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ABSTRACT
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Bayesian Optimal Designs for the Gaussian Process Model

by Maria Adamou

This thesis is concerned with methodology for finding Bayesian optimal designs for the

Gaussian process model when the aim is precise prediction at unobserved points. The

fundamental problem addressed is that the design selection criterion obtained from the

Bayesian decision theoretic approach is often, in practice, computationally infeasible to

apply.

We propose an approximation to the objective function in the criterion and develop this

approximation for spatial and spatio-temporal studies, and for computer experiments.

We provide empirical evidence and theoretical insights to support the approximation.

For spatial studies, we use the approximation to find optimal designs for the general

sensor placement problem, and also to find the best sensors to remove from an existing

monitoring network. We assess the performance of the criterion using a prospective

study and also from a retrospective study based on an air pollution dataset. We inves-

tigate the robustness of designs to misspecification of the mean function and correlation

function in the model through a factorial sensitivity study that compares the perfor-

mance of optimal designs for the sensor placement problem under different assumptions.

In computer experiments, using a Gaussian process model as a surrogate for the output

from a computer model, we find optimal designs for prediction using the proposed

approximation. A comparison is made of optimal designs obtained from commonly

used model-free methods such as the maximin criterion and Latin hypercube sampling

via both the space-filling and prediction properties of the designs.

For spatio-temporal studies, we extend our proposed approximation to include both

space and time dependency and investigate the approximation for a particular choice

of separable spatio-temporal correlation function. Two cases are considered: (i) the

temporal design is fixed and an optimal spatial design is found; (ii) both optimal

temporal and spatial designs are found.

For all three of the application areas, we found that the choice of optimal design depends

on the degree and the range of the correlation in the Gaussian process model.
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Chapter 1

Introduction

Data collected from correlated processes arise in many diverse application areas, includ-

ing studies in environmental and ecological science where the response or characteristics

of interest may vary across space and/or time. The data are often used to build models

for predicting the process at unobserved points in some continuous region of interest,

XP ⊆ Rd for d ≥ 1 and integer. Popular models are derived from the Gaussian process,

under the belief that observations made at points close in space or time tend to have

similar values.

Gaussian process models are also widely used in analysing data from computer ex-

periments as they provide a very flexible class of models for approximating complex

surfaces.

In this thesis, we address the problem of how to choose a set of n > 1 design points

xi = (x1i, . . . , xdi)
>, i = 1, . . . , n, constituting a design ξ = {x1 . . . ,xn}, from a design

space or study region X ⊆ XP , to obtain precise prediction from a Gaussian process

model. This problem is of great importance in many applications. The structure and

strength of the correlations in the Gaussian process model affect various properties,

such as the prediction variance or the inter-point distance of an optimal design, and

hence we have to take these correlations into account in finding the “best” designs.

In this thesis, we take a Bayesian approach to finding optimal and efficient designs

using selection criteria formulated from the objectives of the experiment. In addition

to the applications described below, the methods in this thesis apply to nonparametric

regression generally and to similar machine-learning problems.

1.1 Motivating Examples

1.1.1 Environmental application

In this section, an example of spatio-temporal data is presented which is used later in

the thesis to demonstrate new methods for finding an optimal design for the collection

1
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Figure 1.1: Network of 122 monitoring stations in the eastern USA.

of spatial data. Modelling such data has its origins in mining applications to predict ore

grade and in the use of a type of Gaussian process modelling known as kriging (Krige,

1951). Matheron (1963) developed essential elements of spatial statistics such as the

concepts of stationarity, isotopy and variograms, and nowadays we use these aspects of

the “Matheron school” as explanatory tools in the statistical data analysis.

In the early days of design of experiments, researchers tried to find ways to take account

of spatial correlation in the collection and analysis of data which led to principles of

experimental design, such as randomisation and blocking, being applied in agricultural

experiments; see, for example, Yates (1970) for a review.

A further spatial problem of wide application, including in environmental science, is the

sensor placement problem, i.e. how to make an optimal choice of sensor locations within

the geographical region of interest in order to obtain, from the available resources, the

most precise predictions of the response at unobserved locations. See, for example,

Diggle and Lophaven (2006); Zimmerman (2006); Uciński and Maciej (2010).

There are many examples affecting our everyday life that indicate the importance of

spatial statistics. Concerns about climate change have led to the measurement of, for

example, sea levels. Air pollution levels are regularly monitored because chemicals such

as sulphur dioxide and nitrogen dioxide may cause disease or damage the environment.

One particular example concerns the use of monitoring networks for collecting data to

measure the level of pollutants in water or air. The map in Figure 1.1 shows a network

of 122 monitoring stations in the eastern USA which measure the amount of a chemical
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deposited at each site. This chemical deposition is responsible for damage to lakes,

forests and streams. Observations from two stations that are geographically close tend

to be very similar. The 122 monitoring stations collected weekly data for 52 weeks in

2001.

Usually the cost of maintaining such a large monitoring network is high. In these cir-

cumstances, a common problem is how to reduce the number of stations with minimum

loss of precision in the predictions of the response at unobserved locations.

1.1.2 Computer experiments

Computer experiments are increasingly used in many fields. Engineers and scientists

routinely use deterministic computer models to study actual or theoretical physical

and social systems. There are many examples of scientific and technological devel-

opments that use computer models, or simulators, to greatly reduce costly physical

experimentation, or where physical experiments are infeasible:

• In the design of an aircraft wing, computational fluid dynamics models are used

to calculate the air flow over a wing.

• Finite element models are used for pre-clinical testing of hip replacement implants

to understand the scenarios in which an implant fails.

• In drug development, molecular modelling is an important part of investigating,

explaining and predicting the properties of potential drug candidates.

Although obtaining data from computer models has several advantages over experi-

ments on real processes, they can be expensive and slow to run. For this reason, Sacks

et al. (1989) proposed constructing a surrogate model, specifically a Gaussian process

model, which is simpler and much faster to run. This approach is now often used to

approximate expensive computer models.

In the computer experiments setting, the design problem is how to choose a set, ξ,

of points where the computer model will be run to obtain simulated data that allow

precise predictions from the surrogate model.

1.2 Aim and Objectives

The aim of this thesis is to develop methodology for Bayesian design of experiments to

enable precise predictions to be obtained from the fitted Gaussian process model.

The work differs from previous research in the area by incorporating uncertainty in

all the parameters of the model used to describe the data. The main methodologi-

cal advance is a new approach to design selection using a proposed approximation to

the integrated variance of the posterior predictive distribution. This approximation
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makes feasible the computation of Bayesian optimal designs. This approximation is

investigated and found to be supported by theoretical and numerical studies.

Specific objectives of the thesis are to:

1. review the area of decision-theoretic design for correlated data, especially related

to spatial data and computer experiments

2. develop and validate a decision-theoretic design criterion and associated novel

approximations for its efficient implementation

3. develop, from these approximations, an efficient method of conducting sensitivity

studies on how the choice and efficiency of an optimal design is affected by varying

the values of hyperparameters in the prior distributions

4. apply the new methodology to find optimal and near-optimal designs for spatial

processes (i.e. find optimal sets of locations)

5. demonstrate the methodology on the general sensor placement problem and the

example in Section 1.1.1

6. apply the methodology to computer experiments for deterministic simulators, and

compare the designs obtained to standard designs

7. extend the methods to find designs for spatio-temporal models (i.e. find sets of

locations and/or times).

1.3 Thesis Organisation

The remainder of the thesis is organised as follows.

In Chapter 2, we describe Gaussian process models and their key elements. The Gaus-

sian process is introduced and the Bayesian approach to Gaussian process modelling

is reviewed. We also provide the posterior predictive distributions for Gaussian pro-

cess models, and give some derivations and details for those distributions used in the

remainder of the thesis.

Chapter 3 introduces optimal design theory and describes the decision theoretic frame-

work used to obtain Bayesian optimal designs. We apply this approach to the Gaussian

process model and define the design selection criterion that we use to obtain optimal

designs. We provide methodology for finding optimal designs for prediction when the

parameters of the model are unknown. We propose and investigate a mathematical

approximation to the expected loss using the squared error loss function which re-

duces dependence on Monte Carlo integration and quadrature methods. This new pro-

posed approximation is key to overcoming the computational challenges of the Bayesian

method so that optimal designs can be obtained. We also describe the particular co-

ordinate exchange algorithm that we use to find designs, together with a brief review
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of existing algorithms. We apply these methods to the numerical approximation of

Bayesian design objective functions in later chapters.

Chapter 4 gives efficient methods of investigating (i) the robustness of the choice of an

optimal design to varying the hyperparameter values of the prior distributions, and (ii)

the sensitivity of the efficiencies of a given optimal design when the hyperparameter

values are changed. The methods are demonstrated for d = 2 dimensions.

In Chapter 5, we apply the methodology from Chapters 3 and 4 to find optimal designs

for the general sensor placement problem. The majority of the literature on design for

spatial data focuses on the frequentist approach or considers the correlation parameters

to be known. For our Bayesian method, we apply the closed-form approximation de-

veloped in Chapter 3. The accuracy of the approximation is supported by a numerical

study.

In Chapter 6, we apply our methodology for spatial design to the problem from Section

1.1.1 of deciding which stations should be dropped from the monitoring network.

Computer experiments are addressed in Chapter 7 where we apply our methodology to

higher dimensions (d = 3). The closed-form approximation to the objective function is

investigated, as in Chapter 5, for d = 3. We find Bayesian optimal designs for d = 2,

n = 3, 5, 7 points and compare them with designs in the literature. Further designs for

higher dimensions, larger numbers of points and two different correlation structures are

investigated.

In Chapter 8, we investigate an extension of our general methods to find Bayesian opti-

mal designs for Gaussian process models that include both space and time dependency.

For example, observations made hourly or daily at a sampling location may be corre-

lated over time. We extend our closed-form approximation of the objective function to

account for both spatial and temporal correlation. For a particular form of correlation

structure, numerical studies are provided which support the approximation. Bayesian

optimal designs are found using this approximation and their properties are discussed.

Finally, in Chapter 9, we discuss the research contributions in this thesis, their impli-

cations and future research directions.
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Chapter 2

Gaussian Process Models

In this chapter, Gaussian process models are described in detail and the main concepts

and methods used in this thesis are introduced. We begin by defining a Gaussian

process and discussing its properties, particularly those arising from characteristics of

the correlation function. After a brief introduction to Bayesian inference, we describe

the Bayesian approach to Gaussian process modelling. Based on the literature, we give

formulations and derivations of the prior, posterior and predictive distributions which

are used in the following chapters.

2.1 Introduction

For data of the form (x, y(x)), where y(x) denotes the response measured at a specific

point x, we assume that there is function g(x) which approximates the mean relation-

ship between the point and the response. If we are able to make assumptions about the

form of this function, for example that it is a low-order polynomial, then well-known

parametric methods, such as linear regression, can be applied to estimate it. However

when the response is highly complex, the explicit form of this function is often un-

known. We then seek to infer the function from the given data using nonparametric

methods. Basically, the use of nonparametric methods allows the data to speak for

themselves.

We start with the assumption that

y(x) = g(x) + ε, (2.1)

where ε represents the noise or measurement error and the function g(x) is unspecified.

The main objective of nonparametric regression is to estimate the unknown function

g(x). Some common approaches are local polynomial regression, spline methods and

Gaussian process modelling.
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In this thesis, we use Gaussian process modelling because it has the following advantages

(Rasmussen and Williams, 2006; Kaufman et al., 2008; Gramacy and Lee, 2008):

(i) it provides a stochastic interpretation of the data without requiring additional

assumptions on the errors in the response

(ii) it provides flexibility through the choice of specifications of the correlation function

(iii) conditionally conjugate prior distributions are available to simplify the calcula-

tions required for obtaining predictions

(iv) spline methods and local polynomial regression can be derived as special cases via

particular specifications of the correlation function.

Gaussian process models have a long history dating back to the 1940s, when they were

used for time series by Kolmogorov (1941) and Wiener (1949). They are now well-

established in time series, spatial and spatio-temporal statistics, computer experiments

and machine learning. In the second of these areas, also known as geostastistics, making

predictions from a Gaussian process model is known as kriging, after Krige (1951).

Theory and methodology were developed by Matheron (1963); comprehensive reviews

of Gaussian process modelling for prediction in geostatistics can be found in Cressie

(1993).

O’Hagan (1978) used Gaussian processes to describe the behaviour of an unknown

mathematical function. More than a decade later, Sacks et al. (1989) proposed the

use of Gaussian process models in the design and analysis of deterministic computer

experiments (i.e. ε = 0). A more recent area where the Gaussian process model has

been applied is machine learning, see Rasmussen and Williams (2006).

2.2 Gaussian Process

A stochastic process indexed by point x ∈ XP ⊆ Rd is a set of real random variables

{Z(x); x ∈ XP}. Examples of x and XP are:

(i) x = time and XP = [0,∞)

(ii) x = (l1, l2)> where l1, l2 are longitude and latitude, respectively, and

XP = [−180o, 180o]× [−90o, 90o].

We say that a stochastic process is a Gaussian Process when, for any finite integer

n ≥ 1 and any choice of points x1, . . . ,xn ∈ XP , the joint distribution of the n × 1

vector Z = (Z(x1), . . . , Z(xn))> has a multivariate normal distribution

Z ∼ N(m∗,Σ∗),
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where m∗ is the n × 1 mean vector and Σ∗ is the n × n covariance matrix with ijth

element Cov[Z(xi), Z(xj)].

