

D2.1.9

Final Blueprint Architecture for Social and

Networked Media Testbeds

2014-09-29

David Salama (ATOS), Michael Boniface (IT Innovation), Simon Crowle (IT Innovation), Stephen

C. Phillips (IT Innovation), Nicholas Vretos (CERTH), Kleopatra Konstanteli (NTUA), Thanos

Voulodimos (NTUA), Stefan Prettenhofer (Infonova), Sandra Murg (JRS), Peter Ljungstrand

(Interactive)

www.experimedia.eu

This final blueprint architecture for social and networked media testbeds provides the

foundation for the EXPERIMEDIA facility for baseline component development during the

sustainability phase (Year 3) and for experiments conducted using the baseline (Year 3) and

beyond. The document builds on the second blueprint architecture D2.1.6. The purpose of the

architecture is described along with requirement considerations. A high-level description of the

EXPERIMEDIA Platform architecture is provided, how services are delivered and how each

component is integrated within experiments for both instrumentation/observation and also

orchestration of information flows. The capabilities of each specific component are described

including those supporting FMI content lifecycles and the Experiment Content Component

supporting overall experiment management.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 2

Project acronym EXPERIMEDIA

Full title Experiments in live social and networked media experiences

Grant agreement number 287966

Funding scheme Large-scale Integrating Project (IP)

Work programme topic Objective ICT-2011.1.6 Future Internet Research and
Experimentation (FIRE)

Project start date 2011-10-01

Project duration 36 months

Activity 2 Construction

Workpackage 2.1 Architecture Blueprint

Deliverable lead organisation IT Innovation

Authors David Salama (ATOS), Michael Boniface (IT Innovation), Simon
Crowle (IT Innovation), Stephen C. Phillips (IT Innovation),
Nicholas Vretos (CERTH), Kleopatra Konstanteli (NTUA), Thanos
Voulodimos (NTUA), Stefan Prettenhofer (Infonova), Sandra Murg
(JRS), Peter Ljungstrand (Interactive)

Reviewers Nicolas Vretos (CERTH), Gert Keinast (JRS)

Version 1.0

Status Final

Dissemination level PU: Public

Due date PM33 (2014-06-31)

Delivery date v1.0: 2014-09-29

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 3

Table of Contents

1. Executive Summary .. 7

2. Introduction .. 8

2.1. Purpose ... 8

2.2. Scope ... 8

2.3. Architectural Considerations ... 9

3. High Level Architecture .. 11

3.1. Software and Service Platform .. 11

3.2. Information Model and Data Value Chains .. 12

3.2.1. Overview .. 12

3.2.2. Observations .. 14

3.2.3. Benefits ... 16

3.2.4. Model Implementation... 17

3.3. Capabilities ... 18

3.4. Service Composition Patterns ... 19

3.4.1. Instrumentation and Observation .. 19

3.4.2. Mixed Information Flows .. 20

4. Experiment Content Lifecycle Management .. 22

4.1. Experiment Content Component (ECC) Overview .. 22

4.2. Naming ... 24

4.3. Bootstrapping Processes .. 29

4.4. Experiment Monitoring Processes ... 32

4.4.1. Monitoring Sources .. 35

4.4.2. Reporting of Self ... 37

4.4.3. Reporting Perception of Activity and Usability Qualities ... 38

4.5. Metric Data Model .. 38

4.6. Provenance Data Model ... 41

4.6.1. Provenance Interaction Patterns .. 44

4.7. Data Navigation, Analysis and Visualisation ... 47

4.7.1. Analysing QoS and QoE Metric Sets ... 47

4.7.2. Combining Metric and Provenance Data .. 48

5. FMI Content Lifecycle Management ... 52

5.1. Audio Visual Content Component (AVCC) ... 52

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 4

5.1.1. Streaming Service .. 52

5.1.2. Video on Demand (VoD) Ingest Service .. 53

5.2. Pervasive Content Component (PCC) ... 57

5.2.1. AR Client Software ... 58

5.2.2. POI Service .. 59

5.2.3. Creator Service .. 59

5.2.4. Babylon Client Software .. 61

5.3. Social Content Component (SCC).. 62

5.3.1. Social Integrator .. 62

5.3.2. Social Monitor ... 64

5.3.3. Social Analytics Dashboard ... 65

5.3.4. Social Annotation Service .. 66

5.4. 3D Content Component (3DCC) ... 67

6. Service Management and Deployment .. 70

6.1. Service management ... 70

6.1.1. Service Level Agreements (SLAs) .. 70

6.2. Deployment Constraints .. 70

6.3. Security and Privacy .. 73

6.3.1. Service Hosting ... 74

6.3.2. Risk Based Approach ... 74

7. Conclusion ... 76

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 5

List of Figures

Figure 1: Software and Service Platform ... 11

Figure 2: High Level EXPERIMEDIA value chain .. 12

Figure 3: EXPERIMEDIA’s abstract information model .. 13

Figure 4: User centric observation and benefit categories .. 14

Figure 5: Modelling the System-Under-Test ... 18

Figure 6: Capabilities of an FMI testing facility .. 19

Figure 7: Correlating between discussion topics and delivered content ... 20

Figure 8: An integrated view of EXPERIMEDIA based on experiment composition patterns .. 21

Figure 9: ECC architecture showing external components in grey ... 23

Figure 10: Assigning Identity for a baseline component and third party service 26

Figure 11: Baseline component and known user account .. 28

Figure 12: Baseline component and unknown user identifier .. 28

Figure 13: Baseline component and video data asset .. 29

Figure 14: An illustration of the multiplicities of ECC clients, RabbitMQ and ECC (dashboard)

instances ... 30

Figure 15: Sequence diagram illustrating the storing and retrieval of ECC connection data and

storing of SAD service location .. 32

Figure 16: Experimental Monitoring Process ... 33

Figure 17: State Model for Setup Phase .. 34

Figure 18: State Model for Live Monitoring Phase .. 34

Figure 19: State Model for Post Reporting Phase .. 35

Figure 20: State Model for Tear-Down Phase .. 35

Figure 21: Inter-dependences for instrumented software ... 36

Figure 22: Reporting Self ... 37

Figure 23: Measurement sets encapsulated in questionnaire metric group 38

Figure 24: ECC metric model ... 39

Figure 25: Simple example of observing a Facebook event ... 40

Figure 26: Monitoring a Facebook Event ... 40

Figure 27: W3C PROV key attributes .. 42

Figure 28: W3C PROV key relations ... 42

Figure 29: EXPERIMEDIA types using the PROV model ... 44

Figure 30: Provenance elements created when a Parrticipant uses an Application 45

Figure 31: Participant creates Content locally (e.g. takes a photo) .. 45

Figure 32: Pattern used to create Content and upload to a Service .. 46

Figure 33: Pattern used to retrieve Content from a Service ... 46

Figure 34: Using the provenance model to link a participant’s QoE attribute to a service’s QoS

attribute .. 49

Figure 35: Illustration of the skiing scenario ... 50

Figure 36: Example of overlaying service usage activity times on a service QoS graph 51

Figure 37: AVCC Stream deployed .. 52

Figure 38: AVCC Ingest deployment ... 54

Figure 39: Infonova Data Management Infrastructure (overview) ... 59

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 6

Figure 40: Creator user interface in authoring mode ... 60

Figure 41: Creator user interface for rule creation and editing .. 60

Figure 42: Babylon GUI on an iPhone .. 61

Figure 43: Social Integrator architecture ... 63

Figure 44: Social Monitor architecture ... 64

Figure 45: Social Analytics Dashboard (SAD) architecture .. 65

Figure 46: Social Annotation Service (SAS) architecture .. 67

Figure 47: 3DCC deployment ... 69

Figure 48: Conceptual Model of Deployment Options for Components .. 71

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 7

1. Executive Summary

This document is deliverable D2.1.9 “Final Blueprint Architecture” of the EXPERIMEDIA

project 287966 describing an architecture for social and networked media test-beds. The document

is the third and final iteration of the architecture, superseding deliverable D2.1.5 “Second Blueprint

Architecture” published on 16 August 2013. It provides the final documented architecture of the

EXPERIMEDIA facility including all enhancements to the EXPERIMEDIA platform during the

sustainability phase (final year).

The second version of the architecture presented a mature vision of the EXPERIMEDIA

platform. As such many of the sections remain largely unchanged (e.g. Naming, Reporting of Self,

etc), In this revision, the architectural updates focus on adaptations to the second open call

experiments, and those necessary to support sustainability of beyond the lifetime of the project.

Specifically, this includes:

• description of the Service Model to support EXPERIMEDIA-as-a-Service;

• updates to the Information Model to incorporate infrastructure, service, application, and

user monitoring;

• updates to the Experiment Content Component (ECC) to reflect the final QoS/QoE

data exploration support based on provenance; and

• an additional FMI component—the Social Annotation Service—supporting social

annotation of video streams.

A substantial part of the document is dedicated to the ECC due to its central role in defining the

EXPERIMEDIA Facility and supporting experimental methodology. The experiment lifecycle is

presented and how the ECC supports critical data modelling and experimental processes, such as

naming, bootstrapping, experiment monitoring, monitoring source integration, reporting on

participants, metric model, provenance model and data navigation, exploration and analysis.

Finally, the document provides an updated view of the available baseline components to help the

experimenter understand what is available, how they may be deployed and what communication

patterns already exist.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 8

2. Introduction

2.1. Purpose

The purpose of this document is to provide facility developers and experimenters with a

description of generic Future Media Internet capabilities and technologies offered by

EXPERIMEDIA and how such technologies can be integrated and used in social and networked

media experiments at the facility.

The purpose of architecture is to provide an abstract description of the structure and behaviour

of a system, and the desired impact that the system is required to have on its environment.

Architecture describes the system scope, what outputs a system produces (in response to inputs),

the processes for delivering the outputs, and the resources necessary both in terms of people and

other assets.

Architecture is fundamentally a communication mechanism and a way to help everyone

understand a system. A significant challenge in comprehending a system is that most are complex.

A primary goal is to deal with complexity through abstraction and decomposition techniques in a

way that considers design principles such as encapsulation, high cohesion, and loose coupling.

Many methodologies have emerged in recent years to support the process of architecture

definition. The evolution of methods is driven by both advances in technologies and the types of

systems under construction. Our objective is to intelligently select techniques that are most useful

for the specific architectural characteristics and challenges faced by EXPERIMEDIA rather than

to adopt a single methodology universally.

The primary audience is the one responsible for developing implementation technologies,

integrating and interconnecting related systems, and operating all or parts of the EXPERIMEDIA

systems. It also serves as an introduction of the EXPERIMEDIA architecture to new

experimenters.

2.2. Scope

The document describes final architecture for EXPERIMEDIA facility during the project lifecycle

for the Sustainability Phase (Year 3) whose implementation will provide the foundation for

experiments conducted in the final year of the project and beyond. The first architecture provided

a high-level view of components within the EXPERIMEDIA facility with some suggestions on

how such components can be integrated. The primary focus for the first version of the

EXPERIMEDIA architecture was instrumentation and observation of communities and

components. The ability to collect data from multiple heterogeneous platforms was seen as the

essential element for experiments requiring the observation of individuals and communities, and

how to explore the relationship between quality of service (QoS) and quality of experience (QoE).

The second architecture extended these concepts and elaborated in more detail on how various

components can be composed to orchestrate information flows and how such information flows

can increase quality of experience. Building on the conceptualisation in the first architecture

various types of media content components were considered including (social, audio-visual,

pervasive and 3D) and test-bed management services supporting the experiment lifecycle.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 9

The final architecture focuses on the service modelling and management necessary to deliver

EXPERIMEDIA-as-a-Service and extensions to EXPERIMEDIA’s information model to

support the tracking of causation in experiments through the adoption of a semantic provenance

model. The latter is a fundamental capability required to support assessment of QoS and QoE in

social and networked media experiments. This document builds on previous deliverables: D2.1.4

“Second EXPERIMEDIA methodology”1, D2.1.5 “Second Scenarios and Requirements”2 and

D3.1.5 “Second Infrastructure and Software Assets Inventory”.

EXPERIMEDIA needs to describe the capabilities expected within a Future Media Internet (FMI)

architecture and not just the EXPERIMEDIA facility or a specific experiment. As such the

descriptions need to consider the generic Architecture model for a FMI experimental facilities such

as those being offered by EXPERIMEDIA’s venues (i.e. Schladming, CAR and FHW). As part of

the work to produce the Architecture Blueprint we need to reach a consensus on what capabilities

are within an FMI system. By providing a capability map for the FMI with baseline components

providing basic implementations we offer the possibility for experimenters to understand how to

integrate their technology within the EXPERIMEDIA ecosystem and to support multiple

implementations of the same capability if necessary. For example, one experiment may want to

focus on Peer-to-Peer (P2P) content delivery whilst another may focus on augmented reality

applications. What they need is to understand where their experimental components fit into the

overall FMI architecture and what generic baseline components from EXPERIMEDIA are

available to integrate with to provide the additional capabilities they require.

2.3. Architectural Considerations

The specific characteristics of EXPERIMEDIA that must be considered throughout the

architectural design are included in the following list.

• Evolving Requirements: we are describing architecture but cannot know all

requirements in advance. We can describe the general capabilities for an FMI architecture

and what it means to operate a facility supporting such systems. However, new

requirements will emerge from experiments using the facility that cannot be envisaged

now.

• Integration and Adaptation: each experiment will develop and operate a FMI system

that consists of EXPERIMEDIA baseline technology components, EXPERIMEDIA

infrastructure components and experimental components. Architecture must be

developed in a way that ensures loose coupling between and efficient integration of

components in a way that creates a system of systems. Standardised interfaces should be

adopted where possible to reduce need for specific adaptations.

• Experimentation: experiments typically require components with high degrees of

instrumentation and control to attain insight into the behaviour of systems, their

relationship with users and to ensure validity by reducing the influence of extraneous

factors and providing repeatability.

