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Abstract

We evaluated a novel strategy to improve the performance of outbreak detection algorithms, namely setting the alerting
threshold separately in each region according to the disease incidence in that region. By using data on hand, foot and
mouth disease in Shandong province, China, we evaluated the impact of disease incidence on the performance of outbreak
detection algorithms (EARS-C1, C2 and C3). Compared to applying the same algorithm and threshold to the whole region,
setting the optimal threshold in each region according to the level of disease incidence (i.e., high, middle, and low)
enhanced sensitivity (C1: from 94.4% to 99.1%, C2: from 93.5% to 95.4%, C3: from 91.7% to 95.4%) and reduced the number
of alert signals (the percentage of reduction is C1:4.3%, C2:11.9%, C3:10.3%). Our findings illustrate a general method for
improving the accuracy of detection algorithms that is potentially applicable broadly to other diseases and regions.

Citation: Zhang H, Lai S, Wang L, Zhao D, Zhou D, et al. (2013) Improving the Performance of Outbreak Detection Algorithms by Classifying the Levels of Disease
Incidence. PLoS ONE 8(8): e71803. doi:10.1371/journal.pone.0071803

Editor: Daniel G. Bausch, Tulane School of Public Health and Tropical Medicine, United States of America

Received March 12, 2013; Accepted July 2, 2013; Published August 19, 2013

Copyright: � 2013 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the grants from Research and Promotion of Key Technology on Health Emergency Preparation and Dispositions
(201202006), the National Key Science and Technology Project on Infectious Disease Surveillance Technique Platform of China (2012ZX10004-201) and
Development of Early Warning Systems for Dengue Fever Based on Socio-ecological Factors (NHMRC APP1002608). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: lizj@chinacdc.cn (ZL); yangwz@chinacdc.cn (WY)

. These authors contributed equally to this work.

Introduction

Detecting infectious diseases outbreaks at an early stage is

crucial for timely implementation of control measures, which can

minimize morbidity and mortality. A considerable amount of

research has focused on developing statistical methods to identify

aberrations in disease incidence data accurately and quickly [1–4].

In current public health practice, aberrancy-detection algorithms,

including temporal (e.g., Exponentially Weighted Moving Average

and cumulative sum), spatial (e.g., Spatial Scan Statistic), and

spatio-temporal (e.g., Space-Time Scan Statistic) methods, can

contribute important information to support outbreak detection

and management [3–6]. Evaluations of surveillance systems have

demonstrated that many factors affect the accuracy of aberration

detection, including the mode of disease transmission, seasonal

patterns in disease incidence, the detection algorithm used, and

the alerting threshold of the algorithm [7,8]. Disease incidence can

vary greatly between regions under surveillance, but it is not

known to what extent this variation in incidence affects the

accuracy and timeliness of aberration detection if the same

algorithm with a constant alerting threshold is applied to all

regions.

Hand, foot and mouth disease (HFMD) is caused by serotypes of

enterovirus and, usually leads to mild symptoms, but can result in

serious complication or death [9–11]. In China, HFMD tends to

infect infants and children younger than 5 years old [12], with

more than one million cases reported and three hundred deaths

nationwide in 2009 [13]. Within China, Shandong province is one

of the most seriously affected regions with an annual incidence of

92.2 per 100,000 to 149.4 per 100,000 between 2009 and 2012.

Early detection of outbreaks and prompt diagnosis and treatment

of cases at high risk of severe disease are key principles in

minimizing the impact of HFMD [14]. In this study, we used data

from surveillance of HFMD in Shandong province to evaluate a

novel strategy to improve the accuracy and timeliness of outbreak

detection. More precisely, we examined whether setting the

optimal alerting threshold separately in each region according to

the disease incidence in that region would improve the accuracy

and timeliness of outbreak detection as compared to using a

constant alerting threshold across all regions.

Methods

In China, a probable HFMD case was defined as a patient with

papular or vesicular rash on hands, feet, mouth or buttocks, with

or without fever. A confirmed case was defined as a probable case

with laboratory evidence of enterovirus infection (by EV71, CA16,

or other enteroviruses) detected by reverse-transcriptase polymer-

ase chain reaction (RT-PCR), real-time RT-PCR, or by virus

isolation [15]. HFMD has been a notifiable infectious disease in

China since May 2008. Clinicians are required to report both

probable and confirmed HFMD cases through a web-based
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reporting system, the Nationwide Notifiable Infectious Diseases

Reporting Information System. Using this system, clinicians in all

health care institutes throughout the country can report cases of

notifiable infectious diseases via the Internet to a data center

located in the Chinese Center of Disease Control and Prevention

(China CDC). Cases of HFMD reported between January and

December 2009 in Shandong province of China were used in this

study.

