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Abstract 

Two column tests were performed in conditions emulating vertical flow beneath the leachate table in a 

biologically active landfill to determine dominant transport mechanisms occurring in landfills.  An 

improved understanding of contaminant transport process in wastes is required for developing better 

predictions about potential length of the long term aftercare of landfills, currently measured in timescales 

of centuries. Three tracers (lithium, bromide and deuterium) were used. Lithium did not behave 

conservatively.  Given that lithium has been used extensively for tracing in landfill wastes, the tracer itself 

and the findings of previous tests which assume that it has behaved conservatively may need revisiting.  

The smaller column test could not be fitted with continuum models, probably because the volume of waste 

was below a representative elemental volume.  Modelling compared advection-dispersion (AD), dual 

porosity (DP) and hybrid AD-DP models. Of these models, the DP model was found to be the most 

suitable.  Although there is good evidence to suggest that diffusion is an important transport mechanism, 

the breakthrough curves of the different tracers did not differ from each other as would be predicted based 
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on the free-water diffusion coefficients.  This suggested that solute diffusion in wastes requires further 

study.   

1 Introduction 

There is considerable uncertainty over the mechanisms of flow and transport through biologically active 

municipal solid waste (MSW).  This uncertainty translates into a poor ability to predict the efficiency of 

contaminant mass removal from a waste body under different flushing conditions.   The importance of this 

relates to the need to understand and predict how the water polluting potential of landfills will reduce over 

time and hence for how long active leachate control and management measures will be required at a site.  

Current estimates indicate that management timescale will run into many centuries after a site has closed 

(Hall et al., 2004).  A difficulty in predicting the transport behaviour of degrading, gassing waste is that 

state variables such as water flow, gas production rate and water content change over time.  ‘Landfill 

simulators’ therefore typically need to model several coupled processes, combining a large number of 

assumptions and parameters in a manner which makes it difficult to infer much about the constitutive 

relationships or to obtain unique parameter values.  The purpose of this study is to extricate from this 

complexity an understanding of the dominant mass-transport processes in waste.  Our approach is to 

conduct an experiment under highly controlled conditions, such that we can decouple physical transport 

mechanisms (including advection, mechanical dispersion and diffusion) from thermal, biological, and 

mechanical processes and multi-phase flow effects.   

 

In a landfill experiencing downward infiltration of water, two distinct regimes of flow are normally 

considered to exist.  At the top of the landfill there is two phase-flow, comprised of downward liquid flow 

and predominantly upwards landfill gas flow.  In this zone it is normally assumed that due to capillarity 

the liquid pressure will be below that of the gas phase, although localised perching is possible.  Several 

authors (Straub and Lynch, 1982; Demetracopoulos et al., 1986; McDougall & Silver, 2005; Kazimoglu et 
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al., 2006) have attempted to address this regime.  McCreanor and Reinhart (2000) modelled this zone 

using the Richards equation and White et al. (2004) modelled both liquid and gaseous phases.   

 

Vertical transport in the zone beneath the leachate table has received less attention in the literature.  In this 

zone (which is frequently called the ‘saturated zone’, although may not be due to the presence of landfill 

gas), leachate and gas are under positive hydrostatic pressure.   

 

Solutes that are measured at the base of a landfill will have arisen from and travelled through either the 

saturated zone or both the saturated and unsaturated zones.  Contaminant flushing models for a landfill 

under these conditions will need to simulate both above and below the leachate-table. Concern over the 

potential for leakage of contaminants through landfill bases means that the leachate table is often 

maintained at a low level within the waste, making the saturated zone the minority proportion of the 

landfill volume.  Despite the regulatory barriers to raised leachate tables, an advantage of increased water 

content would be that it would potentially encourage greater microbial activity and a higher flushing 

efficiency (Beaven et al., 2004).  There is therefore a strong motivation for addressing transport in the 

saturated zone.  

 

There are particular problems for experimentation in the saturated zone. Firstly, it is difficult to obtain 

representative in situ samples.  Secondly, the high levels of compressive stress and compaction are 

difficult to reproduce in the laboratory.  Thirdly, the control of liquid flow during gas production is 

difficult to achieve. 

 

Even with perfect control, single tracer tests can provide insufficient information to unambiguously 

identify the underlying transport processes (Jury & Roth, 1990).  Flow interruption is a standard method 

for identifying diffusive non-equilibrium during a tracer test (Brusseau et al., 1997; Fortin, 1997), since 
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the diffusion process continues even though advection has stopped during an interruption in flow.  Wehrer 

& Totsche (2008) applied flow-interruption to MSW incinerator ash.  When applied to MSW (Beaven & 

Hudson, 2002) this technique has provided evidence suggestive of the presence of diffusive exchange with 

immobile (or less mobile) zones.  However, during active degradation changes to flow rates cause changes 

in the amount of gas within the waste, and therefore also the volume of liquid within the waste.  Flow-

interruption is therefore not ideally-suited to gassing wastes as a tool for diagnosing transport processes.   

 

One further way to test the importance of diffusion is to inject tracers with different diffusion coefficients 

into the waste.  This method has been used with success in soils and groundwaters (Garnier et al., 1985; 

Maloszewski & Zuber, 1992; Becker & Shapiro, 2000).  Here the method is evaluated with application to 

waste.  Previous studies have used simultaneous application of multiple tracers in MSW (Woodman et al., 

2013, Woodman et al., 2014), however the primary focus in these studies was on the effect of operating 

conditions rather than on process identification.   

 

There have been a few previous column tracer tests on saturated methanogenic MSW wastes that were 

suggestive of dual-porosity processes (Beaven et al., 2003; Rosqvist & Bendz, 1999; Fellner & Brunner, 

2010). However, difficulties in hydraulic control (specifically, flow rate and saturation level) meant that 

they were not entirely conclusive (Woodman, 2007).  

 

The primary aim of the experiment described here is to test the hypothesis that dual-porosity exchange is 

the predominant mechanism accounting for solute mixing.  Implicit to this hypothesis is the assumption 

that flow is restricted to a fraction of the porosity (a ‘mobile’ zone) and that dispersion will be affected by 

the diffusion coefficient of the solute in question.   
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2 Method 

2.1 Description of experiments 

Two column tests (‘Test 0A’ and ‘Test 0B’) were designed to emulate contaminant transport in the 

complex sub-water table environment of biologically active MSW by tracking the flushing of 

methanogenic high-bromide leachate with water dosed with lithium chloride and deuterium oxide tracers 

(i.e. indigenous bromide was flushed from the waste whist lithium and deuterium were passed through the 

waste as a tracer ‘pulse’).  Test 0A was performed in a 2m diameter column, in contrast to Test 0B which 

was in a smaller (0.26m) diameter column.  Prior to the flushing, a number of separately reported 

hydraulic tests were performed on the larger column. Subsequently, leachate was recirculated over five 

weeks to achieve dynamically stable hydraulic conditions and the equilibration of the high bromide 

leachate throughout the waste mass.  Test 0B was packed and manually compressed to the same bulk 

density as that in Test 0A. Recirculation was also carried out in Test 0B for approximately five weeks (34 

days) prior to the test. 

