
Decoupling Negotiating Agents to Explore the
Space of Negotiation Strategies?

Tim Baarslag, Koen Hindriks, Mark Hendrikx, Alexander Dirkzwager, and
Catholijn Jonker

Interactive Intelligence Group, Delft University of Technology,
Mekelweg 4, Delft, The Netherlands

{T.Baarslag,K.V.Hindriks,M.J.C.Hendrikx,A.S.Y.Dirkzwager,C.M.Jonker}@

tudelft.nl

Abstract. Every year, automated negotiation agents are improving on
various domains. However, given a set of negotiation agents, current
methods allow to determine which strategy is best in terms of utility, but
not so much the reason of success. In order to study the performance
of the individual elements of a negotiation strategy, we introduce an
architecture that distinguishes three components which together consti-
tute a negotiation strategy: the bidding strategy, the opponent model,
and the acceptance condition. Our contribution to the field of bilateral
negotiation is threefold: first, we show that existing state of the art agents
are compatible with this architecture; second, as an application of our
architecture, we systematically explore the space of possible strategies
by recombining different strategy components; finally, we briefly review
how the BOA architecture has been recently applied to evaluate the per-
formance of strategy components and create novel negotiation strategies
that outperform the state of the art.

Keywords: Automated bilateral negotiation, BOA architecture, bidding
strategy, opponent model, acceptance condition, component-based

1 Introduction

In recent years, many new automated negotiation agents have been developed
in the search for an effective, generic automated negotiator. There is now a
large body of negotiation strategies available, and with the emergence of the
International Automated Negotiating Agents Competition (ANAC) [3, 8], new
strategies are generated on a yearly basis.

While methods exist to determine the best negotiation agent given a set of
agents [3, 8], we still do not know which type of agent is most effective in general,
and especially why. It is impossible to exhaustively search the large (in fact,
infinite) space of negotiation strategies; therefore, there is a need for a systematic
way of searching this space for effective candidates.

? This is an extension of research presented at The Fifth International Workshop on
Agent-based Complex Automated Negotiations (ACAN 2012).



2 Baarslag et al.

Many of the sophisticated agent strategies that currently exist are comprised of
a fixed set of modules. Generally, a distinction can be made between three different
modules: one module that decides whether the opponent’s bid is acceptable; one
that decides what set of bids could be proposed next; and finally, one that
tries to guess the opponent’s preferences and takes this into account when
selecting an offer to send out. The negotiation strategy is a result of the complex
interaction between these components, of which the individual performance may
vary significantly. For instance, an agent may contain a module that predicts the
opponent’s preferences very well, but utility-wise, the agent may still perform
badly because it concedes far too quickly.

This entails that overall performance measures, such as average utility obtained
in a tournament, make it hard to pinpoint which components of an agent work
well. To date, no efficient method exists to identify to which of the components
the success of a negotiating agent can be attributed. Finding such a method would
allow to develop better negotiation strategies, resulting in better agreements;
the idea being that well-performing components together will constitute a well-
performing agent.

To tackle this problem, we propose to analyze three components of the agent
design separately. We show that most of the currently existing negotiating agents
can be fitted into the so-called BOA architecture by putting together three main
components in a particular way; namely: a Bidding strategy, an Opponent model,
and an Acceptance condition. We support this claim by re-implementing, among
others, the ANAC agents to fit into our architecture. Furthermore, we show that
the BOA agents are equivalent to their original counterparts.

The advantages of fitting agents into the BOA architecture are threefold: first,
it allows the study of the behavior and performance of the individual components;
second, it allows to systematically explore the space of possible negotiation
strategies; third, the identification of unique interacting components simplifies
the creation of new negotiation strategies.

Finally, we demonstrate the value of our architecture by assembling, from
already existing components, new negotiating agents that perform better than
the agents from which they are created. This shows that by recombining the
best performing components, the BOA architecture can yield better performing
agents.

The remainder of this paper is organized as follows. Section 2 discusses the
work related to ours. In Section 3, the BOA agent architecture is introduced, and
we outline a research agenda on how to employ it. Section 4 provides evidence
that many of the currently existing agents fit into the BOA architecture, and
discusses challenges in decoupling existing negotiation strategies. Section 5 shows
how the BOA architecture has been applied in education and research. Finally,
in Section 6 we discuss lessons learned and provide directions for future work.



Exploring the Space of Negotiation Strategies 3

2 Related Work

Since this paper introduces an component-based architecture, we have surveyed
literature that investigates and evaluates such components. There are three
categories of related work: literature detailing the architecture of a negotiating
agent’s strategy; work that discusses and compares the performance of components
of a negotiation strategy; and finally, literature that explores and combines a set
of negotiation strategies to find an optimal strategy.

2.1 Architecture of Negotiation Strategies

To our knowledge, there is little work in literature describing, at a similar level of
detail as our work, the generic components of a negotiation strategy architecture.
For example, Bartolini et al. [10] and Dumas et al. [16] treat the negotiation
strategy as a singular component. However, there are some notable exceptions.

Jonker et al. [27] present an agent architecture for multi attribute negotiation,
where each component represents a specific process within the behavior of the
agent, e.g.: attribute evaluation, bid utility determination, utility planning, and
attribute planning. There are some similarities between the two architectures;
for example, the utility planning and attribute planning component correspond
to the bidding strategy component in our architecture. In contrast to our work
however, Jonker et al. focus on tactics for finding a counter offer and do not
discuss acceptance conditions.

Ashri et al. [2] introduce a general architecture for negotiation agents, dis-
cussing components that resemble our architecture; components such as a proposal
evaluator and response generator resemble an acceptance condition and bidding
strategy respectively. However, the negotiation strategy is described from a
BDI-agent perspective (in terms of motivation and mental attitudes).

Hindriks et al. [23] introduce an architecture for negotiation agents in combi-
nation with a negotiation system architecture. Parts of the agent architecture
correspond to our architecture presented below, but their focus is primarily on
how the agent framework can be integrated into a larger system.

2.2 Components of Negotiation Strategy

Evaluation of the performance of components is important to gain understanding
of the performance of a negotiation strategy, and to find new, better strategies.

The notion of an opponent model as a component of a negotiation strategy
has been discussed by various authors in different forms, including models that
estimate the reservation value [42], the (partial) preference profile [24], the
opponent’s acceptance of offers [33], and the opponent’s next move [13]. To our
knowledge, there is limited work in which the performance of different opponent
models is compared. Two examples are the work by Papaioannou et al. [34], who
evaluate a set of techniques that predict the opponent’s strategy in terms of
resulting performance gain, as well as computational complexity; and Baarslag
et al. [4, 5], who compare the performance and accuracy of preference modeling



4 Baarslag et al.

techniques. The BOA architecture focuses on opponent models which estimate
the (partial) preference profile, because most existing available implementations
fit in this category; however, in principle, our architecture can accommodate for
the other types of opponent models as well.

