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Group actions on differentials of curves and cohomology bases of hyperelliptic curves

by Joseph J. Tait

In this thesis we consider the natural action of a subgroup G of the automorphism group of

an algebraic curve on spaces of differentials and similar algebraic structures. We focus on

curves over an algebraically closed field k of characteristic p > 0, and in particular on cases

where p divides the order of the group G. There is also an emphasis on explicit examples

and concrete computations throughout the thesis.

After covering background material about smooth projective curves we remind the reader of

the details of hyperelliptic curves. Given a hyperelliptic curve X, we present an explicit basis

for H0(X,Ω⊗mX ), the space of global polydifferentials of degree m.

We apply our study of hyperelliptic curves by computing bases of H1(X,OX) and the first

de Rham cohomology group of X, H1
dR(X/k). We make these computations via Čech coho-

mology, and use them to determine the action of a specific automorphism τ of order p on

H1
dR(X/k). We then show that the natural short exact sequence of k[〈τ〉]-modules

0→H0(X,ΩX)→H1
dR(X)→H1(X,OX)→ 0

does not split if X is ramified above ∞. We also give a Mittag-Leffler style theorem for

hyperelliptic curves.

We finally consider the question of when G acts faithfully on the space H0(X,Ω⊗mX ), for

any smooth projective curve X. We give a complete and concise answer to this question, as

well as extending the result to general Riemann-Roch spaces H0(X,OX(D)) where D is a

G-invariant divisor of degree at least 2gX −2. Lastly, we use our earlier work for hyperelliptic

curves to elucidate the main theorem.
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ď Čech cohomology differential

D Divisor

div(f ); div(ω) The divisor of a function or differential

Div(X) Space of divisors on X

deg(D) Degree of the divisor D

δP Different exponent at the point P

eP Ramification index at the point P

gX Genus of the curve X

G Subgroup of the automorphism group of a curve

Gi(P ) The ith ramification group at the point P

H0(X,ΩX) Space of global holomorphic differentials on X

H0(X,ΩX(D)) Space of differentials associated to the divisor D on X

H0(X,OX(D)) Space of meromorphic functions associated to the divisor D on X

H0(X,Ω⊗mX ) Space of global holomorphic polydifferentials of degree m on X

H1(X,OX) First cohomology group of OX
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Chapter 1

Introduction

Geometry and topology provide perhaps the greatest source of both intuition and vision in

mathematics, whilst algebra balances the scales, being the exemplar of precision and ab-

straction. A most compelling example of the interplay between these two areas is the triple

equivalence of Riemann surfaces, complex function fields and complex curves. On the one

hand, compact Riemann surfaces constitute all spaces that occur in the topological classifica-

tion of connected, compact, orientable surfaces. On the other hand, complex function fields

lie strongly in the algebraic end of the spectrum, with strong relations to number theory and

Galois theory. Finally, it is algebraic curves that most clearly unites algebra and geometry.

The genus is arguably the most important invariant of topological surfaces. It is possible to

use it to define the Euler characteristic, and it also benefits from being very easy to describe

— the genus of a connected, compact, orientable surface is just the number of “holes" or

“handles" it has. Given this, any theory that claims to be equivalent to the study of Riemann

surfaces would do well to explain how it gives rise to the concept of genus.

In the case of algebraic curves, it is Riemann-Roch theory that allows us to extend the defi-

nition of genus. Originally only for Riemann surfaces, the theory focusses on meromorphic

functions and differentials. It is this focus which allows the definition to be generalised, first

just to complex algebraic curves, then to curves over any algebraically closed field k. The

genus appears as a constant in Riemann-Roch theory, most notably as the dimension of the

vector space of holomorphic differentials and in the Riemann-Roch theorem itself. The fact

that the genus can be defined in terms of differentials demonstrates why differentials, and in

particular holomorphic differentials, play such an important role in the theory of algebraic

curves.

1



2 Chapter 1 Introduction

On the other hand, we recall the famous quote

“Whenever you have to do with a structure endowed entity Σ try to determine

its group of automorphism" — Hermann Weyl [Wey52, pg. 144]

Indeed, the automorphism groups of algebraic curves, and in particular Riemann surfaces,

have given rise to many interesting theories. For example, it is known that every finite group

is the full automorphism group of some Riemann surface [Gre74, Thm. 6’]. Of course, any

group that acts on a curve X also acts on functions and differentials of X, such as H0(X,ΩX),

the space of global holomorphic differentials.

The main focus of the thesis will be in studying such actions on Riemann-Roch spaces. In

particular, we will consider the k[G]-module structure of various spaces of differentials on

X, and related spaces, for a subgroup G of the automorphism group Aut(X), paying special

attention to what happens in positive characteristic. Of course, if the characteristic divides

the order of G the theory is often a lot more complex — for example, we no longer have

Maschke’s theorem, a fundamental result in classic representation theory.

The thesis is broken in to four main chapters (excluding this one). The first gives background

and fixes notation. We now proceed to describe and motivate the other three chapters.

1.1 Bases of spaces of (poly)differentials on hyperelliptic curves

Hyperelliptic curves are a classically studied class of algebraic curves, characterised by being

double covers of the projective line. In particular, any hyperelliptic curve X comes equipped

with a projection map π : X → P
1
k , unique up to an automorphism of P

1
k . They can be

viewed as a natural extension of elliptic curves to higher genera, sharing a similar defining

equation of y2 = f (x) (if char(k) , 2). It is this concrete and relatively simple defining

equation that allows explicit calculations to be made for them. Added to this, there exist

hyperelliptic curves with every possible genus (except one and zero), so in this sense they are

not a very restrictive class to consider. Moreover, hyperelliptic curves also have a number

of nice geometric properties — for example, they can be characterised entirely in terms of

Weierstrass points [Mir95, Chap. VII, §4, ex. R], and also every genus 2 curve is hyperelliptic

[Liu02, Prop. 7.4.9].

We study hyperelliptic curves throughout this thesis. However, despite being commonplace

in algebraic geometry, it is not always easy to find precise statements in the literature. This

is especially true when working over a field of characteristic two, where hyperelliptic curves

behave very differently. Because of this we split Chapter 3 in to two sections, according to
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the characteristic of k, and start each section by collecting results that will be needed either

later in the chapter or the rest of thesis.

The highlights of Chapter 3 are Proposition 3.2.5 and Proposition 3.1.2, which give bases

of the space of holomorphic differentials and polydifferentials of a hyperelliptic curve X of

genus g ≥ 2 when the characteristic of k is two and is not two, respectively. We first state the

basis when the characteristic of k is not 2, recalling that in this case the function field K(X)

is equal to k(x,y), where y satisfies y2 = f (x) for some polynomial f (x) ∈ k[x].

Proposition. Let m ≥ 1 and let ω := dx⊗m
ym . Then a basis of H0(X,Ω⊗mX ) is given by:

ω,xω, . . . ,xg−1ω if m = 1,

ω,xω,x2ω if m = g = 2,

ω,xω, . . . ,xm(g−1)ω; yω,xyω, . . . ,x(m−1)(g−1)−2yω otherwise.

Note that the case where m = 1 is already in the literature, see [Liu02, Prop. 7.4.26] or [Gri89,

Ch. IV, §4, Prop. 4.3].

On the other hand, if char(k) = 2 then K(X) is still equal to an extension of k(x) of the form

k(x,y), but this time we require y to satisfy y2 +H(x)y = F(x), where F(x) and H(x) are

polynomials in k[x], whose degrees will determine the genus.

Proposition. Let m ≥ 1 and let ω := dx⊗m

H(x)m . Then a basis of H
0(X,Ω⊗mX ) is given by:

ω,xω, . . . ,xg−1ω if m = 1,

ω,xω,x2ω if m = g = 2,

ω,xω, . . . ,xm(g−1)ω; yω,xyω, . . . ,x(m−1)(g−1)−2yω otherwise.

Note that the case where m = 1 can again be found in [Liu02, Prop. 7.4.26].

Equipped with the knowledge of these explicit bases we can examine group actions on

H0(X,Ω⊗mX ) much more readily. For example, in Chapter 5 we compute the action of the

hyperelliptic involution σ on the above basis. Using this we can see when the group generated

by σ acts faithfully on H0(X,Ω⊗mX ), explicating the main theorem of Chapter 5 in this case.

1.2 Group actions on algebraic de Rham cohomology

In the study of smooth manifolds de Rham cohomology is a well-established tool, which

determines to what extent closed differential forms on a smooth manifold M fail to be exact.

To further demonstrate its significance, we note that in 1931 Georges de Rham proved that

the de Rham cohomology of any smooth real or complex manifold M is isomorphic to the

singular cohomology of M in [deR31].
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Given that de Rham cohomology is defined on complex manifolds, and hence Riemann Sur-

faces, an obvious question to ask is whether one can define an analog of de Rham cohomology

for algebraic curves. Grothendieck answered this in a letter to Atiyah [Gro66], where he in

fact defined the algebraic de Rham cohomology of a scheme. The Hodge-de Rham spectral

sequence arose from this definition, and has been much studied. In particular, Deligne and

Illusie proved that if, for example, X is a complex, smooth, projective variety then

Hn
dR(X) �

n⊕
i=0

H i(X,Ωn−i
X ),

see [DeIl87]. When X is a curve this is more or less equivalent to saying that we have a

canonical short exact sequence

0→H0(X,ΩX)→H1
dR(X/k)→H1(X,OX)→ 0. (1.1)

Moreover, most of the time (for example, whenever char(k) = 0), this sequence splits not only

as k vector spaces, but also as k[G]-modules, where G is a subgroup of Aut(X). However, this

is not always the case — in particular, if char(k) = p > 0 divides the order G, the sequence

may not split. In [Hor12] Hortsch demonstrated that if X is a hyperelliptic curve over k, an

algebraically closed field of characteristic p, and has y2 = xp − x as a defining equation, then

(1.1) does not split.

Theorem 4.4.3, given below, generalises this result. Before stating this, we recall that any

automorphism τ of X commutes with the hyperelliptic involution σ , and since P
1
k � X/〈σ〉

then τ induces an automorphism of P1
k .

Theorem. Let X be a hyperelliptic curve over an algebraically closed field k of characteristic

p ≥ 3. Suppose there exists τ ∈ Aut(X) such that the induced automorphism τ̄ : P1
k → P

1
k is given

by x 7→ x + a for some 0 , a ∈ k. We let G = 〈τ〉 be the subgroup of Aut(X) generated by τ ,

and further suppose that X is ramified above ∞ ∈ P1
k . Then the sequence (1.1) does not split as a

sequence of k[G]-modules.

Such curves exist in every genus and every characteristic (greater than 2), and we give exam-

ples of such curves in Chapter 4. We also give an example from [KY10] of a curve that is as

described in Theorem 4.4.3, except that it is not ramified above ∞ ∈ P1
k , and show that for

this curve the short exact sequence (1.1) does split.

We prove the above theorem by first computing explicit bases of each of the spaces in (1.1).

Given the projection π : X→ P
1
k , by Čech cohomology we have

H1(X,OX) �
OX (U0 ∩U∞)

{f0 − f∞|fi ∈ OX(Ui)}
, (1.2)
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where U0 = X\π−1(0) and U∞ = X\π−1(∞). In the preceding chapter we already computed

a basis of H0(X,ΩX), and we use this along with Serre duality and the above identity to

compute a basis of H1(X,OX), see Theorem 4.2.1.

Theorem. The elements y
x , . . . ,

y
xg ∈ K(X) are regular on U0 ∩ U∞, and their residue classes[

y
x

]
, . . . ,

[
y
xg

]
in (1.2) form a basis of H1(X,OX).

It should be noted that this basis is the same regardless of characteristic — since this is not

the case for the dual space H0(X,ΩX), this may be surprising. We also apply this theorem

to provide a Mittag-Leffler style theorem for hyperelliptic curves, see Corollary 4.2.2.

To describe an explicit basis of H1
dR(X/k) we use Čech cohomology, similarly to (1.2). In this

case H1
dR(X/k) is a quotient of the space{

(ω0,ω∞, f0,∞)|ωi ∈ΩX(Ui), f0,∞ ∈ OX(U0 ∩U∞),df0,∞ =ω0|U0∩U∞ −ω∞|U0∩U∞

}
.

At the start of Section 4.3 we define polynomials φi(x) and ψi(x) in terms of f (x), and poly-

nomials Φi(x,y) and Ψi(x,y) in terms of F(x) and H(x), for 1 ≤ i ≤ g , when the characteristic

of k is p , 2 and p = 2 respectively. We then use these in Theorem 4.3.1 to present a basis of

H1
dR(X/k).

Theorem. A basis of H1
dR(X/k) is formed by[((

ψi(x)
2yxi+1

)
dx,

(
−φi(x)
2yxi+1

)
dx,x−iy

)]
and

[(
xi−1

y
dx,

xi−1

y
dx,0

)]
, i = 1, . . . , g,

if char(k) , 2, and by[((
Ψi(x,y)
xi+1H(x)

)
dx,

(
Φi(x,y)
xi+1H(x)

)
dx,x−iy

)]
and

[(
xi−1

H(x)
dx,

xi−1

H(x)
dx,0

)]
, i = 1, . . . , g,

otherwise.

We use the above bases along with the canonical projection p : H1
dR(X/k)→ H1(X,OX) to

prove Theorem 4.4.3. In particular, we suppose that the short exact sequence 1.1 has a

splitting map s : H1(X,OX)→ H1
dR(X/k), and then by studying the action of τ on the basis

element
[((

ψg (x)
2yxg+1

)
dx,

(
−φg (x)
2yxg+1

)
dx,x−gy

)]
, and its image

[
y
xg

]
in H1(X,OX), we arrive at a

contradiction.

1.3 Faithful actions on Riemann-Roch spaces

Given a smooth, projective curve X of genus g over an algebraically closed field k, a significant

open problem is to completely determine the k[G]-module structure of H0(X,ΩX), for any
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subgroup G of Aut(X). This was done for the case k = C by Chevalley and Weil in 1934, see

[CWH34]. The result was later broadened to a curve over any algebraically closed field of

characteristic zero by Lewittes [Lew63], and Broughton’s paper [Bro87] gives another method

of generalising to this case. The question has also been answered by Kani [Kan86] and

Nakajima [Nak84], if the projection π : X → Y := X/G is tamely ramified. Valentini and

Madan [VM81] determined the structure when π may be wildly ramified, but they assume

that G is a cyclic group of order pn, and this was recently generalised by Karanikolopoulos

and Kontogeorgis to any cyclic group [KaKo13].

A weaker though naturally related question is: "When does G act faithfully on H0(X,ΩX)?"

We answer this in full generality in Theorem 5.3.1, and also extend the result to look at the

space of holomorphic polydifferentials, denoted H0(X,Ω⊗mX ).

Theorem. Suppose that g ≥ 2 and let m ≥ 1. Then G does not act faithfully on H0(X,Ω⊗mX )

if and only if G contains a hyperelliptic involution and one of the following two sets of conditions

holds:

• m = 1 and p = 2;

• m = 2 and g = 2.

Our main method of attack in proving this is comparing the dimension of H0(X,Ω⊗mX ) to its

fixed space, H0(X,Ω⊗mX )G. We compute the latter dimension precisely in Proposition 5.1.2,

where we see that if n is the order of G and R is the ramification divisor of the projection

π : X→ Y then

dimk

(
H0(X,Ω⊗mX )G

)
= (2m− 1)(gY − 1) + deg

⌊
mπ∗(R)
n

⌋
,

apart from a few exceptional cases. We then use this to determine exactly when G acts

trivially if gY = 0 and G is of prime order, since the deg
⌊
mπ∗(R)
n

⌋
term is easier to handle in

this instance. We are then able to reduce to this case in general, since any group that fails to

act faithfully on H0(X,Ω⊗mX ) contains a subgroup which acts trivially on the space.

We use similar techniques to determine when G acts trivially on more general Riemann-Roch

spaces, such as H0(X,OX(D)) for a G-invariant divisor D of degree at least 2g − 1.

The results of this chapter appear in [KT14].



Chapter 2

Background on algebraic curves

In this chapter we give basic definitions and results that will be used throughout the thesis.

The vast majority of these results apply to smooth, connected, projective curves over any

algebraically closed fields, with no further assumptions, though occasionally we do specialise

slightly more than this. All definitions and results should be available in textbooks on alge-

braic curves or algebraic geometry in general, such as [Ful89] or [Har77] . As such, we will

rarely provide proofs for results given.

We start by defining precisely what we mean by a curve, and by functions and differentials

on a curve. We then go on to give some basic results about these objects, and finally define

the genus of a curve.

In the next section we define divisors, canonical divisors and the Riemann–Roch spaces

associated to divisors. We then reach the highlight of the section with the statement of the

Riemann–Roch theorem. We give corollaries to this, which show some of its applications.

In the penultimate section of this chapter we consider ramification. We define ramification

and branch points, and subsequently the ramification divisor. We then use this to state

a strong version of the Riemann–Hurwitz formula, at the level of divisors. The section

concludes by looking at group actions on curves, and defining higher ramification to state

Hilbert’s formula.

The chapter finishes by discussing Serre duality, which will be used in the fourth chapter

of the thesis. We do this using a particularly explicit, non-cohomological, description of

H1(X,OX) and H1(X,ΩX).

7



8 Chapter 2 Background on algebraic curves

2.1 Set up

Throughout this thesis k will denote an algebraically closed field of characteristic p ≥ 0. It

should be noted that while the majority of results in the thesis hold for all characteristics,

including p = 0, our main focus will be on the case p > 0.

When we refer to an algebraic curve (or often just a curve) we will mean a smooth, connected,

projective variety of dimension one over k. In particular, we let P1
k be the projective line.

Similarly, when we refer to an affine curve we mean a smooth, connected, affine variety

of dimension one over k. We recall that a morphism of affine curves X and Y is just a

polynomial map φ : X → Y . Then if X and Y are algebraic curves, a map φ : X → Y is

a morphism if we can write X = ∪Xi and Y = ∪Yi for open, affine Xi and Yi , such that

φ(Xi) ⊆ Yi and φ|Xi is a morphism for every i.

2.2 Functions and differentials

In this section we recall basic results pertaining to functions and differentials on a curve X.

A meromorphic function on X is any morphism f : X→ P
1
k , other than the morphism mapping

all points to infinity. The collection of meromorphic functions on X is denoted K(X), and

called the function field of X.

We recall that the category of algebraic curves and non-constant morphisms is actually equiv-

alent to the category of function fields over k (which can be defined independently of curves

as finitely generated fields of transcendence degree one over k). An overview of this cor-

respondence is given in [Sti93, Appendix B]. Furthermore, when working over the complex

numbers C we actually have a triple equivalence of categories. The category of function

fields over C and the category of algebraic curves are both equivalent to the category of com-

pact Riemann surfaces. A short explanation of the correspondence between complex curves

and Riemann surfaces is given in [Gri89, Chap. 1, §2], whilst [Mir95] exhibits the connection

between all three categories throughout.

Returning to our study of functions on X, we recall that a meromorphic function f on X is

regular on an open set U ⊆ X if the image f (U ) lies in k = A
1
k ⊂ P

1
k . We let H0(U,OX)

denote the space of functions in K(X) which are regular on U . Moreover, if f ∈ K(X) is

regular on X we say that f is regular , and then H0(X,OX) is the space of regular functions.

Since X is projective H0(X,OX) is in fact isomorphic to k — i.e. the only regular functions are

constant functions. The reader should note that we are using sheaf theoretic notation here.

We will not give details of sheaves and sheaf cohomology (since it will rarely be needed), but

we will still use the notation, in order to be with consistent with current work in the area.
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Given P ∈ X we say that a meromorphic function f ∈ K(X) is regular at P if f (P ) ∈ k ⊂ P
1
k .

The collection of functions regular at P form a ring, which we call OX,P .

Lemma 2.2.1. For any P ∈ X the ring OX,P is a discrete valuation ring, with maximal ideal

MX,P := {f ∈ OX,P |f (P ) = 0}.

Proof. See [Ful89, Chap. 1, §4].

The valuation on OX,P can be given as follows. Let t ∈ OX,P be a generator of MX,P .

Now any 0 , f ∈ OX,P can be written as f = utn for some unique n ∈ Z≥0 and some unit

u ∈ OX,P \MX,P . We then define the order of f at P to be ordP (f ) := n (note that this is

independent of the choice of t). For any f ∈ K(X)∗ and P ∈ X at least one f or 1/f is an

element of OX,P . Hence we may extend the definition of ordP to the whole K(X)∗, by letting

ordP (f ) := −ordP (1/f ) whenever f < OX,P . If ordP (f ) = n > 0 we say that f has a zero of

order n at P , whilst if ordP (f ) = n < 0 then we say that f has a pole of order n at P . Clearly, for

any f ,g ∈ K(X)∗ and P ∈ X, it is true that ordP (f g) = ordP (f ) + ordP (g), and we also have

ordP (f + g) ≥ inf{ordP (f ),ordP (g)}, with equality whenever ordP (g) , ordP (f ). We call any

element t ∈ OX,P which has order 1 at P a uniformising parameter at P .

Proposition 2.2.2. Any non-zero meromorphic function f on X has finitely many poles and zeroes.

Moreover, the number of poles and zeroes of f are equal, after counting multiplicity; i.e.∑
P ∈X

ordP (f ) = 0.

Proof. See [Ful89, Chap. 8, §1, Prop. 1].

We now introduce the concept of a differential on the curve X. Let R be any commutative

ring containing k and let M be an R-module. Then a k-linear map D : R→ M satisfying

D(f g) = f D(g) + gD(f ) is called a derivation of R in to M over k.

There exists a unique module Ωk(R), called the module of differentials of R over k, and a

derivation d : R → Ωk(R) through which all derivations of R over k must factor. We can

describe Ωk(R) more concretely as the free module generated by [f ] for all f ∈ R, quotiented

by the relations

• [f ] + [g] = [f + g],

• [cf ] = c[f ],

• [f g] = f [g] + g[f ],
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where f ,g ∈ R and c ∈ k. Then d(f ) is the image of [f ] in this quotient.

In particular, if R = K(X) then we define ΩK(X) := Ωk(K(X)). In this case we call the map

d : K(X)→ ΩK(X) the differential map and we let df := d(f ). We say that ω ∈ ΩK(X) is a

meromorphic differential on X.

Proposition 2.2.3. The module of differentials, ΩK(X), is a one dimensional vector space over

K(X). Moreover, if t ∈ K(X) is a uniformising parameter for any point P in X then dt is a basis

of ΩK(X).