 

 

Over the course of the tests samples collected from the outputs of the columns recorded flushing (thereby 

emulating the flushing of a real landfill) as well as the simultaneous recovery of the two introduced 

tracers.  Bromide was selected as a key flushed species.  Aside from differing in scale, both tests were 

performed under very similar conditions. Test 0A, a large-scale test (5.2 m3), was performed first.  It will 

be shown that for this test the estimates of lithium (Li) tracer mass recovery were low.   Because this 

result was of concern a second tracer test (Test 0B) was performed in a smaller-scale laboratory column 

(0.04 m3).   
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2.2 Experiment 

Test 0A was performed in the Pitsea compression cell (shown schematically in Figure 1).  The 

compression cell is a 2 m diameter steel cell capable of delivering uniaxial loads representative of those 

within full-scale landfills, whilst allowing detailed logging of compression, temperature, piezometric 

pressures through the column, total weight, gas production and leachate electro-conductivity (EC).  

The cell was loaded in September 2004 with 3563 kg (dried mass) of fresh MSW that was shredded with a 

hammer mill and passed through an 80 mm screen. 

Sub-samples of the waste were characterised for material content and particle size (see Supplementary 

Information Table S1). Layers of gravel were placed at the top and bottom of the waste to encourage a 

uniform distribution of flow in and out of the waste (amounting to depths of 0.08 m above and 0.095 m of 

gravel above and below the waste respectively). 

 

The residual (i.e. drained) water content of the waste in the cell was established from an oven-dried (at 

80°C) 10 kg sub-sample obtained at the time of loading.  Thereafter the total water content in the waste 

was estimated based on the cell weight (measured using load cells) and a water balance.   This and other 

key details of both tests are given in Table 1. 

 

The waste was subject to long-term monitoring and a number of hydraulic tests and was then compressed 

using an upper platen at 87 kPa (thereafter the platen was locked in position to maintain the waste at a 

fixed volume).  Methanogenic leachate with a high bromide content (Table 2) was obtained from Pitsea 

Landfill and then introduced and recirculated for two months to allow physical and chemical equilibration.    

 

The design of Test 0A was optimised based on parameters previously established from a pilot tracer test in 

the Pitsea compression cell (Beaven & Hudson, 2002; Woodman, 2007).  The leachate re-circulation was 

achieved using a positive-displacement pump (LMI Milton Roy C785- 139 35T) drawing from a 400 litre 
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supply tank, giving a stable flow of 3.7 L/h.  Manual readings from a gas-meter connected to an outlet 

manifold at the top of the cell indicated stable gas generation rates before the start of the test and 

monitoring of cell weight during the test indicated no major change to the water content of the waste over 

the duration of the test (see data for Phase 1 in Woodman et al., 2009).  Consequently, a dynamic 

hydraulic equilibrium is assumed within the cell for the duration of the test (i.e. gas production rate equal 

to gas release rate).   

 

This flow corresponded to a flux rate of 10,300 mm/y which is high compared to conditions likely to 

occur in the field.  For example, typical effective precipitation in the east of England is in the range 100-

200 mm/y and artificial irrigation on re-circulating landfills have achieved flows of up to ~1000 mm/y 

(Environment Agency, 2009).  An upward-flow arrangement was created in order to prevent buoyant gas 

bubbles that would tend to move upwards being dragged downwards and possibly becoming trapped or 

interacting with the leachate in an unpredictable manner.   

 

When leachate recirculation in the column was hydraulically stable (i.e. pressure and flow rates not 

changing with time), and whilst keeping the flow rate constant, the leachate input to the cell was switched 

from the re-circulation tank to a tank containing the tracers well-mixed in tap-water and the output was 

diverted to drain (Figure 1).  Samples were taken from the output line upstream of the drain.  At the end of 

the injection period the input flow was switched to tanks holding clean water.   

 

Test 0B was performed with an almost identical method but the cell was a small-scale Perspex column, 

housed in the same building as the compression cell.  Test 0B waste came from the same source as the 

Test 0A waste and was manually compacted to the same bulk density which Test 0A had achieved under 

87 kPa compression.  Test 0B had 0.05m of gravel both above and below the waste.   
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A gas flow of 4-11L/day was recorded prior to the start of Test 0A, but a problem with the meter meant 

that gas production was not measured during the test.  The gas production in Test 0B was not measured.   

 

2.3 Tracers 

2.3.1 Application of Tracers 

To test the hypothesis of dual-porosity transport, two tracers and an indigenous contaminant provided a 

range of apparent diffusion coefficients (1.0×10-9, 2.1×10-9 and 2.3 ×10-9 m2/s at 25ºC for lithium, bromide 

and D2O respectively, Cussler (1997)).  If dual-porosity is important it would be expected that the 

breakthrough curves (BTCs) would differ significantly due to the different rates of diffusion in a manner 

that an advection-dispersion model (AD) could not predict.   

 

Tracing in landfills was reviewed by Blakey et al. (1998) and by Woodman (2007).  The predominant 

difficulty for tracing in landfills is the generally high ‘background’ concentration of most elements within 

the leachate.   

 

Given the reactive nature of leachates and the multi-component nature of the waste medium, the 

performance of tracers needs to be evaluated cautiously.  If an assumption of conservative behaviour is 

made and turns out to be wrong, there may be an impact on process and parameter deductions.  Therefore 

before models are applied to the tracer breakthrough curve (BTC) data to test our hypothesis, we first 

examine the tracers and their mass-balances.  

 

Details of the tracer injection are given in Table 2.  The tracers themselves are now discussed in turn.   
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2.3.2 Lithium 

Lithium has been used several times as a tracer for transport within MSW (Blakey et al., 1998; Öman and 

Rosqvist, 1999; Rosqvist & Bendz, 1999; Beaven et al., 2001; Beaven et al., 2003).  Its common use in 

MSW is explained by its relatively low cost and commonly low background concentration (Harris, 1979; 

Blakey et al., 1998). Batch tests have not shown significant sorption of lithium in leachate onto MSW 

(Stegemann et al., 2006; Öman and Rosqvist, 1999).  However, two recent papers have observed non-

conservative behaviour of lithium in MSW under closed loop conditions (Woodman et al., 2013, 

Woodman et al., 2014) 

 

To achieve a target concentration of 30mg/L, for Test 0A, 74 g of laboratory reagent grade 99% 

anhydrous lithium chloride (Fisher Chemicals, Fisher Scientific) was added to tap-water in a 397 L input 

tracer tank.  For test 0B, 2 g was added to tap-water in a 10 L input tank. The tanks were agitated to ensure 

thorough mixing and then covered. 