Regarding acceptance conditions, the performance of a set of acceptance
strategies that depend on parameters such as time and utility thresholds have
been analyzed in [6].

Although we are not the first to identify the BOA components in a negotiation
strategy, our approach seems to be unique in the sense that we vary all of these
components at the same time, thereby creating new negotiation strategies, and
improving the state of the art in doing so.

2.3 Negotiation Strategy Space Exploration

Various authors have aimed to explore the automated negotiation strategy space
by combining a set of negotiation strategies.

Faratin et al. [18] analyze the performance of pure negotiation tactics on
single issue domains in a bilateral negotiation setting. The decision function of
the pure tactic is then treated as a component around which the full strategy is
built. While they discuss how tactics can be linearly combined, the performance
of the combined tactics is not analyzed.

Matos et al. [32] employ a set of baseline negotiation strategies that are
time dependent, resource dependent, and behavior dependent [18], all with
varying parameters. The negotiation strategies are encoded as chromosomes
and combined linearly, after which they are utilized by a genetic algorithm to
analyze the effectiveness of the strategies. The fitness of an agent is its score in a
negotiation competition. This approach analyzes acceptance criteria that only
specify a utility interval of acceptable values, and hence do not take time into
account; furthermore, the agents do not employ explicit opponent modeling.

Eymann [17] also uses genetic algorithms with more complex negotiating
strategies, evolving six parameters that influence the bidding strategy. The genetic
algorithm uses the current negotiation strategy of the agent and the opponent
strategy with the highest average income to create a new strategy, similar to
other genetic algorithm approaches (see Beam and Segev [11] for a discussion of
genetic algorithms in automated negotiation). The genetic algorithm approach
mainly treats the negotiation strategy optimization as a search problem in which
the parameters of a small set of strategies are tuned by a genetic algorithm. We
analyze a more complex space of newly developed negotiation strategies in our
approach, as our pool of surveyed negotiation strategies consists of strategies
introduced in the ANAC competition [3, 8], as well as the strategies discussed by
Faratin et al. [18]. Furthermore, each strategy consists of components that can
have parameters themselves.

Finally, Ilany and Gal [26] take the approach of selecting the best strategy
from a predefined set of agents, based on the characteristics of a domain. The
difference with our work is that they combine whole strategies, whereas the BOA
architecture combines the components of strategies. Our contribution is to define



Exploring the Space of Negotiation Strategies 5

and implement an architecture that allows to easily vary all main components of
a negotiating agent.

3 The BOA Agent Architecture

In the last decade, many different negotiation strategies have been introduced in
the pursuit of a versatile and effective automated negotiator (see related work in
Section 2). Current work often focuses on optimizing the negotiation strategy
as a whole. We propose to direct our attention to a component-based approach,
especially now that we have access to a large repository of mutually comparable
negotiation strategies due to ANAC. This approach has several advantages:

1. Given measures for the effectiveness of the individual components of a ne-
gotiation strategy, we are able to pinpoint the most promising components,
which gives insight into the reasons for success of the strategy;

2. Focusing on the most effective components helps to systematically search the
space of negotiation strategies by recombining them into new strategies.

We make a distinction between two types of components in the sections below:
elements that are part of the agent’s environment, and components that are part
of the agent itself.

3.1 Negotiation Environment

We employ the same negotiation environment as in [3, 8, 31]; that is, we consider
bilateral automated negotiations, where the interaction between the two nego-
tiating parties is regulated by the alternating-offers protocol [35]. The agents
negotiate over a set of issues, as defined by the negotiation domain, which holds
the information of possible bids, negotiation constraints, and the discount factor.
The negotiation happens in real time, and the agents are required to reach
an agreement (i.e., one of them has to accept) before the deadline is reached.
The timing of acceptance is particularly important because the utility may be
discounted, that is: the utility of an agreement may decrease over time.

In addition to the domain, both parties also have privately-known preferences
described by their preference profile. While the domain is common knowledge,
the preference profile of each player is private information. This means that each
player only has access to its own utility function, and is unaware of the opponent’s
preferences. The player can attempt to learn this during the negotiation encounter
by analyzing the bidding history, using an opponent modeling technique.

3.2 The BOA Agent

Based on a survey of literature and the implementations of currently existing
negotiation agents, we identified three main components of a general negotiation
strategy: a bidding strategy, possibly an opponent model, and an acceptance



6 Baarslag et al.

condition (BOA). The elements of a BOA agent are visualized in Figure 1. In
order to fit an agent into the BOA architecture, it should be possible to distinguish
these components in the agent design, with no dependencies between them. An
exposition of the agents we considered is given in the next section, which will
further motivate the choices made below.

Fig. 1. The BOA architecture negotiation flow.

1. Bidding strategy. A bidding strategy is a mapping from a negotiation trace
to a bid. The bidding strategy determines the appropriate concessions to
be made, depending on factors such as the opponent’s negotiation trace, a
target threshold, time, discount factor, etc. The bidding strategy can consult
the opponent model by passing one or multiple bids to see how they compare
within the estimated opponent’s utility space.
Input: opponent utility of bids, negotiation trace.
Output: provisional upcoming bid.

2. Opponent model. An opponent model is a learning technique that con-
structs a model of the opponent’s preferences. In our approach, the opponent
model should be able to estimate the opponent’s utility of any given bid.
Input: set of possible bids, negotiation trace.
Output: estimated opponent utility of a set of bids.

3. Acceptance Condition. The acceptance condition determines whether the
bid that the opponent presents is acceptable.
Input: provisional upcoming bid, negotiation trace.
Output: send accept, or send out the upcoming bid.

The components interact in the following way (the full process is visualized
in Figure 1): when receiving the opponent’s bid, the BOA agent first updates the
bidding history and opponent model to make sure that up-to-date data is used,
maximizing the information known about the environment and opponent.

Given the opponent bid, the bidding strategy determines the counter offer by
first generating a set of bids with a similar preference for the agent. The bidding
strategy uses the opponent model (if present) to select a bid from this set by
taking the opponent’s utility into account.

Finally, the acceptance condition decides whether the opponent’s action should
be accepted. If the opponent’s bid is not accepted by the acceptance condition,



Exploring the Space of Negotiation Strategies 7

then the bid generated by the bidding strategy is offered instead. At first glance,
it may seem counter-intuitive to make this decision at the end of the agent’s
deliberation cycle. Clearly, deciding upon acceptance at the beginning would have
the advantage of not wasting resources on generating an offer that might never
be sent out. However, generating an offer first allows us to employ acceptance
conditions that depend on the utility of the counter bid that is ready to be
sent out. This method is widely used in existing agents [6]. Such acceptance
mechanisms can make a more informed decision by postponing their decision on
accepting until the last step; therefore, and given our aim to incorporate as many
agent designs as possible, we adopt this approach in our architecture.

