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Shape adaptive RBF-FD Implicit Scheme for

Incompressible Viscous Navier-Strokes Equations

A. Javed∗, K. Djijdeli, J. T. Xing

Abstract

Meshless methods for solving fluid flow problems have become a promising

alternative to mesh-based methods. In this paper, a meshless method based

on radial basis functions in a finite difference mode (RBF-FD) has been de-

veloped for the incompressible Navier-Stokes (N-S) equations in primitive

variable form. Pressure-velocity decoupling has been achieved using a frac-

tional step method whereas time splitting has been done using both explicit

and implicit schemes. The RBF-FD implicit scheme shows better accuracy

and stability, and is able to accurately capture higher gradients of field vari-

ables even at coarser grids; unlike the RBF-FD explicit scheme where loss

of accuracy was especially prominent at places with larger gradients. To

overcome the ill-conditioning and accuracy problems arising from the use

of non-uniform and random node distribution, a novel concept of adaptive

shape parameter (ASP) for RBF functions is introduced. The use of ASP

allows much finer nodal distribution at regions of interest enabling accurate

capturing of gradients and leading to better results. The performance of the
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implicit RBF-FD scheme with the ASP strategy is validated against a variety

of benchmark problems, including lid driven cavity flow problems, and steady

and unsteady laminar flow around circular cylinder at various Reynolds, and

is found to be in good agreement with the existing results.

Keywords: Meshless method, Radial Basis Function in Finite Difference

Mode, explicit/implicit time discretization of N-S equations, Adaptive

Shape Parameter, CFD, Incompressible Navier Strokes equations

1. Introduction1

In the past two decades, meshless methods have emerged as a class of ef-2

fective numerical techniques for the solution of various engineering problems.3

The aim of these methods is to eliminate, at least, the structure of the mesh4

and approximate the solution entirely using a set of arbitrarily distributed5

nodes (or particles). They have the capability to accommodate larger defor-6

mations as well as coping with the domains comprising of irregular/complex7

geometries with relative ease. Moreover, it is easier to add or remove nodes8

from the domain during the analysis which otherwise is a tedious task in9

case of mesh-based methods. Some of the well-known meshless methods are10

smooth Particle hydrodynamic (SPH) method [1], diffuse element method11

(DEM) [2], element free Galerkin method (EFGM) [3], reproducing Kernel12

particle method (RKPM) [4], partition of unity method (PUM) [5], finite13

point method (FPM) [6], and Local Petrov Galerkin Method (LPGM) [7].14

In recent years, the class of meshless methods, based on Radial Basis15

Functions (RBFs), have become attractive for solving PDEs [8], [9], [10],16

[11], [12], [13], [14], [15], [16], [17]. Initially, RBFs were developed for mul-17
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tivariable data and function interpolation, especially for higher dimension18

problems. The advantages of using RBFs as a truly meshless method have19

been verified by its mesh independence, superior convergence and adaptivity20

to high dimension. On the other hand, it is well known that the coeffi-21

cient matrices for RBF collocation methods becomes ill- conditioned when22

the number of nodes increases. Various researchers have suggested use of23

local RBF methods to cope with ill-conditioning problem [8], [9], [10]. These24

local RBF methods compromise on spectral accuracy and come up with a25

sparse, well-conditioned linear system which is also more flexible in handling26

non-linearity. Among these, RBF-FD has been independently proposed by27

Tolstykh et al. [10] and Wright et al. [8] for different types of applications.28

The technique provides a better conditioned and sparse linear system with29

greater flexibility to handle non-linearity. The idea is to generalize the use30

of finite difference on a domain containing arbitrary / random nodes instead31

of a regular grid.32

Selection of appropriate shape parameter of RBF function is extremely33

important to ensure accuracy while solving equations using RBF method.34

Various authors have investigated the optimal values of shape parameter for35

RBFs. Franke [11] investigated 30 different interpolation schemes and sug-36

gested an mathematical relationship for optimal value of shape parameter37

for multiquadratic RBFs. Hardy [12] suggested a value of optimal shape38

parameter based on average distance of the neighbouring nodes within the39

influence domain from point of interest. Rippa [13] recommended an algo-40

rithm for selecting a good value of shape parameter in RBF interpolation.41

The fact is that the accuracy of results is greatly influenced by the value of42
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shape parameter and the choice of an optimal value of shape parameter is43

still open to further research.44

RBF-FD technique provides a good potential of solving fluid dynam-45

ics problems (like Navier- Strokes Equations) due to their ability to handle46

dense grids. Chinchapatnam et al. [14] provided the method for solving47

incompressible Navier Strokes equation in vorticity streamfunction formula-48

tion using RBF-FD method. Vorticity streamfunction formulation of N-S49

equations however, cannot be extended to 3-D problems and is limited to50

incompressible regime only. Moreover, physical parameters (velocity and51

pressure) cannot be calculated directly using this formulation. It is therefore52

logical to investigate the application of RBF-FD approach for N-S equations53

in their primitive variable form.54

A method of solution of Navier-Strokes equations in their primitive vari-55

able form is therefore presented using RBF-FD technique. Pressure-Velocity56

decoupling, in N-S equations, has been achieved by fractional step method57

based on Chorin algorithm. Time discretization of resultant momentum58

equation after decoupling the pressure term has been achieved using explicit59

and implicit approaches. Explicit RBF-FD employs Euler explicit method60

for temporal discretization of momentum equations. For implicit approach,61

second order implicit Crank-Nicolson method has been used for viscous term62

whereas convective term is discretized using second order accurate Adams-63

Bashforth scheme. Suggested meshless schemes are tested for uniform, non-64

uniform and random particle distributions and have been validated by the65

benchmark solutions of lid driven cavity flow problems provided by Ghia66

et al. [18]. Excellent numerical results are obtained on non-uniform node67
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distribution using the implicit RBF-FD method. Accuracy tests of Implicit68