2.3.3 Deuterium oxide (D2O) 

The second tracer selected was the hydrogen isotope, deuterium.  There has been a limited use of isotope 

tracers in municipal solid wastes.  Hoen et al. (2000) examined 10B/11B ratios.  Maloszewski et al. (1995) 

used 18O and 2H as natural tracers and Blakey (1982) examined tritium.  There are very few reported tests 

that the authors are aware of where deuterium oxide (D2O) has been injected to make 2H an artificial 

tracer in waste.  Woodman et al. (2013) documented a closed-loop test and observed upward fractionation 

of 2H, believed to be due to evaporation and degradation.   

 

For Test 0A, 100 mL of 99% concentration D2O (CAF number 7789-20-0, Cambridge Isotope 

Laboratories Inc, product code DLM-4-99-1000) was added to tap water in a 397 L input tank.  For 

Test 0B, 3mL was added to tap-water in a 10 L tank. 
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Fractionation of the liquid-phase deuterium due to the formation of methane by degradation is a 

possibility.  Although methanogenesis of acetic acid to methane and carbon dioxide does not involve 

water in the reaction, the acetogenic and acidogenic stages do utilise water in the reaction, potentially 

fractionating through preferential use of the lighter 1H fraction (Morasch et al., 2001).  Therefore, any 

fractionation that occurs through this process would tend to increase the deuterium fraction, as would 

evaporation.  Evaporation from the tank was minimised by placement of a cellophane covering.  On 

collection, samples were stored in McCartney bottles to prevent evaporation.   The enrichment due to 

evaporation would be expected to be less than experienced by closed loop tracer tests, where the leachate 

and tracer is repeatedly recirculated through a storage reservoir where evaporative processes may come 

more into play.  Woodman et al. (2014) observed significant enrichment in a closed-loop test, although 

were not able to distinguish the precise cause(s).   

 

D2O concentrations are given on a permil scale (‰) relative to the VSMOW (Vienna Standard Mean 

Ocean Water) standard according to 

‰ 1000. s VSMOW

VSMOW

R R

R
δ

−
=  

[1] 

Where  is the ratio of  2H / 1H and RVSMOW is 155.76 ±0.1 ppm. 

 

The tank water had a deuterium signature of -39‰, the lightness probably primarily attributable to its 

meteoric origin.  The isotope ratio for the leachate was -22‰ and -30‰ in Tests 0A and 0B respectively.   

2.3.4 Bromide 

In terms of the flushed species of choice, bromide was monitored because it was found in high 

concentration and because it is assumed to behave conservatively in some media (Flury and Flühler, 

1995). Ward et al. (1998) found that out of the available ‘solute-type’ tracers for aquifers and soils, the 



 

 Page 11 of 44 

halogens are most suitable, of which bromide is often preferred (as it often has lower and more stable 

background levels).  However, Stegemann et al. (2006) showed non-linear bromide sorption to waste.  

The behaviour of bromide cannot therefore be automatically assumed to be conservative in wastes and is 

best examined for the particular conditions of a test.  

 

 

 

Ultimately, deductions as to the conservative nature of tracers are best made based on the BTCs, since 

there are significant difficulties in relating batch sorption tests to column or field behaviour (Woodman et 

al., 2011).  To do this leachate samples from Test 0A were obtained from the cell’s outlet (Figure 1) and 

were analysed for a broad suite of species by ICPMS including alkali metals, alkaline earth, transition 

metals and Bromide.  The flushing of these species (except Li, as this was an introduced tracer) was 

compared by normalising each to their starting concentration and plotting on the same axes.  This gave a 

variety of behaviours.  A lower-bound to these measured normalised concentrations was shared by Br, Ni, 

Rb and Mg and the EC also followed this line (Woodman et al., 2009).  All other species gave normalised 

flushing curves above this line which suggests that they were subject to other processes including sorption 

and production (for example, by dissolution).  The deduction is that under the conditions of the test those 

species on the lower bound, and Br in particular, were behaving conservatively. This behaviour of Br is 

corroborated by closed-loop tracer tests performed by Woodman et al. (2013) in subsequent tests on the 

same waste. 
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3 Basic observations 

3.1 Breakthrough curve shape 

The D2O and Li BTCs are smooth, monomodal and positively skewed, thereby exhibiting so-called 

‘tailing’.  The Br flushing curves were both reasonably smooth and monotonic (Figure 2).  It is perhaps 

remarkable that such ‘classical’ BTCs were produced in quasi-steady state gassing MSW.  Despite MSW 

being frequently characterised as ‘highly heterogeneous’ (Zacharof & Butler, 2004), existing studies in 

waste column tests have also produced smooth monomodal skewed BTCs similar to those described in 

many soil studies (Bendz et al., 1998; Bendz & Singh,1999; Rosqvist & Destouni, 2000; Beaven & 

Hudson, 2002; Woodman, 2007).   The lithium breakthrough is first noticed between 1 and 2 days in Test 

0A.  This is suggestive of preferential flow, since a sharp-front of tracer passing through all of the pore-

space would be expected to take approximately 31 days to arrive.    

 

This consistent behaviour suggests that an equivalent porous medium assumption may be reasonable, 

although it remains possible that this behaviour can arise from a ‘sub continuum’ (Johnston et al., 2009).  

The absence of multiple peaks or obvious distortion to the BTC suggests that preferential flow in a few 

dominant channels (in the manner that is observed in Karstic systems for example) is not prevalent in 

wastes.   Examination of fluxes from different parts of the Pitsea compression cell base (Hudson & 

Beaven, 2002) showed that although flow was not uniform, it was considerably more distributed than 

what would arise from a small number of pathways.  Thus preferential flow is probably via a network of 

pathways in these columns which might be reasonably considered to be a continuum. 
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3.2 Mass-balance 

The mass recovery cannot be accurately estimated by simply integrating the BTC.  This is because for 

both injected tracers the pre-existing background concentration in the leachate before the tests was 

significant and also not equal to the concentration in the flushing water.  Therefore a more accurate 

model-independent estimate of mass recovery is adopted that uses the principle of linear superposition.  If 

the unit step response (i.e. the output concentration against time which results from a step input of 

concentration equal to one unit) of the system is F( )t , then for a tracer injection period PT the output 

concentration C  is described by  

 

( ) ( ) ( ) ( )F( ) FL T L W T PC t C C C t C C t T= + − + − −  [2] 

Where, the concentration of tracers in the injected solution is , WC  is the concentration in the flushing 

solution which follows the tracers and 
LC  is the pre-existing background concentration in the leachate 

before the tests.  Starting from Equation [2], the step response F( )t  can be obtained for each BTC, 

providing the basis for estimation of the mass of tracer recovered (via the trapezoidal rule). 

 

Int( / )

0

0 0

F( ) ( )
0

n
t T

T WL

n T L T L

t

t C CC t nT C
t

C C C C=

≤


=    −− −
>  

− −  
∑

 

[3] 

 

The validity of Equation [3] as a solution to Equation [2] can be verified by substitution. 

