
Evaluation of the Performance of a Dengue Outbreak
Detection Tool for China
Honglong Zhang1., Zhongjie Li1., Shengjie Lai1, Archie C. A. Clements2, Liping Wang1, Wenwu Yin1,

Hang Zhou1, Hongjie Yu1, Wenbiao Hu3*, Weizhong Yang1*

1 Key Laboratory of Surveillance and Early-warning on infectious Disease, Division of Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing,

China, 2 Research School of Population Health, College of Medicine, Biology and Environment, The Australian National University, Canberra, Australia, 3 Infectious Disease

Epidemiology Unit, School of Population Health, University of Queensland, Brisbane, Australia

Abstract

An outbreak detection and response system, using time series moving percentile method based on historical data, in China
has been used for identifying dengue fever outbreaks since 2008. For dengue fever outbreaks reported from 2009 to 2012,
this system achieved a sensitivity of 100%, a specificity of 99.8% and a median time to detection of 3 days, which indicated
that the system was a useful decision tool for dengue fever control and risk-management programs in China.
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Introduction

Detecting infectious disease outbreaks quickly is crucial for

timely implementation of control measures, thereby minimizing

morbidity and mortality. To automatically identify aberrations in

disease incidence data at an early stage, some countries have

established infectious disease surveillance and outbreak detection

systems, such as the Early Aberration Reporting System (EARS) of

the US Centre for Disease Control and Prevention [1], the Real-

time Outbreak and Disease Surveillance (RODS) system of the

University of Pittsburgh [2], the Electronic Surveillance System for

the Early Notification of Community-Based Epidemics (ES-

SENCE) in the USA [3], and SurvNet@RKI in Germany [4].

Dengue fever (DF) is one of the world’s most important vector-

borne diseases, with cases reported from more than 100 countries

in Africa, America, Southeast Asia, the Western Pacific and

Europe. The World Health Organization estimates that DF affects

over 50 million people annually [5]. In 1978, DF re-emerged in

Guangdong province, China, after having disappeared from the

country for more than 30 years [6]. From 1978 to 2012 more than

650,000 cases of DF, and hundreds of deaths, were documented in

China. DF epidemics had spread from Guangdong, Hainan and

Guangxi provinces in the southern coastal regions to some

relatively northern regions including Fujian and Zhejiang prov-

inces [7]. It has been suggested that establishing an early outbreak

detection system is one of the prerequisites for adequate

preparedness and responses to DF epidemics [5], which can

enable better engagement of the community in prevention and

control activities, thereby reducing DF transmission and improv-

ing clinical outcomes.

To facilitate early detection of infectious disease outbreaks, the

Chinese Centre for Disease Control and Prevention (China CDC)

has developed the China Infectious Disease Automated-alert and

Response System (CIDARS), implemented since April 2008 [8].

CIDARS automatically conduct the aberration detection from the

reported data in the web-based Nationwide Notifiable Infectious

Diseases Reporting Information System (NIDRIS). This was

established in 2004 and is the largest direct infectious disease

reporting system in the world, covering all general hospitals in the

prefectures, and all hospitals in the counties and townships in

China [9]. CIDARS has been operating in China for more than

four years. This study aims to provide a preliminarily prospective

evaluation of the performance of CIDARS for DF outbreak

detection during the initial phase of real-world implementation

nationwide.

Methods

As a notifiable disease in China, DF are diagnosed by clinicians

according to the diagnostic criteria for DF enacted by the Chinese

Ministry of Health, which includes suspected cases, clinically

diagnosed cases and laboratory-confirmed cases. They are then

reported to NIDRIS.

In CIDARS, a time-series moving-percentile method (MPM)

was used to detect aberrations of DF occurrence at the county level

for the 31 provinces by comparing the reported cases in the
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current observation period to those of the corresponding historical

period for each county. Accounting for the day-of-week effect and

the stability of data, we used the most recent seven-day period as

the current observation period and the previous three years as the

historical period [1,10]. The number of cases in the current

observation period is the sum of reported cases within the recent

seven days. The corresponding historical period included, for each

of the previous three years, the same seven-day period, the two

preceding seven-day periods and the two following seven-day

periods, resulting in 15 historical seven-day data blocks covering

105 days. The 50th percentile of the 15 blocks of historical data

was set as the threshold value to trigger a signal in CIDARS. The

current observation period and historical data blocks were

dynamically moved forward day by day [8]. When the number

of reported cases in the current observation period reached the

defined threshold, CIDARS automatically generated a signal.

