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ABSTRACT
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Group actions on differentials of curves and cohomology bases of hyperelliptic curves

by Joseph J. Tait

In this thesis we consider the natural action of a subgroup G of the automorphism group of
an algebraic curve on spaces of differentials and similar algebraic structures. We focus on
curves over an algebraically closed field k of characteristic p > 0, and in particular on cases
where p divides the order of the group G. There is also an emphasis on explicit examples

and concrete computations throughout the thesis.

After covering background material about smooth projective curves we remind the reader of
the details of hyperelliptic curves. Given a hyperelliptic curve X, we present an explicit basis

for HO(X,Q%"), the space of global polydifferentials of degree .

We apply our study of hyperelliptic curves by computing bases of H!'(X,Ox) and the first
de Rham cohomology group of X, HC}R(X/k). We make these computations via Cech coho-
mology, and use them to determine the action of a specific automorphism 7 of order p on
HéR(X/ k). We then show that the natural short exact sequence of k[(7)]-modules

0 — H%(X,Qx) = Hip(X) - H'(X,0x) = 0

does not split if X is ramified above co. We also give a Mittag-Leffler style theorem for

hyperelliptic curves.

We finally consider the question of when G acts faithfully on the space H’(X,Q%"), for
any smooth projective curve X. We give a complete and concise answer to this question, as
well as extending the result to general Riemann-Roch spaces H(X,Ox(D)) where D is a
G-invariant divisor of degree at least 2gx —2. Lastly, we use our earlier work for hyperelliptic

curves to elucidate the main theorem.
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K(X) Function field of X
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Chapter 1

Introduction

Geometry and topology provide perhaps the greatest source of both intuition and vision in
mathematics, whilst algebra balances the scales, being the exemplar of precision and ab-
straction. A most compelling example of the interplay between these two areas is the triple
equivalence of Riemann surfaces, complex function fields and complex curves. On the one
hand, compact Riemann surfaces constitute all spaces that occur in the topological classifica-
tion of connected, compact, orientable surfaces. On the other hand, complex function fields
lie strongly in the algebraic end of the spectrum, with strong relations to number theory and

Galois theory. Finally, it is algebraic curves that most clearly unites algebra and geometry.

The genus is arguably the most important invariant of topological surfaces. It is possible to
use it to define the Euler characteristic, and it also benefits from being very easy to describe
— the genus of a connected, compact, orientable surface is just the number of “holes” or
“handles” it has. Given this, any theory that claims to be equivalent to the study of Riemann

surfaces would do well to explain how it gives rise to the concept of genus.

In the case of algebraic curves, it is Riemann-Roch theory that allows us to extend the defi-
nition of genus. Originally only for Riemann surfaces, the theory focusses on meromorphic
functions and differentials. It is this focus which allows the definition to be generalised, first
just to complex algebraic curves, then to curves over any algebraically closed field k. The
genus appears as a constant in Riemann-Roch theory, most notably as the dimension of the
vector space of holomorphic differentials and in the Riemann-Roch theorem itself. The fact
that the genus can be defined in terms of differentials demonstrates why differentials, and in
particular holomorphic differentials, play such an important role in the theory of algebraic

curves.
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On the other hand, we recall the famous quote

“Whenever you have to do with a structure endowed entity X try to determine

its group of automorphism" — Hermann Weyl [Wey52, pg. 144]

Indeed, the automorphism groups of algebraic curves, and in particular Riemann surfaces,
have given rise to many interesting theories. For example, it is known that every finite group
is the full automorphism group of some Riemann surface [Gre74, Thm. 6’]. Of course, any
group that acts on a curve X also acts on functions and differentials of X, such as H%(X,Qy),

the space of global holomorphic differentials.

The main focus of the thesis will be in studying such actions on Riemann-Roch spaces. In
particular, we will consider the k[G]-module structure of various spaces of differentials on
X, and related spaces, for a subgroup G of the automorphism group Aut(X), paying special
attention to what happens in positive characteristic. Of course, if the characteristic divides
the order of G the theory is often a lot more complex — for example, we no longer have

Maschke’s theorem, a fundamental result in classic representation theory.

The thesis is broken in to four main chapters (excluding this one). The first gives background

and fixes notation. We now proceed to describe and motivate the other three chapters.

1.1 Bases of spaces of (poly)differentials on hyperelliptic curves

Hyperelliptic curves are a classically studied class of algebraic curves, characterised by being
double covers of the projective line. In particular, any hyperelliptic curve X comes equipped
with a projection map 71: X — IP., unique up to an automorphism of IP}(. They can be
viewed as a natural extension of elliptic curves to higher genera, sharing a similar defining
equation of p? = f(x) (if char(k) # 2). It is this concrete and relatively simple defining
equation that allows explicit calculations to be made for them. Added to this, there exist
hyperelliptic curves with every possible genus (except one and zero), so in this sense they are
not a very restrictive class to consider. Moreover, hyperelliptic curves also have a number
of nice geometric properties — for example, they can be characterised entirely in terms of
Weierstrass points [Mir95, Chap. VII, §4, ex. R], and also every genus 2 curve is hyperelliptic
[Liu02, Prop. 7.4.9].

We study hyperelliptic curves throughout this thesis. However, despite being commonplace
in algebraic geometry, it is not always easy to find precise statements in the literature. This
is especially true when working over a field of characteristic two, where hyperelliptic curves

behave very differently. Because of this we split Chapter 3 in to two sections, according to
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the characteristic of k, and start each section by collecting results that will be needed either

later in the chapter or the rest of thesis.

The highlights of Chapter 3 are Proposition 3.2.5 and Proposition 3.1.2, which give bases
of the space of holomorphic differentials and polydifferentials of a hyperelliptic curve X of
genus g > 2 when the characteristic of k is two and is not two, respectively. We first state the
basis when the characteristic of k is not 2, recalling that in this case the function field K(X)

is equal to k(x, ), where y satisfies 92 = f(x) for some polynomial f(x) € k[x].

Proposition. Let m > 1 and let w := % Then a basis of HO(X,QS™) is given by:
W, xXw, ..., x5 tw ifm=1,

w,xw, x*w ifm=g=2,

m-1)(g-1)-2

w,Xw,...,x™&qy; Vw, xya),...,x( Yw otherwise.

Note that the case where m =1 is already in the literature, see [Liu02, Prop. 7.4.26] or [Gri89,
Ch. 1V, §4, Prop. 4.3].

On the other hand, if char(k) = 2 then K(X) is still equal to an extension of k(x) of the form
k(x,v), but this time we require y to satisfy y? + H(x)y = F(x), where F(x) and H(x) are

polynomials in k[x], whose degrees will determine the genus.

Proposition. Let m > 1 and let w := " Then a basis of HO(X,Q8™") is given by:

H(x)m'
W, xXw,...,x8 1w ifm=1,
W, xw,X*w ifm=g=2,

m-1)(g—1)-2

W, Xw,...,x"8 Vw; yw,xyw,...,x yw  otherwise.

Note that the case where m = 1 can again be found in [Liu02, Prop. 7.4.26].

Equipped with the knowledge of these explicit bases we can examine group actions on
H O(X,Q?}m) much more readily. For example, in Chapter 5 we compute the action of the
hyperelliptic involution o on the above basis. Using this we can see when the group generated

by o acts faithfully on H%(X,Q%"), explicating the main theorem of Chapter 5 in this case.

1.2 Group actions on algebraic de Rham cohomology

In the study of smooth manifolds de Rham cohomology is a well-established tool, which
determines to what extent closed differential forms on a smooth manifold M fail to be exact.
To further demonstrate its significance, we note that in 1931 Georges de Rham proved that
the de Rham cohomology of any smooth real or complex manifold M is isomorphic to the

singular cohomology of M in [deR3]].
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Given that de Rham cohomology is defined on complex manifolds, and hence Riemann Sur-
faces, an obvious question to ask is whether one can define an analog of de Rham cohomology
for algebraic curves. Grothendieck answered this in a letter to Atiyah [Gro66], where he in
fact defined the algebraic de Rham cohomology of a scheme. The Hodge-de Rham spectral
sequence arose from this definition, and has been much studied. In particular, Deligne and

Ilusie proved that if, for example, X is a complex, smooth, projective variety then
n . .
H (X) = @ H(X,Q%),
i=0

see [Dell87]. When X is a curve this is more or less equivalent to saying that we have a

canonical short exact sequence
0— H%X,Qy) —» Hp(X/k) - HY(X,0x) — 0. (L1)

Moreover, most of the time (for example, whenever char(k) = 0), this sequence splits not only
as k vector spaces, but also as k[G]-modules, where G is a subgroup of Aut(X). However, this
is not always the case — in particular, if char(k) = p > 0 divides the order G, the sequence
may not split. In [Horl2] Hortsch demonstrated that if X is a hyperelliptic curve over k, an
algebraically closed field of characteristic p, and has y2 = xP —x as a defining equation, then
(1.1) does not split.

Theorem 4.4.3, given below, generalises this result. Before stating this, we recall that any
automorphism 7 of X commutes with the hyperelliptic involution o, and since IP} = X/{c)

then 7 induces an automorphism of lPi.

Theorem. Let X be a hyperelliptic curve over an algebraically closed field k of characteristic
p > 3. Suppose there exists T € Aut(X) such that the induced automorphism 7 : IP}( — H’i is given
by x — x+a for some 0 =a € k. Welet G= (1) be the subgroup of Aut(X) generated by 7,
and further suppose that X is ramified above o € IPi. Then the sequence (1.1) does not split as a
sequence of k[G]-modules.

Such curves exist in every genus and every characteristic (greater than 2), and we give exam-
ples of such curves in Chapter 4. We also give an example from [KY10] of a curve that is as
described in Theorem 4.4.3, except that it is not ramified above co € P!, and show that for

this curve the short exact sequence (1.1) does split.

We prove the above theorem by first computing explicit bases of each of the spaces in (L1).

Given the projection 77: X — IP}, by Cech cohomology we have

Ox (UyNUy)

1
H (X,0x) {fo - foolfi € Ox(U;))

N

(1.2)
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where Uy = X\7t71(0) and U,, = X\ 7=~ (co). In the preceding chapter we already computed
a basis of H’(X,Qy), and we use this along with Serre duality and the above identity to
compute a basis of H!(X,Ox), see Theorem 4.2.1.

Theorem. The elements %,...,f—g € K(X) are regular on Uy N Uy, and their residue classes

[%],,[;—g] in (1.2) form a basis of H' (X, Ox).

It should be noted that this basis is the same regardless of characteristic — since this is not
the case for the dual space H%(X,Qy), this may be surprising. We also apply this theorem
to provide a Mittag-Leffler style theorem for hyperelliptic curves, see Corollary 4.2.2.

To describe an explicit basis of HéR(X/k) we use Cech cohomology, similarly to (1.2). In this
case HéR(X/k) is a quotient of the space

{(w0, oo forcollwi € Qx(Ui), foeo € Ox(Up N Uso), d fo00 = wol g, = @eslugnu, -

At the start of Section 4.3 we define polynomials ¢;(x) and ¥;(x) in terms of f(x), and poly-
nomials @;(x,y) and W;(x, y) in terms of F(x) and H(x), for 1 <i < g, when the characteristic

of k is p # 2 and p = 2 respectively. We then use these in Theorem 4.3.1 to present a basis of
Hzp (X/k).

Theorem. A basis of Hjp(X/k) is formed by

Pi(x) —pi(x) y i-1 i1 '
(T oy I

if char(k) = 2, and by

Wi(x,9) D;(x,y) i P .
[((xi“H(x))dx’(xi“H(x))dx’x y)] and [(H(x)dx,mdx,O)], i=1,...,8

otherwise.

We use the above bases along with the canonical projection p: H(;R(X/k) — HY(X,0x) to
prove Theorem 4.4.3. In particular, we suppose that the short exact sequence 11 has a
splitting map s: H(X,0x) — HéR(X/k), and then by studying the action of T on the basis
element [((2%;(;)1 )dx,(;}q}b}f;fl))dx,x’gy)], and its image [%] in Hl(X,OX), we arrive at a
contradiction.

1.3 Faithful actions on Riemann-Roch spaces

Given a smooth, projective curve X of genus g over an algebraically closed field k, a significant

open problem is to completely determine the k[G]-module structure of H%(X,Qy), for any
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subgroup G of Aut(X). This was done for the case k = C by Chevalley and Weil in 1934, see
[CWH34]. The result was later broadened to a curve over any algebraically closed field of
characteristic zero by Lewittes [Lew63], and Broughton’s paper [Bro87] gives another method
of generalising to this case. The question has also been answered by Kani [Kan86] and
Nakajima [Nak84], if the projection 7: X — Y := X/G is tamely ramified. Valentini and
Madan [VMS8]] determined the structure when 7t may be wildly ramified, but they assume
that G is a cyclic group of order p”, and this was recently generalised by Karanikolopoulos

and Kontogeorgis to any cyclic group [KaKol3].

A weaker though naturally related question is: "When does G act faithfully on H%(X,Qx)?"
We answer this in full generality in Theorem 5.3.1, and also extend the result to look at the

space of holomorphic polydifferentials, denoted H%(X, Q$™).

Theorem. Suppose that g > 2 and let m > 1. Then G does not act faithfully on HO(X,Q%")
if and only if G contains a hyperelliptic involution and one of the following two sets of conditions
holds:

em=1andp=2;

em=2and g=2.
Our main method of attack in proving this is comparing the dimension of H O(X,Q?}m) to its
fixed space, H(X,Q%")C. We compute the latter dimension precisely in Proposition 5.1.2,

where we see that if 1 is the order of G and R is the ramification divisor of the projection
7t: X — Y then

dimy (H(X,0F")°) = (2m - 1)(gy - 1) +deg{mm(R)J'

n

apart from a few exceptional cases. We then use this to determine exactly when G acts
mt,(R)

- J term is easier to handle in

trivially if gy = 0 and G is of prime order, since the deg[
this instance. We are then able to reduce to this case in general, since any group that fails to

act faithfully on H O(X,Q?}m) contains a subgroup which acts trivially on the space.

We use similar techniques to determine when G acts trivially on more general Riemann-Roch

spaces, such as H(X,Ox(D)) for a G-invariant divisor D of degree at least 2¢ — 1.

The results of this chapter appear in [KT14].



Chapter 2
Background on algebraic curves

In this chapter we give basic definitions and results that will be used throughout the thesis.
The vast majority of these results apply to smooth, connected, projective curves over any
algebraically closed fields, with no further assumptions, though occasionally we do specialise
slightly more than this. All definitions and results should be available in textbooks on alge-
braic curves or algebraic geometry in general, such as [Ful89] or [Har77] . As such, we will

rarely provide proofs for results given.

We start by defining precisely what we mean by a curve, and by functions and differentials
on a curve. We then go on to give some basic results about these objects, and finally define

the genus of a curve.

In the next section we define divisors, canonical divisors and the Riemann-Roch spaces
associated to divisors. We then reach the highlight of the section with the statement of the

Riemann-Roch theorem. We give corollaries to this, which show some of its applications.

In the penultimate section of this chapter we consider ramification. We define ramification
and branch points, and subsequently the ramification divisor. We then use this to state
a strong version of the Riemann-Hurwitz formula, at the level of divisors. The section
concludes by looking at group actions on curves, and defining higher ramification to state

Hilbert’s formula.

The chapter finishes by discussing Serre duality, which will be used in the fourth chapter
of the thesis. We do this using a particularly explicit, non-cohomological, description of

H'(X,0x) and H!(X,Qx).
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2.1 Set up

Throughout this thesis k will denote an algebraically closed field of characteristic p > 0. It
should be noted that while the majority of results in the thesis hold for all characteristics,

including p = 0, our main focus will be on the case p > 0.

When we refer to an algebraic curve (or often just a curve) we will mean a smooth, connected,
projective variety of dimension one over k. In particular, we let IPi be the projective line.
Similarly, when we refer to an affine curve we mean a smooth, connected, affine variety
of dimension one over k. We recall that a morphism of affine curves X and Y is just a
polynomial map ¢: X — Y. Then if X and Y are algebraic curves, a map ¢: X — Y is
a morphism if we can write X = UX; and Y = UY; for open, affine X; and Yj, such that
¢(X;) C Y; and @lx, is a morphism for every i.

2.2 Functions and differentials

In this section we recall basic results pertaining to functions and differentials on a curve X.

A meromorphic function on X is any morphism f: X — IP, other than the morphism mapping

all points to infinity. The collection of meromorphic functions on X is denoted K(X), and

called the function field of X.

We recall that the category of algebraic curves and non-constant morphisms is actually equiv-
alent to the category of function fields over k (which can be defined independently of curves
as finitely generated fields of transcendence degree one over k). An overview of this cor-
respondence is given in [Sti93, Appendix B]|. Furthermore, when working over the complex
numbers € we actually have a triple equivalence of categories. The category of function
fields over C and the category of algebraic curves are both equivalent to the category of com-
pact Riemann surfaces. A short explanation of the correspondence between complex curves
and Riemann surfaces is given in [Gri89, Chap. 1, §2], whilst [Mir95] exhibits the connection

between all three categories throughout.

Returning to our study of functions on X, we recall that a meromorphic function f on X is
regular on an open set U C X if the image f(U) lies in k = A}( C II’}(. We let H(U,Ox)
denote the space of functions in K(X) which are regular on U. Moreover, if f € K(X) is
regular on X we say that f is regular, and then H%(X,Oy) is the space of regular functions.
Since X is projective H(X,Oy) is in fact isomorphic to k — i.e. the only regular functions are
constant functions. The reader should note that we are using sheaf theoretic notation here.
We will not give details of sheaves and sheaf cohomology (since it will rarely be needed), but

we will still use the notation, in order to be with consistent with current work in the area.
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Given P € X we say that a meromorphic function f € K(X) is regular at P if f(P)e k C IP]i.

The collection of functions regular at P form a ring, which we call Ox p.

Lemma 2.2.1. For any P € X the ring Ox p is a discrete valuation ring, with maximal ideal
Myx,p:={f € Ox plf(P) = 0}.

Proof. See [Ful89, Chap. 1, §4]. O

The valuation on Ox p can be given as follows. Let t € Ox p be a generator of My p.
Now any 0 # f € Ox p can be written as f = ut" for some unique n € Z5( and some unit
u € Ox p\Mx p. We then define the order of f at P to be ordp(f) := n (note that this is
independent of the choice of t). For any f € K(X)* and P € X at least one f or 1/f is an
element of Ox p. Hence we may extend the definition of ordp to the whole K(X)*, by letting
ordp(f):=—ordp(1/f) whenever f & Ox p. If ordp(f) = n > 0 we say that f has a zero of
order n at P, whilst if ordp(f) = n < 0 then we say that f has a pole of order n at P. Clearly, for
any f,g € K(X)" and P € X, it is true that ordp(fg) = ordp(f)+ordp(g), and we also have
ordp(f +g) > inf{lordp(f),ordp(g)}, with equality whenever ordp(g) = ordp(f). We call any

element t € Ox p which has order 1 at P a uniformising parameter at P.

Proposition 2.2.2. Any non-zero meromorphic function f on X has finitely many poles and zeroes.

Moreover, the number of poles and zeroes of f are equal, after counting multiplicity; i.e.

Zordp(f) = 0.

PeX

Proof. See [Ful89, Chap. 8, §1, Prop. 1]. O

We now introduce the concept of a differential on the curve X. Let R be any commutative
ring containing k and let M be an R-module. Then a k-linear map D: R — M satisfying
D(fg) = fD(g)+gD(f) is called a derivation of R in to M over k.