Proof. See [Sti93, Prop. 1.5.9].

We suppose that P ∈ X and we choose a uniformising parameter t ∈ OX,P . Then for any

0 , ω ∈ΩK(X) there exists a unique f ∈ K(X) such that ω = f dt, by Proposition 2.2.3. We

define the order of ω at P to be ordP (ω) := ordP (f ), and remark that this is independent of

the choice of t. The set of differentials regular at P form a module over OX,P , which we call

the module of differentials regular at P , and denote by ΩX,P .

For any f ∈ OX,P we have df ∈ ΩX,P . If f is a local parameter at P this follows from

the definition of ΩX,P , and if ordP (f ) > 1 it then follows from this and the product rule.

Finally, if f is a unit at P then it is true because df = d(f − f (P )), and clearly f − f (P ) ∈
MX,P . In fact, ΩX,P is the module of differentials of OX,P over k, and it is generated by

dt for any uniformising parameter t ∈ OX,P . Note that given a function f ∈ K(X) and

differentials ω,ω′ ∈ ΩK(X) we have ordP (f ω) = ordP (f ) + ordP (ω) and ordP (ω + ω′) ≥
inf{ordP (ω),ordP (ω′)}.

Let U be an open subset of X. We call ω ∈ΩK(X) holomorphic on U if ordP (ω) ≥ 0 for all

P ∈U , and we let

H0(U,ΩX) := {ω ∈ΩK(X)|ordP (ω) ≥ 0 for all P ∈ X} ∪ {0}

be the space of holomorphic differentials on U . If ω ∈ΩK(X) is holomorphic on X we say that

ω is holomorphic, and so H0(X,ΩX) is the space of global holomorphic differentials. As in

[Ful89, Chap. 8, §2, Prop. 3], the k-vector space H0(X,ΩX) is finite dimensional.

Definition 2.2.4. We define the genus of X to be

gX := dimkH
0(X,ΩX).

The genus is an invariant of fundamental importance in the study of algebraic curves. In

particular, we remark that if k = C then the genus of an algebraic curve (also called the

geometric genus) is the same as the topological genus of the corresponding Riemann surface
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(the corresponding Riemann surface being found via the equivalence of categories mentioned

earlier).

We now briefly recall the notion of a polydifferential . If we consider an element of the tensor

product ω ∈ Ω⊗mK(X), for some m ∈ Z>0, then it can be written as f dx1 ⊗ . . . ⊗ dxm, where

f ,xi ∈ K(X) for all 1 ≤ i ≤m. Let P be a point in X. Since each dxi can be written as fidt for

some fi ∈ K(X) and some uniformising parameter t at P , we can rewrite ω as f ′dt⊗ . . .⊗dt,
where f ′ = f · f1 · · ·fm. We then define the order of ω at P to be ordP (ω) := ordP (f ′). In the

particular case where ω′ =ω⊗m for some ω ∈ΩK(X) then we have the equality

ordP (ω′) =mordP (ω).

Finally, for any open U ⊆ X we define

H0(U,Ω⊗mK(X)) := {ω ∈Ω⊗mK(X)|ordP (ω) ≥ 0 for all P ∈U }

to be the space of holomorphic polydifferentials on U . We call the elements of H0(X,Ω⊗mK(X))

global holomorphic polydifferentials on X.

2.3 The Riemann–Roch theorem

We now recall the relevant facts and definitions needed to state the Riemann–Roch theorem.

We first recall that a divisor on X is a finitely supported formal sum

D =
∑
P ∈X

nP [P ],

with coefficients in Z. The set off all divisors on X forms an additive group, denoted Div(X).

The degree of the divisor D is deg(D) :=
∑
P ∈X nP , which lies in Z.

Given any function f ∈ K(X) we define the divisor associated to f to be

div(f ) :=
∑
P ∈X

ordP (f )[P ].

Note that by Proposition 2.2.2 div(f ) has finite support and degree zero. We call any divisor

D which is equal to div(f ) for some f ∈ K(X) a principal divisor . Is is clear that for any

f ,g ∈ K(X) we have div(f g) = div(f ) + div(g). Also, for any f ∈ K(X) we define div0(f )

and div∞(f ), the divisor of zeroes and the divisor of poles of f respectively, as follows:

div0(f ) :=
∑

ordP (f )>0

ordP (f )[P ]



12 Chapter 2 Background on algebraic curves

and then

div∞(f ) := div0(f )−div(f ).

Now for any differential 0 ,ω ∈ΩK(X) we define the divisor associated to ω to be

div(ω) :=
∑
P ∈X

ordP (ω)[P ].

To show that div(ω) does indeed have finite support we recall that by Proposition 2.2.3 then

ω can be written in the form f dg for some f ,g ∈ K(X). Then every pole of ω is a pole of

f or a pole of g . Thus, by Proposition 2.2.2 it follows that ω has only finitely many poles.

It can be shown that ω has finitely many zeroes in a similar fashion. If W is a divisor on X

and W = div(ω) for some 0 ,ω ∈ΩK(X) then we say that W is a canonical divisor on X.

The principal divisors of X form a subgroup of Div(X), and two divisors D,D ′ ∈ div(X) are

equivalent, denoted D ∼D ′ , if their image in the quotient of Div(X) by the group of principal

divisors is the same; i.e. if there exists f ∈ K(X) such that D = D ′ + div(f ). By the following

corollary, it makes sense to refer to the (unique) canonical divisor on X, up to equivalence,

which we write as KX .

Corollary 2.3.1. The canonical divisors on X form precisely one equivalence class on X with

respect to the relation ∼.

Proof. Let W be the canonical divisor associated to ω ∈ΩK(X) and suppose that D ∈Div(X)

is equivalent to W . Then D =W + div(f ) = div(f ω) is also a canonical divisor.

On the other hand, supposeW andW ′ are the canonical divisors associated to ω,ω′ ∈ΩK(X)

respectively. Then we can find a meromorphic function f ∈ K(X) such that ω = f ω′ , by

Proposition 2.2.3. Then W =W ′ + div(f ), and the divisors are equivalent.

Given any divisor D =
∑
P ∈X nP [P ] we let

H0(X,OX(D)) := {f ∈ K(X)|ordP (f ) ≥ −nP for all P ∈ X}

be the vector space of meromorphic functions associated to D . Similarly, we let

H0(X,ΩX(D)) := {ω ∈ΩK(X)|ordP (ω) ≥ −nP for all P ∈ X}

be the vector space of meromorphic differentials associated to D . Both of the spaces mentioned

above are also referred to as Riemann–Roch spaces. Note that when D is the zero divisor we

have H0(X,Ω(0)) = H0(X,ΩX), and similarly H0(X,OX(0)) = H0(X,OX). Also, it follows

immediately from Proposition 2.2.2 that if D ∈Div(X) is a divisor with negative degree then

H0(X,OX(D)) = {0}.
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Lemma 2.3.2. Given any divisor D on X we have the following isomorphism,

H0(X,OX(D)) �H0(X,ΩX(D −W ))

where W is any canonical divisor on X.

Proof. Let W be a canonical divisor and chose ω ∈ ΩK(X) to be the associated differential.

Since div(f ω) = div(f ) + div(ω), it follows that f ∈ H0(X,OX(D)) if and only if f ω ∈
H0(X,ΩX(D −W )). Since ΩK(X) is a one dimensional vector space over K(X) we can find

a unique f ∈ K(X) for every differential ω′ in H0(X,ΩX(D −W ) such that ω′ = f ω. Hence

the map f 7→ f ω is an isomorphism.

It follows from this lemma and the definition of genus that dimkH
0(X,OX(W )) = gX for any

canonical divisor W .

We now state the celebrated Riemann–Roch theorem.

Theorem 2.3.3 (Riemann–Roch theorem). Let gX be the genus of X. Furthermore, let D be any

divisor on X, and let W be any canonical divisor on X. Then

dimkH
0(X,OX(D)) = deg(D) + 1− gX + dimkH

0(X,OX(W −D)).

Proof. See [Har77, Chap. IV, §1, Thm. 1.3] or, for a more elementary approach, [Ful89, Chap.

8, §6].

We now give some corollaries to the Riemann–Roch theorem.

Corollary 2.3.4. For any canonical divisor W on X, we have

deg(W ) = 2gX − 2.

Proof. The statement follows by rearranging

gX = dimkH
0(X,OX(W ))

= deg(W ) + 1− gX + dimkH
0(X,OX(W −W ))

= deg(W ) + 1− gX + 1,

where the first equality is Definition 2.2.4, and the second equality follows from the Riemann–

Roch theorem.
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Corollary 2.3.5. For any divisor D of degree greater than 2gX − 2 we have

dimkH
0(X,OX(D)) = deg(D) + 1− gX .

Proof. If deg(D) > 2gX −2 then deg(W −D) < 0. Then if f ∈H0(X,O(W −D)) it follows that

f has more zeroes than poles (after counting multiplicities), which contradicts Proposition

2.2.2.

Corollary 2.3.6. If D is a divisor of degree greater than 2gX − 2 and P is any point in X then

dimkH
0(X,OX(D + [P ])) = dimkH

0(X,OX(D)) + 1.

Proof. Since deg(D) > 2g − 2, it follows from Corollary 2.3.4 that deg(W −D) < 0. Then

dimkH
0(X,OX(W −D)) = 0. We then apply the Riemann–Roch theorem and see that

dimkH
0(X,OX(D + [P ])) = deg(D + [P ]) + 1− gX

= deg(D) + 1 + 1− gX = dimkH
0(X,OX(D) + 1.

Using the Riemann–Roch theorem and Corollary 2.3.4 we can compute the dimension of the

space of holomorphic polydifferentials of order m, denoted H0(X,Ω⊗mX ), where m ∈Z>0.

Corollary 2.3.7. Let gX ,m ≥ 2. Then

dimkH
0(X,Ω⊗mX ) = (2m− 1)(gX − 1)

Proof. Since gX ≥ 2 it follows from Corollary 2.3.4 that deg(W ) ≥ 1, and hence we see that

deg(mW ) > deg(W ). Similarly to Lemma 2.3.2, we have H0(X,Ω⊗mX ) �H0(X,OX(mW )). It

then follows from the Riemann–Roch theorem (Theorem 2.3.3) and Corollary 2.3.4 that

dimkH
0(X,Ω⊗mX ) = deg(mW ) + 1− gX = (2m− 1)(gX − 1).

2.4 Ramification and the Riemann–Hurwitz formula

In this section we will introduce the concept of ramification, and we state the Riemann–

Hurwitz formula, which relates the canonical divisor of two curves which have a morphism

between them, via the ramification divisor.
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Let X and Y be curves over k. We first note that given a non-constant morphism φ : X→ Y

we have an induced ring homomorphism on the function fields,

φ∗ : K(Y )→ K(X),

given by composition with φ; i.e. φ∗(f ) = f ◦φ. Moreover, it transpires that φ∗ is an injection,

and hence we can view K(Y ) as a subfield of K(X). We then define the degree of φ, denoted

deg(φ), to be the degree of the extension K(X)/K(Y ), which is always finite.

We henceforth assume that φ : X → Y is an arbitrary non-constant morphism of curves.

Recall that we have

φ∗(H0(U,OY )) ⊆H0(φ−1(U ),OX).

Definition 2.4.1. Let P be a point in X and choose a uniformising parameter t ∈ OY ,φ(P ).

We define the ramification index eP of φ at P to be

eP := ordP (φ∗(t)).

Note that eP = 1 for almost all points P ∈ X. We say that the point Q ∈ Y is a branch point of

φ if there exists some P ∈ φ−1(Q) for which eP > 1. We say that P ∈ X is a ramification point

of X if eP > 1.

The following theorem asserts that the degree of φ is the same as the number of points in

the pre-image φ−1(Q) for any Q ∈ Y , if we count multiplicities correctly.

Theorem 2.4.2. Let n := deg(φ). Then, for any Q ∈ Y , we have∑
P 7→Q

eP = n.

Proof. See, for example, [Liu02, Pg. 290].

Suppose P ∈ X is a ramification point. Then if p = char(k) divides eP we say that P is wildly

ramified . If p does not divide eP we say that P is tamely ramified .

Definition 2.4.3. Let D =
∑
Q∈Y nQ[Q] be a divisor on Y . Then the pull back of D with

respect to φ is

φ∗(D) :=
∑
Q∈Y

∑
P ∈π−1(Q)

eP ·nQ[P ].

Note that φ∗ defines a group homomorphism Div(Y )→Div(X).
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We also define the pullback of a differential ω = g · df ∈ΩK(Y ) by φ to be

φ∗(ω) := φ∗(g)dφ∗(f ).

Clearly φ∗(ω) is a differential on X.

Now we describe the different exponent, which we require to define the ramification divisor.

Definition 2.4.4. For any P ∈ X we choose a uniformising parameter t ∈ OY ,φ(P ). Then we

define the different exponent at P to be

δP := ordP (φ∗(dt)).

Note that since φ∗(t) is regular at P it follows that δP is non-negative for all P ∈ X.

Definition 2.4.5 (Ramification divisor). The ramification divisor of φ : X→ Y is

R :=
∑
P ∈X

δP [P ].

We will see in Theorem 2.4.9 that this sum does have finite support.

The following theorem has the classical Riemann–Hurwitz formula as a corollary, but also

goes further, actually relating the canonical divisors on X and Y .

Theorem 2.4.6. If 0 ,ω ∈ΩK(Y ) then

div(φ∗(ω)) = φ∗(div(ω)) +R. (2.1)

In particular, we have

KX ∼ φ∗(KY ) +R.

Proof. See [Har77, Chap. IV, §2, Prop. 2.3] for a sheaf theoretic approach, or alternatively

[Sti93, Thm. 3.4.6], for a proof involving function fields.

Corollary 2.4.7 (Riemann–Hurwitz Formula). We let gX and gY be the genera of X and Y

respectively. Then we have

2gX − 2 = n(2gY − 2) + deg(R).

Proof. This follows from Corollary 2.3.4 and Theorem 2.4.6, by taking degrees in (2.1).

The majority of topics considered in the thesis will be concerned with the following situation.

Let G be a finite subgroup of the automorphism group of X (recall that if gX ≥ 2 then the
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automorphism group itself is finite, see, for example, [IT51]). The group G naturally acts on

the function field of X, by g · f (P ) := f (g · P ) for every P ∈ X and f ∈ K(X). Then the

quotient Y := X/G of X by the action of G is again a curve (see [DaSh94, Chap. 2, §1.7, Ex.

8]), and the function field of the quotient curve is the subfield of K(X) fixed by this action,

which we denote K(X)G. We let π : X → Y be the projection of X on to the quotient. Note

that G acts transitively on the fibres of π (ibid.). We also recall that the stabiliser of a point

P ∈ X is the subgroup G(P ) := {g ∈ G|g · P = P } of G.

We now introduce the higher ramification groups, which we will use to state Hilbert’s formula,

which computes the coefficients of the ramification divisor.

Definition 2.4.8. Let G be finite subgroup of Aut(X) and let t be a uniformising parameter

at P ∈ X. Then for i ≥ −1 we define the ith ramification group at P , denoted Gi(P ), to be the

subgroup formed by the s ∈ G−1(P ) such that iG(s) := ordP (s(t)− t) is at least i + 1. This is

independent of the choice of t, see [Ser79, Chap. IV, §1, pg. 62].

Note that for any P ∈ X we have that G−1(P ) = G, G0(P ) is the stabiliser of P and that

Gi(P ) ⊇ Gi+1(P ). Also, eP = ord(G0(P )) for any P ∈ X, and if nP is the size of the fiber of

π(P ) then n = eP · nP , where n = deg(π). Less obviously, we have that Gi(P ) is trivial if i

is sufficiently large, that G1 is a p-group and that ord(G0(P )/G1(P )) is coprime to p — see

[Ser79, Chap. IV, §1] for details. In particular, φ is tamely ramified at P if and only if G1(P )

is the trivial group.

Theorem 2.4.9 (Hilbert’s Formula). For every P ∈ X we have

δP =
∑
s,e

iG(s) =
∞∑
j=0

(ord(Gi(P ))− 1) ,

where e denotes the identity in G. In particular, if P is tamely ramified then δP = eP − 1.

Proof. See [Ser79, Chap. IV, §1, Prop. 4] for a proof of Hilbert’s formula.

2.5 Serre duality

In this section we give the details of Serre duality, in such a way that we will be able to perform

explicit computations using Serre duality in later chapters. We retain the notations of the

previous sections, and in particular we recall that the notations H1(X,ΩX) and H1(X,OX)

refer to first cohomology groups of the sheaf of differentials, ΩX , and the sheaf of rational

functions, OX , respectively. The following lemma gives us useful and elementary descriptions

of H1(X,OX) and H1(X,ΩX). We will use these descriptions almost exclusively for the rest

of the thesis, and as such the reader may take this as a definition if he or she wishes.
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Lemma 2.5.1. We have canonical exact sequences as follows:

0→H0(X,OX)→ K(X)→
⊕
P ∈X

K(X)/OX,P →H1(X,OX)→ 0; (2.2)

0→H0(X,ΩX)→ΩK(X)→
⊕
P ∈X

ΩK(X)/ΩX,P →H1(X,ΩX)→ 0. (2.3)

Remark. Note that a sketch of the proof below can be found in [Har77, Pg. 248].

Proof. We let ΩK(X) and K(X) denote the constant sheaves of ΩK(X) and K(X) respectively.

The short exact sequence

0→OX → K(X)→ K(X)/OX → 0 (2.4)

is a flasque resolution of OX (see [Har77, Chap. II, ex. 1.16]).

For each P ∈ X we have a natural embedding i : {P } ↪→ X, and we view the module

K(X)/OX,P as a sheaf on the singleton {P }. Then for each P ∈ X we have the induced

sheaf i∗
(
K(X)/OX,P

)
on X. If we consider the direct sum of these induced sheaves over all

points P ∈ X we have the following isomorphism

K(X)/OX �
⊕
P ∈X

i∗
(
K(X)/OX,P

)
. (2.5)

To explain this isomorphism we first construct a map from K(X)/OX in to the product∏
P ∈X i∗

(
K(X)/OX,P

)
, and then show that the image of each element under this map has

finite support.

Given i : {P } ↪→ X we have the following equalities

i−1 (K(X)/OX) = (K(X)/OX)P = K(X)P /OX,P = K(X)/OX,P .

It follows that for any P ∈ X we have the adjunction map K(X)/OX → i∗
(
K(X)/OX,P

)
. These

adjunction maps give a map K(X)/OX →
∏
P ∈X

(
K(X)/OX,P

)
, whose image is actually in

the sum
⊕

P ∈X i∗
(
K(X)/OX,P

)
. The resulting map is an isomorphism because the stalk

i∗
(
K(X)/OX,P

)
Q is zero for Q , P and is K(X)/OX,P when Q = P . The isomorphism in (2.5)

follows from this.

Replacing K(X)/OX by
⊕

P ∈X i∗
(
K(X)/OX,P

)
in (2.4) yields

0→OX → K(X)→
⊕
P ∈X

i∗
(
K(X)/OX,P

)
→ 0. (2.6)
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Taking cohomology, and recalling that H1(X,K(X)) = 0, we arrive at the exact sequence

(2.2).

We now perform a similar computation to produce the second exact sequence (2.3). We start

with the short exact sequence

0→ΩX →ΩK(X)→ΩK(X)/ΩX → 0,

which is a flasque resolution of ΩX (see [Har77, Chap. II, ex. 1.16]). For each P ∈ X we again

have a natural injection i : {P } ↪→ X, giving rise to the induced sheaf i∗
(
K(X)/OX,P

)
on X.

Then we have an isomorphism

ΩK(X)/ΩX �
⊕
P ∈X

i∗
(
ΩK(X)/ΩX,P

)
,

similar to that in (2.5).

Hence we arrive at the short exact sequence

0→ΩX →ΩK(X)→
⊕
P ∈X

i∗
(
ΩK(X)/ΩX,P

)
→ 0. (2.7)

Taking cohomology of this then yields the second exact sequence (2.3).

Remark. When considering elements of H1(X,ΩX) as elements in the cokernel of the map

ΩK(X) →
⊕

P ∈XΩK(X)/ΩX,P above, we will denote them by (ωP )P ∈X , where (ωP )P ∈X ∈⊕
P ∈XΩK(X)/ΩX,P . Similarly, when considering elements of H1(X,OX) as elements of the

cokernel of the map K(X) →
⊕

P ∈XK(X)/OX,P , we will denote them by (fP )P ∈X , where

(fP )P ∈X ∈
⊕

P ∈XK(X)/OX,P .

The residue map ResP : ΩK(X) → k is of fundamental importance in the computations that

follow. We define the residue map, ResP , to be the unique map identified in the following

theorem.

Theorem 2.5.2. For any P ∈ X there exists a unique k-linear map ResP : ΩK(X)→ k defined by

the following properties:

• ResP (ω) = 0 for all ω ∈ΩX,P ;

• ResP (f ndf ) = 0 for all f ∈ K(X)∗ and all n , −1;

• ResP (f −1df ) = ordP (f ), where ordP (f ) is the order of f at P .

Proof. See [Ser88, Chap. II, §7 and §11] or [Tat68].
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This definition implies the following explicit standard description of the residue map. Let

P ∈ X and let t ∈ OX,P be a local parameter at P . We may then write any ω ∈ΩK(X) in the

form

ω =
−1∑
i=−n

ait
idt +ω0,

for some a−n, . . . , a−1 and ω0 ∈ΩX,P . Then we obviously have

ResP (ω) = a−1.

Theorem 2.5.3 (Residue Theorem). Given any differential ω ∈ΩK(X) on X then∑
P ∈X

ResP (ω) = 0.

Proof. See [Ser88, Chap. II, Prop. 6] or [Tat68, Pg. 155].

Since ΩX,P ⊆ ker(ResP ), it follows that ResP is a well defined function on the quotient

ΩK(X)/ΩX,P . Hence by the residue theorem the map⊕
P ∈X

ΩK(X)/ΩX,P → k, (ωP )P ∈X 7→
∑
P ∈X

ResP (ωP )

vanishes on the image of ΩK(X), which allows us to make the following definition.

Definition 2.5.4. Let (ωP )P ∈X ∈H1(X,ΩX). Then we define the trace map to be

t : H1 (X,ΩX)→ k, (ωP )P ∈X 7→
∑
P ∈X

ResP (ωP ).

