

This second blueprint architecture for social and networked media testbeds provides the

foundation for the EXPERIMEDIA facility for baseline component development during the

expansion phase (Year 2) and for experiments conducted using the baseline (Year 3). The

document builds on the first blue print architecture D2.1.3. The purpose of the architecture is

described along with requirement considerations. A high-level description of the baseline

architecture is provided and how each component is integrated within experiments for both

instrumentation/observation and also orchestration of information flows. The capabilities of

each specific component are described including those supporting FMI content lifecycles and

the Experiment Content Component supporting overall experiment management.

D2.1.6

Second Blueprint Architecture for Social and

Networked Media Testbeds

v1.1: 2013-08-16

David Salama (ATOS), Michael Boniface (IT Innovation), Simon Crowle (IT

Innovation), Stephen C. Phillips (IT Innovation), Nicholas Vretos (CERTH),

Kleopatra Konstanteli (NTUA), Thanos Voulodimos (NTUA), Stefan

Prettenhofer (Infonova), Sandra Murg (JRS), Peter Ljungstrand (Interactive)

www.experimedia.eu

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 2

Project acronym EXPERIMEDIA

Full title Experiments in live social and networked media experiences

Grant agreement number 287966

Funding scheme Large-scale Integrating Project (IP)

Work programme topic Objective ICT-2011.1.6 Future Internet Research and Experimentation
(FIRE)

Project start date 2011-10-01

Project duration 36 months

Activity 2 Construction

Workpackage 2.1 Architecture Blueprint

Deliverable lead organisation IT Innovation

Authors David Salama (ATOS), Michael Boniface (IT Innovation), Simon
Crowle (IT Innovation), Stephen C. Phillips (IT Innovation),
Nicholas Vretos (CERTH), Kleopatra Konstanteli (NTUA), Thanos
Voulodimos (NTUA), Stefan Prettenhofer (Infonova), Sandra Murg
(JRS), Peter Ljungstrand (Interactive)

Reviewers Sandra Murg (JRS)

Version 1.1

Status Final

Dissemination level PU: Public

Due date PM18 (2013-03-31)

Delivery date v1.0: 2013-08-01; v1.1: 2013-08-16

Version Changes

1.0 Initial release

1.1 Added information on SLAs, security and website monitoring; refined
the detail of the provenance discussion; added more PCC sub-
components

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 3

Table of Contents

1. Executive Summary .. 7

2. Introduction .. 8

2.1. Purpose ... 8

2.2. Scope ... 8

2.3. Architectural Considerations ... 9

3. High Level Architecture .. 11

3.1. Technology Enablers .. 11

3.2. Fundamental Composition Patterns .. 12

3.2.1. Instrumentation and Observation .. 12

3.2.2. Mixed Information Flows .. 13

4. Experiment Content Lifecycle Management .. 15

4.1. Experiment Content Component (ECC) Overview .. 15

4.2. Metric Data Model .. 17

4.3. Bootstrapping the ECC .. 20

4.4. Naming ... 23

4.5. Experiment monitoring process ... 29

4.5.1. Monitoring Sources .. 32

4.5.2. Reporting of Self ... 35

4.5.3. Reporting perception of activity and usability qualities ... 36

4.6. Provenance data model .. 37

4.7. Data Navigation, Analysis and Visualisation ... 40

4.7.1. Analysing QoS & QoE metric sets... 40

4.7.2. Combining metric and provenance data .. 42

4.7.3. Experimentation insight use-case: QoS & QoE indicators to system/user

activity ... 46

4.7.4. Experimentation insight use-case: System/user activity to QoS and QoE

indicators .. 50

4.8. Service Level Agreements .. 51

5. FMI Content Lifecycle Management ... 54

5.1. Audio Visual Content Component (AVCC) ... 54

5.1.1. Streaming .. 54

5.1.2. VoD Ingest .. 55

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 4

5.2. Pervasive Content Component (PCC) ... 59

5.2.1. AR client ... 60

5.2.2. POI service .. 61

5.2.3. Creator .. 61

5.2.4. Babylon ... 63

5.2.5. Tracker .. 64

5.2.6. Ping! .. 65

5.3. Social Content Component (SCC).. 66

5.3.1. Social Integrator .. 66

5.3.2. Social Monitor ... 68

5.3.3. Social Analytics Dashboard ... 70

5.4. 3D Content Component (3DCC) ... 72

6. Deployment Constraints .. 75

6.1. Security and Privacy .. 77

6.1.1. Service Hosting ... 78

6.1.2. Risk Based Approach ... 78

7. Conclusion ... 80

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 5

List of Figures

Figure 1: Technology enablers of an FMI testing facility ... 12

Figure 2: Correlating between discussion topics and delivered content ... 12

Figure 3: An integrated view of EXPERIMEDIA based on experiment composition patterns .. 13

Figure 4: V1 ECC architecture .. 15

Figure 5: V2 ECC monitoring architecture ... 16

Figure 6: Updated ECC metric model ... 18

Figure 7: Simple example of observing a Facebook event.. 19

Figure 8: Monitoring a Facebook Event ... 19

Figure 9: An illustration of the multiplicities of ECC clients, RabbitMQ and ECC (dashboard)

instances ... 21

Figure 10: Sequence diagram illustrating the storing and retrieval of ECC connection data and

storing of SAD service location .. 23

Figure 11: Assigning Identity for a baseline component and 3rd party service 26

Figure 12: Baseline component and known user account .. 27

Figure 13: Baseline component and unknown user identifier .. 28

Figure 14: Baseline component and video data asset .. 28

Figure 15: Experimental Monitoring Process ... 29

Figure 16: State Model for Setup Phase .. 30

Figure 17: State Model for Live Monitoring Phase .. 31

Figure 18: State Model for Post Reporting Phase .. 31

Figure 19: State Model for Tear-Down Phase .. 32

Figure 20: Inter-dependences for instrumented software ... 33

Figure 21: Reporting Self ... 36

Figure 22: Measurement sets encapsulated in questionnaire metric group 37

Figure 23: W3C PROV key concepts .. 38

Figure 24: PROV timeline example.. 39

Figure 25: ECC client sends PROV data with mixed embedded ontologies 40

Figure 26: Experimental insight use case combining provenance and metrics 43

Figure 27: Provenance model for initialising the video stream .. 44

Figure 28: Extending the provenance record with AVCC streaming activities 45

Figure 29: Adding video re-transmission to the provenance record ... 46

Figure 30: QoE self-report measurements (positive/negative scale) .. 47

Figure 31: Metric timelines for the steam count and stream bit rate (average) 47

Figure 32: Bob’s QoE reports set next to his PROV activity .. 48

Figure 33: Bob and Carol's location data compared with QoE and QoS .. 49

Figure 34: Provenance query for Bob and Carol (and related PROV records) 50

Figure 35: Timeline PROV data comparison against Carol’s QoE and the AVCC QoS 51

Figure 36: Illustration of bi-partite service level agreements ... 52

Figure 37: AVCC Stream deployed .. 54

Figure 38: AVCC Ingest deployment ... 56

Figure 39: Infonova Data Management Infrastructure (overview) ... 61

Figure 40: Creator user interface in authoring mode ... 62

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 6

Figure 41: Creator user interface for rule creation and editing .. 63

Figure 42: Babylon GUI on an iPhone .. 64

Figure 43: Example Tracker GUI with overlaid tracks from Stockholm Marathon....................... 65

Figure 44: Example user interface of a POI locator for tourists using Ping! 66

Figure 45: Social Integrator deployment ... 68

Figure 46: Social Monitor deployment .. 69

Figure 47: Social Analytics Dashboard (SAD) deployment .. 70

Figure 48: The Social Analytics Dashboard control page ... 71

Figure 49: List of SAD jobs on the administration page .. 72

Figure 50: 3DCC deployment ... 73

Figure 51: Conceptual Model of Deployment Options for Components .. 75

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 7

1. Executive Summary

This document is deliverable D2.1.6 “Second Blueprint Architecture” of the EXPERIMEDIA

project 287966 describing an architecture for social and networked media test-beds. The

document is the second iteration of the architecture superseding deliverable D2.1.3 “First

Blueprint Architecture” published on 11 April 2012. It provides a framework for further

enhancements to the baseline components during the second year, the expansion phase, of the

project and during the period of adaptation to the second open call experiments.

The architecture builds on the first architecture’s framework, describing additional composition

patterns to create richer inter-component data flows, and also lays out the variety of deployment

options available to experimenters along with a strategy for assessing the security and privacy

implications of those deployment choices.

A substantial part of the document is dedicated to proposed extensions to the experiment

content component: the configuration management, the monitoring sub-system and visualisation

requirements. Of these topics, the extensions to the monitoring system to add in provenance

data are most significant. For the driving and first open call experiments, the project defined a

method for reporting metrics which could represent quality of service and quality of experience.

By adding a structure way to keep track of user interactions and the causes of the metric reports,

the second architecture will provide additional insight into this crucial data.

Finally, the document provides an updated view of the available baseline components to help the

experimenter understand what is available, how they may be deployed and what communication

patterns already exist.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 8

2. Introduction

2.1. Purpose
The purpose of this document is to provide facility developers and experimenters with a

description of generic Future Media Internet capabilities and technologies offered by

EXPERIMEDIA and how such technologies can be integrated and used in social and networked

media experiments at the facility.

The purpose of architecture is to provide an abstract description of the structure and behaviour

of a system, and the desired impact the system is required to have on its environment.

Architecture describes the system scope, what outputs a system produces (in response to inputs),

the processes for delivering the outputs, and the resources necessary both in terms of people and

other assets.

Architecture is fundamentally communication mechanism and a way to help everyone

understand a system. A significant challenge in comprehending a system is that most are

complex. A primary goal is to deal with complexity through abstraction and decomposition

techniques in a way that considers design principles such as of encapsulation, high cohesion, and

loose coupling. Many methodologies have emerged in recent years to support the process of

architecture definition. The evolution of methods is driven by both advances in technologies and

the types of systems under construction. Our objective is to intelligently select techniques that

are most useful for the specific architectural characteristics and challenges faced by

EXPERIMEDIA rather than to adopt a single methodology universally.

The primary audience are those responsible for developing implementation technologies,

integrating and interconnecting related systems, and operating all or parts of the

EXPERIMEDIA systems. It also serves as an introduction of the EXPERIMEDIA architecture

to new experimenters.

2.2. Scope
The document describes architecture for EXPERIMEDIA facility for the Expansion Phase

(Year 2) whose implementation will provide the foundation for experiments conducted in the

final year of the project. The first architecture provided a high-level view of components within

the EXPERIMEDIA facility with some suggestions on how such components can be integrated.

The primary focus for the first version of the EXPERIMEDIA architecture was instrumentation

and observation of communities and components. The ability to collect data from multiple

heterogeneous platforms was seen as the essential element for experiments requiring the

observation of individuals and communities, and how to explore the relationship between quality

of service (QoS) and quality of experience (QoE). The second architecture extends these

concepts but also focuses in more detail on how various components can be composed to

orchestrate information flows and how such information flows can increase quality of

experience. Building on the conceptualisation in the first architecture various types of content

components are considered including (social, audio-visual, pervasive and 3D) and test-bed

management services supporting the experiment lifecycle. This document builds previous

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 9

deliverables: D2.1.4 “Second EXPERIMEDIA methodology”1, D2.1.5 “Second Scenarios and

Requirements”2 and D3.1.5 “Second Infrastructure and Software Assets Inventory”.

EXPERIMEDIA needs to describe the capabilities expected within a Future Media Internet

(FMI) architecture and not just the EXPERIMEDIA facility or a specific experiment. As such

the descriptions needs to consider the generic Architecture model for a FMI experimental

facilities such as those being offered by EXPERIMEDIA’s venues: Schladming, CAR and FHW.

As part of the work to produce the Architecture Blueprint we need to reach a consensus on what

capabilities are within an FMI system. By providing a capability map for the FMI with baseline

components providing basic implementations we offer the possibility for experimenters to

understand how to integrate their technology within the EXPERIMEDIA ecosystem and to

support multiple implementations of the same capability if necessary. For example, one

experiment may want to focus on P2P content delivery whilst another may focus on augmented

reality applications. What they need to is to understand where their experimental components fit

into the overall FMI architecture and what generic baseline components from EXPERIMEDIA

are available to integrate with to provide the additional capabilities they require.

2.3. Architectural Considerations
The specific characteristics of EXPERIMEDIA that must be considered throughout the

architectural design are included in the following list.

 Evolving Requirements: we are describing architecture but cannot know all

requirements in advance. We can describe the general capabilities for an FMI architecture

and what it means to operate a facility supporting such systems. However, new

requirements will emerge from experiments using the facility that cannot be envisaged

now.

 Integration and Adaptation: each experiment will develop and operate a FMI system

that consists of EXPERIMEDIA baseline technology components, EXPERIMEDIA

infrastructure components and experimental components. Architecture must be

developed in a way that ensures loose coupling between and efficient integration of

components in a way that creates a system of systems. Standardised interfaces should be

adopted where possible to reduce need for specific adaptations.

 Experimentation: experiments typically require components with high degrees of

instrumentation and control to attain insight into the behaviour of systems, their

relationship with users and to ensure validity by reducing the influence of extraneous

factors and providing repeatability.