1 http://www.scribd.com/doc/137302530
2 http://www.scribd.com/doc/129728380

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 10

• Security and Privacy: experiments must be legally compliant in accordance with data

protection legislation and security and privacy therefore must be considered a critical

attribute of component and systemic capabilities. Security and privacy must be by design

rather than an add-on.

• Technology Baseline: EXPERIMEDIA is not architecting a system from scratch but

from a set of technologies supporting different capabilities within the Future Media

Internet, and targeting known infrastructure environments. The architectural process

needs to combine top down analysis of desired capabilities alongside a bottom up

assessment of how each baseline technology and infrastructure supports them. Through

this process overlaps, gaps and integration points can be determined which can inform

future development tasks

• Constraints: Each component delivers a capability but also has technological and

operational constraints on use. For example, technically a component may only support

specific protocols or in operation may be only available at certain times and with limited

resources. This is especially relevant for infrastructure components at each venue that are

operated, sometimes by 3rd party companies, for “other” purposes (i.e.

EXPERIMEDIA does not have exclusive access).

• Time Limitations: the system lifecycle is organised into iterative and incremental

activities, with each iteration expected to add functionality. The first iteration is the most

challenging considering the novelty of the process, the levels of domain knowledge and

maturity of collaborative relationships. The scope of the architecture and capability

descriptions is likely to far exceed what can be delivered during the first iteration with

significant need to prioritise critical components and integrations between them

• Viewpoints: architecture can be described from multiple perspectives; we need to

consider how the architecture is presented to different stakeholders.

• Moving to Market: the architecture must be designed so that the systems required for

experimentation (specifically the experiment content component) can be removed

without breaking the end-user experience.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 11

3. High Level Architecture

3.1. Software and Service Platform

The EXPERIMEDIA Platform is a set of software components and hosted media services that

acquire and process data from the user or from the surrounding context. Each service has been

instrumented for deep levels of observability and for use within user centric experimentation and

technology trials. What this means is that each software/service component has a corresponding

service model with QoS metrics that are reported and available to the Experimenter during

experimentation. Such detailed metrics are necessary for customers to explore the relationship

between QoS and QoE. These types of metrics are typically not available from equivalent

commercial services. In addition a semantic provenance model is offered that allows user centric

activities and interactions to be tracked and linked to detailed metrics. This capability is important

to allow Experimenters to track users in open studies and to explore correlations between QoE,

system interaction and system performance (QoS).

Figure 1: Software and Service Platform

EXPERIMEDIA services are based on the principles of service-oriented architecture to allow for

the composition and orchestration of information flows in support of an enhanced user experience

outcomes. Each service is implemented using best practices (e.g. RESTful services) and where

possible supporting protocols that are aligned with standards and specifications from the media

domain (e.g. MPEG-DASH for Dynamic Adaptive Streaming over HTTP).

The services are managed by the R6 service management platform covering lifecycle actions such

as ordering, deployment, availability monitoring and un-deployment. Service monitoring is

supported using the Nagios monitoring framework. Service monitoring data is used to track service

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 12

uptime, the primary metric used as the basis for EXPERIMEDIA’s Service Level Agreements

(SLAs). Service level agreements are primarily for setting the expectations of both parties in a

bilateral agreement between a service provider and a consumer. Access to the EXPERIMEDIA

platform is achieved by a self-service interface that allows customers to propose an experiment

and select the services they require by venue. Each venue has a specific preconfigured service

bundle that is a subset of the overall platform offering. A fully customisable “Anywhere” option

is available that allows an experimenter to select platform services from a customisable list and

use such services at any venue including venues beyond those currently bundled.. A workflow is

implemented at the backend which is automated apart from steps that require human decision

making and intervention.

The multi-domain coverage of the EXPERIMEDIA Platform creates interesting opportunities for

transfer of multimedia technologies developed within the lifetime of the project across sectors.

Technical advances in one sector can be rapidly transferred to other sectors via the platform

accelerating the opportunity for innovation. For example, real-time 3D tracking of moving humans

from Kinect cameras is a core capability of the 3DCC, initialled developed for high performance

sports training. However, it offers a generic capability of 3D acquisition from visual and depth

sensors that can support remote collaboration by remote users in different situations to be placed

into virtual environments.

3.2. Information Model and Data Value Chains

3.2.1. Overview

EXPERIMEDIA’s information model is constructed to support the study of between QoS and

QoE in FMI systems. The connection between QoS and QoE is fundamental in understanding

how value is delivered to Internet users and represents a data value chain.

Figure 2: High Level EXPERIMEDIA value chain

From an information perspective, the EXPERIMEDIA value chain is shown in Figure 2 and it is

composed of observations acquired and processed by capabilities (see Section 3.3) that transform

them in benefits which ultimately create impact. The value chain is the dimension along which

experiments conduct their studies and they are correlated directly to information generated within

experimental processes. Along the chain actors are identified:

• Observation Producer: actors who generate information about users and context either

in the real-world or online.

• Capability Provider: actor who delivers or contribute to the delivery of services to users,

can be a venue, the EXPERIMEDIA Platform, an Experimenter and third party

provider.

• Beneficiary: actors who extract value (benefit) from the multimedia system in the

experiment, can be users and stakeholders.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 13

• Impact: actors who sustain and realise the long term benefits of the experiment.

The approach is built on the principle that the individual users participating in the observation are

also the same users who realise the primary benefits. Multimedia environments can support

multiple roles but it is most often the case that there is a primary beneficiary and other roles are

created to incorporate human actors in support of the service delivery. For example, an educator

may coordinate the delivery of a virtual reality presentation to students. In this case the primary

beneficiary is the student and would be the initial focus or viewpoint under study. Further studies

may be conducted for the educator if required but in general the user is defined as the main

producer of observations and/or the main consumers of benefits. All the rest of the Observation

Producers are defined as Context and all the rest of the beneficiaries are classified as stakeholders.

EXPERIMEDIA uses an abstract model presented in Figure 3. The model has been derived

empirically from the actual definition of the experiments. The approach allows information to be

described according to real-world evidence and, because of the model’s generality, without

imposing significant constraints. Figure 3 shows the identified classes of observations and benefits

related to the users.

Figure 3: EXPERIMEDIA’s abstract information model

A benefit is created through a capability (or a chain of them) and then delivered to the beneficiary.

The benefit can be something acquired from 3rd party services (e.g. the weather forecast for a

given zone), or it can be the result of a processing workflow where the raw data collected from

the user or the context are transformed to produce value for the beneficiary (e.g. by means of

sensors analysis to estimate a ski lift queue waiting time). It is important to note that the beneficiary

can be the user or one of the other stakeholders involved in the experiment (e.g. a venue manager,

a trainer of an athlete and so on).

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 14

Figure 4: User centric observation and benefit categories

EXPERIMEDIA adopts a user centric approach to value impact assessment. Figure 4 describes

the high categorisation of user observations and benefits. The categorisation is not a full list of all

possible observations and benefits but those identified through an analysis of information in

experiments. We can see however that EXPERIMEDIA’s multi-domain approach has allowed for

the exploration of a representative cross-section of observations and benefits that are expected to

be associated with multimedia capabilities and their application.

In the following sections we focus the key measurable aspects of experiences: observations and

benefits

3.2.2. Observations

Observation is the process of closely watching and monitoring users and their context. User

observations are processed as an inherent part of content delivery (e.g. location and activity

tracking in geo-location services) or are used to understand the experience itself (e.g. user

satisfaction survey). From a user’s perspective, observations have a cost either directly in terms of

time and attention during an experience, or indirectly in terms of loss of right to self-determination

(i.e. privacy). Context observations are processed to give additional meaning to Quality of

Experience (e.g. a user had a good time in a group of 15 close friends) and importantly to optimise

Quality of Service delivered by service providers. As context plays a significant influential role in

Quality of Experience it is typically the case that service providers have to manage context,

including both real-world (e.g. how many people participating) and multimedia context (e.g. how

much infrastructure resource, quality of virtual presentations, etc.).

• Location: The absolute or relative position of a user where relative means with respect to

external elements (e.g. a ski-run).

• Real-World Activities: Biomechanics representing the position of body components (e.g.

the angle formed by bones in an athlete while performing), higher level human activities

(e.g. weightlifting, skiing).

• Online Activities: The direct interaction with an application (e.g. interaction logs, web

site statistics). It complements the real word activities.

• Cognitive: The capacity to process information and apply knowledge (e.g. psychometric

profile).

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 15

• Collaboration: The relationship to a group, in terms of interpersonal relationships, social

interaction, group dynamics (e.g. questions in a group presentation), group enhancement.

• Satisfaction: This group hosts the feedback about relative satisfaction with their

experience covering aspects such as utility, emotional, subjective, economic, usability and

usefulness.

The absolute value of observations related to a category is not meant to be a measure of

importance. A single type of observation can be the most important in a given experiment as it is

the most significant factor in delivering the benefit to a user. The attention to the “social

collaboration” proves that users require attention to their social life and they expect to find services

addressing this need. The “satisfaction” group is typical of any experimental environment and it is

a preliminary in evolving from experiment to business.

Context is more complex as by definition it is anything not related to a user that can influence

Quality of Experience. Context can be considered as:

• Real-World Context: observations related to people and environment conditions

associated with real-world activities.

• Online Context: observations related to the performance characteristics of the system

under test covering aspects such as content quality and infrastructure utilisation.

Context observations within the surrounding environment play a significant role in multimedia

applications. In fact, very often the benefit delivered to the user is the combination of context and

personal information. Real-world context is highly dependent on the real-world activity. Within

EXPERIMEDIA this is defined by the nature of the live events being studied in specific Smart

Venues. Real-world context is difficult to observe automatically and in a general way considering

the specific nature of live events. EXPERIMEDIA has focused on observing users with some

cases of capturing Real-World Context where this is an essential part of the experience and the

cost is not prohibitive.

In controlled experiences such as those at the CAR where Real-World Activities are well-defined

and constrained the Real-World Context is known and can be captured out of band. In more

dynamic and open situations at Schladming and FHW it is necessary to observe Real-World

Context either directly (e.g. definition of Points of Interest within a geographic region, queue

waiting times, etc) or indirectly (e.g. inferences about group dynamics from temporal/spatial

analysis or online interaction). Making inferences about Real-World Context/Activities from

Online Context/Activities is an essential part of multimedia systems and experimentation in

situations where the cost of direct observation is prohibitive either through software or feedback

from users.

EXPERIMEDIA’s hybrid metric and provenance model offers a foundation for such analytics

and there are further opportunities (see Section 4). Also, it is recognised that the Internet of Things

technology domain has made significant progress in acquiring real-world context across a broad

range of dynamic situations. There’s potentially an opportunity to deliver increased benefits by

strengthening the relationship between User and Real-World Context.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 16

Online Context is of significant interest to service providers who use this information to manage

resources and optimise the delivery of multimedia services, including adaption of the quality of

content. As such Online Context is an important facet of experiments that focus on the

relationship between QoE and QoS. Of course this depends on the nature of the study but the

advantage of the EXPERIMEDIA Platform is that it is already instrumented for Observation of

Online Context to ensure that important technical information was available to experimenters.

Typically experiments have identified the significant Online Context observations related to

delivery of a desired Quality of Experience. These include the quality of context (e.g. accuracy of

biomechanics data, video quality), network performance (e.g. delay, bandwidth) and cloud

performance (e.g. CPU utilisation).

3.2.3. Benefits

Experimenting in live contexts produces benefits that are classified into socio-technical and

economic aspects. The majority of the benefits are produced through processes that elaborate the

raw information collected from many different sources. The users’ benefits are categorised as:

• Personalization: tailoring the information to maximize user satisfaction including

expressing themselves in social networks.

• Situational Awareness: understanding of when/where/why something is happening, so

as to maximize the active participation of the user in the experience. This benefit pertains

to the delivery of the right thing (information/support/other) exactly when it is needed.

• Enjoyment: the enjoyment a user has in the performed activities, a primary goal of

Schladming Venue as a tourist destination.

• Learning: acquisition or improvement of a skill/ability, a primary goal of the CAR and

FHW venues.

• Interaction, Influence & Control: interacting with the surrounding context for influence

and control (e.g. remote access to training sessions, or incorporation of a remote expert

in an education session).

There are significant benefits delivered to stakeholders in all experiments. There is not a general

rule, but in many cases stakeholders can be related to the following classes:

• Other people involved in the experiment (e.g. coaches with athletes, experts with

students). These stakeholders are also part of the context producing data. A simple

change of the viewpoint in the experiment may bring these people to be defined as users.

The benefit they receive is in general related to an improvement of the quality of the

experience as they perceive it.

• Venue Managers. These stakeholders usually get the benefits of improving their services

and therefore their offers to their end-users. Offering new interesting services helps to

retain users, to create better marketing so that the ROI is maximized.

• Experiment Owners. These stakeholders are often also the technology providers.

Successful experiment bring them reports and feedbacks for validating the proposed

technical solution, proof of concept on what they are testing, data to study for defining

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 17

future enhancements, feasibility of the proposal in terms of impact and financial

sustainability.

For venues and experiment owners, benefits are categorised according to aspects of the

Osterwalder business model canvas, as they relate to a stakeholders ability to deliver and enhance

services for customers. Benefits to stakeholders include

• Improved value proposition: new or enhanced services for customers

• Increased Customer channel: new routes to market or access to customers

• Optimised Resource Utilisation: understanding of how to optimise resources and key

activities associated with service operations

• Reduced Costs: identifiable reduction in costs associated with service delivery

3.2.4. Model Implementation

The observations and benefits measured are related to complex systems that cannot be known in

advance. The systems may require monitoring at multiple levels including infrastructure, services,

applications and users interacting as part of live activities. As such a key element of the information

model is to support abstraction and extensibility, allowing an experimented to instrument elements

of the system to record observations and benefits that are of relevance to specific experimental

hypothesis.

EXPERIMEDIA allows experimenters to define models to describe their system-under-test

covering structure, behaviour and interaction:

• Entity Model: a set of entities to be observed and their relationships, essentially an entity

relationship diagram (e.g. services, datasets, people).