We now summarise two important properties which a Gaussian process may possess.

2.2.1 Stationarity

There are several different forms of stationarity for a Gaussian process.

A Gaussian process is said to be strictly stationary if, for any given n ≥ 1, any set of

points x1, . . . ,xn ∈ XP and any separation vector h ∈ Rd, defined such that xi+h ∈ XP
for all i = 1, . . . , n, the joint distributions of Z(x1), . . . , Z(xn) and Z(x1+h), . . . , Z(xn+

h) are the same.

A Gaussian process has weak or second-order stationarity if it has

• constant mean i.e. E [Z(x + h)− Z(x)] = 0 ∀ x ∈ XP , and

• Cov[Z(x), Z(x + h)] = K(h), ∀ x ∈ XP ,

where K(h) is called the covariance function and depends only on h. This latter

property means that the covariance between any two of the random variables depends

only on the separation vector h. It follows that a Gaussian process that is second-order

stationary is also strictly stationary.

If either of the above types of stationarity do not hold then the process is called non-

stationary.

2.2.2 Isotropy

A Gaussian process is isotropic if it is second order stationary and has covariance

function K(h) which depends upon the separation vector h only through the distance

‖h‖ between two points x and x + h, where ‖ · ‖ denotes a distance metric. A process

which is not isotropic is called anisotropic. An anisotropic process may be defined as,

Cov(Z(x), Z(x + h1)) 6= Cov(Z(x), Z(x + h2)) for (h1,h2) such that ‖h1‖ = ‖h2‖.
Hence changes in different variables can influence the response differently.

2.3 Isotropic Correlation Functions

Often, the parametrisation of an isotropic covariance function has the following form

for the ijth entry:

Covij = σ2ρ(dij ;θ) if i 6= j for dij = ‖xi − xj‖, xi,xj ∈ XP (2.2)
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where 0 ≤ ρ(dij ;θ) ≤ 1, σ2 is the constant global variance parameter, and θ is a vector

of correlation parameters.

The covariance matrix corresponding to (2.2) is

Cov = σ2C(θ), (2.3)

where C(θ) is an n× n matrix of correlations with ijth entry ρ(dij ;θ).

A correlation matrix C(θ) must also have the properties that

• C(θ) is positive definite

• ρ(dii;θ) = 1 for all xi ∈ XP

• C(θ) is symmetric i.e. ρ(dij ;θ) = ρ(dji;θ) for all xi,xj ∈ XP .

Therefore choices of functional form for the correlation function are very restricted.

Many isotropic correlation functions have been proposed which are feasible and fairly

simple to apply. In the next subsection, we introduce several such functions that have

applications in describing spatial and temporal correlation and, more recently, are used

in computer experiments and machine learning.

2.3.1 Examples of families of parametric, isotropic correlation func-

tions

In many applications, it is assumed that responses measured at points close together

should have similar values for Z(x). For this reason, several correlation functions have

been formulated to include a decay parameter which controls the rate at which the

correlation decays with distance. As this parameter increases, the correlation between

the observations at each fixed pair of points decreases and vice versa. Hence the decay

parameter controls the distance at which two observations become almost independent.

This distance is known as the effective range. A further parameter is used to control the

smoothness of the functions drawn from the Gaussian process. These two parameters

control the shape of realisations of the Gaussian process.

(a) The most widely used family of correlation functions is the Matérn class and was

introduced by Matérn (1960). The function is given by

ρ(xi,xj ;θ) =
1

2ν−1Γ(ν)
(2
√
ν‖xi − xj‖φ)νKν(2

√
ν‖xi − xj‖φ), (2.4)

where θ = (φ, ν)>, φ > 0, ν > 0 are the decay and smoothness parameters, respectively,

and Kν is the modified Bessel function of order ν and Γ(ν) is the gamma function.

Four special cases of (2.4) are given by
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1. when ν = 0.5, ρ(xi,xj ;θ) = exp(−φdij) and is known as the exponential correla-

tion function

2. when ν = 1.5, ρ(xi,xj ;θ) = (1 +
√

3φdij) exp(−
√

3φdij)

3. when ν = 2.5, ρ(xi,xj ;θ) = (1 +
√

5φdij + 5
3φ

2d2
ij) exp(−

√
5φdij)

4. when ν →∞, ρ(xi,xj ;θ) = exp(−φ2d2
ij), the Gaussian correlation function.

Figure 2.1 shows the correlation functions for cases 1-3 with Euclidean distance, dij =√∑n
k=1(xik − xjk)2 and φ = 1. We see that the exponential correlation function de-

creases most rapidly. This means that, for example, for points at distance 2 units

apart, the corresponding random variables will have less correlation and hence realisa-

tions are likely to be less similar than when the correlation is described by the other

two functions.
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Figure 2.1: The Matérn correlation function with decay parameter φ = 1 for ν = 0.5,
1.5 and 2.5.

(b) Another important family of correlation functions is the powered exponential, see,

for example, Diggle et al. (1998), which has the form

ρ(xi,xj ;θ) = exp (−(φ‖xi − xj‖)ν) , (2.5)

where θ = (φ, ν)>, φ > 0, 0 < ν < 2 are the decay and smoothness parameters, respec-

tively. For 0 < ν < 2, the process is continuous at the origin but not differentiable,

except for ν = 2 when the Gaussian correlation function is obtained. When ν = 1, the

exponential correlation function again results. The powered exponential family is less

flexible than the Matérn due to the differentiability properties of the process Z(x). The

Matérn correlation function results in a process that is dνe − 1 times differentiable; in

contrast, the process with the powered exponential is either nowhere differentiable for

11



0 < ν < 2, or infinitely differentiable for ν = 2. This advantage of the Matérn explains

why this family is more widely used than the powered exponential (Diggle and Ribeiro,

2007).

In Chapter 7 we are going to investigate the separate non-isotropic Matérn and power

exponential correlation functions which are extensions of these isotropic functions.

In the next section we present the essential elements of the statistical model which uses

a Gaussian process to model observations.

2.4 Gaussian Process Model and Prediction

2.4.1 Statistical model

We adopt the following general model and notation. There are n data points of the

form (xi, y(xi)), i = 1, . . . , n, where xi ∈ X ⊂ Rd denotes the ith design point within

the study region X and y(xi) denotes an observation taken at xi on a single realisation

of the Gaussian process. In general, we assume y(xi) are observed with noise and hence

describe them by the following statistical model, referred to as the Gaussian process

model:

y(xi) = f>(xi)β + Z(xi) + ε(xi), i = 1, . . . , n, (2.6)

where

• f(xi) = (f1(xi), . . . , fk(xi))
> is a k×1 vector of known fixed regression functions.

• β = (β0, . . . , βk−1)T is a k× 1 vector which contains unknown model parameters,

often called trend parameters or regression coefficients.

• Z(xi) is a Gaussian process with mean zero and covariance matrix which models

the dependency between y(xi) and y(xj) through specification of the covariance

Cov(Z(xi), Z(xj)) = σ2ρ(dij ;θ)

for some known correlation function ρ(dij ;θ) from a specified parametric family,

where dij is a measure of the distance between points xi and xj , θ is the vector

of correlation parameters and σ2 is the constant variance.

• ε(xi) represents the measurement error or noise associated with repeat observation

at xi. We assume that ε(xi) and ε(xj) (i, j = 1, . . . , n, i 6= j) are independent and

identically normally distributed with zero mean and variance τ2 (the nugget).

Also ε(xi), Z(xj) are assumed independent.

That is, we have

Y|β, σ2,θ, τ2 ∼ N(Fβ, σ2C(θ) + τ2I),
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where Y is the n × 1 vector of data, F is the n × k model matrix and the variance

covariance matrix σ2C(θ) + τ2I has ijth entry σ2ρ(dij ;θ) + τ21{xi = xj}, with 1 an

indicator function taking value 1 if xi = xj , and 0 otherwise.

In geostatistics, the Gaussian process Z in (2.6) is used to model the spatial correlation

between random variables at two points or locations xi ∈ Rd with d = 2. The Gaussian

process models the response that might be measured at any point in some geographical

region, XP , of interest.

In spatio-temporal applications, the Gaussian process Z is used to model the spatio-

temporal correlation between two points that are (location, time) vectors xi ∈ R2 ×
[0,∞). The model (2.6) is used for a phenomenon evolving through both space and

time.

The Gaussian process model (2.6) is also very widely used to describe output from a

computer experiment since the form of the function that maps a point x ∈ X into an

output y(x) is unknown. The Gaussian process is used to represent the available prior

information about the unknown function.

2.4.2 Predictions

In order to make inferences about an observation at a new point xn+1 using model (2.6),

we need to define the predictive distribution for the random variable yn+1 = y(xn+1).

In general, following Banerjee et al. (2004, Ch. 2), for two vectors y1 and y2 described

by (2.6), the joint distribution conditional on all the unknown parameter β, σ2,θ and

τ2 is given in matrix form by

(
y1

y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

where Σ21 = Σ>12. The conditional distribution of y1|y2 is normal with mean and

variance:

E(y1|y2) = µ1 + Σ12Σ−1
22 (y2 − µ2),

Var(y1|y2) = Σ11 −Σ12Σ−1
22 Σ21.

In our context, we let y1 = yn+1 and y2 = y then it follows that

µ1 = f>n+1β and µ2 = Fβ,

where fn+1 = f(xn+1) is the k×1 vector of regression functions for xn+1, F is the n×k
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matrix of regression functions with ijth element fj(xi) and

Σ11 = σ2 + τ2, Σ12 = σ2ω> = ω̃>, and Σ22 = σ2C + τ2I.

Here ω = [ρ(dn+1,1;θ), . . . , ρ(dn+1,n;θ)]> is the n × 1 vector of correlations between

the response at each of the existing inputs and the response at the new point where we

want to predict. Substituting these values into the above mean and variance formulae,

we obtain that yn+1|y, conditional on β, σ2,θ, τ2, is normal with:

E(yn+1|y) = f>n+1β + ω̃>[σ2C + τ2I]−1(y − Fβ), (2.7)

Var(yn+1|y) = σ2 + τ2 − ω̃>[σ2C + τ2I]−1ω̃. (2.8)

If we make the assumption that all the parameters are known, then the conditional

expectation (2.7) and variance (2.8) are the simple kriging predictor and simple kriging

variance respectively. The simple kriging predictor minimises the mean square error

(MSE) in geostatistical methods.

Predictions based on the Gaussian process model (2.6) are popular for many reasons:

the predictor is semi-parametric, i.e. the large scale variation is modelled by the mean

function and is specified by a regression, and the small scale deviations from the mean

are described by a stationary Gaussian process. Also, when the parameters are known

then the conditional expectation (2.7) and variance (2.8) used to predict at a new point

are simple to obtain.

2.4.3 Bayesian Gaussian process model

The Gaussian process model may be used with both frequentist and Bayesian ap-

proaches to designing a study. In this thesis we follow a fully Bayesian approach. We

prefer to analyse the experimental data using this method since it seems a natural way

to describe our prior information and beliefs and to update these using information

from the data. Further, a Bayesian approach allows us to take uncertainty into account

in a more coherent way than the frequentist approach.

A key difference between the frequentist and Bayesian modelling approaches is that the

latter incorporates any prior knowledge of the parameters by treating the parameters

as random variables and assigning a prior distribution to them. By doing this, we

take into account previous knowledge and uncertainty about the parameters. The full

specification is typically called the Bayesian Gaussian process model. It is a hierarchical

model as it is based on the probability theory that the joint distribution of random

variables can be decomposed into a series of conditional distributions and a marginal

distribution.

The literature on the Bayesian Gaussian process model was developed initially by Ki-
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tanidis (1986) and there is now a substantial literature on this field including Le and

Zidek (1992), Handcock and Stein (1993), Banerjee et al. (2004) and the references

therein. For a complicated response surface, Bayesian hierarchical modelling provides

a flexible framework for both estimation and prediction problems. We follow the three

stages of the model, described by Banerjee et al. (2004, Ch. 5) and Wikle (2010):

Stage 1: Data model: data | process, parameters

Stage 2: Process model: process | parameters

Stage 3: Parameter model: parameters (2.9)

The first stage specifies the distribution of the data conditional on the process and the

parameters that describe the model. The second stage describes the distribution of

the process given the parameters, and the third stage specifies the distribution of all

the unknown parameters, denoted by θ̃, and takes into account the uncertainty in the

model due to the unknown parameters.

Before collecting the data, information is often available about θ̃, typically obtained

from subject experts or from previous data sets. This information is used to provide

a specification of the prior density π(θ̃) for the values of the model parameters. After

the data y are gathered, they are used to update the prior distribution and calculate

the posterior density π(θ̃|y) using Bayes theorem.

Bayes Theorem. Suppose that there are two random variables y and θ̃ with joint

probability density functions (pdf) f(y|θ̃) and π(θ̃), respectively. Then the posterior

density of θ̃ given y is:

π(θ̃|y) =
f(y|θ̃)π(θ̃)∫∞

−∞ f(y|θ̃)π(θ̃)dθ̃
∝ f(y|θ̃)π(θ̃), (2.10)

where y = (y1, . . . , yn)> are the data, θ̃ is the vector of unknown parameters, π(θ̃) is

the prior density and f(y|θ̃) the likelihood of the data given the unknown parameters.