RBF-FD scheme have been performed. Moreover, Implicit RBF-FD scheme69

has also been used to simulate steady and unsteady laminar flow around70

circular cylinder at different Reynolds numbers.71

In addition, the authors have also investigated the novel concept of using72

adaptive shape parameters, for Radial Basis Function, within the domain in-73

stead of globally similar values as used conventionally. The aim is to maintain74

the well conditioning of coefficient matrix for RBF-FD weights in a domain75

represented by non-uniform nodal distribution. The values of shape parame-76

ters have been selected to keep the condition number of coefficient matrix to77

low which ultimately affects the accuracy of the interpolation.78

This paper is organised as follows: Section 2 presents the governing79

Navier-Stokes equations in primitive variables along with space and time80

splitting. A basic idea of the RBF-FD collocation method is also presented.81

Section 3 outlines the solution algorithm. A novel concept of using adap-82

tive shape parameters of RBF functions is presented in Section 4. Detail of83

numerical tests has been presented in Section 5 and finally conclusions are84

drawn in Section 6.85

2. RBF-FD for Incompressible N-S Equations86

The time dependant, incompressible and viscous Navier-Strokes equations87

in non-dimensional primitive (pressure-velocity) variable form are expressed88

as:89

∇.�V = 0 (1)
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∂�V /∂t = −∇P −
(

�V .∇
)

�V + (1/Re)∇2�V (2)

where �V is the velocity vector, P is the pressure, and Re is the Reynolds90

number. One of the major difficulties faced during numerical solution of91

transient Navier-Strokes equations in primitive variable form is that the con-92

tinuity equation does not contain a time derivative. In order to address this93

problem, the constraint of mass conservation is achieved by coupling the94

pressure term with continuity equation. For this purpose, an intermediate95

velocity term �V ∗ is introduced, between two consecutive time steps, to decou-96

ple pressure term from momentum equation. The class of these methods is97

known as fractional step methods. In this research, the solution scheme uses98

Chorin algorithm [19]. The method is based on the non-incremental pressure99

correction which provides simple method of time discretization using frac-100

tional step approach. Other solution schemes may also be developed using101

different time discretization methods [20]. Using this approach, equation (2)102

can be written as:103

�V ∗ − �V n

∂t
= −

(
�V .∇

)
�V + (1/Re)∇2�V (3)

the pressure term in momentum equation can then be linked with velocity

as:
�V n+1 − �V ∗

∂t
= −∇P n+1 (4)

where �V n and �V n+1 are the velocity values at nth and (n + 1)th time step

respectively and P n+1 is the pressure value at (n+1)th time step. Now, from

continuity equation (1):

∇�V n+1 = 0 (5)
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Substituting the value of �V n+1 from equation (4) into (5) leads to,

∇2P n+1 = (1/Δt)∇.�V ∗ (6)

Equation (5) is called pressure Poisson equation. By incorporating pressure104

term into continuity equation, the continuity is satisfied in the process of105

solution of transient flow problem.106

2.1. Space Splitting107

RBF-FD scheme is used to approximate the spatial derivatives appearing

in equations (3), (4) and (6). RBF-FD is the generalization of classical

finite difference method over scattered nodes. The essence of RBF in Finite

difference mode is that derivative of any dependant variable can be expressed

as weighted linear sum of same variable values at surrounding data points in

the support domain. Using classical finite difference approach, the derivative

of any parameter u at any node, say x1, can be expressed as

Lu(x1) =
N∑

j=1

W
(L)
1,j u(xj) (7)

where N is the number of nodes in the support domain of node x1, u(xj) is

the value of parameter u at node xj and W
(L)
1,j is the weight of corresponding

differential operator L at node xj for node x1 as shown in figure 1. The

standard RBF interpolation for a set of distinct points xjεR
d, j = 1, 2, ...N

is given by:

u(x) ≈ s(x) =
N∑

j=1

λjφ(‖x − xj‖) + β (8)

where φ(‖x− xj‖) is the radial basis function, ‖.‖ is the standard Euclidean

norm and λj and β are the expansion coefficient. Some of the common radial
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basis functions are given in Table 1. In Lagrange form, equation (8) can be

written as:

s̄(x) =
N∑

j=1

X (‖x − xj‖) u (xj) (9)

where X (‖x − xj‖) satisfies the cardinal conditions as

X (‖xk − xj‖) =

⎧⎨
⎩ 1, if k = j

0, if k �= j
k = 1, 2, ...N (10)

Applying the differential operator L on equation (9) at node x1 yields:

Lu (x1) ≈ Ls̄ (x1) =
N∑

j=1

LX (‖x1 − xj‖) u (xj) (11)

Using equations (7) and (11), RBF-FD weights W
(L)
1,j are given by

W
(L)
1,j = LX (‖x1 − xj‖) (12)