3.3 Employing the BOA Architecture

We have implemented the BOA architecture as an extension of the Genius
framework [31]. Genius stands for Generic Environment for Negotiation with
Intelligent multi-purpose Usage Simulation, and is a negotiation platform that
implements an open architecture supporting heterogeneous agent negotiation. The
framework was developed as a research tool to facilitate the design of negotiation
strategies and to aid in the evaluation of negotiation algorithms. It provides a
flexible and easy to use environment for implementing agents and negotiation
strategies as well as running negotiations. Genius can further aid the development
of a negotiation agents by acting as an analytical toolbox, providing a variety
of tools to analyze the negotiation agents performance, based on the outcome
and dynamics of the negotiation. The BOA architecture has been integrated
seamlessly into the Genius framework, offering the user the ability to create and
apply newly developed components using a graphical user interface as depicted
in Figure 2. From the perspective of Genius, a negotiation agent is identical to
a BOA agent, and therefore both types of agents can participate in the same
tournament.

The framework enables us to follow at least two approaches: first of all, it
allows us to independently analyze the components of every negotiation strategy
that fits in to our architecture. For example, by re-implementing the ANAC
agents in the BOA architecture, it becomes possible to compare the accuracy of

Fig. 2. The BOA architecture GUI.



8 Baarslag et al.

all ANAC opponent models, and to pinpoint the best opponent model among
them. Following this approach, we are able to identify a categories of opponent
models that outperform others [4, 5]; naturally, this helps to build better agents
in the future.

Secondly, we can proceed to mix different BOA components, e.g.: replace the
opponent model of the runner-up of ANAC by a different opponent model and
then examine whether this makes a difference in placement. Such a procedure
enables us to assess the reasons for an agent’s success, and makes it possible to
systematically search for an effective automated negotiator.

The first part of the approach gives insight in what components are best
in isolation; the second part gives us understanding of their influence on the
agent as a whole. At the same time, both approaches raise some key theoretical
questions, such as:

1. Can the BOA components be identified in all, or at least most, current
negotiating agents?

2. How do we measure the performance of the components? Can a single
best component be identified, or does this strongly depend on the other
components?

3. If the individual components perform better than others (with respect to
some performance measure), does combining them in an agent also improve
the agent’s performance?

In this work we do not aim to fully answer all of the above questions; instead,
we outline a research agenda, and introduce the BOA architecture as a tool that
can be used towards answering these questions.

Nonetheless, in the next section, we will provide empirical support for an
affirmative answer to the first theoretical question: indeed, in many cases the
components of the BOA architecture can be identified in current agents, and we
will also provide reasons for when this is not the case.

The answer to the second question depends on the component under consider-
ation: for an opponent model, it is straightforward to measure its effectiveness [4,
5, 25]: the closer the opponent model is to the actual profile of the opponent,
the better it is. The performance of the other two components of the BOA
architecture is better measured in terms of utility obtained in negotiation (as has
been done for acceptance strategies in [6]), as there seems no clear alternative
method to define the effectiveness of the acceptance condition or bidding strategy
in isolation. In any case, the BOA architecture can be used as a research tool to
help answer such theoretical questions.

Regarding the third question: suppose we take the best performing bidding
strategy, equip it with the most faithful opponent model, and combine this with
the most effective acceptance condition; it would seem reasonable to assume
this combination results in an effective negotiator. We plan to elaborate on this
conjecture in future work (see also Section 6); however, Section 5 will already
provide a first step towards this goal by recombining components of ANAC agents
to create more effective agents than the original versions.



Exploring the Space of Negotiation Strategies 9

4 Decoupling Existing Agents

In this section we provide empirical evidence that many of the currently existing
agents can be decoupled by separating the components of a set of state of the
art agents. This section serves three goals: first, we discuss how existing agents
can be decoupled into a BOA agent; second, we argue that the BOA architecture
design is appropriate, as most agents will turn out to fit in our architecture; third,
we discuss and apply a method to determine if the sum of the components – the
BOA agent – is equal in behavior to the original agent.

4.1 Identifying the Components

In this section we identify the components of 21 negotiating agents, taken from
the ANAC competition of 2010 [8], 2011 [7] and 2012. We selected these agents
as they represent the current state of the art in automated negotiation, having
been implemented by various negotiation experts.

Since the agents were not designed with decoupling in mind, all agents had
to be re-implemented to be supported by the BOA architecture. Our decoupling
methodology was to adapt an agent’s algorithm to enable it to switch its com-
ponents, without changing the agent’s functionality. A method call to specific
functionality, such as code specifying when to accept, was replaced by a more
generic call to the acceptance mechanism, which can then be swapped at will.
The contract of the generic calls are defined by the expected input and output of
every component, as outlined in Section 3.2.

The first step in decoupling an agent is to determine which components can
be identified. For example, in the ANAC 2010 agent FSEGA [36], an acceptance
condition, a bidding strategy, and an opponent model can all be identified. The
acceptance condition combines simple, utility–based criteria (called ACconst and
ACprev in [6]), and can be easily decoupled in our architecture. The opponent
model is a variant of the Bayesian opponent model [4, 5, 24], which is used to
optimize the opponent utility of a bid. Since this usage is consistent with our
architecture (i.e., the opponent model provides opponent utility information),
the model can be replaced by a call to the generic opponent model interface. The
final step is to change the bidding strategy to use the generic opponent model
and acceptance conditions instead of its own specific implementation. In addition
to this, the opponent model and acceptance condition need to be altered to allow
the other bidding strategies to use it. Other agents can be decoupled using a
similar process.

Unfortunately, some agent implementations contain slight dependencies be-
tween different components. These dependencies needed to be resolved to separate
the design into singular components. For example, the acceptance condition and
bidding strategy of the ANAC 2011 agent The Negotiator1 rely on a shared target
utility. In such cases, the agent can be decoupled by introducing Shared Agent
State (SAS) classes. A SAS class avoids code duplication, and thus performance

1 Descriptions of all ANAC 2011 agents can be found in [3].



10 Baarslag et al.

Table 1. Overview of the BOA components found in every agent. X: original has
component, which can be decoupled. ∅: original has no such component, but it can be
added. – : no support for such a component.

ANAC 2010 B OA ANAC 2011 B OA ANAC 2012 B OA

FSEGA [36] XXX Agent K2 [30] X∅ X AgentLG X∅ X
Agent K [29] X∅ X BRAMAgent [20] X – X AgentMR X∅ X
Agent Smith [37] XXX Gahboninho [12] X – X BRAMAgent2 X – X
IAMcrazyHaggler [39] X∅ X HardHeaded [38] XXX CUHKAgent [22] X – –

IAMhaggler [39] XXX IAMhaggler2011 [41] X∅ X IAMhagger2012 X∅ X
Nozomi X∅ X Nice Tit for Tat [7] XXX OMAC Agent [14] X∅ X
Yushu [1] X∅ X The Negotiator [15] X∅ X The Negotiator Rel. XXX

loss, by sharing the code between the components. One of the components uses
the SAS to calculate the values of the required parameters and saves the results,
while the other component simply asks for the saved results instead of repeating
the calculation.