 

The recovery in Test 0A was 50.0 % lithium and 72.2 % D2O.   For Test 0B the recovery was 75.3 % and 

89.4 % respectively. Thus, in both tests the recovered mass of Li was considerably below 100 %.  This 

corroborates the relative reduction in lithium observed by the closed-loop tracer test reported by 
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Woodman et al. (2014).  Figure 2 shows that at the end of the tests all tracers in Test 0B were further into 

the tail than Test 0A, which may explain why there was a greater measured mass recovery (89.4 %).  

 

The mass discrepancy for lithium could arise from a number of circumstances.  A second tracer peak 

characterising pore space with slower moving fluid could be yet to arrive (such behaviour is implicit in the 

two-streamtube model of Rosqvist & Destouni, 2000).  The tracer ‘loss’ could be due to measurement 

error (most particularly an error in the measurement of the injected tracer concentrations), or alternatively 

the discrepancy could be due to non-conservatism of the tracers.   

 

The waste from Test 0B was tested to assess whether Li was sorbed to the solid matrix. Samples were 

taken from the column at 10 cm intervals and 60 g subsamples of dried waste were mixed with 500 ml 

distilled water for three days. The average concentration of Li of the extract was 0.5 mg/kg dry waste. The 

total amount of water-extractable Li amounted to 0.3% of the Li injected. This suggests that the majority 

of the “missing” Li was not in an easily extractable form; however, it is possible that it was retained on 

material that was not sampled in the leaching test. Further work is needed to elucidate the apparent non-

conservative behaviour of Li in MSW column tests.     

 

There is a range of cited recoveries in the literature for in-line lithium tracer in wastes.  Hudson & Beaven 

(2002) recovered 64 % in the Pitsea cell, Rosqvist et al. (2005) 91-93 % in the laboratory, Rosqvist & 

Destouni (2000) 52-72 % in a large-scale lysimeter and 34% in the field, and Oman & Rosqvist (1999) 

21 % in the field.   The exceptionally high recovery found by Rosqvist et al. (2005) was in waste with 

25 % ash and in relatively short tests lasting between 0.5 and 3 days.  Although all of these incomplete 

recoveries might be attributable to truncation of the tail, there remains the possibility that tracer ‘loss’ may 

have also been significant in these tests.   
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Because simple exponential extrapolation of BTC tails might be an inadequate test of whether the tail 

might account for the lost mass, we now further investigate mass-loss by fitting transport models to the 

data.  In the presence of a large range of possible mass-loss mechanisms we elect to use a very simple 

assumption in conjunction with physical models.  We assume an instantaneous change in the input 

concentration, such that the concentration at the input to the waste can be described by i TC C f= , where 

the ‘mass-adjustment’ factor f  is in the range 0 1f< ≤  for a tracer which is ‘lost’.  If the model produces 

the best fit for 1f ≈  then the inference is that the tracer is conservative and an incomplete recovery would 

be explained by the truncation of the test (i.e. the remaining mass would be predicted to arrive later).  A 

mass-gain could be simulated by 1f > . This simple approach is consistent with that used in interpretation 

of previous tracer tests (Maloszewski & Zuber, 1990). 

 

It is possible that ‘loss’ mechanisms are non-linear and/or time-variable.  If this is the case, then the BTC 

will be affected in a manner which a simple physical model combined with this linear mass-adjustment 

model cannot predict.  Possible time variable mechanisms include kinetic sorption, precipitation, chelation 

and, in the case of D2O, fractionation. 

4 Modelling of experimental data 

4.1 Transport models 

Despite previous numerous investigations there remains uncertainty over the underlying nature of flow 

through MSW.   Given the heterogeneous nature of MSW, there is a potentially large spectrum of possible 

model representations for flow (Woodman, 2007).  More complex models are difficult to justify against 

typical data, since too many parameters result in non-unique parameter sets.  Whilst it has been possible to 

eliminate some models of transport in MSW due to their inability to match the data with physically-

consistent parameters (Rosqvist & Destouni, 2000) a healthy scepticism must remain over the true 
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representativeness of models which cannot be eliminated, and in particular over the meaningfulness of 

their parameters (Bendz & Singh, 1998).  The challenge is to obtain insights by  identifying models which 

are not over-parameterised, yet appropriately capture the physical essence of the transport system.  Even 

physically plausible models such as a dual-permeability flow (Rosqvist & Destouni, 2000) may contain 

more parameters than can be reliably identified by the data  (Woodman & Beaven, 2011).    

 

Accepting the inevitable imperfections implicit in using simple lumped models, we now model three 

highly simple mass-transport models, thereby examining tracer mass-balance and comparing processes, in 

particular examining the dual-porosity hypothesis.  The models and their parameterisation are first set out, 

then are fitted to the data by least-squares and then further uncertainty analysis is performed.   

  

We consider a simple Advection-Dispersion model with diffusive Dual-Porosity exchange (‘AD-DP’) to 

describe transport through the waste.  This model assumes two overlapping continua.  One continuum 

contains a flowing (mobile) porosity which is assumed to be locally well mixed.  The other continuum is 

immobile but solute can exchange with the mobile porosity by diffusion.  The gaseous phase is assumed to 

be fixed and is neglected as if it were part of the solid matrix (a considerable simplification of the dynamic 

reality).  Physical properties are assumed to be homogeneously distributed.  The integro-differential 

equation for AD-DP is given by  

 

     [4] 

 

Where  , , mC  is the concentration in the mobile 

porosity,  is the initial (uniform) concentration in the mobile zone,  is the initial (uniform) concentration in 

the immobile zone,   is the ratio of immobile to mobile volumetric water content (i.e.  ) D  is the 



 

 Page 17 of 44 

coefficient of dispersion, 
mV is the velocity in the mobile zone and z is the distance in the direction of 

flow.  tB ( )t is the ‘Block Geometry Function’ (BGF) (Barker, 1985). The block diffusion time is defined 

as 2
cb at b D= , where b is the ratio of volume to area for a block (for a sphere of radius r , this is / 3r ) 

and aD  is the apparent diffusion coefficient.  There are a large number of analytical expressions for BGFs 

which are the solutions to Fick’s second law in different assumed geometries (see Appendix). We further 

assume that mD Vα= , where α is the dispersivity.   

 

Woodman et al. (2005) showed that assuming slab-like, spherical or cylindrical block geometries made 

little difference for fits to a similar tracer test in the Pitsea compression cell.  A scarcity of in situ 

observation of the block geometry means there is little prior information to support this assumption.  Sub-

parallel alignment of plastic may create regions of horizontal flow surrounded by slab-shaped immobile 

zones.  However, it is also probable that the system is made up of a large number of different shapes and 

sizes of blocks.  We work with a spherical geometry to represent agglomerations of waste and assume that 

this geometry can be adequately characterised with a single lumped diffusion time (corresponding to an 

average block size) and recognise that the absolute value of the time will be affected by this somewhat 

arbitrary choice of average block geometry and that such lumping can cause under-prediction of the tail, 

as shown by Beaven et al. (2005).   The effect of other simple block geometries are explored in 

Supplementary Information S2 and are shown to be of minor importance. 