There exists a unique module ((R), called the module of differentials of R over k, and a
derivation d: R — QQy(R) through which all derivations of R over k must factor. We can
describe ((R) more concretely as the free module generated by [f] for all f € R, quotiented
by the relations

s [f1+[gl=1[f +g]
* [cf]=c[f],
« [fgl=flgl+¢glf],
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where f,¢ € R and ¢ € k. Then d(f) is the image of [f] in this quotient.

In particular, if R = K(X) then we define Qg (x) := (i (K(X)). In this case we call the map
d: K(X) — Qgx) the differential map and we let df := d(f). We say that w € Qg(x) is a

meromorphic differential on X.

Proposition 2.2.3. The module of differentials, Qg x), is a one dimensional vector space over
K(X). Moreover, if t € K(X) is a uniformising parameter for any point P in X then dt is a basis

OfQK(X)-
Proof. See [Sti93, Prop. 1.5.9]. O]

We suppose that P € X and we choose a uniformising parameter ¢ € Ox p. Then for any
0 # w € Qg(x) there exists a unique f € K(X) such that w = fdt, by Proposition 2.2.3. We
define the order of w at P to be ordp(w) := ordp(f), and remark that this is independent of
the choice of t. The set of differentials regular at P form a module over Ox p, which we call

the module of differentials regular at P, and denote by Qx p.

For any f € Oxp we have df € Qxp. If f is a local parameter at P this follows from
the definition of () p, and if ordp(f) > 1 it then follows from this and the product rule.
Finally, if f is a unit at P then it is true because df = d(f — f(P)), and clearly f — f(P) €
Mx p. In fact, Qx p is the module of differentials of Ox p over k, and it is generated by
dt for any uniformising parameter t € Ox p. Note that given a function f € K(X) and
differentials w,’ € Qg(x) we have ordp(fw) = ordp(f)+ ordp(w) and ordp(w + w’) >
inf{ordp(w),ordp(w’)}.

Let U be an open subset of X. We call w € Qg (x) holomorphic on U if ordp(w) > 0 for all
P e U, and we let

H°(U,Qx) := {w € Qx)lordp(w) > 0 for all P € X} U {0}

be the space of holomorphic differentials on U. If w € (g (x) is holomorphic on X we say that
w is holomorphic, and so H°(X,Qx) is the space of global holomorphic differentials. As in
[Ful89, Chap. 8, §2, Prop. 3], the k-vector space H%(X,Qx) is finite dimensional.

Definition 2.2.4. We define the genus of X to be

gx :=dim H2(X, Q).

The genus is an invariant of fundamental importance in the study of algebraic curves. In
particular, we remark that if k = C then the genus of an algebraic curve (also called the

geometric genus) is the same as the topological genus of the corresponding Riemann surface
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(the corresponding Riemann surface being found via the equivalence of categories mentioned

earlier).

We now briefly recall the notion of a polydifferential. If we consider an element of the tensor
product w € Q%"X), for some m € Z, then it can be written as fdx; ®...® dx,,, where
frx; € K(X)forall 1 <i<m. Let P be a point in X. Since each dx; can be written as f;dt for
some f; € K(X) and some uniformising parameter t at P, we can rewrite w as f'dtQ...Qdt,
where f'=f - f;--- f,,. We then define the order of w at P to be ordp(w) := ordp(f’). In the

particular case where @’ = @®" for some w € Qg x) then we have the equality
ordp(w’) = mordp(w).
Finally, for any open U C X we define

H(U, Q%)) = {w € QF(y lordp(w) 2 0 for all P € U}

to be the space of holomorphic polydifferentials on U. We call the elements of HO(X,Q%”X))
global holomorphic polydifferentials on X.

2.3 The Riemann-Roch theorem

We now recall the relevant facts and definitions needed to state the Riemann-Roch theorem.

We first recall that a divisor on X is a finitely supported formal sum

D= an[P],

with coefficients in Z. The set off all divisors on X forms an additive group, denoted Div(X).
The degree of the divisor D is deg(D) := ) pcx 1p, which lies in Z.

Given any function f € K(X) we define the divisor associated to f to be

div(f):= ) ordp(f)[P].

PeX
Note that by Proposition 2.2.2 div(f) has finite support and degree zero. We call any divisor
D which is equal to div(f) for some f € K(X) a principal divisor. Is is clear that for any

f,g € K(X) we have div(fg) = div(f) + div(g). Also, for any f € K(X) we define divy(f)
and div,(f), the divisor of zeroes and the divisor of poles of f respectively, as follows:

divy(f):= Z ordp(f)[P]

ordp(f)>0
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and then

diveo(f) := divo(f) - div(f).
Now for any differential 0 # w € Qg x) we define the divisor associated to w to be

div(w) := Zordp(w)[P].

PeX

To show that div(w) does indeed have finite support we recall that by Proposition 2.2.3 then
w can be written in the form fdg for some f,g € K(X). Then every pole of w is a pole of
f or a pole of g. Thus, by Proposition 2.2.2 it follows that w has only finitely many poles.
It can be shown that w has finitely many zeroes in a similar fashion. If W is a divisor on X

and W = div(w) for some 0 # w € (g x) then we say that W is a canonical divisor on X.

The principal divisors of X form a subgroup of Div(X), and two divisors D, D’ € div(X) are
equivalent, denoted D ~ D', if their image in the quotient of Div(X) by the group of principal
divisors is the same; i.e. if there exists f € K(X) such that D = D’ + div(f). By the following
corollary, it makes sense to refer to the (unique) canonical divisor on X, up to equivalence,

which we write as Ky.

Corollary 2.3.1. The canonical divisors on X form precisely one equivalence class on X with

respect to the relation ~.
Proof. Let W be the canonical divisor associated to w € Qgx) and suppose that D € Div(X)
is equivalent to W. Then D = W +div(f) = div(f w) is also a canonical divisor.

On the other hand, suppose W and W’ are the canonical divisors associated to w, w” € Qg x)
respectively. Then we can find a meromorphic function f € K(X) such that w = fw’, by
Proposition 2.2.3. Then W = W’ +div(f), and the divisors are equivalent. O

Given any divisor D =) p.x np[P] we let
H°(X,0x(D)) := {f € K(X)|ordp(f) > —np for all P € X}
be the vector space of meromorphic functions associated to D. Similarly, we let
H%(X,Qx(D)) = {w € Qg(x)lordp(w) > —np for all P € X}

be the vector space of meromorphic differentials associated to D. Both of the spaces mentioned
above are also referred to as Riemann-Roch spaces. Note that when D is the zero divisor we
have H%(X,Q(0)) = H%(X,Qx), and similarly H%(X,0x(0)) = H%(X,Ox). Also, it follows
immediately from Proposition 2.2.2 that if D € Div(X) is a divisor with negative degree then
H(X,0x(D)) = {0}.
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Lemma 2.3.2. Given any divisor D on X we have the following isomorphism,
H%(X,0x(D)) = H'(X,Qx(D - W))

where W is any canonical divisor on X.

Proof. Let W be a canonical divisor and chose w € Qg (x) to be the associated differential.
Since div(fw) = div(f) + div(w), it follows that f € HY(X,Ox(D)) if and only if fw €
H%X,Qx(D - W)). Since Qk(x) is a one dimensional vector space over K(X) we can find
a unique f € K(X) for every differential w’ in H%(X,Qx (D — W) such that v’ = fw. Hence

the map f — fw is an isomorphism. O

It follows from this lemma and the definition of genus that dimy H%(X,Ox(W)) = gx for any
canonical divisor W.

We now state the celebrated Riemann-Roch theorem.

Theorem 2.3.3 (Riemann-Roch theorem). Let gx be the genus of X. Furthermore, let D be any

divisor on X, and let W be any canonical divisor on X. Then

dimy H(X,0x(D)) = deg(D) + 1 — gx + dim; H(X,Ox(W - D)).

Proof. See [Har77, Chap. IV, §1, Thm. 1.3] or, for a more elementary approach, [Ful89, Chap.
8, §6]. O

We now give some corollaries to the Riemann-Roch theorem.

Corollary 2.3.4. For any canonical divisor W on X, we have

deg(W) =2gx —2.

Proof. The statement follows by rearranging

gx = dim; H(X,Ox(W))
=deg(W)+1 - gx +dim; HY(X,Ox (W — W))
=deg(W)+1-gx+1,

where the first equality is Definition 2.2.4, and the second equality follows from the Riemann-
Roch theorem. ]
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Corollary 2.3.5. For any divisor D of degree greater than 2gx — 2 we have

dim; H(X,Ox(D)) = deg(D) + 1 — gx.

Proof. 1f deg(D) > 2gx — 2 then deg(W —D) < 0. Then if f € H(X,O(W —D)) it follows that
f has more zeroes than poles (after counting multiplicities), which contradicts Proposition

2.2.2. O

Corollary 2.3.6. If D is a divisor of degree greater than 2gx — 2 and P is any point in X then

dimy H%(X,Ox(D +[P])) = dimy H*(X, Ox(D)) + 1.

Proof- Since deg(D) > 2g — 2, it follows from Corollary 2.3.4 that deg(W — D) < 0. Then
dimy H%(X,Ox (W — D)) = 0. We then apply the Riemann-Roch theorem and see that

dimy H%(X,Ox(D +[P])) = deg(D +[P]) + 1 - gx
=deg(D)+1+1-gx =dimy H*(X,Ox(D) + 1.

O

Using the Riemann-Roch theorem and Corollary 2.3.4 we can compute the dimension of the

space of holomorphic polydifferentials of order m, denoted H%(X,Q%™), where m € Z.

Corollary 2.3.7. Let gx,m > 2. Then

dimy H(X,Q¥™) = (2m—1)(gx - 1)

Proof. Since gx > 2 it follows from Corollary 2.3.4 that deg(W) > 1, and hence we see that
deg(mW) > deg(W). Similarly to Lemma 2.3.2, we have HO(X,Q?}"Z) =~ HO(X,0x(mW)). It
then follows from the Riemann-Roch theorem (Theorem 2.3.3) and Corollary 2.3.4 that

dim; H%(X,Q%") = deg(mW) +1 - gx = (2m —1)(gx — 1).

2.4 Ramification and the Riemann-Hurwitz formula

In this section we will introduce the concept of ramification, and we state the Riemann-
Hurwitz formula, which relates the canonical divisor of two curves which have a morphism

between them, via the ramification divisor.
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Let X and Y be curves over k. We first note that given a non-constant morphism ¢: X — Y

we have an induced ring homomorphism on the function fields,
¢*: K(Y) — K(X),

given by composition with ¢; i.e. ¢*(f) = f o¢. Moreover, it transpires that ¢* is an injection,
and hence we can view K(Y) as a subfield of K(X). We then define the degree of ¢, denoted
deg(¢), to be the degree of the extension K(X)/K(Y), which is always finite.

We henceforth assume that ¢p: X — Y is an arbitrary non-constant morphism of curves.
Recall that we have
¢"(H'(U,0y)) C H(¢™!(U), Ox).

Definition 2.4.1. Let P be a point in X and choose a uniformising parameter ¢ € Oy ¢(p).
We define the ramification index ep of ¢ at P to be

ep :=ordp(¢(t)).

Note that ep = 1 for almost all points P € X. We say that the point Q € Y is a branch point of
¢ if there exists some P € ¢~!(Q) for which ep > 1. We say that P € X is a ramification point
of X ifep > 1.

The following theorem asserts that the degree of ¢ is the same as the number of points in

the pre-image ¢~!(Q) for any Q € Y, if we count multiplicities correctly.

Theorem 2.4.2. Let n:=deg(p). Then, for any Q € Y, we have

ZEPZH.

P—Q

Proof- See, for example, [Liu02, Pg. 290]. U

Suppose P € X is a ramification point. Then if p = char(k) divides ep we say that P is wildly
ramified. If p does not divide ep we say that P is tamely ramified.

Definition 2.4.3. Let D = } .y 1o[Q] be a divisor on Y. Then the pull back of D with

respect to ¢ is
¢*(D):= Z Z ep - ng[P].

QeY Per1(Q)

Note that ¢* defines a group homomorphism Div(Y) — Div(X).
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We also define the pullback of a differential w = g-df € Qg(y) by ¢ to be

¢ (@)= ¢*(g)dd™(f).
Clearly ¢*(w) is a differential on X.
Now we describe the different exponent, which we require to define the ramification divisor.

Definition 2.4.4. For any P € X we choose a uniformising parameter ¢ € Oy 4(p). Then we
define the different exponent at P to be

op :=ordp(¢p*(dt)).

Note that since ¢*(t) is regular at P it follows that 6p is non-negative for all P € X.

Definition 2.4.5 (Ramification divisor). The ramification divisor of ¢p: X — Y is

R:= Zép[P].

We will see in Theorem 2.4.9 that this sum does have finite support.

The following theorem has the classical Riemann-Hurwitz formula as a corollary, but also

goes further, actually relating the canonical divisors on X and Y.

Theorem 2.4.6. If0 # w € Qg y) then

div(¢*(w)) = ¢*(div(w)) + R. (2.1)

In particular, we have
Kx ~ ¢"(Ky)+R.

Proof- See [Har77, Chap. IV, §2, Prop. 2.3] for a sheaf theoretic approach, or alternatively
[Sti93, Thm. 3.4.6], for a proof involving function fields. O

Corollary 2.4.7 (Riemann-Hurwitz Formula). We let gx and gy be the genera of X and Y
respectively. Then we have
2gx —2 =n(2gy —2) +deg(R).

Proof. This follows from Corollary 2.3.4 and Theorem 2.4.6, by taking degrees in (2.1). O

The majority of topics considered in the thesis will be concerned with the following situation.

Let G be a finite subgroup of the automorphism group of X (recall that if gy > 2 then the
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automorphism group itself is finite, see, for example, [IT51]). The group G naturally acts on
the function field of X, by g- f(P) := f(g-P) for every P € X and f € K(X). Then the
quotient Y := X/G of X by the action of G is again a curve (see [DaSh94, Chap. 2, §1.7, Ex.
8]), and the function field of the quotient curve is the subfield of K(X) fixed by this action,
which we denote K(X)C. We let 7t: X — Y be the projection of X on to the quotient. Note
that G acts transitively on the fibres of 7 (ibid.). We also recall that the stabiliser of a point
P € X is the subgroup G(P) :={g € G|g-P = P} of G.

We now introduce the higher ramification groups, which we will use to state Hilbert’s formula,

which computes the coefficients of the ramification divisor.

Definition 2.4.8. Let G be finite subgroup of Aut(X) and let ¢ be a uniformising parameter
at P € X. Then for i > —1 we define the i'" ramification group at P, denoted G;(P), to be the
subgroup formed by the s € G_;(P) such that ig(s) := ordp(s(t) —t) is at least i + 1. This is
independent of the choice of £, see [Ser79, Chap. 1V, §1, pg. 62].

Note that for any P € X we have that G_;(P) = G, Gy(P) is the stabiliser of P and that
G;(P) 2 Gj;1(P). Also, ep = ord(Go(P)) for any P € X, and if np is the size of the fiber of
7t(P) then n = ep - np, where n = deg(m). Less obviously, we have that G;(P) is trivial if
is sufficiently large, that Gy is a p-group and that ord(Gy(P)/G;(P)) is coprime to p — see
[Ser79, Chap. IV, §l] for details. In particular, ¢ is tamely ramified at P if and only if G;(P)

is the trivial group.

Theorem 2.4.9 (Hilbert’s Formula). For every P € X we have

op=) ig(s)=) (ord(G;(P))-1),

S#e ]:O

where e denotes the identity in G. In particular, if P is tamely ramified then 5p = ep — 1.

Proof- See [Ser79, Chap. IV, §1, Prop. 4] for a proof of Hilbert’s formula. O

2.5 Serre duality

In this section we give the details of Serre duality, in such a way that we will be able to perform
explicit computations using Serre duality in later chapters. We retain the notations of the
previous sections, and in particular we recall that the notations H!(X,Qy) and H'(X,Ox)
refer to first cohomology groups of the sheaf of differentials, (Qx, and the sheaf of rational
functions, Oy, respectively. The following lemma gives us useful and elementary descriptions
of H1(X,0x) and H!(X,Qx). We will use these descriptions almost exclusively for the rest

of the thesis, and as such the reader may take this as a definition if he or she wishes.
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Lemma 2.5.1. We have canonical exact sequences as follows:

0 — HY(X,0x) — K(X) — EBK(X)/OX,P — HY(X,0x) — 0; (2.2)
PeX

0 — H(X,Qx) = Qg x) — @QK(X)/QX,IJ — HY(X,Qyx) — 0. (2.3)
PeX

Remark. Note that a sketch of the proof below can be found in [Har77, Pg. 248].

Proof. We let QK(X) and K(X) denote the constant sheaves of Qg (x) and K(X) respectively.

The short exact sequence
0—-Ox - K(X) > K(X)/Ox — 0 (2.4)

is a flasque resolution of Ox (see [Har77, Chap. II, ex. 1.16]).

For each P € X we have a natural embedding i: {P} < X, and we view the module
K(X)/Ox p as a sheaf on the singleton {P}. Then for each P € X we have the induced
sheaf i, (K(X)/Ox p) on X. If we consider the direct sum of these induced sheaves over all

points P € X we have the following isomorphism

K(X)/Ox = i (K(X)/Ox,p). (2.5)
PeX

To explain this isomorphism we first construct a map from K(X)/Ox in to the product
[Tpex i (K(X)/Ox,p), and then show that the image of each element under this map has
finite support.

Given i: {P} < X we have the following equalities
i~ (K(X)/Ox) = (K(X)/Ox)p = K(X)p/Ox,p = K(X)/Ox,p.

It follows that for any P € X we have the adjunction map K(X)/Ox — i, (K(X)/Ox p). These
adjunction maps give a map K(X)/Ox — [[pex (K(X)/Ox p), whose image is actually in
the sum P, _yi.(K(X)/Ox,p). The resulting map is an isomorphism because the stalk
i, (K(X)/Ox’p)Q is zero for Q # P and is K(X)/Ox p when Q = P. The isomorphism in (2.5)

follows from this.

Replacing K (X)/Ox by Py i (K(X)/Ox p) in (2.4) yields

0— Ox — K(X) — @ i, (K(X)/Ox p) — 0. (2.6)
PeX
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Taking cohomology, and recalling that H'(X,K(X)) = 0, we arrive at the exact sequence
(2.2).

We now perform a similar computation to produce the second exact sequence (2.3). We start

with the short exact sequence
0—-Qyx _)QK(X) _’QK(X)/QX -0,

which is a flasque resolution of (Qx (see [Har77, Chap. II, ex. 1.16]). For each P € X we again
have a natural injection i: {P} < X, giving rise to the induced sheaf i, (K(X)/Ox p) on X.

Then we have an isomorphism

x)/Qx = @ i (QK(X)/QX,P)’

PeX

similar to that in (2.5).

Hence we arrive at the short exact sequence

0—Qx — Qg e@i*(QK(X)/QX'p)HO. 2.7)
PeX
Taking cohomology of this then yields the second exact sequence (2.3). O

Remark. When considering elements of H'(X,(Qy) as elements in the cokernel of the map
Qgx) — @PEXQK(X)/QX’p above, we will denote them by (wp)pcx, where (wp)pex €
@PEXQK(X)/QX’P. Similarly, when considering elements of H'(X,Ox) as elements of the
cokernel of the map K(X) — P pex K(X)/Ox p, we will denote them by (fp) pex> Where

(fp)pex € @pex /OX p-

The residue map Resp: (Qg(x) — k is of fundamental importance in the computations that
follow. We define the residue map, Resp, to be the unique map identified in the following

theorem.
Theorem 2.5.2. For any P € X there exists a unique k-linear map Resp: Qg x) — k defined by
the following properties:

* Resp(w) =0 forall w e Qx p;

e Resp(f"df)=0 forall f € K(X)* and all n #—1;

 Resp(f~'df) =ordp(f), where ordp(f) is the order of f at P.