• Infrastructure Application and Service Metric Model: a set of entity metrics to be

measured including low level infrastructure, e.g. response time (metric) of a Service

(entity) or size (metric) of a dataset (entity).

• Provenance Model: a set of event types describing the interactions between entities that

are defined in terms of Provenance statements.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 18

Figure 5: Modelling the System-Under-Test

Figure 5 shows the high-level implementation model supporting acquisition of observations and

benefits.

3.3. Capabilities

Capabilities are software or service components whose capability allows users to achieve added

value through use, either by design (i.e. the purpose is known in advance) or more frequently by

openness (i.e. the purpose is opportunistically established by the user). Capabilities are a key part

of research programmes such as FIRE3 and the FI-PPP4. Capabilities of the FMI must address the

needs of novel applications and services to allow them to exploit a range of social, audio/visual,

pervasive content and 3D content. Each class of content has distinct characteristics, content

lifecycles (authoring, management and delivery) and platforms to support them. Developing a new

platform supporting all content types is unrealistic and the approach must focus on developing

open interfaces to existing platforms that allow for greater levels of interaction between

information and control flows.

EXPERIMEDIA defines a component model that focuses on different content aspects within the

FMI with implementation technologies supporting the lifecycle of the specific content. Tools and

services are provided that support the mixing of different content types in the delivery of user

experience where the content lifecycles could be implemented within separate systems. Figure 6

shows the EXPERIMEDIA component model: the social content component (SCC), audio-visual

content component (AVCC), pervasive content component (PCC) and 3D content component

(3DCC) to which we add an experiment content component (ECC) supporting all data and

processes related to the setup, execution, monitoring, analysis and security of experiments. A key

element of the components is that they are designed on the principle of openness and transparency

in terms of observability, configuration and security policy. Each component includes a structural

(i.e. entities) and behaviour model (i.e. QoE, QoS and quality of community or QoC), and is

instrumented to allow deep measurements. The disclosure of such information is essential for

understanding the interplay between different system components, along with the observation of

behaviours in larger composed Internet ecosystems including communities. A configuration

3 http://cordis.europa.eu/fp7/ict/fire/
4 http://www.fi-ppp.eu/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 19

interface is provided that supports set up and runtime adaptation of some QoS parameters. The

capabilities of each component are described in more detail in the following sections.

Figure 6: Capabilities of an FMI testing facility

3.4. Service Composition Patterns

Composition Patterns are standard ways that Capabilities of the EXPERIMEDIA facility can be

used together to investigate new forms of social interaction and experience. We define a set of

important patterns to help experimenters understand how the components of the facility can best

support their experimental objectives and to provide stimulus for new ideas.

3.4.1. Instrumentation and Observation

The first pattern “Instrumentation and Observation” focuses on instrumentation of capabilities.

This was the focus on the implementation in the first year. Each component is described in terms

of QoS, QoE and QoC metrics associated with their specific content domains (social, audio-visual,

pervasive, and 3D) and is required to generate measurements of these metrics during the runtime.

Additional infrastructure metrics regarding infrastructure performance are generated each hosted

service (e.g. compute, storage and networking). All metrics assist experimenters in understanding

the behaviour of the system in terms of both technical performance and user experience. For

example, the audio-visual content component (AVCC) generates metrics related to audio-visual

(AV) streaming such as frame rates, frames dropped, video quality, etc. When combined with

networking metrics (e.g. bandwidth, latency, etc) an experimenter can study the network

characteristics necessary to deliver a certain QoS (e.g. 25 fps, HD with a 1/1000 frames dropped)

to a group of consumers. This is standard, although not simple, and initiatives such as those

undertaken in the ITU QoE study areas (e.g. ITU-R Rec. BT.500-11) provide a methodology for

the subjective assessment of the video quality5.

5 http://www.itu.int/rec/R-REC-BT.500-11-200206-S/en

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 20

 Figure 7: Correlating between discussion topics and delivered content

FMI must focus more on how different content, aggregations of content and social interaction

affect experience. With each Content Component generating metrics experimenters can begin to

correlate human activities with monitoring data between components. For example, navigating to

a certain location in virtual world may create a popular discussion in a social networking group. By

identifying popular discussions and looking at which point in the story/presentation (e.g. seeking

a specific time point of a recorded video stream) when these occurred the experimenter can begin

to understand why specific events cause specific outcomes in the target community, and if

necessary initiate a deeper analysis (e.g. direct user evaluation) with the community on these target

areas. Figure 7 illustrates data coming from both the AVCC and the SCC which can be correlated

in the ECC to support this type of analysis. Changing the narrative after the production would be

considered a “design” phase adaptation. However, increasingly we envisage adapting the narrative

during the production based on emerging profiles and interests of social groups and how they

react to the content being delivered. In this case rather than undertaking a post analysis of the

metrics we could automatically annotate a video stream with metadata indicating points of

interest/questions associated with the content. The Content Author could then adapt the narrative

based on discussions, questions, or votes for more information by reviewing an annotated stream

timeline.

3.4.2. Mixed Information Flows

The second pattern “Mixed Information Flows” focuses on how content from each component

can be orchestrated in information flows as part of a new experience. Examples include:

• annotating video streams (AVCC) with metadata from social networking trends (SCC);

• annotating video streams (AVCC) with metadata derived from sensors (PCC);

• adapting the narrative of a pervasive game (PCC-Creator) based on social networking

trends;

• reconstructing people who are present in physically different locations (3DCC) in a single

virtual location as 3D avatars.

EXPERIMEDIA’s Social Annotation Service (SAS) is an example composition of information

flows allowing social trends to be synchronised with audio-visual streams.

An interesting element is how by mixing the content between different platforms influences the

user experience and technical performance in each component. For example, does changing the

narrative as a consequence of the social networking topic reduce the discussion on the social

network because the focus of attention has changed?

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 21

Figure 8: An integrated view of EXPERIMEDIA based on experiment composition patterns

It is critical that capabilities support added value composition patterns (see Figure 8). Here we

show how all components can be used together in an FMI system. The PCC orchestrates the

narrative (control flow is the dotted lines, data flow is the solid lines) for the gamification of

activities. As such the PCC can initiate controlling actions such as recruiting user populations

through information dissemination in social networks, delivering popular video sequences to

specific communities and acquiring 3D representations of objects and people. With all

components instrumented using an information model the metrics generated can be acquired by

the ECC and available for real-time and post analysis by experimenters.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 22

4. Experiment Content Lifecycle Management

As EXPERIMEDIA is performing FMI experiments and not just creating FMI systems, the

management of those experiments and their data is of utmost importance to the project. Even

though the more complex component composition patterns discussed above are necessary, they

still all involve the experiment content component. From the experiences of the driving and open-

call experiments various useful extensions and refinements to the ECC have been identified and

this document therefore dedicates a significant portion to describing these advancements.

4.1. Experiment Content Component (ECC) Overview

Experiment content is produced and consumed by developers performing tests on FMI systems

to understand and gain insight into structure, behaviour and performance. System configuration,

system dependency graphs, input/out data sets, testing procedures and monitoring data all

characterise experiment content.

The ECC allows a developer to set up, execute and tear down tests on FMI systems deployed at

different locations. The ECC monitors, derives experimental data from, and manages the system

under test through integration with the ECC API. The ECC elicits QoS, QoE and QoC data from

the other components and delivers it to the experimenters so they can analyse the behaviour of

technical systems in relation to user experience. The ECC manages the delivery of monitoring

metrics that are stored and available for both live and post/batch analytics. Monitoring clients are

available for services, mobile clients and web applications thought an Advanced Message Queuing

Protocol (AMQP) bus. A dashboard is provided leading developers through an experiment

lifecycle that includes setup, live monitoring, analysis and tear down, and data exploration

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 23

Figure 9: ECC architecture showing external components in grey

The ECC architecture extends the state-of-the-art in experiment monitoring frameworks by

providing a mechanism by which experimenters can investigate how system and user activities

have led to changes in system performance or human experience (as observed by the ECC metric

and provenance monitoring system). To this end, the experimental support provided by the ECC

includes:

• Experiment lifecycle management from setup through data analysis

• Real-time and historical data exploration and analysis

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 24

• Generalised and extensible metric model, monitoring protocols and data viewers for

quantitative monitoring of QoS and QoE

• Semantic provenance model, monitoring protocols and viewers for tracking and

exploring causation between participants, applications, services and data based on the

W3C PROV standard6

• Live and historical monitoring of data, including data export features.

• Historical exploration of relationships between QoS and QoE data

ECC clients provide both metrics (indicating QoS/QoE characteristics) and provenance data that

describes discrete activities enacted by agents on entities. Internally, the ECC captures these two

data streams and stores them using the appropriate data managers. An experimenter interacting

with the ECC via the dashboard then has the ability to visually navigate through the both sets

along a common time-line such that interesting changes in metric data can be linked to a

behavioural record of data activity associated with systems and people.

4.2. Naming

Naming is concerned with the rules for choosing identifiers to denote applications, software, data,

people and things. Naming must consider the scope and relative uniqueness of identifiers. Naming

syntax and conventions are especially important in distributed systems where things are interacting

with, shared with or being observed by multiple system components often developed

independently. For example:

• Two different sensors measuring the “speed” attribute of a person.

• Linking comments from Facebook and Twitter to user accounts of the same person.

• Correlating Quality of Experience from Babylon mobile application with Quality of

Skeleton from the 3DCC for a particular athlete.

There are then two basic ways to deal with the problem:

• Convention: agreement on the names to describe entities prior to execution. There are

situations where prior agreement cannot be done because either the entities are not

known at the start or existing naming conventions are already established.

• Resolution: once entities exist within the system, techniques such as feature extraction

can be used to establish equivalence.

Where possible it is important to establish convention because feature extraction algorithms can

be complex and depending on the availability of features offer varying levels of robustness. There

are various cases where a consistent naming scheme is needed in EXPERIMEDIA.

Monitoring data are observations about the system under test collected during an experiment.

Entities are things of interest (e.g. services, data or people interacting with the system) and

Attributes are behaviours/characteristics associated with an Entity. For example:

6 http://www.w3.org/TR/prov-overview/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 25

• an entity could be a Person and attributes could be Running Speed, Opinion or

Preference.

• an entity could be a Service and attributes could Response time, Storage Capacity,

Uptime.

Entity attributes are reported to the ECC by ECC Clients. An experiment can have multiple ECC

Clients reporting on a set of Entities. Two different ECC Clients could measure the same Entity

and assign different UUIDs. It is important to know the ECC Client where the data has come

from, but it is also important to know that the data from both sources refers to the same entity

and/or attribute.

The full ECC metric model is shown in Section 4.5. In Table 1 the identifiers in the ECC metric

model are listed. Each object in the model is identified by a UUID and some objects have

additional metadata that can provide human readable names (e.g. experimentId, entity Id). The

generic nature of the ECC allows experimenters to dynamically define entities of interest to them

and does not currently impose naming conventions. Although this offers a flexible approach it

does not encourage best practice. If an experiment was completely in charge of what was reported

to the ECC then the naming convention would only matter to the experimenter and how they

configure their software. However, an experimenter will use baseline components (which report

to the ECC), other 3rd party services (e.g. Facebook) and their own software. Identifiers chosen by

the experimenter must be consistent where possible with the identifiers assigned in other contexts.

 UUID
(uuid)

name
(String)

description
(String)

entityID
(String)

experimentID
(String)

Client x x

Experiment x x x x

MetricGenerator x x x

Entity x x x x

Attribute x x x

MetricGroup x x x

MeasurementSet x

Measurement x

Report x

Metric x

Unit x

Table 1: Identifiers in the ECC metric model

Here we define the principles for naming entities and attributes reported to the ECC.

• Entity identifiers are assigned when an entity is born by another entity responsible for

creating them.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 26

• Entity identifiers should be unique enough so that they do not clash in a context of use

(e.g. within a set of experiments).

• Entity identifiers should be structured according to URIs where possible.

• Entity identifiers based on URIs can be dereferenceable but this is not mandatory.

Figure 10 shows an example of how identities are assigned to entities for the SCC baseline

component. The figure shows the actor responsible for assigning the identifier, the entity and the

identifier itself. The figure also shows type annotations (in italics) which must also be associated

with identities. In this case when the SAD Service is deployed it is uniquely identified by a URL

where the service is hosted and so this URL should be used as the SAD service entity entityID.

The SAD Service includes a set of software plugins responsible for social analytics. Each plugin

is identified by a URI prefixed with the SAD Service URL. The plugin URI does not need to be

dereferenceable. The SAD plugin accesses and analyses entities from Facebook and Twitter. Here

the Facebook Event is identified by a URL assigned by the Facebook Service and the Facebook

Account is identified by a URL assigned by the Account Owner.

Figure 10: Assigning Identity for a baseline component and third party service

The Person entity is a special case. In fact physical objects such as people are not created by the

system under test. They are objects that exist in the real world already and become known to

system either through configuration or through observations during monitoring. People do not

have a unique identifier but are identified by a set of characteristics such as name, address, email

and account ids. People can be known in advance to a system through a user account registration

or may appear through interactions.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 27

We propose to describe the Person entity using the FOAF7 ontology. Using FOAF a person can

be described using various attributes. The following example comes from “An Introduction to

FOAF”.8

<foaf:Person>
 <foaf:name>Peter Parker</foaf:name>
 <foaf:gender>Male</foaf:gender>
 <foaf:title>Mr</foaf:title>
 <foaf:givenname>Peter</foaf:givenname>
 <foaf:family_name>Parker</foaf:family_name>
 <foaf:mbox_sha1sum>cf2f4bd069302febd8d7c26d803f63fa7f20bd82</foaf:mbox_sha1sum>
 <foaf:homepage rdf:resource="http://www.peterparker.com"/>
 <foaf:weblog rdf:resource="http://www.peterparker.com/blog/"/>
</foaf:Person>

Email address is an important attribute for identifying people on the web. FOAF defines a

<foaf:mbox> property:

 <foaf:mbox rdf:resource="mailto:peter.parker@dailybugle.com"/>

FOAF does not an assign a URI to the resource called Peter Parker, i.e. there is no rdf:about

attribute on the foaf:Person resource:

<foaf:Person rdf:about="..uri to identify peter..."/>

That's because there is still some debate around both the social and technical implications of

assigning URIs to people. Which URI identifies you? Who assigns these URIs? What problems

are associated with having multiple URIs (assigned by different people) for the same person? Side-

stepping this potential minefield, FOAF borrows the concept of an "inverse functional property"

(IFP) from OWL, the Web Ontology Language. An inverse functional property is simply a

property whose value uniquely identifies a resource.