This likelihood function describes our belief that y would be the outcome if we knew

θ̃ to be true. Inference about the parameters proceeds from the posterior distribution.

Basically, π(θ̃|y) describes our beliefs that θ̃ is the true value, having observed the data

y. The denominator
∫∞
−∞ f(y|θ̃)π(θ̃)dθ̃ is called the normalising constant; usually we

find the posterior distribution up to a normalising constant.

An important objective of Bayesian inference is prediction and this is addressed through

the predictive distribution. Suppose that we have a sample of observations y1, . . . , yn

and we want to predict yn+1. Then, we need to find the predictive distribution that

represents the uncertainty in a future observation given the previous observations. That

15



is, we require the posterior predictive density given by

π(yn+1|y) =

∫ ∞
−∞

f(yn+1|θ̃,y)π(θ̃|y)dθ̃,

where f(yn+1|θ̃,y) is the conditional distribution of yn+1 given θ and data y. The

prediction density is obtained as an average over the posterior density π(θ̃|y), which

contains all the information that we know about the parameter θ̃. See, for example,

Gelman et al. (2003, Ch. 1).

We can express the hierarchical structure (2.9) for the Bayesian Gaussian process model

as

Data model: Y|β,Z, τ2 ∼ N(Fβ + Z, τ2I)

Process model: Z|θ, σ2 ∼ N(0, σ2C(θ))

Parameter model: β, σ2,θ, τ2 and joint prior distribution π(·)

An alternative representation of the hierarchical structure is obtained by combining

the data and process models. This marginal formulation of the model is obtained

by integrating out the process model so that the data model depends only on the

parameters. We obtain

Data model: Y|β, σ2,θ, τ2 ∼ N(Fβ, σ2C(θ) + τ2I)

Parameter model: β, σ2,θ, τ2 and π(·)

The model specification requires assignment of a prior distribution to the unknown pa-

rameters θ̃ = (β, σ2,θ, τ2)>. A common approach is to separate this prior distribution

into sections and there are two cases:

(a) assume the parameters are independent, then π(β, σ2,θ, τ2) = π(β)π(σ2)π(θ)π(τ2)

(b) assume the trend parameters and the variance are independent of the correlation pa-

rameters and the nugget effect, and θ and τ2 are independent, then π(β, σ2,θ, τ2) =

π(β|σ2)π(σ2)π(θ)π(τ2).

In general, specific choices of prior distributions are often made to facilitate computa-

tions. It is common to verify that the posterior analysis is not very sensitive to the

choice of the prior distribution.

2.4.4 Prior specification of the parameter model

Bayesian inference depends on the prior distribution that we choose to represent our

beliefs. Generally there are two types of priors: informative and non-informative priors.

The former expresses specific and definite information about the unknown parameter
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while the latter expresses vague and general information. Jeffrey’s priors are a common

example of non-informative priors. More details about choosing a prior distribution can

be found in Berger (1985, Ch. 3). As discussed in Banerjee et al. (2004, Ch. 4), it is

better to choose informative priors for the unknown parameters in order to avoid the

problem of improper posteriors.

For the trend parameters and the variance (β, σ2), we can consider conjugate priors, i.e.

the resulting posterior distribution belongs to the same family as the prior distribution,

or improper priors. A common choice of conjugate prior for β and σ2, is the multivariate

normal and inverse gamma, respectively. For an improper prior, π(β, σ2) = 1/σ2 is

often used.

The covariance matrix depends on the unknown vector of parameters θ of the corre-

lation function. Usually θ contains the decay and smoothness parameters, i.e. θ =

(φ, ν)>. In this thesis, in line with common practice, we assume that the smoothness

parameter ν is known and fixed, and assign a prior distribution to the decay parameter

φ. To avoid singularity of C(θ), we specify φ > 0. Hence a uniform prior on (0, b1),

b1 ∈ R+ might be considered appropriate or, alternatively, a prior with flexibility in

the shape and scale such as a log-normal or inverse gamma distribution.

When the nugget is included in the model, it is useful to reparameterise the two types

of variance σ2 and τ2, to facilitate computations. Two model parameterisations for the

variances have been proposed by Yan et al. (2007) and Diggle and Ribeiro (2007). The

former authors proposed

Y|β, σ2
κ, φ, κ ∼ N(Fβ, σ2

κ[(1− κ)C(φ) + κI]), (2.11)

where σ2
κ = σ2 + τ2 and κ = τ2/σ2

κ. It has the advantage that κ has bounded support

and this makes easier the use of some types of Monte Carlo Markov Chain (MCMC)

sampling techniques.

The parameterisation of the latter authors is

Y|β, σ2, φ, δ2 ∼ N(Fβ, σ2[C(φ) + δ2I]), (2.12)

where δ2 = τ2/σ2 is the ratio of the nugget to the process variation. We choose to

follow the second parameterisation since it has the advantage of being scale-free and is

also more commonly used in the literature and in practice.

In subsequent chapters, we parameterise the variance components (σ2, τ2) by (σ2, δ2)

where δ2 = τ2/σ2. From now on, we denote the reparametrised covariance matrix

σ2[C(φ) + δ2I] by σ2Σ.

We consider two cases

• δ2 known and assigned fixed values
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• δ2 unknown and assigned a discrete uniform prior or a continuous uniform prior

distribution.

Throughout this thesis, we choose conjugate priors for (β, σ2) for algebraic convenience

when deriving an approximation for the design criterion in Chapter 3. We investigate

the impact of different choices of β, φ and δ2 on design selection in later chapters.

In order to make predictions from a Gaussian process model, we require the posterior

distributions of the parameters and the predictive distribution. These are derived in

the following two sections.

2.4.5 Predictive distribution when covariance parameters are known

Throughout this section, we derive Bayesian inference results for the Gaussian model

when the covariance parameters φ and δ2 are assumed fixed and known. We allow for

uncertainty only in the trend β and variance σ2. In this case, the posterior distribution

for β and the posterior predictive distribution can be derived analytically taking into

account uncertainty in both β and σ2. Full derivations of conditional and marginalised

posterior distributions of the parameters can be found in Gelman et al. (2003, Ch. 15).

For fixed φ and δ2, the conjugate joint prior distribution for β and σ2 is the Normal-

Inverse Gamma distribution. Hence the prior densities for β and σ2 are:

π(β, σ2) = π(β|σ2)π(σ2),

where π(β|σ2) ∼ N(β0, σ
2R−1) and π(σ2) ∼ IG(a, b), and the inverse gamma distri-

bution, IG(a, b) has density proportion to

π(σ2|a, b) ∝ (σ2)−(a+1) exp{−bσ−2},

β0 is the known prior mean, R−1 is a known symmetric, k × k matrix and a, b are

known hyperparameters. Therefore,

π(β, σ2) = π(β|σ2)π(σ2)

∝
(

1

σ2

) (2a+k)
2

+1

exp

[
− 1

σ2

{
b+

1

2
(β − β0)>R(β − β0)

}]
. (2.13)

Equation (2.13) defines the Normal-Inverse-Gamma prior density and we write

π(β, σ2) ∼ NIG(β0,R
−1, a, b).
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The likelihood function for (2.6) is given by:

f(y|β, σ2, φ, δ2) =

(
1

2πσ2

)n/2
exp

{
− 1

2σ2
(y − Fβ)>Σ−1(y − Fβ)

}
. (2.14)

Using Bayes theorem (2.10), the prior density (2.13) is combined with the likelihood

(2.14), and the resulting posterior density is given by:

π(β, σ2|y, φ, δ2) ∝ f(y|β, σ2, φ, δ2)π(β, σ2)

∝ (σ2)−( k+2a∗
2

+1) × exp

{
− 1

σ2

[
1

2
(β − β∗)>V∗−1(β − β∗) + b∗

]}
,

(2.15)

where

β∗ = (F>Σ−1F + R)−1(F>Σ−1y + Rβ0),

V∗ = (F>Σ−1F + R)−1,

a∗ = a+ n/2,

b∗ = b+
1

2

[
(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

]
. (2.16)

The posterior distribution given by (2.15) can be identified as NIG(β∗,V∗, a∗, b∗).

Hence it belongs to the conjugate family for the Gaussian process model.

The marginal posterior distribution for the unknown parameter β is given by:

π(β|y, φ, δ2) =

∫
π(β, σ2|y, φ, δ2)dσ2

∝
[
1 +

(β − β∗)>V∗−1(β − β∗)
2b∗

]−( 2a∗+k
2

)

. (2.17)

Hence, β follows a multivariate t-distribution

β|y, φ, δ2 ∼ t2a∗
[
k,β∗,

b∗

a∗
V∗
]
. (2.18)

The marginal posterior for σ2 is obtained by integrating the joint posterior distribution

(2.15) over the trend parameter as follows:

π(σ2|y, φ, δ2) =

∫
π(β, σ2|y, φ, δ2)dβ

∝ (σ2)−( 2a+n
2

+1) exp

{
1

σ2
(b+

1

2
(y − Fβ0)T [Σ + FR−1F>]−1(y − Fβ0))

}
∼ IG(a∗, b∗). (2.19)

The next step is to derive the marginal distribution of the data. Since y|β, σ2, φ, δ2 ∼
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N(Fβ, σ2Σ) and β|σ2 ∼ N(β0, σ
2R−1), we conclude that the density is proportional

to the exponential of a quadratic form. Thus, the distribution of the data marginal to

β but conditional on σ2, φ and δ2 is normal with mean and variance obtained from the

laws of total expectation and total variance.

The law of total expectation for three random variables X,Y, Z states that

E(Y |Z) = EX|Z(E(Y |X,Z)). (2.20)

The law of total variance for three random variables X,Y, Z states that

var(Y |Z) = EX|Z(var(Y |X,Z)) + varX|Z(E(Y |X,Z)). (2.21)

Based on (2.20) and (2.21) we have

E(y|σ2, φ, δ2) = E[E(y|β, σ2, φ, δ2)] = Fβ0, (2.22)

var(y|σ2, φ, δ2) = E[var(y|β, σ2, φ, δ2)] + var[E(y|β, σ2, φ, δ2)]

= σ2[Σ + FR−1F
>

], (2.23)

and

y|σ2, φ, δ2 ∼ N(Fβ0, σ
2[Σ + FR−1F>]).

Then the density marginal to σ2, obtained by integrating out σ2, is:

π(y|φ, δ2) =

∫
π(y|σ2, φ, δ2)π(σ2)dσ2

∝
∫ (

1

σ2

)n+2a
2

+1

exp

{
− 1

σ2

[
1

2
(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0) + b

]}
dσ2

∝
[
1 +

(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

2b

]−( 2a+n
2

)

. (2.24)

Equation (2.24) indicates that the marginal distribution of y is a multivariate t-

distribution:

y|φ, δ2 ∼ t2a
[
n,Fβ0,

b

a

[
Σ + FR−1F>

]]
. (2.25)

To obtain the predictive distribution, we know that the marginal posterior π(σ2|y, φ, δ2)

is given by (2.19) and π(yn+1|y,β, σ2, φ, δ2) is a normal distribution with mean and

variance given by (2.7) and (2.8), respectively. It follows that the mean and variance of

π(yn+1|y, σ2, φ, δ2), again a normal distribution, can be found using the total laws of

expectation and variance, given in (2.20) and (2.21) respectively. Hence, we have that:

yn+1|y, σ2, φ, δ2 ∼ N(µ∗, (σ∗)2), (2.26)
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where µ∗ and (σ∗)2 given by:

µ∗ = E(yn+1|y, σ2, φ, δ2)

= E[E(yn+1|y,β, σ2, φ, δ2)]

= E(f>n+1β + ω>Σ−1(y − Fβ))

= (f>n+1 − ω>Σ−1F)(F>Σ−1F + R)−1Rβ0

+ [ω>Σ−1 + (f>n+1 − ω>Σ−1F)(F>Σ−1F + R)−1F>Σ−1]y (2.27)

(σ∗)2 = var(yn+1|y, σ2, φ, δ2)

= E[var(yn+1|y,β, σ2, φ, δ2)] + var(E[yn+1|y,β, σ2, φ, δ2)]

= σ2(1 + δ2)− σ2ω>Σ−1ω

+ σ2(f>n+1 − ω>Σ−1F)(F>Σ−1F + R)−1(f>n+1 − ω>Σ−1F)>. (2.28)

The interpretation of the three components in the expression for (σ∗)2 is (i) the variabil-

ity without taking account of the information provided by the data, (ii) the reduction

in variability due to conditioning on the data, and (iii) the increase in variability due

to the uncertainty in the estimate of regression coefficients β.

There is a relationship between the predictions obtained from the Bayesian and fre-

quentist approaches when a flat prior is assumed for β, i.e. the prior variance for the

trend parameters is large. In particular, for flat prior the k × k matrix R does not

exist, (R = 0). The frequentist approach can be interpreted as prediction which takes

into account the uncertainty in the trend parameters.

• when βi = 0 (i = 1, . . . , k−1) and σ2, φ and δ2 are fixed, the prediction is known

as “ordinary kriging”, common in geostatistics, with µ∗ and (σ∗)2 in (2.28) known

as the ordinary kriging mean and the ordinary kriging variance

• when there exist at least one βi 6= 0 (i = 1, . . . , k− 1) and σ2, φ and δ2 are fixed,

then the prediction method is known as “universal kriging” with µ∗ and (σ∗)2 in

(2.28) known as the universal kriging mean and the universal kriging variance.