Proof- See [Ser88, Chap. II, §7 and §11] or [Tat68]. O
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This definition implies the following explicit standard description of the residue map. Let
P e X and let t € Ox p be a local parameter at P. We may then write any w € Qgx) in the

form
-1

w= Zaitidt+ wy,

i=—n

for some a_,,...,a_; and wy € Qx p. Then we obviously have
Resp(w) =a_;y.

Theorem 2.5.3 (Residue Theorem). Given any differential w € Qg (x) on X then
ZRCSP(O)) =0.

Proof. See [Ser88, Chap. II, Prop. 6] or [Tat68, Pg. 155]. O

Since Qx p C ker(Resp), it follows that Resp is a well defined function on the quotient
Qg (x)/Qx,p- Hence by the residue theorem the map

@QK(X)/QX,P —k, (wp)pex = ZReSP(C‘)P)
PeX PeX

vanishes on the image of (g (x), which allows us to make the following definition.

Definition 2.5.4. Let (wp)p.y € H'(X,Qyx). Then we define the trace map to be

t:H' (X,Qx) >k (0p)pex ZResp(wp).
PeX

We now use the trace map to define a pairing between the k-vector spaces H!(X,Oy) and

H%(X,Qx). Since Qk(x) is a K(X)-module, we can define the product map
H(X,Qx) x H'(X,0x) = H' (X,Qx), (@, (fe)pex ) = (F@)p)pexs (2.8)
where (f w)p is the product of fp € K(X)/Ox p and the residue class of @ in Qg (x)/Qx,p.
We now combine the product map in (2.8) with the trace map ¢ to get a map
HY(X,Qx)x H'(X,0x) —> k, (“)'@PGX) — <w,@pex> = t(WP)PeX'

Theorem 2.5.5. Via the pairing { , ), the k-vector spaces H' (X,0x) and H*(X,Qx) are dual

to each other.
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Proof- This is a specialisation of [Ser88, Chap. II, Thm. 2]. O

More explicitly, this theorem means the following. If we fix any w € H(X, Q) we produce a
map O(w): H'(X,0x) — k, given by O(w)(f) = {w, f). Similarly, if we fix any f € H'(X,Ox)
then we get a map {(f): H’(X,Qx) — k. Then the maps

¥: HY(X,0x) - hom(H%(X,Qx),k) and 6: H*(X,Qx) — hom(H!(X,0x),k)

are isomorphisms. In particular, given a k-basis wy,..., wg of H%(X,Qy), we can find a basis
firees fg of HY(X,0Ox) such that (w;, ;) =1 for all 1 <i < n and (wi, fj) =0if i # j, and
likewise, starting with a basis of H!(X,Ox) we can find corresponding basis of H(X,Qx).






Chapter 3

Bases for the spaces of
(poly)differentials on hyperelliptic

curves

In this chapter we recall the definition and basic details of hyperelliptic curves, and then
go on to compute bases for the spaces of holomorphic differentials and polydifferentials, see
Propositions 3.1.2 and 3.2.5. The primary use of these concepts is to form a foundation for
the next chapter. Furthermore, we also use the bases computed to illustrate all the facets of
our main theorem in Chapter 5. The various attributes of hyperelliptic curves differ greatly
according to whether the characteristic of the base field is two or not, and as such we split

this chapter into two sections, considering these cases separately.

Before going in to the details of hyperelliptic curves we recall that a curve X is hyperelliptic
if there exists a finite separable morphism 7w: X — H’i of degree two. Every hyperelliptic
curve has a hyperelliptic involution o which permutes the elements of 77! (a) for each a € IPi
(except for the finite number of points a for which 77~!(a) has order one), and the quotient
curve X/(o) is isomorphic to IP,l. We let X be a hyperelliptic curve of genus g throughout
the chapter, and we fix such a map 7, which is unique up to an automorphism of IP}( [Liu02,
Prop. 7.4.29]. We also let P, and P, denote the unique elements of 77~ (a) for any point a € IP]l
that is not a branch point. If a € IP}( is a branch point we denote the unique point in 7 (a)
by P,. We define D, to be the divisor 7¢* ([a]) for any a € IPi, and hence

2[P,] if a is a branch point,
[B,]+[P)] otherwise.

a

a

23
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We also have for x € k(x) = K(IP}() C K(X), that
div(x) = Dy — Doy, (3.)

regardless of characteristic. Furthermore, the strong Riemann-Hurwitz formula (Theorem
2.4.6) gives us
divy(dx) = n*(divlp}c(dx)) +R,

and since divlpllf(dx) = —2[o0], it follows that TC*(diVH)Il((dX)) = —-2D,,. Hence we conclude
that
div(dx) = R - 2D, (3.2)

3.1 Characteristic unequal to 2

In this section we assume that char(k) = p # 2. Then the extension K(X) of K(IP]l) = k(x)
corresponding to 77: X — IPi will be k(x, ), where p satisfies

y? = f(x) (3.3)

for some polynomial f(x) € k[x] which has no repeated roots and is of degree 2¢+1 or 2g+2
[Liu02, Prop. 7.4.24]. Moreover, by applying an automorphism of IPi if necessary, we can and

will assume that f(x) is monic.
If we let dy := deg(f(x)) then

dy

f(x)= H(x— a;) = x4 + by xY 7+ + by, (3.4)
i=1

for some a;,b; € k. We now show that the a; € Ai, and possibly co € IPL, are the branch

points of 7.

Firstly, observe that by the Riemann-Hurwitz formula, Corollary 2.4.7,
deg(R)=2g-2+2-2=2g+2.

Since 7 is of degree two and char(k) # 2 it is only tamely ramified, and it follows that the
coefficient of each ramification point is 1 in R. From this we conclude that each branch
point has precisely one corresponding ramification point, and that there are precisely 2g + 2
ramification points. Also, since there are no repeated roots in f(x), then (3.3) defines a non-
singular affine curve X’ with a degree two projection 7': X’ — Ai. For any point a € A}(

which is not a solution to f(x) there are two points in the pre-image, namely (a,++/a), and
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the point is not a branch point. On the other hand, if a = a; € /A,l( is a solution to f(x),
then there is only one point in the pre-image and hence it is a branch point. We let P; = P,
denote the ramification point corresponding to a;. Since deg(R) = 2¢ + 2 we conclude that
if dj =2¢+1 then co € IP]l is also a branch point and we define Pyg,5 := P, in this case.

Hence the ramification divisor R of 7t is

In the following lemma we compute the divisor of y € K(X).

Lemma 3.1.1. The divisor of y € K(X) is

div(y) = R— (g +1)D,. (3.5)

Proof. Since div(y?) = div(f(x)) and hence div(y) = %div(f(x)), we need only compute the
divisor of f(x). As noted earlier, the solutions to f(x) correspond to the ramification points.
So for any P ¢ 71! (co) then ordp(y) = %ordp(f(x)) =1 if P is a ramification point, and
ordp(y) = %ordp(f(x)) = 0 otherwise.

We now consider the poles of y. By Proposition 2.2.2 we know that } p.yordp(f(x)) =0,
and we also know that the poles of f(x) can only lie in 777!(c0). Hence if co is a branch
point then ordp_(f(x)) = —X.-51 ordp (f(x)) = —2(2g+1), and ordp_(p) = —(2g+1). On the
other hand, if co is not a branch point we know that ordp (f(x))+ordp (f(x)) = —2(2g +2).
Recall that ordp(o(f(x))) = ordy(p)(f(x)) for any automorphism o € Aut(X) and any point
P € X. In particular, if o is the hyperelliptic involution of X then

ordp (f(x)) =ordp_(0(f(x))) =ordgp,)(f(x)) = ordp, (f(x)).

Hence ordp_(y) = ordp, (y) = —(g + 1) Overall, we conclude that

2g+2

div(y) = ) [R]=(g+1)De = R—(g+1)Dx.
i=1

O]

Proposition 3.1.2. Let m > 1. Let X, x and y be as above, and let w := d;cj’”. Thenifg>2,a
basis of HO(X, Q%) is given by

W, xw,...,x8 tw ifm=1,
w, Xw, X*w ifm=g=2,
w,xw,...,x™&qy; Yw, xya),...,x(m‘l)(g_l)_zyw otherwise.
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Remark. Note that the case where m =1 is treated in [Liu02, Prop. 7.4.26] and [Gri89, Ch.
IV, §4, Prop. 4.3].

Proof- We first show that the elements are linearly independent over k. Since w is fixed,
it is equivalent to show that the coefficients are linearly independent over k — i.e. that
Lx,...,x"y,xy,... ,xly are linearly independent over k for any # and [ in IN. It is immediate
that 1,x,...,x" are linearly independent, and similarly that y,yx,..., yxl are linearly inde-
pendent. Finally, the two sets of elements are linearly independent of each other, otherwise
the extension K(X)/k(x) would be degree 1.

To show that the differentials in the statement of the lemma are indeed holomorphic differ-
entials, we show that their divisors are greater than 0. Recall that div(dx®") = mdiv(dx), as
noted in the previous chapter. We now show that the differentials listed in Proposition 3.1.2

are holomorphic. We have that

div(x'w) = diV(Xidi;@m)
:i(DO_Doo)+m(R_2Doo)_m(R_(g+1)Doo) (36)

=iDg+ (mg—m—i)D,
=iDg + (m(g —1)—i)Dy,

by Lemma 3.11, (3.1) and (3.2), which is positive for 0 <i < m(g—1). Hence all the polydiffer-
entials in the first two cases and the first m(g—1)+1 differentials in the third case are holomor-
phic. Note that if m = g = 2 then there are three elements, and since dimy HO(X,Q%) =3
by Corollary 2.3.7, these elements form a basis. Also, if m = 1 then by Definition 2.2.4
dimy H%(X,Qx) = g, and we have g linearly independent elements, so they again must form

a basis.

We now consider the final (m—1)(g—1)—1 differentials in the third case. The divisor of one

of these elements is

div(x'yw) = div(x'w) + R— (g + 1)Dy
=iDg+R+((m—-1)(g—1)-2-1)D,

by Lemma 3.1.1 and (3.6), which is positive for 0 <i < (m—1)(g—1)— 2. By Corollary 2.3.7
we know that
dimy H(X,Q¥™) = (2m—1)(g - 1).

Since the number of differentials listed in the last case of the proposition is precisely

(m-1)(g-1)-1+m(g-1)+1=2mg-2m—-g+1=2m—-1)(g—-1),
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it is clear that these elements form a basis. O

3.2 Characteristic 2

In this section we assume that char(k) = p = 2. In this case the function field K(X) is k(x, ),

a degree two extension of the function field of one variable over k, k(x) = k(IPllc), where
y” —H(x)y = F(x) (3.7)

for some polynomials H(x), F(x) € k[x], such that H(x) and H’(x)*F(x) + F’(x)? have no
common roots in k [Liu02, Prop. 7.4.24]. We have that deg(H(x)) < g+ 1, with equality if and
only if oo is not a branch point, and that deg(F(x)) < 2g + 2 with deg(F(x)) =2g+ 1 if oo is
a branch point [Liu02, Prop. 7.4.24].

Lemma 3.2.1. The affine plane curve X' given by (3.7) is smooth if and only if H(x) and

H’(x)*F(x) + F’(x)? have no common zeroes in k.

Proof The Jacobian criterion (see, for example, [Liu02, Thm. 4.2.19]), states that if the
derivatives of (3.7) with respect to x and with respect to y are zero at a point P € X’ then the

curve is not smooth at P, and otherwise it is. Clearly
d 2
@(}) —H(x)y - F(x)) = H(x) (3-8)
since the characteristic of k is 2. On the other hand,
d 2 ’ /
;W Hx)y - F(x)) = H'(x)y - F'(x). (3.9)
The affine plane curve given by (3.7) is smooth at P € X’ if and only if at least one of (3.8)

and (3.9) is non-zero at P. Of course, (3.9) is zero if and only its square
(H'(x)y -~ F'(x))* = H'(x)’y? = F'(x)* = H'(x)*H(x)y + H'(x)*F(x) - F'(x)? (3.10)

is zero. Finally, if H(a) = 0 for some a € k, then (3.10) evaluated at a is H'(a)?F(a) - F'(a)>.
Hence the curve is smooth if and only if H'(x)?F(x) — F’(x)?> and H(x) share no roots in
k. O

We first describe the ramified points of 7, in order to compute the ramification divisor. By
Lemma 3.2.1 if we consider the affine curve defined by this equation it will be smooth. We
denote this curve by X’. Then 7t restricts to a map X’ — A}(, the projection on to the x
co-ordinate. Let a € Ai. Then if (a,b) is a point in 77! (a), so is the point (a, b+ H(a)), which
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is clearly distinct if and only if H(a) # 0. Since the extension is degree two, this shows that
the ramified points in the affine part correspond to the roots of H(x). We let k be the number
of distinct roots that H(x) has and dp the degree of H(x). Then

k
H(x) = I_[(x — A" =x% By x4 4 Bix+ By (3.11)

i=1

for some A;, B; € k and n; € IN. As above, the A; are branch points of 7t and we let P, € X
be the corresponding ramification points, and D; = Dp. Note that for each A; there is a

corresponding K;, which is the square root of F(A;).
We now compute the ramification divisor of 7.

Lemma 3.2.2. Let n; be the order of H(x) at A; € Ai. Then the coefficient 6p of the ramification
divisor R at P € X is given by

2n; if Pel{P,...,P},
op = 2(g+1—dH) ZfPGTC_l(OO),
0 otherwise.

Proof We first show that it will suffice to prove that the coefficient of [P;] is 2n; for 1 <i <k.
Note that by the Riemann-Hurwitz formula deg(R) = 2g + 2. If oo is not a branch point of
7t then 60p = 0 = 2(g+ 1 —dp), as stated. If oo is a branch point then the coefficient at P, is
deg(R) — Zle 2n; =2g+2-2dy =2(g+1—dy), again as stated.

Let P = P, for some i € {1,...,k}. Then y —b; is a local parameter at P. To see this, note that
the maximal ideal mp x of the local ring Ox p at P is generated by x —a; and y — b;. But
xX—a; € 1'1’1123 since 7t is ramified at P with ramification index 2. By Nakayama’s lemma [AMG69,

Prop. 2.6], v — b; is therefore a local parameter at P.

Using Hilbert’s formula, Theorem 2.4.9, we obtain

dp =) (ord(Gi(P)~1)

i>0

=max{i € N|G;(P) = {1}}+1
=ordp(o(y - b;) = (v - b))
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From the defining equation (3.7), it is clear that the hyperelliptic involution is given by o(y) =
v + H(x). The following calculation then concludes the proof,

op =ordp(o(y—b;) - (y - b;))
=ordp(y—b; +H(x)-y+b;)
=2ordyu,(H(x))
= 2n;. [

The divisors of x and dx are the same as when char(k) # 2, see (3.1) and (3.2). We also note

that since char(k) = 2 we have
dF(x) = d(y* +yH(x)) = d(yH(x)) = H(x)dy + ydH(x)

and hence

F'(x) +yH'(x)

oo (312)

dy =
We now compute the divisor of H(x) too.

Lemma 3.2.3. The divisor associated to H(x) is

k
div(H(x)) = ZniDi —dyD., =R—(g+1)D,.
i=1

Proof. 1If 7t is ramified at infinity then ordp (H(x)) = —2dy. If it is not ramified, then
ordp (H(x)) = ordp, (H(x)) = —dy = —(g + 1). For the ramified points P;, 1 <i <k, then
ordp (H(x)) = 2n;. At any other point of X the order of H(x) is clearly zero, and the first
equality follows. O

Finally, we describe the divisor of y. In order to do this we need to distinguish the zeroes of
F(x). Suppose that F(x) has | < deg(F(x)) distinct zeroes, and let yq,...,y; € k C IP}( be these
zeroes. Then if y; is a branch point let Q; = (y;,0) be the unique point in the pre-image
7 1(y;). If p; is not a branch point then let Q; = (¥;,0) and Q; = (yi,H(y;)) be the unique
points that form the pre-image 777!(y;). Also, we denote the order of the zero of F(x) at
vi € k by m; € N.

Proposition 3.2.4. If oo is a branch point, the divisor of y is

—

div(y) = ) mi[Qi]- (28 + 1)[Pxo).

i=1
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If 0o is not a branch point then, after possibly swapping the notations for the two points P,, and

P in 7w (c0), we have

—

div(y) = Zmi[Qi] + (g +1 —deg(F(x)))[P] = (g + )[PS]-

i=1

Proof. We first show that the divisor of y on the affine part of X, U, := X\1t7H(o0), is
25:1 m;[Q;]. Suppose P € Uy,. If F|p # 0 then it follows that y|p = 0, since F(x) = p(y+H(x))
(and similarly y does not have a pole at P). Hence div(y) has a coefficient of zero for any

point in U \{Q1,..., Q;}.

Suppose that P = Q; = (y;,0) is an unramified point in U,,. Then H(y;) # 0 and y p=0,50
v+ H(x) is a unit at P. Since y(y + H(x)) = F(x) we find that

F(x)

ordp(y) = ordp (m

) =ordp(F(x)) = m;.

We now look at when P = Q; = (¥;,0) is a ramification point. Since H(x) and H’(x)*F(x) +
F’(x)? cannot share roots it follows that #7; = 1. Hence the function F(x) := (x — ;)" F(x) is
a unit at P. We let H(x) = (x— ;)" H(x).

Now

y> = F(x) - pH(x) = (x - ;) (F(x) - pH(x)),

and hence

ordp(y?) = ordp(x — y;) + ordp(F(x) — yH(x)).

Since ordp(x — ;) = 2 and ordp (ﬁ(x)—yH(x)) > 0 we know that ordp(y) > 1. Hence
(yI:I(x))|P = 0, and since F(x) is a unit at P, we conclude that F(x) — yH(x) is a unit at P.

Hence ordp(y?) = 2, and so ordp(y) = 1 = m;. It follows that the divisor of y restricted to

Uy is Yty m[Q;].

We now consider the coefficients in div(y) of the points in 777! (c0). If co is a branch point
then deg(F(x)) = 2¢+ 1 and hence Zf-zl m; = 2¢g+ 1. Since y can only have a pole at P,,, we
conclude that the order of this pole is 2¢ + 1, and hence

l
diviy) = ) miQi]-(2g+ D[P
i=1

If co is not a branch point then there are two points at which y may have a pole, namely
P, and PJ. The hyperelliptic involution ¢ switches these two points. Furthermore, since

0:y v+ H(x) it follows that ordp, (y) = ordp_(y + H(x)), a fact we use below.
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We now consider three cases, firstly supposing that ordp_(y) < —(¢ +1). Then ordp (y) <
ordp (H(x)) and hence ordp (y) = ordp_(y+H(x)). But this contradicts ordp_(y)+ordp_(y+
H(x)) = ordp_(F(x)), since the left hand side is less than —2(g + 1), which is the minimum
value of the right hand side.

We now suppose that ordp_(y) = —(g+1). Since y(y + H(x)) = F(x) it follows that —(g+1) +
ordp_(y+H(x)) = ordp_(F(x)), and hence ordp, (y) = ordp_(y+H(x)) = —deg(F(x))+g+1.