The FOAF schema defines several inverse functional properties, including foaf:mbox,

foaf:mbox_sha1sum, and foaf:homepage. An application harvesting FOAF data can, on

encountering two resources that have the same values for an inverse functional property, safely

merge the description of each and the relations of which they are part. This process, often referred

to as "smushing", must be carried out when aggregating FOAF data to ensure that data about

different resources is correctly merged.

The ECC will use a prioritised list of foaf:Person properties (email, homepage, userAccountId,

etc) to identify people depending upon what information is available about that Person.

7 http://www.foaf-project.org
8 http://www.xml.com/pub/a/2004/02/04/foaf.html

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 28

Figure 11: Baseline component and known user account

Figure 11 shows an example of a baseline component and a known user reporting quality of

experience using the Babylon Mobile application. This is a general pattern for identifying users

from existing user accounts, in this case an account associated with an EXPERIMEDIA baseline

component. The Babylon service is assigned a URL when it is deployed by a Service Deployer.

The instanceId of the Babylon Mobile App running on the mobile device will be determined by

the Service Developer. This URI does not have to be dereferenceable. The User Account is

assigned by the Account Owner when they register and the Person who is the account owner is

assigned an identity based on an email address.

Figure 12: Baseline component and unknown user identifier

Figure 12 shows the situation where a component knows there’s a user interacting with a system

but does not have an identifier. In this case a User is viewing a video through the AVCC Player in

a web browser. The AVCC player knows a Person is interacting with the video but has no specific

identifiable attributes about that person. Of course other tracking information such as location

and time could be used later to identify that the interaction was caused by a specific individual but

at the time of interaction this is not known. What’s important is that an Anon User is recorded in

the system responsible for the interactions with the AVCC player. Any identifier could be used

and in this case we just assign a URI where the personID is a UUID.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 29

Figure 13: Baseline component and video data asset

Figure 13 shows the situation a Content Provider is ingesting a video into the AVCC. In line with

the principles about it is the responsibility of the Content Provider to assign an identifier to the

video.

Finally, it’s important that we not only define consisting naming for specific entities but also entity

and attribute types. Globally shared identifiers of attributes are useful in displaying data. If an

attribute was identified as a certain type then it could be plotted accordingly in the dashboard. The

ECC will use the following scheme:

• Entities: Entities will be described by URIs pointing to concepts in semantic models. All

entities will have type prov:Entity. Additional concepts can be annotated by baseline or

experimenter components through the ECC Client API, if no concept is provided the type

will default to the prov:Entity. Entities can subclass multiple concepts.

• Attributes: For most attributes the Unified Code for Units of Measure (UCUM) will be

used to describe attributes. For attributes that are not covered by UCUM, for example geo-

locations, colours, emotions, etc, alternative well known descriptors will be used.

4.3. Bootstrapping Processes

A single instance of the ECC supports multiple (concurrent) experiments running in a single

project. ECC’s are not shared between projects. Communication between the ECC and its clients

is done through RabbbitMQ and an installation of RabbitMQ can be used for multiple projects

(see Figure 14).

A note on terminology: commonly in EXPERIMEDIA we have used the work “experiment” to refer to one

of the driving or open call experiments, meaning all activities associated with that work-package. However, in

the following we will use the word “project” to mean one of the experiments funded by EXPERIMEDIA, then

we can say that a project will run many “experiments” where an experiment involves (potentially) provisioning

services, recruiting participants, getting monitoring clients connected, collecting data, tearing down the connections

and then analysing the data.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 30

Figure 14: An illustration of the multiplicities of ECC clients, RabbitMQ and ECC (dashboard) instances

Each ECC is identified by a universally unique identifier (UUID)9 which is assigned to the ECC

through configuration at deployment time. When an instance of the ECC starts, it connects to the

RabbitMQ bus and creates an exchange identified by its UUID. For an ECC client to connect to

the ECC dashboard, it must know the hostname and port of the RabbitMQ bus and also the

relevant ECC UUID.

ECC configuration data is published to a Configuration Registry at a well-known URL (e.g.

http://config.experimedia.eu) using WebDAV10 (for instance using an Apache HTTPD server11).

ECC clients download the configuration data at start up and use this information to connect to

the ECC.

The primary use case is where an ECC service is manually deployed on behalf of a project (as this

is an occasional need). The ECC service is configured with the name of the project and on start-

up it stores its ECC UUID and RabbitMQ hostname and port in the Configuration Registry under

the project name. ECC clients deployed for the project know their project’s name and the address

of the configuration registry. Using this information they retrieve the ECC configuration from the

registry and connect. The pattern can be repeated for other services deployed for a project such

as the SAD or AVCC.

A secondary use case is using the Configuration Registry for configuration of applications or

services developed by the projects themselves (as opposed to baseline components). For instance,

a mobile client deployed on many devices for a project that was investigating different interface

types could use the configuration registry to look up which interface to display during a particular

experiment run.

9 A universally unique identifier (UUID) is an identifier standard used in software construction
10 http://www.webdav.org/specs/rfc2518.html
11 http://httpd.apache.org/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 31

We define the following hierarchical naming structure:

/<baseline component>
 /<sub-component>
 /<project>
 /Document containing data describing the instance of the sub-component
 pertaining to project <project>
 /default
 /Document containing default configuration data for the sub-component
/project
 /<project>
 /Document(s) or subfolders containing data required specifically for
 project <project> unrelated to the baseline components

For instance:

/ECC
 /RabbitMQ
 /BLUE
 /Document containing the RabbitMQ hostname:port for project BLUE
 /default
 /Document containing the Atos RabbitMQ hostname:port
 /dashboard
 /BLUE
 /Document containing the ECC UUID for project BLUE
/SCC
 /SAD
 /BLUE
 /Document containing SAD hostname:port for project BLUE
/project
 /BLUE
 /Document containing BLUE-specific configuration data

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 32

Figure 15: Sequence diagram illustrating the storing and retrieval of ECC connection data and storing of
SAD service location

By arranging the data as described above, access control policies can be implemented to control

which systems are able to read or write the configuration data. For instance, it could be configured

such that the ECC dashboard software was authorised to write in to the “/ECC/dashboard” space

and that BLUE project software was permitted to read from the “/ECC/dashboard/BLUE”

space. The need for such policies depends on the sensitivity of the data being written and read

which may vary across components and projects. Access control could be implemented using

usernames and passwords or using some sort of web-key12.

4.4. Experiment Monitoring Processes

ECC clients that engage with an ECC based experiment go through a process that may include up

to six distinct phases. The initial two phases: ‘connection’ and ‘discovery’ are mandatory; the

remaining parts of the process are optional. A high level representation of the interactions between

metric generating clients and the ECC for each of the phases is shown in Figure 16.

12 http://waterken.sourceforge.net/web-key/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 33

Figure 16: Experimental Monitoring Process

Whilst an ECC client developer will need to be aware of the experiment monitoring process

described above, many of the interactions between the ECC and their instrumented software are

handled at a low level by the ECC client writer’s API. In the following sections, each of the phases

depicted above are described in more detail with an outline of client-side behaviour.

Once a client has reported their capabilities and metric descriptions, it may enter a Set-up Phase

(if it supports it). Here, the ECC requires the client to progressively set up the metric generators

they have available for use. Clients supporting this phase respond with the result of each set-up

attempt.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 34

Figure 17: State Model for Setup Phase

The Live Monitoring Phase is the main part of the experimental process in which the ECC gathers

metrics from all connected clients. Clients will have specified whether they support the pushing or

pulling (or both) of metric data by the ECC. In the former case, clients are able to push any metric

of their choosing on an ad-hoc basis (they should always wait for an acknowledgement from the

ECC after each push, however). Alternatively, clients may be pulled for a specific measurement

(identified in their specific metric model) by the ECC; a pull request is sent to the client on a

periodic basis – it is the client’s responsibility to return the appropriate measure. This phase

continues indefinitely until the experimenter concludes that sufficient measurements have been

taken.

Figure 18: State Model for Live Monitoring Phase

After the live monitoring phase has completed, the ECC will contact the appropriate clients to

begin the Post Reporting Phase. The purpose of this phase is to allow the ECC to retrieve metric

data that was not possible to collect during the Live Monitoring phase. For example, some clients

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 35

may generate data too quickly or have a network connection that is too slow for all of their data

to be transferred to the ECC in time. During this phase, clients will be requested to first provide

a summary of all the data they have collected during the Live Monitoring phase, and then be asked

to send metric ‘data batches’ that will allow the ECC to complete its centrally stored data set for

that client.

Figure 19: State Model for Post Reporting Phase

Finally, some clients may be able to report on their Tear-Down process for some or all of their

metric generators. In some cases, it will be useful for the experimenter to know whether the tear-

down process has succeeded or not. For example, the experimenter will need to know whether or

not users (represented by the connected client) have been successfully de-briefed on the

completion of an experiment.

Figure 20: State Model for Tear-Down Phase

4.4.1. Monitoring Sources

Before an EXPERIMEDIA project can execute an experiment, a set of FMI technologies and

services taken from the baseline components or project specific technologies must be selected for

instrumentation. The metrics provided by each instrumented component will reflect the

observational requirements of the experiment design and are specified using the ECC metric data

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 36

model. An API supporting this data model and communication with the ECC using AMQP is

available for the following technology platforms:

• Java (common JRE)

• Java on Android

• C#

• C++

• Ruby

While the low-level implementation details for each platform of course vary, the general

architectural pattern for the client ECC architecture is common:

Figure 21: Inter-dependences for instrumented software

Figure 21 hows a high level overview of the inter-dependencies between an instrumented piece of

experimental software and the ECC client API. Above, the ‘ECC client logic component’ adopts

a controller role: responding to requests for QoS/QoE data from the ECC and also sending on

interesting content life-cycle based provenance data, as it occurs. For convenience, a number of

helper classes exist to help the client writer:

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 37

• An adapter class that simplifies communication with the ECC, offering simple

communication methods and alerts to ECC monitoring requests

• A data helper class to quickly create instances of the ECC common data model

A selection of source code based examples of ECC clients can be found in the ECC software

distribution within the ‘samples’ folder.

4.4.2. Reporting of Self

Within EXPERIMEDIA, the report of the self is commonly provided by Babylon and through

post-experiment questionnaires. Within the ECC metric model, an entity representing a user

performing a specific role ('AR explorer', perhaps) would be defined with attributes reflecting

'emotion', 'affective response' and 'arousal'. Measurement sets uniquely generated by each

individual user would be linked to the appropriate attribute of a shared entity instance; aggregated

and averaged measurement data from each client regarding the same observations of the self would

therefore provide the experimenter with an overall view of user experience in this context.

Figure 22: Reporting Self

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 38

4.4.3. Reporting Perception of Activity and Usability Qualities

Here, in both cases, the user will be reporting their attitudes/perceptions that relate specifically to

a quality of an activity ('successful' or 'unsuccessful' training session, for example) or an interactive

system that augments a particular activity (the AR client was 'responsive' or 'non responsive'). In

many cases, a scale is used (Likert is usual) so that users can indicate their perception in degrees.

Respondents are often required to indicate their attitude to the same aspect of an activity or system

(again, in ECC parlance, this refers to an Attribute of an Entity) several times within a

questionnaire (see Figure 23).

Figure 23: Measurement sets encapsulated in questionnaire metric group

From an ECC metric model point of view, each user's scaled responses (relating to a single

attribute of an entity) would be would be held in a measurement set, which itself belongs to a

metric group representing the complete questionnaire data set. Repeated samples from each user

would then be averaged (noting responses that are either bi-polar or have a strong tendency

towards the mean), giving an overall profile for a specific individual (uniquely represented by an

ECC metric generator). Further aggregation of multiple users' attitudes towards a particular aspect

of their experience makes it possible to see the overall attitude of a user population.

4.5. Metric Data Model

The ECC offers a metric modelling framework that offers support for a range of potential QoS,

QoE and QoC measurements, see Figure 24. In this model, the objects of experimental

observation (referred to as ‘Entities’) are loosely coupled with the agent (the ECC software client)

making the observations. Entities themselves must contain one or more Attributes that are the

subject of actual instrumentation and measurement activity. In version two of the metric model,

Entities will optionally offer additional key-value pair meta-data to the experimenter (such as URIs

to online content).

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 39

Figure 24: ECC metric model

In this model, Entities themselves must contain one or more Attributes that are the subject of

actual instrumentation and measurement activity. Measurement data itself is logically structured

within Metric Generators (typically used to represent metrics linked to a particular sub-system or

user). Further organisation is offered through the grouping of sets of measurements using one or

more named Metric Groups. A Measurement Set contains zero or more measurements that are

specific to a particular attribute; Metric Groups may contain one or more Measurement Sets. The

semantics of each Measurement Set is defined by its Metric, which in turn has a Metric Type and

Unit of measure. In version 2 of the metric model, specialisations of Metric Type and Unit will be

provided to improve formalisation and enhance visualisation.

This metric model is explored a little further in the following simple example in which an ECC

client (called ‘SocialAuth ECC client’) observes a Facebook event and sends metric data to the

ECC dashboard, see the figure below.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 40

Figure 25: Simple example of observing a Facebook event

This very basic relationship need to be developed further however, since a) entities (in this case

the ‘Facebook event’) will have certain attributes that are of interest to the experimenter and the

b) some organisation of the structure of the metric data associated with the entity must also be

specified. To see how this is arranged, consider Figure 26.