The weights can be computed by solving the following linear system [14]:⎡
⎣ Φ e

eT 0

⎤
⎦

⎡
⎣ W

μ

⎤
⎦ =

⎡
⎣ Lφ1

0

⎤
⎦ (13)

where Φi,j = φ (‖xj − xi‖) , i, j = 1, 2, . . . , N , ei = 1, 2, . . . , N , Lφ1 rep-

resents the column vector Lφ1 = [Lφ‖x − x1‖Lφ‖x − x2‖ . . .Lφ‖x − xN‖]T

evaluated at node x1 and μ is a scalar parameter which enforces the condition:

N∑
j=1

W
(L)
1,j = 0 (14)

Evaluation of equation (13) at each node x1 gives weights WL
1,j of all the108

nodes in the support domain for particular differential operator L. Corre-109

sponding weights and location of nodes in support domains are then used to110

approximate the complete differential equation at node x1.111
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Figure 1: Support domain of a reference node

RBF-FD approximation of spatial derivatives appearing in equations (3),

(4) and (6) can be obtained, at any node i, using values of parameters at

surrounding nodes within the influence domain and their corresponding RBF-

FD weights in equation (7). RBF-FD approximation of spatial derivatives

appearing in equations (6) and (4) in 2-D Cartesian component form can be

written as:

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
P n+1

j =
1

Δt

(
N∑

j=1

W
(x)
i,j u∗

j +
N∑

j=1

W
(y)
i,j v∗

j

)
(15)

un+1
i − u∗

i

Δt
= −

N∑
j=1

W
(x)
i,j P n+1

j (16)

vn+1
i − v∗

i

Δt
= −

N∑
j=1

W
(y)
i,j P n+1

j (17)

where, ui and vi are the Cartesian components of velocity vector �V at node112

i in x and y directions respectively, N is the total number of interior and113
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Table 1: Commonly used radial basis functions

Type of radial basis function Expression of φ(r)

Multi-quadratic (MQ) φ(r) =
√

r2 + σ2

Inverse Multi-quadratic (IMQ) φ(r) = 1/
√

r2 + σ2

Inverse Quadratic (IQ) φ(r) = 1/(r2 + σ2)

Gaussian (GA) φ(r) = exp(−(σr)2)

boundary nodes which lie in the supporting region/stencil for the node i and114

W
(x)
i,j , W

(y)
i,j , W

(xx)
i,j and W

(yy)
i,j are the RBF-FD weights corresponding to115

the differential operator ∂/∂x, ∂/∂y, ∂2/∂x2 and ∂2/∂y2 respectively. These116

weights are obtained by solving the system of equation (13) for corresponding117

differential operators applied to the basis functions.118

2.2. Time Splitting119

Explicit and implicit discretization schemes are used to approximate time120

derivatives appearing in equation (3). Description of each approach has been121

detailed below:122

2.2.1. Explicit Approach123

Explicit Euler discretization of time derivative appearing in equation (3)

can be written as

�V ∗ − �V n

∂t
= −

(
�V n.∇

)
�V n + (1/Re)∇2�V n (18)

At the end of each time step, continuity condition is satisfied by Pois-

son equation (6) with non-zero source term. However, intermediate velocity
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field may not satisfy continuity [21] [22]. RBF-FD approximation of spatial

derivatives of equation (18) in 2D Cartesian form can be written as:

u∗
i − un

j

Δt
= −un

i

N∑
j=1

W
(x)
i,j un

j − vn
i

N∑
j=1

W
(y)
i,j un

j

+
1

Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
un

j (19)

v∗
i − vn

j

Δt
= −un

i

N∑
j=1

W
(x)
i,j vn

j − vn
i

N∑
j=1

W
(y)
i,j vn

j

+
1

Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
vn

j (20)

Intermediate velocity components can be determined from values of previ-124

ous iteration using equations (19) and (20). Then the pressure values P n+1
125

can be calculated by solving Poisson equation (15) using intermediate veloc-126

ity values. Velocity values for next iteration can then be calculated using127

equations (16) and (17).128

Although explicit methods are known to be computationally efficient and129

are low on memory consumption, strict stability requirements put by CFL130

conditions (Δt < CΔx/vmax, where Δt is time step, Δx is space step, C131

is a constant and vmax is maximum particle velocity) severely limit their132

application. Moreover, the Euler explicit scheme is only first order accurate.133

Therefore, accuracy of the solution is compromised, especially at regions of134

high gradients, unless very high nodal density is introduced. The higher135

nodal density calls for smaller time steps to meet CFL criterion which slows136

the time step marching.137
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2.2.2. Implicit Approach138

The following approach has been used to achieve second-order accurate139

implicit in time scheme for velocity momentum equation (3):140

1. Second order explicit Adams-Bashforth scheme is used for convective141

term appearing in equation (3), and142

2. second order implicit Crank-Nicolson scheme is used for viscous term143

appearing in equation (3).144

Both the schemes are second order accurate which helps reduce time dis-

cretization error of the overall equation. Although Adams-Bahsforth scheme

is explicit in time and is somehow affected by CFL stability conditions; the

restrictions are more relaxed than for Euler Explicit scheme [23]. Moreover,

numerical viscous stability restrictions are eliminated due to implicit treat-

ment of viscous term [24]. Therefore, larger time steps values can be chosen

to enable faster marching in time. Discretized forms of convective and viscous

terms are shown below:

(
�V n.∇

)
�V n =

1

2

[
3
(

�V n.∇
)

�V n −
(

�V n−1.∇
)

�V n−1
]

(21)

1

Re
∇2�V n =

1

2Re

[
∇2

(
�V n + �V ∗

)]
(22)