In general, for any other choice of prior distribution, e.g. the conjugate prior, the

predictions from frequentist and Bayesian approaches do not coincide.

The posterior predictive density can be found by integrating out the unknown σ2:

π(yn+1|y, φ, δ2) =

∫
π(yn+1|y, σ2, φ, δ2)π(σ2|y, φ, δ2)dσ2

∝
[
1 +

(yn+1 − µ∗)2

2b∗Σ∗

]− (2a∗+1)
2

. (2.29)

Equation (2.29) indicates that the posterior predictive distribution for yn+1 at a new
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point xn+1 is a univariate t-distribution:

yn+1|y, φ, δ2 ∼ t2a∗
[
1, µ∗,

b∗Σ∗

a∗

]
, (2.30)

where the mean and the variance are µ∗ and b∗Σ∗/(a∗ − 1) respectively, with

Σ∗ = (1+δ2)−ω>Σ−1ω+(f>n+1−ω>Σ−1F)(F>Σ−1F+R)−1(f>n+1−ω>Σ−1F)>, and

b∗, a∗ and µ∗ given by (2.16) and (2.27).

2.4.6 Predictive distribution when covariance parameters are unknown

In practice, we will usually not know the values of the decay parameter φ and noise-

to-signal ratio δ2. Hence, realistically, we need to allow uncertainty in all of the model

parameters. We distinguish between two cases:

• φ unknown; δ2 known and fixed (Case (i))

• both φ and δ2 unknown (Case (ii))

In both cases we cannot derive analytical forms for the posterior distribution for pa-

rameters and or the posterior predictive distributions.

We assign a normal distribution for the trend parameter β, i.e. N(β0, σ
2R−1), inverse

gamma for the variance σ2, i.e. IG(a, b). We denote by

LI(φ, δ2) =

∫
f(y|β, σ2, φ, δ2)π(β, σ2)dβdσ2

=
|F>Σ−1F + R|−

1
2 |Σ|−

1
2[

b+ 1
2(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

]a+n
2

, (2.31)

the integrated likelihood with respect the unknown β and σ2.

Case (i). We consider a proper prior density for φ and the joint prior distribution

π(β, σ2, φ) = π(β, σ2)π(φ),

with π(β, σ2|y, φ, δ2) given by (2.15). The marginal posterior density for φ is

π(φ|y, δ2) =
π(β, σ2, φ|y, δ2)

π(β, σ2|y, φ, δ2)

∝ f(y|β, σ2, φ, δ2)π(β, σ2|φ, δ2)π(φ)

π(β|y, σ2, φ, δ2)π(σ2|y, φ, δ2)

∝ |F>Σ−1F + R|−
1
2 |Σ|−

1
2[

b+ 1
2(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

]a+n
2

π(φ),
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i.e.

π(φ|y, δ2) ∝ LI(φ, δ2)π(φ). (2.32)

Case (ii). We consider proper densities for each of φ and δ2. The prior distributions for

φ and δ2 can be continuous or discrete. We adopt the following joint prior distribution:

π(β, σ2, φ, δ2) = π(β, σ2)π(φ)π(δ2).

The posterior distribution for the parameters is then given by:

π(β, σ2, φ, δ2|y) = π(β, σ2|y, φ, δ2)π(φ, δ2|y), (2.33)

with π(β, σ2|y, φ, δ2) given by (2.15). It follows that the marginal posterior distribution

π(φ, δ2|y) can be derived as follows:

π(φ, δ2|y) =
π(β, σ2, φ, δ2|y)

π(β, σ2|y, φ, δ2)

∝ f(y|β, σ2, φ, δ2)π(β, σ2|φ, δ2)π(φ, δ2)

π(β|y, σ2, φ, δ2)π(σ2|y, φ, δ2)

∝ |F>Σ−1F + R|−
1
2 |Σ|−

1
2[

b+ 1
2(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

]a+n
2

π(φ)π(δ2),

i.e.

π(φ, δ2|y) ∝ LI(φ, δ2)π(φ)π(δ2). (2.34)

The problem for both cases is that the marginal posterior distributions (2.32) and

(2.34) are not standard distributions and hence the predictive distribution π(yn+1|y)

cannot be expressed analytically. The Bayesian prediction is based on the predictive

distribution which is given by:

Case (i) π(yn+1|y) =

∫
π(yn+1|y, φ, δ2)π(φ|y, δ2)dφ

Case (ii) π(yn+1|y) =

∫∫
π(yn+1|y, φ, δ2)π(φ, δ2|y)dφdδ2. (2.35)

In the majority of the literature, conditional predictions are made from the Gaussian

process model, with estimates of the unknown decay and noise-to-signal ratio parame-

ters “plugged-in” to equations such as (2.30) (e.g. Zhu and Stein (2006), Zimmerman

(2006)). If we compare this with the Bayesian counterpart (2.35), we can see that is the

weighted average of the plug-in approach with weights corresponding to the posterior

density π(φ, δ2|y), which incorporates information from the available data.

23



A similar problem exists for the posterior density π(β|y), which cannot be expressed

in closed form:

π(β|y) =

∫∫∫
π(β, σ2, φ, δ2|y)dσ2dφdδ2

=

∫∫
π(β|y, φ, δ2)π(φ, δ2|y)dφdδ2.

If δ2 is known, then the posterior distribution reduces to:

π(β|y) =

∫
π(β|y, φ, δ2)π(φ|y, δ2)dφ.

These integrals do not have an analytical solution and, as a result, a numerical evalu-

ation is required. We employ either Monte Carlo integration or quadrature methods,

overviewed in Section 3.5.

Evaluation of these integrals using numerical methods is computationally expensive,

especially in the context of optimal design where we have to optimise a function that

is an integral of y. For this reason, we propose in the next chapter an approximation

to overcome this problem that avoids time consuming Monte Carlo integration.

2.5 Summary

This chapter has introduced a number of key concepts for Gaussian process models and

reviewed the Bayesian approach which will be used throughout this thesis. For conju-

gate prior distributions for the trend and variance parameters, we define the posterior

and predictive distributions, when the decay and noise-to-signal ratio parameters are

either known or unknown.
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Chapter 3

Optimal Design and the

Proposed Design Selection

Criterion

3.1 Introduction

This chapter begins with a brief overview and comparison of frequentist and Bayesian

theory for optimal designs. An outline is then given of the decision theoretic framework

that is used to derive an objective function, the expected loss, to be minimised in a

Bayesian design selection criterion when the aim of an experiment is precise prediction

at unobserved points. This aim is common in spatial, spatio-temporal and computer

experiments. We then propose a new approximation to the expected loss that avoids

the computational burden usually associated with finding Bayesian optimal designs.

Algorithms for finding optimal designs are briefly reviewed and the coordinate exchange

algorithm, used to find designs in later chapters, is described.

3.2 Brief Overview of Approaches to Design Selection

In this thesis, we develop highly efficient and optimal designs using a Bayesian approach.

As the majority of the literature develops designs from a frequentist perspective, in this

section we briefly overview the frequentist and Bayesian methods. Much of the theory

of frequentist optimal design goes back to the work of Kiefer and Wolfowitz (Kiefer and

Wolfowitz, 1959), including the introduction of the well known “alphabetic optimality”

criteria. Atkinson et al. (2007) is a useful source of information on the theory of optimal

design including optimality criteria. The theory for Bayesian optimal design is more

recent and was introduced by Lindley (1956) and Chaloner (1984).

A design ξ∗ of size n is defined as optimal, with respect to a specific criterion, by
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comparison with the set Ξ of all possible designs of the same size. A criterion for a

design to be optimal in Ξ is defined through an objective function, Ψ, reflecting the

aim of the experiment, which is to be minimised or maximised.

In the frequentist approach to design, many criteria have Ψ formulated as a function

of the Fisher information matrix M(ξ), ξ ∈ Ξ, as the maximum likelihood estimator of
ˆ̃
θ has asymptotic distribution N(θ̃, (nM(ξ))−1); see Atkinson et al. (2007) for details.

The most popular frequentist design criteria are A-optimality and D-optimality, defined

as follows:

Definition 3.1. A design ξ∗ is A-optimal if

ΨA(ξ∗) = min
ξ∈Ξ

tr(M(ξ)−1).

This criterion seeks to minimise the average of the variances of the parameter estima-

tors.

Definition 3.2. A design ξ∗ is D-optimal if

ΨD(ξ∗) = max
ξ∈Ξ

[det(M(ξ))]1/p.

This criterion maximises the generalised variance of the parameter estimators, i.e. it

minimises the volume of the ellipsoidal confidence region for θ̃.

The Bayesian approach to design of experiments uses prior information about the pa-

rameters (see Section 3.3). Chaloner and Verdinelli (1995) gave Bayesian selection

criteria that correspond to the above frequentist D- and A-criteria for a normal lin-

ear model with conjugate prior distributions. A Bayesian design is D-optimal if it

maximises the expected gain in Shannon Information, i.e. the gain in moving from

a prior distribution to a posterior distribution. A Bayesian design is A-optimal if it

minimises the expected squared error loss which is defined and used in the next section.

Note that not every frequentist optimality criterion has a corresponding utility-based

Bayesian criterion.

The main difference between the frequentist and Bayesian approaches to design is that

the former may require assumptions about the values of the unknown parameters,

while the latter accounts for the uncertainty in any prior knowledge of the parameters

by treating the parameters as random variables and assigning a prior distribution to

them. By doing this, we take into account previous knowledge and uncertainty about

the parameters. A disadvantage of the frequentist approach is that a design that is

optimal for one set of specified parameter values may not be optimal for a different

set. The Bayesian approach suffers from this problem to a lesser degree because it
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assigns a prior distribution to the parameters and integrates out the uncertainty in

parameters by working with the posterior distributions (as in Section 2.4.3). Of course,

the optimal designs may still be sensitive to the choice of prior distributions. The main

drawback of Bayesian optimal design is the large computational burden usually incurred

by optimising the objective function Ψ. This is because Ψ is often not analytically

tractable, and its optimisation requires repeated approximation of an integral.

In this thesis, we often compare the performance of two designs using their relative

efficiency, defined as follows.

Definition 3.3. The relative efficiency with respect to an objective function Ψ of

design ξ1 compared with a design ξ2 is given by

Eff(ξ1, ξ2) =
Ψ(ξ1)

Ψ(ξ2)
.

When a design ξ is compared with an optimal design, ξ∗, we write

Eff(ξ) = Eff(ξ∗, ξ).

and call this measure the efficiency of design ξ.

In the following section, we give further details on the Bayesian approach, including

the Bayesian design selection criterion for prediction when a quadratic loss function is

assumed. In Section 3.4 we then propose a closed-form approximation for the objective

function from that criterion under a Gaussian process model when the decay parameter

φ and the noise-to-signal ratio δ2 are unknown.

3.2.1 Space-filling designs

Designs based on geometric criteria, developed by Johnson et al. (1990) are in two

categories: maximin distance designs and minimax distance designs. These criteria can

be defined:

Maximin criterion: a maximin optimal design ξ∗ maximises

ψMm(ξ) = min
i 6=j

d(xi,xj), where xi,xj ∈ ξ,

Minimax criterion: a minimax optimal design ξ∗ minimises

ψmM (ξ) = max
x′∈X

d(x′,x), where x ∈ ξ and d(x′,x) = min
i,...,n

d(x′,xi).

The maximin designs maximise the smallest distance between pairs of points in the

design; in this way, no two points in the design are “too close” and the points are spread
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throughout the region. On the other hand, minimax designs minimise the maximum

distance from all the points in the region to their closest point in the design; here the

points cover the design region.

The coverage and spread measures, related to the minimax and maximin designs re-

spectively, are given by ∫
X

[
min
x∈ξ∗

d(x,x′)

]
dx′, (3.1)

and
n∑
i=1

[
min

x∈ξ∗\{xi}
d(x,xi)

]
, (3.2)

see Bowman and Woods (2013), and references therein, for details.

Two classes of designs based on geometric criteria were developed by Johnson et al.

(1990), maximin and minimax designs, and asymptotic optimality properties were pre-

sented for specific designs. In particular, for Gaussian process model (2.6) with con-

stant mean function and all model parameters were known, they showed that maximin

optimal designs are asymptotically D-optimal and the minimax optimal designs are

asymptotically G-optimal for weak correlations (i.e. G-optimality seeks to minimise

the maximum predictive variance). A drawback of maximin designs is that they place

the majority of points on the boundary of the region and the interior region is not well

explored. In general, minimax designs are computationally difficult to generate and for

this reason are not widely used.

3.3 Bayesian Optimal Design via a Decision Theoretic

Framework

Following Chaloner and Verdinelli (1995), the Bayesian design problem is formulated as

a decision theoretic problem. “Decision theory” refers to decision making in the pres-

ence of statistical knowledge which can provide some information on the uncertainties

involved in the problem.

The basic elements of a decision problem are:

• the “truth”, or state of nature, denoted by α ∈ A

• a decision denoted by γ(y), a function of data, e.g. an estimator or prediction,

and decision space G

• a loss function L(γ(y),α; ξ) defined in the space G×A. The loss function measures

the consequence of choosing a particular decision γ(y) when α is the truth. The

loss function is chosen according to the aim of the experiment; for example, the

aim may be estimation of the unknown parameters or prediction at an unobserved

point. Different choices of loss function lead to different optimality criteria.
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An important use of experimental data is the prediction of responses at new points

not included in the experiment. In this case the Bayesian decision theoretic framework

uses the predictive distribution and a loss function involving the prediction of future

observations is employed.