 

Input concentration is described by the upstream boundary condition  

( )(0, )m INC t C t=  [5] 
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where ( )INC t depends upon the tracer. For Li and D2O, it was piecewise constant, equal to the tracer 

concentration for a time PT , then equal to the concentration of the tracer in the flushing water, WC .  For 

Br, ( )INC t  was equal to WC  for the entire test. 

 

The column is approximated as being infinitely long, providing the following boundary condition, 

( )lim , 0m
z

C z t
→∞

=  [6] 

 

The initial concentration of each solute in the leachate is assumed to be uniformly distributed, as 

( ) ( ), 0 , ,0m im LC z C z x C= =  [7] 

where x is depth into the immobile block.   

 

By taking Laplace Transforms of Equations [4-7] we arrive at the following solution for (flux-averaged) 

mobile concentration C  at the outlet ( z L= ): 

( ) ( )
[ ]expIN L W INL

m P

fC C C fCC
C f T s f

s s s
δ δ

− −
= + + −  

[8] 

where s  is the Laplace variable and the impulse-response fδ  for the AD-DP model is given by  

where ( )( ) 1 Bim
cb

m

g s s st
θ

θ

 
= + 

 
 

[9] 

 
 

where a mt z qθ= , 2
d mt D V= , , and B is the block-geometry function (Barker, 1985a).  Equation 

[9] is inverted numerically using the De Hoog et al. (1982) algorithm.   
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The AD-DP model provides the basis for two simpler models.  When 0imθ =  the exchange term is zero 

and Equation [9] becomes a simple Advection-Dispersion model (‘AD’) as follows 

 

[10] 

 

If mechanical dispersion is neglected (i.e. 0D = ) Equation [9] collapses to a simple dual-porosity model 

(‘DP’) 

 

  [11] 

The connected, mobile and immobile porosities are related by m imθ θ θ= +  Porosity is reported in the 

literature using various parameterisations.  Commonly reported are σ , which is the ratio of the immobile 

to mobile porosities and β , which is the ratio of mobile to connected porosity.   

 

The DP model is parameterised as per Table 3.  For all three of the models (AD, DP and AD-DP) the 

connected porosity,θ , is a fitting parameter.  For the DP and AD-DP models the mobile porosity,
mθ , is 

also a fitting parameter and
imθ is calculated.   

 

Similar studies in soils fixed the connected porosity,θ , equal to the measured total volumetric water 

content (porosity), Tθ  (Schwartz et al., 2000; Zhang et al., 2006).  The least-squares (L-S) best-fits for the 

AD-DP, AD and DP models are now considered. 
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4.2 Least-squares (L-S) fitting 

4.2.1 Fitting  

The models and number of fitting parameters are given in Table 3 and the parameter ranges are given in 

Table 4. The best fit models are shown on Figure 2 against monitoring results.  For these models, 

Levenberg-Marquardt (L-M) L-S fitting was performed using the UCODE programme (Poeter et al., 

2005b) and the results are given in Table 5.  If a parameter was driven to the upper or lower limits, then it 

was fixed at that boundary and taken out of the minimisation thereafter without the parameter uncertainty 

being calculated.   

All the models were able to provide good fits to Test 0A.  However, all the fits for Test 0B except one 

were visually poor, implying that the model is inadequate and the parameter values can be neglected (they 

are therefore not reported).  The most significant difference between Test 0B and Test 0A is the spatial 

scale.  The Test 0B cell diameter of 260 mm is only just over three times the maximum particle size 

(defined by the screen size of 80 mm), compared to 25 times for the Test 0A cell.  It is likely, therefore 

that Test 0B was smaller than the necessary representative elementary volume (REV) given the largest 

particle size of this waste and therefore cannot be simulated adequately with a continuum mass-transport 

model.  The results from this cell are nonetheless useful from a mass-balance perspective, and have 

confirmed the non-conservative nature of Lithium in these tests.   

The one good fit for Test 0B occurred for D2O tracer using the AD-DP model.  The best-fit parameters 

were D=5.8×10-6m2/s, tcb=3.7 days, θm=0.02 and f=0.87.   This mass-adjustment factor is below any of the 

estimates given by test 0B and possibly is only acting as a fitting parameter.  Given that the other tracers 

could not be fitted by any of the models it is likely that this one reasonable fit is not meaningful.   

Therefore, we hereafter analyse the parameters of the fit to Test 0A, and neglect the parameters obtained 

for Test 0B.   
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4.2.2 Tracer mass recovery (all models) 

The fitted mass-adjustment factor, f, for D2O in Test 0A ranged between 0.94 and 0.99 for the three 

models, suggesting that the D2O was conservative in this test, or very nearly so.  Since the D2O mass 

estimated via Equation [3] was 72 % this implies the remaining mass would have been expected to arrive 

in the tail if the test had run for longer.  This conservative behaviour is in contrast with enrichment 

observed by Woodman et al. (2014) under closed-loop conditions.  It is likely that there was less 

opportunity for evaporation in this in-line test than in a recirculating test where leachate spent time in a 

reservoir.   

 

For lithium in Test 0A the estimate for f was in the range 0.68-0.72 for all three models, whereas the 

measured mass estimated by Equation [3] was 50 %.  This measured Li recovery expressed as a fraction 

of the measured D2O recovery was 69.4 %, which is consistent with the range of f.   Therefore 

consideration of both the mass recovered and the modelled mass-adjustment indicates that Li was not 

behaving conservatively in Test 0A.  This is consistent with what was observed by Woodman et al.,2013;  

Woodman et al,, 2014 ) in closed-loop tracer experiments.  Because of the good fits achieved for lithium, 

no problems with the mass-adjustment model are identified. However, there remains the possibility that 

mass loss was not instantaneous, in which case the mass-adjustment approach would introduce model-

error.  

 

In summary, the D2O results were consistent with conservative behaviour, but lithium was more poorly 

recovered.  Independent of the transport model used, the assumed input concentration of lithium 

consistently needs to be reduced to explain the data, so the low measured recoveries of lithium are not 

solely attributable to insufficiently long test duration.  Therefore, an as-yet unidentified process may be 

acting to immobilise lithium in the columns. 
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4.2.3 Advection-Dispersion (AD) 

For the AD model, the fitted (Table 5) hydrodynamic dispersion coefficients, D, are significantly larger 

than typical free-water diffusion coefficients, so the effect of longitudinal diffusion can be neglected under 

these conditions. From these dispersion coefficients the dispersivity (α) for the Li, D2O and Bromide 

tracers are estimated as 2.7, 2.6 and 2.5 m respectively (NB: L=1.64m, Table 1)   A ratio of the 

dispersivity to the column length,  greater than 0.5 is not physically supportable (Barker, 2003).  All 

estimates of  exceed this limit for Test 0A, casting doubt that an advection-dispersion  process alone 

can account for the observed tracer dispersion.  