We obtained the population of the 142 counties in Shandong

province in 2009 from Chinese State Statistics Bureau. The

counties were categorized into 3 groups on the basis of annual

HFMD incidence, low level: with the disease incidence rate

ranging from 7 to 149 per 100,000, middle level: with the

disease incidence rate ranging from 150 to 249 per 100,000,

high level: with the disease incidence rate ranging from 250 to 420

per 100,000. Following an examination of the distribution of

disease incidence by county, we selected these categories to reflect

natural groupings in the data.

We used the three Early Aberration Reporting System (EARS)

algorithms (C1, C2, and C3) developed by the US Center for

Disease Control and Prevention [3,16]. These algorithms require

few historical baseline data and are based on statistical process

control methods. These algorithms estimate the expected value on

any given day as the average of the observed values over 7

previous days. For the C1 algorithm, the baseline is the past 7 days

(ie, t-1 to t-7), while for the C2 and C3 algorithms, the baseline

incorporates a 2-day lag before the current day (ie, t-3 to t-9). The

C3 algorithm also maintains a 3-day running sum, and the

commonly used threshold for C1 and C2 is 2.0 [3,16]. All three

algorithms are described in detail elsewhere [3,16,17]. In our

study, acknowledging that the algorithm threshold could impact

outbreak detection performance, we tested 30 candidate threshold

values (from 0.1 to 3.0, interval is 0.1) for C1, C2, and C3, so as to

determine the optimal threshold for each algorithm when were

applied to data for each incidence category. All algorithms and

analyses were implemented with R software [18].

In China, the definition of reported HFMD outbreak was that

$10 cases occurring in the same gathering settings (e.g.,

kindergarten, school), or $5 cases occurring in the same village

or community within one week [19]. The HFMD outbreaks

reported in 2009 were assumed to be the only true outbreaks in the

data, as all of these outbreaks were verified through field

investigation by local public health departments [15]. We defined

the start and end of an outbreak as the first and last dates,

respectively, of reported cases associated with the outbreak.

We evaluated algorithms in terms of their sensitivity, specificity,

and time to detection (TTD). Sensitivity was defined as the

number of outbreaks during which at least one alert was signaled,

divided by the total number of reported outbreaks. Specificity was

defined as the number of non-outbreak days with no alert, divided

by the total number of non-outbreak days [20]. TTD was defined

as the median number of days from the beginning of each

outbreak to the first alert during the outbreak. If the algorithm

alerted on the first day of an outbreak, detection time was zero. To

enable the calculation of detection timeliness of all outbreaks, if an

outbreak was undetected, TTD was assigned the total duration of

the outbreak, so as to enable calculation of the median timeliness

across all outbreaks. Therefore, TTD is an integrated index that

reflects both the timeliness and sensitivity of an algorithm [7]. The

optimal threshold for an algorithm was the one with the shortest

TTD, or with the highest specificity when (a) the TTD was either

same or (b) had a difference of less than half a day and the

difference between the specificity was .5.0% [7]. We used the

Student t test to examine whether the number of signals was

significantly different by setting the optimal threshold in each

region according to the level of disease incidence and using the

same optimal thresholds to the whole region.

Results

In 2009, a total of 138,593 cases and 108 outbreaks of HFMD

were reported from the 142 counties of Shandong province. The

county incidence rate ranged from 7 per 100,000 to 420 per

100,000. According to our classification criteria of low, middle and

high disease incidence, there were 85 (59.9%) counties with a low

disease incidence, 39 (27.5%) counties with a middle disease

incidence, and 18 (12.6%) counties with a high disease incidence

(Table 1). The total number of outbreaks reported was 32, 47 and

29 in low, middle and high disease incidence regions, respectively.

The median number of cases per outbreak was similar among the

three groups with low, middle and high level of disease incidence.

Using data from all counties to determine the optimal alerting

threshold for C1, C2 and C3, we found that the optimal thresholds

for C1, C2 and C3 were 0.4, 0.4, and 0.5, respectively. When

using these thresholds to apply the three algorithms to the regions

with high disease incidence, C1 and C2 had the highest sensitivity

(96.6%), C3 had the highest specificity (88.2%), and the three

methods had the same TTD (3 days) (Table 2). For the regions

with middle disease incidence, C1 and C2 had the highest

sensitivity (91.5%), while C3 had the highest specificity (88.5%),

and the three methods had the same TTD (2 days). For the regions

with low disease incidence, C1 and C3 had the highest sensitivity

(96.9%), C3 had the highest specificity (89.0%), and three methods

had the same TTD (0.5 day).