In what follows, we adopt the general notation for a prediction y(xp) ∈ Y at a new

point xp ∈ XP , instead of using yn+1 and xn+1, respectively as in Chapter 2. This

notation facilitates the formulation of a design criterion to find optimal designs for

making predictions at one or more points in XP . In what follows, we concentrate on

predictions over XP .

3.3.1 Design for prediction

The Bayesian approach to design uses the predictive distribution of y(xp) at a new

point xp to obtain an optimal design for a particular loss function as follows:

1. Formulate the expected loss with respect to the posterior predictive distribution,

π(y(xp)|y), for any decision γ(y) ∈ G, any design ξ ∈ Ξ and the chosen loss

function L as

E[L(y(xp), γ(y); ξ)|y] =

∫
Y
L(y(xp), γ(y); ξ)π(y(xp)|y)dy(xp). (3.3)

2. Derive the minimum of the expected loss with respect to the decision γ(y).

3. Obtain the objective function by averaging the minimum expected loss over the

marginal density of the data y and over the prediction region XP :

Ψ(ξ) =

∫
XP

∫
Y

min
γ(y)∈G

E[L(y(xp), γ(y); ξ)|y]π(y)dydxp. (3.4)

4. Then an optimal design, ξ∗, for prediction is a design that minimises this objective

function, i.e. ξ∗ = arg min
ξ∈Ξ

Ψ(ξ).

We follow the above approach for the squared loss function given by

L(y(xp), γ(y); ξ) = (y(xp)− γ(y))2. (3.5)

The decision γ̂(y), that minimises the expected loss is found by substituting (3.5) into

(3.3), expanding the squared loss function and setting the first derivative to zero. We
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obtain:

0 =
∂

∂γ(y)

[∫
Y
y(xp)

2π(y(xp)|y)dy(xp)

]
− ∂

∂γ(y)

[
2γ(y)

∫
Y
y(xp)π(y(xp)|y)dy(xp)

]
+

∂

∂γ(y)

[
γ(y)2

∫
Y
π(y(xp)|y)dy(xp)

]
= 2γ(y)− 2

∫
Y
y(xp)π(y(xp)|y)dy(xp), (3.6)

from which it follows that the optimal decision with respect to the squared loss function

is γ̂(y) = E[y(xp)|y].

Under other loss functions, such as absolute or step loss, other predictions are opti-

mal, median and mode respectively, and different objective functions result for design

selection.

Substitution of γ(y) = γ̂(y) into (3.4) gives

Ψ(ξ) =

∫
XP

∫
Y
E[L(y(xp),E(y(xp)|y); ξ)]π(y)dydxp.

=

∫
XP

∫
Y
E
[
{y(xp)− E(y(xp)|y)}2

]
π(y)dydxp.

=

∫
XP

∫
Y

var[y(xp)|y]π(y)dydxp. (3.7)

A Ψ-optimal design minimises (3.7). We adopt the notation “Ψ-optimal” to denote a

Bayesian optimal design for prediction under squared error loss.

3.4 Bayesian designs for prediction via the Gaussian pro-

cess model

In this section we develop methodology for Bayesian design for prediction under squared

error loss for the Gaussian process model (2.6), assuming all model parameters are

uncertain.

In practice, the values of covariance parameters, φ and δ2, are usually unknown and

hence we need to take into account the uncertainty in their values. We saw in Section

2.4.5 that if φ and δ2 are known, then the predictive distribution is a t-distribution.

The inner integral in Ψ(ξ) (3.7) is then analytically tractable. If φ is unknown, and

either δ2 is known or δ2 is unknown (see Section 2.4.6 Case(i) and Case(ii)), then the

posterior predictive distribution does not have a standard form, and we cannot find an

analytical expression for the integral in (3.7). As a result, to evaluate Ψ(ξ), we need to

evaluate the variance of the posterior predictive distribution using Monte Carlo Markov

Chain (MCMC) methods and also evaluate the integral with respect to the unknown

data.
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The repeated use of MCMC methods to obtain a Bayesian optimal design is time

consuming and computationally prohibitive. For this reason, we propose a new-closed

form approximation to Ψ(ξ) which allows us to find Bayesian optimal designs when

both φ and δ2 are unknown, the most important general case, as well as φ unknown

and δ2 known.

Using the fact that we have an analytical expression for the predictive distribution when

the parameters φ and δ2 are known, see (2.30), we employ the law of total of variance

(2.21) to obtain the variance of the posterior predictive distribution var(y(xp)|y) when

φ and δ2 are unknown:

var(y(xp)|y) = Eφ,δ2|y
{

var(y(xp)|y, φ, δ2)
}

+ varφ,δ2|y
{
E(y(xp)|y, φ, δ2)

}
= Eφ,δ2|y

{
var(y(xp)|y, φ, δ2)

}
+

Eφ,δ2|y
[{

E(y(xp)|y, φ, δ2)− Eφ,δ2|y
{
E(y(xp)|y, φ, δ2)

}}2
]
. (3.8)

Here, the expectations are with respect the posterior distribution of π(φ, δ2|y), given

by (2.34), which is not a standard distribution. This leads to the following simple

theorem.

Theorem 3.1. Consider the Gaussian process model (2.6) and using the squared error

loss function, the objective function with unknown correlation parameter φ and noise-

to-signal ratio δ2 decomposes into two integrals via replacement of var(y(xp)|y) with

the expression (3.8):

Ψ(ξ) =

∫
XP

∫
Y

var(y(xp)|y)π(y)dydxp

=

∫
XP

∫
Y

(
Eφ,δ2|y

{
var(y(xp)|y, φ, δ2)

}
+ varφ,δ2|y

{
E(y(xp)|y, φ, δ2)

} )
π(y)dydxp

=

∫
XP

∫
Y

∫
δ2

∫
φ

var(y(xp)|y, φ, δ2)π(φ, δ2|y)π(y)dφdδ2dydxp+∫
XP

∫
Y

∫
δ2

∫
φ

{
E(y(xp)|y, φ, δ2)−Eφ,δ2|y

{
E(y(xp)|y, φ, δ2)

}}2
π(φ, δ2|y)π(y)dφdδ2dydxp

= Ψ1(ξ) + Ψ2(ξ). (3.9)

When δ2 is assumed known, then objective function (3.9) reduces to

Ψ(ξ) =

∫
XP

∫
Y

∫
φ
Eφ|y,δ2

{
var(y(xp)|y, φ, δ2)

}
π(φ|y, δ2)π(y)dφdydxp+∫

XP

∫
Y

∫
φ

varφ|y,δ2
{
E(y(xp)y, φ, δ

2))π(φ|y, δ2
}
π(y)dφdydxp

= Ψ1(ξ) + Ψ2(ξ). (3.10)

Here the expectation and the variance are with respect to the conditional posterior dis-
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tribution of φ given by (2.32).

Proof of Theorem 3.1 follows directly from the application of the law of total variance

and using (3.8).

Assumption 3.1. From now on, we assume conjugate prior distributions for the trend

parameters β and the Gaussian process variance σ2, that is a normal inverse-gamma

distribution.

This assumption allows analytical calculation of the integrals with respect to the data

y in Ψ1(ξ), given by

Ψ1(ξ)=

∫
XP

∫
Y

∫
δ2

∫
φ

var(y(xp)|y, φ, δ2)π(φ, δ2|y)π(y)dφdδ2dydxp

=

∫
XP

∫
Y

∫
δ2

∫
φ

var(y(xp)|y, φ, δ2)π(y|φ, δ2)π(φ, δ2)dφdδ2dydxp

=

∫
XP

∫
δ2

∫
φ
Σ∗
∫
Y

b+1
2(y−Fβ0)>[Σ + FR−1F>]−1(y−Fβ0)

2a+ n− 2
π(y|φ,δ2)dyπ(φ,δ2)dφdδ2dxp

=
b

a− 1

∫
XP

∫
δ2

∫
φ

Σ∗π(φ, δ2)dφdδ2dxp,

(3.11)

Ψ2(ξ)=

∫
XP

∫
Y

∫
δ2

∫
φ
[(µ∗ − Eφ,δ2|y(µ∗))(µ∗ − Eφ,δ2|y(µ∗))>]π(φ, δ2|y)π(y)dφdδ2dydxp,

where the posterior mean is given by

Eφ,δ2|y(µ∗) =

∫
XP

∫
δ2

∫
φ
µ∗π(φ, δ2|y)dφdδ2dxp.

(3.12)

Here, Σ∗, a, b, F,β0,Σ,R, µ∗ are defined in Section 2.4.5. Equation (3.11) follows from

π(y|φ, δ2) having a t-distribution, and using the quadratic form:

E[εTΛε] = tr(ΛK) + µTΛµ, (3.13)

where µ and K are the mean vector and variance-covariance matrix of ε respectively.

Here we apply (3.13) with ε = (y−Fβ0) and Λ = [Σ+FR−1F>]−1. The mean and the

variance-covariance of (y−Fβ0) are µ = 0 and K = 2b
2a−2 [Σ + FR−1F

>
], respectively.

When the noise-to-signal ratio δ2 is known, the objective function Ψ(ξ) is given by
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(3.10) and Ψ1(ξ) and Ψ2(ξ) are given by

Ψ1(ξ) =

∫
XP

∫
Y
Eφ|y,δ2(var(y(xp)|y, φ, δ2))π(y)dydxp

=
b

a− 1

∫
XP

∫
φ

Σ∗π(φ)dφdxp, (3.14)

Ψ2(ξ)=

∫
XP

∫
Y

∫
φ
[(µ∗ − Eφ|y,δ2(µ∗))(µ∗ − Eφ|y,δ2(µ∗))>]π(φ|y, δ2)π(y)dφdydxp,

and the posterior mean is given by

Eφ|y,δ2(µ∗) =

∫
XP

∫
φ
µ∗π(φ|y, δ2)dφdxp.

(3.15)

The density π(φ|y, δ2) is given by (2.32).

Conjecture 3.1. Consider the Gaussian process model (2.6) and the objective function

Ψ(ξ) from Theorem 3.1. Based on the Assumption 3.1 we conjecture that Ψ2(ξ) <<

Ψ1(ξ) ⇒ Ψ(ξ) ≈ Ψ1(ξ) ∀ π(φ, δ2).

Finding optimal designs using a fully Bayesian approach is computationally infeasible.

We need to minimise objective function Ψ(ξ), which involves an analytically intractable

high dimensional integral with respect to the data. Only very small examples of designs

can be found using this objective function. However, using our proposed approximation

we are able to overcome the computational burden associated with Bayesian optimal

designs and find designs for larger examples.

Assessment on small examples, with e.g. four design points, have shown that finding

designs by minimising Ψ1(ξ) is at least two or three orders of magnitude faster than

finding designs minimising Ψ(ξ). For many problems, this is the difference between the

design search being computationally feasible or not.

We have both numerical and theoretical evidence to support the conjecture:

1. In Section 3.4.1, we outline some supporting theory.

2. Numerical evidence is presented in future chapters. In Chapters 5, 7 and 8, we

numerically study the objective function Ψ(ξ), approximated via Monte Carlo

integration and quadrature, and the relative sizes of the two components, Ψ1(ξ)

and Ψ2(ξ). For a wide variety of Gaussian process models and parameter values,

we found that Ψ2(ξ) << Ψ1(ξ) and hence we conjecture that Ψ(ξ) ≈ Ψ1(ξ).

3. Our conjecture is in line with findings from Wu and Kaufman (2014) on the

variance var(y(xp)|y) of the posterior predictive distribution. Wu and Kaufman
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Correlation function Smoothness parameter, ν v(φ) ω(φ)

Power exponential ν ∈ (0, 2] φν φ2ν

Matérn

ν < 1 φ2ν φ2

ν = 1 φ2 log(1/φ) φ2

1< ν < 2 φ2 φ2ν

ν = 2 φ2 φ4log(1/φ)

ν > 2 φ2 φ4

Table 3.1: Asymptotic expansions of the power exponential (2.5), and Mátern correla-
tion (2.4) functions as φ→ 0+.

(2014) investigated how the choice of prior distribution for the unknown param-

eters in a Gaussian process model affects the predictive performance of posterior

distributions in spatial modelling. Analogously to (3.9), they used the law of total

variance (2.21) to decompose the posterior predictive variance in two parts, condi-

tional on the unknown correlation parameters. They conducted simulation studies

and concluded that the first component, Eφ,δ2|y
{

var(y(xp)|y, φ, δ2)
}

, dominates

the total variance with the second component, varφ,δ2|y
{
E(y(xp)|y, φ, δ2)

}
, hav-

ing negligible magnitude in comparison. They found this to be the case regardless

of the choice of prior distributions. Therefore, their finding supports our numer-

ical evidence that Ψ2(ξ) has less magnitude than Ψ1(ξ).

3.4.1 Supporting theory

The supporting theoretical evidence for Conjecture 3.1 relies on the limiting behaviour

of the integrated likelihood LI(φ, δ2). In order to study the limiting behaviour of

LI(φ, δ2), we make use of properties of the correlation function. We follow a similar

approach as described by Berger et al. (2001), Kazianka and Pilz (2012) and Ren et al.