Hence equation (3) can be expressed as:

�V ∗ − �V n

Δt
= −1

2

[
3
(

�V n.∇
)

�V n −
(

�V n−1.∇
)

�V n−1
]

+
1

2Re

[
∇2

(
�V n + �V ∗

)]
(23)
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RBF-FD approximation of the 2-D spatial derivatives appearing in equation

(23) is as follow:

u∗
i −

Δt

2Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
u∗

j = un
i +

Δt

[
− 1

2

{
3
(
un

i

N∑
j=1

W
(x)
i,j un

j + vn
i

N∑
j=1

W
(y)
i,j un

j

)

−
(
un−1

i

N∑
j=1

W
(x)
i,j un−1

j + vn−1
i

N∑
j=1

W
(y)
i,j un−1

j

)}

+
1

2Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
un

j

]

(24)

v∗
i −

Δt

2Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
v∗

j = vn
i +

Δt

[
− 1

2

{
3
(
un

i

N∑
j=1

W
(x)
i,j vn

j + vn
i

N∑
j=1

W
(y)
i,j vn

j

)

−
(
un−1

i

N∑
j=1

W
(x)
i,j vn−1

j + vn−1
i

N∑
j=1

W
(y)
i,j vn−1

j

)}

+
1

2Re

N∑
j=1

(
W

(xx)
i,j + W

(yy)
i,j

)
vn

j

]

(25)

Equation (24) can be written in more concise form as:

[A]{u∗} = [B]{un} + [C]{un−1} (26)

where145

Ai,j =

{
1 − Δt/2 (visci,j) (i = j)

−Δt/2 (visci,j) (i �= j)
146
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Bi,j =

{
1 + Δt/2

(−3convn
i,j + visci,j

)
(i = j)

Δt/2
(−3convn

i,j + visci,j

)
(i �= j)

147

Ci,j = Δt/2
(
convn−1

i,j

)
148

convn
i,j = un

i W
(x)
i,j + vn

i W
(y)
i,j149

convn−1
i,j = un−1

i W
(x)
i,j + vn−1

i W
(y)
i,j150

visci,j = 1/Re
(
W

(xx)
i,j + W

(yy)
i,j

)
151

Matrix equations can similarly be formulated for v∗ as:

[A]{v∗} = [B]{vn} + [C]{vn−1} (27)

Intermediate velocity components are therefore, calculated by solution of152

matrix equations (26) and (27). Subsequently, equations (15) to (17) are153

used to calculate pressure and velocity values for next iteration. The process154

requires simultaneous solution of matrix equations which is computation-155

ally expensive. However due to local feature of RBF-FD, sparse coefficient156

matrices are generated which make the solution process fast and are low157

on memory. The larger time steps allowed by the implicit treatment make158

the convergence process faster for fixed number of iterations in steady state159

problems. Therefore, overall computational efficiency improves for Implicit160

RBF-FD.161

3. Solution Algorithm162

After representing the domain with finite number of particles (or nodes)163

and applying initial conditions, the following numerical procedure is used:164

1. Intermediate velocities values (�V ∗) are calculated at each node for the165

particular time step. For Euler explicit approach, equations (19) and166
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(20) are used. For implicit approach, system of equations formed by167

evaluating equations (26) and (27) at each node is solved to obtain168

(�V ∗). The boundary conditions for intermediate velocity are taken to169

be the same as nodal velocities at next time iteration on the boundary.170

2. Equation (15) is solved using known values of intermediate velocities171

(�V ∗) at the time step to find the values of pressure at each node.172

The Pressure values on the boundaries are obtained using the equa-173

tion n.∇P n+1
b = (1/Δt)|�V ∗ − �V n+1|b, where n is the unit vector in174

outward normal direction to the boundary and subscript b represents175

the values at the boundary.176

3. Finally, equations (16) and (17) are used to update the velocity com-177

ponents for next time step.178

4. Convergence is monitored by calculating the norm of difference in ve-179

locity vectors between two consecutive time steps. The process (Step180

1-3) is repeated until desired convergence is achieved.181

As RBF-FD generates a sparse matrix, Generalized Minimum Residual182

(GMRES) method with incomplete LU decomposition for preconditioning183

[25] is used for solution of matrix equations (15), (26) and (27). The sparse184

matrix equation greatly reduces the computational load and memory require-185

ment of the program186

4. Adaptive Shape Parameter (ASP) for Radial Basis Function187

It has been discussed before that choice of good value of shape parameter188

(σ) significantly affects the accuracy of RBF interpolation. Wang [26] states189

the sensitivity of results with choice of shape parameter as one of the biggest190
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limitations of RBF. Huang et al [15] mentioned that accuracy of the solu-191

tion can be improved by making the basis function flatter. For example in192

RBF-IMQ, the basis function can be made flatter by increasing the value of .193

However, flattening the basis function increases the condition number of the194

coefficient matrix of RBF weights (as in Equation (13)) making the problem195

ill-conditioned. Kansa [16] found that condition number of coefficient ma-196

trix was a key factor in determining the accuracy of the RBF interpolation.197

Therefore, the choice of shape parameter value has to be a balance between198

accuracy related to flatter basis function and round off error arising from199

ill-conditioning of coefficient matrix appearing in equation (13). Rippa [13]200

mentioned that choice of a good value of shape parameter should take into201

account the number and distribution of data points in support domain, the202

basis function and condition number of the coefficient matrix.203

During flow simulations, nodal distribution within the domain is varied to204

achieve optimal nodal density. Moreover, use of randomly distributed nodes205

is necessitated in many cases. In such situations, each data point will have206

different node distribution patterns within its influence domain. Therefore,207

use of a globally similar value shape parameter, for all the particles within208

the entire domain, will adversely affect the well conditioning of the coefficient209