 Security and Privacy: experiments must be legally compliant in accordance with data

protection legislation and security and privacy therefore must be considered a critical

attribute of component and systemic capabilities. Security and privacy must be by design

rather than an add-on.

 Technology Baseline: EXPERIMEDIA is not architecting a system from scratch but

from a set of technologies supporting different capabilities within the Future Media

1 http://www.scribd.com/doc/137302530
2 http://www.scribd.com/doc/129728380

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 10

Internet, and targeting known infrastructure environments. The architectural process

needs to combine top down analysis of desired capabilities alongside a bottom up

assessment of how each baseline technology and infrastructure supports them. Through

this process overlaps, gaps and integration points can be determined which can inform

future development tasks

 Constraints: Each component delivers a capability but also has technological and

operational constraints on use. For example, technically a component may only support

specific protocols or in operation may be only available at certain times and with limited

resources. This is especially relevant for infrastructure components at each venue that are

operated, sometimes by 3rd party companies, for “other” purposes (i.e.

EXPERIMEDIA does not have exclusive access).

 Time Limitations: the system lifecycle is organised into iterative and incremental

activities, with each iteration expected to add functionality. The first iteration is the most

challenging considering the novelty of the process, the levels of domain knowledge and

maturity of collaborative relationships. The scope of the architecture and capability

descriptions is likely to far exceed what can be delivered during the first iteration with

significant need to prioritise critical components and integrations between them

 Viewpoints: architecture can be described from multiple perspectives; we need to

consider how the architecture is presented to different stakeholders.

 Moving to Market: the architecture must be designed so that the systems required for

experimentation (specifically the experiment content component) can be removed

without breaking the end-user experience.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 11

3. High Level Architecture

3.1. Technology Enablers
Technology enablers are software or service components whose capability allows users to

achieve added value through use, either by design (i.e. the purpose is known in advance) or more

frequently by openness (i.e. the purpose is opportunistically established by the user). Technology

enablers are a key part of future innovation in programmes such as FIRE3 and the FI-PPP4.

Technology enablers of the FMI must address the needs novel applications and services allow

them to exploit a range of social, audio/visual, pervasive content and 3D content. Each class of

content has distinct characteristics, content lifecycles (authoring, management and delivery) and

platforms to support them. Developing a new platform supporting all content types is unrealistic

and the approach must focus on developing open interfaces to existing platforms that allow for

greater levels of interaction between information and control flows.

EXPERIMEDIA defines a component model that focuses on different content aspects within

the FMI with implementation technologies supporting the lifecycle of the specific content. Tools

and services are provided that support the mixing of different content types in the delivery of

user experience where the content lifecycles could be implemented within separate systems.

Figure 1 shows the EXPERIMEDIA component model: the social content component (SCC),

audio-visual content component (AVCC), pervasive content component (PCC) and 3D content

component (3DCC) to which we add an experiment content component (ECC) supporting all

data and processes related to the setup, execution, monitoring, analysis and security of

experiments. A key element of the components is that they are designed on the principle of

openness and transparency in terms of observability, configuration and security policy. Each

component includes a structural (i.e. entities) and behaviour model (i.e. QoE, QoS and quality of

community or QoC), and is instrumented to allow deep measurements. The disclosure of such

information is essential for understanding the interplay between different system components,

along with the observation of behaviours in larger composed Internet ecosystems including

communities. A configuration interface is provided that supports set up and runtime adaptation

of some QoS parameters. A security model is provided that describes authentication, access

control and how personal data is processed. The latter element is necessary to assure compliance

with ethical experimentation and associated data protection legislation. The capabilities of each

component are described in more detail in the following sections.

3 http://cordis.europa.eu/fp7/ict/fire/
4 http://www.fi-ppp.eu/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 12

Figure 1: Technology enablers of an FMI testing facility

3.2. Fundamental Composition Patterns
Composition Patterns are standard ways that technology enablers can be used together to

investigate new forms of social interaction and experience. We define a set of important patterns

to help experimenters understand how the components of the facility can best support their

experimental objectives and to provide stimulus for new ideas.

3.2.1. Instrumentation and Observation
The 1st pattern “Instrumentation and Observation” focuses on instrumentation of technology

enablers. This was the focus on the implementation in the first year. Each component is

described in terms of QoS, QoE and QoC metrics associated with their specific content domains

(social, audio-visual, pervasive, and 3D) and is required to generate measurements of these

metrics during the runtime. Additional infrastructure metrics regarding infrastructure

performance are generated by hosting components such as the CloudManager (e.g. compute,

storage and networking). All metrics assist experimenters in understanding the behaviour of the

system in terms of both technical performance and user experience. For example, the audio-

visual content component (AVCC) generates metrics related to audio-visual (AV) streaming such

as frame rates, frames dropped, video quality, etc. When combined with networking metrics (e.g.

bandwidth, latency, etc) an experimenter can study the network characteristics necessary to

deliver a certain QoS (e.g. 25 fps, HD with a 1/1000 frames dropped) to a group of consumers.

This is standard, although not simple, and initiatives such as those undertaken in the ITU QoE

study areas (e.g. ITU-R Rec. BT.500-11) provide a methodology for the subjective assessment of

the video quality.

 Figure 2: Correlating between discussion topics and delivered content

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 13

FMI technology enablers must focus more on how different content, aggregations of content

and social interaction affect experience. With each Content Component generating metrics

experimenters can begin to correlate human activities with monitoring data between

components. For example, navigating to a certain location in virtual world may create a popular

discussion in a social networking group. By identifying popular discussions and looking at which

point in the story/presentation (e.g. seeking a specific time point a recorded video stream) when

these occurred the experimenter can begin to understand why specific events cause specific

outcomes in the target community, and if necessary initiate a deeper analysis (e.g. direct user

evaluation) with the community on these target areas. Figure 2 illustrates data coming from both

the AVCC and the SCC which can be correlated in the ECC to support this type of analysis.

Changing the narrative after the production would be considered a “design” phase adaptation.

However, increasingly we envisage adapting the narrative during the production based on

emerging profiles and interests of social groups and how they react to the content being

delivered. In this case rather than undertaking a post analysis of the metrics we could

automatically annotate a video stream with metadata indicating points of interest/questions

associated with the content. The Content Author could then adaptive the narrative based on

discussions, questions, or votes for more information by reviewing an annotated stream timeline.

3.2.2. Mixed Information Flows
The second pattern “Mixed Information Flows” focuses on how content from each component

can be orchestrated in information flows as part of a new experience. Examples include:

 annotating video streams (AVCC) with metadata from social networking trends (SCC);

 annotating video streams (AVCC) with metadata derived from sensors (PCC);

 adapting the narrative of a pervasive game (PCC-Creator) based on social networking

trends;

 reconstructing people who are present in physically different locations (3DCC) in a single

virtual location as 3D avatars.

An interesting element is how by mixing the content between different platforms influences the

user experience and technical performance in each component. For example, does changing the

narrative as a consequence of the social networking topic reduce the discussion on the social

network because the focus of attention has changed?

Figure 3: An integrated view of EXPERIMEDIA based on experiment composition patterns

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 14

It is critical that technology enablers are support added value composition patterns (see Figure

3). Here we show how all components can be used together in an FMI system. The PCC

orchestrates the narrative (control flow is the dotted lines, data flow is the solid lines) for the

gamification of activities. As such the PCC can initiate controlling actions such as recruiting user

populations through information dissemination in social networks, delivering popular video

sequences to specific communities and acquiring 3D representations of objects and people. With

all components instrumented using a behavioural model resulting metrics generated are acquired

by the ECC and available for real-time and post analysis.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 15

4. Experiment Content Lifecycle Management

As EXPERIMEDIA is performing FMI experiments and not just creating FMI systems, the

management of those experiments and their data is of utmost importance to the project. Even

though the more complex component composition patterns discussed above are necessary, they

still all involve the experiment content component. From the experiences of the driving and first

open-call experiments various useful extensions and refinements to the ECC have been

identified and this document therefore dedicates a significant portion to describing these

advancements.

4.1. Experiment Content Component (ECC) Overview
Experiment content is produced and consumed by developers performing tests on FMI systems

to understand and gain insight into structure, behaviour and performance. System configuration,

system dependency graphs, input/out data sets, testing procedures and monitoring data all

characterise experiment content.

Figure 4: V1 ECC architecture

The ECC allows a developer to set up, execute and tear down tests on FMI systems deployed at

different locations. The ECC monitors, derives experimental data from, and manages the system

under test through integration with the ECC API. The ECC elicits QoS, QoE and QoC data

from the other components and delivers it to the experimenters so they can analyse the

behaviour of technical systems in relation to user experience. The ECC manages the delivery of

monitoring metrics that are stored and available for both live and post/batch analytics.

Monitoring clients are available for services, mobile clients and web applications thought an

AMQP bus. A dashboard is provided leading developers through an experiment lifecycle that

includes setup, live monitoring, analysis and tear down. The high level architecture for V1 is

shown in Figure 4.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 16

Figure 5: V2 ECC monitoring architecture

The V2 ECC architecture extends the state-of-the-art in experiment monitoring frameworks by

providing a mechanism by which experimenters can investigate how system and user activities

have led to changes in system performance or human experience (as observed by the ECC

metric monitoring system). To this end, the experimental support provided by the ECC will be

extended to include:

 An enhanced metric model meta-data to improve visualisation

 Time-line based navigation of metric data

 Metric data aggregation and descriptive statistical analysis

 A provenance based view on system and user activities

Key changes to the metric model will include:

 Extended support for Unit types to include:

o Support for UCUM5 unit specifications

o Custom metric types (including Babylon based QoE types)

5 http://unitsofmeasure.org/trac/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 17

 Extended semantic information:

o Measurement Group semantics (for example, the measurement sets in a particular

group are all responses to a questionnaire)

o Further entity meta-data, including URLs to online resources (photographs, videos

and other representations of the entity being observed).

A further significant enhancement to the ECC architecture is the means by which system

behaviours, events or human activities will be captured as an additional stream of provenance

data. From an architectural point of view, the ECC has been extended to include a data

provenance model, using the W3C PROV standard6, which will be integrated with an updated

ECC experiment metric framework.

In Figure 5, we see ECC clients now provide both metrics (indicating QoS/QoE characteristics)

and provenance data that describes discrete activities enacted by agents on entities. Internally, the

ECC captures these two data streams and stores them using the appropriate data managers. An

experimenter interacting with the ECC via the dashboard then has the ability to visually navigate

through the both sets along a common time-line such that interesting changes in metric data can

be linked to a behavioural record of data activity associated with systems and people.

4.2. Metric Data Model
The ECC offers a metric modelling framework that offers support for a range of potential QoS,

QoE and QoC measurements, see Figure 6. In this model, the objects of experimental

observation (referred to as ‘Entities’) are loosely coupled with the agent (the ECC software

client) making the observations. Entities themselves must contain one or more Attributes that

are the subject of actual instrumentation and measurement activity. In version two of the metric

model, Entities will optionally offer additional key-value pair meta-data to the experimenter

(such as URIs to online content).

6 http://www.w3.org/TR/prov-overview/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 18

Figure 6: Updated ECC metric model

In this model, Entities themselves must contain one or more Attributes that are the subject of

actual instrumentation and measurement activity. Measurement data itself is logically structured

within Metric Generators (typically used to represent metrics linked to a particular sub-system or

user). Further organisation is offered through the grouping of sets of measurements using one or

more named Metric Groups. A Measurement Set contains zero or more measurements that are

specific to a particular attribute; Metric Groups may contain one or more Measurement Sets. The

semantics of each Measurement Set is defined by its Metric, which in turn has a Metric Type and

Unit of measure. In version 2 of the metric model, specialisations of Metric Type and Unit will

be provided to improve formalisation and enhance visualisation.

This metric model is explored a little further in the following simple example in which an ECC

client (called ‘SocialAuth ECC client’) observes a Facebook event and sends metric data to the

ECC dashboard, see the figure below.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 19

Figure 7: Simple example of observing a Facebook event

This very basic relationship need to be developed further however, since a) entities (in this case

the ‘Facebook event’) will have certain attributes that are of interest to the experimenter and the

b) some organisation of the structure of the metric data associated with the entity must also be

specified. To see how this is arranged, consider Figure 8..

Figure 8: Monitoring a Facebook Event

In this example, we have added two attribute instances to the entity, representing aspects of the

Facebook event we have an interest in observing (i) the number of users attending the event and

(ii) the average age of users in the event (see Figure 8). We can consider the data management

structures that support the collection of data representing these two attributes from either a ‘top-

down’ perspective (starting from Metric Generators) or from a ‘bottom-up’ view point, starting

with a data collection type (the Measurement Set type) that is mapped directly to an attribute of

interest. For this example, we will take the latter approach and start by directly linking data sets

to an attribute.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 20

The Measurement Set type holds a set of measurements that specifically relate to an attribute and

in addition has associated with it a metric meta-data indicating its Metric Type (nominal; ordinal;

interval or ratio) and its Unit of measure. In the diagram above, we see two instances of

Measurement Sets (each uniquely identified by a UUID value) which are mapped directly to the

attributes of interest.