Table 1 provides an overview of all agents that we re-implemented in our
architecture, and more specifically, which components we were able to decouple.
In fact, we were able to decouple all ANAC 2010, and most ANAC 2011 and
ANAC 2012 agents.

There were two agents (ValueModelAgent [21] and Meta-Agent [26]) that were
not decoupled due to practical reasons, even though theoretically it is possible.
The ValueModelAgent was not decoupled because there were unusually strong
dependencies between its components. Decoupling the strategy would result in
computationally heavy components when trying to combine them with other
components, making them impractical to use. The ANAC 2012 Meta-Agent
chooses an offer among 17 agents from the ANAC 2011 qualifying round. This
agent was not decoupled because it requires the decoupling of all 17 agents, of
which only 8 optimized versions entered the finals.

The CUHKAgent, like ValueModelAgent, is heavily coupled with multiple
variables that are shared between the bidding strategy and acceptance condition.
This makes it very hard to decouple and can make components unusable in
combination with other components (e.g. variables might not properly be set).
However, since CUHKAgent was placed first in the ANAC 2012 competition, we
decided to decouple its bidding strategy, allowing it to work with other acceptance
conditions and opponent models.

Four additional agents were only partially decoupled: AgentLG, BRAMAgent,
BRAMAgent2, and Gahbininho. As is evident from Table 1, the only obstacle in
decoupling these agents fully is their usage of the opponent model, as it can be
employed in many different ways. Some agents, such as Nice Tit for Tat, attempt
to estimate the Nash point on the Pareto frontier. Other common applications
include: ranking a set of bids according to the opponent utility, reciprocating
in opponent utility, and extrapolating opponent utility. The generic opponent



Exploring the Space of Negotiation Strategies 11

model interface needs to sufficiently accommodate such requirements from the
bidding strategy to make interchangeability possible. For this reason we require
the opponent model interface to be able to produce the estimated opponent
utility of an arbitrary negotiation outcome.

With regard to the opponent model, there are three groups of agents: first,
there are agents such as FSEGA [36], which use an opponent model that can
be freely interchanged; second, there are agents such as the ANAC 2010 winner
Agent K [28], which do not have an opponent model themselves, but can be
extended to use one. Such agents typically employ a bidding strategy that first
decides upon a specific target utility range, and then picks a random bid within
that range. These agents can easily be fitted with an opponent model instead,
by passing the utility range through the opponent model before sending out
the bid. Lastly, there are agents, for example Gahboninho and BRAMAgent,
that use a similarity heuristic which is not compatible with our architecture, as
their opponent models do not yield enough information to compute the opponent
utility of bids. For these type of agents, we consider the opponent model part
of the bidding strategy. AgentLG also uses an opponent model which is not
compatible with our BOA architecture; however, it has been adopted to be able
to use other opponent models.

When decoupling the agents, we can distinguish different classes within each
component, except for the bidding strategy component, which varies greatly
between different agents. For instance, there are only three main types of oppo-
nent models being used: Bayesian models, Frequency models, and Value models.
Bayesian models are an implementation of a (scalable) model of the opponent
preferences that is updated using Bayesian learning [24, 42]. The main character-
istic of frequency based models is that they track the frequency of occurrence
of issues and values in the opponent’s bids and use this information to estimate
the opponent’s preferences. Value models take this approach a step further and
solely focus on the frequency of the issue values. In practice, Bayesian models
are computationally intensive, whereas frequency and value models are relatively
light-weight.

Similar to the opponent models, most agents use variations and combinations
of a small set of acceptance conditions. Specifically, many agents use simple
thresholds for deciding when to accept (called ACconst in [6]) and linear functions
that depend on the utility of the bid under consideration (ACnext(α, β) [6]).

4.2 Testing Equivalence of BOA Agents

A BOA agent should behave identically to the agent from which its components are
derived. Equivalence can be verified in two ways; first, given the same negotiation
environment and the same state, both agents should behave in exactly identical
ways; second, the performance in a real time negotiation of both agents should
be similar.



12 Baarslag et al.

Identical Behavior Test

Two deterministic agents can be considered equivalent if they perform the
same action given the same negotiation trace. There are two main problems in
determining equivalence: first, most agents are non-deterministic, as they behave
randomly in certain circumstances; for example, when picking from a set of bids
of similar utility; second, the default protocol in Genius uses real time [31], which
is highly influenced by CPU performance. This means that in practice, two runs
of the same negotiation are never exactly equivalent.

To be able to run an equivalence test despite agents choosing actions at
random, we fixed the seeds of the random functions of the agents. The challenge
of working in real time was dealt with by changing the real time deadline to
a maximum amount of rounds. Since time does not pass within a round, cpu
performance does not play a role.

All agents were evaluated on the ANAC 2011 domains (see [3] for a domain
analysis). The ANAC 2011 domains vary widely in characteristics: the number of
issues ranges from 1 to 8, the size from 3 to 390625 possible outcomes, and the
discount from none (1.0) to strong (0.424). Some ANAC 2010 agents, specifically
Agent Smith and Yushu, were not designed for large domains and were therefore
run on a subset of these domains.

The opponent strategies used in the identical behavior test should satisfy
two properties: the opponent strategy should be deterministic, and secondly, the
opponent strategy should not be the first to accept, to avoid masking errors in
the agent’s acceptance condition. Given these two criteria, we used the standard
time-dependent tactics [18, 19] for the opponent bidding strategy. Specifically,
we use Hardliner (e = 0), Linear Conceder (e = 1), and Conceder (e = 2). In
addition, we use the Offer Decreasing agent, which offers the set of all possible
bids in decreasing order of utility.

All original and BOA agents were evaluated against these four opponents,
using both preference profiles defined on all eight ANAC 2011 domains. Both
strategies were run in parallel, making sure that the moves made by both agents
were equivalent at each moment. After the experiments were performed, the
results indicated that all BOA agents were exactly identical to their original
counterparts except for AgentMR and AgentLG. Both these agents do not have
identical behavior with its BOA counter-part because of the order in which the
components are called; their implementation requires that they first test if the
opponent’s bid is acceptable, and then determine the bid to offer. As discussed
above, this is exactly the opposite of what the BOA agent does.

Similar Performance Test

Two agents can perform the same action given the same input, but may still
achieve different results because of differences in their real time performance.
When decoupling agents, there is a trade-off between the performance and
interchangeability of components. For example, most agents record only a partial
negotiation history, while some acceptance strategies require the full history of



Exploring the Space of Negotiation Strategies 13

Table 2. ANAC 2011 reference results of the original agents using our hardware (n =
10). Best results are marked bold.