A further problem with the AD model is that it does not explain why there are differences between the 

different tracer BTCs. Despite this, the AD model may remain useful as a simple simulation tool (possibly 

for risk-assessment purposes), provided it is appreciated that other processes (most probably dual-porosity 

exchange) are effectively lumped into the dispersivity parameter.  Maloszeweski et al. (1995) adopted this 

approach. 

 

4.2.4 Dual-porosity (DP) 

The fits obtained by the DP model are fairly similar to those obtained by the AD model (Figure 2).  This is 

reflected in the goodness of fit statistics given in Table 5.  This similarity is unsurprising, because it is 

well-known that the two models can produce very similar BTCs under certain conditions.  Sanchez-Vila & 

Carrera (2004) showed that the first three moments of the two models can be matched exactly. However, 

despite the similarity it is also the case that the DP model is consistently a slightly better fit (i.e. the sum 

of the squares of the errors, SSE, is lower).   
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The fitted mobile porosity,
mθ , was consistently driven downwards to the lower limit (set at 0.01).  Low 

values of mθ suggest highly preferential flow.  The fact that the lower limit was encountered requires 

further investigation of the best-fit point; this will be done in section 4.3.   

 

There is no similarity apparent between the ratio of the free water diffusion coefficients and the ratio of 

the fitted diffusion times.  Figure 3 shows the diffusion times in Test 0A for Li and D2O estimated by 

scaling according to the ratio of free water coefficients, and based on the fitted cbt of bromide.  This 

suggests a homogenisation of effective diffusion coefficients.  It is clear that a much larger value of cbt for 

Li is estimated by means of the diffusion coefficients than was fitted (indeed one so large that it does not 

give a reasonable fit to the data).  In contrast, estimated 
cbt for D2O is similar to the fitted value.  

The explanation for this observation could be because the loss of lithium is not simulated accurately, 

causing the model to fit with apparent (lumped) parameters to compensate.  Alternatively, if the correction 

of mass-loss is reasonable (and the good-fit does not contradict this), then this comparison of the best fit 

values of tcb would indicate that the effective diffusion coefficients of different species in high strength 

leachate do not scale proportionally with their free-water values.  In this instance it is possible that 

competition effects (or other diffusion-coefficient modifying effects such as hydration shells forming 

around the tracers, complexation or sorption to colloids) may have changed the apparent diffusion 

coefficients in different ways.  To better understand this, direct observation of diffusion coefficients of 

different solutes in leachate would be needed.  

It is worth noting that an understanding of dual-porosity transport in saturated conditions is valuable in 

understanding the more complicated situation in unsaturated wastes, since it is an end-member e.g. with 

respect to water content.   
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4.2.5 Advection-Dispersion with Dual-Porosity exchange (AD-DP) 

Because of the similarity of the BTCs generated by the single AD and DP processes, fitting of the AD-DP 

model can have non-uniqueness between the parameters of these two models.  Moench (1995) addressed 

non-uniqueness in fitting this model by first fitting the mechanical dispersion to the early time data, 

arguing that the first arrival is negligibly affected by DP exchange.  Schwartz et al. (2000) addressed this 

problem by adjusting the water content, running separate tracer tests in what they defined to be the 

microporous region and fitting a dispersivity to that region (which they assumed was also mobile).  

However, Schwartz et al. (2000) still had convergence problems and had to fix parameters.  Here, we first 

fixed mθ to a typical low value uncovered by the DP models ( mθ  =0.01).  If this was insufficient in 

preventing convergence problems then θ  was fixed to the upper limit.  

 

There were two types of best-fit depending on the starting parameters.  One best-fit occurred for low tcb 

and relatively high D and a second for a higher tcb and low D. For example, the lithium tracer dotty plots 

(see Supplementary Information Figure S3) gave a best parameter combination with D=2.43×10-4m2/s, 

tcb=0.08 days, 
mθ =0.004 and f=0.68).  A second optimum gave D=1.29×10-9m2/s, tcb=57.5 days, 

mθ =0.007 and f=0.78.  In other words either single AD or DP models gave the best performance, but the 

possibility of the two processes working simultaneously did not consistently improve the fit.  Given this, 

we can conclude that the additional complexity of the AD-DP model above the DP model is not supported 

by the data.   

 

4.2.6 Summary of fitting results (comparison of models) 

The AD-DP model fitted best when either the AD or DP process dominated, although when the AD 

process dominated the dispersivity was frequently unrealistically large. For example for the lithium dotty-

plot optimum D=2.43×10-4m2/s gives a dispersivity, α=2.7m, which is larger than the column itself 
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(1.64m).  Thus, the additional parameter required by the AD-DP model compared to the AD or DP models 

was not supported by the data.  The observation that the AD model could be rejected due to the 

dispersivity being unrealistically large is consistent with previous tracer studies in waste (Rosqvist & 

Destouni, 2000; Woodman, 2007). Therefore, the DP model was the best physically-consistent model of 

all three.  Whilst caution should be used in extrapolating the values of mθ  beyond the DP model, it is 

clearly indicating that a relatively small proportion of the pore space is actively carries the fastest flowing 

water.  This is therefore likely to result in much earlier arrival of solute between two points in a column or 

in a landfill than would be predicted through the total saturated water content.   

 

4.3 Uncertainty analysis 

To more fully understand the L-S fits an appreciation of the error space is needed.  This allows a number 

of questions to be addressed (e.g., whether the confidence intervals on cbt were a reasonable measure of 

the uncertainty in this parameter).   

 

For models with more than three parameters, visualisation of parameter space becomes increasingly 

difficult.  One method of coping with this is to project the error surface on to single parameter axes.  We 

will examine the so-called ‘dotty plot’ method for doing this (Zhang, 2006; Beven & Freer, 2001).   

 

To produce a dotty plot, large ensembles of realisations are generated, with each parameter in a set being 

randomly selected from a probability distribution.  Here a uniform or log-uniform distribution is used.  

The un-weighted SSE between the model and data is calculated for each realisation.  The realisation with 

the minimum SSE is taken as the estimate of the best fit point. The distribution of the dots provides 

information on the shape of the SSE space.   
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The lower surface of the SSE, described by the dots has previously been used to determine whether a 

parameter is ‘identifiable’ or not, where an identifiable parameter would have a clear optimum point.  

Therefore instead of providing a measure of uncertainty local to the optimum, dotty plots have been used 

to consider a more ‘regionalised’ sensitivity (Mathias et al., 2006). 

 

Away from any optima, the distribution of the projected SSE will depend upon the multidimensional 

surface out of plane and on the range of parameter space being evaluated.  False local optima can be 

perceived in the event that the number of dots being generated is sparse enough to provide randomly 

generated ‘gaps’ in the error surface.   Taking these considerations together it is clear that interpretations 

based on the shape of dotty plot projections require caution and an appreciation that the projection can 

‘lose’ information out of the plane of the parameter on the x-axis.  The dotty-plot optimum cited here is 

the minimum SSE out of the total of 25,000 realisations. The parameter ranges are set within the limits 

given in Table 4. 