Moving up the data hierarchy, the next level of logical organisation is the Metric Group – a

container used to perform one level of partitioning for collections of measurements that relate

(for example, “online user” metrics). Metric Groups themselves are collected together by the top

level data organisation, the Metric Generator. As previously indicated, the Metric Generator

represents a higher, system-level component that generate metrics, for example it may be useful

to differentiate server and client based metric generators. An additional mapping, similar to that

used to link measurement data sets to attributes is specified linking metric generators to entities

under observation since it is likely that individual systems will be deployed to observe different

entity types. ECC client software must send their specification of the metrics they are going to

provide the ECC in this way, during the Discovery phase. In this way, the experimenter has a

means by which to understand which clients are performing what kind of measurements, and

what they relate to within the experimental venue.

An exploration is being done for possible alignment of the ECC metric data model with the

METRIC ABE in the telecommunications industry standard Information Framework, Release

13.5, currently under development in the SDO TM Forum. Information Framework elements,

formerly known as the SID (Shared Information and Data Model) are also typically republished

by the ITU, as in M.3190 for a previous release. Access to the current model under development

is restricted to TM Forum member organisations, including Infonova and University of

Southampton.

4.3. Bootstrapping the ECC

A single instance of the ECC supports multiple (concurrent) experiments running in a single

project. ECC’s are not shared between projects. Communication between the ECC and its

clients is done through RabbbitMQ and an installation of RabbitMQ can be used for multiple

projects (see Figure 9).

A note on terminology: commonly in EXPERIMEDIA we have used the work “experiment” to refer to one

of the driving or open call experiments, meaning all activities associated with that work-package. However, in

the following we will use the word “project” to mean one of the experiments funded by EXPERIMEDIA,

then we can say that a project will run many “experiments” where an experiment involves (potentially)

provisioning services, recruiting participants, getting monitoring clients connected, collecting data, tearing down

the connections and then analysing the data.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 21

Figure 9: An illustration of the multiplicities of ECC clients, RabbitMQ and ECC (dashboard) instances

Each ECC is identified by a universally unique identifier (UUID)7 which is assigned to the ECC

through configuration at deployment time. When an instance of the ECC starts, it connects to

the RabbitMQ bus and creates an exchange identified by its UUID. For an ECC client to

connect to the ECC dashboard, it must know the hostname and port of the RabbitMQ bus and

also the relevant ECC UUID.

In V1, software is created with, at best the RabbitMQ hostname and ECC UUID in a

configuration file, and at worst, the data baked in to the software itself. Some ECC clients

assume that RabbitMQ and the ECC are dedicated to a single Project and therefore clients use

the default dummy ECC UUID of “00000000-0000-0000-0000-000000000000”. This approach

does not work if multiple ECC instances are using the same RabbitMQ. In addition, distributing

configuration information to large numbers of ECC clients is inefficient and the use of UUID’s

makes identifiers difficult for humans to read.

In V2, configuration data is published to a Configuration Registry at a well-known URL (e.g.

http://config.experimedia.eu). ECC clients download the configuration data at start up and use

this information to connect to the ECC. Two options for the configuration server have been

identified:

 WebDAV8 (for instance using an Apache HTTPD server9)

 Zookeeper instance10 as used in Hadoop11.

The primary use case is where an ECC service is manually deployed on behalf of a project (as

this is an occasional need). The ECC service is configured with the name of the project and on

7 A universally unique identifier (UUID) is an identifier standard used in software construction
8 http://www.webdav.org/specs/rfc2518.html
9 http://httpd.apache.org/
10 http://zookeeper.apache.org/
11 http://hadoop.apache.org/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 22

start-up it stores its ECC UUID and RabbitMQ hostname and port in the Configuration Registry

under the project name. ECC clients deployed for the project know their project’s name and the

address of the configuration registry. Using this information they retrieve the ECC

configuration from the registry and connect. The pattern can be repeated for other services

deployed for a project such as the SAD or AVCC.

A secondary use case is using the Configuration Registry for configuration of applications or

services developed by the projects themselves (as opposed to baseline components). For

instance, a mobile client deployed on many devices for a project that was investigating different

interface types could use the configuration registry to look up which interface to display during a

particular experiment run.

We define the following hierarchical naming structure:

/<baseline component>
 /<sub-component>
 /<project>
 /Document containing data describing the instance of the sub-component
 pertaining to project <project>
 /default
 /Document containing default configuration data for the sub-component
/project
 /<project>
 /Document(s) or subfolders containing data required specifically for
 project <project> unrelated to the baseline components

For instance:

/ECC
 /RabbitMQ
 /BLUE
 /Document containing the RabbitMQ hostname:port for project BLUE
 /default
 /Document containing the Atos RabbitMQ hostname:port
 /dashboard
 /BLUE
 /Document containing the ECC UUID for project BLUE
/SCC
 /SAD
 /BLUE
 /Document containing SAD hostname:port for project BLUE
/project
 /BLUE
 /Document containing BLUE-specific configuration data

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 23

Figure 10: Sequence diagram illustrating the storing and retrieval of ECC connection data and storing of
SAD service location

By arranging the data as described above, access control policies can be implemented to control

which systems are able to read or write the configuration data. For instance, it could be

configured such that the ECC dashboard software was authorised to write in to the

“/ECC/dashboard” space and that BLUE project software was permitted to read from the

“/ECC/dashboard/BLUE” space. The need for such policies depends on the sensitivity of the

data being written and read which may vary across components and projects. Access control

could be implemented using usernames and passwords or using some sort of web-key12.

4.4. Naming
Naming is concerned with the rules for choosing identifiers to denote applications, software,

data, people and things. Naming must consider the scope and relative uniqueness of identifiers.

Naming syntax and conventions are especially important in distributed systems where things are

interacting with, shared with or being observed by multiple system components often developed

independently. For example:

 Two different sensors measuring the “speed” attribute of a person.

 Linking comments from Facebook and Twitter to user accounts of the same person

 Correlating Quality of Experience from Babylon mobile application with Quality of

Skeleton from the 3DCC for a particular athlete.

12 http://waterken.sourceforge.net/web-key/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 24

There are then two basic ways to deal with the problem:

 Convention: agreement on the names to describe entities prior to execution. There are

situations where prior agreement cannot be done because either the entities are not

known at the start or existing naming conventions are already established.

 Resolution: once entities exist within the system, techniques such as feature extraction

can be used to establish equivalence.

Where possible it is important to establish convention because feature extraction algorithms can

be complex and depending on the availability of features offer varying levels of robustness.

There are various cases where a consistent naming scheme is needed in EXPERIMEDIA.

Monitoring data are observations about the system under test collected during an experiment.

Entities are things of interest (e.g. services, data or people interacting with the system) and

Attributes are behaviours/characteristics associated with an Entity. For example:

 an entity could be a Person and attributes could be Running Speed, Opinion or

Preference

 an entity could be a Service and attributes could Response time, Storage Capacity,

Uptime

Entity attributes are reported to the ECC by ECC Clients. An experiment can have multiple

ECC Clients reporting on a set of Entities. Two different ECC Clients could measure the same

Entity and assign different UUIDs. It is important to know the ECC Client where the data has

come from, but it is also important to know that the data from both sources refers to the same

entity and/or attribute.

The full ECC metric model is shown previously in Figure 6. Table 1 shows the identifiers in the

ECC metric model. Each object in the model is identified by a UUID and some objects have

additional metadata that can provide human readable names (e.g. experimentId, entity Id). The

generic nature of the ECC allows experimenters to dynamically define entities of interest to them

and does not currently impose naming conventions. Although this offers a flexible approach it

does not encourage best practice. If an experiment was completely in charge of what was

reported to the ECC then the naming convention would only matter to the experimenter and

how they configure their software. However, an experimenter will use baseline components

(which report to the ECC), other 3rd party services (e.g. Facebook) and their own software.

Identifiers chosen by the experimenter must be consistent where possible with the identifiers

assigned in other contexts.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 25

 UUID
(uuid)

name
(String)

description
(String)

entityID
(String)

experimentID
(String)

Client x x

Experiment x x x x

MetricGenerator x x x

Entity x x x x

Attribute x x x

MetricGroup x x x

MeasurementSet x

Measurement x

Report x

Metric x

Unit x

Table 1: Identifiers in the ECC metric model

Here we define the principles for naming entities and attributes reported to the ECC.

 Entity identifiers are assigned when an entity is born by another entity responsible for

creating them.

 Entity identifiers should be unique enough so that they do not clash in a context of use

(e.g. within a set of experiments).

 Entity identifiers should be structured according to URIs where possible.

 Entity identifiers based on URIs can be dereferenceable but this is not mandatory.

Figure 11 shows an example of how identities are assigned to entities for the SCC baseline

component. The figure shows the actor responsible for assigning the identifier, the entity and

the identifier itself. The figure also shows type annotations (in italics) which must also be

associated with identities. In this case when the SAD Service is deployed it is uniquely identified

by a URL where the service is hosted. The SAD Service includes a set of software plugins

responsible for social analytics. Each plugin is identified by a URI prefixed with the SAD

Service URL. The plugin URI does not need to be dereferenceable. The SAD plugin accesses

and analyses entities from Facebook and Twitter. Here the Facebook Event is identified by a

URL assigned by the Facebook Service and the Facebook Account is identified by a URL

assigned by the Account Owner.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 26

Figure 11: Assigning Identity for a baseline component and 3rd party service

The Person entity is a special case. In fact physical objects such as people are not created by the

system under test. They are objects that exist in the real world already and become known to

system either through configuration or through observations during monitoring. People do not

have a unique identifier but are identified by a set of characteristics such as name, address, email

and account ids. People can be known in advance to a system through a user account registration

or may appear through interactions.

We propose to describe the Person entity using the FOAF13 ontology. Using FOAF a person can

be described using various attributes. The following example comes from “An Introduction to

FOAF”.14

<foaf:Person>
 <foaf:name>Peter Parker</foaf:name>
 <foaf:gender>Male</foaf:gender>
 <foaf:title>Mr</foaf:title>
 <foaf:givenname>Peter</foaf:givenname>
 <foaf:family_name>Parker</foaf:family_name>
 <foaf:mbox_sha1sum>cf2f4bd069302febd8d7c26d803f63fa7f20bd82</foaf:mbox_sha1sum>
 <foaf:homepage rdf:resource="http://www.peterparker.com"/>
 <foaf:weblog rdf:resource="http://www.peterparker.com/blog/"/>
</foaf:Person>

Email address is an important attribute for identifying people on the web. FOAF defines a

<foaf:mbox> property:

 <foaf:mbox rdf:resource="mailto:peter.parker@dailybugle.com"/>

FOAF does not an assign a URI to the resource called Peter Parker, i.e. there is no rdf:about

attribute on the foaf:Person resource:

13 http://www.foaf-project.org
14 http://www.xml.com/pub/a/2004/02/04/foaf.html

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 27

<foaf:Person rdf:about="..uri to identify peter..."/>

That's because there is still some debate around both the social and technical implications of

assigning URIs to people. Which URI identifies you? Who assigns these URIs? What problems

are associated with having multiple URIs (assigned by different people) for the same person?

Side-stepping this potential minefield, FOAF borrows the concept of an "inverse functional

property" (IFP) from OWL, the Web Ontology Language. An inverse functional property is

simply a property whose value uniquely identifies a resource.

The FOAF schema defines several inverse functional properties, including foaf:mbox,

foaf:mbox_sha1sum, and foaf:homepage. An application harvesting FOAF data can, on

encountering two resources that have the same values for an inverse functional property, safely

merge the description of each and the relations of which they are part. This process, often

referred to as "smushing", must be carried out when aggregating FOAF data to ensure that data

about different resources is correctly merged.

The ECC will use a prioritised list of foaf:Person properties (email, homepage, userAccountId,

etc) to identify people depending upon what information is available about that Person.

Figure 12: Baseline component and known user account

Figure 12 shows an example of a baseline component and a known user reporting quality of

experience using the Babylon Mobile application. This is a general pattern for identifying users

from existing user accounts, in this case an account associated with an EXPERIMEDIA baseline

component. The Babylon service is assigned a URL when it is deployed by a Service Deployer.

The instanceId of the Babylon Mobile App running on the mobile device will be determined by

the Service Developer. This URI does not have to be dereferenceable. The User Account is

assigned by the Account Owner when they register and the Person who is the account owner is

assigned an identity based on an email address.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 28

Figure 13: Baseline component and unknown user identifier

Figure 13 shows the situation where a component knows there’s a user interacting with a system

but does not have an identifier. In this case a User is viewing a video through the AVCC Player

in a web browser. The AVCC player knows a Person is interacting with the video but has no

specific identifiable attributes about that person. Of course other tracking information such as

location and time could be used later to identify that the interaction was caused by a specific

individual but at the time of interaction this is not known. What’s important is that an Anon

User is recorded in the system responsible for the interactions with the AVCC player. Any

identifier could be used and in this case we just assign a URI where the personID is a UUID.

Figure 14: Baseline component and video data asset

Figure 14 shows the situation a Content Provider is ingesting a video into the AVCC. In line

with the principles about it is the responsibility of the Content Provider to assign an identifier to

the video.

Finally, it’s important that we not only define consisting naming for specific entities but also

entity and attribute types. Globally shared identifiers of attributes are useful in displaying data. If

an attribute was identified as a certain type then it could be plotted accordingly in the dashboard.