Agent A
m

st
er

d
a
m

T
ri

p

C
a
m

er
a

C
a
r

E
n
er

g
y

G
ro

ce
ry

C
o
m

p
a
n
y

A
cq

u
is

it
io

n

L
a
p
to

p

N
ic

e
o
r

D
ie

M
ea

n
u
ti

li
ty

HardHeaded 0.891 0.818 0.961 0.664 0.725 0.747 0.683 0.571 0.757
Gahboninho 0.912 0.659 0.928 0.681 0.667 0.744 0.726 0.571 0.736
Agent K2 0.759 0.719 0.922 0.467 0.705 0.777 0.703 0.429 0.685
IAMhaggler 2011 0.769 0.724 0.873 0.522 0.725 0.814 0.749 0.300 0.685
BRAMAgent 0.793 0.737 0.815 0.420 0.724 0.744 0.661 0.571 0.683
The Negotiator 0.792 0.744 0.913 0.524 0.716 0.748 0.674 0.320 0.679
Nice Tit for Tat 0.733 0.765 0.796 0.508 0.759 0.767 0.660 0.420 0.676
Value Model Agent 0.839 0.778 0.935 0.012 0.767 0.762 0.661 0.137 0.611

the agent and/or its opponent. In such cases, the agent can be constrained to be
incompatible with these acceptance strategies, or generalized to work with the
full set of available acceptance strategies. We typically elected the most universal
approach, even when this negatively influenced performance. We will demonstrate
that while there is some performance loss when decoupling existing agents, it
does not significantly impact the negotiation outcome.

The performance of the BOA agents was tested by letting them participate in
the ANAC 2011 tournament (using the same setup, cf. [3]). The decoupled ANAC
2011 agents replaced the original agents, resulting in a tournament with eight
participants. For the other BOA agents this was not possible, as their original
counterparts did not participate in the ANAC 2011 competition. Therefore, for
each of these agents we ran a modified tournament in which we added the original
agent to the pool of ANAC 2011 agents, resulting in a tournament with nine
participants. Next, we repeated this process for the BOA agents and evaluated
the similarity of the results.

For our experimental setup we used computers that were slower compared
to the IRIDIS high-performance computing cluster that was used to run ANAC
2011. As we were therefore unable to reproduce exactly the same data, we first
recreated our own ANAC 2011 tournament data as depicted in Table 2, which
is used as our baseline to benchmark the decoupled agents. The difference in
performance caused small changes compared to the official ANAC 2011 ranking,
as Agent K2 moved up from 5th to 3rd place.

Table 3 provides an overview of the results. We evaluated the performance in
terms of the the difference in overall utility as well as the difference in time of
agreement between the original and the BOA agents. The table does not list the
agents that were not decoupled, and we also omitted The Negotiator Reloaded



14 Baarslag et al.

Table 3. Differences in overall utility and time of agreement between the original
agents and their decoupled version. Positive difference means the BOA agent performed
slightly better.

Diff. time agr. SD time agr. Diff. utility SD utility

Agent K [29] 0.001 0.003 0.006 0.006

Agent Smith [37] 0.010 0.010 0.004 0.006

FSEGA [36] 0.001 0.004 0 0.003

IAMcrazyHaggler [39] -0.004 0.012 0.003 0.013

IAMhaggler [39] 0.003 0.015 0.002 0.011

Nozomi 0.003 0.009 0.004 0.008

Yushu [1] 0.002 0.004 0.002 0.005

Agent K2 [30] 0.002 0.009 0.001 0.005

BRAMAgent [20] 0.004 0.011 0 0.006

Gahboninho [12] 0.001 0.008 0.006 0.005

HardHeaded [38] -0.003 0.003 -0.009 0.004

IAMhaggler2011 [41] -0.010 0.013 -0.002 0.003

Nice Tit for Tat [7] 0.006 0.010 -0.008 0.005

The Negotiator [15] 0 0.002 0 0.004

BRAMAgent2 0.002 0.011 -0.015 0.012

IAMhaggler2012 -0.005 0.006 -0.013 0.003

OMAC Agent [14] 0.003 0.003 0.012 0.015

from the test set, as this agent was already submitted as a fully decoupled BOA
agent.

From the results, we can conclude that the variation between the original and
the BOA version is minimal; the majority of the standard deviations for both the
difference in overall utility and time of agreement are close to zero. The largest
difference between the original and decoupled agents with regard to the average
time of agreement is 0.010 (Agent Smith); and for the average utility the largest
difference is 0.015 (BRAMAgent2 ). Hence, in all cases the BOA agents and their
original counterparts show comparable performance.

5 Applications of the BOA Architecture

The BOA architecture has already been widely applied since it was first released.
Since its implementation in 2011, the BOA architecture has been used in the
ANAC competitions that followed. In ANAC 2012, the BOA agent The Negotiator
Reloaded reached the finals and finished overall third and received the reward for
best performing agent in non-discounted domains. In ANAC 2013, two agents
that used the BOA architecture reached the finals. The agent Inox finished fourth,
and The Fawkes agent won the 2013 competition.

The BOA architecture has also found its way into the classroom. At aca-
demic institutes such as Bar-Ilan University, Ben-Gurion University of the Negev,
Maastricht University, and Delft University of Technology, Genius and the BOA



Exploring the Space of Negotiation Strategies 15

architecture have been integrated into artificial intelligence courses, where part of
the syllabus covers automated negotiation and the creation of negotiation strate-
gies.2 The BOA framework offers the students an easier and more structured way
to develop a negotiation strategy, and causes them to think more critically about
the components they design themselves, which in turn helps them understand
the inner workings of a negotiation strategy.

The BOA framework also allows us to search the large space of negotiation
strategies [4, 5]. Section 5.1 describes techniques integrated in the BOA framework
that aid in this search by scaling down the negotiation strategy space. Section 5.2
describes an application of this technique, where we employ the BOA framework
to improve upon existing ANAC strategies.

5.1 Scaling the Negotiation Space

Suppose that two negotiating BOA agents A and B have identical bidding
mechanisms and the same opponent modeling technique, so that only their
acceptance criteria differs. Furthermore, suppose agent A accepted in the middle
of the negotiation, while agent B accepted somewhere towards the end. The
agents accepted at a different time during the negotiation, but their bidding
behavior will be identical up to the point of the first acceptance. The only
difference between the complete traces is that the trace of agent A is cut-off in
the middle of the negotiation.

In the BOA architecture we exploit this property by running all acceptance
conditions in parallel while we record when each acceptance condition accepts.
This drastically reduces the amount of different component combinations, as
any amount of acceptance conditions can be investigated during one negotiation
session. We refer to this approach as multi-acceptance criteria (MAC). Note that
a similar technique cannot be applied for the bidding strategy and the opponent
model, as both components directly influence the negotiation trace.

In addition, a large number of acceptance conditions varying only in their
parameter value can be tested during the same negotiation thread. This technique
can then be used to easily optimize a parameter of a single acceptance condition.
Note that this approach assumes that checking additional acceptance conditions
does not introduce a large computational overhead. In practice we found that
the computational overhead was less than 5%, even when more than 50 variants
of acceptance conditions were used at the same time.