We now consider the case in which ordp _(y) > —(g+1). Then, since ordp _(H(x)) =—(g+1),
it follows that ordp, (y) = ordp (y + H(x)) = —(g +1). It now follows from a computation
similar to that in the previous paragraph that ordp_(y) = —deg(F(x)) + g + 1, completing the
proof. O

The following proposition determines a basis of the k vector space of global holomorphic

polydifferentials. The case where m =1 can again be found in [Liu02, Prop. 7.4.26].

Proposition 3.2.5. We assume that § > 2 and let w := " Then a basis of HY(X,Q%™) is

H(x)m
given by
W, xXw, ..., x5 tw ifm=1,
W, xw, x*w ifm=g=2,
w,xw,...,x™&qy; ya),xya),...,x(m‘l)(g_l)_zyw otherwise.

Proof. We first assume that above elements are holomorphic polydifferentials, and show that
they then form a basis. To show that the elements are linearly independent over k we need
only show that the coefficients of w are, since w is fixed. The only case where this is not clear
is when the coefficients contain both x and y terms. But since the y terms are all linear, and

the extension is of degree two, it must follow that coefficients are linearly independent.

In the case that m = 1 then we have that dim; H°(X,Qx) = g by Definition 2.2.4, and there
are g elements described in the statement of the proposition in this case, so they must form a
basis. If m > 2 then dimy H(X,Q%") = (2m—1)(g—1). If m = g = 2 then (2m—1)(g—1) = 3,
and there are three elements listed in the proposition. On the other hand if m > 2 and g > 2

the proposition lists
m(g-1)+1+(g—-1)(m-1)-2+1=2mg-2m—-g+1=2m—-1)(g—1)

elements, and again they must form a basis.
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We now show that the listed polydifferentials are holomorphic, i.e. that their divisors are

non-negative. Firstly we have

) i 4,.@m
div(x'w) = div(x dx )

H(x)™
= I(DO _Doo) + m(R_ 2Doo) - Tl’l(R— (g+ 1)Doo)
=iDy+(m(g—1)—1i)Dg,

by (3.1), (3.2) and Lemma 3.2.3, and this is clearly non-negative for 0 <i < m(g—1).

Similarly, if co is a branch point, we have

div(x'yw) = div(x' w) + div(p)
)

=iDg+ (m(g—1) =)D+ ) _m;[Qi] = (28 + 1)[Poo]
i=1

=iDg+ ) mi[Q;]+(2m(g—1)-2g—1-2i)[P]
i=1

l
=iDy+ ) m[Q]+(2((m-1)(g—1)~1-i)-1)[P],
i=1

by (3.

1), (3.2) and Lemma 3.2.3 and Proposition 3.2.4, which is again clearly non-negative for
0<i<(g—-1)(m-1)-2.

Finally, if co is not a branch then, after possibly switching P,, and P.,, we have

div(x'yw) = div(x' w) + div(p)

iDo +(m(g~1)~1)Dq, +Zm[Q g +1—deg(F(x)[Pu] - (g + 1)[PL]

—-mR+m(g+1)D,,

iDo+ ) mi[Qi]+(mg—i—m—g—1)[PL]+(mg—i—m+g+1—deg(F(x))[Pu]

l
=iDg+ ) miQi]+((m=1)(g=1)=2=)[PL]+ (mg—i—m-+g-+1—deg(F(x)[Pu],

i=1
by Proposition 3.2.4, (3.1), (3.2) and Lemma 3.2.3. Since 0 <7 < (g—1)(m—1)—2 then the
coefficient of [PJ] is clearly non-negative. Finally, since deg(F(x)) < 2g¢ + 2, the coefficient
of [P,] is greater than or equal to that of [P} ], and we conclude that the above divisor is

non-negative, completing the proof. O



Chapter 4

Group actions on algebraic de-Rham

cohomology

Our aim in this chapter is to study the de Rham cohomology HéR(X/k) of a hyperelliptic
curve X as a module over k[G], where G is a subgroup of Aut(X). In the first section we
describe the ordinary cohomology groups H'(X,Oyx) and HéR(X/k) via Cech cohomology.
We can do this particularly elegantly in the case of a hyperelliptic curve X, since we can
choose a very simple affine cover, via the natural projection any hyperelliptic curve has on to

the projective line. We then use this to prove that the sequence of k[G]-modules
0— H°(X,Qy) - Hix(X/k) -» H(X,0x) — 0 (4.0)

is exact, see Proposition 4.1.2. The rest of the chapter will then build towards showing that

for a particular class of hyperelliptic curves this sequence does not split.

Building on the Cech cohomology computations of the previous section, we then use Serre
duality and the fact that we have already computed a k vector space basis of H’(X,Qy)
to compute a basis of H!(X,Ox) (Theorem 4.2.1), which surprisingly is the same whether
char(k) = 2 or not. As an application of this we then give a Mittag-Leffler style theorem for
hyperelliptic curves, see Corollary 4.2.2.

In the next section we compute a k vector space basis of HéR(X/k), which features the bases
of H(X,Qx) and H!(X,Ox) already mentioned, as well as other components, see Theorem
4.3.1. Unlike the basis of H!(X,Oy), this basis does depend on whether char(k) = 2 or not.

Using this basis we are able, after some computations, to determine precisely how certain
automorphisms act on the de Rham cohomology of X. In particular, we look at automor-

phisms on X of the form (x,y) — (x + a,), for some non-zero a € k. Then we prove (see

33
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Theorem 4.4.3) that if G contains such an automorphism, and X ramifies above co € IP}, then
the short exact sequence (4.1) does not split as a sequence of k[G]-modules. It should be
noted that such hyperelliptic curves can occur in any genus greater than 1. After this is the
final section of the chapter, giving examples to illustrate the details of what happens when
the above suppositions are satisfied, and finally giving an example to demonstrate that the

supposition that co is a branch point is required.

41 Cech cohomology and de Rham cohomology for

hyperelliptic curves

Throughout this chapter we assume that X is hyperelliptic of genus g > 2. We recall from
Chapter 3 that a curve is hyperelliptic if there exists a finite, separable morphism of degree
two from the curve to IP]i. We fix such a map t: X — IP]l of degree two, which is unique up
to an automorphism of IPi (see [Liu02, Rem. 7.4.30]).

In this section we describe H'(X,Ox) and H'(X, Q) concretely for such an X, using Cech

cohomology.

By Leray’s theorem [Liu02, Thm. 5.2.12] and Serre’s affineness criterion [Liu02, Thm. 5.2.23]
we know that, if we use an affine cover, the first Cech cohomology group of Ox will be
isomorphic to H'(X,Ox). We define U, = X\rt"!(a) for any a € IP; and we let U be the
affine cover of X formed by Uy and U,,. Given any sheaf 7 on X we have the Cech
differential d: F(Uy) X F (Us,) — F(Up N Uy,), defined by (fy, foo) — foluynu, = fooluynu,,-
In general we will suppress the notation denoting the restriction map. Via this differential we

have the following cochain complex

0 — Ox(Ug) x Ox(Us) 5 Ox(Uy N U,,) = 0.

The first cohomology group of this chain complex is H!(U,Ox) = OX(%(Z)UM and hence
UpNnU, UgNU,
Hl(X,(’)X);OX( 0N ©) __ Ox(UoNUs) (49)
Im(d) {fo— foolfi € Ox(Ui)}

When describing elements of H!(X,Ox) using the isomorphism we will denote the residue
class of f € Ox(UyN Uy,) in the quotient by [f].

If we replace Ox by (x in the previous paragraph then everything still holds, and we

conclude that

QX(UOQUOO) _ Qx(UgNUy) ' (4.3)

1 ~
H (X,Qx) = Im(d) {a)o—woolwiGQX(Ui)}
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Again, we denote the residue class of @ € Qx(Uy N Uy) in H'(X,Qx) by [w].

We now describe how the trace map acts on H'(X, Q) via the presentation (4.3).

Lemma 4.1.1. Let w € Qx(Uy N Uy,) with residue class [w)] in HY(X,Qx). Then we have

On the right hand side we consider w as an element of the module of differentials, QO x), via the
canonical injection Qx (Uy N Ug,) = Qg (x)-

Proof We take the Cech complex of (2.7) over the cover U, yielding the following bicomplex,

with exact rows

Qx(Up) x Qx(Us)— Qi (x) X Qrx) —> P Qrx/Qxpx B Qkx)y/Qx,p

PeU, PeU,,
d, \dz ld3

Qx(Up N Uge) = Qk(x) D Qxx/Qxp
PGL]()ﬁ(_]m

(4.4)
The exactness of the rows can be derived from 2.5.1, by replacing X by Uy and U, and

noting that in this case the first cohomology group will vanish, by Serre’s affineness criteria
[Liu02, Thm. 5.2.23].

We can now apply the snake lemma to this diagram, giving a long exact sequence. We first
note that d, is clearly surjective — any w € Qg(x) is mapped to by (w,0) € Qg x) X Qg x).
Now recall that d3 is defined by ((wp)pey,, (wp)peu,) = (wp = wp)pey,nu,,- Then given any
element (wp)y,nu,, € @QK(X)/QX,P we can define

wp ifPEU(]ﬂUOO
0 if P=co.

(wp) =

Clearly d3((wp)peu,,0) = (wp)peu,nu,., and hence d3 is also surjective. In particular, the
fifth and sixth terms of the long exact sequence are zero. We now exhibit isomorphisms
between ker(ds) and coker(d;) and, respectively, the third and fourth terms of (2.3). The
fact that H'(X,Qx) = coker(d, ) follows from the above discussion of Cech cohomology. To
show the isomorphism ker(ds) = @PGX Qg x)/Qx,p we first observe that the kernel of d3 is
formed of pairs ((wp)pey,, (wp)peu,,) € (@peuo QK(X)/QX,P)X (@pEUOO QK(X)/Qx,p) such
that wp = w}, for every P € Uy N Uy,. From this it follows that the map

@ Qg x)/Qx,p — ker(ds), (wp)pex — ((wP)PeUOI (wP)Pero)
PeX
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is an isomorphism.

The proof now follows from a diagram chase on (4.4). We start with the residue class [w] €
HY(X,Qx) of w € Qx(UyN Uy). Then w injects in to Qk(x), and since d, is surjective we
can choose an element of (g (x)x () (x) mapping to w. In particular, we choose (w, 0). This

then maps to

Y = ((wp)pey,, 0) € X

@QK(X)/QX,P .

PGUO

@ Qg x)/Qx,p
PeU,,

By commutativity of the diagram 1 € ker(dsz) = @PGXQK(X)/QX’P. This means that wp,
and hence 1, is zero for any P € UyN U,,. Since 1 is also zero for P € ™! (co) it follows that

t(w) =) Resp()= ) = Resp(w)

PeX Pem!(co)

O]

We now recall how to compute the algebraic de Rham cohomology of X via Cech cohomology.
Since X is a curve any differentials of degree greater than one on X are zero. Hence the de

Rham complex of X is

050y 50y —0. (4.5)

Here d denotes the differential map f +— df, as defined in [Har77, Chap. II, Pg. 172]. We
then recall from [Gro66, Pg. 351] that the algebraic de Rham cohomology of X is defined to
be the hypercohomology of (4.5).

We use the cover I/ and the Cech differentials defined earlier to give us the Cech bicomplex
of (4.5), which is

0 0 (4.6)
0 —— Ox(Up) x Ox(Uy) —= Qx(Ug) x Qx(Uy) —=0

0 0

Ox(UyNUy)

Qx(UyNUy)

0 0

By a generalisation of Leray’s theorem [Gro6l, Cor. 12.4.7] we know that the HéR(X/k) is
isomorphic to the first cohomology of the total complex of (4.6). Note that this requires
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HP(U,,Ox) and HP(U,,Qx) to be zero for any ¢ in the nerve of &/ and any p > 1 — since
Uy and U, are affine, this follows from Serre’s affineness criterion [Liu02, Thm. 5.2.23].

Therefore H&R(X/k) is isomorphic to the space

{(w0, eor forcollwi € Qx(Uh), fo o € Ox(Un N Uso) d fo,00 = wolugnur, = @eolupnu,}  (47)

quotiented by the subspace

{(dfo,dfoos fol s, = Fooluanu I € Ox (U} (4.8)

Via the isomorphism (4.2) and the description of H&R(X/ k) above, we can define the maps
it H(X,Qx) » Hp(X/k),  [0]+ [(0,,0)] (4.9)
and
p: Hp(X/k) > H'(X,0x), (@0, ©eor fooo)] P [fooo). (4.10)

The following lemma shows that HéR(X/k) fits in to a short exact sequence with H%(X,Qx)
and H'(X,0x).

Proposition 4.1.2. The following sequence is exact:
0— HO(X,Qy) > HL(X/k) & H' (X,05) - 0.

Proof- Let T be the total complex of (4.6). Moreover, we let O and () be the complexes
formed from the first and second (non-trivial) columns of (4.6) respectively. Then let Q[1]
denote the complex obtained from shifting Q by one, ie. Q[1]"*! = Q". From this we

obtain the following short exact sequence of complexes
Q1] T >0,
giving rise to the following long exact sequence

0 »H% (X/k) — H(X,0x) —
H(X,Qx) »Hg(X/k) - HY(X,0x) — (4.11)
HY(X,Qx) »Hz(X/k) = 0,

where the maps in the middle line are the maps i (4.9) and p (4.10).

The map H(X,0x) — H°(X,Qx) is the map f > df. Since the only globally holomor-
phic functions on X are constant functions, it follows that this is the zero map, and hence
HYX,Qx)— HjR(X/k) is injective.
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Since (4.11) is exact, p is surjective if and only if a: H'(X,Qx) — HgR(X/k) is injective.
Now H'(X,Qy) is isomorphic to k via the trace map, and if we can show that this isomor-
phism factors through a it will follow that a is injective. Considering the Cech cohomology
constructions of H'(X,Qx) and HjR(X/k), it suffices to show that the trace map is zero on
Im(d: Ox(UyNUy) = Qx(UyNUy)). This follows from Theorem 2.5.2, which says that
given any f € K(X) then Resp(df) =0 for any P € X, and in particular for any P € 1t~ (c0).
Hence t([df]) = 0 by Lemma 4.11. So the residue isomorphism factors through a, and p is

surjective. O

4.2 Basis of H!(X,0y)

We now give concrete elements in Ox(Uy N U,,) whose classes in H!(X,0Oy), via the iso-
morphism (4.2), form a basis of H!(X,Ox). Note in particular that the basis is the same
regardless of whether p = 2 or p # 2. We then give a corollary which is of the same style as
the Mittag-Leffler theorem [Ahl78, Chap. 5, §2, Thm. 4].

Theorem 4.2.1. The elements %, . Z—g € K(X) are regular on Uy N U, and their residue classes
[%],,[;—g] form a basis ole(X,OX).
Proof. We start by considering the case p # 2 and first check that the functions %,..., % are

indeed regular on Uy N U, (as required by (4.2)) by computing their divisors. From (3.1) and
(3.5) we see that

div(l):div(y)—div(xi)

xl
=R-(g+1)Dy —iDg+1Dg,
— R—iDy—(g+1-i)Dy,.

Since R is a positive divisor this is non-negative on Uy N U, for all i € Z, and hence in

particular for i € {0,...,g—1}.

Recall that the differentials y‘ldx, ... ,xg_ly_ldx form a basis of HO(X, Qx) (see Proposition
3.1.2). By Lemma 4.11 we know that (x'y~'dx,yx77) = Zpen—l(oo)ReSP(xiijdx). It follows
immediately from Theorem 2.5.2 that }_pey1(o) Resp(x'Jdx) = -2 if i — j = 1 and is zero
otherwise (regardless of whether oo is a branch point). It then follows from Theorem 2.5.5

that the residue classes [yx_l],..., [yx~¢] form a basis of H! (X,0x%).
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We now suppose that p = 2, and again start by checking that for i € {1,...,¢} the function

—i

VX

is regular on Uy N U,,. This follows once we compute the divisor of yx ~ which is

div(%) - div(y) - i div(x)
_ imi[Qi]—iDO—(2g+ 1 - 2i)[Py]
o
if co is a branch point and
div(%) - div(y) - i div(x)
= Zmi[Qi] —iDg +(g+1—deg(F(x)) +1)[Po] = (g + 1~ 1)[Ps]

otherwise. These equalities follow from Proposition 3.2.4 and (3.1). The divisors are clearly

positive on Uy N U, for all i € Z, and hence for i € {1,...,¢}.

Next we recall from Proposition 3.2.5 that if p = 2 a basis of H%(X,Qy) is given by

H}x)dx,. xg( - dx. We then deduce from Lemma 4.1.1 that when oo is not a branch point

Xy yx' yx')
——dx, R d Resp | Z——dx]|.
<H(x) X x]> eSp (H(x) X |+ est H(x) X
Then recall that in characteristic two we have an involution o: X — X given by (x,v) —

(x,y+H(x)), and that Resp(c™(w)) = Resy(p)(w) for any P € X and w € HO%X,Qx). Then it
follows that

Xy yx'J (v +H(x))x'J
<H(x)dx’x1> Resp_ (H( )dx)+Resp (—H(x) dx)

l

= 2Resp_ dx) + Respoo(xi_jdx)

=Resp_(x i de)

since we are assuming that char(k) = 2. As in the previous case, it follows from the definition
of Resp that ResPM(xi_jdx) =-11if i —j = -1 and is zero otherwise. Hence , by Theorem
2.5.5, the residue classes of §|U00Um,..., f—gluomum form a basis of H'(X,Ox) when p = 2 and

oo is not ramified.
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pidx, using (3.1), (3.2), Lemma

If P, is a branch point then we compute the divisor of )%
3.2.3 and Proposition 3.2.4:

i~j

div(%dx) = div(y) + div(x /) + div(dx) — div(H(x))

!

=) milQi]- (28 + D[Pu]+ (i = )Do - (i ~ ))Des + R~ 2D = R+ (g + 1)Deo
i=1

—

mi[Qil+(2j =3 = 2i)[ P ] + (i = j) Do.
i=1

We see that there is a pole of order one at P, precisely if 2j —3 — 2i = —1, or equivalently if
j=1+1. Hence <#;)dx, %> =Resp_ (%dx) # 0 in this case.

We also check that if j #i+1 then <H’i’ ] > 0. Indeed, if j —i > 2 then clearly % H( dx
does not have a pole at P,,. On the other hand, if j —i < 0 then the differential v Hix )dx is
regular on U, and hence the residue on this set is zero. Smce X\Uy = {P} it follows from
the residue theorem (Theorem 2.5.3) that the residue of y dx at P, is also zero, and hence

the residue classes of the elements [;],..., [E] form a bas1s of H'(X,0x), in all cases. [

We now give a corollary to Theorem 4.2.1, which is of the same style as the Mittag-Leffler
theorem. For a description of the classical Mittag-Leffler problem see [Mir95, Pgs. 180-181].

Corollary 4.2.2. For each P € X we fix fp € K(X)/Ox p, such that fp = 0 for almost all P € X.
Then there exist unique ay, ..., aq € k such that, after replacing fp by fp — (al S+ ag%) for
P em (o), we can find an f € K ) which has a Laurent tail of fp at P for all P € X.