The ECC will use the following scheme:

 Entities: Entities will be described by URIs pointing to concepts in semantic models. All

entities will have type prov:Entity. Additional concepts can be annotated by baseline or

experimenter components through the ECC Client API, if no concept is provided the

type will default to the prov:Entity. Entities can subclass multiple concepts.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 29

 Attributes: For most attributes the Unified Code for Units of Measure (UCUM) will be

used to describe attributes. For attributes that are not covered by UCUM, for example

geo-locations, colours, emotions, etc, alternative well known descriptors will be used.

4.5. Experiment monitoring process
Metric generating software clients that engage with an ECC based experiment go through a

process that may include up to six distinct phases. The initial two phases: ‘connection’ and

‘discovery’ are mandatory; the remaining parts of the process are optional. A high level

representation of the interactions between metric generating clients and the ECC for each of the

phases is shown in Figure 15.

Figure 15: Experimental Monitoring Process

Whilst an ECC client developer will need to be aware of the experiment monitoring process

described above, many of the interactions between the ECC and their instrumented software are

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 30

handled at a low level by the ECC client writer’s API. In the following sections, each of the

phases depicted above are described in more detail with an outline of client side behaviour.

Once a client has reported their capabilities and metric descriptions, it may enter a Set-up Phase

(if it supports it). Here, the ECC requires the client to progressively set up the metric generators

they have available for use. Clients supporting this phase respond with the result of each set-up

attempt.

Figure 16: State Model for Setup Phase

The Live Monitoring Phase is the main part of the experimental process in which the ECC

gathers metrics from all connected clients. Clients will have specified whether they support the

pushing or pulling (or both) of metric data by the ECC. In the former case, clients are able to

push any metric of their choosing on an ad-hoc basis (they should always wait for an

acknowledgement from the ECC after each push, however). Alternatively, clients may be pulled

for a specific measurement (identified in their specific metric model) by the ECC; a pull request

is sent to the client on a periodic basis – it is the client’s responsibility to return the appropriate

measure. This phase continues indefinitely until the experimenter concludes that sufficient

measurements have been taken.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 31

Figure 17: State Model for Live Monitoring Phase

After the live monitoring phase has completed, the ECC will contact the appropriate clients to

begin the Post Reporting Phase. The purpose of this phase is to allow the ECC to retrieve

metric data that was not possible to collect during the Live Monitoring phase. For example,

some clients may generate data too quickly or have a network connection that is too slow for all

of their data to be transferred to the ECC in time. During this phase, clients will be requested to

first provide a summary of all the data they have collected during the Live Monitoring phase, and

then be asked to send metric ‘data batches’ that will allow the ECC to complete its centrally

stored data set for that client.

Figure 18: State Model for Post Reporting Phase

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 32

Finally, some clients may be able to report on their Tear-Down process for some or all of their

metric generators. In some cases, it will be useful for the experimenter to know whether the tear-

down process has succeeded or not. For example, the experimenter will need to know whether

or not users (represented by the connected client) have been successfully de-briefed on the

completion of an experiment.

Figure 19: State Model for Tear-Down Phase

4.5.1. Monitoring Sources
Before an EXPERIMEDIA project can execute an experiment, a set of FMI technologies and

services taken from the baseline components or project specific technologies must be selected

for instrumentation. The metrics provided by each instrumented component will reflect the

observational requirements of the experiment design and are specified using the ECC metric data

model (see Section 4.2). An API supporting this data model and communication with the ECC

using AMQP is available for the following technology platforms:

 Java (common JRE)

 Java on Android

 C#

 C++

 Ruby

While the low-level implementation details for each platform of course vary, the general

architectural pattern for the client ECC architecture is common:

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 33

Figure 20: Inter-dependences for instrumented software

Figure 20 shows a high level overview of the inter-dependencies between an instrumented piece

of experimental software and the ECC client API. Above, the ‘ECC client logic component’

adopts a controller role: responding to requests for QoS/QoE data from the ECC and also

sending on interesting content life-cycle based provenance data, as it occurs. For convenience, a

number of helper classes exist to help the client writer:

 An adapter class that simplifies communication with the ECC, offering simple

communication methods and alerts to ECC monitoring requests

 A data helper class to quickly create instances of the ECC common data model

A selection of source code based examples of ECC clients can be found in the ECC software

distribution within the ‘samples’ folder.

4.5.1.1. Monitoring Web Sites

In two of the projects funded by the first open call, DigitalSchladming and MediaConnect,

experiment participants used web interfaces for some or all of the experiment. There is a wealth

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 34

of data that is commonly gathered by websites using technologies such as Google Analytics15 or

Piwik16:

 Interaction data:

o which pages are visited;

o which links are clicked on;

o how long is spent on a page;

o the duration of a visit;

o which pages are viewed first and last.

 User data:

o demographics (language and location);

o technology they are using (browser, OS, network);

o what type of device they are using (desktop, model of phone or tablet, screen

resolution);

o whether they are a new or returning visitor.

 The reason the user arrived at the site:

o what site they were browsing previously;

o what search terms they used.

 The performance of the website:

o the speed of page-loads.

This data is gathered using JavaScript code that is loaded along with the web page and sent to a

server for storage and analysis. The systems make use of long-lived cookies stored in the user’s

web browser that uniquely identify them as they browse from page to page.17

Google Analytics (GA) is the best known web analytics system and provides an impressive web

analysis dashboard to filter and navigate the data. Use of GA requires a Google account to be

set up by the owner of the website and a code associated with that account to be inserted into

each page to be monitored along with the necessary JavaScript. A useful feature of GA for

experimenters interested in their system’s user interface is automated A/B testing where

different groups of users are shown different interfaces and the data analysed accordingly.

Experimenters choosing to use Google Analytics for monitoring web sites must carefully

consider (with the support of the Ethics Advisory Board) the privacy implications of sending

data to Google’s servers. Google Analytics provides a data export function and the ECC should

provide tools to make importing data from GA into the ECC dashboard easy.

Piwik is describes itself as the “leading open source web analytics platform”. Rather than

providing a hosted web-service like GA, Piwik provide their service as software for the

15 http://www.google.com/analytics/
16 http://piwik.org/
17 The latest Google technology, Universal Analytics, can also work without cookies.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 35

administrator to download and install on their own server. It is basically very similar to GA:

gathering much the same data and providing a good web interface as well as a REST API and

data export facilities. If sensitive data was being gathered and stored then it may be a better

option than GA as the data goes directly to a server under the administrator’s control. Again,

the ECC should provide tools to make importing data from Piwik into the ECC dashboard easy.

Google Universal Analytics18 (UA) has recently entered a public beta test. As well as the web

page monitoring provided by GA and Piwik it provides an API for Android and iOS apps and a

“measurement protocol” for other digital devices. The measurement protocol19 provides a

simple method to send data from other devices to the Google servers. In a similar way to the

ECC dashboard it allows developers to measure how users interact with separate systems but

gather the data in a central location. The measurement protocol is much more limited than the

ECC metric model, allowing the reporting of up to 20 named string variables and 20 named

integer variables (or 200 for a premium account). The measurement protocol may be useful in

some experiments as a way of recording additional data, but this whole product is in beta and

not all features are currently working.

4.5.2. Reporting of Self
At present within EXPERIMEDIA, the report of the self is most commonly provided by

Babylon - which offers the ECC QoE in two different formats: 1) nominal emotion values [6

positive & 6 negative] and 2) a position on the colour wheel (x axis = affective response

[negative-positive] and y axis = [arousal bored/excited]). Within the ECC metric model, an entity

representing a user performing a specific role ('AR explorer', perhaps) would be defined with

attributes reflecting 'emotion', 'affective response' and 'arousal'. Measurement sets uniquely

generated by each individual user would be linked to the appropriate attribute of a shared entity

instance; aggregated and averaged measurement data from each client regarding the same

observations of the self would therefore provide the experimenter with an overall view of user

experience in this context.

18 https://support.google.com/analytics/answer/2790010
19 https://developers.google.com/analytics/devguides/collection/protocol/v1/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 36

Figure 21: Reporting Self

4.5.3. Reporting perception of activity and usability qualities
Here, in both cases, the user will be reporting their attitudes/perceptions that relate specifically

to a quality of an activity ('successful' or 'unsuccessful' training session, for example) or an

interactive system that augments a particular activity (the AR client was 'responsive' or 'non

responsive'). In many cases, a scale is used (Likert is usual) so that users can indicate their

perception in degrees. Respondents are often required to indicate their attitude to the same

aspect of an activity or system (again, in ECC parlance, this refers to an Attribute of an Entity)

several times within a questionnaire (see Figure 22).

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 37

Figure 22: Measurement sets encapsulated in questionnaire metric group

From an ECC metric model point of view, each user's scaled responses (relating to a single

attribute of an entity) would be would be held in a measurement set, which itself belongs to a

metric group representing the complete questionnaire data set. Repeated samples from each user

would then be averaged (noting responses that are either bi-polar or have a strong tendency

towards the mean), giving an overall profile for a specific individual (uniquely represented by an

ECC metric generator). Further aggregation of multiple users' attitudes towards a particular

aspect of their experience makes it possible to see the overall attitude of a user population.

4.6. Provenance data model
So far we have considered the metric data that relates to QoS and QoE indicators of systems and

users respectively. However, this data only provides a partial view of the overall behaviour of the

experimental system – greater insight could be offered to the experimenter if he/she could

further investigate the causes of the measurements that have been observed. Given such a view,

the experiment can then frame the following types of question:

 What system or user driven content lifecycle events are associated with a specific set of

metric observations?

 What are the differences in content lifecycle activities between related sets of metric

observations?

 What effect did changes to digital content have on QoS and/or QoE?

Toward being able to answer this questions a data provenance modelling standard has been

introduced into the EXPERIMEDIA experimental framework to support the traceability of

interactions between systems and users. A substantial body of research in the area of data

provenance is led by the W3C working group20 on provenance; a high level characterisation of

the properties of their provenance model is offered by the group as:

20 http://www.w3.org/2011/prov/wiki/Main_Page

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 38

W3C PROV description (http://www.w3.org/TR/prov-primer/)

 Copyright © 2013 W3C® (MIT, ERCIM, Beihang) [Recommendation]

The key high-level concepts encoded in the W3C PROV ontology are Entities, Activities and

Agents which are connected to one another using a number of common relationships, some of

which are indicated in the W3C example seen in the figure below.

Figure 23: W3C PROV key concepts

Copyright © 2013 W3C® (MIT, ERCIM, Beihang) [Recommendation]

Space in this document does not allow a full explanation of the W3C PROV model21, however,

in brief, according to the W3C ontology, an Entity may:

 Represent physical, digital or conceptual things

 Have relationships to other entities (such as a ‘part-of’ type relation)

 Have attributes that characterise an Entity (from different perspectives)

In Figure 23, we see a common relationship between an Entity and an Activity in that the former

represents some action (generation) on the latter. Activities in this formalism represent:

 Dynamic actions/processes that affect change in the world

 The agency that affects change in the attributes of Entities

Finally, the Agent concept in the ontology provides:

21 Interested readers should visit http://www.w3.org/TR/prov-primer/

“The provenance of digital objects represents their origins. PROV is a specification to express provenance

records, which contain descriptions of the entities and activities involved in producing and delivering or

otherwise influencing a given object. Provenance can be used for many purposes, such as understanding how

data was collected so it can be meaningfully used, determining ownership and rights over an object, making

judgements about information to determine whether to trust it, verifying that the process and steps used to

obtain a result complies with given requirements, and reproducing how something was generated.”

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 39

 A representation of a thing (typically an Entity) that has taken on a role

 Whole or partial responsibility for an activity that has occurred

As activities that are driven by agents to generate or change entities occur over time, a historical

record of these changes is built up in which new entities form relationships with older entities

(such as the continued revision of a document’s contents). Graphical timelines are often used to

illustrate the chain of events and associated agent responsibilities; a simple of example from the

W3C PROV group is presented below:

Figure 24: PROV timeline example

Copyright © 2013 W3C® (MIT, ERCIM, Beihang) [Recommendation]

Above, we see how the entity ‘dataSet1’ is changed by an agent that corrects an attribute so that a

new revision ‘dataSet2’ is created. We also see how two charts, which use data from the data sets

are created and derived from the two different entity instances.

The V2 ECC architecture will take advantage of the overlap between Entities (and attributes) in

from the existing metric model and the introduction of the W3C PROV ontology, using the

ECC’s common naming and ID management strategy to create the bridge between the two

experimental data sets. It is anticipated that the integration of the EXPERIMEDIA metric

model and the W3C provenance model will be initially scoped to cover a subset of the PROV-

N22 schema:

 Component 1: Entities, Activities, Generation, Usage, Start, End, Invalidation

 Component 3: Agent, Attribution, Association

Within the scope of the supported PROV data framework, additional semantic data may also be

included to offer the experimenter further opportunities to examine behaviour within domain

specific ontologies.

22 See http://www.w3.org/TR/prov-n/#component1 for further information

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 40

Figure 25: ECC client sends PROV data with mixed embedded ontologies

For example, where it is possible for an ECC monitoring client to do so, it could include

additional semantics taken from specific ontological domains, such as SIOC23 or FOAF24. In the

figure above, we see a provenance record being sent to the ECC that embeds additional semantic

FOAF related data about an Agent (Carol) and SIOC information about an Entity (an on-line

post identified as ‘post0001’). It is not expected that all provenance data sent to the ECC would

carry domain specific information, but where it does, there is an opportunity to query and cross-

reference data sets to learn something more about a specific context within the content lifecycle

of an experiment.