Figure 26: Monitoring a Facebook Event

In this example, we have added two attribute instances to the entity, representing aspects of the

Facebook event we have an interest in observing (i) the number of users attending the event and

(ii) the average age of users in the event. We can consider the data management structures that

support the collection of data representing these two attributes from either a ‘top-down’

perspective (starting from Metric Generators) or from a ‘bottom-up’ view point, starting with a

data collection type (the Measurement Set type) that is mapped directly to an attribute of interest.

For this example, we will take the latter approach and start by directly linking data sets to an

attribute.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 41

The Measurement Set type holds a set of measurements that specifically relate to an attribute and

in addition has associated with it a metric meta-data indicating its Metric Type (nominal; ordinal;

interval or ratio) and its Unit of measure. In the diagram above, we see two instances of

Measurement Sets (each uniquely identified by a UUID value) which are mapped directly to the

attributes of interest.

Moving up the data hierarchy, the next level of logical organisation is the Metric Group – a

container used to perform one level of partitioning for collections of measurements that relate (for

example, “online user” metrics). Metric Groups themselves are collected together by the top level

data organisation, the Metric Generator. As previously indicated, the Metric Generator represents

a higher, system-level component that generate metrics, for example it may be useful to

differentiate server and client based metric generators. An additional mapping, similar to that used

to link measurement data sets to attributes is specified linking metric generators to entities under

observation since it is likely that individual systems will be deployed to observe different entity

types. ECC client software must send their specification of the metrics they are going to provide

the ECC in this way, during the Discovery phase. In this way, the experimenter has a means by

which to understand which clients are performing what kind of measurements, and what they

relate to within the experimental venue.

4.6. Provenance Data Model

So far we have considered the metric data that relates to QoS and QoE indicators of systems and

users respectively. However, this data only provides a partial view of the overall behaviour of the

experimental system – greater insight can be offered to the experimenter by providing data

indicating the causes of the measurements that have been observed and the links between the

entities. Given such a view, the experiment can then answer the following types of question:

• What system or user driven content lifecycle events are associated with a specific set of

metric observations?

• How entities interacted:

o Which participants used which services and when?

o What participant applications were involved?

o Where was content created and consumed?

• How was participant QoE affected by service QoS?

To help answer these questions, a data provenance modelling standard has been introduced into

the EXPERIMEDIA experimental framework to support the traceability of interactions between

systems and users. A substantial body of research in the area of data provenance is led by the W3C

working group13 on provenance; a high level characterisation of the properties of their provenance

model is offered by the group as:

13 http://www.w3.org/2011/prov/wiki/Main_Page

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 42

W3C PROV description (http://www.w3.org/TR/prov-primer/)

Copyright © 2013 W3C® (MIT, ERCIM, Beihang) [Recommendation]

The key high-level concepts encoded in the W3C PROV ontology are Entities, Activities and Agents

which have some basic attributes and are connected to one another using a number of common

relationships, some of which are indicated in the two figures below.

Figure 27: W3C PROV key attributes

Figure 28: W3C PROV key relations

Copyright © 2013 W3C® (MIT, ERCIM, Beihang) [Recommendation]

ActivityEntity

Agent

xsd:dateTime xsd:dateTime

prov:startedAtTime prov:endedAtTime

rdf:type=prov:Activityrdf:type=prov:Entityrdf:type=prov:Agent

xsd:dateTime

prov:generatedAtTime

Activity

Entity

Agent prov:used

prov:wasAttributedTo

prov:wasDerivedFrom

prov:wasGeneratedBy

prov:wasAssociatedWith

“The provenance of digital objects represents their origins. PROV is a specification to express provenance records,

which contain descriptions of the entities and activities involved in producing and delivering or otherwise

influencing a given object. Provenance can be used for many purposes, such as understanding how data was

collected so it can be meaningfully used, determining ownership and rights over an object, making judgements

about information to determine whether to trust it, verifying that the process and steps used to obtain a result

complies with given requirements, and reproducing how something was generated.”

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 43

Space in this document does not allow a full explanation of the W3C PROV model14, however, in

brief, according to the W3C ontology, an Entity may:

• Represent physical, digital or conceptual things

• Have relationships to other entities (such as a ‘part-of’ type relation)

• Have attributes that characterise an Entity (from different perspectives)

In Figure 28, we see a common relationship between an Entity and an Activity in that the former

represents some action (generation) on the latter. Activities in this formalism represent:

• Dynamic actions/processes that affect change in the world

• The agency that affects change in the attributes of Entities

Finally, the Agent concept in the ontology provides:

• A representation of a thing (typically an Entity) that has taken on a role

• Whole or partial responsibility for an activity that has occurred

As activities that are driven by agents to generate or change entities occur over time, a historical

record of these changes is built up in which new entities form relationships with older entities

(such as the continued revision of a document’s contents).

The EXPERIMEDIA provenance model will be initially scoped to cover a subset of the PROV-

N15 schema:

• Component 1: Entities, Activities, Generation, Usage, Start, End, Invalidation

• Component 3: Agent, Attribution, Association

Building on these concepts a small EXPERIMEDIA ontology has been created to define the key

concepts in the EXPERIMEDIA data model: Participant, Content, Application and Service.

These classes are shown in Figure 29 and are used to help create interaction patterns and simplify

subsequent queries on the data. The Application in the model uses both an Entity and an Agent

because the Application must be used by a Participant in Activities (and so is an Entity) and causes

change itself in through Activities interacting with Services and so must also be an Agent. This

concept could be extended to Services to support service composition patterns.

14 Interested readers should visit http://www.w3.org/TR/prov-primer/
15 See http://www.w3.org/TR/prov-n/#component1 for further information

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 44

Figure 29: EXPERIMEDIA types using the PROV model

Within the scope of the supported PROV data framework, additional semantic data may also be

included to offer the experimenter further opportunities to examine behaviour within domain

specific ontologies. For example, where it is possible for an ECC monitoring client to do so, it

could include additional semantics taken from specific ontological domains, such as SIOC16 or

FOAF17. For instance, the Participant uses the foaf:Person class and is ready for additional FOAF

annotations. If this additional data can be provided by clients then it can enhance power of the

queries performed on the data.

4.6.1. Provenance Interaction Patterns

The W3C PROV model is complex and provides considerable freedom of expression. This is

both an advantage and a drawback: it is able to express useful information in a wide variety of

situations and domains, but automated analysis of the data is difficult unless additional structure is

imposed. With this in mind the ECC architecture recommends a set of interaction patterns

(encoded in the API) be used to record interactions between the EXPERIMEDIA types defined

above. These patterns currently cover the common cases of Participants interacting with

Applications (on phones, tablets or larger computers) and those Applications interacting with

Services. Through these interactions, Content is created and consumed and this is also modelled.

In the following figures the PROV classes are just represented by the element shapes and other

annotations are also omitted for simplicity.

16 See http://rdfs.org/sioc/spec/ for further information
17 See http://xmlns.com/foaf/spec/ for further information

Application

Application

owl:sameAs

Content

Participant

Service

rdf:type=prov:entity,

eee:Application

xsd:dateTime

rdf:type=prov:entity,

eee:Content

rdf:type=prov:agent,

foaf:Person,

eee:Participant
rdf:type=prov:entity,

eee:Service

prov:generatedAtTime

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 45

Participant using an Application

Figure 30: Provenance elements created when a Parrticipant uses an Application

In this pattern, the Application is considered to be the running instance of some stored software

and is therefore created and subsequently invalidated (destroyed) by the Participant’s Activity

which itself links back to the Participant.

Create Content on client

Figure 31: Participant creates Content locally (e.g. takes a photo)

The pattern above would be used when the Participant creates some data locally using the

Application. The Activity of creating the data uses the Application and the Content entity is

generated by the Activity with the creation time also recorded.

ApplicationuseApplication

Participant

prov:wasStartedBy

prov:wasEndedBy

prov:wasGeneratedBy

prov:wasInvalidatedBy

owl:sameAs

prov:actedOnBehalfOf

Application
xsd:dateTime

rdf:type=foaf:Person,

eee:Participant

xsd:dateTime

prov:startedAtTime prov:endedAtTime

rdf:type= eee:Activity rdf:type= eee:Application

createData Content

Participant

prov:wasStartedBy

prov:wasEndedBy

prov:wasGeneratedBy

Application

prov:used

prov:startedAtTime

prov:endedAtTime
prov:generatedAtTime

rdf:type=eee:Content

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 46

Create Content at Service

Figure 32: Pattern used to create Content and upload to a Service

This pattern builds on the previous one in that Content is created by the Participant using the

Application (these are the elements above the dashed green line) but in addition the Application’s

Agent form is used to initiate an additional “Send” Activity to upload the Content to the Service.

Retrieve Content from Service

Figure 33: Pattern used to retrieve Content from a Service

Create Content

Participant
prov:wasStartedBy

prov:wasEndedBy

prov:used
Application

prov:used

Application

owl:sameAs

Send
prov:wasStartedBy

prov:wasEndedBy

prov:wasInformedBy

Service
prov:used

prov:wasGeneratedBy

prov:actedOnBehalfOf

prov:startedAtTime

prov:endedAtTime

prov:generatedAtTime

rdf:type=eee:Content

prov:startedAtTime

prov:endedAtTime
rdf:type=eee:Service

Receive

Participant
prov:wasStartedBy

prov:wasEndedBy

Application

prov:used

Application

owl:sameAs

Retrieve
prov:wasStartedBy

prov:wasEndedBy

prov:wasInformedBy

Service
prov:used

prov:actedOnBehalfOf

Content

prov:wasGeneratedBy

prov:used

prov:startedAtTime

prov:endedAtTime

prov:startedAtTime

prov:endedAtTime
rdf:type=eee:Service

prov:generatedAtTime

rdf:type=eee:Content

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 47

The only significant difference between the retrieve and send patterns is the Activity which

generates the Content entity. In this case it is the Application’s “Retrieve” Activity which

nominally generates the entity.

4.7. Data Navigation, Analysis and Visualisation

4.7.1. Analysing QoS and QoE Metric Sets

It is useful to remind ourselves of some examples of QoS metrics from existing EXPERIMEDIA

projects:

• Number of points-of-interest (POI) data (requests/hour)

• Average video stream rate (bytes/second)

• Average upload time (seconds/upload)

• Average response time (milliseconds)

These metric types can be sampled continuously over time, easily lending themselves to temporal

visualisation. After data collection is complete, QoS data can then be further processed using

analytic approaches (there are many, of course) such as:

• Data filtering and segmenting (removing outliers, for example)

• Averaging repeated measurement sets taken over time

• Comparing distributions/variance between related measurement sets

Within just the QoS data context, we can start explore the performance relationships between

technical components using correlation analysis such as the Pearson product-moment. Using such

correlation techniques (assisted by scatter graph visualisations, typically) the experimenter can

discover positive (or negative) relationships (such as an increase in rendering FPS might be

positively correlated with an increase in rendering network traffic).

Let us now return to some useful QoE examples already used within existing EXPERIMEDIA

projects:

• Report of the self: Babylon emotion labels & colour wheel scales

• User interaction logging (discrete, nominal events)

• Perception of activity/system usability: questionnaires (Likert scales)

Unlike many QoS metrics, QoE type metric data is rarely available as a continuous sample stream.

Users will interact or report emotions/perceptions/attitudes sporadically and in clusters.

Depending on the experimental methodology, these data clusters are likely to appear in narrow

temporal windows (perhaps before, and then after, as specific activity). QoE data can also be

contrasted with QoE metric sets in that there will be many sources reporting on the same QoE

focii (imagine 100 users, each independently taking part in activity 'X' and reporting on their level

of interest in that activity).

A number of important data management activities face the experimenter once he or she has

collected their metric data:

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 48

• Aggregating metric sets into a larger groups

• Pairing measurement sets for correlation analysis (and beyond)

The ECC metric model and underlying database has been designed so that it is possible to retrieve

the appropriate data sets for these analytic exercises.

4.7.1.1. Aggregating Metric Sets into Larger Groups

In both QoS and QoE cases, the experimenter may wish to aggregate measurement sets in order

to draw some conclusions about the general behaviour of either:

• A single system or user18 over a period of time (repeated measures pattern)

• Multiple systems/users' behaviours over the same time period

• Different groups of systems/users behaviours over a time period19

Aggregated metric sets are typically summarisations of some form of repeated observation; this

could include averaged values; frequency analysis; other descriptive statistics (min; max; standard

deviation etc).

4.7.1.2. Pairing Metrics for Correlation

Widely used forms of correlation analysis require the pairing of interval or ratio values from two

data sets. As a rather contrived example, consider the pairing of a single value representing the

average rendering speed (QoS, FPS) with a single value representing a user's perception (averaged)

of system responsiveness (QoE, Likert scale -3 to +3). Let's imagine that we can match these

values for 30 users who have taken part in the same experiment. Having generated these paired

averages, we could plot these pairs on a scatter graph and apply a Pearson product-moment

analysis. We might find there is a positive correlation between frame rate and the perception of

system responsiveness.

4.7.2. Combining Metric and Provenance Data

It is only through the combination of metric and provenance data that the full story of an

experiment can be recorded and analysed. The metric model on its own contains essentially

entities and measurements of their attributes but it does not model any relationships between

entities. As we have seen, the provenance model links entities and content through activities and

other relations.

An important use case for linking metric entities is to examine the relations between QoE reported

by experiment participants and the QoS of the services that they use. This is illustrated in Figure

34. The provenance fragment in the middle represents the Participant using the Service via an

Application. Through the naming conventions (discussed below) the Participant in the

provenance model is linked to an entity in the metric model and thus to QoE questionnaire

answers (attributes of the participant). Through the same method, the Service in the provenance

18 Single user behaviour is only sometimes interesting however (in cases of 'outlying' data, for example).
19 Comparing a control group with a conditioned group, for example

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 49

model links to the service entity in the metric model and so to the time-series of QoS data (such

as service response time).

Figure 34: Using the provenance model to link a participant’s QoE attribute to a service’s QoS attribute

To link the models, some care must be taken in the identifiers used. In the metric model it is the

entityID field of the entity class that is used to hold the IRI of the associated element of the

provenance model. For a Participant this is the prov:Agent IRI and for Content, Applications and

Services it is the IRI of the prov:Entity. In this way the models can be linked together to provide

a rich, linked data-store.