We now use the trace map to define a pairing between the k-vector spaces H1(X,OX) and

H0(X,ΩX). Since ΩK(X) is a K(X)-module, we can define the product map

H0(X,ΩX)×H1(X,OX)→H1 (X,ΩX) ,
(
ω, (fP )P ∈X

)
7→ ((f ω)P )P ∈X , (2.8)

where (f ω)P is the product of fP ∈ K(X)/OX,P and the residue class of ω in ΩK(X)/ΩX,P .

We now combine the product map in (2.8) with the trace map t to get a map

H0(X,ΩX)×H1(X,OX)→ k,
(
ω, (fP )P ∈X

)
7→

〈
ω, (fP )P ∈X

〉
:= t

(
(f ω)P

)
P ∈X

.

Theorem 2.5.5. Via the pairing 〈 , 〉, the k-vector spaces H1(X,OX) and H0(X,ΩX) are dual

to each other.
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Proof. This is a specialisation of [Ser88, Chap. II, Thm. 2].

More explicitly, this theorem means the following. If we fix any ω ∈H0(X,ΩX) we produce a

map θ(ω) : H1(X,OX)→ k, given by θ(ω)(f ) = 〈ω,f 〉. Similarly, if we fix any f ∈H1(X,OX)

then we get a map ψ(f ) : H0(X,ΩX)→ k. Then the maps

ψ : H1(X,OX)→ hom(H0(X,ΩX), k) and θ : H0(X,ΩX)→ hom(H1(X,OX), k)

are isomorphisms. In particular, given a k-basis ω1, . . . ,ωg of H0(X,ΩX), we can find a basis

f1, . . . , fg of H1(X,OX) such that 〈ωi , fi〉 = 1 for all 1 ≤ i ≤ n and 〈ωi , fj〉 = 0 if i , j, and

likewise, starting with a basis of H1(X,OX) we can find corresponding basis of H0(X,ΩX).





Chapter 3

Bases for the spaces of

(poly)differentials on hyperelliptic

curves

In this chapter we recall the definition and basic details of hyperelliptic curves, and then

go on to compute bases for the spaces of holomorphic differentials and polydifferentials, see

Propositions 3.1.2 and 3.2.5. The primary use of these concepts is to form a foundation for

the next chapter. Furthermore, we also use the bases computed to illustrate all the facets of

our main theorem in Chapter 5. The various attributes of hyperelliptic curves differ greatly

according to whether the characteristic of the base field is two or not, and as such we split

this chapter into two sections, considering these cases separately.

Before going in to the details of hyperelliptic curves we recall that a curve X is hyperelliptic

if there exists a finite separable morphism π : X → P
1
k of degree two. Every hyperelliptic

curve has a hyperelliptic involution σ which permutes the elements of π−1(a) for each a ∈ P1
k

(except for the finite number of points a for which π−1(a) has order one), and the quotient

curve X/〈σ〉 is isomorphic to P
1
k . We let X be a hyperelliptic curve of genus g throughout

the chapter, and we fix such a map π, which is unique up to an automorphism of P1
k [Liu02,

Prop. 7.4.29]. We also let Pa and P ′a denote the unique elements of π−1(a) for any point a ∈ P1
k

that is not a branch point. If a ∈ P1
k is a branch point we denote the unique point in π−1(a)

by Pa. We define Da to be the divisor π∗ ([a]) for any a ∈ P1
k , and hence

Da =

2[Pa] if a is a branch point,

[Pa] + [P ′a] otherwise.

23
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We also have for x ∈ k(x) = K(P1
k) ⊆ K(X), that

div(x) =D0 −D∞, (3.1)

regardless of characteristic. Furthermore, the strong Riemann-Hurwitz formula (Theorem

2.4.6) gives us

divX(dx) = π∗(div
P

1
k
(dx)) +R,

and since div
P

1
k
(dx) = −2[∞], it follows that π∗(div

P
1
k
(dx)) = −2D∞. Hence we conclude

that

div(dx) = R− 2D∞. (3.2)

3.1 Characteristic unequal to 2

In this section we assume that char(k) = p , 2. Then the extension K(X) of K(P1
k) = k(x)

corresponding to π : X→ P
1
k will be k(x,y), where y satisfies

y2 = f (x) (3.3)

for some polynomial f (x) ∈ k[x] which has no repeated roots and is of degree 2g+1 or 2g+2

[Liu02, Prop. 7.4.24]. Moreover, by applying an automorphism of P1
k if necessary, we can and

will assume that f (x) is monic.

If we let df := deg(f (x)) then

f (x) =
df∏
i=1

(x − ai) = xdf + bdf −1x
df −1 + . . .+ b0, (3.4)

for some ai ,bi ∈ k. We now show that the ai ∈ A1
k , and possibly ∞ ∈ P1

k , are the branch

points of π.

Firstly, observe that by the Riemann-Hurwitz formula, Corollary 2.4.7,

deg(R) = 2g − 2 + 2 · 2 = 2g + 2.

Since π is of degree two and char(k) , 2 it is only tamely ramified, and it follows that the

coefficient of each ramification point is 1 in R. From this we conclude that each branch

point has precisely one corresponding ramification point, and that there are precisely 2g + 2

ramification points. Also, since there are no repeated roots in f (x), then (3.3) defines a non-

singular affine curve X ′ with a degree two projection π′ : X ′ → A
1
k . For any point a ∈ A1

k

which is not a solution to f (x) there are two points in the pre-image, namely (a,±
√
a), and
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the point is not a branch point. On the other hand, if a = ai ∈ A1
k is a solution to f (x),

then there is only one point in the pre-image and hence it is a branch point. We let Pi = Pai
denote the ramification point corresponding to ai . Since deg(R) = 2g + 2 we conclude that

if df = 2g + 1 then ∞ ∈ P1
k is also a branch point and we define P2g+2 := P∞ in this case.

Hence the ramification divisor R of π is

R =
2g+2∑
i=1

[Pi].

In the following lemma we compute the divisor of y ∈ K(X).

Lemma 3.1.1. The divisor of y ∈ K(X) is

div(y) = R− (g + 1)D∞. (3.5)

Proof. Since div(y2) = div(f (x)) and hence div(y) = 1
2 div(f (x)), we need only compute the

divisor of f (x). As noted earlier, the solutions to f (x) correspond to the ramification points.

So for any P < π−1(∞) then ordP (y) = 1
2 ordP (f (x)) = 1 if P is a ramification point, and

ordP (y) = 1
2 ordP (f (x)) = 0 otherwise.

We now consider the poles of y. By Proposition 2.2.2 we know that
∑
P ∈X ordP (f (x)) = 0,

and we also know that the poles of f (x) can only lie in π−1(∞). Hence if ∞ is a branch

point then ordP∞(f (x)) = −
∑2g+1
i=1 ordPi (f (x)) = −2(2g+1), and ordP∞(y) = −(2g+1). On the

other hand, if ∞ is not a branch point we know that ordP∞(f (x))+ordP ′∞(f (x)) = −2(2g +2).

Recall that ordP (σ (f (x))) = ordσ (P )(f (x)) for any automorphism σ ∈ Aut(X) and any point

P ∈ X. In particular, if σ is the hyperelliptic involution of X then

ordP∞(f (x)) = ordP∞(σ (f (x))) = ordσ (P∞)(f (x)) = ordP ′∞(f (x)).

Hence ordP∞(y) = ordP ′∞(y) = −(g + 1) Overall, we conclude that

div(y) =
2g+2∑
i=1

[Pi]− (g + 1)D∞ = R− (g + 1)D∞.

Proposition 3.1.2. Let m ≥ 1. Let X, x and y be as above, and let ω := dx⊗m
ym . Then if g ≥ 2, a

basis of H0(X,Ω⊗mX ) is given by

ω,xω, . . . ,xg−1ω if m = 1,

ω,xω,x2ω if m = g = 2,

ω,xω, . . . ,xm(g−1)ω; yω,xyω, . . . ,x(m−1)(g−1)−2yω otherwise.
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Remark. Note that the case where m = 1 is treated in [Liu02, Prop. 7.4.26] and [Gri89, Ch.

IV, §4, Prop. 4.3].

Proof. We first show that the elements are linearly independent over k. Since ω is fixed,

it is equivalent to show that the coefficients are linearly independent over k — i.e. that

1,x, . . . ,xn, y,xy, . . . ,xly are linearly independent over k for any n and l in N. It is immediate

that 1,x, . . . ,xn are linearly independent, and similarly that y,yx, . . . , yxl are linearly inde-

pendent. Finally, the two sets of elements are linearly independent of each other, otherwise

the extension K(X)/k(x) would be degree 1.

To show that the differentials in the statement of the lemma are indeed holomorphic differ-

entials, we show that their divisors are greater than 0. Recall that div(dx⊗m) =mdiv(dx), as

noted in the previous chapter. We now show that the differentials listed in Proposition 3.1.2

are holomorphic. We have that

div(xiω) = div
(
xidx⊗m

ym

)
= i(D0 −D∞) +m(R− 2D∞)−m(R− (g + 1)D∞)

= iD0 + (mg −m− i)D∞
= iD0 + (m(g − 1)− i)D∞,

(3.6)

by Lemma 3.1.1, (3.1) and (3.2), which is positive for 0 ≤ i ≤m(g −1). Hence all the polydiffer-

entials in the first two cases and the firstm(g−1)+1 differentials in the third case are holomor-

phic. Note that if m = g = 2 then there are three elements, and since dimkH
0(X,Ω⊗2

X ) = 3

by Corollary 2.3.7, these elements form a basis. Also, if m = 1 then by Definition 2.2.4

dimkH
0(X,ΩX) = g , and we have g linearly independent elements, so they again must form

a basis.

We now consider the final (m−1)(g −1)−1 differentials in the third case. The divisor of one

of these elements is

div(xiyω) = div(xiω) +R− (g + 1)D∞

= iD0 +R+ ((m− 1)(g − 1)− 2− i)D∞,

by Lemma 3.1.1 and (3.6), which is positive for 0 ≤ i ≤ (m− 1)(g − 1)− 2. By Corollary 2.3.7

we know that

dimkH
0(X,Ω⊗mX ) = (2m− 1)(g − 1).

Since the number of differentials listed in the last case of the proposition is precisely

(m− 1)(g − 1)− 1 +m(g − 1) + 1 = 2mg − 2m− g + 1 = (2m− 1)(g − 1),
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it is clear that these elements form a basis.

3.2 Characteristic 2

In this section we assume that char(k) = p = 2. In this case the function field K(X) is k(x,y),

a degree two extension of the function field of one variable over k, k(x) = k(P1
k), where

y2 −H(x)y = F(x) (3.7)

for some polynomials H(x),F(x) ∈ k[x], such that H(x) and H ′(x)2F(x) + F′(x)2 have no

common roots in k [Liu02, Prop. 7.4.24]. We have that deg(H(x)) ≤ g+1, with equality if and

only if ∞ is not a branch point, and that deg(F(x)) ≤ 2g + 2 with deg(F(x)) = 2g + 1 if ∞ is

a branch point [Liu02, Prop. 7.4.24].

Lemma 3.2.1. The affine plane curve X ′ given by (3.7) is smooth if and only if H(x) and

H ′(x)2F(x) +F′(x)2 have no common zeroes in k.

Proof. The Jacobian criterion (see, for example, [Liu02, Thm. 4.2.19]), states that if the

derivatives of (3.7) with respect to x and with respect to y are zero at a point P ∈ X ′ then the

curve is not smooth at P , and otherwise it is. Clearly

d
dy

(y2 −H(x)y −F(x)) =H(x) (3.8)

since the characteristic of k is 2. On the other hand,

d
dx

(y2 −H(x)y −F(x)) =H ′(x)y −F′(x). (3.9)

The affine plane curve given by (3.7) is smooth at P ∈ X ′ if and only if at least one of (3.8)

and (3.9) is non-zero at P . Of course, (3.9) is zero if and only its square

(H ′(x)y −F′(x))2 =H ′(x)2y2 −F′(x)2 =H ′(x)2H(x)y +H ′(x)2F(x)−F′(x)2 (3.10)

is zero. Finally, if H(a) = 0 for some a ∈ k, then (3.10) evaluated at a is H ′(a)2F(a)− F′(a)2.

Hence the curve is smooth if and only if H ′(x)2F(x) − F′(x)2 and H(x) share no roots in

k.

We first describe the ramified points of π, in order to compute the ramification divisor. By

Lemma 3.2.1 if we consider the affine curve defined by this equation it will be smooth. We

denote this curve by X ′ . Then π restricts to a map X ′ → A
1
k , the projection on to the x

co-ordinate. Let a ∈A1
k . Then if (a,b) is a point in π−1(a), so is the point (a,b+H(a)), which
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is clearly distinct if and only if H(a) , 0. Since the extension is degree two, this shows that

the ramified points in the affine part correspond to the roots of H(x). We let k be the number

of distinct roots that H(x) has and dH the degree of H(x). Then

H(x) =
k∏
i=1

(x −Ai)ni = xdH +BdH−1x
dH−1 + . . .+B1x+B0 (3.11)

for some Ai ,Bi ∈ k and ni ∈N. As above, the Ai are branch points of π and we let Pi ∈ X
be the corresponding ramification points, and Di = DPi . Note that for each Ai there is a

corresponding Ki , which is the square root of F(Ai).

We now compute the ramification divisor of π.

Lemma 3.2.2. Let ni be the order of H(x) at Ai ∈A1
k . Then the coefficient δP of the ramification

divisor R at P ∈ X is given by

δP =


2ni if P ∈ {P1, . . . , Pk},
2(g + 1− dH ) if P ∈ π−1(∞),

0 otherwise.

Proof. We first show that it will suffice to prove that the coefficient of [Pi] is 2ni for 1 ≤ i ≤ k.
Note that by the Riemann-Hurwitz formula deg(R) = 2g + 2. If ∞ is not a branch point of

π then δP = 0 = 2(g + 1− dH ), as stated. If ∞ is a branch point then the coefficient at P∞ is

deg(R)−
∑k
i=1 2ni = 2g + 2− 2dH = 2(g + 1− dH ), again as stated.

Let P = Pi for some i ∈ {1, . . . , k}. Then y −bi is a local parameter at P . To see this, note that

the maximal ideal mP ,X of the local ring OX,P at P is generated by x − ai and y − bi . But

x−ai ∈m2
P since π is ramified at P with ramification index 2. By Nakayama’s lemma [AM69,

Prop. 2.6], y − bi is therefore a local parameter at P .

Using Hilbert’s formula, Theorem 2.4.9, we obtain

δP =
∑
i≥0

(ord(Gi(P ))− 1)

= max {i ∈N|Gi(P ) , {1}}+ 1

= ordP (σ (y − bi)− (y − bi)).
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From the defining equation (3.7), it is clear that the hyperelliptic involution is given by σ (y) =

y +H(x). The following calculation then concludes the proof,

δP = ordP (σ (y − bi)− (y − bi))

= ordP (y − bi +H(x)− y + bi)

= 2ordAi (H(x))

= 2ni .

The divisors of x and dx are the same as when char(k) , 2, see (3.1) and (3.2). We also note

that since char(k) = 2 we have

dF(x) = d(y2 + yH(x)) = d(yH(x)) =H(x)dy + ydH(x)

and hence

dy =
F′(x) + yH ′(x)

H(x)
dx (3.12)

We now compute the divisor of H(x) too.

Lemma 3.2.3. The divisor associated to H(x) is

div(H(x)) =
k∑
i=1

niDi − dHD∞ = R− (g + 1)D∞.

Proof. If π is ramified at infinity then ordP∞(H(x)) = −2dH . If it is not ramified, then

ordP∞(H(x)) = ordP ′∞(H(x)) = −dH = −(g + 1). For the ramified points Pi , 1 ≤ i ≤ k, then

ordPi (H(x)) = 2ni . At any other point of X the order of H(x) is clearly zero, and the first

equality follows.

Finally, we describe the divisor of y. In order to do this we need to distinguish the zeroes of

F(x). Suppose that F(x) has l ≤ deg(F(x)) distinct zeroes, and let γ1, . . . ,γl ∈ k ⊆ P
1
k be these

zeroes. Then if γi is a branch point let Qi = (γi ,0) be the unique point in the pre-image

π−1(γi). If γi is not a branch point then let Qi = (γi ,0) and Q′i = (γi ,H(γi)) be the unique

points that form the pre-image π−1(γi). Also, we denote the order of the zero of F(x) at

γi ∈ k by mi ∈N.

Proposition 3.2.4. If ∞ is a branch point, the divisor of y is

div(y) =
l∑
i=1

mi[Qi]− (2g + 1)[P∞].
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If ∞ is not a branch point then, after possibly swapping the notations for the two points P∞ and

P ′∞ in π
−1(∞), we have

div(y) =
l∑
i=1

mi[Qi] + (g + 1−deg(F(x)))[P∞]− (g + 1)[P ′∞].

Proof. We first show that the divisor of y on the affine part of X, U∞ := X\π−1(∞), is∑l
i=1mi[Qi]. Suppose P ∈U∞. If F|P , 0 then it follows that y|P , 0, since F(x) = y(y+H(x))

(and similarly y does not have a pole at P ). Hence div(y) has a coefficient of zero for any

point in U∞\{Q1, . . . ,Ql}.

Suppose that P =Qi = (γi ,0) is an unramified point in U∞. Then H(γi) , 0 and y
∣∣∣
P

= 0, so

y +H(x) is a unit at P . Since y(y +H(x)) = F(x) we find that

ordP (y) = ordP

(
F(x)

y +H(x)

)
= ordP (F(x)) =mi .

We now look at when P = Qi = (γi ,0) is a ramification point. Since H(x) and H ′(x)2F(x) +

F′(x)2 cannot share roots it follows that mi = 1. Hence the function F̃(x) := (x −γi)−1F(x) is

a unit at P . We let H̃(x) = (x −γi)−1H(x).

Now

y2 = F(x)− yH(x) = (x −γi)
(
F̃(x)− yH̃(x)

)
,

and hence

ordP (y2) = ordP (x −γi) + ordP (F̃(x)− yH̃(x)).

Since ordP (x − γi) = 2 and ordP
(
F̃(x)− yH̃(x)

)
≥ 0 we know that ordP (y) ≥ 1. Hence

(yH̃(x))
∣∣∣
P

= 0, and since F̃(x) is a unit at P , we conclude that F̃(x) − yH̃(x) is a unit at P .

Hence ordP (y2) = 2, and so ordP (y) = 1 = mi . It follows that the divisor of y restricted to

U∞ is
∑l
i=1mi[Qi].

We now consider the coefficients in div(y) of the points in π−1(∞). If ∞ is a branch point

then deg(F(x)) = 2g + 1 and hence
∑l
i=1mi = 2g + 1. Since y can only have a pole at P∞, we

conclude that the order of this pole is 2g + 1, and hence

div(y) =
l∑
i=1

mi[Qi]− (2g + 1)[P∞].

If ∞ is not a branch point then there are two points at which y may have a pole, namely

P∞ and P ′∞. The hyperelliptic involution σ switches these two points. Furthermore, since

σ : y 7→ y +H(x) it follows that ordP ′∞(y) = ordP∞(y +H(x)), a fact we use below.
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We now consider three cases, firstly supposing that ordP∞(y) < −(g + 1). Then ordP∞(y) <

ordP∞(H(x)) and hence ordP∞(y) = ordP∞(y+H(x)). But this contradicts ordP∞(y)+ordP∞(y+

H(x)) = ordP∞(F(x)), since the left hand side is less than −2(g + 1), which is the minimum

value of the right hand side.

We now suppose that ordP∞(y) = −(g + 1). Since y(y +H(x)) = F(x) it follows that −(g + 1) +

ordP∞(y+H(x)) = ordP∞(F(x)), and hence ordP ′∞(y) = ordP∞(y+H(x)) = −deg(F(x))+g +1.

We now consider the case in which ordP∞(y) > −(g + 1). Then, since ordP∞(H(x)) = −(g + 1),

it follows that ordP ′∞(y) = ordP∞(y +H(x)) = −(g + 1). It now follows from a computation

similar to that in the previous paragraph that ordP∞(y) = −deg(F(x)) + g + 1, completing the

proof.

The following proposition determines a basis of the k vector space of global holomorphic

polydifferentials. The case where m = 1 can again be found in [Liu02, Prop. 7.4.26].

Proposition 3.2.5. We assume that g ≥ 2 and let ω := dx⊗m

H(x)m . Then a basis of H
0(X,Ω⊗mX ) is

given by

ω,xω, . . . ,xg−1ω if m = 1,

ω,xω,x2ω if m = g = 2,

ω,xω, . . . ,xm(g−1)ω; yω,xyω, . . . ,x(m−1)(g−1)−2yω otherwise.

Proof. We first assume that above elements are holomorphic polydifferentials, and show that

they then form a basis. To show that the elements are linearly independent over k we need

only show that the coefficients of ω are, since ω is fixed. The only case where this is not clear

is when the coefficients contain both x and y terms. But since the y terms are all linear, and

the extension is of degree two, it must follow that coefficients are linearly independent.

In the case that m = 1 then we have that dimkH
0(X,ΩX) = g by Definition 2.2.4, and there

are g elements described in the statement of the proposition in this case, so they must form a

basis. If m ≥ 2 then dimkH
0(X,Ω⊗mX ) = (2m−1)(g−1). If m = g = 2 then (2m−1)(g−1) = 3,

and there are three elements listed in the proposition. On the other hand if m ≥ 2 and g > 2

the proposition lists

m(g − 1) + 1 + (g − 1)(m− 1)− 2 + 1 = 2mg − 2m− g + 1 = (2m− 1)(g − 1)

elements, and again they must form a basis.
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We now show that the listed polydifferentials are holomorphic, i.e. that their divisors are

non-negative. Firstly we have

div(xiω) = div
(
xidx⊗m

H(x)m

)
= i(D0 −D∞) +m(R− 2D∞)−m(R− (g + 1)D∞)

= iD0 + (m(g − 1)− i)D∞

by (3.1), (3.2) and Lemma 3.2.3, and this is clearly non-negative for 0 ≤ i ≤m(g − 1).

Similarly, if ∞ is a branch point, we have

div(xiyω) = div(xiω) + div(y)

= iD0 + (m(g − 1)− i)D∞ +
l∑
i=1

mi[Qi]− (2g + 1)[P∞]

= iD0 +
l∑
i=1

mi[Qi] + (2m(g − 1)− 2g − 1− 2i)[P∞]

= iD0 +
l∑
i=1

mi[Qi] + (2((m− 1)(g − 1)− 1− i)− 1)[P∞],

by (3.1), (3.2) and Lemma 3.2.3 and Proposition 3.2.4, which is again clearly non-negative for

0 ≤ i ≤ (g − 1)(m− 1)− 2.