matrix. Figure 2 outlines the trend of condition number of coefficient matrix210

with varying value of shape parameter (σ) for various RBFs. The plots are211

obtained on 41x41 pseudo random grid where node locations are disturbed212

slightly from their corresponding uniform grid positions. It can be observed213

that, irrespective of the basis function used, the range of shape parameter,214

corresponding to lower condition numbers of coefficient matrix, varies with215
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the nodal spacing. Hence the accuracy of the solution would vary by chang-216

ing the number and distribution of nodes for a constant shape parameter.217

For such domains, if fixed values are used, the round off errors caused by218

ill-conditioning sometimes dominates and the matrix solution becomes un-219

stable hence causing breakdown of the solution process [17]. This puts severe220

limitations on the use of non-uniform or random particle distribution within221

the domain. Therefore, for the problems where same RBF function is used222

for the entire domain, choosing shape parameter value based on number and223

distribution of neighbouring data points could keep the condition number of224

coefficient matrix to the minimum.225

The choice of the good value of shape parameter is still a hot topic in226

research and various authors have suggested different methods of finding227

an optimum shape value for different problems [11], [13], [26], [15], [17].228

However, for present study, a commonly used scheme, presented by Franke229

[11], has been used which suggests the shape parameter as σi = 1.25D/
√

N230

(Where N is the number of data points in the influence domain of the particle231

i and D is the diameter of the minimal circle enclosing all the data point).232

Other schemes for calculating optimum shape parameters can also be tested233

to further validate the concept.234

For the adaptive shape parameter concept, value of (σ) is calculated ex-235

clusively for each data point and its value is decided based on number and236

distribution of neighbouring particles in the influence domain. Besides ensur-237

ing accuracy and well-conditioned coefficient matrix, use of adaptive shape238

parameter also allows larger variation of nodal density within the domain.239
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Figure 2: Variation of condition number of coefficient matrix with shape parameter
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5. Numerical Tests240

5.1. Test of Accuracy241

Accuracy tests have been conducted for Implicit RBF-FD method to es-

tablish spatial and temporal order of accuracy. For this purpose, decaying

vortex problem has been selected. The problem has a known analytical solu-

tion and is often used to verify the accuracy of new methods [24], [27], [28],

[29]. Theoretical solutions for velocity and pressure fields are:

u(x, y, t) = −cos(πx)sin(πy)exp(−2π2t/Re) (28)

v(x, y, t) = sin(πx)cos(πy)exp(−2π2t/Re) (29)

p(x, y, t) = −0.25 ((2πx) + sin(2πy)) exp(−4π2t/Re) (30)

The flow Reynolds number is defined as Re = ρUL/μ, where ρ is the fluid242

density, U is maximum initial flow velocity, L is the length of vortex and μ is243

the dynamic viscosity. Numerical solution of the problem has been obtained244

over a square domain which spans [−0.5, 0.5]×[−0.5, 0.5]. The domain is rep-245

resented by uniform as well as pseudo random nodal arrangement. Random-246

ness has been applied by introducing perturbation in the original (uniform247

grid) location of the nodes. This Random perturbation is however restricted248

to 20% of the grid spacing to avoid excessive clustering of nodes. The initial249

conditions have been defined by using analytical solutions of velocity and250

pressure (equations (28) - (30)) on respective nodal coordinates at t = 0.251

Dirichlet boundary conditions have also been defined at all the four bound-252

aries using theoretical expressions for velocity and pressure at time instant253

t.254
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In order to evaluate the order of accuracy in space, numerical solutions are255

obtained at t = 0.4 sec for different values of nodal spacing. Flow Reynolds256

number has been set as 10 and time step has been chosen to be 10−4 sec.257

The total error for each case has been calculated by evaluating norm-2 of the258

difference between numerical and analytical velocity and pressures values at259

all the nodes. Order of accuracy has been calculated as slope of total error260

and grid spacing (h) on a logarithmic scale. The results for pressure and261

velocity have been shown in Table 2. Results for v-component of velocity262

have not been shown because these are similar to those of u-component of263

velocity. On a uniform grid, velocity is found to be third order accurate in264

space. However, the order of accuracy reduces on random grid. The order265

of accuracy for pressure is around 2.85 and it does not change significantly266

with randomness of nodes. The order of accuracy in time has been calculated267

by simulating the problem at various time steps on a 51 × 51 uniform grid.268

The method is found to be first order accurate in time for both velocity and269

pressure which is consistent with the observation of previous researches [30],270

[31]. Order of accuracy in time can be improved further by incorporating271

strict divergence constraints on intermediate velocity field as suggested by272

Brown et al [30]. Moreover, introducing incremental pressure correction in273

fractional step schemes, such as suggested by Goda [20], is shown to have274

improved order of accuracy in time [31].275

5.2. Lid Driven Cavity Flow Problem276

The proposed schemes have been validated by solving Lid Driven Cavity277

Flow problem at various Reynolds Numbers and comparing the results with278

benchmark solutions provided by Ghia et al [18]. Applicability of schemes279
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Table 2: Order of accuracy in space for Implicit RBF-FD