4.7. Data Navigation, Analysis and Visualisation

4.7.1. Analysing QoS & QoE metric sets
It is useful to remind ourselves of some examples of QoS metrics from existing

EXPERIMEDIA projects:

 Number of points-of-interest (POI) data (requests/hour)

 Average video stream rate (bytes/second)

 Average upload time (seconds/upload)

These metric types can be sampled continuously over time, easily lending themselves to temporal

visualisation. After data collection is complete, QoS data can then be further processed using

analytic approaches (there are many, of course) such as:

23 See http://rdfs.org/sioc/spec/ for further information
24 See http://xmlns.com/foaf/spec/ for further information

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 41

 Data filtering and segmenting (removing outliers, for example)

 Averaging repeated measurement sets taken over time

 Comparing distributions/variance between related measurement sets

Within just the QoS data context, we can start explore the performance relationships between

technical components using correlation analysis such as the Pearson product-moment. Using

such correlation techniques (assisted by scatter graph visualisations, typically) the experimenter

can discover positive (or negative) relationships (such as an increase in rendering FPS might be

positively correlated with an increase in rendering network traffic).

Again, let us return to some useful QoE examples already used within existing EXPERIMEDIA

projects:

 Report of the self: Babylon emotion labels & colour wheel scales

 User interaction logging (discrete, nominal events)

 Perception of activity/system usability: questionnaires (Likert scales)

Unlike many QoS metrics, QoE type metric data is rarely available as a continuous sample

stream. Users will interact or report emotions/perceptions/attitudes sporadically and in clusters.

Depending on the experimental methodology, these data clusters are likely to appear in narrow

temporal windows (perhaps before, and then after, as specific activity). QoE data can also be

contrasted with QoE metric sets in that there will be many sources reporting on the same QoE

focii (imagine 100 users, each independently taking part in activity 'X' and reporting on their level

of interest in that activity).

A number of important data management activities face the experimenter once he or she has

collected their metric data:

 Aggregating metric sets into a larger groups

 Pairing measurement sets for correlation analysis (and beyond)

The ECC metric model and underlying database has been designed so that it is possible to

retrieve the appropriate data sets for these analytic exercises; subsequent developments in the

ECC following version 2 of the EXPERIMEDIA architecture are planned to directly support

these early analysis related activities.

4.7.1.1. Aggregating metric sets into larger groups

In both QoS and QoE cases, the experimenter may wish to aggregate measurement sets in order

to draw some conclusions about the general behaviour of either:

 A single system or user25 over a period of time (repeated measures pattern)

 Multiple systems/users' behaviours over the same time period

 Different groups of systems/users behaviours over a time period26

25 Single user behaviour is only sometimes interesting however (in cases of 'outlying' data, for example).
26 Comparing a control group with a conditioned group, for example

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 42

Aggregated metric sets are typically summarisations of some form of repeated observation; this

could include averaged values; frequency analysis; other descriptive statistics (min; max; standard

deviation etc).

4.7.1.2. Pairing metrics for correlation

Widely used forms of correlation analysis require the pairing of interval or ratio values from two

data sets. As a rather contrived example, consider the pairing of a single value representing the

average rendering speed (QoS, FPS) with a single value representing a user's perception

(averaged) of system responsiveness (QoE, Likert scale -3 to +3). Let's imagine that we can

match these values for 30 users who have taken part in the same experiment. Having generated

these paired averages, we could plot these pairs on a scatter graph and apply a Pearson product-

moment analysis. We might find there is a positive correlation between frame rate and the

perception of system responsiveness.

4.7.2. Combining metric and provenance data
In the following sections, a more detailed description of the relationship between a provenance

based view of the content lifecycle activity and the metrics based view of the experimental

lifecycle within version 2.0 of the EXPERIMEDIA architecture is provided.

To illustrate the impact of how experimental metric and provenance data can be usefully

combined, we will consider two paths along which an experimenter might travel to understand

the meaning of the data he/she has collected:

 What causes can be attributed to set of QoS/QoE metric indicators?

 What is the result of system/user activities in terms of QoS/QoE indicators?

and a simple experimental context to understand the outcome. In the following sections, we

explore the use of these concepts using an imagined experimental scenario; consider the

following simple experimental deployment shown in Figure 26.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 43

Figure 26: Experimental insight use case combining provenance and metrics

In this experiment we imagine a new video streaming service that offers a mobile user the ability

to share a stream a video of her overlaid across a real-time 3D rendering of a virtual

environment. Quality of service metric data reflecting CPU cycles dedicated to transcoding and

streaming video streams are provided by the AVCC media streaming server to the ECC. Quality

of experience metric data, reflecting each user’s experience either as video stream providers or

consumers is sent from each user to the ECC via the Babylon server.

During the experiment, Alice starts streaming live footage of herself combined with a 3D

environment rendered by her mobile device to the AVCC media streaming service. Shortly after

this has begun, Bob switches on his EXPERIMEDIA mobile application and logs in as a viewer

of Alice’s video stream. During mobile device usage, Bob subjectively reports on his quality of

experience through the embedded Babylon client. A little while later Carol also connects to the

AVCC media streaming service, starts viewing Alice, and also starts reporting subject QoE. After

a few minutes, somebody starts sending some very negative QoE metrics via Babylon. What has

happened and why?

In this example, we imagine that the experimenter has a metric view composed of:

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 44

 Selected Babylon QoE metrics:

o User emotional state (Ordinal values)

o User physical location (Interval values)

 AVCC media streaming QoS metrics:

o Stream count (Ratio values)

o Average stream bitrate (Ratio values)

Complementary to this view of metric values changing over time (reflecting the experiment

lifecycle), the experimenter would also expect to receive aspects of data provenance activity that is

specifically focussed on the content lifecycle. Initially, Alice starts her mobile application and

initialises a video stream of herself; a provenance model of this first activity is shown in Figure

27:

Figure 27: Provenance model for initialising the video stream

Above, we see “Alice” and “Mobile App A” as agents that are associated with serializing HD

video data. This video stream (and related meta-data identifying Alice as a user of this service) is

then connected to the AVCC streaming service, which starts de-serializing and caching the live

HD video frames. These data related activities extend the provenance record further (See Figure

28).

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 45

Figure 28: Extending the provenance record with AVCC streaming activities

In this addition to the provenance record, we see the AVCC streaming service agent enacting a

video deserialization activity and generating an HD video frame cache for Alice’s in-coming

video data. Sometime after this, both Bob and Carol connect to the AVCC streaming service

(using their respective mobile applications) to watch Alice. In the following provenance record,

we will focus initially just on Bob’s chain of activity. Bob’s mobile application starts to pull an

HD video stream from the AVCC service which is subsequently de-serialised so that he can view

it (Figure 29).

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 46

Figure 29: Adding video re-transmission to the provenance record

In doing so, the AVCC connects the contents of the HD video frame cache with a broadcast

HD video stream, the content of which originates from Alice’s input video stream. The

completed PROV graph provides a connected content path with associated data processing

between Alice’s mobile device and Bob’s – we would also expect to see a similar path related to

Carol’s later use. In the following sections, we examine how the complementary data collected

from the experimental (metric) and content (provenance) lifecycles within the EXPERIMEDIA

architecture assist the experimenter in gaining insight through experimentation.

4.7.3. Experimentation insight use-case: QoS & QoE indicators to

system/user activity
In an attempt to understand what has happened during the course of the experiment described

above, the experimenter might first look at the QoS/QoE indicators and notice that, after a

period of time, the averaged emotion response reported by monitored users has moved from a

broadly positive response to a more negative one (see Figure 30).

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 47

Figure 30: QoE self-report measurements (positive/negative scale)

Our experimenter decides to see if other metric data has a relationship with the averaged QoE

samples and so investigates metric data for QoS stream count and average bitrate indicators.

Figure 31: Metric timelines for the steam count and stream bit rate (average)

Examining the best fit curves for the averaged QoE and QoS metrics, the experimenter

discovers a negative correlation between the emotion report and the stream count and a (weaker)

positive correlation between the emotion report and the average stream bitrate. This seems to

provide some initial clues as to what has happened, but the later QoE data is inconclusive as

there seems to be a cluster of both negative and neutral reports over the period of time where

average stream bit rate is low.

The experimenter decides she wants to see what happened in the content lifecycle to get a better

understanding of system activity over this part of the experiment timeline. To do this, she starts

by querying the metric data set to find the specific instances of the entities that reported QoE at

the end of her temporal “data window”:

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 48

Entity observation Attribute Entity URI # of measurements

Video receiver Emotion self-report foaf:mbox_sha1sum(Bob) 4

Video receiver Emotion self-report foaf:mbox_sha1sum(Carol) 3

Here the experimenter finds two users, Bob and Carol, their related entity URIs (in this case, the

“foaf:mbox_sha1sum” values that encode each user’s unique e-mail box address rather than their

actual names27) can be used to query the provenance records relating to the content life-cycle;

this query is possible because the provenance agent representations of Bob and Carol carry the

same URI used in the metric model’s entity description.

Our experimenter first selects Bob and looks at just his QoE reports alongside his related

provenance activity. This is illustrated in Figure 32: in this and subsequent figures the blue

“activity” rectangles have been elongated to show their start and end times.

Figure 32: Bob’s QoE reports set next to his PROV activity

The activity suggested by the provenance record does not seem to indicate any change between

the initial comparatively good QoE reports and the subsequently poorer samples. Returning to

27 See http://xmlns.com/foaf/spec/#term_mbox_sha1sum for further information.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 49

her metric data view for both Bob and Carol, the experimenter tries to find further evidence of

change by using more contextual QoE data, this time from the Babylon location data set (see

Figure 33).

Figure 33: Bob and Carol's location data compared with QoE and QoS

At this stage it becomes clear that a probable reason for the overall drop in average bit stream bit

might have something to do with the change in Bob and Carol’s location which begins in a 3G

mobile phone zone and then moves to a poorer 2G area. However, not all QoE samples toward

the end of the metric record indicate a poor experience.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 50

4.7.4. Experimentation insight use-case: System/user activity to QoS and

QoE indicators
Our experimenter discovered some interesting overlaps between metric and provenance data in

the previous section, but still cannot fully account for why QoS and QoE data for Bob and Carol

changed in an unexpected direction. There was some indication that user location might have

something to do with some of the observed changes, but the experimenter needs to find out

more about the underlying system behaviour that ultimately lead to a different experience for the

two users at the end of the experiment.

This time the experimenter retrieves provenance records for Bob and Carol (and all connected

activities, entities and agents) to see if there are any differences in their comparative content

lifecycles (see Figure 34).

Figure 34: Provenance query for Bob and Carol (and related PROV records)

The provenance based timeline shows that the AVCC and Carol’s mobile application interacted

in a different way to Bob’s over the latter part of the experiment. An examination of provenance

record shows the AVCC created and started streaming Alice’s video stream in SD resolution for

Carol whilst attempting to maintain a HD broadcast for Bob. Comparing these provenance

activities against Carol’s QoE and the overall average bit stream rate seems to indicate the

dynamic interactions between Carol’s mobile application and the AVCC may be the reason why

her quality of experience remained reasonable whilst Bob’s did not (see Figure 37).

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 51

Figure 35: Timeline PROV data comparison against Carol’s QoE and the AVCC QoS

This investigative process has shown how data derived from both metric and provenance

records can be combined to better understand FMI technology behaviour, performance and

contextual usage in a way that can lead to insights into the application of such technologies on

users in real world scenarios.

4.8. Service Level Agreements
Service level agreements (SLAs) are primarily for setting the expectations of both parties of a

bilateral agreement between a service provider and a consumer.

For the consumer the SLA defines what level of service they can expect and what redress they

have if the service level falls below those expectations. This helps the consumer to compare

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 52

different service offers and understand the likelihood of service failure and whether contingency

plans are required.

For the service provider the SLA puts a bound on the resources they need to commit to serving

a particular consumer. It allows the service provider to plan the use of their resources efficiently:

neither over- nor under-provisioning. A service provider will only put terms into an SLA about

aspects of their offer that they can control. For instance, a cloud service provider will usually

include a metric defining the “percentage up-time” for their service but will not include any

guarantee or statement about the end-to-end latency of the network as the majority of the

network path is out of their control.

In EXPERIMEDIA, some baseline components are offered as services by the core partners,

such as the AVCC and Creator, but there is no central EXPERIMEDIA service provider. If

EXPERIMEDIA used SLAs then an experimenter would need to agree SLAs with each service

provider (see Figure 36) potentially using different SLA systems. Services and resources are

instead offered to experimenters by the core partners on a “best effort” basis.

Figure 36: Illustration of bi-partite service level agreements

SLAs generally define measureable terms against which they can be judged. SLA systems

therefore at a minimum must have some sort of monitoring and measurement infrastructure and

ideally also include automatic control systems to adjust the resourcing for each SLA.

EXPERIMEDIA uses the ECC to monitor experimental systems so that the experimenter can

understand the end-users’ quality of experience and relate that to the quality of service provided

by the service components. The ECC can therefore service two purposes in relation to SLAs:

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 53

1) Providing information to the experimenter on the quality of service they received during

an experiment so that they can understand what would be required if their system was

deployed in a commercial environment.

2) If multiple EXPERIMEDIA services were deployed at a single partner site then the data

already coming in to the ECC via the RabbitMQ bus could be used to compare against

some SLA format such as that provided by SLA@SOI28 and at a minimum raise alerts if

service levels are not met.