5.2 Improving the State of the Art

Using the scaling methods discussed in the previous section, we give a practical
application of the BOA architecture to show how it can be employed to explore
the negotiation strategy space. To do so, we considered the original bidding
strategy of every ANAC agent, and attempted to find a better accompanying
opponent model and acceptance condition.

2 Educational material for the BOA architecture can be freely downloaded from
ii.tudelft.nl/genius/#Education



16 Baarslag et al.

Table 4. All acceptance conditions that were used in the experiment to search the
negotiation strategy space.

Acceptance Condition Range Increments

ACcombi(T,MAXW ) T∈ [0.95, 0.99] 0.01

ACnext(α, β) α ∈ [1.0, 1.05] 0.05
β ∈ [0.0, 0.1] 0.05

ACopt.stop – –

ACAgentLG – –

ACOMAC – –

ACTheNegotiatorReloaded – –

Searching the Negotiation Space We used the following combinations of
BOA components:

(B) For the bidding strategies, we used all ANAC agents that we were able to
successfully decouple (see Table 1).

(O) For our opponent model set, we selected the best Bayesian model (IAMhaggler
Bayesian Model [40]), frequency model (Smith Frequency Model [37], and the
best value model (CUHKAgent Value Model [22]) as identified in [5].

(A) All acceptance conditions of the top four agents of ANAC 2012 were used,
except for CUHKAgent as it could not be decoupled. In addition, we used a
set of baseline acceptance criteria, such as ACcombi(T,MAXW ) [6], and an
optimal stopping acceptance condition ACopt.stop based on Gaussian process
strategy prediction as discussed in [9]. Table 4 provides an overview of all 15
tested acceptance conditions.

For each bidding strategy, we ran a tournament on a subset of the ANAC
2012 domains against the eight ANAC 2012 agents. Note that even if MAC is
applied, the space to be explored can still be impractically large. This is already
problematic for a limited amount of domains and agents. To illustrate, ANAC
2011 consists of 448 negotiation sessions [3] which may all last 3 minutes. In worst
case, it requires 22 hours to run a single tournament, and almost four weeks for
running it 28 times, as we did for the similarity test discussed in Section 4.2.

We opted to use a representative subset of the domains to improve scalability.
The following domains were used: Barter (80), IS BT Acquisition (size 384), Bar-
becue (1440), Phone (1600), Energy (small) (15625), and Supermarket (112896).
Since the ANAC 2010 agents are not compatible with discounts and reservation
values, these were removed from the domains. To further improve scalability, a
rounds-based protocol was used with a deadline of 3000 rounds, and we used
the scalability optimization techniques as discussed in Section 5.1. The complete
tournament is repeated five times to improve reliability of the results.

Experimental Results From the 19 ANAC agents considered in this work, we
were able to considerably improve 16, as depicted in Table 5. This table shows
the optimal acceptance condition and opponent model for each agent, as well as



Exploring the Space of Negotiation Strategies 17

Table 5. Results of the optimized BOA agents, when tested on both n = 6 domains and
n = 4 domains. The Diffn column indicates the utility gain of the agent when coupled
with the optimal components listed in the OM and AC column. Rankn pre indicates
the rank of the original agent, while Rankn post gives its ranking after optimization.

OM AC Diff6 Rank6

pre
Rank6

post
Diff4 Rank4

pre
Rank4

post

CUHKAgent – ACnext(1, 0) 0.001 1 1 0.081 1 1

Gahboninho – ACAgentLG 0.006 2 2 0.007 2 2

The Neg. Rel. CUHK ACopt.stop 0.037 3 2 0.026 3 2

OMAC Agent CUHK ACAgentLG 0.014 4 4 0.005 5 5

Agent K2 IAH ACopt.stop 0.042 5 4 0.042 6 4

Agent K CUHK ACopt.stop 0.047 6 4 0.044 7 5

IAMhaggler2011 IAH ACopt.stop 0.022 7 7 0.008 9 9

IAMhaggler2012 Smith ACopt.stop 0.059 8 4 0.077 11 5

HardHeaded IAH ACopt.stop 0.134 9 3 0.133 13 2

BRAMAgent – ACopt.stop 0.036 10 7 0.037 10 8

Nozomi Smith ACopt.stop 0.160 11 4 0.155 14 4

IAMcrazyHaggler IAH ACopt.stop 0.190 12 4 0.186 16 5

FSEGA CUHK ACopt.stop – – – 0.027 12 8

Agent Smith IAH ACOMAC – – – 0.103 15 9

IAMhaggler IAH ACopt.stop – – – 0.072 8 4

Nice Tit for Tat IAH ACopt.stop – – – 0.025 4 2

their scores in the tournament. Due to scalability issues, some agents were only
run on the four smallest domains instead of all six domains. Therefore, we show
the results for these four domains, as well as for all domains.

Besides the utility gain, the overview also indicates the agent’s ranking before
and after the optimization of the components. As is evident from the results,
most agents were significantly improved by swapping their components with the
optimized versions. To illustrate: IAMcrazyHaggler ’s ranking improves from the
twelfth place to the fourth when it employs IAMhaggler ’s opponent model, and
optimal stopping as its acceptance mechanism.

The only agents we were not able to improve are Yushu, The Negotiator and
BRAMAgent2. There are two main reasons for this: the first reason is that some
of these agents do not use an opponent model at all, or because their bidding
technique does not benefit much from one. The second reason is that these agents
already employ acceptance criteria that perform well, or have an acceptance
strategy that is tightly coupled with their biddings strategy.

An interesting pattern in the results, is that nearly all agents were improved
by using the acceptance condition ACopt.stop. For the opponent model, the
IAMhaggler Bayesian Model is often best, although the results indicate that the
differences between the opponent models are minimal; that is, a better acceptance
strategy often results in a larger gain than an improved opponent model.

All in all, the results demonstrate that the BOA architecture not only assists
in exploring the negotiation strategy space and to strongly improve existing



18 Baarslag et al.

agents, but it also helps to identify which components of the agent are decisive
in its performance.

6 Conclusion and Future Work

This paper introduces an architecture that distinguishes the bidding strategy,
the opponent model, and the acceptance condition in negotiation agents, and
recombines these components to systematically explore the space of automated
negotiation strategies. The main idea behind the BOA architecture is that we can
identify several components in a negotiating agent, all of which can be optimized
individually. Our motivation in the end is to create a proficient negotiating agent
by combining the best components.

We have shown that many of the existing negotiation strategies can be re-fitted
into our architecture. We identified and classified the key components in them,
and we have demonstrated that the original agents and their decoupled versions
have identical behavior and similar performance. Finally, we discussed several
applications of the BOA architecture, one of which was to recombine different
components of the ANAC agents, and we have demonstrated this significantly
improved their performance.

One obvious direction of future research is to look at any of the BOA com-
ponents in isolation. After identifying the best performing components, we can
turn our attention to answer whether combining effective components leads to
better overall results, and whether an optimally performing agent can be created
by taking the best of every component. Another interesting question then is
which of the BOA components turns out to be most important with regard to
the overall performance of an agent. Our architecture allows us to make these
questions precise and provides a tool for answering these questions.