Finally, if ∞ is not a branch then, after possibly switching P∞ and P ′∞, we have

div(xiyω) = div(xiω) + div(y)

= iD0 + (m(g − 1)− 1)D∞ +
l∑
i=1

mi[Qi] + (g + 1−deg(F(x)))[P∞]− (g + 1)[P ′∞]

−mR+m(g + 1)D∞

= iD0 +
l∑
i=1

mi[Qi] + (mg − i −m− g − 1)[P ′∞] + (mg − i −m+ g + 1−deg(F(x)))[P∞]

= iD0 +
l∑
i=1

mi[Qi] + ((m− 1)(g − 1)− 2− i)[P ′∞] + (mg − i −m+ g + 1−deg(F(x)))[P∞],

by Proposition 3.2.4, (3.1), (3.2) and Lemma 3.2.3. Since 0 ≤ i ≤ (g − 1)(m − 1) − 2 then the

coefficient of [P ′∞] is clearly non-negative. Finally, since deg(F(x)) ≤ 2g + 2, the coefficient

of [P∞] is greater than or equal to that of [P ′∞], and we conclude that the above divisor is

non-negative, completing the proof.



Chapter 4

Group actions on algebraic de-Rham

cohomology

Our aim in this chapter is to study the de Rham cohomology H1
dR(X/k) of a hyperelliptic

curve X as a module over k[G], where G is a subgroup of Aut(X). In the first section we

describe the ordinary cohomology groups H1(X,OX) and H1
dR(X/k) via Čech cohomology.

We can do this particularly elegantly in the case of a hyperelliptic curve X, since we can

choose a very simple affine cover, via the natural projection any hyperelliptic curve has on to

the projective line. We then use this to prove that the sequence of k[G]-modules

0→H0(X,ΩX)→H1
dR(X/k)→H1(X,OX)→ 0 (4.1)

is exact, see Proposition 4.1.2. The rest of the chapter will then build towards showing that

for a particular class of hyperelliptic curves this sequence does not split.

Building on the Čech cohomology computations of the previous section, we then use Serre

duality and the fact that we have already computed a k vector space basis of H0(X,ΩX)

to compute a basis of H1(X,OX) (Theorem 4.2.1), which surprisingly is the same whether

char(k) = 2 or not. As an application of this we then give a Mittag-Leffler style theorem for

hyperelliptic curves, see Corollary 4.2.2.

In the next section we compute a k vector space basis of H1
dR(X/k), which features the bases

of H0(X,ΩX) and H1(X,OX) already mentioned, as well as other components, see Theorem

4.3.1. Unlike the basis of H1(X,OX), this basis does depend on whether char(k) = 2 or not.

Using this basis we are able, after some computations, to determine precisely how certain

automorphisms act on the de Rham cohomology of X. In particular, we look at automor-

phisms on X of the form (x,y) 7→ (x + a,y), for some non-zero a ∈ k. Then we prove (see

33
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Theorem 4.4.3) that if G contains such an automorphism, and X ramifies above∞∈ P1
k , then

the short exact sequence (4.1) does not split as a sequence of k[G]-modules. It should be

noted that such hyperelliptic curves can occur in any genus greater than 1. After this is the

final section of the chapter, giving examples to illustrate the details of what happens when

the above suppositions are satisfied, and finally giving an example to demonstrate that the

supposition that ∞ is a branch point is required.

4.1 Čech cohomology and de Rham cohomology for

hyperelliptic curves

Throughout this chapter we assume that X is hyperelliptic of genus g ≥ 2. We recall from

Chapter 3 that a curve is hyperelliptic if there exists a finite, separable morphism of degree

two from the curve to P
1
k . We fix such a map π : X→ P

1
k of degree two, which is unique up

to an automorphism of P1
k (see [Liu02, Rem. 7.4.30]).

In this section we describe H1(X,OX) and H1(X,ΩX) concretely for such an X, using Čech

cohomology.

By Leray’s theorem [Liu02, Thm. 5.2.12] and Serre’s affineness criterion [Liu02, Thm. 5.2.23]

we know that, if we use an affine cover, the first Čech cohomology group of OX will be

isomorphic to H1(X,OX). We define Ua = X\π−1(a) for any a ∈ P1
k and we let U be the

affine cover of X formed by U0 and U∞. Given any sheaf F on X we have the Čech

differential ď : F (U0)×F (U∞)→F (U0 ∩U∞), defined by (f0, f∞) 7→ f0|U0∩U∞ − f∞|U0∩U∞ .

In general we will suppress the notation denoting the restriction map. Via this differential we

have the following cochain complex

0→OX(U0)×OX(U∞)
ď−→OX(U0 ∩U∞)→ 0.

The first cohomology group of this chain complex is Ȟ1(U ,OX) = OX (U0∩U∞)
Im(ď)

and hence

H1(X,OX) �
OX(U0 ∩U∞)

Im(ď)
=

OX(U0 ∩U∞)
{f0 − f∞|fi ∈ OX(Ui)}

. (4.2)

When describing elements of H1(X,OX) using the isomorphism we will denote the residue

class of f ∈ OX(U0 ∩U∞) in the quotient by [f ].

If we replace OX by ΩX in the previous paragraph then everything still holds, and we

conclude that

H1(X,ΩX) �
ΩX(U0 ∩U∞)

Im(ď)
=

ΩX(U0 ∩U∞)
{ω0 −ω∞|ωi ∈ΩX(Ui)}

. (4.3)
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Again, we denote the residue class of ω ∈ΩX(U0 ∩U∞) in H1(X,ΩX) by [ω].

We now describe how the trace map acts on H1(X,ΩX) via the presentation (4.3).

Lemma 4.1.1. Let ω ∈ΩX(U0 ∩U∞) with residue class [ω] in H1(X,ΩX). Then we have

t ([ω]) =
∑

P ∈π−1(∞)

ResP (ω).

On the right hand side we consider ω as an element of the module of differentials, ΩK(X), via the

canonical injection ΩX(U0 ∩U∞) ↪→ΩK(X).

Proof. We take the Čech complex of (2.7) over the cover U , yielding the following bicomplex,

with exact rows

ΩX(U0)×ΩX(U∞) �
� //

d1

��

ΩK(X) ×ΩK(X)

d2

��

// //
⊕
P ∈U0

ΩK(X)/ΩX,P ×
⊕
P ∈U∞

ΩK(X)/ΩX,P

d3

��
ΩX(U0 ∩U∞) �

� // ΩK(X)
// //

⊕
P ∈U0∩U∞

ΩK(X)/ΩX,P

(4.4)

The exactness of the rows can be derived from 2.5.1, by replacing X by U0 and U∞, and

noting that in this case the first cohomology group will vanish, by Serre’s affineness criteria

[Liu02, Thm. 5.2.23].

We can now apply the snake lemma to this diagram, giving a long exact sequence. We first

note that d2 is clearly surjective — any ω ∈ΩK(X) is mapped to by (ω,0) ∈ΩK(X) ×ΩK(X).

Now recall that d3 is defined by ((ωP )P ∈U0
, (ω′P )P ∈U∞) 7→ (ωP −ω′P )P ∈U0∩U∞ . Then given any

element (ωP )U0∩U∞ ∈
⊕

ΩK(X)/ΩX,P we can define

(ω′P ) :=

ωP if P ∈U0 ∩U∞
0 if P =∞.

Clearly d3((ω′P )P ∈U0
,0) = (ωP )P ∈U0∩U∞ , and hence d3 is also surjective. In particular, the

fifth and sixth terms of the long exact sequence are zero. We now exhibit isomorphisms

between ker(d3) and coker(d1) and, respectively, the third and fourth terms of (2.3). The

fact that H1(X,ΩX) � coker(d1) follows from the above discussion of Čech cohomology. To

show the isomorphism ker(d3) �
⊕

P ∈XΩK(X)/ΩX,P we first observe that the kernel of d3 is

formed of pairs ((ωP )P ∈U0
, (ω′P )P ∈U∞) ∈

(⊕
P ∈U0

ΩK(X)/ΩX,P

)
×
(⊕

P ∈U∞
ΩK(X)/ΩX,P

)
such

that ωP =ω′P for every P ∈U0 ∩U∞. From this it follows that the map⊕
P ∈X

ΩK(X)/ΩX,P → ker(d3), (ωP )P ∈X →
(
(ωP )P ∈U0

, (ωP )P ∈U∞
)
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is an isomorphism.

The proof now follows from a diagram chase on (4.4). We start with the residue class [ω] ∈
H0(X,ΩX) of ω ∈ΩX(U0 ∩U∞). Then ω injects in to ΩK(X), and since d2 is surjective we

can choose an element of ΩK(X)×ΩK(X) mapping to ω. In particular, we choose (ω,0). This

then maps to

ψ = ((ωP )P ∈U0
,0) ∈

⊕
P ∈U0

ΩK(X)/ΩX,P

×
⊕
P ∈U∞

ΩK(X)/ΩX,P

 .
By commutativity of the diagram ψ ∈ ker(d3) �

⊕
P ∈XΩK(X)/ΩX,P . This means that ωP ,

and hence ψ, is zero for any P ∈U0∩U∞. Since ψ is also zero for P ∈ π−1(∞) it follows that

t ([ω]) =
∑
P ∈X

ResP (ψ) =
∑

P ∈π−1(∞)

ResP (ω).

We now recall how to compute the algebraic de Rham cohomology of X via Čech cohomology.

Since X is a curve any differentials of degree greater than one on X are zero. Hence the de

Rham complex of X is

0→OX
d−→ΩX → 0. (4.5)

Here d denotes the differential map f 7→ df , as defined in [Har77, Chap. II, Pg. 172]. We

then recall from [Gro66, Pg. 351] that the algebraic de Rham cohomology of X is defined to

be the hypercohomology of (4.5).

We use the cover U and the Čech differentials defined earlier to give us the Čech bicomplex

of (4.5), which is

0

��

0

��
0 // OX(U0)×OX(U∞)

��

// ΩX(U0)×ΩX(U∞)

��

// 0

0 // OX(U0 ∩U∞)

��

// ΩX(U0 ∩U∞) //

��

0

0 0

(4.6)

By a generalisation of Leray’s theorem [Gro61, Cor. 12.4.7] we know that the H1
dR(X/k) is

isomorphic to the first cohomology of the total complex of (4.6). Note that this requires
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Ȟp(Uσ ,OX) and Ȟp(Uσ ,ΩX) to be zero for any σ in the nerve of U and any p ≥ 1 — since

U0 and U∞ are affine, this follows from Serre’s affineness criterion [Liu02, Thm. 5.2.23].

Therefore H1
dR(X/k) is isomorphic to the space{

(ω0,ω∞, f0,∞)|ωi ∈ΩX(Ui), f0,∞ ∈ OX(U0 ∩U∞),df0,∞ =ω0|U0∩U∞ −ω∞|U0∩U∞

}
(4.7)

quotiented by the subspace{
(df0,df∞, f0|U0∩U∞ − f∞|U0∩U∞)|fi ∈ OX(Ui)

}
. (4.8)

Via the isomorphism (4.2) and the description of H1
dR(X/k) above, we can define the maps

i : H0(X,ΩX)→H1
dR(X/k), [ω] 7→ [(ω,ω,0)] (4.9)

and

p : H1
dR(X/k)→H1(X,OX), [(ω0,ω∞, f0∞)] 7→ [f0∞]. (4.10)

The following lemma shows that H1
dR(X/k) fits in to a short exact sequence with H0(X,ΩX)

and H1(X,OX).

Proposition 4.1.2. The following sequence is exact:

0→H0(X,ΩX)
i−→H1

dR(X/k)
p
−→H1(X,OX)→ 0.

Proof. Let T be the total complex of (4.6). Moreover, we let O and Ω be the complexes

formed from the first and second (non-trivial) columns of (4.6) respectively. Then let Ω[1]

denote the complex obtained from shifting Ω by one, i.e. Ω[1]n+1 = Ωn. From this we

obtain the following short exact sequence of complexes

Ω[1] ↪→ T � O,

giving rise to the following long exact sequence

0→H0
dR(X/k)→H0(X,OX)→

H0(X,ΩX)→H1
dR(X/k)→H1(X,OX)→

H1(X,ΩX)→H2
dR(X/k)→ 0,

(4.11)

where the maps in the middle line are the maps i (4.9) and p (4.10).

The map H0(X,OX)→ H0(X,ΩX) is the map f 7→ df . Since the only globally holomor-

phic functions on X are constant functions, it follows that this is the zero map, and hence

H0(X,ΩX)→H1
dR(X/k) is injective.
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Since (4.11) is exact, p is surjective if and only if α : H1(X,ΩX) → H2
dR(X/k) is injective.

Now H1(X,ΩX) is isomorphic to k via the trace map, and if we can show that this isomor-

phism factors through α it will follow that α is injective. Considering the Čech cohomology

constructions of H1(X,ΩX) and H2
dR(X/k), it suffices to show that the trace map is zero on

Im(d : OX(U0 ∩U∞)→ΩX(U0 ∩U∞)). This follows from Theorem 2.5.2, which says that

given any f ∈ K(X) then ResP (df ) = 0 for any P ∈ X, and in particular for any P ∈ π−1(∞).

Hence t ([df ]) = 0 by Lemma 4.1.1. So the residue isomorphism factors through α, and p is

surjective.

4.2 Basis of H1(X,OX)

We now give concrete elements in OX(U0 ∩U∞) whose classes in H1(X,OX), via the iso-

morphism (4.2), form a basis of H1(X,OX). Note in particular that the basis is the same

regardless of whether p = 2 or p , 2. We then give a corollary which is of the same style as

the Mittag-Leffler theorem [Ahl78, Chap. 5, §2, Thm. 4].

Theorem 4.2.1. The elements yx , . . . ,
y
xg ∈ K(X) are regular on U0∩U∞, and their residue classes[

y
x

]
, . . . ,

[
y
xg

]
form a basis of H1(X,OX).

Proof. We start by considering the case p , 2 and first check that the functions y
x , . . . ,

y
xg are

indeed regular on U0 ∩U∞ (as required by (4.2)) by computing their divisors. From (3.1) and

(3.5) we see that

div
( y
xi

)
= div(y)−div(xi)

= R− (g + 1)D∞ − iD0 + iD∞

= R− iD0 − (g + 1− i)D∞.

Since R is a positive divisor this is non-negative on U0 ∩U∞ for all i ∈ Z, and hence in

particular for i ∈ {0, . . . , g − 1}.

Recall that the differentials y−1dx, . . . ,xg−1y−1dx form a basis of H0(X,ΩX) (see Proposition

3.1.2). By Lemma 4.1.1 we know that 〈xiy−1dx,yx−j〉 =
∑
P ∈π−1(∞) ResP (xi−jdx). It follows

immediately from Theorem 2.5.2 that
∑
P ∈π−1(∞) ResP (xi−jdx) = −2 if i − j = −1 and is zero

otherwise (regardless of whether ∞ is a branch point). It then follows from Theorem 2.5.5

that the residue classes
[
yx−1

]
, . . . , [yx−g ] form a basis of H1(X,OX).
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We now suppose that p = 2, and again start by checking that for i ∈ {1, . . . , g} the function

yx−i is regular on U0 ∩U∞. This follows once we compute the divisor of yx−i , which is

div
( y
xi

)
= div(y)− idiv(x)

=
l∑
i=1

mi[Qi]− iD0 − (2g + 1− 2i)[P∞]

if ∞ is a branch point and

div
( y
xi

)
= div(y)− idiv(x)

=
l∑
i=1

mi[Qi]− iD0 + (g + 1−deg(F(x)) + i)[P∞]− (g + 1− i)[P ′∞]

otherwise. These equalities follow from Proposition 3.2.4 and (3.1). The divisors are clearly

positive on U0 ∩U∞ for all i ∈Z, and hence for i ∈ {1, . . . , g}.

Next we recall from Proposition 3.2.5 that if p = 2 a basis of H0(X,ΩX) is given by
1

H(x)dx, . . . ,
xg−1

H(x)dx. We then deduce from Lemma 4.1.1 that when ∞ is not a branch point

〈
xi

H(x)
dx,

y

xj

〉
= ResP∞

(
yxi−j

H(x)
dx

)
+ ResP ′∞

(
yxi−j

H(x)
dx

)
.

Then recall that in characteristic two we have an involution σ : X → X given by (x,y) 7→
(x,y +H(x)), and that ResP (σ ∗(ω)) = Resσ (P )(ω) for any P ∈ X and ω ∈H0(X,ΩX). Then it

follows that 〈
xi

H(x)
dx,

y

xj

〉
= ResP∞

(
yxi−j

H(x)
dx

)
+ ResP∞

(
(y +H(x))xi−j

H(x)
dx

)
= 2ResP∞

(
yxi−j

H(x)
dx

)
+ ResP∞(xi−jdx)

= ResP∞(xi−jdx),

since we are assuming that char(k) = 2. As in the previous case, it follows from the definition

of ResP that ResP∞(xi−jdx) = −1 if i − j = −1 and is zero otherwise. Hence , by Theorem

2.5.5, the residue classes of yx |U0∩U∞ , . . . ,
y
xg |U0∩U∞ form a basis of H1(X,OX) when p = 2 and

∞ is not ramified.



40 Chapter 4 Group actions on algebraic de-Rham cohomology

If P∞ is a branch point then we compute the divisor of y
xj
· xi

H(x)dx, using (3.1), (3.2), Lemma

3.2.3 and Proposition 3.2.4:

div
(
yxi−j

H(x)
dx

)
= div(y) + div(xi−j ) + div(dx)−div(H(x))

=
l∑
i=1

mi[Qi]− (2g + 1)[P∞] + (i − j)D0 − (i − j)D∞ +R− 2D∞ −R+ (g + 1)D∞

=
l∑
i=1

mi[Qi] + (2j − 3− 2i)[P∞] + (i − j)D0.

We see that there is a pole of order one at P∞ precisely if 2j − 3− 2i = −1, or equivalently if

j = i + 1. Hence
〈
xi

H(x)dx,
y
xj

〉
= ResP∞

(
yxi−j

H(x)dx
)
, 0 in this case.

We also check that if j , i + 1 then
〈
xi

H(x)dx,
y
xj

〉
= 0. Indeed, if j − i ≥ 2 then clearly yxi−j

H(x)dx

does not have a pole at P∞. On the other hand, if j − i ≤ 0 then the differential yxi−j

H(x)dx is

regular on U∞, and hence the residue on this set is zero. Since X\U∞ = {P∞} it follows from

the residue theorem (Theorem 2.5.3) that the residue of yx
i−j

H(x)dx at P∞ is also zero, and hence

the residue classes of the elements
[
y
x

]
, . . . ,

[
y
xg

]
form a basis of H1(X,OX), in all cases.

We now give a corollary to Theorem 4.2.1, which is of the same style as the Mittag-Leffler

theorem. For a description of the classical Mittag-Leffler problem see [Mir95, Pgs. 180-181].

Corollary 4.2.2. For each P ∈ X we fix fP ∈ K(X)/OX,P , such that fP = 0 for almost all P ∈ X.
Then there exist unique α1, . . . ,αg ∈ k such that, after replacing fP by fP −

(
α1

y
x + . . .+αg

y
xg

)
for

P ∈ π−1(∞), we can find an f ∈ K(X) which has a Laurent tail of fP at P for all P ∈ X.

Proof. Since fP = 0 for almost all P ∈ X then (fP )P ∈X ∈
⊕

P ∈XK(X)/OX,P . From Lemma

2.5.1 we have the following exact sequence

0→H0(X,OX)→ K(X)→
⊕
P ∈X

K(X)/OX,P →H1(X,OX)→ 0,

and we let δ denote the map
⊕

P ∈XK(X)/OX,P →H1(X,OX). By Theorem 4.2.1 the residue

classes γ1 =
[
y
x

]
, . . . ,γg =

[
y
xg

]
form a basis of H1(X,OX), and it follows that there exist

unique α1, . . . ,αg ∈ k such that

δ ((fP )P ∈X)−
(
α1γ1 + . . .+αgγg

)
= 0.
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We can derive the exact sequence (2.2) by applying the snake lemma to the Čech complex of

(2.6) over U , which is

OX(U0)×OX(U∞) �
� //

d1

��

K(X)×K(X)

d2

��

// //
⊕
P ∈U0

K(X)/OX,P ×
⊕
P ∈U∞

K(X)/OX,P

d3

��
OX(U0 ∩U∞) �

� // K(X) // //
⊕

P ∈U0∩U∞
K(X)/OX,P

where the rows are exact. In particular, the surjectivity of the right hand horizontal maps

follows from the fact the exact sequence (2.3) still holds if we replace X by an affine curve,

and that in this case the final term of the sequence is zero. Now δ is the differential map

ker(d3) =
⊕

P ∈XK(X)/OX,P → coker(d1) =H1(X,OX) in the statement of the snake lemma

[Wei94, Lem. 1.3.2]. Hence we can perform a diagram chase to find the element in ker(d3)

which maps to
(
α1γ1 + . . .+αgγg

)
∈ H1(X,OX) via this differential. Firstly, it is clear that

α1γ1 + . . .+αgγg pulls back to(((
α1
y

x
+ . . .+αg

y

xg

))
P ∈U0

,0
)
∈
⊕
P ∈U0

K(X)/OX,P ×
⊕
P ∈U∞

K(X)/OX,P . (4.12)

Since αix
i/y is regular on U∞ ∩U0, then (4.12) is equal to

(
(gP )P ∈U0

,0
)
, where

gP =

α1
y
x + . . .+αg

y
xg if P ∈ π−1(∞),

0 else.

Clearly
(
(gP )P ∈U0

,0
)
∈ ker(d3) =

⊕
P ∈XK(X)/OX,P , and δ

(
(gP )P ∈U0

,0
)

= α1γ1 + . . .+αgγg .

Hence δ((fP )P ∈X − (gP )P ∈X) = 0, and by the exactness of (2.2) it follows that there exists an

f ∈ K(X) which has Laurent tail fP − gP at each P ∈ X, as required in the statement of the

corollary.