According to the operational proposal of CIDARS, action

should be taken in response to the signals, which included two

steps: (1) signal initial verification, and (2) signal field investigation.

The signal initial verification was carried out by epidemiologists in

local CDCs by reviewing the reported cases, conducting the rapid

assessment of information from other surveillance sources or

directly contacting the cases reporting agencies. If the signal

denoted one suspected outbreak after the initial verification, then a

field investigation was conducted to confirm whether an outbreak

was occurring, otherwise this signal would be determined as a

negative signal.

The nationwide reported outbreaks from 2009 to 2012 were

adopted as the reference standard to evaluate the performance of

outbreak detection by CIDARS. According to the national DF

surveillance proposal, the definition of a reported DF outbreak was

$3 cases occurring in a concentrated setting (e.g., community,

school or village) within 15 days [11]. All outbreaks defined using

this criteria should be reported to an information system in China

CDC by the public health staff of local CDC. The start and end

dates of an outbreak were defined as the dates when the first and

last cases of the outbreak was reported. When CIDARS generated

a signal during the period of outbreak occurrence, we considered

the outbreak to have been detected.

In this study, we investigated the spatial and temporal patterns

of reported DF cases and signals from January 1st, 2009 to

December 31st, 2012. Sensitivity, specificity and time to detection

(TTD) were employed to assess the performance of CIDARS for

early detection of DF outbreaks during the study period [12].

Sensitivity was defined as the number of outbreaks during which at

least one signal was triggered by CIDARS, divided by the total

number of reported outbreaks. Specificity was defined as the

number of non-outbreak days with no signal, divided by the total

number of non-outbreak days. TTD was defined as the interval

between the start of each outbreak and the first signal during the

outbreak. If the signal was triggered on the first day of an

outbreak, TTD was zero.

Results

Between 2009 and 2012, 1224 DF cases were reported in

China. The temporal pattern showed seasonal variation, with

86.8% (1,062) of cases being reported from the 31st week to the

49th week of each year, which corresponds to late summer and

autumn in China. The annual average incidence was 0.023 per

100,000 between 2009 and 2012, and the case numbers were

higher in 2009 and 2012 (Figure 1). A total of 147 signals for DF

outbreaks were generated in CIDARS, of which 91.8% (135)

occurred from the 32nd week to the 49th week between 2009 and

2012 (Figure 1), which was consistent with the DF case

occurrence. Twenty-six of China’s 31 provinces reported DF

cases and signals were generated in 11 provinces (Figure 2). Most

cases were reported in Guangdong (682, 55.72%) and Zhejiang

(228, 18.63%). Accordingly, most signals were generated in

Guangdong (121, 82.31%) and Zhejiang (7, 4.76%), respectively.

Overall, there were 30 outbreaks reported from 4 provinces

located in the south-eastern coastal regions, including 20 outbreaks

in Guangdong, 7 in Zhejiang, 2 in Guangxi and 1 in Fujian

(Figure 2), lasting 405 days and including 325 cases. CIDARS

successfully detected all the 30 outbreaks, with a sensitivity of

100% and a specificity of 99.8%. The median time to detection

(TTD) of all outbreaks was 3 days, with an interquartile range of 4

days (Table 1).

Discussion

Our study found that CIDARS successfully detected all the DF

outbreaks and had a high specificity and timeliness, by adopting a

simple and convenient algorithm to automatically generate the

early warning signals when aberrations of cases occurred.

In the field of outbreak detection system evaluation, as the true

outbreak is nearly impossible to obtain in the real world, the

Figure 1. The time distribution of dengue fever cases and signals between 2009 and 2012 in China.
doi:10.1371/journal.pone.0106144.g001
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reported outbreaks with high reporting quality are commonly

adopted as the reference standards to evaluate the system [4,13–

15]. In China, as DF is a notifiable and concerning disease, once

getting information on potential outbreaks reported from clinical

institutes, media, and community, etc, the public health staff of

local CDC immediately launches verification and investigation.