Proof- Since fp = 0 for almost all P € X then (fp)pex € EBPeX X)/Ox p. From Lemma

2.5.1 we have the following exact sequence

0 — H%X,0x) = K(X) > @K(X)/Ox,p — HY(X,0x) = 0
PeX

and we let 6 denote the map @PGX X)/Oxp— H'(X,Ox). By Theorem 4.2.1 the residue
classes y; = [x],...,yg = [xg] form a basis of H'(X,Ox), and it follows that there exist
unique ap,..., a4 € k such that

o((fp)pex) — (“17/1 o “ng) -
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We can derive the exact sequence (2.2) by applying the snake lemma to the Cech complex of
(2.6) over U, which is

Ox(Uo)XOX(UOO)(—>K(X) —>>- @ K /OXPX @ K /OXP
PeU, PeU,,
ldl d, ld3
Ox(Up N Ug)—K(X) @D KX)/Oxp
PeUyNU,,

where the rows are exact. In particular, the surjectivity of the right hand horizontal maps
follows from the fact the exact sequence (2.3) still holds if we replace X by an affine curve,
and that in this case the final term of the sequence is zero. Now 0 is the differential map
ker(ds) = @Pex X)/Ox p — coker(d;) = H'(X,0x) in the statement of the snake lemma
[Wei94, Lem. 1.3.2]. Hence we can perform a diagram chase to find the element in ker(ds)

which maps to (0(1)/1 +...+a ) € H'(X,Ox) via this differential. Firstly, it is clear that

gV
a1y +...+agy, pulls back to

(((a1£+ +ag ))PeU ) @K /OXPX@K )/Oxp- (4.12)

PeU, PeU,,

Since al-xi/y is regular on U, N Uy, then (4.12) is equal to ((gp)Per, 0), where

ai+.t+agk  ifPen (),
8p =

0 else.

Clearly ((gP)PGUOY )eker d3 @PGX /OXP, and b((gp)peUO,O)20(17/1+...+0(g7/g.
Hence O((fp)pex — (gp)pex) = 0, and by the exactness of (2.2) it follows that there exists an

f € K(X) which has Laurent tail fp — gp at each P € X, as required in the statement of the
corollary. O

4.3 Basis of H},(X/k)

In order to state a basis of H&R(X/ k), as well as to shorten the proof of the following theorem,
we define the following polynomials. We suppose that 1 <i < g. Then when p # 2 we define

si(x) = xf'(x) = 2if(x) € k[x]
and when p = 2 we define

Si(x,v) := xF'(x) + y(xH'(x) + iH(x)) € k[x] ® vk[x] C k(x, ). (4.13)
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We now decompose these polynomials into two parts, which will be used in the sequel. Firstly,
we write s;(x) as s;(x) = ¢;(x) + 1;(x), where 1;(x), p;(x) € k[x] are the unique polynomials
such that the degree of 1;(x) is at most g + 1 and x8*2 divides ¢;(x). Secondly, we define
Aji€kfor1<j<2¢g+2, and By, €k for 0 <k < g+1 by the equation

2g+2 1
Si(x,y) :A2g+2,ix &t +...+A1,ix+y(Bg+1,,~xg+ +...+Bl,ix+BO’i).
Note that many of these coefficients may be zero. In particular we remark that the x' term of

xH’(x)+ iH(x) is always zero, since Bi,ix" = x-iB;x'"! +iB;x' = 2iB;x' = 0. We now define

the following polynomials:

O (x) = A2g+2,ix2g+2 to 4 Ay

W (x) = Ai’ix" +.o. +ALx, 414
@f(x) = BgH,ixg+1 +...Biqix't, '
\I’iy(x) = Bi_l,ixi_l +...+Byix+By;.

Finally, we define @;(x,y) = ®¥(x)+y®? (x) and Wi (x,y) = W*(x) +y W’ (x), so that S;(x,p) =
D;(x,y) + Wi (x,9).

Viewing H&R(X/k) as the quotient of (4.7) by (4.8), we now give a k-vector space basis of
Hp(X/k).

Theorem 4.3.1. Ifp # 2 then the residue classes

pi(x) —¢i(x) —i .
(28 o 5221, s

along with the residue classes
x o«
[(—dx,—dx,O)],i=0,...,g—1, (4.16)
y y

Jorm a k-basis of H} (X /k).

On the other hand, if p = 2 then the residue classes

[((Lw))d(Lw))dy)] g, (.17)

xi“H(x xi+1H(x

together with the residue classes

x! x! .
[(H(x)dx,mdx,O)],l =0,...,8-1, (4.18)

form a k-basis ofH;,R(X/k).
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Before proving this theorem we use it to prove the following corollaries.

Corollary 4.3.2. Let G be a subgroup of the automorphism group Aut(X). Then the action of G
on H(}R(X/k) is faithful unless G contains a hyperelliptic involution and p = 2, in which case the

action of the hyperelliptic involution is trivial.

Proof. Recall from Proposition 4.1.2 that H%(X,Qy) injects into HéR(X/k). Then if p # 2
or G does not contain a hyperelliptic involution it follows from Theorem 5.3.1 that G acts
faithfully on H(X,(Qx), and hence G acts faithfully on HéR(X/k).

We now suppose that p = 2 and that G contains a hyperelliptic involution, which we denote

by 0. Again by Theorem 5.3.1, we know that o acts trivially on H%(X,Qx).

Since H%(X,Qx) is dual to H!(X,Ox) then o also acts trivially on H!(X,Ox). We can study
exactly why this is from the view of Cech cohomology, and this will also help to determine

the action of o on H&R(X/k). If we fix a natural number i € {1,...,g} then o maps % to

H . . . H
% + izx ). Now we can write the rational function %x) as follows,
H(x) B;;x''+...+Bjx+B x% 4+ By x~1 4+ +Bx!
Xt x! B xt ’

where B; and d are as in (3.11). Since this is clearly the difference of an element of Ox(Uy)

and an element of Ox(U,,) we see that H® 5 zero in H'(X,0x). We let

x1

H i(x) = B;_;x'+...+B;x+By, and Hji(x) = —(x*+By_1x 1+ ... +B;x').

We now consider the action of o on the entries in (4.17). Firstly we see that

() ) ottt
xi+1H(x) - xi+1H(x)

“Wixy) H(x)(XH{,,-(x)JriHLi(X))d
xi+1H(x) xi+1H(x)
_ Wiy, xH{,i(X)fiHl,i(X) "
x1+1H(x) xitl
_\. H’ (x iH, :
\Pl(x’y)dm 1’1.( )dx+l 1.’l(x)dx
XHIH(X) X1 xi+l
-Wi(x,7) 1 1
- xH;H(Z)dH —d(Hy l(x))+H1,,.<x)d(F)
Wi(ny) o (H
x1+1H(x) xi 7

where the second equality follows from (4.13) and the fact that o(y) = vy + H(x).
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Similarly we can derive

D;(x,y) _ Di(x,p) Hj ;(x)
G(xi“H(x)dx) = xi+1H(x)dx+d(—xi )

Lastly, it is clear that o(x'y) = x7(y + H(x)).

We can now describe exactly how o acts on the elements of (4.17) using H; ;(x) and H ;(x):

~W(x,) D;(x,) -i ||} =
G([((xi“H(x))Xm(x”lH(x))dx’x 3})])_

[((_\I’i(x:y))derd(Hl,i(x)) ( D;(x,p) )dx+d(H2’i(x)) y+H(x))]
7 |, ; 7, : .

xi+1H(x) Xl xi+1H(X Xl X1

So the action of ¢ on the basis elements in (4.17) amounts to adding the residue class

[(d(H(x)l,i ),d(H(x>2,i ) H(x) )]
x! x! x!

which is clearly an element of (4.8) and hence is zero. So the action of the involution ¢ on
H(}R(X/ k) is trivial and hence the action of the group G is not faithful. O]

Corollary 4.3.3. Let p # 2. Then the hyperelliptic involution acts on H(}R(X/k) by multiplication
with —1.

Proof. The hyperelliptic involution ¢ acts by (x,y) — (x,—v). Hence, if we let

i(x) —¢i(x) i
e

then clearly o(y;) = —y;. Similarly, if
i i
A= [(x—dx, x—dx, O)]
y y

then o(A;) = —A,. Hence o acts by multiplication with —1 on H(}R(X/k). O

We now prove Theorem 4.3.1.
Proof. We make use of the fact that the short exact sequence in Proposition 4.1.2 splits as a
sequence of vector spaces over k, and that we know bases of the outer two terms.

It is clear that the elements in (4.16) and (4.18) are elements of (4.7). In fact, it follows from
Propositions 3.1.2 and 3.2.5 that they are the image of a basis of H%(X,Qy) in H;R(X/k).
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Moreover, it is obvious that if the elements in (4.15) and (4.17) are well defined elements of the
space (4.7) then they will map to the basis of H!(X,Ox) given in Theorem 4.2.1. So we need
only show that the terms in (4.15) and (4.17) satisfy the conditions stated in (4.7). For the rest
of the proof we fix i € {1,...,g}.

We start with the case p # 2, and observe that

(zp,-(x) —¢i<x>) e S

zyxi+1 - zyxi+1 zyx1+1
1 , 2if(x)
=gy (0025 o
A () 2if6)
C 2y |\ x2 x2i+1
x! 1 1
=3 (Fd( )+ 5 f )
. %d(f(xbc‘”)
=54 (7)’)
=d(yx7),

with the penultimate line following from the defining equation (3.3). This shows that the
elements in (4.15) satisfy d fy o, = wg — @q,, one of the conditions of (4.7). Since we saw in the

proof of Theorem 4.2.1 that 2 is regular on Uy N Uy, it only remains to show that de
X 2yx't
—i(x)

and nyiﬂ

dx are regular on U, and Uj respectively.

In order to do this we fix a; ; € k for 0 < j < 2¢ + 2 satisfying the equation
si(x) = a2g+2,ix2g+2 .ot
so that
Di(x) = Argin i X8 + .+ (rgyn xS
and
PYi(x) = ocgﬂyixg“ +...+ag;.

Note that it is possible for any of @;; to be zero. In fact, it is possible for either ¢;(x) or
;(x) to be zero. Whenever they are non-zero we denote their degrees as polynomials in x by
dg and dy, respectively. From the definition of ¢;(x) and ;(x) we know that 0 <d; < g+1
and g+1<dy <2g+2.
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We now show that 4) f+1)dx and I’D‘( Y dx are regular on U, and Uy respectively. We may

1+1

assume that ¢;(x) and ;(x) are non-zero, since the zero function is regular everywhere.

The divisor of 2¢ f+1)dx is

div( 2;Px(+1) dx) div(¢;(x)) - div(y) — div(x™*!) + div(dx)

= div(¢;(x)) = (R=(g+1)De) = ((i +1)Dp — (i + 1) D)
+(R-2D)

x+2

:divo(‘i;(:;))+(i_g_z)Doo+(g—i+1)D0,

zdivo((z)l ) (g+2)Dy—(2g+2)Dyy — (i + 1)Dg + (g + 1) Deo

where the second equality makes use of (3.1) and (3.5). Since i < g the differential z(l) = dx is

regular on Uy, = X\t 1 (o).
IP

xitl

Similarly the divisor of dx is

‘V(zﬁlfzfl d") = div(;(x)) - div(y) - div(x™*") + div(dx)

= div(i;(x)) (R~ (g + 1)Deo) — (i + 1)Dg — (i + 1)Dy,)
+(R-2D,,)
=div(y;(x)) + (g +i)De — (i + 1) Dy

= (divo(9;(x)) = dyDeo) + (8 +1)Deo = (i + 1) Dy
2 (divo(ihi(x)) = (g + 1)Doo) + (8 +1)Doo = (i + 1) Dy
= divo(i(x)) + (i = 1)Deo = (i + 1)Dp.
Again, the second equality uses (3.1) and (3.5), and since i > 1 we conclude that f; —rdx is

regular on Uy = X\7t71(0), completing the p # 2 case.
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We now suppose that p = 2. We remind the reader that this allows us to change signs between

positive and negative as we wish. We see that

((\I]i(x:y))+(q)i(xl}))))dx_ Sivy) 4.
xitlHg xitl g - xi“H(x)

:( F(x)’ +32H( ), iy )dx

iH( ) (x) xi+l
(R +yHE)\ iy
= ( o) )dx+ s dx
=x"'dy +yd(x_i)
=d (<),

with the fourth equality following from (3.12). We have also already seen in the proof of
Theorem 4.2.1 that xl is regular on Uy N U, So in order to prove that for i € {1,...,g} the

1

elements of (4.17) are satisfy the conditions of (4.7) it only remains to show that the differentials

xl*l(;y) dx and ,HH())dx are regular on U,, and Uy respectively. We denote the degrees of

the polynomials defined in (4.14) by dg,, dy,, dé and d&,,

By (4.14) we have @;(x,p) = O (x) + yCDl.y(x) and W;(x,y) = W*(x )+y\Ify( ), and we will use

)
( %) Wi (xy)
1+1H( )dx and x’“H( )

these splittings to show that dx are regular on U, and Uj respectively.

We start by computing the divisor of dx, since it is a common component to all the

W)
differentials we will consider. This yields

div(mdx) = div(dx) - div(x'*!) - div(H(x))
=(R=2Dy) = ((i+1)Dg— (i +1)Ds) = (R=(g+1)Dq,)

=(g+1)Dy — (i +1)Dy,

using (3.1), (3.2) and Lemma 3.2.3. We now use this along with Proposition 3.2.4 and the
polynomials (4.14) to complete the proof.

We begin by computing the divisors associated to ®;(x,v). Firstly,

div(-2T0 1)~ divior i +1)D D
W(xl—H(x) x) iv(D;(x)) = (i +1)Dg + (g + 1) Dy

=(divo(®; (x)) — dg Doo ) = (i +1)Dy + (g + ) D

)
>divy(P;(x)) = (2g + 2)Doo — (i + 1)Dg + (g + 1) Dy,
=divy(P(x)) = (i +1)Dg + (i =2 — §) Doy
DF(x)




48 Chapter 4 Group actions on algebraic de-Rham cohomology

(
H(x)

From this we see that the dlfferentlal

dx is clearly regular on U, = X\ 1t~ (c0).

x9)

1+1H dx namely

We now compute the divisor of the other half of

" yCDf(x)dx _di div(®? i+ 1)D \D
1V x“’l—I—I(x) = 1V(3/)+ IV( Z-(X))—(Z-l- ) 0+(g+l) )

=div(y) + divy(D; Dy, —(i+1)Dg+(g+1)Dq

/(%)) -
>div(y) +divy(P; Y (x)) - g+1) —(i+1)Dg+(g+1)Ds
o7
X)

:div(y)+d1v0[ xil ] (i—1)Dg.

From Proposition 3.2.4 we see that y only has poles at points in 771 (c0), and hence ’”I);f )dx

is regular on Uy, = X\1t™!(c0).

Now we complete the same computations on W(x,p), starting with W*(x):
| (%) o , ,
div xl+1—H(x)dx =div(W*(x)) = (i + 1)Dg + (g + i) D
= (divo(¥*(x)) = dy Do) — (i + 1)Do + (g + 1) Deo
> div(W(x)) —iDs — (i + 1)Dg + (g + i) Doy
= divo(¥(x)) — (i + 1)Dy + gD,
and it is clear that the divisor is positive on Uy = X\t ~1(0).

For the other half of the differential we need to consider separate cases. If we assume that co

is a branch point then using Proposition 3.2.4 we see that

g (y‘l’f(x) ]_ . o . .
iv| ————dx | =div((y) = (28 + 1)[ P ] + div(W¥/ (x)) — (i + 1) Dy + 2(g + )[ Ps ]

+div(W/ (x)) - (i + 1)Dg + (2i — 1)[ Py ]

=divo(y)

=divy(p) +dive(W (x)) - 247, [Pe] = (i + 1)Dg + (2i — 1)[ P ]
>divy(y) +dive(W (x)) = (i — 1)[Ps] = (i + 1)Dg + (2i — 1)[ Py, ]
=divy(y) +dive(W (x)) - (i + 1)Dg + [Ps ],
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which is clearly positive on Uj. On the other hand, if oo is not a branch point then we have

div Ly(x)dx =div(y) + div(W? (x)) (i + 1)Dy + (¢ + i)D
x”lH(x) y 1 0o+{& o

=div(y) +divo(W (x)) (i + 1)Dg + (g +i — d) Doy
>div(y) +dive(W’ (x)) - (i + 1)Dg + (g + 1) Deo-

Since we know from Proposition 3.2.4 that y cannot have a pole of order greater g +1 at P,
¥ ()
x”lH(x)

or P/, and only has poles at these points, it follows that the differential dx is regular

on Uy = X\7t71(0). Thus we have completed the proof.

4.4 Splitting of the short exact sequence

We keep the assumptions of the previous section, and we also assume that char(k) =p > 3.

In the previous section we found a basis for the de Rham cohomology of any hyperelliptic
curve using Cech cohomology, with respect to the cover U = {Uy, Uy} (Theorem 4.3.1). We
let A; and y; denote the elements of this basis by defining

i i
,’\i:[(x—dx,x—dx,o)], i=0,.,g-1
v 'y

and

| pilx) o =dilx) L _
Vi _[( 2pxitl ax, 2paitl dx,x"'y||, i=1,...,g

In this section we further study the covers U’ = {U,, U} and U” = {Uy, U,, Uy} for some
fixed a € IPi\{O, oo}. Then HjR(X/k) is isomorphic to the k-vector space

{(a)O’wal Weoor foar fooor faco)lwi € Qx(Uy), fij € Ox(U; N Uj),
foa = foo * faoa = 0,df;j = i — ;) (419)

quotiented by the subspace

{(dfo,d fad foor fo = far fo = foor fa = feo)Ifi € Ox (Ui} (4.20)
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We introduce Cech cohomology notation for the different representations of H&R(X/k) we
have used, letting I-VIO{R(Z/I) and ﬁéR(U") be the quotient of (4.7) by (4.8) and (4.19) by (4.20)
respectively. Then we have a canonical isomorphism p: H&R(U 7)) — I—VI(}R(U ), given by the
projection

P ((1)0, Wy Woos anlfOoorfaoo) = (a)o, C‘)cxvaoo)' (421)

The next proposition explicitly describes the pre-image of the basis element y; under p. To
this end, we define the following polynomials for 1 <i < g:
i—1 g
ri(x) = kZ(—l)g—k( k)ag—kxk

=0

and

g
ti(x):= Z(—l )g_k(i)ag_kxk.
—

1

These split the polynomial (x —a)$ in to two parts.