4.3 Basis of H1
dR(X/k)

In order to state a basis of H1
dR(X/k), as well as to shorten the proof of the following theorem,

we define the following polynomials. We suppose that 1 ≤ i ≤ g . Then when p , 2 we define

si(x) := xf ′(x)− 2if (x) ∈ k[x]

and when p = 2 we define

Si(x,y) := xF′(x) + y(xH ′(x) + iH(x)) ∈ k[x]⊕ yk[x] ⊆ k(x,y). (4.13)
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We now decompose these polynomials into two parts, which will be used in the sequel. Firstly,

we write si(x) as si(x) = φi(x) +ψi(x), where ψi(x),φi(x) ∈ k[x] are the unique polynomials

such that the degree of ψi(x) is at most g + 1 and xg+2 divides φi(x). Secondly, we define

Aj,i ∈ k for 1 ≤ j ≤ 2g + 2, and Bk,i ∈ k for 0 ≤ k ≤ g + 1 by the equation

Si(x,y) = A2g+2,ix
2g+2 + . . .+A1,ix+ y(Bg+1,ix

g+1 + . . .+B1,ix+B0,i).

Note that many of these coefficients may be zero. In particular we remark that the xi term of

xH ′(x) + iH(x) is always zero, since Bi,ix
i = x · iBixi−1 + iBixi = 2iBixi = 0. We now define

the following polynomials:

Φxi (x) = A2g+2,ix
2g+2 + . . .+Ai+1,ix

i+1,

Ψ x
i (x) = Ai,ix

i + . . .+A1,ix,

Φ
y
i (x) = Bg+1,ix

g+1 + . . .Bi+1,ix
i+1,

Ψ
y
i (x) = Bi−1,ix

i−1 + . . .+B1,ix+B0,i .

(4.14)

Finally, we define Φi(x,y) = Φxi (x)+yΦyi (x) and Ψi(x,y) = Ψ x
i (x)+yΨ y

i (x), so that Si(x,y) =

Φi(x,y) +Ψi(x,y).

Viewing H1
dR(X/k) as the quotient of (4.7) by (4.8), we now give a k-vector space basis of

H1
dR(X/k).

Theorem 4.3.1. If p , 2 then the residue classes[((
ψi(x)

2yxi+1

)
dx,

(
−φi(x)
2yxi+1

)
dx,x−iy

)]
, i = 1, . . . , g, (4.15)

along with the residue classes [(
xi

y
dx,

xi

y
dx,0

)]
, i = 0, . . . , g − 1, (4.16)

form a k-basis of H1
dR(X/k).

On the other hand, if p = 2 then the residue classes[((
Ψi(x,y)
xi+1H(x)

)
dx,

(
Φi(x,y)
xi+1H(x)

)
dx,x−iy

)]
, i = 1, . . . , g, (4.17)

together with the residue classes[(
xi

H(x)
dx,

xi

H(x)
dx,0

)]
, i = 0, . . . , g − 1, (4.18)

form a k-basis of H1
dR(X/k).
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Before proving this theorem we use it to prove the following corollaries.

Corollary 4.3.2. Let G be a subgroup of the automorphism group Aut(X). Then the action of G

on H1
dR(X/k) is faithful unless G contains a hyperelliptic involution and p = 2, in which case the

action of the hyperelliptic involution is trivial.

Proof. Recall from Proposition 4.1.2 that H0(X,ΩX) injects into H1
dR(X/k). Then if p , 2

or G does not contain a hyperelliptic involution it follows from Theorem 5.3.1 that G acts

faithfully on H0(X,ΩX), and hence G acts faithfully on H1
dR(X/k).

We now suppose that p = 2 and that G contains a hyperelliptic involution, which we denote

by σ . Again by Theorem 5.3.1, we know that σ acts trivially on H0(X,ΩX).

Since H0(X,ΩX) is dual to H1(X,OX) then σ also acts trivially on H1(X,OX). We can study

exactly why this is from the view of Čech cohomology, and this will also help to determine

the action of σ on H1
dR(X/k). If we fix a natural number i ∈ {1, . . . , g} then σ maps y

xi
to

y
xi

+ H(x)
xi

. Now we can write the rational function H(x)
xi

as follows,

H(x)
xi

=
Bi−1x

i−1 + . . .+B1x+B0

xi
−
−xdH +BdH−1x

dH−1 + . . .+Bixi

xi

 ,
where Bj and dH are as in (3.11). Since this is clearly the difference of an element of OX(U0)

and an element of OX(U∞) we see that H(x)
xi

is zero in H1(X,OX). We let

H1,i(x) = Bi−1x
i−1 + . . .+B1x+B0 and H2,i(x) = −(xd +Bd−1x

d−1 + . . .+Bix
i).

We now consider the action of σ on the entries in (4.17). Firstly we see that

σ

(
−Ψi(x,y)
xi+1H(x)

dx

)
=
−σ (Ψi(x,y))
xi+1H(x)

dx

=
−Ψi(x,y)
xi+1H(x)

dx+
H(x)(xH ′1,i(x) + iH1,i(x))

xi+1H(x)
dx

=
−Ψi(x,y)
xi+1H(x)

dx+
xH ′1,i(x) + iH1,i(x)

xi+1
dx

=
−Ψi(x,y)
xi+1H(x)

dx+
H ′1,i(x)

xi
dx+

iH1,i(x)
xi+1

dx

=
−Ψi(x,y)
xi+1H(x)

dx+
1
xi
d
(
H1,i(x)

)
+H1,i(x)d

( 1
xi

)
=
−Ψi(x,y)
xi+1H(x)

dx+ d
(
H1,i(x)
xi

)
,

where the second equality follows from (4.13) and the fact that σ (y) = y +H(x).
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Similarly we can derive

σ

(
Φi(x,y)
xi+1H(x)

dx

)
=
Φi(x,y)
xi+1H(x)

dx+ d
(
H2,i(x)
xi

)
.

Lastly, it is clear that σ (x−iy) = x−i(y +H(x)).

We can now describe exactly how σ acts on the elements of (4.17) using H1,i(x) and H2,i(x):

σ

([((
−Ψi(x,y)
xi+1H(x)

)
dx,

(
Φi(x,y)
xi+1H(x)

)
dx,x−iy

)])
=[((

−Ψi(x,y)
xi+1H(x)

)
dx+ d

(
H1,i(x)
xi

)
,

(
Φi(x,y)
xi+1H(x)

)
dx+ d

(
H2,i(x)
xi

)
,
y +H(x)
xi

)]
.

So the action of σ on the basis elements in (4.17) amounts to adding the residue class[(
d

(
H(x)1,i

xi

)
,d

(
H(x)2,i

xi

)
,
H(x)
xi

)]
,

which is clearly an element of (4.8) and hence is zero. So the action of the involution σ on

H1
dR(X/k) is trivial and hence the action of the group G is not faithful.

Corollary 4.3.3. Let p , 2. Then the hyperelliptic involution acts on H1
dR(X/k) by multiplication

with −1.

Proof. The hyperelliptic involution σ acts by (x,y) 7→ (x,−y). Hence, if we let

γi =
[((

ψi(x)
2yxi+1

)
dx,

(
−φi(x)
2yxi+1

)
dx,x−iy

)]
,

then clearly σ (γi) = −γi . Similarly, if

λi =
[(
xi

y
dx,

xi

y
dx,0

)]
then σ (λi) = −λi . Hence σ acts by multiplication with −1 on H1

dR(X/k).

We now prove Theorem 4.3.1.

Proof. We make use of the fact that the short exact sequence in Proposition 4.1.2 splits as a

sequence of vector spaces over k, and that we know bases of the outer two terms.

It is clear that the elements in (4.16) and (4.18) are elements of (4.7). In fact, it follows from

Propositions 3.1.2 and 3.2.5 that they are the image of a basis of H0(X,ΩX) in H1
dR(X/k).
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Moreover, it is obvious that if the elements in (4.15) and (4.17) are well defined elements of the

space (4.7) then they will map to the basis of H1(X,OX) given in Theorem 4.2.1. So we need

only show that the terms in (4.15) and (4.17) satisfy the conditions stated in (4.7). For the rest

of the proof we fix i ∈ {1, . . . , g}.

We start with the case p , 2, and observe that(
ψi(x)

2yxi+1
−
−φi(x)
2yxi+1

)
dx =

si(x)
2yxi+1

dx

=
1

2yxi

(
f (x)′ −

2if (x)
x

)
dx

=
xi

2y

(
f (x)′

x2i
dx −

2if (x)
x2i+1

dx

)
=
xi

2y

(
f (x)d

( 1
x2i

)
+

1
x2i
df (x)

)
=
xi

2y
d(f (x)x−2i)

=
xi

2y
d
((
yx−i

)2
)

= d(yx−i),

with the penultimate line following from the defining equation (3.3). This shows that the

elements in (4.15) satisfy df0,∞ =ω0 −ω∞, one of the conditions of (4.7). Since we saw in the

proof of Theorem 4.2.1 that y
xi

is regular on U0 ∩U∞ it only remains to show that φi (x)
2yxi+1dx

and −ψi (x)
2yxi+1 dx are regular on U∞ and U0 respectively.

In order to do this we fix αj,i ∈ k for 0 ≤ j ≤ 2g + 2 satisfying the equation

si(x) = α2g+2,ix
2g+2 + . . .+α0,i ,

so that

φi(x) = α2g+2,ix
2g+2 + . . .+αg+2,ix

g+2

and

ψi(x) = αg+1,ix
g+1 + . . .+α0,i .

Note that it is possible for any of αj,i to be zero. In fact, it is possible for either φi(x) or

ψi(x) to be zero. Whenever they are non-zero we denote their degrees as polynomials in x by

dφ and dψ respectively. From the definition of φi(x) and ψi(x) we know that 0 ≤ dψ ≤ g + 1

and g + 1 < dφ ≤ 2g + 2.
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We now show that −φi (x)
2yxi+1 dx and ψi (x)

2yxi+1dx are regular on U∞ and U0 respectively. We may

assume that φi(x) and ψi(x) are non-zero, since the zero function is regular everywhere.

The divisor of −φi (x)
2yxi+1 dx is

div
(
−φi(x)
2yxi+1

dx

)
= div(φi(x))−div(y)−div(xi+1) + div(dx)

= div(φi(x))− (R− (g + 1)D∞)− ((i + 1)D0 − (i + 1)D∞)

+ (R− 2D∞)

=
(
div0

(
φi(x)
xg+2

)
+ (g + 2)D0 − dφD∞

)
− (i + 1)D0 + (g + i)D∞

≥ div0

(
φi(x)
xg+2

)
+ (g + 2)D0 − (2g + 2)D∞ − (i + 1)D0 + (g + i)D∞

= div0

(
φi(x)
xg+2

)
+ (i − g − 2)D∞ + (g − i + 1)D0,

where the second equality makes use of (3.1) and (3.5). Since i ≤ g the differential −φi (x)
2yxi+1 dx is

regular on U∞ = X\π−1(∞).

Similarly the divisor of ψi (x)
2yxi+1dx is

div
(
ψi(x)

2yxi+1
dx

)
= div(ψi(x))−div(y)−div(xi+1) + div(dx)

= div(ψi(x))− (R− (g + 1)D∞)− ((i + 1)D0 − (i + 1)D∞)

+ (R− 2D∞)

= div(ψi(x)) + (g + i)D∞ − (i + 1)D0

= (div0(ψi(x))− dψD∞) + (g + i)D∞ − (i + 1)D0

≥ (div0(ψi(x))− (g + 1)D∞) + (g + i)D∞ − (i + 1)D0

= div0(ψi(x)) + (i − 1)D∞ − (i + 1)D0.

Again, the second equality uses (3.1) and (3.5), and since i ≥ 1 we conclude that ψi (x)
2yxi+1dx is

regular on U0 = X\π−1(0), completing the p , 2 case.
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We now suppose that p = 2. We remind the reader that this allows us to change signs between

positive and negative as we wish. We see that((
Ψi(x,y)
xi+1H

)
+
(
Φi(x,y)
xi+1H

))
dx =

Si(x,y)
xi+1H(x)

dx

=
(
F(x)′

xiH(x)
+
yH(x)′

xiH(x)
+
iy

xi+1

)
dx

=
1
xi

(
F(x)′ + yH(x)′

H(x)

)
dx+

iy

xi+1
dx

= x−idy + yd
(
x−i

)
= d

(
yx−i

)
,

with the fourth equality following from (3.12). We have also already seen in the proof of

Theorem 4.2.1 that y
xi

is regular on U0 ∩U∞. So in order to prove that for i ∈ {1, . . . , g} the

elements of (4.17) are satisfy the conditions of (4.7) it only remains to show that the differentials
Φi (x,y)
xi+1H(x)dx and Ψi (x,y)

xi+1H(x)dx are regular on U∞ and U0 respectively. We denote the degrees of

the polynomials defined in (4.14) by dx
Φ
,dx
Ψ
,d
y
Φ

and d
y
Ψ

.

By (4.14) we have Φi(x,y) = Φxi (x) + yΦyi (x) and Ψi(x,y) = Ψ x
i (x) + yΨ y

i (x), and we will use

these splittings to show that Φi (x,y)
xi+1H(x)dx and Ψi (x,y)

xi+1H(x)dx are regular on U∞ and U0 respectively.

We start by computing the divisor of 1
xi+1H(x)dx, since it is a common component to all the

differentials we will consider. This yields

div
(

1
xi+1H(x)

dx

)
= div(dx)−div(xi+1)−div(H(x))

= (R− 2D∞)− ((i + 1)D0 − (i + 1)D∞)− (R− (g + 1)D∞)

= (g + i)D∞ − (i + 1)D0,

using (3.1), (3.2) and Lemma 3.2.3. We now use this along with Proposition 3.2.4 and the

polynomials (4.14) to complete the proof.

We begin by computing the divisors associated to Φi(x,y). Firstly,

div
(
Φxi (x)

xi+1H(x)
dx

)
=div(Φxi (x))− (i + 1)D0 + (g + i)D∞

=
(
div0(Φxi (x))− dxΦD∞

)
− (i + 1)D0 + (g + i)D∞

≥div0(Φxi (x))− (2g + 2)D∞ − (i + 1)D0 + (g + i)D∞

=div0(Φxi (x))− (i + 1)D0 + (i − 2− g)D∞

=div0

(
Φxi (x)

xi+1

)
+ (i − g − 2)D∞.
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From this we see that the differential
Φx
i (x)

xi+1H(x)dx is clearly regular on U∞ = X\π−1(∞).

We now compute the divisor of the other half of Φi (x,y)
xi+1H(x)dx, namely

div

yΦyi (x)dx

xi+1H(x)

 =div(y) + div(Φyi (x))− (i + 1)D0 + (g + i)D∞

=div(y) + div0(Φyi (x))− dy
Φ
D∞ − (i + 1)D0 + (g + i)D∞

≥div(y) + div0(Φyi (x))− (g + 1)D∞ − (i + 1)D0 + (g + i)D∞

=div(y) + div0

Φyi (x)

xi+1

+ (i − 1)D∞.

From Proposition 3.2.4 we see that y only has poles at points in π−1(∞), and hence Φi (x,y)
xi+1H(x)dx

is regular on U∞ = X\π−1(∞).

Now we complete the same computations on Ψi(x,y), starting with Ψ x
i (x):

div
(
Ψ x
i (x)

xi+1H(x)
dx

)
= div(Ψ x

i (x))− (i + 1)D0 + (g + i)D∞

= (div0(Ψ x
i (x))− dxΨD∞)− (i + 1)D0 + (g + i)D∞

≥ div0(Ψ x
i (x))− iD∞ − (i + 1)D0 + (g + i)D∞

= div0(Ψ x
i (x))− (i + 1)D0 + gD∞,

and it is clear that the divisor is positive on U0 = X\π−1(0).

For the other half of the differential we need to consider separate cases. If we assume that ∞
is a branch point then using Proposition 3.2.4 we see that

div

 yΨ y
i (x)

xi+1H(x)
dx

 =div0(y)− (2g + 1)[P∞] + div(Ψ y
i (x))− (i + 1)D0 + 2(g + i)[P∞]

=div0(y) + div(Ψ y
i (x))− (i + 1)D0 + (2i − 1)[P∞]

=div0(y) + div0(Ψ y
i (x))− 2dy

Ψ
[P∞]− (i + 1)D0 + (2i − 1)[P∞]

≥div0(y) + div0(Ψ y
i (x))− (i − 1)[P∞]− (i + 1)D0 + (2i − 1)[P∞]

=div0(y) + div0(Ψ y
i (x))− (i + 1)D0 + [P∞],
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which is clearly positive on U0. On the other hand, if ∞ is not a branch point then we have

div

 yΨ y
i (x)

xi+1H(x)
dx

 =div(y) + div(Ψ y
i (x))− (i + 1)D0 + (g + i)D∞

=div(y) + div0(Ψ y
i (x))− (i + 1)D0 + (g + i − dy

Ψ
)D∞

≥div(y) + div0(Ψ y
i (x))− (i + 1)D0 + (g + 1)D∞.

Since we know from Proposition 3.2.4 that y cannot have a pole of order greater g + 1 at P∞

or P ′∞, and only has poles at these points, it follows that the differential
yΨ

y
i (x)

xi+1H(x)dx is regular

on U0 = X\π−1(0). Thus we have completed the proof.

4.4 Splitting of the short exact sequence

We keep the assumptions of the previous section, and we also assume that char(k) = p ≥ 3.

In the previous section we found a basis for the de Rham cohomology of any hyperelliptic

curve using Čech cohomology, with respect to the cover U = {U0,U∞} (Theorem 4.3.1). We

let λi and γi denote the elements of this basis by defining

λi =
[(
xi

y
dx,

xi

y
dx,0

)]
, i = 0, . . . , g − 1

and

γi =
[(
ψi(x)

2yxi+1
dx,
−φi(x)
2yxi+1

dx,x−iy

)]
, i = 1, . . . , g.

In this section we further study the covers U ′ = {Ua,U∞} and U ′′ = {U0,Ua,U∞} for some

fixed a ∈ P1
k\{0,∞}. Then H1

dR(X/k) is isomorphic to the k-vector space

{
(ω0,ωa,ω∞, f0a, f0∞, fa∞)|ωi ∈ΩX(Ui), fij ∈ OX(Ui ∩Uj ),

f0a − f0∞ + fa∞ = 0,dfij =ωi −ωj
}

(4.19)

quotiented by the subspace

{(df0,dfadf∞, f0 − fa, f0 − f∞, fa − f∞)|fi ∈ OX(Ui)} . (4.20)
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We introduce Čech cohomology notation for the different representations of H1
dR(X/k) we

have used, letting Ȟ1
dR(U ) and Ȟ1

dR(U ′′) be the quotient of (4.7) by (4.8) and (4.19) by (4.20)

respectively. Then we have a canonical isomorphism ρ : Ȟ1
dR(U ′′)→ Ȟ1

dR(U ), given by the

projection

ρ : (ω0,ωa,ω∞, f0a, f0∞, fa∞) 7→ (ω0,ω∞, f0∞). (4.21)

The next proposition explicitly describes the pre-image of the basis element γi under ρ. To

this end, we define the following polynomials for 1 ≤ i ≤ g :

ri(x) :=
i−1∑
k=0

(−1)g−k
(
g
k

)
ag−kxk

and

ti(x) :=
g∑
k=i

(−1)g−k
(
g
k

)
ag−kxk .

These split the polynomial (x − a)g in to two parts.

Proposition 4.4.1. The pre-image ρ−1(γi) for i ∈ {1, . . . , g} is the residue class of

νi =

 ψi(x)
2yxi+1

dx,
(ψi(x)ti(x)−φi(x)ri(x))(x − a) + 2if (x)(−1)g−i+1(g

i

)
ag−i+1xi

2yxi+1(x − a)g+1 dx,

−φi(x)
2yxi+1

dx,
ri(x)y

xi(x − a)g
,
y

xi
,
ti(x)y

xi(x − a)g

)
.

Proof. In order to be able to refer to the entries in νi more succinctly we let

νi = (ω0i ,ωai ,ω∞i , f0ai , f0∞i , fa∞i) .

First, note that it follows from the proof of Theorem 4.3.1 that d(f0∞i) = ω0i −ω∞i , and that

f0∞i ,ω0i and ω∞i are regular on the appropriate open sets.

Since ri(x) + ti(x) is the binary expansion of (x − a)g then

f0ai − f0∞i + fa∞i =
ri(x)y

xi(x − a)g
−
y

xi
+

ti(x)y
xi(x − a)g

=
y(ri(x) + ti(x)− (x − a)g )

xi(x − a)g

= 0.
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We now check that the differentials and functions in νi are regular on the appropriate open

sets by computing the relevant divisors. Firstly, by (3.1) and (3.5),

div(f0ai) = div
(
ri(x)y

xi(x − a)g

)
= div(ri(x)) + div(y)− idiv(x)− g div(x − a)

≥ div0(ri(x))− (i − 1)D∞ +R− (g + 1)D∞ − iD0 + iD∞ − gDa + gD∞

= div0(ri(x)) +R− iD0 − gDa,

which is non-negative on U0 ∩Ua. Note that the second and third line are not necessarily

equal, since the coefficient of xi−1 in r1(x) may be divisible by p, and hence zero in k. On

the other hand, again by (3.1) and (3.5),

div(fa∞i) = div
(
ti(x)y

xi(x − a)g

)
= div

(
ti(x)
xi

)
+ div(y)− g div(x − a)

= div0

(
ti(x)
xi

)
− (g − i)D∞ +R− (g + 1)D∞ − gDa + gD∞

= div0

(
ti(x)
xi

)
+R− gDa − (g − i + 1)D∞,

where the third equality holds because ti(x)/xi is regular on U∞. We conclude that fa∞i is

regular on Ua ∩U∞.

To show that

ωai =
(ψi(x)ti(x)−φi(x)ri(x))(x − a) + 2if (x)(−1)g−i+1(g

i

)
ag−i+1xi

2yxi+1(x − a)g+1 dx (4.22)

is regular on Ua we first compute the divisor

div
(

dx

2yxi+1(x − a)g+1

)
= div(dx)−div(y)− (i + 1)div(x)− (g + 1)div(x − a)

= R− 2D∞ −R+ (g + 1)D∞ − (i + 1)D0 + (i + 1)D∞ − (g + 1)Da + (g + 1)D∞

= (2g + i + 1)D∞ − (i + 1)D0 − (g + 1)Da,

using (3.1), (3.2) and (3.5). We next show that the numerator of (4.22),

(ψi(x)ti(x)−φi(x)ri(x))(x − a) + 2if (x)(−1)g−i+1
(
g
i

)
ag−i+1xi , (4.23)

has degree less than 2g + i + 2, from which it follows that (4.22) doesn’t have a pole at the
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point(s) in π−1(∞). The degree of ψi(x)ti(x)(x − a) is at most 2g + 2, which is less than

2g + 2 + i for all i ≥ 1. If deg(f (x)) = 2g + 1, then clearly

deg(φi(x)ri(x)(x − a)) = deg(φi) + deg(ri(x)) + deg(x − a) ≤ 2g + 1 + i − 1 + 1 = 2g + i + 1

and

deg
(
2if (x)(−1)g−i+1

(
g
i

)
ag−i+1xi

)
≤ 2g + 1 + i.

