanical damage was seen where the taper and trunnion were overlapping.

(b) Site-specific FIB/TEM cross-sections from those regions all show evidence of the oxide film, with thickest film on the original machining marks region at the distal end of the taper (~50 nm) and thinnest film on the highly polished region at the proximal end of the taper (few nm, mixed with carbonaceous material).

(c) An amorphous carbonaceous layer was observed in all regions as the outermost layer. The thickest carbonaceous film was seen in the region close to the distal end of the taper where the taper and the trunnion started overlapping. Evidence of tribochemical reaction between carbonaceous layer and protein was observed. EEL spectra from this film often exhibit a π* peak, which is constituent with TEM observations of carbonaceous films following tribological contact.

(d) An oxide film was observed below the carbonaceous film, on the surface of the metal. High resolution TEM results showed the oxide film had an amorphous and porous structure. EELS confirmed the film was chromium oxide, but the oxide was not crystalline Cr₂O₃ as often assumed in the literature. The thickness of the oxide layer varied considerably over small distances, reflecting changes resulting from the fretting contact.

(e) A nanocrystalline layer was observed at the outer surface of the metal in all areas examined. This was derived from the machining process during manufacture. The thickness of this layer was 5 μm in regions where contact had been minimal, but reduced to 1–4 μm in regions where there had been contacted. This indicated that material had been removed either by corrosion or wear, contributing to the metal ion and wear debris release.

References