(2012). All authors considered the case of examining the limiting behaviour of the

integrated likelihood when non-informative prior distributions are assigned to β and

σ2. Berger et al. (2001) considered a model with an isotropic correlation function and

no nugget in the model while Kazianka and Pilz (2012) and Ren et al. (2012) considered

the case of a nugget. Kazianka and Pilz (2012) and Ren et al. (2012) examined the

same problem but they considered a different parametrisation for the model. Kazianka

and Pilz (2012) considered model (2.11) and Ren et al. (2012) model (2.12); see Section

2.4.4.

Throughout this section we use the asymptotic expansion of a continuous correlation

function in order to express the correlation matrix C(φ) as a sum of matrices required

in Assumption 3.3. Therefore, a continuous correlation function, as it is described in
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Section 2.3, is often assumed to have a Taylor expansion of the form

ρ(φ; d) = 1 + v(φ)h1(d) + ω(φ)h2(d) + r(φ) as φ→ 0+, (3.16)

for v(φ) and ω(φ) known functions, h1(d) and h2(d) are known function of the distance

d, where d is the Euclidean distance between input points, and r(φ) is a remainder

term. The asymptotic expansions of power exponential (2.5) and Mátern correlation

(2.4) functions given by Kazianka and Pilz (2012) are presented in Table 3.1. For ν = 1,

h1(d) = −d2/2 and h2(d) = (d2/2)(log(d)− log(2)+1/2+ c where c is Euler’s constant.

For ν > 1 h1(d) = d2/(4(1− ν)) and h2(d) = (d2/2)2νΓ(1− ν)/Γ(1 + ν), where Γ(·) is

the Gamma function, and for ν < 1 h1(d) and h2(d) are switched.

For our mathematical results, we require the following assumptions to hold for the

correlation function ρ(φ; d), taken from Berger et al. (2001) and Kazianka and Pilz

(2012). We extend the results of Ren et al. (2012) to normal-inverse gamma conjugate

prior distribution.

Assumption 3.2. ρ(φ; d) is a continuous function of φ > 0 such that, for any d ≥ 0,

ρ(φ; d) = ρ0(dφ) where ρ0(·) is a correlation function satisfying limh→+∞ ρ
0(h) = 0.

Assumption 3.3. As φ→ 0+, C(φ) = 1n1>n + v(φ)D +ω(φ)D∗+ G(φ), where D is a

non-singular, fixed matrix with ijth entry h1(dij), 1n1>n + v(φ)D is a positive definite

matrix and D∗ is a fixed matrix with ijth entry h2(dij). Also v(φ), ω(φ) and G(φ) are

continuous with respect to φ, satisfying ω(φ)
v(φ) → 0 and ‖G(φ)‖∞

ω(φ) → 0 as φ → 0+. Here

‖ · ‖∞ denotes the matrix max-norm, that is ‖A‖∞ = maxi,j |aij |.

Assumptions 3.2 and 3.3 are satisfied for power exponential and Matérn correlation

functions, see Berger et al. (2001).

Lemma 3.1. Consider the Gaussian process model (2.6), conjugate prior distributions

(Assumption 3.1) and a correlation function that satisfies Assumptions 3.2 and 3.3.

Then the integrated likelihood LI(φ, δ2) is a continuous function for (φ, δ2) ∈ (0,∞)×
(0,∞) and has the following limiting behaviour:

(a) When (φ, δ2) → (φ, 0+) or (φ, δ2) → (∞, δ2) or (φ, δ2) → (∞, 0+) the respective

limits of LI(φ, δ2) exist and are positive.

(b) When (φ, δ2)→ (0+, 0+) or (φ, δ2)→ (0+, δ2), i.e. when φ→ 0+ and δ2 is known

and fixed or δ2 → 0+, then

LI(φ, δ2) =

O
(
(δ2 + v(φ))a+k/2+1/2

)
if 1 6∈ C(F)

O
(
(δ2 + v(φ))a+k/2

)
if 1 ∈ C(F)

where C(F) is the set of columns of F.

(c) When (φ, δ2) → (∞,∞) or (φ, δ2) → (φ,∞) or (φ, δ2) → (0+,∞), i.e. when
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δ2 →∞ and φ is known and fixed or φ→ 0+, then

LI(φ, δ2) = O
(
(δ2)a+k/2

)
,

where a > 0 is the prior hyperparameter which corresponds to the shape parameter of

the inverse-gamma prior for σ2, and k corresponds to the number of trend parameters.

Here the notation (φ, δ2) → (φ, ·), or (φ, δ2) → (·, δ2), indicates that we fix φ while δ2

tends to a limit, or fix δ2 as φ tends to a limit, respectively. Also we define g1(x) =

O
(
g2(x)) if |g1| ≤M |g2| for all |x−x0| < c, for some positive numbers M,x0 and c. It is

used to describe the behaviour of the function g1(x) near the limit x0 <∞. If we want

to describe the behaviour of the function g1(x) as x → ∞ we define g1(x) = O
(
g2(x))

if |g1| ≤M |g2| for all x ≥ x0, for some positive numbers M,x0.

The proof of Lemma 3.1 can be found in Appendix A.1.

We can now use our understanding of the limiting behaviour of the integrated likelihood

to provide insights to support the conjecture.

Recall that Ψ2(ξ), (3.9), is the variance of the mean of the predictive distribution

conditional on the correlation parameters and noise-to-signal ratio, averaged across the

joint posterior distribution of these unknown parameters and the data, i.e.

Ψ2(ξ)=

∫
XP

∫
Y

∫
δ2

∫
φ

{
E(y(xp)|y, φ, δ2)−Eφ,δ2|y

{
E(y(xp)|y, φ, δ2)

}}2
π(φ,δ2|y)π(y)dφdδ2dydxp,

(3.17)

where π(φ, δ2|y) is given by (2.34), and depends on the integrated likelihood.

We now consider the form of Ψ and Ψ2 under the three cases from Lemma 3.1.

(a): When (φ, δ2) → (φ, 0), Σ = C(φ), a fixed and known matrix. The objective

function (3.9) reduces to:

Ψ(ξ;φ, δ2) =

∫
XP

∫
Y

var[y(xp)|y, φ, δ2]π(y)dydxp,

when we make the assumption that φ and δ2 are known. The inner integral with respect

the unknown data y is tractable. For the case of known φ and δ2, and non-informative

prior distributions on the trend parameters and the variance, the Bayesian optimal

designs coincide with the designs obtained from the frequentist approach.

When (φ, δ2)→ (∞, δ2) or (∞, 0), Σ = (δ2 +1)I or Σ = I (if δ2 = 0) which corresponds

to the case of a linear model for uncorrelated data. The criterion reduces to that for

prediction for a linear model.

(b): When (φ, δ2)→ (0+, 0+) or (φ, δ2)→ (0+, δ2), the integrated likelihood is bounded

by polynomials of φ and δ2. Since a+ k/2 + 1/2 > 1 and a+ k/2 > 1, then as φ→ 0+,

and either δ2 → 0+ or δ2 is fixed, the integrated likelihood goes to zero faster than
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(δ2+v(φ))a+k/2+1/2 or (δ2+v(φ))a+k/2. As a result LI(φ, δ2) tends to zero faster than φ

and δ2, and the posterior distribution π(φ, δ2|y) (2.34) yields very small values. When

averaged across all possible data, Ψ2(ξ) ≈ 0. Similar to case (a) the linear model is a

good approximation for Gaussian process model.

(c): When (φ, δ2) → (∞,∞),(φ, δ2) → (0+,∞) or (φ, δ2) → (φ,∞), the integrated

likelihood is bounded by polynomials in δ2 and, as a + k/2 > 1 as δ2 → ∞, the ratio

LI(φ, δ2)/δ2 goes to zero faster than δ2 → ∞. However, the rate of convergence to 0

of the integrated likelihood in this case is slower compared to case (b). Therefore, we

expect that larger values of δ2 will provide larger Ψ2(ξ) in this case compared with case

(b). This is in line with our numerical evidence.

For case (b), numerical studies indicate Ψ2(ξ) is always of order at most 10−3 and,

for case (c) when we assume very large values of δ2, it is of order at most10−2; in

both cases, Ψ1(ξ) ≤ 1. In both cases, the integrated likelihood gets very small, and

Ψ2(ξ) << Ψ1(ξ). In both cases, Ψ1(ξ) ≤ 1.

3.5 Bayesian Computation

Objective functions (3.9) and (3.10) both require numerical approximation. We in-

troduce the two main methods of evaluating an intractable integral using numerical

methods: Monte Carlo integration and deterministic quadrature. We derive the ap-

proximations to integrals in (3.9) and (3.10) that are needed to find Bayesian optimal

designs.

Monte Carlo integration: The basic idea here is that summary statistics from a

large sample from the distribution of θ̃ can be used to approximate, for example, the

moments of the distribution.

Suppose we are interested in a function f(θ̃) of the parameters and can simulate a

sample θ̃(1), . . . , θ̃(N) from the distribution π(θ̃), for example, using MCMC methods.

Then we can approximate E{f(θ̃)} as

∫
Θ
f(θ̃)π(θ̃)dθ̃ ' 1

N

N∑
i=1

f(θ̃(i)). (3.18)

Monte Carlo methods are straightforward to implement and, through increasing sample

size N , arbitrary precision can be obtained. Clearly, if π(θ̃) is a difficult distribution

to sample from or f(·) is an expensive function to evaluate, the Monte Carlo method

may have substantial computational cost.

Gaussian quadrature methods: This is a class of numerical techniques for approx-

imating the integral in (3.18) when the form of π(θ̃) is known. The best choice of

quadrature method depends on the location and shape of this distribution. The inte-
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gral is approximated by a weighted sum of the integrand at particular points within

the domain of integration. An m-point Gaussian quadrature rule yields an exact result

for f(·) being a polynomial of degree 2m− 1 or less by choosing unequally spaced grid

points ai, called abscissae, and weights wi. That is, we use the general approximation∫
Θ
f(θ̃)π(θ̃)dθ̃ '

m∑
i=1

wif(ai).

Often, transformations will need to be applied to θ̃ prior to applying the quadrature

rule. Further details about Gaussian quadrature techniques may be found, for example,

in Kythe and Schaferkotter (2005).

Below we describe two quadrature methods used in this thesis.

1. Gauss-Hermite quadrature for a log-normal distribution

Gauss-Hermite quadrature is suitable for approximating an integral of the general

form ∫ ∞
−∞

f(x)e−x
2
dx. (3.19)

Consider a log-normal prior distribution for an unknown parameter θ̃ in a Bayesian

model:

π(θ̃) =
1

θ̃σ
√

2π
exp

{
−(log(θ̃)− µ)2

2σ2

}
. (3.20)

We can evaluate an integral of the form

I1 =

∫ ∞
0

f(θ̃)
1

θ̃σ
√

2π
exp

{
−(log(θ̃)− µ)2

2σ2

}
dθ̃, (3.21)

by applying a transformation x = log(θ̃) to obtain

I1 =

∫ ∞
−∞

f(ex)
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
dx,

and the further substitution x = µ+ zσ
√

2 to give

I1 =
1√
π

∫ ∞
−∞

f
(
eµ+zσ

√
2
)
e−z

2
dz

' 1√
π

m∑
i=1

wif
(
eµ+aiσ

√
2
)
, (3.22)

where ai and wi (i = 1, . . . ,m) denote the abscissae and weights obtained from

the Hermite polynomial (Kythe and Schaferkotter (2005, p.118-119)).

2. Gauss-Legendre quadrature for a uniform prior distribution

Gauss-Legendre quadrature is suitable for approximating integrals of the general
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form ∫ 1

−1
f(x)dx. (3.23)

Suppose that the prior distribution of an unknown parameter θ̃ is the uniform

distribution on an interval [a1, b1], with density

π(θ̃) =
1

b1 − a1
, a1 ≤ θ̃ ≤ b1. (3.24)

Then we can evaluate an integral of the form

I1 =

∫ b1

a1

f(θ̃)
1

b1 − a1
dθ̃, (3.25)

by transformation and application of Gauss-Legendre quadrature.

Let x = 2θ̃−(b1+a1)
(b1−a1) . Then

I1 =
1

b1 − a1

∫ b1

a1

f(θ̃)dθ̃

=
1

2

∫ 1

−1
f

(
b1 − a1

2
x+

b1 + a1

2

)
dx

' 1

2

m∑
i=1

wif

(
b1 − a1

2
ai +

b1 + a1

2

)
, (3.26)

where ai and wi are obtained from the Legendre polynomial (Kythe and Schafer-

kotter (2005, p.115-117)).

In the next subsections, we apply these approximations to objective function Ψ(ξ). De-

pending to the choice of prior distribution for φ and δ2, we use either Gauss-Hermite or

Gauss-Legendre quadrature to approximate Ψ1(ξ). For Ψ2(ξ), Monte Carlo integration

is required in addition to the application of quadrature methods.

3.5.1 Approximating the objective function with continuous prior dis-

tributions for φ and δ2

As discussed in Section 2.4.4, two possible prior distributions for the decay parameter

φ are a uniform prior or a log-normal prior. The latter distribution allows us to express

subjective prior beliefs that some values of φ are more likely than other values. Both

of these prior distributions are continuous, and the objective function Ψ(ξ) (3.9) has

components Ψ1(ξ) and Ψ2(ξ) given by (3.11) and (3.12) respectively.