Lastly, if deg(f (x)) = 2g + 2 then the term of degree 2g + i + 2 in −φi(x)ri(x)(x − a) is

−((2g + 2)a2g+2x
2g+2 − 2ia2g+2x

2g+2)
(
(−1)g−i+1

(
g
i − 1

)
ag−i+1xi

)
= 2(−1)g−i+2

(
(g − i + 1)

(
g
i − 1

))
a2g+2a

g−i+1x2g+i+2

= 2(−1)g−i
(

g!
(i − 1)!(g − i)!

)
a2g+2a

g−i+1x2g+i+2

= 2i(−1)g−i
(
g
i

)
a2g+2a

g−i+1x2g+i+2,

which cancels with the term of the same degree in 2if (x)(−1)g−i+1(g
i

)
ag−i+1xi . Since these

terms cancel, we again have the that the degree of (4.23) is at most 2g + i + 1, and (4.22) has

no pole(s) at the point(s) in π−1(∞).

Finally, we show that (4.23) is divisible by xi+1. By definition xg+2|φi(x), and since i ≤
g it follows that xi+1|φi(x)ri(x)(x − a). On the other hand, the lowest degree terms of

2if (x)(−1)g−i+1(g
i

)
ag−i+1xi and ψi(x)ti(x)(x − a) which can be non-zero are, respectively,

2ia0(−1)g−i+1
(
g
i

)
ag−i+1xi

and

(−2ia0)
(
(−1)g−i

(
g
i

)
ag−ixi

)
(−a).

When adding ψi(x)ti(x)(x − a) and 2if (x)(−1)g−i+1(g
i

)
ag−i+1xi these two terms obviously

cancel. Hence the numerator (4.23) is divisible by xi+1.



Chapter 4 Group actions on algebraic de-Rham cohomology 53

It only remains to show that ωai =ω0i − df0ai . We begin this by computing df0ai , which is

df0ai = d
(
yri(x)

xi(x − a)g

)
=

ri(x)
xi(x − a)g

dy + yd
(

ri(x)
xi(x − a)g

)
=

f ′(x)ri(x)
2yxi(x − a)g

dx+ y
(

r ′i (x)

xi(x − a)g
− iri(x)
xi+1(x − a)g

−
gri(x)

xi(x − a)g+1

)
dx

=
xf ′(x)ri(x)(x − a) + 2f (x)(xr ′i (x)(x − a)− i(x − a)ri(x)− gxri(x))

2yxi+1(x − a)g+1 dx.

Hence ω0i − df0ai expands to

ψi(x)(x − a)g+1 − xf ′(x)ri(x)(x − a)− 2f (x)
(
xr ′i (x)(x − a)− i(x − a)ri(x)− gxri(x)

)
2yxi+1(x − a)g+1 dx.

Now

(x − a)g+1 = (x − a)g(x − a) = (ri(x) + ti(x))(x − a)

and

xf ′(x)ri(x)(x − a)− 2if (x)ri(x)(x − a) = ri(x)(x − a)(xf ′(x)− 2if (x))

= ri(x)(x − a)(ψi(x) +φi(x)).

So

ψi(x)(x − a)g+1 − xf ′(x)ri(x)(x − a) + 2if (x)ri(x)(x − a) = (ψi(x)ti(x)−φi(x)ri(x))(x − a).

We now compute (x − a)r ′i (x)− gri(x). First, we note that

r ′i (x) =
i−1∑
k=1

k(−1)g−k
(
g
k

)
ag−kxk−1

=
i−2∑
k=0

(k + 1)(−1)g−k−1
(
g

k + 1

)
ag−k−1xk .
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From this it follows that

r ′i (x)(x − a) = x
i−1∑
k=1

k(−1)g−k
(
g
k

)
ag−kxk−1 − a

i−2∑
k=0

(k + 1)(−1)g−k−1
(
g

k + 1

)
ag−k−1xk

=
i−1∑
k=1

k(−1)g−k
(
g
k

)
ag−kxk +

i−2∑
k=0

(k + 1)(−1)g−k
(
g

k + 1

)
ag−kxk

= gri(x) + (−1)g−i+2i

(
g
i

)
ag−i+1xi−1,

since

k

(
g
k

)
+ (k + 1)

(
g

k + 1

)
= k

(
g!

k!(g − k)!

)
+ (k + 1)

(
g!

(k + 1)!(g − k − 1)!

)
=

g!
(k − 1)!(g − k)!

+
g!

k!(g − k − 1)!

=
g · g!

k!(g − k)!

= g
(
g
k

)
.

Hence x(r ′i (x)(x − a)− gri(x)) = (−1)g−i+2i
(g
i

)
ag−i+1xi .

Combining the above we conclude that

ω0i − df0ai =
(ψi(x)ti(x)−φi(x)ri(x))(x − a) + 2if (x)(−1)g−i+1(g

i

)
ag−i+1xi

2yxi+1(x − a)g+1 dx =ωai .

Note that the last relation (dfa∞i =ωai −ω∞i ) holds, since

dfa∞i = df0∞i − df0ai =ω0i −ω∞i −ω0i +ωai =ωai −ω∞i .

Recall that the hyperelliptic involution σ is in the centre of Aut(X) (see [Liu02, Cor. 7.4.31]).

Then, given any τ ∈ Aut(X), we have an induced map τ̄ : P1
k → P

1
k , since P

1
k is the quotient

of X by the hyperelliptic involution. Hence the following diagram commutes

X −→
τ

X

↓ π ↓ π
P

1
k −→̄

τ
P

1
k

Lemma 4.4.2. Suppose there exists τ ∈ Aut(X) such that the induced automorphism τ̄ : P1
k → P

1
k

is given by x 7→ x + a for some 0 , a ∈ k. Then the action of τ∗ on y is given by τ∗(y) = y or

τ∗(y) = −y and moreover if such an automorphism of X exists, then p divides the degree of f (x).
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Proof. We first show that τ∗(y) = ±y. Since y2 ∈ k(x) then there exist g1(x), g2(x) ∈ k(x) such

that

τ∗(y) = g1(x)y + g2(x) ∈ k(x,y).

Hence

f (x+ a) = τ∗(y2) = (τ∗(y))2 = g1(x)2f (x) + 2g1(x)g2(x)y + g2(x)2. (4.24)

Firstly, note that if neither g1(x) nor g2(x) are zero then

y =
f (x+ a)− g1(x)2f (x)− g2(x)2

2g1(x)g2(x)
,

which contradicts the fact that K(X) is a degree two extension of k(x). Hence one of g1(x)

or g2(x) must be zero.

If g1(x) = 0 then τ∗ would not be an automorphism, since y would not be in the image. Hence

τ∗(y) = g1(x)y. Also, by comparing the degrees in (4.24) we see that deg(g1(x)) = 0, and then

by comparing coefficients in the same equation we see that g1(x)2 = 1. Hence τ∗(y) = ±y.

We now show that df := deg(f (x)) is divisible by p. We derived above that f (x) = f (x + a).

Comparing the terms of degree df − 1 on each side we see that df a − bdf −1 = bdf −1 (where

bdf −1 is as in (3.4)). It follows that df = 0 in k, and hence p | df .

Recall from Proposition 4.1.2 that we have a canonical short exact sequence

0→H0(X,ΩX)→H1
dR(X/k)→H1(X,OX)→ 0. (4.25)

Theorem 4.4.3. Suppose there exists τ ∈ Aut(X) such that the induced automorphism τ̄ : P1
k →

P
1
k is given by x 7→ x + a for some 0 , a ∈ k. We let G = 〈τ〉 be the subgroup of Aut(X) generated

by τ , and we further suppose that ∞ ∈ P1
k is a branch point of π : X → P

1
k . Then the sequence

(4.25) does not split as a sequence of k[G]-modules.

Proof. By Lemma 4.4.2 we have τ∗(y) = y or τ∗(y) = −y. Without loss of generality we can

and will assume that τ∗(y) = y since, if τ∗(y) = −y, we replace τ by τ ◦ σ (where σ is the

hyperelliptic involution of X). Notice that the sequence (4.25) splits as a sequence of K[G]-

modules if and only if it splits as a sequence of K[〈τ ◦ σ〉]-modules (see Corollary 4.3.3).

We now suppose that the sequence (4.25) does split, and that s : H1(X,OX)→H1
dR(X/k) is a

splitting map. Then it follows that for all α ∈H1(X,OX) we have

s(τ∗(α)) = τ∗(s(α)) ∈H1
dR(X/k). (4.26)
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We will show that this equality gives rise to a contradiction when α is the residue class
[
y
xg

]
in H1(X,OX) (see (4.2) and Theorem 4.2.1). It will then follow that no splitting map can exist.

We first compute the action of τ∗ on the residue class
[
y
xg

]
. In order to do this we consider

the following obvious commutative diagram of isomorphisms:

H1(X,OX)
∼←− Ȟ1(U ,OX)

ρ
←− Ȟ1(U ′′ ,OX)

τ∗ ↓ ρ′ ↓

H1(X,OX)
∼←− Ȟ1(U ,OX)

τ∗←−− Ȟ1(U ′ ,OX)

where ρ and ρ′ are the canonical projections. From Proposition 4.4.1 we know that ρ−1
([
y
xg

])
is the residue class[(

rg(x)y

xg(x − a)g
,
y

xg
,
tg(x)y

xg(x − a)g

)]
=

[(
((x − a)g − xg )y
xg(x − a)g

,
y

xg
,

y

(x − a)g

)]
∈ Ȟ1(U ′′ ,OX).

Therefore

τ∗
([ y
xg

])
= τ∗

(
ρ′

(
ρ−1

([ y
xg

])))
= τ∗

(
ρ′

([(
((x − a)g − xg )y
xg(x − a)g

,
y

xg
,

y

(x − a)g

)]))
= τ∗

([
y

(x − a)g

])
=

[ y
xg

]
,

i.e.
[
y
xg

]
in H1(X,OX) is fixed by τ∗.

Since the canonical projection H1
dR(X/k)→ H1(X,OX) maps γg to the residue class

[
y
xg

]
it

follows that

τ∗(γg ) = γg +
g−1∑
i=0

ciλi

for some c0, . . . , cg−1 ∈ k. On the other hand, we also have

s
([ y
xg

])
= γg +

g−1∑
i=0

diλi
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for some d0, . . . ,dg−1 ∈ k. Now the action of τ∗ on λi for 0 ≤ i ≤ g − 1 is easily seen to be

given by

τ∗(λi) = τ∗
([(
xi

y
dx,

xi

y
dx,0

)])
=

[(
(x+ a)i

y
dx,

(x+ a)i

y
dx,0

)]
=

i∑
k=0

(
i
k

)
ai−kλk .

Then, by (4.26), it follows that

γg +
g−1∑
i=0

diλi = s
([ y
xg

])
= s

(
τ∗

([ y
xg

]))
= τ∗

γg +
g−1∑
i=0

diλi


=

γg +
g−1∑
i=0

ciλi

+
g−1∑
i=0

di

 i∑
k=0

(
i
k

)
ai−kλk

 .
By comparing coefficients of the basis elements λg−1, we see that cg−1 = 0. We now show

that we must have cg−1 = a/4 for the defining equation

τ∗(γg ) = γg +
g−1∑
i=0

ciλi

to hold. Since we assumed that a , 0 this will give us the contradiction we desire.

To compute τ∗(γg ) we consider the following commutative diagram of isomorphisms

H1
dR(X/k)

∼←− Ȟ1
dR(U )

ρ
←− Ȟ1

dR(U ′′)
τ∗ ↓ ρ′ ↓

H1
dR(X/k)

∼←− Ȟ1
dR(U )

τ∗←−− Ȟ1
dR(U ′)

(4.27)

where ρ is the canonical projection (4.21) and ρ′ is given by

ρ′ : (ω0,ωa,ω∞, f0a, f0∞, fa,∞) 7→ (ωa,ω∞, fa∞).
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Then

τ∗(γg ) = τ∗(ρ′(ρ−1(γg )))

= τ∗
([
ωag ,

−φg(x)

2yxg+1dx,
y

(x − a)g

)]
=

[(
τ∗(ωag ),

−φg(x+ a)

2y(x+ a)g+1dx,
y

xg

)]
,

(4.28)

where ωag is the second entry in νg , as in the proof of Proposition 4.4.1. On the other hand,

we have

γg +
g−1∑
i=0

ciλi =
[(
ψg(x)

2yxg+1dx,
−φg(x)

2yxg+1dx,
y

xg

)]
+
g−1∑
i=0

ci

[(
xi

y
dx,

xi

y
dx,0

)]
. (4.29)

Note that the third entry in both (4.28) and (4.29) is y
xg . Since any element of the form

(ω0,ω∞,0) in the subspace (4.8) of the space (4.7) is in fact zero, we conclude, by comparing

the second entries of (4.28) and (4.29), that

−
φg(x+ a)

2y(x+ a)g+1dx = −
φg(x)

2yxg+1dx+
g−1∑
i=0

ci
xi

y
dx

in ΩK(X).

Since dx is a basis ofΩK(X) considered as a K(X)-vector space, and as K(X) = k(x)⊕y−1k(x),

the equation above is equivalent to

φg(x+ a)

2(x+ a)g+1 =
φg(x)

2xg+1 −
g−1∑
i=0

cix
i ,

in k[x], and this, in turn, is equivalent to

φg(x+ a)xg+1 = φg(x)(x+ a)g+1 − 2(x+ a)g+1xg+1
g−1∑
i=0

cix
i ,

also in k[x].

Recall from Chapter 3, Section 3.1, that the assumption that ∞ ∈ P1
k is a branch point of π

implies that the degree of f (x) is precisely 2g + 1. The terms of highest degree in φg(x) are

the same as the terms of highest degree in

sg(x) = xf ′(x)− 2gf (x) = x2g+1 + 0 · x2g + . . . .
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We therefore obtain

(
(x+ a)2g+1 + 0 · (x+ a)2g + . . .

)
xg+1

= (x2g+1 + 0 · x2g + . . .)(x+ a)g+1 − 2(x+ a)g+1xg+1(cg−1x
g−1 + . . .),

and hence

(2g + 1)ax3g+1 = (g + 1)ax3g+1 − 2cg−1x
3g+1.

Finally, since 2g + 1 = deg(f (x)) ≡ 0 mod p (by Lemma 4.4.2) then g = −1
2 in k. Hence we

obtain

cg−1 =
((g + 1)− (2g + 1))a

2
=
a
4
,

as claimed above. This concludes the proof of theorem 4.4.3.

4.5 Examples

In this section we give a number of examples and specialisations of Theorem 4.4.3, as well as

an example which demonstrates the necessity of the supposition that ∞ is a branch point of

π : X→ P
1
k .

Applying Theorem 4.4.3 to the hyperelliptic curve given by y2 = xp − x we obtain Theorem

3.1 in Hortsch’s paper [Hor12]. Conversely, the following lemma shows that Hortsch’s theorem

implies Theorem 4.4.3 if deg(f (x)) = p.

Lemma 4.5.1. Let p ≥ 3. Suppose that deg(f (x)) = p and that there exists τ ∈ Aut(X) such that

the induced automorphism τ̄ : P1
k → P

1
k is given by x 7→ x + a for some 0 , a ∈ k. Then the curve

X is isomorphic to the hyperelliptic curve given by y2 = xp − x.

Proof. Suppose that we have

f (x) = xp + ap−1x
p−1 + . . .+ a1x+ a0,

for some ai ∈ k. We first show, by induction, that ai = 0 for i ∈ {2, . . . ,p − 1}, and that

a1 = −ap−1. Since f (x) = f (x + a), we can compare coefficients, and for xp−2 this yields

the equality ap−2 = ap−1(p − 1)a+ ap−2, which is equivalent to ap−1a = 0. Since we assumed

that a , 0 we conclude that ap−1 = 0. We now assume that ap−1 = ap−2 = . . . = ak+1 = 0,

where k > 1. Then the coefficient of xk−1 in f (x + a) is ak−1 + kaka, and after comparing

to the coefficient of xk−1 in f (x), which is ak−1, we conclude that kaka = 0. Since a , 0 by

assumption, and also k , 0, it follows that ak = 0.
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Finally, comparing the constant coefficients of f (x) and f (x + a) gives us a0 = a0 + a1a+ ap,

and so a1 = −ap−1. So we now have

f (x) = xp − ap−1x+ a0.

If b ∈ k is a root of f (x) then the map x 7→ x + b, y 7→ y is an isomorphism of K(X) to the

function field of the hyperelliptic curve X ′ given by y2 = f (x) = xp − ap−1x. Further, the map

x 7→ ax, y 7→ a
p
2 y is an isomorphism of K(X ′) to the function field of the hyperelliptic curve

given by y2 = f (x) = xp −x. Combining these isomorphisms we see that our original curve is

isomorphic to that defined by y2 = xp − x, concluding the proof.

Since we do not, a priori, enforce any conditions on the degree of f (x), it is plausible that

Theorem 4.4.3 is much more general that Hortsch’s theorem. In fact the following example is

a simple and general method to obtain polynomials f (x) of any odd degree, and hence any

genus, such that Theorem 4.4.3 applies to the curve given by y2 = f (x). Of course this will

only hold in a finite number of characteristics for any fixed genus.

Example 4.5.2. Let g(x) ∈ k[x] be a polynomial of odd degree without repeated roots. Then

the combined polynomial f (x) = g(xp − x) obviously has no repeated roots, and it is also

clear that f (x + 1) = f (x), and hence we have an automorphism τ , as in the statement of

Theorem 4.4.3.

Moreover, if g ≥ 2 and p divides 2g + 1, and if we choose h(x) to be a polynomial of degree

n := (2g + 1)/p then the curve defined by y2 = f (x) := h(xp − x) is of genus g , and satisfies

the criteria of Theorem 4.4.3.

We now examine hyperelliptic curves that satisfy the requirements of Theorem 4.4.3 of genus

4 in full generality.

Example 4.5.3. Let p = 3. Given 0 , a ∈ k, it is straightforward to verify that a monic

polynomial f (x) of degree 9 = 2 ·4 + 1 satisfies f (x+ a) = f (x) if and only if it is of the form

f (x) = x9 + a6x
6 + a2a6x

4 + a3x
3 + a4a6x

2 + 2(a8 + a2a3)x+ a0,

for some a6, a3, a0 ∈ k. Now we fix a6, a3 ∈ k, such that a6 or a3 + a6 is non-zero.

Then f ′(x) = a2a6x
3 +2a4a6x+2(a8 +a2a3) is non-zero. If a6 = 0 the f ′(x) has no roots, and

hence f (x) and f ′(x) are coprime, so f (x) has no repeated roots. Otherwise f ′(x) has three

roots, which may or may not be distinct, which we denote β1,β2 and β3. Then we define

β′i := f (βi)− a0 for i = 1,2,3. If a0 ∈ k\{−β′1,−β
′
2,−β

′
3} it is clear that f ′(x) and f (x) do not

share any roots, and hence f (x) has no repeated roots.
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From this it follows that the equation y2 = f (x) defines a genus 4 hyperelliptic curve over k,

for which the exact sequence in Proposition 4.1.2 does not split, by Theorem 4.4.3.

We conclude this chapter with an example which demonstrates that the requirement in The-

orem 4.4.3 for ∞ to be a branch point X is a necessary condition.

Example 4.5.4. Let p = 3. By [KY10, Table 1], the modular curve X0(22) is the hyperelliptic

curve of genus 2 defined by

y2 = f (x) = x6 + 2x4 + x3 + 2x2 + 1,

and the automorphism group of X0(22) is D6. We will show that the short exact sequence in

Proposition 4.1.2 splits as a sequence of k[〈τ〉]-modules, where τ is a generator of the unique

order three subgroup of D6. However, in order to describe τ , we need to adjust our defining

equation. We first notice that the map x 7→ x − 1, y 7→ y is an isomorphism of K(X0(22)) to

the function field of the curve defined by y2 = f (x) = x6 + 2x4 + 2x2 + 2. We now apply a

further isomorphism to this curve. In general, if g(x) = asxs + . . .+a0, and a0 , 0 , as we can

define g∗(x) := a−1
0 xsg

(
1
x

)
. It is stated after Lemma 2.6 in [KY10] that if y2 = g(x) defines a

hyperelliptic curve, and s is even, then the curve defined by y2 = g∗(x) is isomorphic. In this

case we conclude that the curve defined by

y2 = f (x) = x6 + x4 + x2 + 2

is isomorphic to X0(22), and we let X be the curve defined by this equation, and we fix

f (x) = x6 + x4 + x2 + 2 for the rest of the example. Note that f ′(x) = x3 + 2x and f (x) =

f ′(x)2 + 2, and hence f ′(x) and f (x) are coprime. In particular, this verifies that f (x) has no

repeated roots. Moreover, it is clear that f ′(x+ 1) = f ′(x), and from this it follows that

f (x+ 1) = f ′(x+ 1)2 + 2 = f ′(x)2 + 2 = f (x).

Hence the map τ : (x,y) 7→ (x+ 1, y) is an automorphism of X.

By Theorem 4.3.1 a basis of Ȟ1
dR(U ) is given by

λ1 =
[(

1
y
dx,

1
y
dx,0

)]
λ2 =

[(
x
y
dx,

x
y
dx,0

)]
γ1 =

[(
1
yx2dx,

x4 + 2x2

y
dx,

y

x

)]
γ2 =

[(
x2 + 1
2yx3 dx,

2x3

y
dx,

y

x2

)]
,
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and we let γ̄i be the image in H1(X,OX) of γi under the projection p : H1
dR(X/k) →

H1(X,OX). In particular, γ̄1 and γ̄2 form a basis of H1(X,OX).

Then we can define a map of k vector spaces

s : H1(X,OX)→H1
dR(X/k)

by

γ̄1 7→ γ1 and γ̄2 7→ γ2 +λ2.

Clearly p ◦ s is the identity map on H1(X,OX), and hence if s is k[〈τ〉]-linear the sequence

in Proposition 4.1.2 does split as a sequence of k[〈τ〉]-modules.