To illustrate the concept better we take an example inspired by an experiment in the second open

call: SmartSkiGoggles. In this example we have 10 skiers all equipped with smart ski-goggles that

are linked via an app on their phone to various services. The app queries the services and provides

the skier with data on “hot” tweets, the weather and the expected lift-waiting time for various ski

lifts. The app is connected to the ECC and reports the skier’s activities and those undertaken on

the skier’s behalf via provenance messages. The three services reports standard QoS metrics to

the ECC (such as response time). At the end of the day’s skiing, each participant fills in a

questionnaire about their quality of experience (using Lime Survey) and this data is also pushed to

the ECC. The whole arrangement is illustrated in Figure 35.

At the end of the day, the experimenter reviews the QoE data and sees that a couple of the

participants reported a bad experience with the app. Using the provenance data, the ECC is able

to answer the query “which services did a participant use and when?” This query can be

implemented by making use of the patterns and the EXPERIMEDIA classes discussed above.

Participant

Application

Application

Activity Service

owl:sameAs

prov:wasStartedBy prov:wasEndedBy

prov:used

Activity

prov:used

prov:wasEndedBy

prov:wasStartedBy

Participant entity

Service entity

Measurement Set

Attribute

(e.g. QoE)

Metric

(questionnaire answers)

Measurement Set

Metric

(time-series)

Attribute

(e.g. response time)

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 50

Even though the participant did not use the services directly (they were used via the app), the

graph connects the participant entities to the services.

Figure 35: Illustration of the skiing scenario

The data thus retrieved shows that the users with a bad experience spent a much longer time than

average in the “Using lift waiting time service” activity (by comparing an individual’s metric value

to a summary statistic of the whole group) and this leads the experimenter to look at the QoS data

for the lift waiting time service.

By plotting the access times of the various users over the time-series data for the lift waiting time

average response time the experimenter sees that the users who reported a bad QoE were unlucky

enough to use the lift waiting time service at a time when it was not functioning properly and

requests were timing out. The experimenter concludes that the majority found the app useful but

that the response time from the linked services is important and affects the QoE.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 51

Figure 36: Example of overlaying service usage activity times on a service QoS graph

The reverse path may also be taken. Using summary statistics, the experimenter may spot that the

response time for the lift waiting time service had a large standard deviation or range and thus find

that problem at the start. Again, by using the provenance relationships, the usage times of all

participants of the lift waiting time service can be overlaid and the experimenter might then

segment the QoE data for the participants according to whether they used the service in the non-

functioning time or not. In our example, the experimenter would then find that those participants

who used the service at the non-functioning times reported a worse QoE than the ones who did

not.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 52

5. FMI Content Lifecycle Management

5.1. Audio Visual Content Component (AVCC)

Audio visual content is primarily characterised by video and metadata that’s streamed and

consumed by applications (i.e. players). AV content is produced by professionals and users using

content production, management and content distribution networks. The AVCC offers capabilities

for all aspects of the content lifecycle (acquisition, production, transcoding, distribution, etc) and

advanced capabilities for acquisition and synchronisation between cameras feeds, audio and

metadata, including synchronisation between from different cameras.

5.1.1. Streaming Service

This subcomponent is in charge of content adaptation and delivering of all current industrial

available streaming protocols (e.g. MPEG-DASH20). For live content this subcomponent also

allows experimenters to transcode high quality content into different qualities adapting the content

to the consumer networks capabilities. The streaming sub-component also allows the

experimenter to record live content and inject real-time metadata which is multiplexed in the video

stream and can be accessed by the player.

Figure 37: AVCC Stream deployed

This component is deployed at mediaserver1.experimedia.eu and in mediaserver2.experimedia.eu,

however only mediaserver1.experimedia.eu has live transcoding capabilities.

Description of the internal subcomponents:

• Live Input: This module manages the reception of all live content including audio, video

and metadata from the live metadata acquisition management. This module can receive

20 http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=65274

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 53

as input video and audio from multiple formats, providing as output a decapsulated

audiovisual stream.

• Live Metadata: This module manages the reception of metadata and timestamps from

the RHB Venue Information System. The metadata is converted into XML format and

sent to the Metadata Upload module while the timestamps are sent to the Live Input

module with a reference to the metadata so it can be synchronised with the video stream.

The metadata format is defined by the Experimenter and can be used to adapt module

behaviour depending on its content.

• Multi-quality: The objective of this module is to perform transcoding into different

bitrates in order to provide the same feed with different video qualities, so that the video

player used by end users can change the quality depending on the network conditions

and computer performance. In order to let the video player change the quality smoothly

and in a transparent way, the content is split into several chunks of a few seconds and

then aligned at the same frames after encoding. Additionally, the encoding is done in

such way that complete group of pictures (GoPs) are stored into each chunk.

• Recording: Records live video streams into mp4 files maintaining the original live

metadata so it can be requested later as Video on Demand (VoD) files.

• Media Distribution: This module is in charge of the actual content delivery, which

includes the continuous generation of a content manifest, final packaging of the content

and transport protocols. It also produces all multiplexed media output of the main

distribution. If Timeshift functionality is activated, the module continuously records live

streams for immediate playback or deferred for later playback. This feature allows the

user to have Digital Video Recorder (DVR)experiences such as rewind, pause or fast

forward.

• VoD Fetching: Retrieves recorded or previously uploaded VoD content under request

of the edge distribution components. The content is accessed from the file system

5.1.2. Video on Demand (VoD) Ingest Service

The objective of this module is to support content adaptation and especially transcoding for VoD.

The VoD ingest in integrated with the Stream platform so an experimenter can upload content

and requesting multi-quality and the content will automatically be made available in HDS, HLS

and Smooth streaming in pre-defined qualities.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 54

Figure 38: AVCC Ingest deployment

• VoD Ingest – Review service: This service allows a content reviewer to validate

uploaded videos to approve or deny them. A link to this service is sent by email to the

specified reviewer when content is uploaded.

• VoD Ingest – Web UI: This is the administration user interface to manually review the

content queue and, if necessary, to manually trigger events.

• VoD Ingest – Content reception: This module receives the actual video in several

POSTs request of fixed length packets. The module checks the MIME type, and

generates a new UUID for the content and stores it into the server file system. After that,

it creates a job into the Job Queue so it can be processed.

• VoD Ingest – Content registration: Once the content is processed, this module relays

the information of the content together with the content URL to retrieve it to the CMS.

• VoD Ingest – Job Queue: This module keep control of the content flows including

upload, control, adaptation and registration. It detects any problem and reacts / reports

them properly.

• VoD Ingest – Content adaptation: This component, manage the process of adapting

the content to the targeted profiles requested in terms of encoding and containers. It

coordinates all the required transcoding which is delegated to the Multi-quality Encoder.

• VoD Ingest – Multi-quality Encoder: This module encodes the uploaded files to all

qualities needed to support the multi-quality playing and the proper Synchronized

Multimedia Integration Language (SMIL) files for the content. The encoding is actually

done by the underlying ffmpeg/libav libraries.

• VoD Ingest – Normalizer: Prepare the input video file to a mp4/h264 template using

ffmpeg/libav so it will be used as a source by the Multi-quality Encoder.

• VoD Ingest – ffmpeg / libav: These open source libraries are used for encoding and

decoding tasks.

• VoD Ingest – Control Notification: This module is responsible to generate the e-mail

notifications to the content reviewers so they can approve or refuse the publication.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 55

The VoD ingest is currently deployed in mediaserver2.experimedia.eu for several experiments.

Each of the experiments has its own instance of the service with personalised configuration,

following the name structure:

 http://mediaserver2.experimedia.eu/ex[Experiment number]ingest/

Where [Experiment number] is the experiment number used in the DoW.

Under the experiment default path, the VoD ingest publish the administrative Web UI to monitor

the pending tasks. Beside this Web UI, the VoD ingest has the following services:

Service Path Type Parameters Type Description

/UploadFile POST Token text-field Token expire in 3,5 h, only needed if
token is active.

 title text-field String

 fulldescription text-field String

 event text-field Event relation in DB

 html5Mp4U checkbox Profile Selected

 html5WebM checkbox Profile Selected

 multi-quality checkbox Profile Selected

 uploadedfile File Binary file

The UploadFile service is the main service, which receives the source video file, basic description

data and the content adaptation requests.

Service Path Parameters Type Description

/avccinserter/avccupload Token text-field Token expire in 3,5 h

 Title text-field String

 fulldescription text-field String

 event text-field Event relation in DB

 html5Mp4U checkbox Profile Selected

 html5WebM checkbox Profile Selected

 multi-quality checkbox Profile Selected

 uploadedfile File Binary file

Service Path Type Parameters Type Description

avccinserter/insert POST/GET Title text-field String

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 56

Service Path Type Parameters Type Description

 fulldescription text-field String

 event text-field Event relation in DB

 html5Mp4U checkbox Profile Selected

 html5WebM checkbox Profile Selected

 multi-quality checkbox Profile Selected

 uploadedfile File Binary file

In some circumstances, experimenters bring their own Content Management Services, however in

order to facilitated the integration of the VoD ingest two Drupal Plugins and a presentation layout

have been developed allowing Experimenters to use it as an example / reference, deploy the

available Drupal or request a portal with the basic configuration.

The VoD ingest is personalised for each experiment, the main personalisation is achieved relaying

in the main configuration file of each instance:

Name Description Default

media.rootPath Path where the media is stored /sample/dir

media.tempPath Path to use for temporary files /var/tmp/ingest

ext.thumbnailsUrl External base URL for accessing thumbnails http://example.org/dir/

ext.encodedUrl External base URL for progressive downloaded
media

http://example.org/dir/

ext.adaptativeUrl External URL template for adaptive streaming rtmp://example.org/dir/{
}.smil

cms.available If there is a CMS to register content true

cms.xmlResponse Answer a XML page when a video is posted false

cms.url URL base for the CMS service http://example.org

cms.login.enabled CMS requires login true

cms.login.user User for logging into the CMS mediaItemServer

cms.login.pass Password for logging into the CMS 123456

cms.token.enabled Require the usage of tokens for uploading videos true

cms.token.sourceip IP Address for the CMS 127.0.0.1

mail.enabled Enable email validation true

mail.from Source mail address when sending emails ingest@example.org

mail.destination Destination mail address when sending
notifications

validator@example.org

mail.smtp.host Host for the SMTP server localhost

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 57

Name Description Default

mail.smtp.port Host for the SMTP server 25

mail.smtp.useSSL SMTP requires SSL false

mail.smtp.useAuth SMTP requires authentication false

mail.smtp.user User for SMTP server <empty>

mail.smtp.pass Password for SMTP server <empty>

media.dir.source Source directory (where media is uploaded) /source

media.dir.encoded Encoded directory (where media is transcoded) /encoded

media.dir.thumbnai
ls

Thumbnails directory /thumbnails

media.out.scripts Output stream for running scripts /dev/null

config.dir Directory for webservice instance data (relative
inside Tomcat)

data

config.script.deploy Script executed during the deployment of the VoD
ingest service

deploy.sh

cms.path.insert Path to register content on the CMS /mediacontentinserter/ins
ert

cms.path.ok Path of the Ok page /videouploadok

cms.path.tokenerro
r

Path of the error page when an invalid token has
been used

/videouploadtokenerror

cms.path.noprofile Path of the error page when no profile has been
selected

/noprofile

cms.token.timeout Timeout for tokens 250

Further personalisation requires changes in other configuration files including details in the

transcoding profiles needed for a specific experimenter upon direct request to Atos personnel.

5.2. Pervasive Content Component (PCC)

Pervasive content is produced by mobile users and sensors located in real-world environments.

Human sensing (e.g. biomechanics, physiology, etc), human location tracking (indoors and

outdoors), location-based content, real-world community interaction models, environment

sensing, points of interest all characterise pervasive content.

The PCC offers capabilities that collectively gather data about a user's physical location, QoE,

points of interest and interactions. Physical location is used in both the context of tracking a user's

location and also as a means by which Augmented Reality (AR)-based content can be selected for

delivery and user generated data can be mapped to a spatial location. A real-time orchestration

platform is provided supporting the gamification of activities and allowing for adaptive narratives

and content that’s customised for different experiences. The platform allows professionals and

users to co-create content, such as a locative game integrated with the structure, narrative, and

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 58

content of the event itself. Users attending the event can consume and produce content in real

time using smart mobile devices. The unfolding events, as experienced by users, can be adapted

and orchestrated in real time. Users primarily participate locally at the event but can also contribute

via the internet, and synchronized but distributed live events can be joined to provide a common

experience. The platform allows access to content and services both before and after the event,

thus supporting community building and operation. Metadata generated is published and can be

used to annotate audio-visual stream so that other participants can search and retrieve for available

content.

5.2.1. AR Client Software

The augmented reality viewer was developed for Android based devices, the main concept was to

show Points of Interests derived from the database provided by Infonova. The client uses either

the coordinates from a localisation service such as GPS or signal triangulation (Wi-Fi, GSM) or

gets a fixed set of coordinates from the developer. Both variants are valid and offer different

purposes for various experiments.

The AR client uses a REST API offered by the point-of-interest (POI) service to get the relevant

POIs which are cached on the device in a lightweight database. This offers the opportunity to get

a list of all points in the region of interest and also works when the device is offline at the time of

usage. The list can be retrieved and updated at any time.

The client offers a list of filters to determine which points are of interest to the user. Only the

selected categories are then shown on the AR view component of the client. This helps to avoid

clutter in the user interface. The points of interest are shown as customizable icons, which change

position and size depending on the devices orientation with places further away smaller and higher

up on the display. Each POI is a clickable item to display more information and to navigate to a

detail view which shows all the information stored in the database, including the social network

links (for the driving experiment this was the number of Facebook likes and check-ins, both the

general value and the value of friends).

A slider on the AR view is another option to filter the points of interests. The slider determines

the distance of shown POIs, e.g. show all POIs between 0 and 200 meters from the user’s position,

or show all POIs between 5 and 21 km, thus a user can decide whether they want to see places in

walking distance or places for an excursion by car.