There is no analytical solution for the integrals with respect to φ and δ2 in (3.11), and

we use Gaussian quadrature methods to approximate them numerically. Function Ψ1(ξ)

is evaluated directly using quadrature methods. For Ψ2(ξ) the calculations are more
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complicated as the integral is a function of the posterior density of π(φ, δ2|y), given by

(2.34). We require the following normalising constant to obtain the probability density

function:

π(y) =

∫
δ2

∫
φ

|F>Σ−1F + R|−
1
2 |Σ|−

1
2

b+ 1
2

[
(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

]a+n
2

π(φ)π(δ2)dφdδ2.

(3.27)

This marginal distribution can be approximated using quadrature methods. The joint

posterior density φ and δ2 is then:

π(φ, δ2|y) =
1

π(y)

{
|F>Σ−1F + R|−

1
2 |Σ|−

1
2

b+ 1
2

[
(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

]a+n
2

π(φ)π(δ2)

}
.

(3.28)

The integrals with respect to the prediction region XP , in (3.11) and (3.12), are ap-

proximated by a grid of prediction points, for example a regular grid or points chosen

using Latin Hypercube sampling.

Uniform distribution for φ and δ2 and Gauss-Legendre quadrature: Assuming

both φ and δ2 have uniform prior distributions (3.24):

π(φ) =

 1
b1−a1 , for a1 ≤ φ ≤ b1
0, otherwise

and π(δ2) =

 1
b2−a2 , for a2 ≤ δ2 ≤ b2
0, otherwise .

We denote by f1(φ, δ2,xp) the integrand in equation (3.11):

f1(φ, δ2,xp) = 1 + δ2−ω>Σ−1ω+ (f>p −ω>Σ−1F)(F>Σ−1F+R)−1(f>p −ω>Σ−1F)>,

and with repeated application of formula (3.26) we have the approximation:

Ψ1(ξ) '
∫
XP

1

2

1

2

m1∑
i=1

m2∑
j=1

w1
iw

2
jf1

(
b1 − a1

2
a1
i +

b1 + a1

2
,
b2 − a2

2
a2
j +

b2 + a2

2
,xp

)
dxp.

(3.29)

Here a1
i and w1

i are obtained from the Legendre polynomials for φ, and a2
j and w2

j are

obtained from the Legendre polynomials for δ2.

For Ψ2 we first generate a random sample yk, k = 1, . . . , N , from π(y) via π(φ), π(δ2)

and π(y|φ, δ2) and, for each yk, Gauss-Lagendre quadrature is applied to approximate

the integrals over the prior distributions for φ and δ2. Finally Monte Carlo integration

is applied. Substituting (3.28) into (3.12), and denoting by f2(φ, δ2,xp,y) the integrand

in the equations (3.12):

f2(φ, δ2,xp,y) =
1

π(y)

[(µ∗ − Eφ,δ2|y(µ∗))(µ∗ − Eφ,δ2|y(µ∗))>]|F>Σ−1F + R|−
1
2 |Σ|−

1
2

[b+ 1
2(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)]a+n

2

.

40



The posterior mean, Eφ,δ2|y(µ∗), with respect to the posterior distribution of φ and δ2

is approximated using quadrature

Eφ,δ2|y(µ∗)'
∫
XP

1

N

1

4

N∑
k=1

m1∑
i=1

m2∑
j=1

w1
iw

2
jµ
∗
(
b1−a1

2
ai+

b1+a1

2
,
b2−a2

2
a2
i+
b2+a2

2
,xp,yk

)
dxp,

and with repeated application of formula (3.26) and Monte Carlo integration we have

the approximation

Ψ2(ξ)'
∫
XP

∫
1

4

m1∑
i=1

m2∑
j=1

w1
iw

2
i f2

(
b1−a1

2
ai+

b1+a1

2
,
b2−a2

2
a2
i+
b2+a2

2
,xp,y

)
π(y)dydxp

'
∫
XP

1

N

1

4

N∑
k=1

m1∑
i=1

m2∑
j=1

w1
iw

2
jf2

(
b1−a1

2
ai+

b1+a1

2
,
b2−a2

2
a2
i+
b2+a2

2
,xp,yk

)
dxp.

(3.30)

Here a1
i and w1

i are again the nodes and weights obtained from the Legendre polynomials

for φ, and a2
j and w2

j are obtained from the Legendre polynomials for δ2.

Log-normal distribution for φ and Gauss-Hermite quadrature and uniform

prior on δ2 and Gauss-Legendre quadrature: Here, a log-normal prior distribution

is assumed for φ, with

π(φ) =
1

φσ
√

2π
exp

{
−(log(φ)− µ)2

2σ2

}
,

and a uniform prior distribution for δ2

π(δ2) =

 1
b2−a2 , for a2 ≤ δ2 ≤ b2
0, otherwise .

We follow the same procedure as before but now apply both Gauss-Hermite quadrature

(3.22) and Gauss-Legendre quadrature (3.26) to obtain

Ψ1(ξ) '
∫
XP

1√
π

1

2

m1∑
i=1

m2∑
j=1

w1
iw

2
jf1

(
eµ+a1i σ

√
2,
b2 − a2

2
a2
j +

b2 + a2

2
,xp

)
dxp.

(3.31)

Now, we redefine a1
i and w1

i as the abscissae and weights, respectively, obtained from

the Hermite polynomials for φ, and a2
j and w2

j to be obtained from the Legendre

polynomials for δ2.

For Ψ2(ξ), which is again more complicated to approximate, we apply Gauss-Hermite

quadrature (3.22) for φ, Gauss-Legendre (3.26) for δ2, and Monte Carlo integration
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(3.18). We obtain

Ψ2(ξ)'
∫
XP

1

N

1√
π

1

2

N∑
k=1

m1∑
i=1

m2∑
j=1

w1
iw

2
jf2

(
eµ+a1i σ

√
2,
b2−a2

2
a2
j +

b2+a2

2
,xp,yk

)
dxp,

and

Eφ,δ2|y(µ∗)'
∫
XP

1

N

1√
π

1

2

N∑
k=1

m1∑
i=1

m2∑
j=1

w1
iw

2
jµ
∗
(
eµ+a1i σ

√
2,
b2−a2

2
a2
j +

b2+a2

2
,xp,yk

)
dxp,

(3.32)

where µ∗(·) is given by (2.27) and is a function of φ and δ2.

3.5.2 Continuous prior distribution for φ with fixed and known δ2

When the noise-to-signal ratio δ2 is known, the objective function Ψ(ξ) is given by

(3.10) and Ψ1(ξ) and Ψ2(ξ) are given by (3.14) and (3.15) respectively. The numerical

evaluation of these integrals is again via quadrature, using

Ψ1(ξ) '
∫
XP

1

2

m1∑
i=1

w1
i f1

(
b1 − a1

2
a1
i +

b1 + a1

2
,xp

)
dxp,

for φ ∼ Unif(a1, b1), and

Ψ1(ξ) '
∫
XP

1√
π

1

2

m1∑
i=1

w1
i f1

(
eµ+a1i σ

√
2,xp

)
dxp, (3.33)

for φ ∼ log-normal(µ, σ2).

For Ψ2(ξ), the approximations again require Monte Carlo integration and quadrature

Ψ2(ξ)'
∫
XP

1

N

1

2

N∑
k=1

m1∑
i=1

w1
i f2

(
b1 − a1

2
ai +

b1 + a1

2
,xp,yk

)
dxp,

for φ ∼ Unif(a1, b1), and

Ψ2(ξ)'
∫
XP

1

N

1√
π

N∑
k=1

m1∑
i=1

w1
i f2

(
eµ+a1i σ

√
2,xp,yk

)
dxp, (3.34)

for φ ∼ log-normal(µ, σ2).

Here a1
i , w1

i are the abscissae and weights from Legendre (uniform) or Hermite (log-

normal) polynomials.
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3.5.3 Choice of number of quadrature points

We choose the number of quadrature points, m1 and m2, by comparing Monte Carlo

and quadrature methods as follows :

1. Approximate the prediction space XP , by a 10× 10 regular grid on [−1, 1]2;

2. Generate 30 random designs, each with n = 5 points;

3. Generate a sample of size 10000 for φ from both the uniform and log-normal

distributions;

4. Generate a sample of size 10000 for δ2 from the uniform distribution (this step is

omitted if δ2 is know and fixed);

5. Evaluate the objective function Ψ(ξ) using Monte Carlo integration (3.18), using

samples from steps 3 and 4;

6. Evaluate Ψ(ξ) with quadrature methods using a variety of different numbers of

quadrature points.

We conclude that for m1 = 5, the two methods of numerical evaluation (Monte Carlo

and quadrature) give similar results with the difference between the two methods to be

around 0.5%. In the rest of the thesis, numerical evaluation of the objective function is

obtained using Gauss-Legendre and Gauss-Hermite methods with m1 = 5 and m2 = 5

points.

3.6 Algorithms for Finding Optimal Design

Minimising the objective functions (3.9) and (3.10) cannot be done algebraically and,

as a result, we need to use fast algorithms to obtain optimal designs.

A fundamental problem is how to minimise the objective function using a computa-

tionally efficient algorithm. Generally, there are two kinds of algorithms: stochastic

and greedy, and both seek the best solution through the following steps. We choose

an initial solution for the optimisation problem, then the algorithm modifies this so-

lution, the new solution is assessed, and these steps are repeated until an optimal or

near-optimal solution is achieved.

An example of a stochastic algorithm is simulated annealing which was used by Zhu

and Stein (2005), Zimmerman (2006) and Xia et al. (2006) to find optimal designs, and

is also used in other areas of design of experiments, see Woods (2010).

An example of a greedy algorithm is an exchange algorithm. These algorithms add new

designs points and remove existing points to improve the objective function. Exchange

algorithms are classified, according to the way they add and delete points, into two

categories: (i) those that choose points to add and delete sequentially, for example
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Wynn’s algorithm (Wynn, 1972), and (ii) those that choose points to add and delete

simultaneously for example, Fedorov’s algorithm (Fedorov, 1972), the modified Fedorov

algorithm (Cook and Nachtsheim, 1980), and the k-exchange algorithm (Johnson and

Nachtsheim, 1983). The coordinate exchange algorithm (Meyer and Nachtsheim, 1995)

is a modification of the k-exchange algorithm and is effective for large designs, i.e. a

large number of points and a large number of variables. The most commonly used

algorithms in the design of experiments are the exchange algorithms because of their

computational efficiency for large number of factors, their easy implementation for any

design region and their adaptability for any design criterion.

An extensive review of exchange algorithms for the construction of exact designs was

given by Meyer and Nachtsheim (1995). They indicated that Fedorov’s algorithm is

computationally expensive, whereas the k-exchange algorithm focuses only on k points

and considers only single point exchanges. The approach that many small steps are

better than large steps motivated the creation of the coordinate exchange algorithm.

The idea behind the coordinate exchange algorithm is the “sub single point exchange”,

e.g. exchange of coordinates within each point. Meyer and Nachtsheim (1995) showed

that this algorithm is faster than the k-exchange and still gives efficient designs. We

employ coordinate exchange algorithms to find designs in this thesis.

An evaluation of the exchange algorithms used to construct spatial designs was given

by Royle (2002). He modified the candidate set of points for possible exchanges so

that the exchange algorithm is more efficient for large problems. He investigated two

modifications: the “nearest neighbour” and “along coordinate axes”. He compared

these kinds of searches with the more traditional exchange algorithms, the original

Fedorov and modified Fedorov, and found that the quality of the designs obtained is

not affected by the search. He concluded that for “large” problems, such as the spatial

design problem with many points, a combination of nearest neighbour and coordinate

search may be preferable since it is less computationally expensive and has little impact

on design quality.

In general exchange algorithms have gained more popularity than simulated annealing

algorithms for finding an optimal design because of their simplicity of application.

Moreover, the optimal designs obtained from exchange algorithms are as efficient as

those from simulated annealing.

3.6.1 Coordinate exchange algorithm

The coordinate exchange algorithm proceeds element by element through the rows and

columns of the design matrix. It is called coordinate exchange because, in each iteration,

we consider possible changes for every element and each element is a coordinate of a

point in the study region.

We modify the coordinate exchange algorithm of Meyer and Nachtsheim (1995) by
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allowing a continuous, gradient based optimisation for each coordinate, rather than

considering exchanges among a discrete set; see also Gotwalt et al. (2009).

At each step, we numerically optimise a single coordinate, keeping all other coordinates,

both in that design point and in all other points, fixed. The algorithm can be described

as follows:

1. Choose a random starting design, ξ = (x0
1, . . . ,x

0
n), where x0

i ∈ X ⊆ Rd, i.e,

x0
i = (x0

1i, . . . , x
0
di) with x0

1i, . . . , x
0
di the coordinates of the ith point.

2. For each point, use a quasi-Newton algorithm to minimise the objective function

with respect to each coordinate in turn, with all the other coordinates remaining

fixed:

Set j = 1:

(a) Select the jth point, xj = (x1j , . . . , xdj), and keep the remaining (n − 1)

points fixed at their current values.

(b) Set i = 1, find xij that minimises the objective function, keeping all other

coordinates fixed.