We must remember though, that one of the architectural principles of EXPERIMEDIA is that

the ECC can be removed from the system without breaking the end-user experience (see Section

2.3) so any adaptation of the ECC must be done with some care.

28 http://sla-at-soi.eu/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 54

5. FMI Content Lifecycle Management

5.1. Audio Visual Content Component (AVCC)
Audio visual content is primarily characterised by video and metadata that’s streamed and

consumed by applications (i.e. players). AV content is produced by professionals and users using

content production, management and content distribution networks. The AVCC offers

capabilities for all aspects of the content lifecycle (acquisition, production, transcoding,

distribution, etc) and advanced capabilities for acquisition and synchronisation between cameras

feeds, audio and metadata, including matching exact frames from different cameras.

5.1.1. Streaming
This subcomponent is in charge of content adaptation and delivering of all current industrial

available streaming protocols. For live content this subcomponent also allows experimenters to

transcode high quality content into different qualities adapting the content to the consumer

networks capabilities. The streaming sub-component also allows the experimenter to record live

content and inject real-time metadata which is multiplexed in the video stream and can be

accessed by the player.

Figure 37: AVCC Stream deployed

This component is deployed at mediaserver1.experimedia.eu and in

mediaserver2.experimedia.eu, however only mediaserver1.experimedia.eu has live transcoding

capabilities.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 55

Description of the internal subcomponents:

 Live Input: This module manages the reception of all live content including audio, video

and metadata from the live metadata acquisition management. This module can receive

as input video and audio from multiple formats, providing as output a decapsulated

stream.

 Live Metadata: This module manages the reception of metadata and timestamps from

the RHB Venue Information System. The metadata is converted into XML format and

sent to the Metadata Upload module and the timestamps are sent to the Live Input

module with a reference to the metadata so it can be synchronised with the video stream.

The metadata format is defined by the Experimenter in such a way that depending on its

content, the module behaves in different way.

 Multi-quality: The objective of this module is to perform transcoding into different

bitrates in order to provide the same feed with different video qualities, so that the video

player used by end users can change the quality depending on the network conditions

and computer performance. In order to let the video player to change the quality

smoothly and in a transparent way, the content is split into several chunks of a few

seconds and aligned at the same frames. Additionally, the encoding is done in such way

that complete GoPs are stored into each chunk.

 Recording: Records live video streams into mp4 files maintaining the original live

metadata so it can be requested later as VoD files.

 Media Distribution: This module is in charge of the actual content delivery, which

includes the continuous generation of a content manifest, final packaging of the content

and transport protocols. It also produces all multiplexed media output of the main

distribution. In case, Timeshift functionality is activated, the module continuously

records live streams for immediate playback on deferred. It allows the user to have DVR

experiences such as rewind, pause or fast forward.

 VoD Fetching: Retrieves recorded or previously uploaded VoD content under request

of the edge distribution components. The content is accessed from the file system

5.1.2. VoD Ingest
The objective of this module is to support content adaptation and especially transcoding for

VoD. The VoD ingest in integrated with the Stream platform so an experimenter can upload

content and requesting multi-quality and the content will automatically be made available in

HDS, HLS and Smooth streaming in pre-defined qualities.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 56

Figure 38: AVCC Ingest deployment

 VoD Ingest – Review service: This service allows a content reviewer to validate

uploaded videos to approve or deny them. A link to this service is sent by email to the

specified reviewer when content is uploaded.

 VoD Ingest – Web UI: This is the administration user interface to manually review the

content queue and, if necessary, to manually trigger events.

 VoD Ingest – Content reception: This module receives the actual video in several

POSTs request of fixed length packets. The module checks the MIME type, and

generates a new UUID for the content and stores it into the server file system. After that,

it creates a job into the Job Queue so it can be processed.

 VoD Ingest – Content registration: Once the content is processed, this module relays

the information of the content together with the content URL to retrieve it to the CMS.

 VoD Ingest – Job Queue: This module keep control of the content flows, from the

upload, control, adaptation and registration. It detects any problem and reacts / reports

them properly.

 VoD Ingest – Content adaptation: This component, manage the process of adapting

the content to the targeted profiles requested in terms of encoding and containers. It

coordinates all the required transcoding which is delegated to the Multi-quality Encoder.

 VoD Ingest – Multi-quality Encoder: This module encodes the uploaded files to all

qualities needed to support the multi-quality playing and the proper SMIL files for the

content. The encoding is actually done by the underlying ffmpeg/libav libraries.

 VoD Ingest – Normalizer: Prepare the input video file to a mp4/h264 template using

ffmpeg/libav so it will be used as a source by the Multi-quality Encoder.

 VoD Ingest – ffmpeg / libav: These open source libraries are used for encoding and

decoding tasks.

 VoD Ingest – Control Notification: This module is responsible to generate the e-mail

notifications to the content reviewers so they can approve or refuse the publication.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 57

The VoD ingest is currently deployed in mediaserver2.experimedia.eu for several experiments.

Each of the experiments has its own instance of the service with personalised configuration,

following the name structure:

 http://mediaserver2.experimedia.eu/ex[Experiment number]ingest/

Where [Experiment number] is the experiment number used in the DoW.

Under the experiment default path, the VoD ingest publish the administrative Web UI to

monitor the pending tasks. Beside this Web UI, the VoD ingest has the following services:

Service Path Type Parameters Type Description

/UploadFile POST Token text-field Token expire in 3,5 h, only needed if
token is active.

 title text-field String

 fulldescription text-field String

 event text-field Event relation in DB

 html5Mp4U checkbox Profile Selected

 html5WebM checkbox Profile Selected

 multi-quality checkbox Profile Selected

 uploadedfile File Binary file

The UploadFile service is the main service, which receives the source video file, basic description

data and the content adaptation requests.

Service Path Parameters Type Description

/avccinserter/avccupload Token text-field Token expire in 3,5 h

 Title text-field String

 fulldescription text-field String

 event text-field Event relation in DB

 html5Mp4U checkbox Profile Selected

 html5WebM checkbox Profile Selected

 multi-quality checkbox Profile Selected

 uploadedfile File Binary file

Service Path Type Parameters Type Description

avccinserter/insert POST/GET Title text-field String

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 58

Service Path Type Parameters Type Description

 fulldescription text-field String

 event text-field Event relation in DB

 html5Mp4U checkbox Profile Selected

 html5WebM checkbox Profile Selected

 multi-quality checkbox Profile Selected

 uploadedfile File Binary file

It is expected that experimenters bring their own Content Management Services, however in

order to facilitated the integration of the VoD ingest two Drupal Plugins and a presentation

layout have been developed allowing Experimenters to use it as an example / reference, deploy

the available Drupal or request a portal with the basic configuration.

The VoD ingest is personalised for each experiment, the main personalisation is achieved

relaying in the main configuration file of each instance:

Name Description Default

media.rootPath Path where the media is stored /sample/dir

media.tempPath Path to use for temporary files /var/tmp/ingest

ext.thumbnailsUrl External base URL for accessing thumbnails http://example.org/dir/

ext.encodedUrl External base URL for progressive downloaded
media

http://example.org/dir/

ext.adaptativeUrl External URL template for adaptive streaming rtmp://example.org/dir/{
}.smil

cms.available If there is a CMS to register content true

cms.xmlResponse Answer a XML page when a video is posted false

cms.url URL base for the CMS service http://example.org

cms.login.enabled CMS requires login true

cms.login.user User for logging into the CMS mediaItemServer

cms.login.pass Password for logging into the CMS 123456

cms.token.enabled Require the usage of tokens for uploading videos true

cms.token.sourceip IP Address for the CMS 127.0.0.1

mail.enabled Enable email validation true

mail.from Source mail address when sending emails ingest@example.org

mail.destination Destination mail address when sending notifications validator@example.org

mail.smtp.host Host for the SMTP server localhost

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 59

Name Description Default

mail.smtp.port Host for the SMTP server 25

mail.smtp.useSSL SMTP requires SSL false

mail.smtp.useAuth SMTP requires authentication false

mail.smtp.user User for SMTP server <empty>

mail.smtp.pass Password for SMTP server <empty>

media.dir.source Source directory (where media is uploaded) /source

media.dir.encoded Encoded directory (where media is transcoded) /encoded

media.dir.thumbnail
s

Thumbnails directory /thumbnails

media.out.scripts Output stream for running scripts /dev/null

config.dir Directory for webservice instance data (relative
inside Tomcat)

data

config.script.deploy Script executed during the deployment of the VoD
ingest service

deploy.sh

cms.path.insert Path to register content on the CMS /mediacontentinserter/inse
rt

cms.path.ok Path of the Ok page /videouploadok

cms.path.tokenerror Path of the error page when an invalid token has
been used

/videouploadtokenerror

cms.path.noprofile Path of the error page when no profile has been
selected

/noprofile

cms.token.timeout Timeout for tokens 250

Further personalisation requires changes in other configuration files including details in the

transcoding profiles needed for a specific experimenter upon direct request to Atos personnel.

5.2. Pervasive Content Component (PCC)
Pervasive content is produced by mobile users and sensors located in real-world environments.

Human sensing (e.g. biomechanics, physiology, etc), human location tracking (indoors and

outdoors), location-based content, real-world community interaction models, environment

sensing, points of interest all characterise pervasive content.

The PCC offers capabilities that collectively gather data about a user's physical location, QoE,

points of interest and interactions. Physical location is used in both the context of tracking a

user's location and also as a means by which Augmented Reality (AR)-based content can be

selected for delivery and user generated data can be mapped to a spatial location. A real-time

orchestration platform is provided supporting the gamification of activities and allowing for

adaptive narratives and content that’s customised for different experiences. The platform allows

professionals and users to co-create content, such as a locative game integrated with the

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 60

structure, narrative, and content of the event itself. Users attending the event can consume and

produce content in real time using Smart mobile devices. The unfolding events, as experienced

by users, can be adapted and orchestrated in real time. Users primarily participate locally at the

event but can also contribute via the internet, and synchronized but distributed live events can be

joined to provide a common experience. The platform allows access to content and services both

before and after the event, thus supporting community building and operation. Metadata

generated is published and can be used to annotate audio-visual stream so that other participants

can search and retrieve for available content.

5.2.1. AR client
The augmented reality viewer was developed for Android based devices, the main concept was

to show Points of Interests derived from the database provided by Infonova. The client uses

either the coordinates from a localisation service such as GPS or signal triangulation (Wi-Fi,

GSM) or gets a fixed set of coordinates from the developer. Both variants are valid and offer

different purposes for various experiments.

The AR client uses a REST API offered by the point-of-interest (POI) service to get the relevant

POIs which are cached on the device in a lightweight database. This offers the opportunity to get

a list of all points in the region of interest and also works when the device is offline at the time of

usage. The list can be re-retrieved and updated at any time.

The client offers a list of filters to determine which points are of interest to the user. Only the

selected categories are then shown on the AR view component of the client. This helps to avoid

clutter in the user interface. The points of interest are shown as customizable icons, which

change position and size depending on the devices orientation with places further away smaller

and higher up on the display. Each POI is a clickable item to display more information and to

navigate to a detail view which shows all the information stored in the database, including the

social network links (for the driving experiment this was the number of Facebook likes and

check-ins, both the general value and the value of friends).

A slider on the AR view is another option to filter the points of interests. The slider determines

the distance of shown POIs, e.g. show all POIs between 0 and 200 meters from the user’s

position, or show all POIs between 5 and 21 km, thus a user can decide whether they want to see

places in walking distance or places for an excursion by car.

The client is complemented by the aforementioned detail view of the POIs, a list view including

sorting options (distance, alphabetically, Facebook likes) and a map view, which uses the new

Google Maps API to show markers of POIs in various zoom levels.

The AR client is available as a library for Android devices in the EXPERIMEDIA software

repository. The AR component is a consuming service, producing user generated content could

be done with the overlying device and sent with the SI sub-component for example. The data to

be shown with the AR client is produced with the POI management service of Infonova by a

content author or gathered from the social networks provided by the Social Content

Component.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 61

5.2.2. POI service
For the driving experiment in Schladming the tourism board information was integrated and

used as a starting point to build the database. The POI database was updated and data from

other sources was added to provide a fuller experience. In order to perform an automatic data

import from the Schladming tourism database, a POI data import facility using CSV formatted

files was implemented.

An Editor is able to create, modify and delete single POIs by using Infonova WebAC. The POI

parameters used are: name (mandatory field), street, postcode, town, phoneNumber, website,

email, shortDescription, description, latitude, longitude, externalId, facebookPageId and

categoryId (can be used several times by using different category values).

The AR client (End User) uses a REST API offered by the Data Management Infrastructure.

The client can get via API the relevant POIs which are cached on the device in a lightweight

database but can be updated if required.

Figure 39: Infonova Data Management Infrastructure (overview)

The POI service is offered as a hosted service by Infonova online29 as a web-based GUI for

experimenters (admins) and with a REST web-service for experiment apps.