We now show that s is k[〈τ〉]-linear. Applying Proposition 4.4.1 to the basis above we see that

the pre-images of γ1 and γ2 in Ȟ1
dR(U ′′) are the residue classes of

ν1 =
(

1
yx2dx,

x4 + 2x3 + 2x2

2y(x − 1)3 dx,
x4 + 2x2

y
dx,

y

x(x − 1)2 ,
y

x
,
y(x+ 1)
(x − 1)2

)
and

ν2 =
(

1 + x2

2yx3 dx,
x3 + x2 + x+ 1

2y(x − 1)3 dx,
2x3

y
dx,

y(x+ 1)
x2(x − 1)2 ,

y

x2 ,
y

(x − 1)2

)
.

Using a computation similar to (4.27) it is easy to verify that

τ∗(γ1) = τ∗(ρ′(ν1)) = 2λ2 + 2γ2 +γ1

and that

τ∗(γ2) = τ∗(ρ′(ν2)) = γ2 + 2λ1.

Furthermore, we note that

τ∗(λ1) = λ1 and τ∗(λ2) = λ2 +λ1.

Finally we conclude that

s(τ∗(γ̄1)) = s(γ̄1 + 2γ̄2) = γ1 + 2λ2 + 2γ2 = τ∗(γ1) = τ∗(s(γ̄1))

and

s(τ∗(γ̄2)) = s(γ̄2) = γ2 +λ2 = τ∗(γ2 +λ2) = τ∗(s(γ̄2)).

Hence s is k[〈τ〉]-linear, and the sequence in Proposition 4.1.2 splits.



Chapter 5

Faithful actions on Riemann–Roch

spaces

In this chapter our main aim is to determine when a subgroup of the automorphism group

of an algebraic curve acts faithfully on the space of global holomorphic differentials and

polydifferentials. Our approach uses the obvious fact that if any finite group G does not act

faithfully on H0(X,Ω⊗mX ) then there exists a subgroup of G which fixes at least one element

of this k vector space.

Given this, it will be useful to know whether the fixed space is non-zero, and for this reason we

start by computing the dimension of the fixed space H0(X,Ω⊗mX )G. We discover (Proposition

5.1.2) that the dimension relies primarily on the genus of the quotient curve Y := X/G, m and

the ramification divisor of π : X→ Y .

Then we use this dimension formula, along with results from the second chapter, to compute

exactly when a cyclic group of prime order will act trivially on H0(X,Ω⊗mX ), considering

the cases m = 1 and m ≥ 2 in Proposition 5.2.1 and Proposition 5.2.2 respectively. When

we are considering holomorphic differentials (i.e. when m = 1), this depends solely on the

characteristic of k, whilst for polydifferentials (i.e. when m ≥ 2) this is actually independent

of char(k), and is determined by the genus of X, m and the order of the group. In the same

section we also extend these results to more general Riemann–Roch spaces, see Corollary

5.2.4.

We then move on to the main theorem (Theorem 5.3.1), which answers the question of when G

acts faithfully on H0(X,Ω⊗mX ). After proving this theorem we give examples which illustrate

both when we do and do not have faithful actions. In particular, we use results of Chapter 3

to explicitly show the result holds for hyperelliptic curves.

63
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We close the chapter with an alternative proof of when a cyclic group of prime order acts

faithfully on H0(X,ΩX), by studying the k[G]-module structure of H0(X,ΩX), which was

determined in [VM81].

The results of this chapter appear in [KT14].

5.1 Dimension formulae

Throughout this chapter, unless otherwise stated, we assume that X is an algebraic curve

over an algebraically closed field k of characteristic p ≥ 0. We furthermore assume that G

is a finite group of order n that acts faithfully on X. Note that G also induces an action on

the vector space H0(X,Ω⊗mX ) of global holomorphic poly-differentials of order m. We let Y

denote the quotient curve X/G, and we let π : X→ Y be the canonical projection. Finally, we

denote by gX and gY the genus of X and Y respectively, and we let KX and KY be canonical

divisors on X and Y .

In this section we compute the dimension of H0(X,Ω⊗mX ) and of H0(X,Ω⊗mX )G, the subspace

of H0(X,Ω⊗mX ) fixed by G. We first recall that dimkH
0(X,ΩX) = gX by Definition 2.2.4. We

also computed the dimension of H0(X,Ω⊗mX ) when gX ,m ≥ 2 in Corollary 2.3.7. Finally, as we

will see in examples (a) and (b) in Section 5.4, if gX is zero or one then dimk(H0(X,Ω⊗mX ) =

gX , for all m ∈Z ≥ 1.

We now introduce some notations. Let D =
∑
P ∈X nP [P ] be a G-invariant divisor on X (i.e.

nσ (P ) = nP for all σ ∈ G and P ∈ X) and let OX(D) denote the corresponding equivariant

invertible OX-module. Furthermore, let πG∗ (OX(D)) denote the sub-sheaf of the direct image

π∗(OX(D)) fixed by the obvious action of G on π∗(OX(D)). We also let
⌊
π∗(D)
n

⌋
denote the

divisor on Y obtained from the push-forward π∗(D) by replacing the coefficient mQ of Q in

π∗(D) with the integral part
⌊mQ

n

⌋
of

mQ

n for each Q ∈ Y . The function fields of X and Y are

denoted by K(X) and K(Y ) respectively. Finally, for any P ∈ X let ordP and ordQ denote the

respective valuations of K(X) and K(Y ) at P and Q := π(P ).

The next lemma is the main idea in the proof of our formula for dimkH
0(X,Ω⊗mX )G, see

Proposition 5.1.2.

Lemma 5.1.1. Let D =
∑
P ∈X nP [P ] be a G-invariant divisor on X. Then the sheaves πG∗ (OX(D))

and OY
(⌊
π∗(D)
n

⌋)
are equal as subsheaves of the constant sheaf K(Y ) on Y . In particular, the sheaf

πG∗ (OX(D)) is an invertible OY -module.

Proof. For every open subset V of Y we have

πG∗ (OX(D))(V ) = OX(D)(π−1(V ))G ⊆ K(X)G = K(Y ).
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In particular, both sheaves are subsheaves of the constant sheaf K(Y ) as stated. It therefore

suffices to check that their stalks are equal. For any Q ∈ Y and P ∈ π−1(Q), we have

πG∗ (OX(D))Q = OX(D)P ∩K(Y )

= {f ∈ K(Y ) : ordP (f ) ≥ −nP }

=
{
f ∈ K(Y ) : ordQ(f ) ≥ −nP

eP

}
=

{
f ∈ K(Y ) : ordQ(f ) ≥ −

⌊
nP
eP

⌋}
= OY

(⌊
π∗(D)
n

⌋)
Q

,

as desired.

The following proposition contains the aforementioned formula for the dimension of the

subspace of H0(X,Ω⊗mX ) fixed by G. In particular we see that this dimension is completely

determined by m, gY and deg
⌊
mπ∗(R)
n

⌋
.

Proposition 5.1.2. Let m ≥ 1. Then the dimension of H0(X,Ω⊗mX )G is equal to

dimk

(
H0(X,Ω⊗mX )G

)
= (2m− 1)(gY − 1) + deg

⌊
mπ∗(R)
n

⌋
,

unless

• m = 1 and deg
⌊
mπ∗(R)
n

⌋
= 0 or

• gY = 1 and deg
⌊
mπ∗(R)
n

⌋
= 0 or

• gY = 0 and deg
⌊
mπ∗(R)
n

⌋
< 2m− 1,

in which case

dimk

(
H0(X,Ω⊗mX )G

)
= gY .

Proof. Let E denote the divisor
⌊
π∗(mKX )

n

⌋
on Y . As KX = π∗(KY ) +R by Theorem 2.4.6 we

have

E =
⌊
π∗π

∗(mKY ) +π∗(mR)
n

⌋
=mKY +

⌊
mπ∗(R)
n

⌋
.

Using the previous lemma we conclude that πG∗ (Ω⊗mX ) � OY (E) and finally that

dimkH
0(X,Ω⊗mX )G = dimkH

0
(
Y ,πG∗ (Ω⊗mX )

)
= dimkH

0 (Y ,OY (E)) .
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We now show that dimkH
0(X,Ω⊗mX ) = gY in the exceptional cases listed in the proposition.

Firstly if m = 1 and deg
⌊
mπ∗(R)
n

⌋
= 0, then

⌊
mπ∗(R)
n

⌋
is the zero divisor and we conclude that

dimkH
0(X,ΩX)G = dimkH

0(Y ,ΩY ) = gY .

In the second case
⌊
mπ∗(R)
n

⌋
is again the zero divisor. Furthermore, as gY = 1, the divisor KY

is equivalent to the zero divisor, and hence mKY is too. This means that

dimkH
0(X,Ω⊗mX )G = dimkH

0 (Y ,OY (E)) = dimkH
0 (Y ,OY (0)) = 1.

For the third case, by [Har77, Chap. IV, Ex. 1.3.4] it suffices to show that deg(E) < 0. As

gY = 0 we have deg(KY ) = −2, so deg(mKY ) = −2m, and deg(E) is indeed negative.

We will show below that in all other cases deg(E) > deg(KY ), and then the Riemann–Roch

formula (Theorem 2.3.3) will give

dimkH
0(X,Ω⊗mX )G = dimkH

0 (Y ,OY (E))

= 1− gY + deg
(
mKY +

⌊
mπ∗(R)
n

⌋)
= (2m− 1)(gY − 1) + deg

⌊
mπ∗(R)
n

⌋
,

completing the proof for the main case.

All that remains is to show that deg(E) > deg(KY ) in all other cases. Firstly, if gY = 0 and

deg
⌊
mπ∗(R)
n

⌋
≥ 2m− 1 then, since deg(mKY ) = −2m, we have

deg(E) ≥ −1 > −2 = deg(KY ).

Similarly, if gY = 1 and deg
⌊
mπ∗(R)
n

⌋
> 0 then, as deg(mKY ) = 0, we have deg(E) > 0 =

deg(KY ). If m = 1 and deg
⌊
mπ∗(R)
n

⌋
> 0 then clearly deg(E) > deg(KY ). Lastly, if m ≥ 2 and

gY ≥ 2 then deg(KY ) > 0 and we have

deg(E) ≥ deg(mKY ) > deg(KY ).

So in all other cases deg(E) > deg(KY ), and the proof is complete.

If m = 1 we reformulate Proposition 5.1.2 in the following slightly more concrete way. Let S

denote the set of all points Q ∈ Y such that π is not tamely ramified at Q and let s denote

the cardinality of S . Note that s = 0 if p does not divide n.

In the next corollary for any Q ∈ Y we let δQ = δP and eQ = eP , for any P ∈ π−1(Q).
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Corollary 5.1.3. We have

dimkH
0(X,ΩX)G =

gY if s = 0,

gY − 1 +
∑
Q∈S

⌊
δQ
eQ

⌋
otherwise.

Proof. We have

deg
⌊
π∗(R)
n

⌋
=

∑
Q∈Y

 ∑
P 7→Q

δP
n

 =
∑
Q∈Y

⌊
δQ
eQ

⌋
.

Furthermore we have
⌊
δQ
eQ

⌋
= 0 if and only if δQ < eQ, i.e. if and only if Q < S . Thus Corollary

5.1.3 follows from Proposition 5.1.2.

Remark. Note that if p > 0 and G is cyclic then Corollary 5.1.3 can be derived from [KaKo13,

Prop. 6.].

5.2 Trivial action in the cyclic case

In this section we will look at the case where G is a cyclic group of prime order, or a power of

a prime, and determine when G acts trivially on H0(X,Ω⊗mX ). Compared to arbitrary groups,

it is considerably easier to compute when these groups act trivially, and we will later see that

we can reduce to this case, regardless of what the structure of G is.

Throughout this section, P1, . . . , Pr ∈ X denote the ramification points of π and we write ei
and δi for ePi and δP i . Also, for i = 1, . . . , r, we define Ni ∈N by ordPi (σ (πi)−πi) =Ni + 1,

where πi is a local parameter at the ramification point Pi and σ is a generator of G(Pi). We

also assume that gX ≥ 2.

Proposition 5.2.1. Let p > 0 and let G be cyclic of order p. Furthermore, we assume that gY = 0.

Then G acts trivially on H0(X,ΩX) if and only if p = 2.

Proof. From [Nak86, Lem. 1] we know that p does not divide Ni for i = 1, . . . , r, a fact we will

use several times below. Let N :=
∑r
i=1Ni . Using the Riemann–Hurwitz formula, Corollary

2.4.7, we obtain

2gX − 2 = −2p+ (N + r)(p − 1) (5.1)

and hence

dimkH
0(X,ΩX) = gX =

(N + r − 2)(p − 1)
2

.

Since gX ≥ 0 we obtain r ≥ 1; that is, π is not unramified. As char(k) = p = ord(G), the

morphism π is not tamely ramified, and the cardinality s defined before Corollary 5.1.3 is not
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zero. Therefore we have

deg
⌊
π∗(R)
p

⌋
=

r∑
i=1

⌊
(Ni + 1)(p − 1)

p

⌋
≥

r∑
i=1

⌊
2(p − 1)
p

⌋
= r > 0.

From Corollary 5.1.3 we then conclude that

dimkH
0 (X,ΩX)G = gY − 1 +

r∑
i=1

⌊
δi
ei

⌋

= −1 +N + r +
r∑
i=1

⌊
−Ni + 1

p

⌋
.

If p = 2, the dimension of both H0(X,ΩX) and H0(X,ΩX)G is therefore equal to N+r−2
2 .

This shows the if-direction in Proposition 5.2.1.

To prove the other direction we now assume that G acts trivially on H0(X,ΩX). For each

i = 1, . . . , r, we write Ni = sip + ti with si ∈ N and ti ∈ {1, . . . ,p − 1}. We furthermore put

S :=
∑r
i=1 si and T :=

∑r
i=1 ti ≥ r . Then we have

(N + r − 2)(p − 1)
2

= dimkH
0(X,ΩX) = dimkH

0(X,ΩX)G =N − S − 1.

Rearranging this equation we obtain

(3− p)N − 2S = (r − 2)(p − 1) + 2

and hence

(−p2 + 3p − 2)S = (r − 2)(p − 1) + 2− (3− p)T .

Assuming that p ≥ 3 this equation implies that

S =
(r − 2)(1− p)− 2 + T (3− p)

(p − 1)(p − 2)
.

since −p2 + 3p − 2 = −(p − 1)(p − 2).

Because S ≥ 0, the numerator of this fraction is non-negative, that is

0 ≤ (r − 2)(1− p)− 2 + T (3− p)

≤ (r − 2)(1− p)− 2 + r(3− p)

= 2(r − 1)(2− p).
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Hence we have that r = 1 and that the numerator is 0. We conclude that S = 0 and hence

that T = 1 or p = 3. If T = 1 we also have N = 1 and finally

gX =
(N + r − 2)(p − 1)

2
= 0,

a contradiction. If T , 1 and p = 3 we obtain N = T = 2 and finally

gX =
(N + r − 2)(p − 1)

2
= 1,

again a contradiction.

Remark. In Section 5.5 we show that it is possible to give an alternative, but rather involved,

proof of the above lemma, using the deep and intricate results of [VM81].

Proposition 5.2.2. Let m ≥ 2. Suppose that G is a cyclic group of prime order l (which may or

may not be equal to p) and that gY = 0. Then G acts trivially on H0(X,Ω⊗mX ) if and only if

gX =m = l = 2.

Proof. We have different proofs according to whether or not the order l of the group is the

same as the characteristic p of the field.

First we assume that l = p. As in the proof of Proposition 5.2.1, we let N =
∑r
i=1Ni , and we

let M =N + r . Then due to (5.1) we have

2gX − 2 = −2p+M(p − 1), (5.2)

and combining this with Corollary 2.3.7 we can write

dimkH
0(X,Ω⊗mX ) = (2m− 1)(gX − 1) = (2m− 1)

(
M(p − 1)− 2p

2

)
. (5.3)

Furthermore, we have

deg
⌊
mπ∗(R)
p

⌋
=

r∑
i=1

⌊
m(Ni + 1)(p − 1)

p

⌋
=mM +

r∑
i=1

⌊
−m(Ni + 1)

p

⌋
. (5.4)

If we have p = gX =m = 2, then on the one hand we see that dimkH
0(X,Ω⊗mX ) = 3. On the

other hand, we first note that (5.2) implies M = 6. So

deg
⌊
mπ∗(R)
p

⌋
= 2M −M = 6 > 3 = 2m− 1.



70 Chapter 5 Faithful actions on Riemann–Roch spaces

Then, by Proposition 5.1.2, we obtain

dimkH
0(X,Ω⊗mX )G = (2m− 1)(gY − 1) + deg

⌊
mπ∗(R)
p

⌋
= −3 + 6 = 3.

So the two dimensions are equal and the action of G on H0(X,Ω⊗mX ) is trivial. This completes

the if direction of the proof.

Now we assume that the action is trivial. We first note that this implies that deg
⌊
mπ∗(R)
p

⌋
≥

2m− 1. Indeed, if this was not the case then by Proposition 5.1.2 we would have

0 = dimkH
0(X,Ω⊗mX )G = dimkH

0(X,Ω⊗mX ) = (2m− 1)(gX − 1),

which is clearly a contradiction. So, using (5.4), (5.3) and Proposition 5.1.2 we see that

(2m− 1)
M(p − 1)− 2p

2
= dimkH

0(X,Ω⊗mX )

= dimkH
0(X,Ω⊗mX )G

= 1− 2m+mM +
r∑
i=1

⌊
−m(Ni + 1)

p

⌋

≤ 1− 2m+mM +
r∑
i=1

−m(Ni + 1)
p

= 1− 2m+mM − mM
p
. (5.5)

After multiplying by 2p and rearranging we obtain

0 ≥ (2mM −M − 4m+ 2)p2 + (−4mM +M − 2 + 4m)p+ 2mM

= (M − 2)(2m− 1)p2 − ((M − 2)(2m− 1) + 2mM)p+ 2mM

= (p − 1)((M − 2)(2m− 1)p − 2mM). (5.6)

Furthermore from (5.1) we obtain that −2p+M(p − 1) = 2gX − 2 ≥ 2 and hence that

M ≥
2 + 2p
p − 1

= 2 +
4

p − 1
> 2. (5.7)
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So from (5.6) and (5.7) we see that

p ≤ 2mM
(M − 2)(2m− 1)

=
M

M − 2
· 2m

2m− 1

=
(
1 +

2
M − 2

)(
1 +

1
2m− 1

)
(5.8)

≤ 4,

i.e. p = 2 or p = 3.

Suppose that p = 3. Then from (5.7) we have M ≥ 4. However, from (5.8) we also have that

3 ≤
(
1 +

2
M − 2

)(
1 +

1
2m− 1

)
≤

(
1 +

2
M − 2

) 4
3

≤ 8
3
,

a contradiction.

Lastly, we come to the case when p = 2. From (5.8) we see that 2 ≤
(
1 + 2

M−2

)
4
3 and hence

M ≤ 6. However, from (5.7) we know that M ≥ 6, so M = 6. Then from (5.5) we obtain that

2m−1 = 1−2m+6m−3m and hence that m = 2. Finally, (5.1) gives us that 2gX−2 = −4+6 = 2

and hence gX = 2. This completes the only if direction of the proof when l = p.

Now if l , p then we know that all the coefficients δi of the ramification divisor are equal

to l − 1. To show the if direction in this case, first note that dimkH
0(X,Ω⊗mX ) = 3 by

Corollary 2.3.7. On the other hand, the Riemann–Hurwitz formula (Corollary 2.4.7) implies

that 2 = 2gX − 2 = −2l + deg(R) = −2l + r(l − 1), and hence that r = 6. Finally Proposition

5.1.2 gives us

dimkH
0(X,Ω⊗mX )G = −(2m− 1) +

r∑
i=1

⌊m · δi
l

⌋
= −3 +

6∑
i=1

⌊
m(l − 1)

l

⌋
= 3,

since m = l = 2. As the dimensions of H0(X,Ω⊗mX ) and H0(X,Ω⊗mX )G are equal, the action

is trivial.

For the final section of the proof we suppose that G acts trivially on the space H0(X,Ω⊗mX ).

We then show that this implies that gX = l =m = 2.
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From Corollary 2.3.7 and Proposition 5.1.2 we obtain

(2m− 1)(gX − 1) = dimkH
0(X,Ω⊗mX )

= dimkH
0(X,Ω⊗mX )G

= −(2m− 1) +
r∑
i=1

⌊m · δi
l

⌋
and hence

(2m− 1)gX =
r∑
i=1

⌊m · δi
l

⌋
=

r∑
i=1

⌊
m(l − 1)

l

⌋
= r

(
m+

⌊−m
l

⌋)
.

By choosing s ∈ {1, . . . , l} and q ∈N such that m = ql + s we can rewrite this as

(2m− 1)gX = r(m− q − 1). (5.9)

If we multiply (5.9) by l−1 and then substitute in for the r(l−1) term in the Riemann-Hurwitz

formula (Corollary 2.4.7) we get

(2m− 1)(l − 1)gX = (2gX + 2(l − 1))(m− q − 1).

By rearranging we are able to compute gX in terms of m,l and q:

gX =
2(l − 1)(m− q − 1)

(2m− 1)(l − 1)− 2(m− q − 1)

= 1 +
2(m− q − 1)− (2q+ 1)(l − 1)
(2m− 1)(l − 1)− 2(m− q − 1)

= 1 +
2s − 1− l

(2m− 1)(l − 1)− 2(m− q − 1)

= 1 +
2(s − 1) + 1− l

(2m− 1− 2q)(l − 1)− 2(s − 1)
. (5.10)

First, we show that if l ≥ 3 the equation cannot hold whilst gX ≥ 2. Observe that the

denominator is strictly greater than l − 1, remembering that m = ql + s:

(2m− 1− 2q)(l − 1)− 2(s − 1) = ((2q(l − 1) + 2s − 1)(l − 1)− 2(s − 1)

≥ (2s − 1)(l − 1)− 2(s − 1)

≥ (2s − 1)(l − 1)− 2(s − 1)(l − 1)

= l − 1;

here the two inequalities are equalities if and only if q = 0 and s = 1, respectively, and, as

m ≥ 2, not both inequalities can be equalities. Now the numerator is at most l −1, occurring

when s = l. Hence if l ≥ 3 the fraction in (5.10) will be less than one and gX < 2, contradicting
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our assumption. If l = 2, then s is either 1 or 2. If s = 1 the fraction is negative, and gX < 1,

which again contradicts our assumption. Finally, if s = 2 then gX ≤ 2, with equality if and

only if q = 0, i.e. if and only if m = 2. So if gX ≥ 2 then the action being trivial implies that

gX = l =m = 2, and the proof is complete.