Proposition 4.4.1. The pre-image p~'(y;) fori € {1,...,g} is the residue class of

[ $ilx) J (i (X);(x) = i (x)ri (%)) (x — @) + 20 f (x)(=1)§ 7+ ($)as "+ x!
i 2yxi+1 ’ zyxi+1(x_a)g+l
—¢i(x) Xy vy ti(x)y
2yxitl " xi(x—a)8 x xi(x—a)8 )’

dx,

Proof- In order to be able to refer to the entries in v; more succinctly we let

Vi = (@0, Wair Wooir foair focoir facoi) -

First, note that it follows from the proof of Theorem 4.3.1 that d(fy.;) = Wi — Wi, and that

foooi» @i and wy,; are regular on the appropriate open sets.
Since r;(x) + t;(x) is the binary expansion of (x —a)¢ then

o _onlx)y oy t(x)y
anl fOOOl +faooz = xi(x—a)g e + —xi(x—a)g
_ Y(rix) + ti(x) = (x —a)?)

xi(x—a)8

=0.
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We now check that the differentials and functions in v; are regular on the appropriate open

sets by computing the relevant divisors. Firstly, by (3.1) and (3.5),

div (four) = div(x,”ﬂ)

f(x—a)

= div(r;j(x)) + div(y) —idiv(x) — gdiv(x — a)

> divy(rj(x))—(i—1)Deo + R—(g+1)Dy, —iDy+ 1Dy, — gD, + gD¢
=divgy(r;(x))+ R—-iDg—gD,,

which is non-negative on Uy N U,. Note that the second and third line are not necessarily
equal, since the coefficient of x'~! in r(x) may be divisible by p, and hence zero in k. On
the other hand, again by (3.1) and (3.5),

AV (frooi) = ( )

( )+d1v —gdiv(x—a)

ol
ool

where the third equality holds because t;(x)/x' is regular on U,. We conclude that f,.; is

)— —1)Doy +R—(g+1)Ds — gD, + gD,

)+R gD, —(g—-i+1)D,,

regular on U, N U,
To show that

. . — b . i+1(8\,g—i+1,.1
wai:(¢l(x)tl(x) Pi(x)ri(x))(x —a) + 2 f (x) (=187 (§)as ™" x ix (4.29)
2yxz+1(x_a)g+l

is regular on U, we first compute the divisor

div( . dx
zyx1+1(x_
=R-2D,—R+(g+1)Dy,—(i+1)Dy+ (i +1)Dy, —(g+1)D, + (g + 1) D,
=(2¢g+i+1)D,,—(i+1)Dy—(g+1)D,

e ) =div(dx)—div(y) - (i + 1)div(x) — (g + 1)div(x — a)

using (3.1), (3.2) and (3.5). We next show that the numerator of (4.22),

1

(i ()t (x) — ;i (x)r; (x))(x — a) + 2i f (x gl“(g) 87yt (4.23)

has degree less than 2g + i + 2, from which it follows that (4.22) doesn’t have a pole at the
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point(s) in 777 !(c0). The degree of ;(x)t;(x)(x —a) is at most 2¢ + 2, which is less than
2¢+2+iforall i > 1. If deg(f(x)) = 2¢ + 1, then clearly

deg(¢p;(x)ri(x)(x —a)) = deg(¢p;) + deg(ri(x)) + deg(x—a) <2g+1+i-1+1=2g+i+1

and

deg(Zif(x)(—l)g_i+1(f)ag_”lxi) <2g+1+i.

Lastly, if deg(f(x)) = 2¢ + 2 then the term of degree 2g+i+ 2 in —¢;(x)r;(x)(x —a) is

~((2g+ 2)a2g+2x2g+2 _ 2i”2g+2x2g+2)((_1)g_i+1(i gl)ag—i+1xi)

- 2(_1)g—i+2 ((g_ i+ 1)(ifl))a2g+2ag—i+1x2g+i+2

. ! » .
— 2(_1)g—z (U_lﬁW)a%Hﬂlg z+1x2g+1+2

; -i(& i+l j
:21(_1)g 1(i a2g+2ag i+ x2g+1+2’

which cancels with the term of the same degree in 2if(x)(—1)g*iﬂ(f)a«g*”lxi. Since these
terms cancel, we again have the that the degree of (4.23) is at most 2g + 7 + 1, and (4.22) has
no pole(s) at the point(s) in 77~ (co).

Finally, we show that (4.23) is divisible by x'*!. By definition x8*2|¢;(x), and since i <
g it follows that x"*!|¢;(x)r;(x)(x —a). On the other hand, the lowest degree terms of
2if(x)(=1)&*1(3)a8*1x" and 1;(x)t;(x)(x —a) which can be non-zero are, respectively,

i

2iag(~1)8+1 (g)agi+lxi
1

and

(—2iag) ((—1)gi(g,)agixi) (—a).

1

When adding ¥;(x)t;(x)(x — a) and 2if(x)(—1)g”'irl(f)ag’i“xi these two terms obviously
cancel. Hence the numerator (4.23) is divisible by x'*!.
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It only remains to show that w,; = wg; —d fp,;. We begin this by computing d f;,;, which is

dani:d( yri(x} )

xi(x—a)8

_ i( ) z(x)

_xi(x—a)gdy+yd(xi(x—a)g)

_ fi(x)rix) dx+y( ‘ri’(x) ir;(x) grix) )dx
xl

 2pxi(x—a)s -

(x—a) xitl(x—a)® xi(x—a)s']
_ X (0= @)+ 2f (0 (1)~ ) =i - a)ri(x) - g ()

zyxi+1(x _ a)g+1 dx.

Hence wg; —d fy,; expands to

P;(x)(x = @)$*1 = x f/(x)r;(x)(x — @) — 2 (x) (xr/(x) (x — @) — i(x — @)r; (x) — gxri(x)
2yxi+1 (x— a)g+1

dx.

Now
(x—a)¥*! = (x—a)¥(x —a) = (r;(x) + t;(x))(x — a)

and
xf(x)r;(x)(x —a) = 2i f (x)r; (x)(x — a) = r;(x)(x —a)(x f(x) = 2i f (x))
= ri(x)(x — a)(Pi(x) + ¢P;(x)).

So

Pi(x)(x = a)$* —xf " (x)r;(x)(x = @) + 20 f (x)r; (x) (x = @) = (; (x)t;(x) = Pi(X)ri(x)) (x — a).

We now compute (x —a)r/(x) — gri(x). First, we note that

i—1

r(x) = Zk(—l)g_k(i)ag_kxk_l

k
i

Il
N =

(k + 1)(—1)g—k—1(kf 1)ag—’<—1x’<.

=~
(=]
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From this it follows that

izl i-2
x)(x—a)=x Zk(—l)g_k(i)ag_kxk‘l —a Z(k + 1)(_1)g—k—1(k f 1)ag—’<—1xk
1

k=1 k=0
i—

gk g—k _k nek[ 8 ek k
1k ()a x+Zk+1 1) (k+1)a x

:ng'(X)+(—1)g_i+2i(g_)[1g_i+1xi_1,

1

since

g g \_ g! g!
"(k)”k”)(m1)‘k(kug—kn)”k“)((kH)<g = 1))

8! 8!
T k- g—k)!  K(g—k—1)!
_ 88
k(g —k)

Hence x(r](x)(x —a) - gri(x)) = (_1)g—i+2i(§)ag—i+1xi
Combining the above we conclude that

(i (X);(x) = i (x)r; (%)) (x — @) + 20 f (x)(~1)8T+1($)a8 7+ 1y

—dfr.. = dx = wy;.
01 anl Zny'l (X _ a)g+1 ai
Note that the last relation (d f;.; = W, — W;) holds, since
A facoi = A focoi = A foai = Woi = Weoi = W0 + Wai = Waj = Weoi- O

Recall that the hyperelliptic involution ¢ is in the centre of Aut(X) (see [Liu02, Cor. 7.4.31)).
Then, given any T € Aut(X), we have an induced map 7: IPi — IP]l, since IP]l is the quotient

of X by the hyperelliptic involution. Hence the following diagram commutes

X - X
T

lm lm

1 1

Py - Iy

Lemma 4.4.2. Suppose there exists T € Aut(X) such that the induced automorphism t : IPi — IPi
is given by x — x + a for some 0 = a € k. Then the action of T* on y is given by T°(y) = v or
T (y) = —y and moreover if such an automorphism of X exists, then p divides the degree of f(x)
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Proof. We first show that 7*(y) = +y. Since p? € k(x) then there exist g;(x), g>(x) € k(x) such
that

T(y) = g1(¥)y + g2(x) € k(x,).

Hence

flx+a)=7(p?) = (T W) = a1(x)*f (x) + 281 (x)g2(x)y + g2(x)*. (4.24)

Firstly, note that if neither g;(x) nor g(x) are zero then

flx+a) - g1 (x)*f(x) - g>(x)°

- s

281(x)82(%)

which contradicts the fact that K(X) is a degree two extension of k(x). Hence one of g;(x)

or g,(x) must be zero.

If g (x) = 0 then 7 would not be an automorphism, since y would not be in the image. Hence
T(y) = £1(x)y. Also, by comparing the degrees in (4.24) we see that deg(g;(x)) = 0, and then

by comparing coefficients in the same equation we see that g;(x)? = 1. Hence 7*() = +y.

We now show that dy := deg(f(x)) is divisible by p. We derived above that f(x) = f(x +a).
Comparing the terms of degree dy —1 on each side we see that dfa — bdffl = b4, (where
by, is as in (3.4)). It follows that df = 0 in k, and hence p | dy. O

Recall from Proposition 4.1.2 that we have a canonical short exact sequence
0 — H(X,Qyx) — Hi (X/k) —» H (X,0x) — 0. (4.25)

Theorem 4.4.3. Suppose there exists T € Aut(X) such that the induced automorphism 7 : IP}{ —
lP,l< is given by x — x + a for some 0 = a € k. We let G = () be the subgroup of Aut(X) generated
by T, and we further suppose that oo € IPi is a branch point of 7t: X — IP}(. Then the sequence
(4.25) does not split as a sequence of k[G|-modules.

Proof- By Lemma 4.4.2 we have 7*(y) =y or 7%(y) = —y. Without loss of generality we can
and will assume that 7°(y) = v since, if 7°(y) = —y, we replace T by 7 o o (where o is the
hyperelliptic involution of X). Notice that the sequence (4.25) splits as a sequence of K[G]-
modules if and only if it splits as a sequence of K[(T o 0)]-modules (see Corollary 4.3.3).

We now suppose that the sequence (4.25) does split, and that s: H'(X,0x) — H&R(X/k) isa
splitting map. Then it follows that for all @ € H!(X,Ox) we have

s(t(a)) = T*(s(a)) € Hyp(X/k). (4.26)
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We will show that this equality gives rise to a contradiction when « is the residue class [f—g]

in H'(X,Ox) (see (4.2) and Theorem 4.2.1). It will then follow that no splitting map can exist.

We first compute the action of 7* on the residue class [xlg] In order to do this we consider

the following obvious commutative diagram of isomorphisms:

HU(X,0x) < H'U0x5) & H' (WU, 0y

™l Pl
HY(X,0x) < HYU,0x) < HW U, Ox)
where p and p’ are the canonical projections. From Proposition 4.4.1 we know that p~! ([f—g])

is the residue class

[( r(X)y oy te(x)y )]:[(((x—a)g—xg)yl Y )]eHl(u”,Ox)-

x8(x—a)® x8" x8(x —a)® x8(x—a) "x8 (x—a)8

Therefore

ie. [}%] in HI(X,OX) is fixed by 7".

Since the canonical projection H&R(X/k) — HY(X,0x) maps Vg to the residue class [z—g] it

follows that
g-1

T(yg) =ygt+ Zci/\i

i=0

for some €os--1Cq1 € k. On the other hand, we also have
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for some dO,...,dg_l € k. Now the action of T on A; for 0 <i < g—1 is easily seen to be

given by

g1 g1 Loy
:[yg+Zci)\i]+Zdi( (k)al_k/\k).
i=0 i=0 k=0

By comparing coefficients of the basis elements A, 1, we see that c;_; = 0. We now show

that we must have ¢, ; = a/4 for the defining equation

g-1
T*(Vg) =gt Zci/\i
i=0
to hold. Since we assumed that a = 0 this will give us the contradiction we desire.

To compute 7°(),) we consider the following commutative diagram of isomorphisms

~ N p N 7
H(X/k) — H(U) Hg(U”)

| o'l (4.27)
H(X/k) < HLU) < HLU)

where p is the canonical projection (4.21) and p’ is given by

P/i (0)0, Wy, woofanlfOoo!fa,oo) = (wai wooffaoo)'
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Then

T (rg) =T (P’
=1 [w dx Y )]
98 Dyx8tl T (x —a)s (4.28)

(. —(j)g(x+a) v
| g 5 )|

where w,, is the second entry in Vg, as in the proof of Proposition 4.4.1. On the other hand,

(07 (7))
—¢g
yx

we have

g-1 8- i
) _
Vet Zci/\i = [( 2ll;§c(;1 dx z;i)jgﬂ P )] + ch [( dx, —dx 0)] (4.29)

i=0 i=

Note that the third entry in both (4.28) and (4.29) is f—g. Since any element of the form
(wg, Weo, 0) in the subspace (4.8) of the space (4.7) is in fact zero, we conclude, by comparing
the second entries of (4.28) and (4.29), that

-1

Pg(x+a) Pglx { x!
-8 dx=-——5"" dx+Zci;dx

2y(x +a)$t! 2yx8+l —
in QK(X)-

Since dx is a basis of Qg (x) considered as a K(X)-vector space, and as K(X) = k(x)@y~'k(x),

the equation above is equivalent to

Pg(x+a) &1
= cix!
g+1 g+1 1
2(x+a) 2x =
in k[x], and this, in turn, is equivalent to
g-1
Pgolx+ a)x8t = Pg(x)(x + a)$t = 2(x + a)8* 1 x8! chx ,

i=0

also in k[x].

Recall from Chapter 3, Section 3.1, that the assumption that co € IPi is a branch point of
implies that the degree of f(x) is precisely 2¢ + 1. The terms of highest degree in ¢¢(x) are

the same as the terms of highest degree in

sg(x) = xf'(x) - 2¢f (x) =x28H 0. x84
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We therefore obtain

((x+ a) 2t 10 (x+a)®8 +...)x3'+1

=(x28 1 0-x28 4. ) (x+a)¥T - 2(x + a)g“xg“(cg_lxg_1 +...),

and hence

(2g +1)ax38*! = (g + 1)ax38+! - 2cg_1x3g+1.

Finally, since 2¢+ 1 = deg(f(x)) =0 mod p (by Lemma 4.4.2) then g = —% in k. Hence we

obtain
_(g+1)—-(2g+1))a _a
Cg_l - 2 - Zl
as claimed above. This concludes the proof of theorem 4.4.3. O

4.5 Examples

In this section we give a number of examples and specialisations of Theorem 4.4.3, as well as

an example which demonstrates the necessity of the supposition that co is a branch point of
w: X > IPi.

Applying Theorem 4.4.3 to the hyperelliptic curve given by y2 = xP — x we obtain Theorem
3.1 in Hortsch’s paper [Horl2]. Conversely, the following lemma shows that Hortsch’s theorem
implies Theorem 4.4.3 if deg(f(x)) = p.

Lemma 4.5.1. Let p > 3. Suppose that deg(f(x)) = p and that there exists T € Aut(X) such that
the induced automorphism 7 : IP}( — IP; is given by x — x + a for some 0 = a € k. Then the curve
X is isomorphic to the hyperelliptic curve given by y? = xP — x.

Proof- Suppose that we have
f(x)=xP+ ap_lxp_1 +...+a;x+ag,

for some a; € k. We first show, by induction, that a; = 0 for i € {2,...,p — 1}, and that
a; = —aP~l. Since f(x) = f(x +a), we can compare coefficients, and for xP~2 this yields
the equality a, , =a, 1(p—1)a+a, 5, which is equivalent to 4, 14 = 0. Since we assumed
that 4 # 0 we conclude that a, ; = 0. We now assume that a, | =a, , =... = a5 =0,
where k > 1. Then the coefficient of x*~! in f(x + a) is a;_; + kaga, and after comparing
to the coefficient of x~! in f (x), which is ax_;, we conclude that kaa = 0. Since a # 0 by

assumption, and also k = 0, it follows that a; = 0.
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Finally, comparing the constant coefficients of f(x) and f(x + a) gives us ag = ag +a,a+ aP,

and so a; = —a”~!. So we now have

f(x)=xP —aPx +a.

If b € k is a root of f(x) then the map x — x+ b, y > p is an isomorphism of K(X) to the
function field of the hyperelliptic curve X’ given by y? = f(x) = xP — aP~! x. Further, the map
X ax, y - a%y is an isomorphism of K(X’) to the function field of the hyperelliptic curve
given by y2 = f(x) = xP — x. Combining these isomorphisms we see that our original curve is

isomorphic to that defined by yz = xP — x, concluding the proof. ]

Since we do not, a priori, enforce any conditions on the degree of f(x), it is plausible that
Theorem 4.4.3 is much more general that Hortsch’s theorem. In fact the following example is
a simple and general method to obtain polynomials f(x) of any odd degree, and hence any
genus, such that Theorem 4.4.3 applies to the curve given by y2 = f(x). Of course this will

only hold in a finite number of characteristics for any fixed genus.

Example 4.5.2. Let g(x) € k[x] be a polynomial of odd degree without repeated roots. Then
the combined polynomial f(x) = g(x” —x) obviously has no repeated roots, and it is also
clear that f(x+ 1) = f(x), and hence we have an automorphism 7, as in the statement of
Theorem 4.4.3.

Moreover, if g > 2 and p divides 2¢ + 1, and if we choose h(x) to be a polynomial of degree
n:=(2¢+1)/p then the curve defined by y? = f(x) := h(xP — x) is of genus g, and satisfies
the criteria of Theorem 4.4.3.

We now examine hyperelliptic curves that satisfy the requirements of Theorem 4.4.3 of genus

4 in full generality.

Example 4.5.3. Let p = 3. Given 0 # a € k, it is straightforward to verify that a monic
polynomial f(x) of degree 9 =2-4 + 1 satisfies f(x+a)= f(x) if and only if it is of the form

4

f(x)= x% +agx® + alagx* + a3x> + atagx?® + 2(a® + a’az)x + ao,

for some ag,as,ay € k. Now we fix ag, a5 € k, such that ag or as +a® is non-zero.

Then f'(x) = a®agx> + 2a*agx+2(a® +a%as3) is non-zero. If ag = 0 the f’(x) has no roots, and
hence f(x) and f’(x) are coprime, so f(x) has no repeated roots. Otherwise f’(x) has three
roots, which may or may not be distinct, which we denote 1,5, and 3. Then we define
B! :=f(Bi)—ag for i =1,2,3. If ag € k\{—p1,—p;,—P5} it is clear that f’(x) and f(x) do not

share any roots, and hence f(x) has no repeated roots.
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From this it follows that the equation y2 = f(x) defines a genus 4 hyperelliptic curve over k,
for which the exact sequence in Proposition 4.1.2 does not split, by Theorem 4.4.3.

We conclude this chapter with an example which demonstrates that the requirement in The-

orem 4.4.3 for oo to be a branch point X is a necessary condition.

Example 4.5.4. Let p = 3. By [KYI10, Table 1], the modular curve X(22) is the hyperelliptic
curve of genus 2 defined by

y2 = f(x) =x0+2xt+ x4+ 22241,

and the automorphism group of X((22) is Dg. We will show that the short exact sequence in
Proposition 4.1.2 splits as a sequence of k[(T)]-modules, where 7 is a generator of the unique
order three subgroup of Dg. However, in order to describe 7, we need to adjust our defining
equation. We first notice that the map x — x -1, y > v is an isomorphism of K(X(22)) to
the function field of the curve defined by p? = f(x) = x® + 2x* + 2x% + 2. We now apply a
further isomorphism to this curve. In general, if g(x) = a;x® +... + 4y, and ag # 0 # a; we can
define g*(x) := aalxsg(jl—c). It is stated after Lemma 2.6 in [KY10] that if y? = g(x) defines a
hyperelliptic curve, and s is even, then the curve defined by y? = g*(x) is isomorphic. In this

case we conclude that the curve defined by

pP=f(x)=x0+xt+x%+2

is isomorphic to X((22), and we let X be the curve defined by this equation, and we fix
f(x) = x% +x* + x% + 2 for the rest of the example. Note that f’(x) = x> + 2x and f(x) =
f’(x)?+2, and hence f’(x) and f(x) are coprime. In particular, this verifies that f(x) has no
repeated roots. Moreover, it is clear that f’(x+ 1) = f’(x), and from this it follows that

flx+1)=f'(x+1)°+2=f'(x)* +2 = f(x).
Hence the map 7: (x,y) — (x+ 1,9) is an automorphism of X.