When using only data from counties within a single incidence

class to determine the optimal alerting threshold for each

algorithm, for regions with a high disease incidence, C1, C2 and

C3 all had an optimal threshold of 0.3. Applying the algorithms to

high-incidence counties with this threshold resulted in a TTD of 2

days, with C1 having the highest sensitivity (100%) and C2 having

Table 1. The cases and outbreaks in the regions with high, middle and low level of hand, foot and mouth (HFMD) incidence rate.

HFMD incidence rate (per 100,000)

Low (7–149) Middle (150–249) High (250–420) Overall

Number of counties (%) 85 (59.9) 39 (27.5) 18 (12.6) 142

Number of cases (%) 50,955 (36.8) 48,475 (35.0) 39,163 (28.2) 138,593

Number of outbreaks (%) 32 (29.6) 47 (43.5) 29 (26.9) 108

Median number of cases per
outbreak (P25, P75)

12 (11,15) 14 (12,18) 13 (11,16) 13 (11,17)

doi:10.1371/journal.pone.0071803.t001
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the highest specificity (86.8%) (Table 3). For the regions with a

middle disease incidence, C1, C2 and C3 all had an optimal

threshold of 0.3, which resulted in a TTD of 1 day, with C1 having

the highest sensitivity (100%) and C2 having the highest specificity

(87.2%). For the regions with low disease incidence, the optimal

thresholds for C1, C2 and C3 were 0.7, 1 and 1.3, respectively.

The three methods had the same TTD of 0.5 days, with C1 having

the highest sensitivity (96.9%) and C3 having the highest specificity

(92.6%).

Comparing algorithm performance when the optimal thresholds

were determined from all counties, as opposed to within each

incidence class, the sensitivity of outbreak detection was higher

when using only data from one incidence class (C1: from 94.4% to

99.1%, C2: from 93.5% to 95.4%, C3: from 91.7% to 95.4%), as

was specificity (C1: from 87.6% to 88.1%, C2: from 88.3% to

89.7%, C3: from 88.8% to 90.0%), The number of signals was

statistically significantly decreased when using only data from one

incidence class (the percentage of signals reduction for C1:4.3%

(p,0.001), for C2:11.9% (p,0.001), for C3:10.3% (p,0.001)),

while maintaining a consistent TTD (1 day).

Discussion

The results of this study demonstrate that adopting optimizing

surveillance alert thresholds by incidence category can improve

aberration detection performance as compared to using the same

alert threshold across all regions. In particular, for the EARS

algorithms applied to HFMD data from counties in Shandong

province we observed the same TTD, but higher sensitivity and

specificity when alert thresholds were optimized within three

incidence categories.

Our findings may be explained in part by the observation that

the number of cases and the number and scale of outbreaks

differed greatly among regions from different incidence categories.

These factors help to explain why the optimal threshold of an

algorithm may differ across regions with unequal disease

incidence. In other words, the optimal alert threshold for an

aberration detection method across all region is a compromise of

sorts. A gain in detection accuracy can be realized by further

optimizing the alert threshold for groups of sub-regions with

similar disease incidence.

An important strength of this study is the use of a large amount

of real surveillance data with validated case and outbreak reports.

This study is the first to suggest a straightforward method for

improving the accuracy of outbreak detection algorithm in a large

area by optimizing alerting thresholds within incidence categories.

One limitation of our study is that we used only one disease as

an example and it is possible that our results will not generalize to

other diseases with a low incidence. In our study we divided

counties in Shandong province into three incidence categories to

reflect natural groupings in the data, but without considering other

factors, such as the differences of population, case report timeliness

and completeness, and the characteristics of seasonality and

weekend effect of surveillance data [20–22], which could affect

algorithm performance. The objective of this study, however, was

to explore the influence of the variation in incidence rates on

algorithm performance, conditional on the observed variation in

other factors. Any attempt to simultaneously estimate the absolute

effects (and possible interactions) of multiple determinants of

outbreak detection would require more extensive adjustment for

other factors, but that was not the objective of the study. Also, it is

possible that using a greater number of incidence categories and

taking into account more characteristics of disease occurring could

further improve detection performance and we consider this to be

a promising area for future research.

In conclusion, our study illustrates a general method for

improving the accuracy of aberration detection algorithms that

is potentially applicable broadly to other diseases and regions.

Although not measured directly in this study, improvements in the

accuracy and timeliness of outbreak detection can have an

important impact of the effectiveness of measures to control

epidemics and minimize the impact of diseases.
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