The client is complemented by the aforementioned detail view of the POIs, a list view including

sorting options (distance, alphabetically, Facebook likes) and a map view, which uses the new

Google Maps API to show markers of POIs in various zoom levels.

The AR client is available as a library for Android devices in the EXPERIMEDIA software

repository. The AR component is a consuming service, producing user generated content could

be done with the overlying device and sent with the SI sub-component for example. The data to

be shown with the AR client is produced with the POI management service of Infonova by a

content author or gathered from the social networks provided by the Social Content Component.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 59

5.2.2. POI Service

For the driving experiment in Schladming the tourism board information was integrated and used

as a starting point to build the database. The POI database was updated and data from other

sources was added to provide a fuller experience. In order to perform an automatic data import

from the Schladming tourism database, a POI data import facility using CSV formatted files was

implemented.

An Editor is able to create, modify and delete single POIs by using Infonova WebAC. The POI

parameters used are: name (mandatory field), street, postcode, town, phoneNumber, website,

email, shortDescription, description, latitude, longitude, externalId, facebookPageId and

categoryId (can be used several times by using different category values).

The AR client (End User) uses a REST API offered by the Data Management Infrastructure. The

client can get via API the relevant POIs which are cached on the device in a lightweight database

but can be updated if required.

Figure 39: Infonova Data Management Infrastructure (overview)

The POI service is offered as a hosted service by Infonova online21 as a web-based GUI for

experimenters (admins) and with a REST web-service for experiment apps.

5.2.3. Creator Service

Creator is a software platform for creating, setting up and running pervasive games and related

location-based or otherwise context-aware services. The platform is quite scalable has been used

for large-scale games with thousands of simultaneous players. When using Creator, the process is

typically split into four distinct steps: game design, content creation, location adoption and

orchestration. The system platform is implemented as a web service and the content creation and

orchestration application is accessed through a web browser. This approach makes it quite easy to

21 https://isystem5.infonova.com:8181/experimedia/pois/

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 60

integrate Creative-made games into other services and devices, as web technologies are ubiquitous.

Creator supports a module system allowing connecting basically any kind of external service to it,

e.g. web service or mobile clients (which either runs local native code on a mobile device, or is

accessed via a mobile web browser), stationary or mobile sensors, etc. The Creator supports

integration with a wide variety of hardware, software or custom objects, as is described in detail in

D2.2.1.

The web interface to Creator is available for experimenters at http://creator.experimedia.eu/.

Figure 40: Creator user interface in authoring mode

Figure 41: Creator user interface for rule creation and editing

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 61

Creator is essentially a rule engine with an editor which supports real-time construction as well as

modification and orchestration of pervasive games. It functions as a server for the technical aspects

of a pervasive experience and will only be indirectly available to the users through clients. The

Creator builds on the REST architecture and clients communicate with it using HTTP calls.

Instead of providing exact ways of communication, the experimenter can extend the system with

services which can be built to serve specific needs. This might be receiving and sending text

messages to mobile phones or control media feeds to clients. The experimenter can create rule

scripts inside the Creator environment which determine the relationship between clients, services

and users. A rule script might for instance cause a playback of a video on one client when receiving

a text message from another. Furthermore the Creator allows experimenters to model users and

game objects using an object oriented approach which helps in monitoring and orchestrating

games.

The documentation available for the Creator covers rule engine, custom API extensions and

examples on the language used for rules. While it is possible for an experimenter to use Creator

without assistance, the system requires some basic knowledge to get started with. Interactive will

assist experimenters in this process.

5.2.4. Babylon Client Software

Babylon is a tool that supports user-oriented evaluations of location-based services. Babylon

makes it easy to evaluate the opinions of the users while they utilize the game or service, in contrast

to focus groups or interviews which are typically carried out after an experiment is over. Thus it

becomes possible to more easily find out what the users think and experience while using the

location-based service and how that user experience might change over time.

Babylon is a tool for capturing quality of experience (QoE) and location data from end users. It

captures this data by sampling a self-assessment of emotional state (or some other relevant measure

for the experiment in question) from end users using mobile devices such as smartphones or

tablets. The users quickly tap on a graphical user interface with several orthogonal axes, such as

happy-sad, engaged-bored, active-passive, etc. The type of data captured is primarily QoE-related

in the form of (semi)real-time, self-assessments that can be repeated at regular intervals if needed

by the experiment. In addition, user id, location data (if available) and timestamp are collected.

Figure 42: Babylon GUI on an iPhone

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 62

Babylon has a service and clients. The service is deployed for the experimenter at Interactive (or

can be downloaded and deployed by the experimenter) and the client software is deployed on

mobile devices (iOS or Android) either as a stand-alone application or integrated into other

software. Babylon clients send data directly to the Babylon server. The Babylon server stores this

information and also passes the readings on to the ECC. Babylon clients would be used by

experiment participants and data can be viewed in the ECC by the experimenter. In addition, the

web user interface of Babylon allows experimenters to analyse and reflect over the feedback

provided by the clients using a timeline interface.

Sample Babylon source code is available for both Android and iOS platforms. Babylon can either

be run as a standalone app, or it can be integrated into another one that is used in the main

experiment.

5.3. Social Content Component (SCC)

Social content is characterised by user generated content produced by and consumed within online

communities. Photos, videos, comments and opinion is disseminated by individuals to related

friends using social networking platforms. The SCC offers the capability to access social content,

explore a social graphs, extract general social knowledge (e.g. sentiment and controversy) and

media specific QoS/QoE for adaptive, efficient and personalised delivery of experiences. Using

an open social API, experiments can navigate a range of social networking platforms. The

virtualisation of social network APIs is important as although the predominant network is

Facebook, other online platforms are used by target participant communities. A pluggable social

analytics dashboard is offered allowing different algorithms to be incorporated with default

algorithms provided to detect individual and group preferences based on attitudes, selections and

beliefs. The dominant attitudes, beliefs and communications ways for social groups (rather than

individuals) can be used to optimise streamed, delivered or even transmitted media content. In

addition, the detection of the proximity of consumers to content, similar behaviours and searching

for popular UGC can potentially improve media delivery, enhance live streams, or augment

information that is aligned with preferences of consumers.

5.3.1. Social Integrator

In order for an application that is part of an experiment to interact with SNs it has to use the

interface that they expose. Each social network has a different logic, i.e. the social integrator is

meant to support different sets of social activity and offer a different set of activities that a

developer could integrate in its application. The interfaces and the technologies that are offered to

the developers working with them are quite diverse as well. Also, the fact that the social networks

are rapidly and continuously evolving, often results in changes in their APIs and/or technologies

they are using with no backwards compatibility, making the maintenance of the applications that

build on them a non-trivial task.

The Social Integrator has been developed: a set of Java libraries that provide to the developers of

the experiments an easy mechanism to build social-aware applications that access multiple social

networks. One of the primary design attributes of the Social Integrator is SN transparency, i.e.

providing the same API regardless of the social network that is used in the background so that the

development of applications that support multiple social media becomes easier, much faster and

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 63

easier to maintain since most of the required changes are pushed down to the Social Integrator,

without having the need to change any code on the application level.

Basically, the Social Integrator offers a Java API that enables user authentication and sharing

content through different SNs in a common way, while hiding all the intricacies that the different

API’s used by the social media impose. There are two versions of the Social Integrator API: the

Social Integrator Android API for implementing applications that run on Android devices, and

the Social Integrator Core API for building non-Android Java applications (see Figure 43). For

achieving authentication transparency, the Social Integrator Core and Android APIs build on top

the functionality of the SocialAuth Core and Android Java Libraries respectively that provide a

common authentication mechanism for a number of different social network providers. The Social

Integrator extends this functionality by adding various methods that provide support for posting

and retrieving various sorts of content such as direct messages, comments, questions, photos,

videos, etc.

The offered methods have been designed in a generic manner where possible. For example,

posting a photo, which is an action supported by most social networks, is implemented by a

common method whereby the developer only needs to specify the targeted social network while

the implementation differences remain hidden from the developer. These methods cover most of

the functionality offered by Facebook, Twitter and Instagram, but can be extended to other social

networks. It should be noted that the SocialAuth did not provide authentication support for

Instagram and therefore it has been developed from scratch and successfully contributed back to

the SocialAuth community.

Under the EXPERIMEDIA framework, the Social Integrator has been used to develop two

applications, an Android one and a web-based one, which were inspired and used in the FHW

driving experiment: the visitors’ mobile application and the expert’s web application. These two

applications serve as a basis for the development of social-aware applications in the context of

other experiments.

Figure 43: Social Integrator architecture

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 64

5.3.2. Social Monitor

The Social Monitor is responsible for collecting data from the SNs that are being exchanged among

the participants during the experiments. These data are used to calculate social network related

Quality of Experience (QoE) metrics about the overall participants' engagement in the social

activity that are of interest to the experimenter. Thus, the metrics that are monitored may vary

depending on the nature of the experiment.

The collected SN data involve significant benefits for the experimenters, supplying them with live,

valuable, comprehensive and accurate feedback which cannot be collected otherwise and which

can significantly help them improve the offered experience of the end users. For example, this

monitoring data can help the experimenter understand whether the audience (or what part of the

audience such as an age group) liked the new experimental system that is offered, by retrieving

data such as the number of attendees, their average age, and the average number of

comments/questions per attendee. However, more specific to the experiment metrics can be

collected in the context of each experiment. For example, in the case of the FHW driving

experiment, the aim was to collect information about the way the audience perceived different

parts of the movie that was presented to them. Various photos, each one representing a different

part of the movie, were hosted in the SN event. Each photo became a monitoring entity and

several attributes were attached to it, such as number of likes, comments, questions and answers

per photo, as well as the top comment, question and answer per photo.

Figure 44: Social Monitor architecture

There are two versions of the Social Monitor:

• Java standalone program: This version of the Social Monitor is a stand-alone Java application.

It is meant to be used in experiments whereby the participants are exchanging data over

specific targeted social activity in the social media. In order to access this activity,

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 65

credentials of SNs’ accounts with sufficient permissions and access are required for

authorization purposes. No specific deployment requirements are needed: this version can

be deployed on any machine running Java v6 or later that has access to the Internet.

• Web service version: This is a web service version of the Social Monitor that is meant to be

used in experiments whereby the social data of interest are not posted within a specific

social activity but are posted by the end users on their own personal social accounts. To

this end, contrary to the Java standalone version as discussed above, this service version is

designed to receive data directly from the end-users applications (and not directly by the

social networks). On the end-users side, the applications that are being used are using

specific client code which is offered as part of the Social Integrator API in order to

communicate the information of interest to the Social Monitor service.

In the background, the Social Monitor (both the standalone Java application & web service

version) acts as a client to the ECC, i.e. the calculated metrics are being communicated via

RabbitMQ to the ECC EM, as demonstrated in Figure 44.

5.3.3. Social Analytics Dashboard

The Social Analytics Dashboard, or SAD, is a web service for collecting data from social networks,

analysing it and presenting both the raw data and the analysis to other services via RSS or a REST

API or directly via a web interface. An overview is provided in Figure 45 below.

Figure 45: Social Analytics Dashboard (SAD) architecture

The SAD employs a plugin architecture and provides plugins for searching Facebook, searching

Twitter and analysing the search results in a variety of ways including sentiment, hot topics,

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 66

geographic location and influence. The search plugins make use of the Social Integrator API (see

above). The plugin architecture facilitates the easy addition of new features such as new social

network searches or additional analysis tools. The main SAD service acts as a job scheduler,

executing the plugins according to a configurable schedule.

Data collected by the search plugins or generated by the analysis plugins is added to a local

database. In the current release, this is a PostgreSQL database but the next release will use the

NoSQL database MongoDB for better performance and flexibility.

An instance of the SAD is deployed for a particular experiment and administrative control over

the service can be given to the experimenter. The SAD is deployed in a standard web service

container such as Tomcat.

Data generated by the SAD can be consumed by other services via a REST API or a customisable

RSS feed. The SAD also communicates with the ECC: reporting metrics about the service itself

such as the number of plugin executions. Work is underway to enable arbitrary metrics to be

reported from the plugins to the ECC via the SAD service. This will enable applications such as

the Social Monitor (see above) to be integrated as a plugin in the SAD.

The SAD provides a web interface to the experimenter or administrator to configure the plugin

execution schedule and parameters of the plugins. The administration interface also displays the

status of scheduled and previously executed plugins.

5.3.4. Social Annotation Service

The Social Annotation Service (SAS) offers an innovative and practical way to automate the

process of video annotation with information coming from multiple individuals using the social

media. The SAS helps with scenarios whereby a video stream needs to be reviewed and commented

by multiple individuals, and altered afterwards according to received comments. Such scenarios

can be met during the postproduction activities that take place every day following the shooting

of a movie, review of virtual reality presentations or high performance training sessions with

athletes and their peers.

The SAS builds on the AVCC which provides video ingest, video streaming and metadata

management. The SAS takes care of all actions related to the social media (authorization, content

posting and retrieval, etc), which remain transparent to the AVCC side and, consequently, to the

user of the application.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 67

Figure 46: Social Annotation Service (SAS) architecture

5.4. 3D Content Component (3DCC)

3DCC is the main component for 3D information acquisition, enhancement and manipulation. It

is comprised of 8 basic sub components that interoperate to provide useful information that can

be used from the experimenter. The 3DCC functionalities can be divided into three major

categories that provide different levels of interaction with the hardware (i.e., the Kinects). An

overview of these subcomponents is provided right below:

Low-Level Functionalities

Depth Acquisition: This provides the experimenter with the raw depth information of a scene. It

is the middle layer between the Kinect device and the experimenter. Simple and easy to use

functions provide the experimenter with per pixel information about the depth of the scene.

Skeleton Acquisition: In the case where humans are involved in a scene, 3DCC can provide robust

skeleton extraction for up to 15 joints. Moreover, skeleton tracking can be performed for human

motion analysis.