Grid Size (h) ‖error‖2

Uniform Grid Random Grid

u-component of velocity

0.05 4.44E-4 2.82E-4

0.04 2.93E-4 1.74E-4

0.025 9.09E-5 5.90E-5

0.02 4.56E-5 3.48E-5

0.01 3.53E-6 3.51E-6

Order of Accuracy 3.16 2.67

Pressure

0.05 3.56E-4 3.40E-4

0.04 2.19E-4 2.41E-4

0.025 5.80E-5 6.60E-5

0.02 2.72E-5 3.76E-5

0.01 3.53E-6 4.57E-6

Order of Accuracy 2.86 2.85

21



  

has been verified on uniform, non-uniform and random grids. For uniform280

grid, the nodal spacing has been kept constant throughout the domain. For281

non-uniform grid, nodal spacing has been varied in a controlled manner in282

order to keep a higher the nodal density at regions where large gradients283

of field variables are expected. This has been done to optimize the compu-284

tational effort so as to achieve greater accuracy with less number of nodes.285

Random grid represents the domain where nodes have been distributed ran-286

domly. The random distribution of nodes has been achieved by incorporating287

Sobol Sequence in coordinate location of the nodes. Low discrepancy Sobol288

Sequence randomizes the nodal spacing while still maintaining an overall uni-289

formity in distribution of nodes. Three different types of grids used for the290

study have been shown in figures 3(a) - 3(c).291

The velocity boundary conditions are directly obtained from physical con-292

straints. On all the four walls, velocity component normal to boundary is293

zero. This ensures that there is no penetration of flow across the boundary.294

Moreover, no-slip boundary conditions dictate that tangential component of295

velocity of flow along the boundary τ remains constant and equal to the296

speed of the boundary itself. So, (�un) = 0 and (�ut) = C2 at boundary τ297

where, (�un) and (�ut) are the velocity components in outward normal and298

tangent direction of boundary respectively and C2 is a constant. Neumann299

Pressure boundary conditions are introduced using the procedure mentioned300

in Section 3. Implementation of Neumann boundary condition for pressure301

has been achieved through locally orthogonal grid near the boundary. For302

uniform and non-uniform particle distribution, condition of locally orthog-303

onal grid is naturally satisfied. However, for random particle distribution,304
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(a) Uniform distribution (b) Non-uniform distribution

(c) Random Distribution (for interior nodes)

Figure 3: Various configurations of particle distribution
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Table 3: Required grid sizes for each test case (Lid driven cavity flow)

Reynolds number Required grid size

Explicit RBF-FD Implicit RBF-FD

100 91 × 91 71 × 71

400 121 × 121 71 × 71

1000 151 × 151 101 × 101

inner particles may not remain orthogonal to the boundary. Therefore, spe-305

cial care has to be taken to ensure locally orthogonal grid near the boundary.306

Implementation of locally orthogonal grid for random nodal distribution has307

been shown in figure 3(c).308

5.2.1. Comparison of Implicit and Explicit RBF-FD Schemes309

The results for Lid Driven cavity flow have been calculated at Reynolds310

number 100, 400 and 1000, respectively. For Explicit RBF-FD approach, the311

time step has been kept at 5 × 10−4 whereas for implicit approach, a time312

step of 10−3 has been chosen. Grid configuration has been kept similar for313

all the cases to ensure a valid comparison. Non-uniform grid, with nodal314

spacing ratio of 2.5 between corner-to-centre nodes, has been used for all the315

cases. Constant values of shape parameters have been used here. Resultant316

velocity plots, at all three Reynolds numbers, obtained from explicit RBF-FD317

solution are shown in figure 4(a) - 4(c). Similar plots for implicit RBF-FD318

approach are shown in figure 5(a) - 5(c). Table 3 shows the optimum grid319

sizes required to get accurate results for each case.320

It can be observed that for implicit solutions, required accuracy can be321
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achieved with relatively coarser grid compared to the explicit solution. This322

is due to higher order of accuracy achieved during time splitting of govern-323

ing equations which suffer from less discretization error. Moreover, implicit324

treatment also eliminates the numerical viscous stability restrictions. These325

restrictions are particularly sever at low Reynolds numbers and near the326

boundaries [28]. Therefore, implicit schemes work well even for larger time327

step values. Significant improvement in CPU time was observed during nu-328

merical tests while using implicit scheme. For example, at Re 100 using329

91 × 91 grid, the CPU time for implicit the scheme was 7114 sec, whereas330

for explicit scheme, it was 36306 sec using Intel R© 3.1 GHz Processor ma-331

chine. Thus, the computation time was reduced by a factor of 5 using implicit332

scheme. Possibility of using larger time step and higher accuracy at relatively333

coarser grids makes the implicit RBF-FD computationally more efficient and334

stable technique for solution of Navier-Strokes equations in primitive variable335

form.336

5.2.2. Effect of Nodal Distribution337

In order to study the effect of changing nodal distribution with the do-338

main, a comparison of results from uniform and non-uniform grids has been339

presented. The test cases have been run at Reynolds Numbers 100 and 400340

on 71 × 71 grids using implicit approach. The results obtained on both uni-341

form and non-uniform grids have been plotted together in figure 6. It can342

be observed that non-uniform grid was able to capture the velocity gradients343

more accurately due to higher nodal density at critical areas. Therefore,344

selectively distributing the particles in the domain to achieve the nodal den-345

sity according to expected flow characteristics and gradient of field variables;346
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(a) Re 100