Then local CDC reports all the confirmed outbreaks to China

CDC according to the outbreak definition issued by Chinese

Ministry of Health. Therefore, we supposed the reported

outbreaks were the outbreak data source most approximating to

the true outbreaks situation, and adopted the reported outbreaks

as the reference standard for calculating the sensitivity, specificity

and timelines of outbreak detection. Certainly, in practice, it is

possible that an outbreak occurred but no cases were reported,

which lead to that outbreak would not be captured by CIDARS.

Therefore, we regard the quality of case reporting and outbreak

reporting as critical to evaluate the performance of CIDARS. By

using the reported cases and outbreaks during the 3 years of 2009–

2012 in this study, we found that CIDARS could detect all the

reported outbreaks during the study period, which were currently

regarded as 100% sensitivity of outbreak detection for CIDARS.

We admit that, as the number of reported outbreaks during study

period is limited, which may not represent the true situation of DF

outbreaks in China, more data over a longer time period should be

adopted to prospectively validate and evaluate the sensitivity of

CIDARS for DF in the future.

As for all early detection tools, the trigger threshold for a signal

should be set according to the practical requirements of outbreak

detection and response under local conditions. Taking account of

the high priority placed on control and prevention of DF in China,

with the aim to catch as many outbreaks as possible in the

preliminary phase of CIDARS operation, it was decided that the

CIDARS needed a relatively low threshold leading to a high

sensitivity of the algorithm. Following the advice of senior

epidemiologists and the CIDARS research group, the 50th

percentile (the median value) of historical data was defined as

the trigger threshold, which means that when the current disease

incidence level reached the median of corresponding historical

baseline incidence level, local public health should be vigilant.

Actually, this study was a prospective analysis of a real-world

system rather than a retrospective analysis testing different

theoretical thresholds. Future evaluation of CIDARS could make

use of more cases and outbreaks data collected over a longer

period to further assess the performance of CIDARS using

different thresholds, helping us optimize the trigger threshold by

ROC graph [16] and detection timeliness.

In this study, we found that the timeliness of outbreak detection

by CIDARS varied distinctly among outbreaks with similar size,

for example, both outbreak ID 9 and 27 have low total number of

cases for the entire outbreaks and low number of cases reported on

both the first and last days of outbreak, and TTD varied

significantly between them. The major cause is that the generation

of a signal by CIDARS was affected by many factors, including the

current disease incidence level, the spatiotemporal distribution of

reported cases, and the incidence level in historical baseline, which

may lead to the variation on the timeliness of outbreak detection of

CIDARS. We will consider further validating and improving the

algorithms of outbreak detection by taking into account various

level of dengue incidence.

In this study, all the dengue cases, including imported and local

DF cases, were used to detect DF outbreaks. However, for the no

local dengue transmission regions where only imported dengue

cases occurred, or with few or no indigenous cases, the signals

generated by CIDARS may only show the imported dengue

occurring, not the dengue fever outbreak in these regions. That

may be why the signals were generated in 11 provinces, while DF

outbreaks just occurred in 4 provinces which are local dengue

transmission regions. One limitation of CIDARS is that it is

difficult to predict DF outbreaks before cases are diagnosed and

reported, because this system is only based on numbers of notified

DF cases. However, it is possible to incorporate vector surveillance

data or data pertaining to environmental and social drivers of

disease risk in CIDARS using spatiotemporal models, which could

lead to a more rapid response than is possible with the current

Figure 2. The spatial distribution of dengue fever cases and signals between 2009 and 2012 in China.
doi:10.1371/journal.pone.0106144.g002
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system [17–19]. In the future, an early detection system based on

socio-environmental factors for DF should be developed and

integrated into CIDARS using rigorously evaluated modelling

methods and processes.

The findings of this study indicated that CIDARS had good

sensitivity, specificity and timeliness of DF outbreak detection, and

the system could act as a tool to assist early detection on outbreaks

for the local public health staff in China. CIDARS automatically

carried out abnormality detection on case occurrence data, and

reminded the local CDC to verify aberrations by distributing

signals to them. CIDARS assisted the local public health staff to

detect potential outbreaks early, and even confirm some outbreaks

which passive report did not detect. In future research, we will

evaluate the impact of CIDARS on the number and size of dengue

outbreaks with more long-term data, so as to show the significance

of CIDARS on recognition and response to DF outbreaks.
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