For the rest of this section we assume that p > 0 and that G is a cyclic group of order pl for

some l ∈N. What we are now going to do will not be used in the proof of the main theorem,

but is included because it generalises the previous results. More precisely, we do not restrict

ourselves to looking at H0(X,Ω⊗mX ), but using a comparatively deep result from [KaKo13] we

study H0(X,O(D)) for any G-invariant divisor D such that deg(D) > 2gX − 2.

We first introduce some notation. Let D =
∑
P ∈X nP [P ] be a G-invariant divisor on X. Then

let 〈a〉 denote the fractional part of any a ∈ R, i.e. 〈a〉 = a− bac. Also, for any Q ∈ Y let nQ
be equal to nP for any P ∈ π−1(Q).

Proposition 5.2.3. Suppose p > 0 and G is a cyclic group of order pl for some l ≥ 1. Let D be a

G-invariant divisor on X such that deg(D) > 2gX − 2. Then the action of G on H0(X,OX(D))

is trivial if and only if

(pl − 1)deg(D) = pl
gX − gY −∑

Q∈Y

〈
nQ
eQ

〉 .
Proof. We first remind the reader of the notation in [KaKo13]. Let σ be a generator of G.

Let V be the k[G] module with k-basis e1, . . . , epl and G-action defined by σ (ei) = ei + ei−1

for 1 ≤ i ≤ pl , where e0 = 0. Then Vj , defined to be the subspace of V spanned by e1, . . . , ej
over k, is also a k[G] module. In fact, the modules V1, . . . ,Vpl form a complete set of

representatives for the set of isomorphism classes of indecomposable k[G]-modules. For each

j = 1, . . . ,pl let mj denote the multiplicity of Vj in the k[G]-module H0(X,Ox(D)), i.e. we

have H0(X,Ox(D)) �
⊕pl

j=1mjVj .

First note that the action of G on H0(X,OX(D)) is trivial if and only if

dimkH
0(X,OX(D))G = dimkH

0(X,OX(D)).

It is clear that the G-invariant part of each submodule Vj is spanned by e1. It then follows

that dimkH
0(X,OX(D))G =

∑pl

j=1mj . By [KöKo12, Thm. 2.1], which relies on [Bor06], we
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have

pl∑
j=1

mj = 1− gY +
∑
Q∈Y

⌊
nQ
eQ

⌋

= 1− gY +
∑
Q∈Y

(
nQ
eQ
−
〈
nQ
eQ

〉)

= 1− gY +
1
pl

deg(D)−
∑
Q∈Y

〈
nQ
eQ

〉
.

Now as deg(D) > 2gX − 2 we have dimkH
0(X,OX(D)) = deg(D) + 1− gX by the Riemann–

Roch theorem. So the action of G on H0(X,OX(D)) is trivial if and only if

deg(D) + 1− gX = 1− gY +
1
pl

deg(D)−
∑
Q∈Y

〈
nQ
eQ

〉
.

This then rearranges to (pl − 1)deg(D) = pl
(
gX − gY −

∑
Q∈Y

〈
nQ
eQ

〉)
, as desired.

Corollary 5.2.4. Suppose that deg(D) ≥ 2gX . Then the action of G on H0(X,OX(D)) is trivial

if and only if gY = 0, eQ|nQ for all Q ∈ Y , deg(D) = 2gX and either gX = 0 or pl = 2.

Proof. The following inequalities always hold under the stated assumptions:

(pl − 1)deg(D) ≥ (pl − 1)2gX ≥ plgX ≥ plgX − pl
∑
Q∈Y

〈
nQ
eQ

〉

≥ pl
gX − gY −∑

Q∈Y

〈
nQ
eQ

〉 .
Now the first inequality is an equality if and only if deg(D) = 2gX . The second is an equality

if and only if either gX = 0 or pl = 2. The third inequality is an equality if and only if∑
Q∈Y

〈
nQ
eQ

〉
= 0, which is the case if and only if each nQ is divisible by eQ. Lastly, the fourth

inequality is an equality if and only if gY = 0. Given these observations, Proposition 5.2.3

implies Corollary 5.2.4.

The following Corollary slightly strengthens the only if direction of the l = p part of Propo-

sition 5.2.2 (from ord(G) = p to ord(G) = pl ) and also provides a different proof for it; note

that this new proof relies on the comparatively deep result in section 7 of [Bor06].

Corollary 5.2.5. Let m ≥ 2 and let G be a cyclic group of order pl for some l. If G acts trivially

on H0(X,Ω⊗mX ), then gY = 0 and pl = gX =m = 2.
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Proof. As gX ≥ 2 and m ≥ 2 we have deg(mKX) ≥ 2gX . So, if the action of G on H0(X,Ω⊗mX )

is trivial, we obtain from Corollary 5.2.4 that deg(mKX) = 2gX , pl = 2 and gy = 0. Now

deg(mKX) = 2gX implies that m(2gX − 2) = 2gX , so m(gX − 1) = gX and hence m = gX =

2.

Similarly to the case deg(D) ≥ 2gX in Corollary 5.2.4, the following corollary derives neces-

sary and sufficient conditions for trivial action from Proposition 5.2.3 in the case deg(D) =

2gX − 1.

Corollary 5.2.6. Suppose that deg(D) = 2gX − 1 and that gY = 0. Then the action of G on

H0(X,OX(D)) is trivial if and only if one of the following conditions hold:

• pl = 2 and
∑
Q∈Y

〈
nQ
eQ

〉
= 1

2 ;

• gX = 2, pl = 3 and eQ | nQ for all Q ∈ Y .

Remark. It can easily be shown that in the last case the Riemann–Hurwitz formula implies

that the number of ramification points r is at most 4. Furthermore, if r = 1 then the conditions

“
∑
Q∈Y

〈
nQ
eQ

〉
= 1
pl

" and “eQ | nQ for all Q ∈ Y " are already implied by “deg(D) = 2gX − 1".

Proof. Firstly, if gX = 0 then deg(D) = −1 < 0, so dimkH
0(X,OX(D)) = 0 and the action is

trivial.

Now note that, as deg(D) = 2gX − 1, we conclude from Proposition 5.2.3 that the action is

trivial if and only if

(pl − 1)(2gX − 1) = pl
gX −∑

Q∈Y

〈
nQ
eQ

〉 .
If pl = 2 then this is equivalent to 2gX−1 = 2gX−2

∑
Q∈Y

〈
nQ
eQ

〉
and hence to

∑
Q∈Y

〈
nQ
eQ

〉
= 1

2 .

If gX = 1 then this is equivalent to pl −1 = pl −pl
∑
Q∈Y

〈
nQ
eQ

〉
and hence is also equivalent to∑

Q∈Y

〈
nQ
eQ

〉
= 1
pl

.

Lastly, if pl ≥ 3 and gX ≥ 2 then we have that gX ≥
pl−1
pl−2 which is equivalent to the first

inequality in the chain

(pl − 1)(2gX − 1) ≥ plgX ≥ plgX − pl
∑
Q∈Y

〈
nQ
eQ

〉
≥ pl

gX − gY −∑
Q∈Y

〈
nQ
eQ

〉 .
Hence the action is trivial if and only if both inequalities are equalities, which is the case if

and only if pl = 3, gX = 2, eQ | nQ for all Q ∈ Y and gY = 0.
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5.3 The main theorem

In this section we prove the main theorem of this chapter, describing exactly when G will act

faithfully on H0(X,Ω⊗mX ).

Theorem 5.3.1. Suppose that gX ≥ 2 and let m ≥ 1. Then G does not act faithfully on

H0(X,Ω⊗mX ) if and only if G contains a hyperelliptic involution and one of the following two

sets of conditions holds:

• m = 1 and p = 2;

• m = 2 and gX = 2.

Proof. We first show the if direction. In the case when m = 1, the hyperelliptic involution

contained in G generates a subgroup of order 2. Since p = 2, this acts trivially by Proposition

5.2.1, and hence G does not act faithfully. In the case when m = 2, then again looking at

the subgroup generated by the hyperelliptic involution, we have a group of order 2 acting on

H0(X,Ω⊗mX ). So, by Proposition 5.2.2 and since gX = m = 2, the action of this subgroup is

trivial, and again, this means that G does not act faithfully.

We now start the proof of the only if direction, supposing that G does not act faithfully on

H0(X,Ω⊗mX ). By replacing G with the (non-trivial) kernel H if necessary, we may assume that

G is non-trivial and acts trivially on H0(X,Ω⊗mX ).

We start the proof by showing that gY = 0, which is shown separately for the cases when

m = 1 and when m ≥ 2. In the case when m = 1 we start by showing that deg
⌊
π∗(R)
n

⌋
> 0

by contradiction. Suppose that deg
⌊
π∗(R)
n

⌋
= 0. As G acts trivially it follows from Proposi-

tion 5.1.2 that:

gX = dimkH
0(X,ΩX) = dimkH

0(X,ΩX)G = gY .

Substituting this into the Riemann–Hurwitz formula (Corollary 2.4.7) yields the desired con-

tradiction because gX ≥ 2,n ≥ 2 and deg(R) ≥ 0.

Thus deg
(⌊
π∗(R)
n

⌋)
> 0. Now Proposition 5.1.2 gives us that

gX = dimkH
0(X,ΩX) = dimkH

0(X,ΩX)G = gY − 1 + deg
⌊
π∗(R)
n

⌋
.

Substituting this in to the Riemann–Hurwitz formula we see that

2
(
gY − 1 + deg

⌊
π∗(R)
n

⌋
− 1

)
= 2n(gY − 1) + deg(R).
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For any Q ∈ Y we let δQ denote the coefficient of the ramification divisor R at any P ∈ π−1(Q)

and let eQ := eP for any P ∈ π−1(Q). Rewriting the previous equation then yields

(2n− 2)gY = 2n− 4 + 2 deg
⌊
π∗(R)
n

⌋
−deg(R)

= 2

n− 2 +
∑
Q∈Y

(⌊
n
eQ

δQ
n

⌋
− n
eQ

δQ
2

)
= 2

n− 2 +
∑
Q∈Y

(⌊
δQ
eQ

⌋
−
δQ
eQ

n
2

)
≤ 2(n− 2),

because n
2 ≥ 1 and

⌊
δQ
eQ

⌋
≤ δQ

eQ
for all Q ∈ Y . Hence we obtain gY ≤ n−2

n−1 < 1 and therefore

gY = 0, as desired.

We now show that gY = 0 when m ≥ 2. Since gX ≥ 2 we have that deg(mKX) = m(2gX −
2) > 2gX − 2 = deg(KX). By Corollary 2.3.7, and as both m and gX are at least 2, then

dimkH
0(X,Ω⊗mX )G = dimkH

0(X,Ω⊗mX ) = (2m − 1)(gX − 1) > 1. There is only one case in

Proposition 5.1.2 such that m ≥ 2 and dimkH
0(X,Ω⊗mX )G > 1, which yields

(2m− 1)(gX − 1) = (2m− 1)(gY − 1) + deg
(⌊
mπ∗(R)
n

⌋)
.

Combining this with the Riemann–Hurwitz formula, Corollary 2.4.7, we see that

2(2m− 1)(gY − 1) + 2deg
(⌊
mπ∗(R)
n

⌋)
= 2(2m− 1)(gX − 1)

= 2n(2m− 1)(gY − 1) + (2m− 1)deg(R),

which can be re-arranged as

(2m− 1)(2n− 2)(gY − 1) = 2deg
(⌊
mπ∗(R)
n

⌋)
− (2m− 1)deg(R).

So if we can show that the right hand side of this equation is negative then we will have

gY − 1 < 0 and hence gY = 0, as desired.



78 Chapter 5 Faithful actions on Riemann–Roch spaces

Using the same notation as in the case when m = 1, we calculate:

2deg
(⌊
mπ∗(R)
n

⌋)
− (2m− 1)deg(R) =

∑
Q∈Y

(
2
⌊
m · n

eQ

δQ
n

⌋
−n(2m− 1)

δQ
eQ

)

≤
∑
Q∈Y

(
2m ·

δQ
eQ
−n(2m− 1)

δQ
eQ

)
= (2m−n(2m− 1))

∑
Q∈Y

δQ
eQ
.

Now as n,m ≥ 2 then we have 2m− n(2m− 1) ≤ 2m− 2(2m− 1) = 2(1−m) < 0 and we are

done as
∑
Q∈Y

δQ
eQ

is positive.

So we have shown for all m ≥ 1, if the group G acts trivially on H0(X,Ω⊗mX ) then gY = 0.

Now if m ≥ 2 then first note that G must contain a cyclic subgroup of prime order, say H ,

such that H acts trivially on H0(X,Ω⊗mX ). Now Proposition 5.2.2 tells us that m = gX = 2,

and that the order of H must also be 2. Hence X/H � P
1
k , and this completes the only if

direction for m ≥ 2.

Similarly, the m = 1 case of the only if direction will follow from Proposition 5.2.1 after we

show that p > 0 and there is a cyclic subgroup of G of order p. This is true since π cannot be

tamely ramified. Indeed, if it were then R =
∑
P ∈X(eP −1)[P ] [Har77, Chap. IV, Cor. 2.4], and

deg
⌊
π∗(R)
n

⌋
= 0, which we have already shown cannot be the case. Hence p must be positive,

and there is a cyclic subgroup of order p which acts trivially.

Remark. Note that the existence of a hyperelliptic involution σ in G means not only that the

genus of X/〈σ〉, but also the genus of Y = X/G, is 0 (by the Riemann–Hurwitz formula).

Moreover, if p = 2, then the canonical projection X→ X/〈σ〉 is not unramified (again by the

Riemann–Hurwitz formula) and hence not tamely ramified; then π cannot be tamely ramified

either.

Remark. If X is not hyperelliptic and m = 1, or if gX ≥ 3 and m ≥ 2, we can give a short proof

of the “only-if" direction of Theorem 5.3.1 using [Har77, Chap. IV, Prop. 5.2] and [Har77, Chap.

IV, Cor. 3.2]. The map X→ P(H0(X,ΩX)) is a G-equivariant closed embedding. Then, since

G acts faithfully on X, G also acts faithfully on H0(X,ΩX).

5.4 Examples

We will now give some examples of a finite group acting on a curve, and the consequent

action on the holomorphic poly-differentials. We start with some examples in which G acts

trivially on H0(X,Ω⊗mX ). We then follow this with the example of hyperelliptic curves, for
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which we compute an explicit basis of H0(X,Ω⊗mX ), allowing us to see when the action is

trivial.

(a) Let gX = 0, i.e. X � P
1
k . Then deg(KX) = −2 and so deg(mKX) < 0 for m ≥ 1. Hence

H0(X,Ω⊗mX ) = {0} by [Har77, Lem. 2, Pg. 295] and G acts trivially on H0(X,Ω⊗mX ) for all

m ≥ 1.

(b) Let gX = 1, i.e. X is an elliptic curve. If G is a finite subgroup of X(k) acting on X by

translations, then G leaves invariant any global non-vanishing holomorphic differential ω and

hence G acts trivially on H0(X,ΩX); since ω⊗m is a basis of H0(X,Ω⊗mX ) this means that G

acts trivially on H0(X,Ω⊗mX ) for all m ≥ 1.

If p > 0 and G is a p-group, then the multiplicative character G→ k∗ afforded by the one-

dimensional representation H0(X,Ω⊗mX ) of G has to be trivial because k doesn’t contain any

pth roots of unity; in particular the action of G on H0(X,Ω⊗mX ) is trivial as well. On the

other hand, if p , 2 and X is given by the Weierstrass equation of the form y2 = f (x), then

the involution σ : (x,y)→ (x,−y) maps the invariant differential ω = dx
y to −ω.

(c) Let X be a hyperelliptic curve and G the subgroup of Aut(X) generated by the hyperelliptic

involution. We recall that in Propositions 3.1.2 and 3.2.5 we gave bases of H0(X,Ω⊗mX ) for

m ≥ 1. In particular, if p , 2 we let ω = dx⊗m
ym , and if p = 2 we let ω = dx⊗m

H(x)m .

We first suppose that p , 2. Then σ acts by multiplication by −1 on xiω and yxiω if m

is, respectively, odd and even. Hence if m = 1 or either m > 2 or gX > 2 the action of σ is

non-trivial. Finally, if m is even then σ acts trivially on ω and x, and so σ acts trivially, and

hence non-faithfully, on H0(X,Ω⊗2
X ).

Now we suppose that p = 2. In this case σ acts trivially on x, and hence also on ω. So the

action is trivial, and hence non-faithful, on H0(X,ΩX), and also on H0(X,Ω⊗2
X ) if gX = 2.

On the other hand, σ (y) = y+H(x), so σ acts non-trivially on yxiω, and the action is faithful

if m ≥ 2 and gX > 2.

5.5 K[G]-module structure of H0(X,ΩX) when |G| = p

In this subsection we give an alternative proof of Proposition 5.2.1, using a sophisticated

result of Valentini and Madan [VM81]. We suppose that G is a subgroup of Aut(X) of order

p = char(k) and that gX ≥ 2 and gY = 0. The k[G]-module structure of H0(X,ΩX) is

computed in [VM81, Thm. 1], and from this we will show that the action of G on H0(X,ΩX)

is trivial if and only if p = 2.
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We remark that in [VM81] it is assumed that |G| = pn for some n ∈N. We have assumed that

n = 1, since this will greatly simplify our computations, and we do not require the general

case.

Let σ be a generator of G. There are p unique indecomposable representations of G, which

are

Mk := k[G]/((σ − 1)k), k = 1, . . . ,p.

Note that the elements e := σ0,σ = σ1, . . . ,σ k form a k-vector space basis of Mk .

We let dk denote the number of times that Mk occurs in the decomposition of the k[G]-

module H0(X,ΩX) in to indecomposable k[G]-modules, so that

H0(X,ΩX) �
p⊕
k=1

dk⊕
i=1

Mk . (5.11)

Now if the action of G on H0(X,ΩX) is trivial then the only indecomposable submodule

of H0(X,ΩX) will be the trivial module M1. Hence the action of G is trivial if and only if

d1 = gX and dk = 0 for k ∈ {2, . . . ,p}.

We let Q1, . . . ,Qs ∈ Y be the branch points of π, and we let P1, . . . , Ps be the corresponding

ramification points (note that since |G| is prime it follows that there is only one point in

π−1(Qi) for 1 ≤ i ≤ s). For each i ∈ {1, . . . , s} we let mi denote the largest integer such that

Gi(Pi) is non-trivial, which is coprime to p by [KöKo12, App. 5, Lem. 5.1]. From Hilbert’s

formula (Theorem 2.4.9) we conclude that

δi =
∞∑
j=0

(ord(Gj(Pi))− 1 =
mi∑
j=0

(p − 1) = (p − 1)(mi + 1).

In particular, the second equality holds since Gj(Pi) is trivial for j > mi , and hence we have

ord(Gj(Pi))− 1 = 0 for any such j . Now we set

γi,k =
⌊
δi − kmi

p

⌋
, k = 0, . . . ,p − 1,

where bcc denotes the largest integer less than c, for any c ∈ R. We let Γk =
∑s
i=1γi,k . Note

that Γk ≤ Γk−1 for all k.

We now state the main theorem of [VM81].

Theorem 5.5.1. Let G be a cyclic group of automorphisms of X of order p. Let Y := X/G be the

quotient of X by the action of G, with genus gY . The regular representation Mp of G occurs gY
times in the representation of G on H0(X,ΩX). The indecomposable representation Mp−1 occurs
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Γp−2 − Γp−1 −1 times, whilst for k = 1, . . . ,p−2, the indecomposable representationMk of degree k

occurs Γk−1 − Γk times.

Proof. See [VM81, Thm. 1].

Using the above theorem we now give an alternative proof of Lemma 5.2.1.

Proof of Proposition 5.2.1. We first show that if p = 2 then the action is trivial. In this case

there are only two representations - the regular representation and the trivial representation.

By Theorem 5.5.1, the regular representation occurs gY times. Since we assumed that gY = 0

it follows that the action of G on H0(X,ΩX) only affords the trivial representation, and hence

G acts trivially.

We now prove the other direction, supposing that p > 2 and that the action of G on

H0(X,ΩX) is trivial. We will see that this yields a contradiction.

We first observe that for any i ∈ {1, . . . , s} we have

γi,p−1 =
⌊
δi − (p − 1)mi

p

⌋
=

⌊
(p − 1)(mi + 1)− (p − 1)mi

p

⌋
=

⌊
p − 1
p

⌋
= 0.

and hence Γp−1 =
∑s
i=1γi,p−1 = 0.

Now since we are assuming that the action of G is trivial, it must follow that dk = 0 for all

k , 1, as previously discussed. Then by Theorem 5.5.1 we have that Γp−2 − Γp−1 − 1 = 0, and

hence Γp−2 = 1. We can then conclude inductively that for 1 ≤ k ≤ p−2 we have Γk = 1, using

the relation Γk−1 − Γk = 0 from Theorem 5.5.1. Finally, we also have Γ0 = gX + Γ1 = gX + 1.

Since

1 = Γp−2 =
s∑
i=1

⌊
δi − (p − 2)mi

p

⌋
=

s∑
i=1

⌊
(p − 1)(mi + 1)− (p − 2)mi

p

⌋
=

s∑
i=1

⌊
mi + p − 1

p

⌋
,

it follows that mi , 0 for exactly one i, and for that i we have 1 ≤ mi ≤ p. Furthermore,

since all mi are coprime to p, we actually have 1 ≤ mi ≤ p − 1. Note that actually s = 1

because mi = 0 cannot occur, since G0(P ) = G1(P ) for any ramified P ∈ X. We let m = m1

and δ = δ1.

We now determine m, as follows:

1 + gX = Γ0 =
⌊
δ
p

⌋
=

⌊
(p − 1)(m+ 1)

p

⌋
=m+ 1 +

⌊
−m− 1
p

⌋
=m, (5.12)

with the last equality following since 0 ≥ −m− 1 ≥ 2− p.
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On other hand, from the Hurwitz Formula (Corollary 2.4.7) and Hilbert’s Formula (Theorem

2.4.9), we can conclude that

2gX − 2 = −2p+ (p − 1)(m+ 1),

which, together with (5.12), implies that

gX(p − 3) = 0.

Hence we conclude that p = 3. But applying (5.12) and the fact that m ≤ p − 1, we conclude

that 1 + gX =m < 3, which contradicts our assumption that gX ≥ 2.
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