(b) Re 400

(c) Re 1000

Figure 4: Results for explicit approach
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(a) Re 100

(b) Re 400

(c) Re 1000

Figure 5: Results for implicit approach
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(a) Re 100

(b) Re 400

Figure 6: Comparison of Results on uniform and non-uniform grids

helps achieve accurate results even for less number of nodes.347

Meshless particle methods often employ random particle distribution.348

Therefore, implicit scheme has been used to solve the flow case over ran-349

dom particle distribution at Re 100. Grid size of 51 × 51 was chosen and350

results were compared with benchmark results provided by Ghia et al [18].351

Resultant velocity profiles in Figure 7, show good agreement with benchmark352

solution which validates the application of suggested scheme on random grid.353
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Figure 7: Results on random grid

5.2.3. Comparison of Constant and Adaptive Shape Parameters354

It can be observed from figures 3(b) and 3(c) that the nodal spacing,355

and thus the distribution of nodes, varies considerably within the domain.356

Therefore, the condition number of coefficient matrix can go higher for certain357

data points thus affecting the accuracy of solution. In order to avoid the358

possible ill-conditioning of coefficient matrix, shape parameter value can be359

made adaptive with nodal distribution. For this purpose, the value of shape360

parameter is chosen separately at each node depending upon the particular361

nodal distribution in the influence domain. This ensures that the problem362

remains well posed at all data point.363

The results of lid driven cavity flow problem at Re 400 and 1000 with364

fixed and adaptive shape parameter using implicit RBF-FD technique have365

been compared. Non-uniform grid size of 51 × 51 is used at Re 400 whereas366

101× 101 sized grid is used for Re 1000. For non-uniform grid, if a constant367

value of shape parameter (σ) is used, the ratio of nodal spacing between368

corner-to-centre nodes is limited to 2.5. Any value higher than 2.5 will cause369
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Figure 8: Results for fixed and adaptive RBF shape parameter (σ): Re 400 over

40 × 40 grid

ill-conditioning (as discussed before) and solution will break down without370

reaching convergence. However, when adaptive shape parameter technique371

is used, the ratio of nodal spacing between corner-to-centre nodes can be in-372

creased up to 4.0 without introducing ill-conditioning. The grid can therefore373

be made much more refined close to the walls than for fixed shape parameter374

approach. The results are therefore, more accurate for same number of nodes375

within the domain. The velocity plots at Re 400 and 1000 are shown in fig-376

ures 8 and 9, respectively (for fixed and adaptive RBF shape parameters).377

Significant improvement in results is observed with the use of adaptive shape378

parameters.379

5.3. Flow past Circular Cylinder380

In this work, implicit RBF-FD method with adaptive shape parameter has381

been used to simulate laminar flow over a circular cylinder. The flow prob-382

lem has extensively been studied by previous researchers [32], [33], [34], [35],383
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(a) vx

(b) vy

Figure 9: Results for fixed and adaptive RBF shape parameter(σ): Re 1000 over

40 × 40 grid
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[36], [37], [38] and is often used as benchmark problem to examine the per-384

formance of new numerical techniques. Flow around cylinder demonstrates a385

periodically unsteady pattern when its Reynolds number Re = (U∞D)/ν is386

larger than the critical value (Re ≈ 49) [9], where U∞ is the free stream ve-387

locity, D is the diameter of cylinder and ν is the kinematic viscosity. For low388

Reynolds numbers (Re < 50), steady flow field is obtained around cylinder.389

However at moderate range of Reynolds numbers (50 < Re < 190), the flow390

remains laminar but a vortex shedding phenomenon (also known as Karman391

Vortex Street) is observed. In the present work, flow around circular cylinder392

has been solved at Re 10, 20, 40, 100 and 200 to simulate both steady and393

unsteady flow patterns. Configuration of domain geometry is shown in figure394

10. Total length of the rectangular domain is kept 30 times the diameter of395

the cylinder. Inlet is placed 5 times the diameter away from the centre of396

cylinder. Top and bottom boundaries are located at a transversal distance397

of 6 times the cylindrical diameter. Free Stream velocity U∞ has been speci-398

fied at inlet boundary to correspond to Reynolds number of flow. Boundary399

conditions at top and bottom boundaries are the same as inflow boundary.400

No slip boundary conditions are specified at cylinder surface (u = v = 0,401

where u and v are Cartesian components of velocity) and zero velocity gra-402

dient condition (∂u/∂x = ∂v/∂x = 0) has been applied at outflow boundary.403

Pressure at outflow boundary has been obtained by the use of equation (23).404

The nodal distributions have been shown in figure 11 for steady and405

unsteady flow cases. For unsteady flow cases, a finer grid is used near the406

cylinder to accurately capture time varying flow. A total of 16061 and 17758407

nodes have been used to represent the domain for steady and unsteady flow408
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Figure 10: Geometric configuration for flow around Circular Cylinder

(a) Grid for steady flow cases (b) Grid for un-steady flow cases

Figure 11: Nodal distribution for flow around circular cylinder

cases, respectively. The nodal arrangement is somewhat like a polar mesh409

close to the cylinder. However in the far field (about 1.5 times the diameter410

from the centre of cylinder), the nodal arrangement switches to resemble411

regular Cartesian grid. The particles are closely spaced in the region where412

wake is expected. However in the far field and outside the expected wake413

region, density of particle has been reduced. Time step value has been chosen414

to be 0.005 sec for simulation.415
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5.3.1. Steady Laminar Flow416