5.2.3. Creator
Creator is a software platform for creating, setting up and running pervasive games and related

location-based or otherwise context-aware services. The platform is quite scalable has been used

for large-scale games with thousands of simultaneous players. When using Creator, the process is

typically split into four distinct steps: game design, content creation, location adoption and

29 https://isystem5.infonova.com:8181/experimedia/pois/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 62

orchestration. The system platform is implemented as a web service and the content creation and

orchestration application is accessed through a web browser. This approach makes it quite easy

to integrate Creative-made games into other services and devices, as web technologies are

ubiquitous. Creator supports a module system allowing connecting basically any kind of external

service to it, e.g. web service or mobile clients (which either runs local native code on a mobile

device, or is accessed via a mobile web browser), stationary or mobile sensors, etc. The Creator

supports integration with a wide variety of hardware, software or custom objects, as is described

in detail in D2.2.1.

The web interface to Creator is available for experimenters at http://creator.experimedia.eu/.

Figure 40: Creator user interface in authoring mode

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 63

Figure 41: Creator user interface for rule creation and editing

Creator is essentially a rule engine with an editor which supports real-time construction as well as

modification and orchestration of pervasive games. It functions as a server for the technical

aspects of a pervasive experience and will only be indirectly available to the users through clients.

The Creator builds on the REST architecture and clients communicate with it using HTTP calls.

Instead of providing exact ways of communication, the experimenter can extend the system with

services which can be built to serve specific needs. This might be receiving and sending text

messages to mobile phones or control media feeds to clients. The experimenter can create rule

scripts inside the Creator environment which determine the relationship between clients, services

and users. A rule script might for instance cause a playback of a video on one client when

receiving a text message from another. Furthermore the Creator allows experimenters to model

users and game objects using an object oriented approach which helps in monitoring and

orchestrating games.

The documentation available for the Creator covers rule engine, custom API extensions and

examples on the language used for rules. While it is possible for an experimenter to use Creator

without assistance, the system requires some basic knowledge to get started with. Interactive will

assist experimenters in this process.

5.2.4. Babylon
Babylon is a tool that supports user-oriented evaluations of location-based services. Babylon

makes it easy to evaluate the opinions of the users while they utilize the game or service, in

contrast to focus groups or interviews which are typically carried out after an experiment is over.

Thus it becomes possible to more easily find out what the users think and experience while using

the location-based service and how that user experience might change over time.

Babylon is a tool for capturing quality of experience (QoE) and location data from end users. It

captures this data by sampling a self-assessment of emotional state (or some other relevant

measure for the experiment in question) from end users using mobile devices such as

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 64

smartphones or tablets. The users quickly tap on a graphical user interface with several

orthogonal axes, such as happy-sad, engaged-bored, active-passive, etc. The type of data

captured is primarily QoE-related in the form of (semi)real-time, self-assessments that can be

repeated at regular intervals if needed by the experiment. In addition, user id, location data (if

available) and timestamp are collected.

Figure 42: Babylon GUI on an iPhone

Babylon has a service and clients. The service is deployed for the experimenter at Interactive (or

can be downloaded and deployed by the experimenter) and the client software is deployed on

mobile devices (iOS or Android) either as a stand-alone application or integrated into other

software. Babylon clients send data directly to the Babylon server. The Babylon server stores

this information and also passes the readings on to the ECC. Babylon clients would be used by

experiment participants and data can be viewed in the ECC by the experimenter. In addition, the

web user interface of Babylon allows experimenters to analyse and reflect over the feedback

provided by the clients using a timeline interface.

Sample Babylon source code is available for both Android and iOS platforms. Babylon can

either be run as a standalone app, or it could be integrated into another one that is used in the

main experiment.

5.2.5. Tracker
Tracker is a system for tracking and analysing movement across great distances or large time

spans, with a graphical visualization interface with location data overlaid on a map. For instance,

the system has been used to track real-time locations of runners at a marathon event.

Tracker consists of a server component which integrates with hardware or software conforming

to a simple API protocol. At this time, the system works with the integrated GPS tracking

devices GSAT TR-151and GSAT TR-131 (which continuously send GPS data via a GSM data

connection). There is also an iOS application which can run on iPhone devices, which provides

the same kind of data to the server. All integrations have been tested in production deployments.

Tracker uses GPS, GSM triangulation and Wi-Fi-positioning (depending on available hardware)

in order to continuously provide location updates on a per-user (or per-device) level. Users are

authenticated on a per-device level.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 65

Administrators can track location in real-time using a web-based system compatible with all

major, modern browsers and smartphones. The system provides monitoring functionality for

administrators and supports simultaneous users from multiple physical locations.

The Tracker web interface can be accessed at http://keyhole.sykewarrior.com/.

Figure 43: Example Tracker GUI with overlaid tracks from Stockholm Marathon

5.2.6. Ping!
Ping! is a kind of audio-only augmented reality system. It runs on mobile clients such as mobile

phones, and combines location and orientation tracking with spatial audio sounds, usually

presented to the user via headphones. Sometimes it is not desirable to expect a mobile user to

look at a small screen while performing some other task. In particular this can involve tasks

where there might be safety risks, such as while walking and crossing roads in a city with heavy

traffic, downhill skiing, mountain biking, etc. It might also be useful in other tasks where safety is

not a major concern, but where the experimenter wants the user to have their visual attention on

something else but the screen of a smartphone.

Ping! is currently running on iOS only. The system has been tested with a tourist guide app,

where the user could point their mobile phone in different directions to query for nearby

restaurants. The user would hear different ‘pings’ in the earphones, with restaurant type encoded

as sound pitch, and the distance from the current location encoded as volume. By pointing the

phone in different directions, the user could instantly get a rough idea of in which directions

there might be interesting restaurants while looking at the real surroundings and not the screen,

and then look down at the screen for details. The app could then guide the user to the chosen

restaurant using audio cues, thus freeing the user from having to look at the screen while walking

in the city. The Ping! system has also been tested in a downhill skiing context. Audio-based

information about the last ski run such as maximum speed and length of the slope was presented

to the skier while going up the lift. Another possibility was to quickly locate the rough

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 66

whereabouts of friends by ‘scanning’ with the phone in different directions, similarly to the

restaurant guide.

Figure 44: Example user interface of a POI locator for tourists using Ping!

Ping! is implemented as client software for iOS devices. The system can be adapted to fit the

needs of experimenters, but it currently requires assistance from the developers, both in terms of

software integration and sound design.

5.3. Social Content Component (SCC)
Social content is characterised by user generated content produced by and consumed within

online communities. Photos, videos, comments and opinion is disseminated by individuals to

related friends using social networking platforms. The SCC offers the capability to access social

content, explore a social graphs, extract general social knowledge (e.g. sentiment and

controversy) and media specific QoS/QoE for adaptive, efficient and personalised delivery of

experiences. Using an open social API, experiments can navigate a range of social networking

platforms. The virtualisation of social network APIs is important as although the predominant

network is Facebook, other online platforms are used by target participant communities. A

pluggable social analytics dashboard is offered allowing different algorithms to be incorporated

with default algorithms provided to detect individual and group preferences based on attitudes,

selections and beliefs. The dominant attitudes, beliefs and communications ways for social

groups (rather than individuals) can be used to optimise streamed, delivered or even transmitted

media content. In addition, the detection of the proximity of consumers to content, similar

behaviours and searching for popular UGC can potentially improve media delivery, enhance live

streams, or augment information that is aligned with preferences of consumers.

5.3.1. Social Integrator
In order for an application that is part of an experiment to interact with SNs it has to use the

interface that they expose. Each social network has a different logic, i.e. it is meant to support

different sets of social activity and offer a different set of activities that a developer could

integrate in its application. The interfaces and the technologies that are offered to the developers

working with them are quite diverse as well. Also, the fact that the social networks are rapidly

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 67

and continuously evolving, often results in changes in their APIs and/or technologies they are

using with no backwards compatibility, making the maintenance of the applications that build on

them a non-trivial task.

The Social Integrator has been developed: a set of Java libraries that provide to the developers of

the experiments an easy mechanism to build social-aware applications that access multiple social

networks. One of the primary design attributes of the Social Integrator is SN transparency, i.e.

providing the same API regardless of the social network that is used in the background so that

the development of applications that support multiple social media becomes easier, much faster

and easier to maintain since most of the required changes are pushed down to the Social

Integrator, without having the need to change any code on the application level.

Basically, the Social Integrator offers a Java API that enables user authentication and sharing

content through different SNs in a common way, while hiding all the intricacies that the different

API’s used by the social media impose. There are two versions of the Social Integrator API: the

Social Integrator Android API for implementing applications that run on Android devices, and

the Social Integrator Core API for building non-Android Java applications (see Figure 45). For

achieving authentication transparency, the Social Integrator Core and Android APIs build on top

the functionality of the SocialAuth Core and Android Java Libraries respectively that provide a

common authentication mechanism for a number of different social network providers. The

Social Integrator extends this functionality by adding various methods that provide support for

posting and retrieving various sorts of content such as direct messages, comments, questions,

photos, videos, etc.

The offered methods have been designed in a generic manner where possible. For example,

posting a photo, which is an action supported by most social networks, is implemented by a

common method whereby the developer only needs to specify the targeted social network while

the implementation differences remain hidden from the developer. At the point of writing, these

methods cover most of the functionality offered by Facebook, Twitter and Instagram. It should

be noted that the SocialAuth did not provide authentication support for Instagram and therefore

it has been developed from scratch and successfully contributed back to the SocialAuth

community.

Under the EXPERIMEDIA framework, the Social Integrator has been used to develop two

applications, an Android one and a web-based one, which were inspired and used in the FHW

driving experiment: the visitors’ mobile application and the expert’s web application. These two

applications serve as a basis for the development of social-aware applications in the context of

other experiments.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 68

Figure 45: Social Integrator deployment

5.3.2. Social Monitor
The Social Monitor is responsible for collecting data from the SNs that are being exchanged

among the participants during the experiments. These data are used to calculate social network

related Quality of Experience (QoE) metrics about the overall participants' engagement in the

social activity that are of interest to the experimenter. Thus, the metrics that are monitored may

vary depending on the nature of the experiment.

The collected SN data involve significant benefits for the experimenters, supplying them with

live, valuable, comprehensive and accurate feedback which cannot be collected otherwise and

which can significantly help them improve the offered experience of the end users. For example,

this monitoring data can help the experimenter understand whether the audience (and what part

of the audience such as an age group) liked the new experimental system that is offered, by

retrieving data such as the number of attendees, their average age, and the average number of

comments/questions per attendee. However, more specific to the experiment metrics can be

collected in the context of each experiment. For example, in the case of the FHW driving

experiment, the aim was to collect information about the way the audience perceived different

parts of the movie that was presented to them. Various photos, each one representing a different

part of the movie, were hosted in the SN event. Each photo became a monitoring entity and

several attributes were attached to it, such as number of likes, comments, questions and answers

per photo, as well as the top comment, question and answer per photo.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 69

Figure 46: Social Monitor deployment

There are two versions of the Social Monitor:

 Java standalone program: This version of the Social Monitor is a stand-alone Java

application. It is meant to be used in experiments whereby the participants are

exchanging data over specific targeted social activity in the social media. In order to

access this activity, credentials of SNs’ accounts with sufficient permissions and access

are required for authorization purposes. No specific deployment requirements are

needed: this version can be deployed on any machine running Java v6 or later that has

access to the Internet.

 Web service version: This is a web service version of the Social Monitor that is meant to be

used in experiments whereby the social data of interest are not posted within a specific

social activity but are posted by the end users on their own personal social accounts. To

this end, contrary to the Java standalone version as discussed above, this service version

is designed to receive data directly from the end-users applications (and not directly by

the social networks). On the end-users side, the applications that are being used are using

specific client code which is offered as part of the Social Integrator API in order to

communicate the information of interest to the Social Monitor service.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 70

In the background, the Social Monitor (both the standalone Java application & web service

version) acts as a client to the ECC, i.e. the calculated metrics are being communicated via

RabbitMQ to the ECC EM, as demonstrated in Figure 46.

5.3.3. Social Analytics Dashboard
The Social Analytics Dashboard, or SAD, is a web service for collecting data from social

networks, analysing it and presenting both the raw data and the analysis to other services via RSS

or a REST API or directly via a web interface. An overview is provided in Figure 47 below.

Figure 47: Social Analytics Dashboard (SAD) deployment

The SAD employs a plugin architecture and provides plugins for searching Facebook, searching

Twitter and analysing the search results in a variety of ways including sentiment, hot topics,

geographic location and influence. The search plugins make use of the Social Integrator API

(see above). The plugin architecture facilitates the easy addition of new features such as new

social network searches or additional analysis tools. The main SAD service acts as a job

scheduler, executing the plugins according to a configurable schedule.

Data collected by the search plugins or generated by the analysis plugins is added to a local

database. In the current release, this is a PostgreSQL database but the next release will use the

NoSQL database MongoDB for better performance and flexibility.

An instance of the SAD is deployed for a particular experiment and administrative control over

the service can be given to the experimenter. The SAD is deployed in a standard web service

container such as Tomcat.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 71

Data generated by the SAD can be consumed by other services via a REST API or a

customisable RSS feed. The SAD also communicates with the ECC: reporting metrics about the

service itself such as the number of plugin executions. Work is underway to enable arbitrary

metrics to be reported from the plugins to the ECC via the SAD service. This will enable

applications such as the Social Monitor (see above) to be integrated as a plugin in the SAD.

The SAD provides a web interface to the experimenter or administrator to configure the plugin

execution schedule and parameters of the plugins. This interface is shown in Figure 48. The

administration interface also displays the status of scheduled and previously executed plugins

(see Figure 49).