Another possible improvement is extend the focus of current work on prefer-
ence profile modeling techniques to a larger class of opponent modeling techniques,
such as strategy prediction. Also, an agent is currently equipped with a single
component during the entire negotiation session. It would be interesting to run
multiple BOA components in parallel, and use recommendation systems to elect
the best component at any given time.

Acknowledgments

This research is supported by the Dutch Technology Foundation STW, applied
science division of NWO and the Technology Program of the Ministry of Economic
Affairs. It is part of the Pocket Negotiator project with grant number VICI-project
08075.

References

1. Bo An and Victor Lesser. Yushu: a heuristic-based agent for automated negotiating
competition. In Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima,



Exploring the Space of Negotiation Strategies 19

and Tokuro Matsuo, editors, New Trends in Agent-based Complex Automated
Negotiations, Series of Studies in Computational Intelligence, pages 145–149, Berlin,
Heidelberg, 2012. Springer-Verlag.

2. R. Ashri, I. Rahwan, and M. Luck. Architectures for negotiating agents. In
Proceedings of the 3rd Central and Eastern European conference on Multi-agent
systems, pages 136–146. Springer-Verlag, 2003.

3. Tim Baarslag, Katsuhide Fujita, Enrico H. Gerding, Koen Hindriks, Takayuki Ito,
Nicholas R. Jennings, Catholijn Jonker, Sarit Kraus, Raz Lin, Valentin Robu, and
Colin R. Williams. Evaluating practical negotiating agents: Results and analysis of
the 2011 international competition. Artificial Intelligence, 198(0):73 – 103, 2013.

4. Tim Baarslag, Mark Hendrikx, Koen Hindriks, and Catholijn Jonker. Measuring
the performance of online opponent models in automated bilateral negotiation. In
Michael Thielscher and Dongmo Zhang, editors, AI 2012: Advances in Artificial In-
telligence, volume 7691 of Lecture Notes in Computer Science, pages 1–14. Springer,
2012.

5. Tim Baarslag, Mark Hendrikx, Koen Hindriks, and Catholijn Jonker. Predicting
the performance of opponent models in automated negotiation (submitted). In
2013 IEEE/WIC/ACM International Conference on Intelligent Agent Technology,
2013.

6. Tim Baarslag, Koen Hindriks, and Catholijn Jonker. Acceptance conditions in
automated negotiation. In Takayuki Ito, Minjie Zhang, Valentin Robu, and Tokuro
Matsuo, editors, Complex Automated Negotiations: Theories, Models, and Software
Competitions, volume 435 of Studies in Computational Intelligence, pages 95–111.
Springer Berlin / Heidelberg, 2013.

7. Tim Baarslag, Koen Hindriks, and Catholijn Jonker. A tit for tat negotiation
strategy for real-time bilateral negotiations. In Takayuki Ito, Minjie Zhang, Valentin
Robu, and Tokuro Matsuo, editors, Complex Automated Negotiations: Theories,
Models, and Software Competitions, volume 435 of Studies in Computational Intel-
ligence, pages 229–233. Springer Berlin Heidelberg, 2013.

8. Tim Baarslag, Koen Hindriks, Catholijn M. Jonker, Sarit Kraus, and Raz Lin.
The first automated negotiating agents competition (ANAC 2010). In Takayuki
Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima, and Tokuro Matsuo, editors,
New Trends in Agent-based Complex Automated Negotiations, Series of Studies
in Computational Intelligence, pages 113–135, Berlin, Heidelberg, 2012. Springer-
Verlag.

9. Tim Baarslag and Koen V. Hindriks. Accepting optimally in automated negotiation
with incomplete information. In Proceedings of the 2013 International Conference
on Autonomous Agents and Multi-agent Systems, AAMAS ’13, pages 715–722, Rich-
land, SC, 2013. International Foundation for Autonomous Agents and Multiagent
Systems.

10. C. Bartolini, C. Preist, and N.R. Jennings. A generic software framework for
automated negotiation. In First International Conference on Autonomous Agent
and Multi-Agent Systems. Citeseer, 2002.

11. C. Beam and A. Segev. Automated negotiations: A survey of the state of the art.
Wirtschaftsinformatik, 39(3):263–268, 1997.

12. Mai Ben Adar, Nadav Sofy, and Avshalom Elimelech. Gahboninho: Strategy for
balancing pressure and compromise in automated negotiation. In Takayuki Ito,
Minjie Zhang, Valentin Robu, and Tokuro Matsuo, editors, Complex Automated
Negotiations: Theories, Models, and Software Competitions, volume 435 of Studies
in Computational Intelligence, pages 205–208. Springer Berlin Heidelberg, 2013.



20 Baarslag et al.

13. R. Carbonneau, G.E. Kersten, and R. Vahidov. Predicting opponent’s moves in
electronic negotiations using neural networks. Expert Systems with Applications,
34(2):1266–1273, 2008.

14. Siqi Chen and Gerhard Weiss. An efficient and adaptive approach to negotiation in
complex environments. In ECAI, pages 228–233, 2012.

15. A.S.Y. Dirkzwager, M.J.C. Hendrikx, and J.R. Ruiter. The negotiator: A dynamic
strategy for bilateral negotiations with time-based discounts. In Takayuki Ito,
Minjie Zhang, Valentin Robu, and Tokuro Matsuo, editors, Complex Automated
Negotiations: Theories, Models, and Software Competitions, volume 435 of Studies
in Computational Intelligence, pages 217–221. Springer Berlin Heidelberg, 2013.

16. M. Dumas, G. Governatori, A.H.M. Ter Hofstede, and P. Oaks. A formal approach
to negotiating agents development. Electronic Commerce Research and Applications,
1(2):193–207, 2002.

17. T. Eymann. Co-evolution of bargaining strategies in a decentralized multi-agent
system. In AAAI fall 2001 symposium on negotiation methods for autonomous
cooperative systems, pages 126–134, 2001.

18. Peyman Faratin, Carles Sierra, and Nick R. Jennings. Negotiation decision functions
for autonomous agents. Robotics and Autonomous Systems, 24(3-4):159 – 182, 1998.
Multi-Agent Rationality.

19. Shaheen S. Fatima, Michael Wooldridge, and Nicholas R. Jennings. Multi-issue
negotiation under time constraints. In AAMAS ’02: Proceedings of the first inter-
national joint conference on Autonomous agents and multiagent systems, pages
143–150, New York, NY, USA, 2002. ACM.

20. Radmila Fishel, Maya Bercovitch, and Yaakov(Kobi) Gal. Bram agent. In Takayuki
Ito, Minjie Zhang, Valentin Robu, and Tokuro Matsuo, editors, Complex Automated
Negotiations: Theories, Models, and Software Competitions, volume 435 of Studies
in Computational Intelligence, pages 213–216. Springer Berlin Heidelberg, 2013.