Vortex plots for steady flow cases (Re 10, 20 and 40) have been illustrated417

in figure 12(a) - 12(c). In all the three cases, a pair of perfectly aligned418

vortices forms behind the cylinder which is consistent with the results of419

previous researchers [32], [33], [34], [35], [38], [39], [40]. The quantitative420

values of length of recirculating region from rearmost point of the cylinder421

to the end of the wake (Lsep) and drag coefficient (CD) have been compared422

with the results obtained during previous studies [32], [33], [34], [35], [38],423

and placed in Table 4. The flow parameters obtained are in good agreement424

with the results of previous researchers for the three Reynolds numbers.425

5.3.2. Unsteady Laminar Flow426

Unsteady behaviour of flow behind the cylinder is studied at Re 100 and427

200. The resulting vortex pattern for complete oscillation cycle of flow has428

been shown in figure 13 and 14 for Re 100 and 200, respectively. Oscillating429

flow pattern also affects the drag and lift coefficients (CL and CD) with430

changing time. Profiles of lift and drag coefficients have been shown in figure431

15. From these plots, quantitative values of parameters like Strouhal number432

(St) and mean / peak values of lift and drag coefficients have been evaluated433

and compared with the results from previous studies [36], [37], [38] in Table434

5. The results are in good agreement with previously calculated values.435

The vortex shedding frequency increases with increase in Reynolds number.436

Moreover, oscillation profile of flow is followed by similar pattern of variation437

in lift and drag coefficients. These observations are also in agreement with438

the results of previous researchers.439
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Table 4: Comparison of length of recirculating region (Lsep) and drag coefficient (CD) for

Re 10, 20 and 40

Source Lsep CD

Re=10

Dennis et al. [35] 0.252 2.85

Takami et al. [33] 0.249 2.80

Tuann et al. [32] 0.25 3.18

Fornberg [34] - -

Present Study 0.25 2.864

Re=20

Dennis et al. [35] 0.94 2.05

Takami et al. [33] 0.935 2.01

Tuann et al. [32] 0.90 2.25

Fornberg [34] 0.91 2.00

Present Study 0.90 2.066

Re=40

Dennis et al. [35] 2.35 1.522

Takami et al. [33] 2.32 1.536

Tuann et al. [32] 2.1 1.675

Fornberg [34] 2.24 1.498

Present Study 2.4 1.598
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(a) Re=10

(b) Re=20

(c) Re=40

Figure 12: Vorticity plots for steady flow at different Reynolds numbers
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Table 5: Comparison of Strouhal Number (St), lift and drag coefficients (CL and CD) for

Re 100 and 200

Source St CD CL

Re=100

Braza et al. [38] 0.160 1.364 ± 0.015 ± 0.25

Liu et al. [36] 0.164 1.350 ± 0.012 ± 0.34

Belov et al. [37] - - -

Present Study 0.1646 1.344 ± 0.0011 ± 0.32

Re=200

Braza et al. [38] 0.200 1.40 ± 0.05 ± 0.75

Liu et al. [36] 0.192 1.31 ± 0.005 ± 0.69

Belov et al. [37] 0.193 1.19 ± 0.042 ± 0.64

Present Study 0.200 1.3945 ± 0.07 ± 0.77

37



  

 
 

 
t=0 T 

 
t=1/4 T 

 
t=1/2 T 

 
t=3/4 T 

 
t= T 

Figure 13: Screenshots of vorticity pattern during oscillatory period (Re 100)
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Figure 14: Screenshots of vorticity pattern during oscillatory period (Re 200)
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Figure 15: Variation of lift and drag coefficients over time for unsteady laminar

flow
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6. Conclusion440

Solution schemes for 2D Navier-Strokes equations in pressure-velocity for-441

mulation have been presented using explicit and implicit in time, RBF-FD442

method. Numerical tests show that both the explicit and implicit methods443

work fine. However, use of RBF-FD implicit method was found to be more444

accurate than the RBF-FD explicit method. For explicit method, loss of ac-445

curacy was especially prominent at places where larger gradients of flow vari-446

ables were encountered. Higher accuracy achieved by the use of time-implicit447

approach produced required accuracy with less number of data points in the448

domain. Use of non-uniform grid was investigated to capture high gradients449

of field variable. However, degree of non-uniformity (ratio of largest to small-450

est nodal displacement) was restricted by resultant ill-conditioning effect on451

coefficient matrix of RBF-FD weights. Ill-conditioning was also experienced452

while using finer grid with nodes randomized by Sobol sequence (as it in-453

troduces very small nodal displacements at some points). The restrictions454

were relaxed by the use of adaptive shape parameter (ASP) which ensured455

good results even for high ratios of nodal displacements. Implicit treatment456

of N-S equations requires simultaneous solution of matrix equations which is457

computationally expensive. However, due to use of local RBF-FD scheme,458

sparse set of matrices are obtained which make the solution process much459

faster. Moreover, larger time step values allowed by implicit approach as460

well as less number of data points due to higher order of accuracy contribute461

towards the efficiency of overall numerical simulation process.462

Application of presented scheme may be extended to explore 3D problems.463

Moreover, other solution schemes can be devised based on different time464
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discretization schemes.465
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Highlights 

1. A new section has been included for Accuracy test analysis.  

2. Point about using accurate time discretization schemes has been included.  

3. Correction has been made in iteration number of pressure term. Pressure is 
computed an n+1 and not at n iteration.  

4. Description of boundary conditions has been included in more detail.   