RGB Acquisition: Images coming from the Kinect, along with their registration to depth pixel

transformation, can be provided to the experimenter. This is important, since texturing of a post

produced 3D model can be made possible through this information.

Mid-Level Functionalities

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 68

Depth Enhancement: Since raw depth data is noisy we provide several filtering algorithm to

smooth and de-noise the raw information so that more accurate depth measurement can be made

possible.

Skeleton Enhancement: Jerky (noisy) skeleton joints are detected and tracked and therefore

corrected through a sophisticated tailored filtering framework to provide a more realistic skeleton.

Biomechanical Measurements: The 3DCC can provide several biomechanical measurements that

are inferred from both depth and skeleton information. The most important being: angles between

bones, human joints and calibrated objects’ velocities, human body parts surface areas and

calibrated objects’ surface area. These measurements can be used by the experimenters in a

multitude of ways to infer high level information that suits their needs.

High-Level Functionalities

Avatar Creation: The 3DCC provides an avatar authoring tool so that experimenters can create

their own avatars that can be easily integrated into a virtual world. Other than a simple database

of several features that can create artificial avatars, the 3DCC avatar creation tool can provide

custom authoring capabilities that provide functionalities such as avatar personalization (so that

the user’s facial image can appear on the avatar).

Avatar Motion: The 3DCC can also interactively move the avatar using a Kinect alone. This

functionality can be used from the experimenter in a multitude of ways to animate his avatar and

interact into a virtual world.

3DCC is partitioned in two libraries and one application. One library, written in C#, is where all

functionalities concerning low and midlevel functions are implemented such as the Acquisition

modules, the Enhancement modules, the Skeleton Motion analysis modules and the

Biomechanical analysis modules. A second library, written in C++, is where the high level (Avatar

motion modules) functions are implemented. Finally a web application that provides means to

create avatars from the scratch that can be used along with 3DCC.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 69

Figure 47: 3DCC deployment

3DCC can be used whenever an experiment needs to track and/or gather real-time 3D

information. To do so, a computer connected to Kinects needs to run the experimenter's software

where all functionalities from 3DCC are imported from the two previously mentioned libraries.

Moreover, it can be used for smart real-time rendering of human-like motion avatars. The library

can be deployed at any software the experimenter is developing and therefore all before mentioned

tools integrate with the experimenter's software. 3DCC can deliver depth, RGB and skeleton data

as files (in this case they are stored from 3DCC) and as a stream that can be captured from the

experimenter's software. For the high level functionality the avatar is stored in a file (the

experimenter's software can then ingest it through appropriate functions provided) and the

skeleton motion data are streamed to the experimenter's software. Finally, 3DCC can also deliver

QoS measurements that can be fed to the ECC through an ECC client. These QoS measurements

are depth quality, skeleton quality, biomechanical measurements quality and frame rates of depth

and skeleton acquisition from the Kinects in frames per second (fps).

3DCC information can be streamed to the experiment participant through an appropriated GUI

and the experimenter can use the ECC to monitor the QoS measurements along the lifespan of

the experiment.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 70

6. Service Management and Deployment

6.1. Service Management

6.1.1. Service Level Agreements (SLAs)

Service level agreements are primarily for setting the expectations of both parties of a bilateral

agreement between a service provider and a consumer.

For the consumer the SLA defines what level of service they can expect and what redress they

have if the service level falls below those expectations. This helps the consumer to compare

different service offers and to understand the likelihood of service failure and whether contingency

plans are required. For the service provider the SLA puts a limit on the resources they need to

commit to serving a particular consumer. It allows the service provider to plan the use of their

resources efficiently: neither over- nor under-provisioning. A service provider will only put terms

into an SLA about aspects of their offer that they can control. For instance, a cloud service

provider will usually include a metric defining the “percentage up-time” for their service but will

not include any guarantee or statement about the end-to-end latency of the network as the majority

of the network path is out of their control.

The EXPERIMEDIA Platform is offered according to a simple SLA that defines the agreement

between experimenter and service provider. SLAs generally define measureable terms against

which they can be judged. SLA systems therefore at a minimum must have some sort of

monitoring and measurement infrastructure and ideally also include automatic control systems to

adjust the resourcing for each SLA. The EXPERIMEDIA SLAs offer simple terms

• Maximum number of experiment participants: the number of concurrent users that can

access the platform within a single experiment

• Service availability: the monthly uptime percentage

• Duration of service: the total time the services will be available.

Services and resources are offered to experimenters either by

• Best effort: the service is free to the experimenter. The SLA terms are aspirations rather

than guarantees, the service provider has no penalties for breaching an SLA beyond

reputational damage

• Premium: the service is paid for by the experimenter. The SLA terms are guarantees and

penalties will apply

The SLA terms for service availability and duration of service are measured by the Nagios

monitoring system and reported to the Service Provider using the R6 platform.

6.2. Deployment Constraints

Experimenters have to design, develop and deploy an experimental system that consists of both

baseline components from the EXPERIMEDIA Facility and technologies the experimenter is

developing.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 71

Figure 48 describes the relationship between concepts related to deployment and shows how

partners develop components but also offer hosting sites. It also shows how third party hosters

(e.g. Amazon) and service providers (e.g. Facebook) fit into the landscape. Each of the concepts

is described in more detail within Table 2.

Figure 48: Conceptual Model of Deployment Options for Components

Table 2: Deployment concept descriptions

Concept Description Example

Experimental
Component

An experiment component from A2 or A4
that needs to run as part of an experiment.
Could include both software and sensors.
Experimental Components require 1 or more
hosting options.

SAD, POI Service, ECC, AR
Client

Hosting Option A container for experimental components to
run in ranging from a real physical space to a
virtualised container

Hosted Service, Service
Container, Virtualisation,
Physical machine, Physical Rack,
Physical Location

Hosting Site A physical location where experimental
components can be deployed

Partner site, 3rd Party service
provider

Partner An EXPERIMEDIA project partner ATOS, IT Innovation

3rd Party Hoster A hosting provider Amazon, Rightscale

SaaS Provider A software as a service provider Facebook, Twitter

SaaS The service offered by a a SaaS Provider Facebook, Twitter

Each component in the system has deployment constraints that limit how and where a component

can be deployed. For example, a cloud deployable service could be packaged for execution on

Amazon or CAR’s private cloud, where a mobile client library may be constrained to a mobile

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 72

device with a specific operating system. There are many hosting options ranging from choices

about the physical location of the server machine right up to the manner of deployment of the

application itself. An interesting deployment case is sensors and cameras which often require

human experts to deploy and configure them. This is the case for the 3DCC where multiple Kinect

cameras are used.

Table 3: Hosting options

Hosting Option Description Example

Hosted Service Software as a Service hosted by an partner or
3rd party that is configured and maintained by
an EXPERIMEDIA partner

POI Service hosted at Infonova

Service Container A environment to host services offering a set
of high level common management functions
(e.g. security, monitoring, etc)

R6, JBoss, Tomcat

Virtualisation A environment to host VMimages on virtual
machines

VMWare

Physical machine A physical machine running a dedicated
operating system

Machine running Linux OS

Physical Rack A dedicated place to install physical machines Machine room at CAR

Physical Location A dedicated place to install other hardware
(e.g. cameras and sensors)

Tholos Theatre at FHW,
Taekwondo room at CAR

Table 4 shows the deployment options for the EXPERIMEDIA Platform. Many of these

components are deployed as hosted services for experimenters. The benefit of this approach is

that experimenters do not have to learn about how to operate the components and can focus on

the objectives of their experiment. The ECC and SAD were initially provided as software

distributions that could be flexibly deployed by experimenters in different containers rather than

offered as hosted services. For some experimenters the process of installing the ECC was

challenging and time consuming, reducing the efficiency of the experiment and usability of the

ECC software. EXPERIMEDIA now offers hosting of all services for experimenters where

possible. This decision moves EXPERIMEDIA towards a more centralised view of facility

services and operating models that consider not only distributing software but also maintaining

services that participate in experiments.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 73

Table 4: Baseline component services - deployment options

Hosting Option

E
C
C
 (a
ll)

A
V
C
C
 (a
ll)

C
rea
to
r

P
O
I S
ervice

B
a
b
ylo
n
 S
ervice

S
o
cia
l M

o
n
ito
r

S
o
cia
l A
n
a
lytics

D
a
sh
b
o
ard

3D
C
C
 (a
ll)

Hosted Service X X X X X X X

Service Container X X X

Virtualisation X X X

Physical machine X X X

Physical Rack X

Physical Location X

6.3. Security and Privacy

As stated in the architectural considerations (Section 2.3): “experiments must be legally compliant

in accordance with data protection legislation and security and privacy therefore must be

considered a critical attribute of component and systemic capabilities. Security and privacy must

be by design rather than an add-on.”

Essentially we are addressing information security issues. A useful definition of “information

security” is provided in the United States legal code22:

The term “information security” means protecting information and information systems from

unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide—

• integrity, which means guarding against improper information modification or destruction,

and includes ensuring information nonrepudiation and authenticity;

• confidentiality, which means preserving authorized restrictions on access and disclosure,

including means for protecting personal privacy and proprietary information; and

• availability, which means ensuring timely and reliable access to and use of information.

Clearly, all these aspects of information security are applicable to EXPERIMEDIA and in

particular the “confidentiality” is of primary import.

In architectural terms, we must ensure that EXPERIMEDIA baseline software can be operated

to provide integrity, confidentiality and availability. This encompasses both the design and testing

of the software and the manner in which it is deployed. The experiments in the first open call

avoided the issue of storing personally identifiable data (and indeed, such data should not be stored

22 http://www.law.cornell.edu/uscode/text/44/3542

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 74

unless necessary) but we need to be able to support experiments where such sensitive data must

be stored.

6.3.1. Service Hosting

As described above, there are various deployment options for the different baseline components.

The ECC dashboard is a good example as it could be deployed in many ways:

• it could be deployed for the experimenter by a core partner (such as Infonova) or by the

experimenter themselves;

• it could be deployed on hardware operated by the core partner/experimenter or on

leased hardware at another site operated by another company (e.g. a cloud provider).

According to discussions with the Ethics Advisory Board, it is the responsibility of the owner of

the service to protect the data in the service. So for example, if Infonova deploy the service then

it is their responsibility. It is their responsibility regardless of where the service is deployed, so to

continue the example, if Infonova deploy the ECC dashboard on a machine at a hosting provider

then it is still Infonova’s responsibility. This implies that hosting providers (if used) should be

chosen carefully: the data-centre where the host is located should (at least) implement ISO

27001:200523 and should also be based in Europe for the best legal protection.

ISO 27001 defines a model for establishing, implementing, operating, monitoring, reviewing,

maintaining and improving an Information Security Management System. It adopts the Plan – Do

– Check – Act (PDCA) model of continuous improvement. The standard covers physical security

as well as other aspects such as network security. Although a data centre specifying that it is ISO

27001 certified is a good thing, it is important to understand which controls of the standard have

been implemented and which have not.

6.3.2. Risk Based Approach

The ISO 27005:201124 standard defines a risk-based approach for managing information system

security aligned with the continuous Plan – Do – Check – Act methodology of ISO 27001. Threats

must be identified, analysed and evaluated and a risk treatment chosen. Possible treatments are:

• risk modification: apply a control to reduce the risk;

• risk retention: accept the risk with no further action;

• risk avoidance: completely change the plan so that the risk cannot materialise;

• risk sharing: sub-contract another party to deal with the risk or insure against it.

Threats can come from three sources: they can be deliberate, accidental or environmental (natural).

For instance, a hacker breaking into a system and stealing data is deliberate, an employee

mistakenly copying sensitive data to a public folder is accidental and environmental threats are

generally larger-scale disturbances such as floods and earthquakes.

23 ISO/IEC 27001:2005, Information technology - Security techniques - Information security management
systems – Requirements: http://www.iso.org/iso/catalogue_detail?csnumber=42103
24 ISO/IEC 27005:2011, Information technology - Security techniques - Information security risk management:
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=56742

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 75

Assets must be identified and their value assessed. By considering each asset, the likelihood of

occurrence of a threat and the ease of exploitation of the threat it is possible to rank the risks and

therefore understand which ones need most attention. When considering the threats to an asset,

particular attention should be paid to human threat sources and the possible motivation of

different types of people.

For example, what are the assets and threats to the configuration registry described in Section 29?

The assets include the RabbitMQ hostname and port for a project’s ECC dashboard. A threat is

someone who is not supposed to know the data reading it. The value of that asset in part depends

on the risks to the RabbitMQ service so we must look at that in turn. Given knowledge of the

RabbitMQ service, a malicious user could execute a denial of service attack by flooding the server

with requests, but what would be their motivation? The likelihood seems low. This suggests that

the value of the asset in the configuration registry is also low and controls on the identified threat

may not be necessary.

By following this process for other baseline systems and assets we can make considered

judgements about what controls to apply where.

EXPERIMEDIA Dissemination level: PU

© Copyright University of Southampton IT Innovation Centre and other members of the EXPERIMEDIA
consortium 2014 76

7. Conclusion

This document has described the Final Blueprint Architecture for social and networked media

testbeds as developed in the EXPERIMEDIA project. The architecture extends the previous

Blueprint Architecture by describing a Service Model, Information Model and additional FMI

capabilities developed in the final year of the project.

The architecture addresses the need to offering the EXPERIMEDIA Platform-as-Service to

experiments and for that platform to incorporate an Information Model supporting the

exploration of relationships between QoS and QoE. The information model builds on empirical

evidence and puts user observations and user’s benefit at the centre of each experiment phase:

from the design to the implementation, deployment and execution.

The approach allows the consideration of the rich deployment context for FMI systems. In such

situations the systems-under-test and their requirements cannot be known in advance. Many actors

operate and interact in real-time, requiring the experimentation platform to be dynamic and

extensible to the needs of each system being studied, the real-world context and that of users

participating in the study. Through adoption of a service-oriented architecture, a generalised and

extensible observation model and Platform-as-a-Service delivery model including SLAs, the

EXPERIMEDIA architecture ensures the platform can be tailored to the needs of cross-domain

experiments and delivered to venues across Europe.