Figure 48: The Social Analytics Dashboard control page

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 72

Figure 49: List of SAD jobs on the administration page

5.4. 3D Content Component (3DCC)
3DCC is the main component for 3D information acquisition, enhancement and manipulation.

It is comprised of 8 basic sub components that interoperate to provide useful information that

can be used from the experimenter. The 3DCC functionalities can be divided into three major

categories that provide different levels of interaction with the hardware (i.e., the Kinects). An

overview of these subcomponents is provided right below:

Low-Level Functionalities

Depth Acquisition: This provides the experimenter with the raw depth information of a scene. It

is the middle layer between the Kinect device and the experimenter. Simple and easy to use

functions provide the experimenter with per pixel information about the depth of the scene.

Skeleton Acquisition: In the case where humans are involved in a scene, 3DCC can provide

robust skeleton extraction for up to 15 joints. Moreover, skeleton tracking can be performed for

human motion analysis.

RGB Acquisition: Images coming from the Kinect, along with their registration to depth pixel

transformation, can be provided to the experimenter. This is important, since texturing of a post

produced 3D model can be made possible through this information.

Mid-Level Functionalities

Depth Enhancement: Since raw depth data is noisy we provide several filtering algorithm to

smooth and de-noise the raw information so that more accurate depth measurement can be

made possible.

Skeleton Enhancement: Jerky (noisy) skeleton joints are detected and tracked and therefore

corrected through a sophisticated tailored filtering framework to provide a more realistic

skeleton.

Biomechanical Measurements: The 3DCC can provide several biomechanical measurements that

are inferred from both depth and skeleton information. The most important being: angles

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 73

between bones, human joints and calibrated objects’ velocities, human body parts surface areas

and calibrated objects’ surface area. These measurements can be used by the experimenters in a

multitude of ways to infer high level information that suits their needs.

High-Level Functionalities

Avatar Creation: The 3DCC provides an avatar authoring tool so that experimenters can create

their own avatars that can be easily integrated into a virtual world. Other than a simple database

of several features that can create artificial avatars, the 3DCC avatar creation tool can provide

custom authoring capabilities that provide functionalities such as avatar personalization (so that

the user’s facial image can appear on the avatar).

Avatar Motion: The 3DCC can also interactively move the avatar using a Kinect alone. This

functionality can be used from the experimenter in a multitude of ways to animate his avatar and

interact into a virtual world.

3DCC is partitioned in two libraries and one application. One library, written in C#, is where all

functionalities concerning low and midlevel functions are implemented such as the Acquisition

modules, the Enhancement modules, the Skeleton Motion analysis modules and the

Biomechanical analysis modules. A second library, written in C++, is where the high level

(Avatar motion modules) functions are implemented. Finally a web application that provides

means to create avatars from the scratch that can be used along with 3DCC.

Figure 50: 3DCC deployment

3DCC can be used whenever an experiment needs to track and/or gather real-time 3D

information. To do so, a computer connected to Kinects needs to run the experimenter's

software where all functionalities from 3DCC are imported from the two previously mentioned

libraries. Moreover, it can be used for smart real-time rendering of human-like motion avatars.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 74

The library can be deployed at any software the experimenter is developing and therefore all

before mentioned tools integrate with the experimenter's software. 3DCC can deliver depth,

RGB and skeleton data as files (in this case they are stored from 3DCC) and as a stream that can

be captured from the experimenter's software. For the high level functionality the avatar is stored

in a file (the experimenter's software can then ingest it through appropriate functions provided)

and the skeleton motion data are streamed to the experimenter's software. Finally, 3DCC can

also deliver QoS measurements that can be fed to the ECC through an ECC client. These QoS

measurements are depth quality, skeleton quality, biomechanical measurements quality and frame

rates of depth and skeleton acquisition from the Kinects in frames per second (fps).

3DCC information can be streamed to the experiment participant through an appropriated GUI

and the experimenter can use the ECC to monitor the QoS measurements along the lifespan of

the experiment.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 75

6. Deployment Constraints

Experimenters have to design, develop and deploy an experimental system that consists of both

baseline components from the EXPERIMEDIA Facility and technologies the experimenter is

developing.

Figure 51 describes the relationship between concepts related to deployment and shows how

partners develop components but also offer hosting sites. It also shows how 3rd party hosters

(e.g. Amazon) and service providers (e.g. Facebook) fit into the landscape. Each of the concepts

is described in more detail within Table 2.

Figure 51: Conceptual Model of Deployment Options for Components

Table 2: Deployment concept descriptions

Concept Description Example

Experimental
Component

An experiment component from A2 or A4
that needs to run as part of an experiment.
Could include both software and sensors.
Experimental Components require 1 or more
hosting options.

SAD, POI Service, ECC, AR
Client

Hosting Option A container for experimental components to
run in ranging from a real physical space to a
virtualised container

Hosted Service, Service
Container, Virtualisation,
Physical machine, Physical Rack,
Physical Location

Hosting Site A physical location where experimental
components can be deployed

Partner site, 3rd Party service
provider

Partner An EXPERIMEDIA project partner ATOS, IT Innovation

3rd Party Hoster A hosting provider Amazon, Rightscale

SaaS Provider A software as a service provider Facebook, Twitter

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 76

Concept Description Example

SaaS The service offered by a a SaaS Provider Facebook, Twitter

Each component in the system has deployment constraints that limit how and where a

component can be deployed. For example, a cloud deployable service could be packaged for

execution on Amazon or CAR’s private cloud, where a mobile client library may be constraint to

a mobile device with a specific operating system. There are many hosting options ranging from

choices about the physical location of the server machine right up to the manner of deployment

of the application itself. An interesting deployment case is sensors and cameras which often

require human experts to deploy and configure them. This is the case for the 3DCC where

multiple Kinect cameras are used.

Table 3: Hosting options

Hosting Option Description Example

Hosted Service Software as a Service hosted by an partner or
3rd party that is configured and maintained by
an EXPERIMEDIA partner

POI Service hosted at Infonova

Service Container A environment to host services offering a set
of high level common management functions
(e.g. security, monitoring, etc)

R6, JBoss, Tomcat

Virtualisation A environment to host VMimages on virtual
machines

VMWare

Physical machine A physical machine running a dedicated
operating system

Machine running Linux OS

Physical Rack A dedicated place to install physical machines Machine room at CAR

Physical Location A dedicated place to install other hardware
(e.g. cameras and sensors)

Tholos Theatre at FHW,
Taekwondo room at CAR

Table 4 shows the deployment options for the baseline component services. During the 1st year

many of these components were deployed as hosted services for experimenters. The benefit of

this approach is that experimenters do not have to learn about how to operate the components

and can focus on the objectives of their experiment. The ECC and SAD were initially provided

as software distributions that could be flexibly deployed by experimenters in different containers

rather than offered as hosted services. For some experimenters the process of installing the ECC

was challenging and time consuming, reducing the efficiency of the experiment and usability of

the ECC software. In V2 EXPERIMEDIA will be hosting all services for experimenters where

possible. This decision moves EXPERIMEDIA towards a more centralised view of facility

services and operating models that consider not only distributing software but also maintaining

services that participate in experiments. An instance of the ECC is being offered to

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 77

experimenters as a hosted service by Infonova. Deployment is currently (July 2013) in the final

stages.

Table 4: Baseline component services - deployment options

Hosting Option

E
C

C
 (all)

A
V

C
C

 (all)

C
reato

r

P
O

I S
ervice

B
ab

ylo
n

 S
ervice

S
o

cial M
o

n
ito

r

S
o

cial A
n

alytics
D

ash
b

o
ard

3D
C

C
 (all)

Hosted Service X X X X X X X

Service Container X X X

Virtualisation X X X

Physical machine X X X

Physical Rack X

Physical Location X

6.1. Security and Privacy
As stated in the architectural considerations (Section 2.3): “experiments must be legally

compliant in accordance with data protection legislation and security and privacy therefore must

be considered a critical attribute of component and systemic capabilities. Security and privacy

must be by design rather than an add-on.”

Essentially we are addressing information security issues. A useful definition of “information

security” is provided in the United States legal code30:

The term “information security” means protecting information and information systems from

unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide—

 integrity, which means guarding against improper information modification or destruction,

and includes ensuring information nonrepudiation and authenticity;

 confidentiality, which means preserving authorized restrictions on access and disclosure,

including means for protecting personal privacy and proprietary information; and

 availability, which means ensuring timely and reliable access to and use of information.

Clearly, all these aspects of information security are applicable to EXPERIMEDIA and in

particular the “confidentiality” is of primary import.

In architectural terms, we must ensure that EXPERIMEDIA baseline software can be operated

to provide integrity, confidentiality and availability. This encompasses both the design and

testing of the software and the manner in which it is deployed. The experiments in the first open

30 http://www.law.cornell.edu/uscode/text/44/3542

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 78

call avoided the issue of storing personally identifiable data (and indeed, such data should not be

stored unless necessary) but we need to be able to support experiments where such sensitive data

must be stored.

6.1.1. Service Hosting
As described above, there are various deployment options for the different baseline components.

The ECC dashboard is a good example as it could be deployed in many ways:

 it could be deployed for the experimenter by a core partner (such as Infonova) or by the

experimenter themselves;

 it could be deployed on hardware operated by the core partner/experimenter or on

leased hardware at another site operated by another company (e.g. a cloud provider).

According to discussions with the Ethics Advisory Board, it is the responsibility of the owner of

the service to protect the data in the service. So for example, if Infonova deploy the service then

it is their responsibility. It is their responsibility regardless of where the service is deployed, so to

continue the example, if Infonova deploy the ECC dashboard on a machine at a hosting

provider then it is still Infonova’s responsibility. This implies that hosting providers (if used)

should be chosen carefully: the data-centre where the host is located should (at least) implement

ISO 27001:200531 and should also be based in Europe for the best legal protection.

ISO 27001 defines a model for establishing, implementing, operating, monitoring, reviewing,

maintaining and improving an Information Security Management System. It adopts the Plan –

Do – Check – Act (PDCA) model of continuous improvement. The standard covers physical

security as well as other aspects such as network security. Although a data centre specifying that

it is ISO 27001 certified is a good thing, it is important to understand which controls of the

standard have been implemented and which have not.

6.1.2. Risk Based Approach
The ISO 27005:201132 standard defines a risk-based approach for managing information system

security aligned with the continuous Plan – Do – Check – Act methodology of ISO 27001.

Threats must be identified, analysed and evaluated and a risk treatment chosen. Possible

treatments are:

 risk modification: apply a control to reduce the risk;

 risk retention: accept the risk with no further action;

 risk avoidance: completely change the plan so that the risk cannot materialise;

 risk sharing: sub-contract another party to deal with the risk or insure against it.

Threats can come from three sources: they can be deliberate, accidental or environmental

(natural). For instance, a hacker breaking into a system and stealing data is deliberate, an

31 ISO/IEC 27001:2005, Information technology - Security techniques - Information security management
systems – Requirements: http://www.iso.org/iso/catalogue_detail?csnumber=42103
32 ISO/IEC 27005:2011, Information technology - Security techniques - Information security risk management:
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56742

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 79

employee mistakenly copying sensitive data to a public folder is accidental and environmental

threats are generally larger-scale disturbances such as floods and earthquakes.

Assets must be identified and their value assessed. By considering each asset, the likelihood of

occurrence of a threat and the ease of exploitation of the threat it is possible to rank the risks

and therefore understand which ones need most attention. When considering the threats to an

asset, particular attention should be paid to human threat sources and the possible motivation of

different types of people.

For example, what are the assets and threats to the configuration registry described in Section

4.3? The assets include the RabbitMQ hostname and port for a project’s ECC dashboard. A

threat is someone who is not supposed to know the data reading it. The value of that asset in

part depends on the risks to the RabbitMQ service so we must look at that in turn. Given

knowledge of the RabbitMQ service, a malicious user could execute a denial of service attack by

flooding the server with requests, but what would be their motivation? The likelihood seems

low. This suggests that the value of the asset in the configuration registry is also low and

controls on the identified threat may not be necessary.

By following this process for other baseline systems and assets we can make considered

judgements about what controls to apply where.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2013 80

7. Conclusion

This document has described the Second Blueprint Architecture for social and networked media

testbeds. The architecture builds on the First Blueprint Architecture by extending the

component models for experiment and FMI content lifecycle management. The architecture

describes two composition patterns for use of baseline components within experimentation:

Instrumentation and Observation, Mixed Information Flows. Each of the baseline components

are described in terms of capabilities, architecture and deployment model.

The architecture addresses the need to improve Experiment Lifecycle Management through

extensions to the ECC, as the central element responsible for conducting experiments at the

EXPERIMEDIA facility. V2 ECC architecture extends the state-of-the-art in experiment

monitoring frameworks by providing a mechanism by which experimenters can investigate how

system and user activities have led to changes in system performance or human experience (as

observed by the ECC metric monitoring system). To this end, the experimental support

provided by the ECC will include an enhanced metric model meta-data to improve visualisation,

time-line based navigation of metric data, metric data aggregation and descriptive statistical

analysis and a provenance based view on system and user activities.

Each of FMI Lifecycle components are described covering audio-visual (AVCC), pervasive

(PCC), social (SCC) and 3D (3DCC) content. Each of these components will be extended to

support the new instrumentation and observation model defined by the ECC.