 

4.3.1 Uncertainty in parameters of DP model 

The dotty plots in Figure 4 show that there was a distinct single global minimum for f , which confirmed 

the relatively tight confidence intervals estimated by the L-S method.  This was the case for both lithium 

and D2O (f was not applied to bromide, for which f=1) . The SSE is considerably higher away from the 

minimum f value.  For example, for lithium data if the assumption is made that the tracer was 

conservative (i.e. 1f = ) the SEE would worsen from 2.9 mg2/L2 at the optimum to 23.9 mg2/L2.  The loss  

of mobile lithium therefore seems to be strongly indicated.   

 

Dotty plots for all three tracers for tcb and θm are shown in Figure 5. It is evident that there is very little 

change in SSE for all the tracers over a wide range of mθ , albeit with a shallow increase in SSE as mθ  is 
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increased from the lower boundary.  The L-S results need to be interpreted with this in mind.  Although 

mθ was consistently driven to the lower limit (0.01), it is notable that this fit is barely worse than for a ten 

times smaller water content (0.001).  Eventually increases in mθ  reach a point where the SSE increases 

more steeply.  Therefore fitting reveals an upper bound, but provides little information about the optimum 

mθ below this.  The observed insensitivity means that rejecting the DP model on the basis that the mobile 

porosity is unrealistically low (driven to the lower boundary) by the L-S optimisation would not be 

supportable.   

 

The uncertainty in optimum mθ  means that calculated fractional porosities, for example σ  and β , are 

also uncertain. The intractability of 
mθ means that it is difficult to make quantitative statements about the 

nature of the preferential flow (for example, it might be desirable to estimate the percentage of the 

porosity through which at least a certain proportion of the total flow passes).  β  is calculated as 1.9×10-4 

based on the lower bound for mθ .  By comparison, data fitted with stochastic-lognormal models estimated 

a range for β  of 0.015-0.44 (Fellner et al., 2009) and 0.05-0.47 (Rosqvist and Destouni, 2000).  Although 

both these studies examined both field and laboratory data, they were inconsistent in how β  changes with 

scale.   

 

Figure 5 shows that tcb is clearly and unambiguously identified by all three tracers. This is important since 

to achieve objective of the paper required a meaningful comparison of these estimates.  This is fortunate 

since an inability to obtain a reliable estimate of cbt  is common for field tests (Ward et al., 1998; Mathius 

et al., 2006; Hadermann & Heer, 1996; Haggerty et al., 2000).  The difference between the field tests and 

these well-controlled column tests is that for the latter the flux rate and total porosity are accurately 

available thus providing better constraint.   
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5 Conclusions 

The primary aim of this paper was to examine the hypothesis that dual-porosity diffusion is a dominant 

dispersion mechanism for transport through municipal solid waste.  Testing this hypothesis required 

tightly controlled hydraulic conditions suitable for a multiple-tracer test where any difference between 

breakthrough curves would be attributable to the diffusive characteristics of each tracer.  Detailed 

monitoring demonstrated that the high level of control was indeed attained in this biologically active 

MSW, despite gas production and other difficulties.   

 

The second prerequisite for testing this hypothesis was that the tracers performed as they were assumed to 

(i.e. conservatively).  Although D2O and bromide were confirmed to be conservative, lithium was shown 

not to be.  Only 50% of the lithium that was introduced to Test 0A was observed at the outlet.  All three 

models used in this study better fitted the data for lithium if a smaller mass of tracer was assumed than 

was actually introduced (between 68% and 72%).   Therefore, whilst some of the non-recovered tracer 

would have arrived at the column outlet if the experiment had continued for a longer duration, the models 

indicate that there remains a substantial discrepancy.   

 

Deductions previously obtained using lithium as a tracer in wastes may need to be reassessed.  In order to 

utilise the lithium data here, a simple mass-adjustment was applied, which assumed that the loss of the 

tracer occurred instantaneously.  

 

A final prerequisite to testing this hypothesis was that continuum models could be applied to the data.  

Given that none of the models could adequately simulate the smaller column experiment under identical 

conditions it was found to be very likely that the smaller column (260 mm diameter) was smaller than the 

necessary ‘representative elemental volume’. 
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Advection-Dispersion (AD) was eliminated as the primary dispersion mechanism due to the unrealistic 

dispersivity values required to fit the model.  The hybrid AD-DP model only fitted well when either the 

AD or dual-porosity (DP) processes dominated.   

 

The DP model, therefore, appeared to be the most suitable of the three models.  Provided the assumption 

that the mass-adjustment model can be applied to the lithium data, the DP parameters can be compared 

between the different tracers.  The different tracer BTCs did not differ in the manner that would be 

expected if the characteristic diffusion times were proportional to the free-water diffusion coefficients.  

This shortcoming does not necessarily imply that dual-porosity effects are unimportant, but suggests that 

the diffusion of different species in leachate is complex.  For both tests only a small fraction of the 

porosity was inferred to be relatively mobile.  This is broadly consistent with previous studies.   

 

Only three very simple models are considered in this analysis. Given the inherent complexity of waste, a 

more robust understanding of the dominant processes will require the inclusion of a wider range of 

conceptual models.  Robust prediction will probably require a multi-model approach which accounts for 

both parameter and process uncertainty (for example, Poeter et al., 2005a). 

 

Despite the high level of control and monitoring in these experiments (which were optimised by previous 

tests in the same apparatus) it is clear that uncertainties still pervade the analysis of BTC data from 

gassing MSW.  There therefore remains considerable scope for experimental improvement, and several 

recommendations follow from this analysis, as follows. 

 

The performance of lithium as a tracer in landfill waste requires further investigation.  In particular further 

investigation is needed into the possibility that batch tests which follow oven-drying of wastes are not 

correctly emulating conditions in a column test.  This may be because the drying process destroys bio-
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films which may be important exchange media.  There remains a need to address the effect of scale on 

flushing from waste.  Previous studies which have looked at different scales in MSW (Fellner, 2009; 

Rosqvist & Destouni, 2000) relied on empirical models to examine scaling.  Unfortunately such models 

are difficult to relate to physical parameters such as diffusion timescales, so there is a need for exploratory 

modelling and possibly also further experimentation.   
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8 TABLES 
 

Table 1: Key parameters for the two test cells 

Parameter Test 0A Test 0B Ratio  

Diameter (m)  2.0 0.26 7.7 
Area, A (m2)  3.14 0.05 62.8 
Flow rate, Q (L/h)  3.7 0.15 24.7 
Flux rate (mm/year) 10,300 26,400 0.4 
Length of waste, L (m)  1.64 0.83 2.0 
Volume of waste (m3) 5.15 0.04 128.8 
Volume of Upper Gravel (L) 99  1  99 
Volume of Lower Gravel (L) 117 1 117 