By Theorem 4.3.1 a basis of I-VI;R(U) is given by

Al = (ldx,ldx,O)]
[\Y Y
Ay = (fdx,xdx,())]
[\Y
I 4 2
Y1 = (dex,ﬂdx,z)]
[\ VX Y x
[(x2+1 2x3 %
- d » d ey il B
| (Gras %an )|
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and we let y; be the image in H!(X,Ox) of y; under the projection p: H&R(X/k) —
H'(X,Ox). In particular, 7; and y, form a basis of H!(X,Oy).

Then we can define a map of k vector spaces
s: H'(X,0x) — Hg(X/k)
by
Vi Y1 and  yr pr+ A,

Clearly p os is the identity map on H!(X,Ox), and hence if s is k[(T)]-linear the sequence

in Proposition 4.1.2 does split as a sequence of k[{7)]-modules.

We now show that s is k[(T)]-linear. Applying Proposition 4.4.1 to the basis above we see that
the pre-images of 1 and y; in I:IjR(U”) are the residue classes of

X, ,

, ( 1 x* +2x3 + 2x2 x4+2x2d vy y(x+1))
1= =
X

v T oy 1) v U xa-D)P x (- 1)
and 2 3., .2 3
vy = 1+x3 dx,x +x +x+1dx,2idx, y(x+1) ,X’ Y '
2yx 2y(x—1)3 Y x2(x—1)2"x2" (x—1)?

Using a computation similar to (4.27) it is easy to verify that

(1) =7(p' (1)) =202+ 22+ 11

and that
T(y2) = T(p'(v2)) = y2 + 2A1.

Furthermore, we note that

T*(/\l):/\l and T*(/\z):/\z-l-/\l.

Finally we conclude that

S(T'(P1)) = s(p1 +272) = y1 + 22X+ 2y, = T (Y1) = T°(s(1))

and
S(T'(72)) =s(72) = y2 + A =T (y2 + A2) = T (s(72))-

Hence s is k[(7)]-linear, and the sequence in Proposition 4.1.2 splits.



Chapter 5

Faithful actions on Riemann-Roch

spaces

In this chapter our main aim is to determine when a subgroup of the automorphism group
of an algebraic curve acts faithfully on the space of global holomorphic differentials and
polydifferentials. Our approach uses the obvious fact that if any finite group G does not act
faithfully on H O(X,Q?}m) then there exists a subgroup of G which fixes at least one element

of this k vector space.

Given this, it will be useful to know whether the fixed space is non-zero, and for this reason we
start by computing the dimension of the fixed space H(X,Q%")¢. We discover (Proposition
5.1.2) that the dimension relies primarily on the genus of the quotient curve Y := X/G, m and

the ramification divisor of 77: X — Y.

Then we use this dimension formula, along with results from the second chapter, to compute
exactly when a cyclic group of prime order will act trivially on H O(X,Q?}m), considering
the cases m = 1 and m > 2 in Proposition 5.2.1 and Proposition 5.2.2 respectively. When
we are considering holomorphic differentials (i.e. when m = 1), this depends solely on the
characteristic of k, whilst for polydifferentials (i.e. when m > 2) this is actually independent
of char(k), and is determined by the genus of X, m and the order of the group. In the same
section we also extend these results to more general Riemann-Roch spaces, see Corollary
5.2.4.

We then move on to the main theorem (Theorem 5.3.1), which answers the question of when G
acts faithfully on H O(X,Q?}m). After proving this theorem we give examples which illustrate
both when we do and do not have faithful actions. In particular, we use results of Chapter 3

to explicitly show the result holds for hyperelliptic curves.

63
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We close the chapter with an alternative proof of when a cyclic group of prime order acts
faithfully on H%(X,Qx), by studying the k[G]-module structure of H°(X,Qy), which was
determined in [VMS8]].

The results of this chapter appear in [KT14].

51 Dimension formulae

Throughout this chapter, unless otherwise stated, we assume that X is an algebraic curve
over an algebraically closed field k of characteristic p > 0. We furthermore assume that G
is a finite group of order n that acts faithfully on X. Note that G also induces an action on
the vector space H%(X,Q%") of global holomorphic poly-differentials of order n. We let Y
denote the quotient curve X/G, and we let 7: X — Y be the canonical projection. Finally, we
denote by gx and gy the genus of X and Y respectively, and we let Ky and Ky be canonical

divisors on X and Y.

In this section we compute the dimension of H?(X, Q?}m) and of HO(X, Q?}m)G, the subspace
of HO(X,Q?}"Z) fixed by G. We first recall that dim; H%(X, Q) = gx by Definition 2.2.4. We
also computed the dimension of H%(X, Q?m) when gx,m > 2 in Corollary 2.3.7. Finally, as we
will see in examples (a) and (b) in Section 5.4, if gx is zero or one then dimk(HO(X,Q§m) =
gx, forallmeZ > 1.

We now introduce some notations. Let D = ) p.y 1p[P] be a G-invariant divisor on X (i.e.
ngp) = np for all 0 € G and P € X) and let Ox(D) denote the corresponding equivariant
invertible Oy -module. Furthermore, let 77%(Ox(D)) denote the sub-sheaf of the direct image
1.(Ox (D)) fixed by the obvious action of G on 7,(Ox(D)). We also let [@J denote the
divisor on Y obtained from the push-forward 7t,(D) by replacing the coefficient 7 of Q in
70.(D) with the integral part [%J of % for each Q € Y. The function fields of X and Y are
denoted by K(X) and K(Y) respectively. Finally, for any P € X let ordp and ordg denote the
respective valuations of K(X) and K(Y) at P and Q := 7t(P).

e

The next lemma is the main idea in the proof of our formula for dim; H%(X,Q , see

Proposition 5.1.2.

Lemma 5.1.1. Let D = Y p_y n1p|P] be a G-invariant divisor on X. Then the sheaves & (Ox (D))

and Oy ({MJ) are equal as subsheaves of the constant sheaf K(Y) on Y. In particular, the sheaf

n
G (Ox(D)) is an invertible Oy -module.

Proof. For every open subset V of Y we have

1S (Ox(D))(V) = Ox(D)(7" (V) S K(X)© = K(Y).
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In particular, both sheaves are subsheaves of the constant sheaf K(Y) as stated. It therefore

suffices to check that their stalks are equal. For any Q€Y and P € 7 1(Q), we have
¢ (Ox(D))g = Ox(D)p NK(Y)
={f €eK(Y):ordp(f) = —np}

:{feK(Y):ordQ(f)Z—n—P}

€p

- {f e K(Y): ordg(f) > —V—PJ}

ep
© ({ *’(l )J)Q;

as desired. O

The following proposition contains the aforementioned formula for the dimension of the
subspace of H O(X,Q?}m) fixed by G. In particular we see that this dimension is completely

determined by m, gy and deg{%(R)J.

Proposition 5.1.2. Let m > 1. Then the dimension of H*(X,Q%™)C is equal to

dimy (H'(X,QF")°) = (2m = 1)(gy ~ 1)+ deg {ng(R)J,

unless

e m=1 and deg{mn;z(R)J =0or

e gy =1and deg{mn*(R)J =0 or

n

e gy =0 and deg[mn*(R)J <2m-1,

n

in which case
dimy (H*(X,Q5%"™)°) = gv.

Proof- Let E denote the divisor [%J on Y. As Ky = 7*(Ky) + R by Theorem 2.4.6 we

have

£ {mn*(me) + n*(mR)J Kyt {mm(R)J'
n

Using the previous lemma we conclude that 7c& (Q}e}m) = Oy(E) and finally that

dimy HO(X,Q%")° = dimy HO (Y, 78(Q%™)) = dimy H® (Y, Oy (E)).
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We now show that dim; H%(X,Q%") = gy in the exceptional cases listed in the proposition.

Firstly if m =1 and deg [MJ =0, then I_%(R)J is the zero divisor and we conclude that

n

dim; H%(X,Qx)¢ = dim; H(Y,Qy) = gy.

In the second case [%(R)J is again the zero divisor. Furthermore, as gy = 1, the divisor Ky

is equivalent to the zero divisor, and hence mKy is too. This means that
dimy H%(X,Q%™)¢ = dim; H% (Y, Oy (E)) = dim; H° (Y, Oy (0)) = 1.
For the third case, by [Har77, Chap. IV, Ex. 1.3.4] it suffices to show that deg(E) < 0. As

gy = 0 we have deg(Ky) = -2, so deg(mKy) = —2m, and deg(E) is indeed negative.

We will show below that in all other cases deg(E) > deg(Ky), and then the Riemann-Roch
formula (Theorem 2.3.3) will give

dimy H(X,Q$™)° = dim H (Y, Oy (E))

=1-gy +deg(me + {%(R)J)

m7t,(R)
mal B

= (2m—1)(gy—1)+deg{

completing the proof for the main case.

All that remains is to show that deg(E) > deg(Ky) in all other cases. Firstly, if gy = 0 and
deg[mﬁ*(R)
n

J > 2m — 1 then, since deg(mKy) = —2m, we have
deg(E) > -1 > -2 =deg(Ky).

Similarly, if gy = 1 and deg[%(R)J > 0 then, as deg(mKy) = 0, we have deg(E) > 0 =

deg(Ky). If m =1 and deg[%(R)J > 0 then clearly deg(E) > deg(Ky). Lastly, if m > 2 and

gy > 2 then deg(Ky) > 0 and we have
deg(E) > deg(mKy) > deg(Ky).

So in all other cases deg(E) > deg(Ky), and the proof is complete. O

If m =1 we reformulate Proposition 5.1.2 in the following slightly more concrete way. Let S
denote the set of all points Q € Y such that 7t is not tamely ramified at Q and let s denote
the cardinality of S. Note that s = 0 if p does not divide 7.

In the next corollary for any Q € Y we let 6 = 0p and e = ep, for any P € Q).
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Corollary 5.1.3. We have

8y ifs =0,

dim; HY(X, Q)¢ = :
X gy —1+) ges {i—gJ otherwise.

Proof- We have

a0y |5 ]y e

Furthermore we have B—SJ =0 if and only if 0 < e, i.e. if and only if Q € S. Thus Corollary
5.1.3 follows from Proposition 5.1.2. O

Remark. Note that if p > 0 and G is cyclic then Corollary 5.1.3 can be derived from [KaKol3,
Prop. 6.].

5.2 'Trivial action in the cyclic case

In this section we will look at the case where G is a cyclic group of prime order, or a power of
a prime, and determine when G acts trivially on H%(X, Q?ém) Compared to arbitrary groups,
it is considerably easier to compute when these groups act trivially, and we will later see that

we can reduce to this case, regardless of what the structure of G is.

Throughout this section, Pj,...,P, € X denote the ramification points of 7w and we write e;
and ¢; for ep and 6p;. Also, for i =1,...,r, we define N; € N by ordp (o (r;) - 7;) = N; +1,
where 77; is a local parameter at the ramification point P; and ¢ is a generator of G(P;). We

also assume that gy > 2.

Proposition 5.2.1. Let p > 0 and let G be cyclic of order p. Furthermore, we assume that gy = 0.
Then G acts trivially on H*(X,Qy) if and only if p = 2.

Proof. From [Nak86, Lem. 1] we know that p does not divide N; for i = 1,...,r, a fact we will
use several times below. Let N := ) * | N;. Using the Riemann-Hurwitz formula, Corollary
2.4.7, we obtain
29x—2=-2p+(N+r)(p-1) (5.1)
and hence N ) )
dimy HO(X, Q) = gy = r_z =2
Since gx > 0 we obtain r > 1; that is, 7t is not unramified. As char(k) = p = ord(G), the

morphism 7t is not tamely ramified, and the cardinality s defined before Corollary 5.1.3 is not
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zero. Therefore we have

(R | v |(Ni+Dp-1 ] |20-D]|_
deg{ p J_Z{ p JZ { p J_DO'

i=1 i=1

From Corollary 5.1.3 we then conclude that
r 5
dim HO (X, Qx) =gy -1+ ) |
imy H™ ( x)" =8y ;{ 9 J

.
N;+1
:—1+N+r+Z{— 1p+ J

i=1

If p = 2, the dimension of both H(X,Qx) and H°(X,Qx)C is therefore equal to W

This shows the if-direction in Proposition 5.2.1.

To prove the other direction we now assume that G acts trivially on H%(X,Qy). For each
i=1,...,r, we write N; =s;p+t; withs; € N and t; € {1,...,p — 1}. We furthermore put
S:=)i,siand T:=) | ,t; >r. Then we have

(N+r=2)(p-1)

> =dim H%(X,Qx) =dim HO(X,Qx)* =N -5 1.

Rearranging this equation we obtain
B3-p)N-2S=(r-2)(p-1)+2

and hence

(-p*+3p-2)S=(r-2)(p—1)+2-(3-p)T.
Assuming that p > 3 this equation implies that

(r—=2)(1-p)-2+T(3-p)

S PR T

since —p2+3p-2=—(p—1)(p-2).

Because S > 0, the numerator of this fraction is non-negative, that is

0<(r-2)(1-p)-2+T(3-p)
<(r-2)(1-p)-2+r(3-p)
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Hence we have that r = 1 and that the numerator is 0. We conclude that S = 0 and hence
that T =1 orp=3.If T =1 we also have N =1 and finally

gy = (N+r—22)(p—1) 0,

a contradiction. If T # 1 and p = 3 we obtain N = T = 2 and finally

gy = (N+r—22)(p—1) _1

again a contradiction. d

Remark. In Section 5.5 we show that it is possible to give an alternative, but rather involved,

proof of the above lemma, using the deep and intricate results of [VMS8]].

Proposition 5.2.2. Let m > 2. Suppose that G is a cyclic group of prime order | (which may or
may not be equal to p) and that gy = 0. Then G acts trivially on H*(X,Q%") if and only if

Proof. We have different proofs according to whether or not the order ! of the group is the

same as the characteristic p of the field.

First we assume that = p. As in the proof of Proposition 5.2.1, we let N =) i | N;, and we
let M = N +r. Then due to (5.1) we have

29x—-2=-2p+M(p-1), (5.2)

and combining this with Corollary 2.3.7 we can write

dimkHO(X,Qf?}m):(Zm—l)(gx—l):(2m—1)(W). (5.3)
Furthermore, we have
m1t,(R) — | m(N; +1)(p-1) m(N; +1)
) oot ]

If we have p = gx = m = 2, then on the one hand we see that dim; H%(X,Q%") = 3. On the
other hand, we first note that (5.2) implies M = 6. So

deg{%(R)J:ZM—M:6>3:2m—1.
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Then, by Proposition 5.1.2, we obtain

mr,(R)

dimkHO(X,Q?}m)G:(Zm—l)(gy—1)+deg{ J:—3+6:3.

So the two dimensions are equal and the action of G on H(X,Q%™) is trivial. This completes

the if direction of the proof.

MJZ

Now we assume that the action is trivial. We first note that this implies that deg{ -

2m— 1. Indeed, if this was not the case then by Proposition 5.1.2 we would have
0 =dim H(X, Q%" = dim H(X,Q%") = (2m - 1)(gx - 1),

which is clearly a contradiction. So, using (5.4), (5.3) and Proposition 5.1.2 we see that

(2m— 1)M(”+)_2p = dim; HO(X,Q%™)
= dim; H(X,Q$™)¢

:1—2m+mM+Z{MJ

i=1 P
T
— 41
£1—2m+mM+ZM
i=1 p
M
:1—2m+mM—mT. (5.5)

After multiplying by 2p and rearranging we obtain

0> (2mM — M —4m + 2)p* + (~4mM + M — 2 + 4m)p + 2mM
=(M-2)(2m—1)p> = (M =2)(2m—1) + 2mM)p + 2mM
=(p-1)((M-2)2m—-1)p-2mM). (5.6)

Furthermore from (5.1) we obtain that —2p + M(p — 1) = 2gx — 2 > 2 and hence that

242
T, 2t (5.7)
p-1 p-1

M >
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So from (5.6) and (5.7) we see that

< 2mM
P=M—22m-1)

B M 2m

T M-2 2m-1

(1+M2—2)(1+2m1—1) (5-8)

4,

IA

iep=2orp=3.

Suppose that p = 3. Then from (5.7) we have M > 4. However, from (5.8) we also have that

3<(1+ 2 )(1+ ! )
o SV 2m—1

a contradiction.

Lastly, we come to the case when p = 2. From (5.8) we see that 2 < (1 + ﬁ)% and hence
M < 6. However, from (5.7) we know that M > 6, so M = 6. Then from (5.5) we obtain that
2m—1 =1-2m+6m—3m and hence that m = 2. Finally, (5.1) gives us that 2gx—2 =-44+6 =2
and hence gx = 2. This completes the only if direction of the proof when I = p.

Now if I # p then we know that all the coefficients 6; of the ramification divisor are equal
to I —1. To show the if direction in this case, first note that dimy HO(X,Q?}’”) = 3 by
Corollary 2.3.7. On the other hand, the Riemann-Hurwitz formula (Corollary 2.4.7) implies
that 2 = 2gy —2 = —2] +deg(R) = —21 + r(l — 1), and hence that r = 6. Finally Proposition
5.1.2 gives us

r - 6
. . m-s; m(l-1)
dimg H(X,Q8")C = —(2m — 1)+ 2 {TJ _ 34 Zl { l J =3,

since m = | = 2. As the dimensions of HO(X,Q?}'“) and HO(X,Q?}"Z)G are equal, the action

is trivial.

For the final section of the proof we suppose that G acts trivially on the space H O(X,Q?}m).
We then show that this implies that gx =1 =m = 2.
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From Corollary 2.3.7 and Proposition 5.1.2 we obtain

(2m—1)(gx - 1) = dim; H(X,Q%™)
= dim; HO(X,Q%™)¢

r

—(zm—1)+Z{mf(5iJ

i=1

and hence . .
B m-o; | m(l-1)| -m
(2m—1)gX_Z{ 1 J‘Z{ z "(””{TJ)'
i=1 1=1
By choosing s € {1,...,1} and g € IN such that m = ql + s we can rewrite this as

(2m—-1)gx =r(m—q—1). (5.9)

If we multiply (5.9) by /-1 and then substitute in for the r(/—1) term in the Riemann-Hurwitz
formula (Corollary 2.4.7) we get

(2m—1)(I-1)gx = (2gx +2(I = 1))(m—q —1).
By rearranging we are able to compute gx in terms of m,] and g:

B 2(I-1)(m—-g-1)

X Om—)(I-1)—2(m—q-1)
2(m—-gq-1)—(2g+1)(I-1)
2m-1)(1-1)-2(m—g-1)

2s—1-1

Tem-D)(-1)-2(m-q-1)

2(s—=1)+1-1

(2m—-1-2q)(I-1)-2(s—1)

=1+

(5.10)

First, we show that if [ > 3 the equation cannot hold whilst gx > 2. Observe that the

denominator is strictly greater than / — 1, remembering that m = gl + s:

(2m-1=-2q9)(1-1)=2(s=1)=((2q(I 1)+ 25 - 1)(I = 1) = 2(s = 1)

(
(2s-1)(1-1)-2(s—1)
(251

-

\%

\%

2s—1)(1-1)-2(s=1)(1-1)
1)

here the two inequalities are equalities if and only if g = 0 and s = 1, respectively, and, as
m > 2, not both inequalities can be equalities. Now the numerator is at most / — 1, occurring

when s = . Hence if | > 3 the fraction in (5.10) will be less than one and gx < 2, contradicting
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our assumption. If | = 2, then s is either 1 or 2. If s = 1 the fraction is negative, and gx <1,
which again contradicts our assumption. Finally, if s = 2 then gx < 2, with equality if and
only if g =0, i.e. if and only if m = 2. So if gx > 2 then the action being trivial implies that
gx =1 =m =2, and the proof is complete. O

For the rest of this section we assume that p > 0 and that G is a cyclic group of order p' for
some | € IN. What we are now going to do will not be used in the proof of the main theorem,
but is included because it generalises the previous results. More precisely, we do not restrict
ourselves to looking at H%(X, Q?m), but using a comparatively deep result from [KaKol3] we
study H%(X,O(D)) for any G-invariant divisor D such that deg(D) > 2gx — 2.