21. Asaf Frieder and Gal Miller. Value model agent: A novel preference profiler for
negotiation with agents. In Takayuki Ito, Minjie Zhang, Valentin Robu, and Tokuro
Matsuo, editors, Complex Automated Negotiations: Theories, Models, and Software
Competitions, volume 435 of Studies in Computational Intelligence, pages 199–203.
Springer Berlin Heidelberg, 2013.

22. Jianye Hao and Ho-Fung Leung. Abines: An adaptive bilateral negotiating strategy
over multiple items. In Proceedings of the The 2012 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence and Intelligent Agent Technology - Volume
02, WI-IAT ’12, pages 95–102, Washington, DC, USA, 2012. IEEE Computer
Society.

23. Koen V. Hindriks, Catholijn Jonker, and Dmytro Tykhonov. Towards an open
negotiation architecture for heterogeneous agents. In Matthias Klusch, Michal
Pechoucek, and Axel Polleres, editors, Cooperative Information Agents XII, vol-
ume 5180 of Lecture Notes in Computer Science, pages 264–279. Springer Berlin
Heidelberg, 2008.

24. Koen V. Hindriks and Dmytro Tykhonov. Opponent modelling in automated multi-
issue negotiation using bayesian learning. In Proceedings of the 7th international
joint conference on Autonomous agents and multiagent systems - Volume 1, AAMAS
’08, pages 331–338, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

25. Koen V. Hindriks and Dmytro Tykhonov. Towards a quality assessment method
for learning preference profiles in negotiation. In Wolfgang Ketter, Han Poutré,
Norman Sadeh, Onn Shehory, and William Walsh, editors, Agent-Mediated Elec-
tronic Commerce and Trading Agent Design and Analysis, volume 44 of Lecture



Exploring the Space of Negotiation Strategies 21

Notes in Business Information Processing, pages 46–59. Springer Berlin Heidelberg,
2010.

26. Litan Ilany and Ya’akov Gal. Algorithm selection in bilateral negotiation (accepted).
In Proceedings of The Sixth International Workshop on Agent-based Complex
Automated Negotiations (ACAN 2013), 2013.

27. Catholijn Jonker, Valentin Robu, and Jan Treur. An agent architecture for multi-
attribute negotiation using incomplete preference information. Autonomous Agents
and Multi-Agent Systems, 15:221–252, 2007.

28. Shogo Kawaguchi, Katsuhide Fujita, and Takayuki Ito. Compromising strategy
based on estimated maximum utility for automated negotiation agents competition
(ANAC-10). In KishanG. Mehrotra, ChilukuriK. Mohan, JaeC. Oh, PramodK.
Varshney, and Moonis Ali, editors, Modern Approaches in Applied Intelligence,
volume 6704 of Lecture Notes in Computer Science, pages 501–510. Springer Berlin
Heidelberg, 2011.

29. Shogo Kawaguchi, Katsuhide Fujita, and Takayuki Ito. Agentk: Compromising
strategy based on estimated maximum utility for automated negotiating agents. In
Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima, and Tokuro Matsuo,
editors, New Trends in Agent-Based Complex Automated Negotiations, volume 383
of Studies in Computational Intelligence, pages 137–144. Springer Berlin Heidelberg,
2012.

30. Shogo Kawaguchi, Katsuhide Fujita, and Takayuki Ito. Agentk2: Compromising
strategy based on estimated maximum utility for automated negotiating agents. In
Takayuki Ito, Minjie Zhang, Valentin Robu, and Tokuro Matsuo, editors, Complex
Automated Negotiations: Theories, Models, and Software Competitions, volume 435
of Studies in Computational Intelligence, pages 235–241. Springer Berlin Heidelberg,
2013.

31. Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks, and
Catholijn M. Jonker. Genius: An integrated environment for supporting the design
of generic automated negotiators. Computational Intelligence, 2012.

32. N. Matos, C. Sierra, and N.R. Jennings. Determining successful negotiation strate-
gies: an evolutionary approach. In Multi Agent Systems, 1998. Proceedings. Inter-
national Conference on, pages 182–189, 1998.

33. Y. Oshrat, R. Lin, and S. Kraus. Facing the challenge of human-agent negotiations
via effective general opponent modeling. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems, volume 1, pages 377–
384. International Foundation for Autonomous Agents and Multiagent Systems,
2009.

34. I. Papaioannou, I. Roussaki, and M. Anagnostou. Multi-modal opponent behaviour
prognosis in e-negotiations. In Proceedings of the 11th international conference on
Artificial neural networks conference on Advances in computational intelligence-
Volume Part I, pages 113–123. Springer-Verlag, 2011.

35. Ariel Rubinstein. Perfect equilibrium in a bargaining model. Econometrica, 50(1):97–
109, 1982.

36. Liviu Dan Serban, Gheorghe Cosmin Silaghi, and Cristian Marius Litan. Agent
fsega - time constrained reasoning model for bilateral multi-issue negotiations. In
Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima, and Tokuro Matsuo,
editors, New Trends in Agent-based Complex Automated Negotiations, Series of
Studies in Computational Intelligence, pages 159–165, Berlin, Heidelberg, 2012.
Springer-Verlag.



22 Baarslag et al.

37. Niels van Galen Last. Agent smith: Opponent model estimation in bilateral multi-
issue negotiation. In Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima,
and Tokuro Matsuo, editors, New Trends in Agent-based Complex Automated
Negotiations, Series of Studies in Computational Intelligence, pages 167–174, Berlin,
Heidelberg, 2012. Springer-Verlag.

38. Thijs van Krimpen, Daphne Looije, and Siamak Hajizadeh. Hardheaded. In
Takayuki Ito, Minjie Zhang, Valentin Robu, and Tokuro Matsuo, editors, Complex
Automated Negotiations: Theories, Models, and Software Competitions, volume 435
of Studies in Computational Intelligence, pages 223–227. Springer Berlin Heidelberg,
2013.

39. Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R. Jennings.
Iamhaggler: A negotiation agent for complex environments. In Takayuki Ito, Minjie
Zhang, Valentin Robu, Shaheen Fatima, and Tokuro Matsuo, editors, New Trends in
Agent-based Complex Automated Negotiations, Series of Studies in Computational
Intelligence, pages 151–158, Berlin, Heidelberg, 2012. Springer-Verlag.

40. Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R. Jennings.
Iamhaggler: A negotiation agent for complex environments. This volume, pages
151–158, 2012.

41. Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R. Jennings.
Iamhaggler2011: A gaussian process regression based negotiation agent. In Takayuki
Ito, Minjie Zhang, Valentin Robu, and Tokuro Matsuo, editors, Complex Automated
Negotiations: Theories, Models, and Software Competitions, volume 435 of Studies
in Computational Intelligence, pages 209–212. Springer Berlin Heidelberg, 2013.

42. D. Zeng and K. Sycara. Bayesian learning in negotiation. International Journal of
Human Computer Systems, 48:125–141, 1998.