Total volumetric water content, Tθ  (-) 0.54 0.48 1.125 

Li and D2O injection period, PT  (days)  3  1 3.0 

Test duration (days) 32  42.8 0.7 
Density at field capacity (t/m3) 1.0 1.1 0.91 
Total compressive stress (kPa) 87 - a - 
Mean internal temperature (°C) 10.2 14.4 0.7 
Leachate pH (-) 7.3-7.5 8.0 0.91-0.94 
 

a. the sample was hand-compressed to achieve the same bulk density of phase 1 

 

Table 2: Tracer details for Test 0A and Test 0B 

 Test 0A Test 0B 

Item Li  

(mg/L) 

Br  

(mg/L) 

D2O  

(‰) 
Li  

(mg/L) 

Br  

(mg/L) 

D2O  

(‰) 
Concentration 
in leachate LC  

0.57 552  -22.5 0.24 107.9 -30.0 

Concentration 
of wash water 

WC  

0.01 3.3 -39 0.01 3.3 -39 

Expected 
Tracer 
Concentration 

TEC  

30.3 - 1562 32.7 - 1861 

Measured 
Tracer 
Concentration 

TC  

37.1  
 

- 1598 
 

30.37 
 

- 2276 
 

/TE TC C  (%) 82 - 98 108 - 82 
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Table 3: Models and parameters   

Model 

 

(BGF in brackets) 

Fixed 

parameters 

Fitting 

parameters (N) 

Calculated 

parameters 

AD q, z,
pT  f , D, mθ θ=  (3) at  

DP (sphere, slab, 
cylinder, hollow 
cylinder) 

q, z,
pT  f , cbt , mθ ,θ  (4) imθ , at ,σ , β  

AD-DP (sphere) q, z,
pT  f ,D, cbt , mθ ,θ (5) at ,σ , β  

 
 

Table 4: Parameter ranges used in dotty plots and L-S fitting. Log-scale and Linear-scales are denoted ‘Log’ and ‘Lin’ 

respectively 

Test Model D  
(m

2
/s)  

f
a
 

(-) 
mθ b 

(-) 

θ  
cbt   

(days) 

Scale Log Lin Log Lin Lin 

0A AD 1×10-9-1.0 0-1 0.0001-0.54 - - 
DP - 0-1 0.0001-0.1 0.1-0.54 0.1-1000 
AD-DP 1×10-9-1.0 0-1 0.0001-0.1 0.1-0.54 0.1-1000 

0B AD 1×10-9-1.0 0-1 0.0001-0.1 0.1-0.48 - 
DP - 0-1 0.0001-0.1 0.1-0.48 0.1-1000 
AD-DP 1×10-9-1.0 0-1 0.0001-0.1 0.1-0.48 0.1-1000 

a. for D2O the range for f  was 0.0 to 1.5 

b. for L-S the lower limit for mθ was 0.01 
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Table 5: Best fit points for Test 0A established by L-S fitting.   95% confidence intervals are given in brackets.   UB and 

LB denote where parameters have stopped at the upper or lower bounds 

Tracer  Model f  

(-) 
cbt  

(days) 

D  
(m

2
/s) 

mθ  

(-) 

θ  
(-) 

SSE 
(mg

2
/L

2
) 

2
r  
(-) 

Li 

AD 0.68 
(0.65-
0.72) 

- 1.63×10-6
 

(1.49×10-6-
1.77×10-6) 
 

0.54  
[UB] 

- 2.91 0.951 

DP 
(sphere) 

0.72 
(0.68-
0.76) 

51.3 
(47.2- 
55.5) 

- 0.01  
[LB] 

0.54 
[UB] 

2.72 0.951 

AP-DP 
(sphere) 

0.71  
(0.67-
0.75) 

51.4  
(47.3-
55.9) 

1.00×10-9 

[LL] 
0.01  
[LB] 

0.54 
[UB] 

2.89 0.946 

D2O 
 

AD 0.94 
(0.89-
0.98) 
 

- 1.56×10-6 
(1.45×10-6 – 
1.68×10-6) 
 

0.54  
[UB] 

- 8478 0.976 

DP 
(sphere) 

0.99 
(0.95-
1.03) 

50.8 
(47.8- 
54.1) 

- 0.01 
[LB] 

0.54 
[UB] 

6554 0.978 

AP-DP 
(sphere) 

0.99 
(0.94-
1.03) 

51.4 
(48.1-
55.0) 

3.00×10-8 
(1.75×10-21 
-5.15×105) 

0.01 
[LB] 

0.54 
[UB] 

6130 0.975 

Br 
 

AD 1a 
 

 - 1.51 
(1.35×10-6-
1.69×10-6) 

0.54 
[UB] 

- 20148 0.981 

DP 
(sphere) 

1a 54.2 
(49.3-  
59.2) 

- 0.01 
[LB] 

0.54 
[UB] 

15353 0.981 

AP-DP 
(sphere) 

1 a 57.0 
(49.4-
65.5) 

4.69×10-7 
(-3×10-5-
3.11×10-5)b 

0.01 
[LB] 

0.54 
[UB] 

11003 0.987 

 
a. Fixed parameters 

b. Fitted on linear scale 
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9 FIGURES 
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Figure 1: Schematic of Test 0A and 0B apparatus.  Dashed lines represent the routing of pipework 

during recirculation. During the flushing phase, the water tank was regularly refilled from a 

domestic supply. The gas meter was only used during the recirculation phase of Test 0A. 
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Figure 2: Least-Squares (L-S) best fits for the AD-DP (dotted), AD (continuous) and DP (dashed) models.   
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Figure 3: Phase 1 tcb  as fitted by the DP model (white bars) using least-squares and scaled using the ratios of free-water 

diffusion coefficients and assuming that the tcb for bromide is the same as fitted (grey bars).  Error bars denote 95% 

confidence intervals.   Free water diffusion coefficients of 2.1,1.0 and 2.3×10
-9

m
2
/s are assumed for Br, Li and D2O, 

respectively (Cussler, 1997) 

 

 
Figure 4: Dotty plots for lithium and deuterium oxide (D2O) for the DP model parameter f. 
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Figure 5: Dotty plots for lithium, deuterium oxide (D2O) and bromide for the DP model parameters tcb 

and θm.   
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10 APPENDIX 

Table A.1:  Block Geometry Functions (from Barker 1985) 

Geometry B( )x  

Slab 
 

tanh( )x

x
 

Sphere 
 2

coth(3 ) 1

3

x

x x
−  

Infinitely long 
cylinder 
 

1

0

I (2 )

I (2 )

x

x x
 

Infinite hollow 
cylinder 
(impermeable 
external surface) 
 

1 1 1 2 1 1 1 2

0 1 1 2 0 1 1 2

1 K ( )I ( ) I ( )K ( )

I ( )K ( ) K ( )I ( )

Z Z Z Z

x Z Z Z Z

 −
 

+ 
 

where 1 2

2

1

x
Z

ρ
=

−
 and 2 2

2

1

x
Z

ρ

ρ
=

−
 

 