We first introduce some notation. Let D =) p.y np[P] be a G-invariant divisor on X. Then
let (a) denote the fractional part of any a € IR, i.e. (a) = a—|a]. Also, for any Q € Y let ng
be equal to np for any P € t=1(Q).

Proposition 5.2.3. Suppose p > 0 and G is a cyclic group of order p* for some 1> 1. Let D be a
G-invariant divisor on X such that deg(D) > 2gx — 2. Then the action of G on H(X,Ox(D))
is trivial if and only if

(p' ~1)deg(D) = p' {8}( -8y - Z<Z—§>]

QeY

Proof. We first remind the reader of the notation in [KaKol3]. Let 0 be a generator of G.
Let V be the k[G] module with k-basis ey,...,e, and G-action defined by o(e;) = e; + ;1
for 1 <i <p!, where ey = 0. Then V;, defined to be the subspace of V' spanned by ey,...,¢;
over k, is also a k[G] module. In fact, the modules Vi,..., Vi form a complete set of
representatives for the set of isomorphism classes of indecomposable k[G]-modules. For each
j=1,..p let m; denote the multiplicity of V; in the k[G]-module H%(X,0,(D)), i.e. we

1
have H(X,0,(D)) = ?:1 m;Vj.

First note that the action of G on H%(X,Ox(D)) is trivial if and only if
dimy; H%(X,0x(D))® = dim; H%(X,Ox(D)).

It is clear that the G-invariant part of each submodule V; is spanned by e;. It then follows

1
that dim; HO(X,Ox(D))¢ = Z?:l mj. By [K6Kol2, Thm. 2.1], which relies on [Bor06], we
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have

pl
;mjzl—gy+ Z{Z—SJ

QeY
n n
“1-grs ) (52-(20))
Qey ' Q Q
1 n
=1-gy+ —ldeg(D)— Z<€—Q>
p QeY Q

Now as deg(D) > 2gx — 2 we have dimy H(X,Ox(D)) = deg(D) + 1 — gx by the Riemann-
Roch theorem. So the action of G on H%(X,Ox(D)) is trivial if and only if

1 n
deg(D)+1-gx =1-gy +—deg(D)- Z<—Q>
p Qey €Q

This then rearranges to (p' — 1)deg(D) = p! (gx —8y — LQey <:—g>), as desired. O

Corollary 5.2.4. Suppose that deg(D) > 2gx. Then the action of G on H°(X,Ox(D)) is trivial
if and only if gy = 0, eglng forall Q € Y, deg(D) = 2gx and either gx = 0 or pl=2.

Proof. The following inequalities always hold under the stated assumptions:

n
(p' ~1)deg(D) = (p' ~ 1)2gx = p'ex > p'gx —p' Z<£>
Qey

> p! {gx—gy— Z<:—§>]

QeY

Now the first inequality is an equality if and only if deg(D) = 2gx. The second is an equality
if and only if either gx = 0 or p! = 2. The third inequality is an equality if and only if
2 Qey <Z—§> = 0, which is the case if and only if each ng is divisible by eq. Lastly, the fourth
inequality is an equality if and only if gy = 0. Given these observations, Proposition 5.2.3

implies Corollary 5.2.4. O

The following Corollary slightly strengthens the only if direction of the I = p part of Propo-
sition 5.2.2 (from ord(G) = p to ord(G) = p') and also provides a different proof for it; note

that this new proof relies on the comparatively deep result in section 7 of [Bor06].

Corollary 5.2.5. Let m > 2 and let G be a cyclic group of order p' for some 1. If G acts trivially
on H(X,Q%™), then gy = 0 and p' = gx =m = 2.
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Proof- As gx > 2 and m > 2 we have deg(mKx) > 2gx. So, if the action of G on HO(X,Q?{”)
is trivial, we obtain from Corollary 5.2.4 that deg(mKyx) = 2gx, p' = 2 and gy = 0. Now
deg(mKy) = 2gx implies that m(2gx —2) = 2gx, so m(gx — 1) = gx and hence m = gx =
2. O

Similarly to the case deg(D) > 2gx in Corollary 5.2.4, the following corollary derives neces-

sary and sufficient conditions for trivial action from Proposition 5.2.3 in the case deg(D) =
ng -1.

Corollary 5.2.6. Suppose that deg(D) = 2gx — 1 and that gy = 0. Then the action of G on
HY%(X,0x(D)) is trivial if and only if one of the following conditions hold:

«p'=2and ZQ6Y<:_§> =1;

-gX:2,pl:3andteanorallQeY.

Remark. It can easily be shown that in the last case the Riemann-Hurwitz formula implies

that the number of ramification points r is at most 4. Furthermore, if = 1 then the conditions

“Loey <Z—§> = 1%" and “eq | ng for all Q € Y" are already implied by “deg(D) = 2gx —1".

Proof. Firstly, if gx = 0 then deg(D) = —1 < 0, so dim; H%(X,Ox(D)) = 0 and the action is
trivial.
Now note that, as deg(D) = 2gx — 1, we conclude from Proposition 5.2.3 that the action is

(' -1)(2gx~1) = p' [gx— Z<:—§>]

QeY

trivial if and only if

If p! = 2 then this is equivalent to 2gy—1 = 2gx =22 Qey <Z—§> and hence to } ey <Z—§> = %

If gx =1 then this is equivalent to p' —1 = p! — p/ 2 0ey <Z—§> and hence is also equivalent to
no\ _ 1
ZQEY <£> - 17

1
Lastly, if p' > 3 and gx > 2 then we have that gy > Z,—:; which is equivalent to the first

inequality in the chain
n n
(P'-1)(2ex 1) 2 p'gx > p'gx —p' Z<6—Q> > p! [gx ~gv - Z<6—Q>]
QeY Q QeY Q

Hence the action is trivial if and only if both inequalities are equalities, which is the case if

and only if p' =3, gx =2, eq|ng forall Q€ Y and gy = 0. O
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5.3 The main theorem

In this section we prove the main theorem of this chapter, describing exactly when G will act
faithfully on HO(X, Q?m)

Theorem 5.3.1. Suppose that gx > 2 and let m > 1. Then G does not act faithfully on

HY%X,Q%") if and only if G contains a hyperelliptic involution and one of the following two
sets of conditions holds:

em=1andp=2;

em=2andgx =2.

Proof. We first show the if direction. In the case when m = 1, the hyperelliptic involution
contained in G generates a subgroup of order 2. Since p = 2, this acts trivially by Proposition
5.2.1, and hence G does not act faithfully. In the case when m = 2, then again looking at
the subgroup generated by the hyperelliptic involution, we have a group of order 2 acting on
HY%(X,Q%™). So, by Proposition 5.2.2 and since gx = m = 2, the action of this subgroup is

trivial, and again, this means that G does not act faithfully.

We now start the proof of the only if direction, supposing that G does not act faithfully on
H%(X,Q%"). By replacing G with the (non-trivial) kernel H if necessary, we may assume that
G is non-trivial and acts trivially on H O(X,Q?Em).

We start the proof by showing that gy = 0, which is shown separately for the cases when
m =1 and when m > 2. In the case when m =1 we start by showing that deg[n*,(qR)J >0
by contradiction. Suppose that deg{#J = 0. As G acts trivially it follows from Proposi-
tion 5.1.2 that:

gx =dim; H(X,Qx) = dim; H(X, Qx)° = gy.

Substituting this into the Riemann-Hurwitz formula (Corollary 2.4.7) yields the desired con-
tradiction because gx > 2,71 > 2 and deg(R) > 0.

Thus deg([MJ) > 0. Now Proposition 5.1.2 gives us that

n

R
gx = dim; H%(X,Qx) = dim; H(X, Q)¢ = gy —1 +deg{¥J.

Substituting this in to the Riemann-Hurwitz formula we see that

7,(R)
n

Z(gy—1+deg{ J—l):2n(gy—l)+deg(R).
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For any Q € Y we let 6 denote the coefficient of the ramification divisor R at any P € 7 (Q)
and let eg :=ep for any P € 71 (Q). Rewriting the previous equation then yields

(2n—-2)gy =2n—-4+2 deg{@J —deg(R)

o 0 -
because 5 > 1 and {%J < % for all Q € Y. Hence we obtain gy < Z—_f <1 and therefore

gy =0, as desired.

We now show that gy = 0 when m > 2. Since gx > 2 we have that deg(mKy) = m(2gx —
2) > 2gx — 2 = deg(Kx). By Corollary 2.3.7, and as both m and gy are at least 2, then
dimkHO(X,Q?}m)G = dimkHO(X,Q?}m) = (2m—-1)(gx — 1) > 1. There is only one case in
Proposition 5.1.2 such that m > 2 and dimg HO(X,Q?E’”)G > 1, which yields

(2m—1)(gx 1) = (2m—1)(gy - 1) +deg({%(R)J)-
Combining this with the Riemann-Hurwitz formula, Corollary 2.4.7, we see that
2(2m-1)(gy 1)+ 2dg({MJ) = 202m—1)(gx ~ 1)
= 2n(2m—1)(gy — 1)+ (2m—1)deg(R),
which can be re-arranged as
(2m—1)(2n-2)(gy —1) = 2deg({%(R)J)— (2m — 1)deg(R).

So if we can show that the right hand side of this equation is negative then we will have

gy —1 <0 and hence gy =0, as desired.
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Using the same notation as in the case when m = 1, we calculate:

2deg({mn;l(R)J)—(2m— 1)deg(R) = Z(Z{m-%%J—n(Zm— 1)6—Q)

QeY €Q
e
< 2m-— -n(2m-1)—
T, Q eQ
8
= (2m—n(2m—1)) Z—Q

Gey €@

Now as n,m > 2 then we have 2m —n(2m—1) < 2m—2(2m—1) = 2(1 —m) < 0 and we are

o
done as =2 s positive.
ZQEY eQ p

So we have shown for all m > 1, if the group G acts trivially on H%(X,Q%") then gy = 0.
Now if m > 2 then first note that G must contain a cyclic subgroup of prime order, say H,
such that H acts trivially on HO(X,Q?EM). Now Proposition 5.2.2 tells us that m = gx = 2,
and that the order of H must also be 2. Hence X/H = IP}(, and this completes the only if

direction for m > 2.

Similarly, the m = 1 case of the only if direction will follow from Proposition 5.2.1 after we
show that p > 0 and there is a cyclic subgroup of G of order p. This is true since 77 cannot be
tamely ramified. Indeed, if it were then R =} p.x(ep —1)[P] [Har77, Chap. IV, Cor. 2.4], and

deg[n*r(lR) J = 0, which we have already shown cannot be the case. Hence p must be positive,

and there is a cyclic subgroup of order p which acts trivially. O

Remark. Note that the existence of a hyperelliptic involution ¢ in G means not only that the
genus of X/(o), but also the genus of ¥ = X/G, is 0 (by the Riemann-Hurwitz formula).
Moreover, if p = 2, then the canonical projection X — X/(0) is not unramified (again by the
Riemann-Hurwitz formula) and hence not tamely ramified; then 7t cannot be tamely ramified

either.

Remark. If X is not hyperelliptic and m = 1, or if gx > 3 and m > 2, we can give a short proof
of the “only-if" direction of Theorem 5.3.1 using [Har77, Chap. IV, Prop. 5.2] and [Har77, Chap.
IV, Cor. 3.2]. The map X — IP(H(X,Qy)) is a G-equivariant closed embedding. Then, since
G acts faithfully on X, G also acts faithfully on H(X,Qx).

5.4 Examples

We will now give some examples of a finite group acting on a curve, and the consequent
action on the holomorphic poly-differentials. We start with some examples in which G acts

trivially on H O(X,Q?ém). We then follow this with the example of hyperelliptic curves, for
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which we compute an explicit basis of H O(X,Q?}m), allowing us to see when the action is

trivial.

(a) Let gx =0, i.e. X = IP}(. Then deg(Ky) = -2 and so deg(mKy) <0 for m > 1. Hence
H%(X,Q%") = {0} by [Har77, Lem. 2, Pg. 295] and G acts trivially on H°(X,Q%") for all
m2>1.

(b) Let gx =1, i.e. X is an elliptic curve. If G is a finite subgroup of X(k) acting on X by
translations, then G leaves invariant any global non-vanishing holomorphic differential w and
hence G acts trivially on H%(X,Qx); since @®" is a basis of HO(X,Q?{") this means that G
acts trivially on HO(X,Q?;m) for all m > 1.

If p>0 and G is a p-group, then the multiplicative character G — k* afforded by the one-
dimensional representation H%(X,Q%"™) of G has to be trivial because k doesn’t contain any
pth roots of unity; in particular the action of G on H%(X,Q%") is trivial as well. On the
other hand, if p # 2 and X is given by the Weierstrass equation of the form y? = f(x), then

the involution o: (x,y) — (x,—y) maps the invariant differential w = % to —w.

(c) Let X be a hyperelliptic curve and G the subgroup of Aut(X) generated by the hyperelliptic
involution. We recall that in Propositions 3.1.2 and 3.2.5 we gave bases of H(X,Q%") for

dx@m
H(x)m .

m > 1. In particular, if p # 2 we let w = d;‘—im, and if p =2 we let w =

We first suppose that p # 2. Then o acts by multiplication by —1 on x'w and yx'w if m
is, respectively, odd and even. Hence if m =1 or either m > 2 or gx > 2 the action of o is
non-trivial. Finally, if 7 is even then o acts trivially on w and x, and so ¢ acts trivially, and
hence non-faithfully, on HO(X,Q§2).

Now we suppose that p = 2. In this case ¢ acts trivially on x, and hence also on w. So the
action is trivial, and hence non-faithful, on H%(X,Qy), and also on HO(X,Q?}Z) if gx = 2.
On the other hand, o () = v+ H(x), so o acts non-trivially on px’w, and the action is faithful
if m>2and gx > 2.

5.5 K|[G]-module structure of H(X,Q)y) when |G| =p

In this subsection we give an alternative proof of Proposition 5.2.1, using a sophisticated
result of Valentini and Madan [VM8I]. We suppose that G is a subgroup of Aut(X) of order
p = char(k) and that gx > 2 and gy = 0. The k[G]-module structure of H%(X,Qy) is
computed in [VM8I1, Thm. 1], and from this we will show that the action of G on H*(X, Q)
is trivial if and only if p = 2.
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We remark that in [VM8]] it is assumed that |G| = p” for some 1 € IN. We have assumed that
n = 1, since this will greatly simplify our computations, and we do not require the general

case.

Let o be a generator of G. There are p unique indecomposable representations of G, which
are

M :=k[G/((c-1)f),  k=1,...,p.

Note that the elements ¢ := ¢%,0 = ¢},..., ok form a k-vector space basis of M.

We let di denote the number of times that My occurs in the decomposition of the k[G]-
module H%(X, Q) in to indecomposable k[G]-modules, so that

p 4
HY(X,Qy) = @ @ M,. (5.11)
k=1 i=1

Now if the action of G on H%(X,Qy) is trivial then the only indecomposable submodule
of HY(X,Qx) will be the trivial module M;. Hence the action of G is trivial if and only if
dy=gxand dy =0 for ke{2,...,p}.

We let Qy,..., Qs € Y be the branch points of 7, and we let P;,..., P, be the corresponding
ramification points (note that since |G| is prime it follows that there is only one point in
7 1(Qj) for 1 <i <s). For each i € {1,...,s} we let m; denote the largest integer such that
G;(P;) is non-trivial, which is coprime to p by [K6Kol2, App. 5, Lem. 5.1]. From Hilbert’s

formula (Theorem 2.4.9) we conclude that

8i=) (ord(Gi(P)=1=) (p—1)=(p—1)(m; +1).
=0 =0

In particular, the second equality holds since G;(F;) is trivial for j > m;, and hence we have

ord(Gj(P;))—1 = 0 for any such j. Now we set

51' - kﬂ’li
p

71,k:\‘ J) kZOJ"'lp_]-;

where | c] denotes the largest integer less than c, for any c € R. We let Iy = ) ¢, 7, x. Note
that [} <Tj_; for all k.
We now state the main theorem of [VMS8I].

Theorem 5.5.1. Let G be a cyclic group of automorphisms of X of order p. Let Y := X/G be the
quotient of X by the action of G, with genus gy. The regular representation M, of G occurs gy
times in the representation of G on HO(X,Qy). The indecomposable representation M,y occurs
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Ly =T, 1 =1 times, whilst fork = 1,...,p — 2, the indecomposable representation My of degree k

occurs [j_1 — T} times.
Proof. See [VM8], Thm. 1]. O
Using the above theorem we now give an alternative proof of Lemma 5.2.1.

Proof of Proposition 5.2.1. We first show that if p = 2 then the action is trivial. In this case
there are only two representations - the regular representation and the trivial representation.
By Theorem 5.5.1, the regular representation occurs gy times. Since we assumed that gy = 0
it follows that the action of G on H%(X,Qx) only affords the trivial representation, and hence
G acts trivially.

We now prove the other direction, supposing that p > 2 and that the action of G on
HY(X,Qy) is trivial. We will see that this yields a contradiction.

We first observe that for any i € {1,...,s} we have

‘ _{@-(P-UWJ_{(P—l)(mﬁl)—(l?—l)miJ_{P—lJ_O
Vip-1= ? = p = =0.
and hence T,_; = ¥}_, 7,1 = 0.

Now since we are assuming that the action of G is trivial, it must follow that d; = 0 for all
k =1, as previously discussed. Then by Theorem 5.5.1 we have that I, , —I}, ; =1 =0, and
hence Fp_2 = 1. We can then conclude inductively that for 1 <k < p—2 we have I} = 1, using
the relation I}, _; — I} = 0 from Theorem 5.5.1. Finally, we also have Iy = gy +I7 = gx + 1.

Since

1=T,,= {@J _ Z{(P—l)(mi+;)—(p—2)miJ _ Z{mi +pp_1J'

l:l 1:1 121

it follows that m; # 0 for exactly one i, and for that i we have 1 < m; < p. Furthermore,
since all m; are coprime to p, we actually have 1 < m; < p —1. Note that actually s =1
because m; = 0 cannot occur, since Gy(P) = G1(P) for any ramified P € X. We let m = m;
and 0 = 0;.

We now determine 1, as follows:

1+gX:1“0:BJ:{WJ:erH{_mp_lJ:m, (5.12)

with the last equality following since 0 > -m—-1>2—-p.
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On other hand, from the Hurwitz Formula (Corollary 2.4.7) and Hilbert’s Formula (Theorem

2.4.9), we can conclude that
29x—2=-2p+(p-1)(m+1),
which, together with (5.12), implies that

gx(p—-3)=0.

Hence we conclude that p = 3. But applying (5.12) and the fact that m < p — 1, we conclude
that 1 + gx = m < 3, which contradicts our assumption that gx > 2. O
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