(c) Set i = i+ 1, if i ≤ d, repeat step (b). If i = d+ 1, go to (d).

(d) Set j = j + 1, if j ≤ n, repeat (a) to (d).

3. When j = n + 1, set j = 1 and repeat steps (a) to (d). A new coordinate value

replaces an existing value only if it decreases the value of the objective function.

We repeat (a)-(d) until no decrease is obtained in the objective function for any

new value of a coordinate.

3.7 Estimation

Bayesian optimal design for estimating trend parameters, β, in a Gaussian process

model can be found following a similar approach to that outlined in 3.3.1.

The main steps are as follows:

1. We find the expected loss with respect to the posterior distribution, π(β|y), for

any decision (choice of estimator) γ(y) ∈ G and loss function L(β,γ(y); ξ)

E[L(β,γ(y); ξ)|y] =

∫
L(β,γ(y); ξ)π(β|y)dβ. (3.35)

2. We minimise the expected loss with respect to the decision γ(y).

3. For any design ξ ∈ Ξ, where Ξ is the set of all possible designs, in order to obtain

the objective function we average the minimum expected loss over the marginal
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distribution of the data π(y):

Ψ(ξ) =

∫
Y

min
γ(y)∈G

E[L(β,γ(y); ξ)|y]π(y)dy. (3.36)

4. Then an optimal design, ξ∗, will be the one that minimises the objective function,

i.e. ξ∗ = arg min
ξ∈Ξ

Ψ(ξ).

Using the quadratic error loss function L(β,γ(y); ξ) = (β − γ(y))T (β − γ(y)), the

expected loss is given by

E[L(β,γ(y); ξ)|y] =

∫
L(β,γ(y); ξ)π(β|y)dβ

=

∫
(β − γ(y))T (β − γ(y))π(β|y)dβ.

(3.37)

The decision γ(y) ∈ G which minimises the expected loss, i.e. minγ(y)∈G E[L(β,γ(y); ξ)|y],

is the posterior mean of β:

0 =
d

dγ(y)

[∫
βTβπ(β|y)dβ − 2γ(y)T

∫
βπ(β|y)dβ + γ(y)Tγ(y)

∫
π(β|y)dβ

]
= γ(y)−

∫
βπ(β|y)dβ

⇒ γ̂(y) =

∫
βπ(β|y)dβ

⇒ γ̂(y) = E[β|y]. (3.38)

Therefore, the objective function is given by:

Ψ(ξ) =

∫
Y

min
γ(y)∈G

E[L(β,γ(y); ξ)|y]π(y)dy

=

∫
Y
E[L(β,E(β|y); ξ)]π(y)dy

=

∫
Y
E
[
{β − E(β|y)}T {β − E(β|y)}

]
π(y)dy

=

∫
Y
E
[
tr
[
{β − E(β|y)} {β − E(β|y)}T

]]
π(y)dy

=

∫
Y

tr
[
E
[
{β − E(β|y)} {β − E(β|y)}T

]]
π(y)dy

=

∫
Y

tr [var(β|y)]π(y)dy. (3.39)

Therefore, when the aim of the experiment is the estimation of the unknown trend

parameters, the same decision theoretic approach can be applied. A design is Bayesian

optimal when it minimises the trace of the variance covariance matrix of the posterior
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distribution of the unknown regression coefficients averaged across the unknown data.

We will not pursue designs for estimation further in this thesis.

3.8 Summary

Previous efforts in the literature to find designs for Gaussian process models for spa-

tial data, spatio-temporal and computer experiments have generally assumed known

covariance parameters values with the computational cost of a fully Bayesian approach

proving prohibitive for design selection. Here we proposed a closed-form approxima-

tion to the objective function from a Bayesian decision theoretic approach. Our design

criterion is derived as an approximation of the expected predictive variance and can be

evaluated with reduced computational cost as it avoids making use of the Monte Carlo

methods usually associated with Bayesian paradigms.

The aim of our designs is precise prediction of the response, and for this reason a

quadratic loss function is chosen to represent the penalty for predicting a future ob-

servation. The objective function Ψ(ξ) (3.7) is the average across the design region

of the variance of the posterior distribution, for an individual prediction with the un-

known data integrated out with respect to its marginal distribution. An alternative

approach could be to consider the joint posterior distribution for the prediction of

groups of points, taking into account possible correlation between the prediction points

in a more coherent way.

In order to facilitate computations of the objective function, we made the assump-

tion of conjugate prior distributions for the regression coefficients and the Gaussian

process variance. However, in practice, other non-informative, prior distributions may

be considered. In the following chapters, we will approximate non-informative prior

distributions through change of the hyperparameters of the prior distributions for the

regression coefficients. Also, in order to have a closed-form for the posterior densi-

ties conditional on the covariance parameters, we made a re-parametrisation using the

noise-to-signal ratio as described in Chapter 2. Finally, the choice of the prior hyper-

parameters for the Gaussian process variance, σ2, do not affect design selection as they

affect the objective function through a multiplicative constant.

In Section 3.7, we briefly introduced the main steps for formulating the objective func-

tion when the aim of the experiment is the estimation of the trend parameters. Al-

though in this thesis we do not consider the problem of finding optimal designs for esti-

mation, optimal design for the regression coefficients may be applied in other contexts.

For example, this approach can be applied in the area of experiments for estimating

treatment effects in the presence of spatial trends in the units.
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Chapter 4

Sensitivity Study

4.1 Introduction

This chapter explores the performance of Bayesian optimal designs for prediction ob-

tained using a uniform or a log-normal prior distribution for the correlation parameter

φ. Designs are found minimising (3.14), facilitated through incorporating the approxi-

mations described in Section 3.5.2. The main purpose of this chapter is to investigate

the robustness of the choice of optimal design, and the sensitivity of the efficiency of

an optimal design, to the values of hyperparameters of the prior distributions and also

the function form of the mean and correlation and the size of the experiment.

In the study we assume the Gaussian process model (2.6) with unknown trend param-

eters, variance and decay parameter, and known noise-to-signal ratio. We find optimal

designs when the aim is to predict over a 10× 10 regular grid by minimising the closed

form approximation Ψ1(ξ), (3.14), to the objective function Ψ(ξ), (3.10). We perform

the sensitivity study for designs in two dimensions, i.e. d = 2, and use Euclidean dis-

tance between two points in the study region X = [−1, 1]2, as would be suitable for

spatial experiments (see Chapter 5).

The study uses a factorial design with five crossed factors and one nested factor, corre-

sponding to features of the model, and experiments to assess simultaneously the effect

of these factors on the performance of an optimal design. The crossed factors determine

the number of runs, the mean function, the correlation function, the noise-to-signal ra-

tio and the decay parameter. The nested factor is the hyperparameter, R−1, of the

prior distribution of the regression coefficients; this is nested within the mean function.

In total, 64 combinations of parameters are studied.
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Levels
Factors 0 1

F1 n = 10 n = 30
F2 M = β0 M = β0 + β1x1 + β2x2

F3 ν = 0.5 ν = 1.5
F4 δ2 = 0 δ2 = 1
F5 φ ∼ Unif(0.1, 1) φ ∼ log-normal(−1.1, 1)

Table 4.1: Five crossed factors together with their levels and coded values.

4.2 Factors and Study Design

In this section we give the general set up for our factorial study, and define and discuss

the choice of the levels of each factor.

Five crossed factors are studied, each at two levels. The factors are listed in Table 4.1,

together with their levels and coded values.

The first level of the mean function corresponds to a known regression functions in-

cluding only the intercept term. The second level is a first order polynomial function of

the variables. For the constant mean function (F2 = 0), all the variation is assumed to

be captured by the covariance structure of the Gaussian process model (2.6). Whereas,

when we allow the mean function to be modelled as a linear function of the variables

(F2 = 1), variation is also described through the mean function.

Smoothness parameter ν = 0.5 (F3 = 0) corresponds to the exponential correlation

function (Section 2.3), widely used in many applications in geostatistics. The second

level (F3 = 1) is chosen as ν = 1.5, commonly used in both statistics and machine

learning applications. Another common choice is ν = 2.5; however this value is not

considered here as this choice can result in very high correlation between two observa-

tions in the study region X = [−1, 1]2, and hence lead to problems inverting singular

correlation matrices.

In this study, we consider the case of known and fixed noise-to-signal ratio δ2. The first

level (F4 = 0) corresponds to a Gaussian process model (2.6) without a nugget effect,

i.e. τ2 = 0. The second level (F4 = 1) assumes the Gaussian process variance σ2 is

equal to the nugget τ2.

Two prior distributions for φ (F5 = 0 and F5 = 1) are chosen to have the same

prior mean. The chosen prior distributions for φ result in the correlation between

observations at two points at the maximum Euclidean distance apart in this region,

i.e. d =
√

8, to be between [0.05− 0.75] when ν = 0.5. For the exponential correlation

function,
√

8 is the effective range for the smaller value of φ; the distance beyond which

the correlation between two observations is less than or equal to 0.05. For ν = 1.5 the

correlation for these prior values is between [0.2−0.97]. The effective range for ν = 1.5

is d =
√

8 when φ = 1.7. Note that for ν = 2.5, the corresponding range of correlation
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is [0.4−0.99]; this high correlation supports our decision not to choose this smoothness

parameter.

Factor F6 determines the prior variance of trend parameters, and is nested within factor

F2 (form of mean function).

F6|(F2 = 0) =

{
0 ⇒ R−1 = 0.25,

1 ⇒ R−1 = 4.

F6|(F2 = 1) =

{
0 ⇒ R−1 = 0.25I3,

1 ⇒ R−1 = 4I3.

The values of this factor are chosen to be either a scalar value 0.25 or a 3 × 3 matrix

with diagonal elements 0.25. Otherwise, the scalar 4 or a 3 × 3 matrix with diagonal

elements 4. The first level corresponds to a normal prior distribution for β with small

prior variance, and hence more information about the trend parameters, and the second

level indicates larger prior variance and hence a much less informative prior for the trend

parameters.

The hyperparameters a and b for the inverse gamma prior distribution for σ2 are kept

constant for all the combinations of F1 − F6. These two parameters only affect the

objective function through a multiplicative constant, see equation (3.14), and so do not

affect the choice of a design or calculation of design efficiency. We set a = 3 and b = 1

to provide a prior distribution for σ2 with finite variance.

4.3 Study Assessment

In this section, we assess the designs found for each combination of values for F1−F6 in

terms of quantitative changes in the location of design points, quantitative space-filling

properties, and efficiencies under objective function Ψ1(ξ) (3.14).

We select Ψ-optimal designs for each of the 64 combinations of F1 − F6 as follows:

1. We generate 50 randomly selected starting designs from X = [−1, 1]2.

2. For each starting design, the coordinate exchange algorithm (Section 3.6.1) is

used to find a design that minimises Ψ1(ξ).

3. From the 50 designs obtained by algorithmic search, we select the design that

minimises Ψ1(ξ). (In the event of ties; a design is chosen at random from those

with equal objective function values).
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4.3.1 Robustness of design points and space-filling properties

We start by examining how the locations of the design points and the space-filling

properties of the designs vary with the settings of F1 − F6.

We focus on the impact on the design of changing the values of F5 and F6, that is, the

settings for φ and R−1.

For n = 10, the Ψ-optimal designs are presented in Figures 4.1-4.8 and for n = 30

in Figures A.1-A.8 in Appendix A.2. The figures display both the design points and

contours of constant correlation between each point in the design region and the centre

of the region, averaged across the prior values of φ. For all figures, the strength of the

correlation is indicated by colour, where darker red colour indicates high correlation

and lighter yellow indicates low correlation.

In addition to qualitative comparisons of the designs via plotting design points, we also

assess the space-filling properties of the designs. The quantitative differences between

designs are assessed in terms of inter-point distances. We choose to investigate the

space-filling properties of our designs because space filling designs are a very popular

alternative design choice for the Gaussian process models. Also the aim of our designs is

prediction, and a space filling design covers the design region to ensure good predictions.

Table 4.2 shows the average inter-point distance between all points in each design. The

average inter-point distance is defined as the 2
n(n−1)

∑n
i=1

∑
i 6=j d(xi,xj). Then we use

analysis of variance (ANOVA) for the 64 combinations of the factor levels in Table

4.1 to decompose the variation in the inter-point distance. We do not perform a full

Combination
F3 F4 F5 F6 F1 = 0 F2 = 0 F1 = 0 F2 = 1 F1 = 1 F2 = 0 F1 = 1 F2 = 1

0 0 0 0 1.288 1.321 1.224 1.201

0 0 1 0 1.276 1.282 1.238 1.186

0 0 0 1 1.266 1.355 1.224 1.186

0 0 1 1 1.276 1.357 1.220 1.235

1 0 0 0 1.317 1.322 1.246 1.250

1 0 1 0 1.279 1.294 1.229 1.218

1 0 0 1 1.318 1.336 1.245 1.251

1 0 1 1 1.282 1.311 1.233 1.231

0 1 0 0 1.255 1.442 1.281 1.326

0 1 1 0 1.240 1.493 1.267 1.332

0 1 0 1 1.295 1.594 1.270 1.361

0 1 1 1 1.284 1.635 1.288 1.361

1 1 0 0 1.371 1.674 1.389 1.491

1 1 1 0 1.317 1.633 1.334 1.495

1 1 0 1 1.442 1.764 1.407 1.538

1 1 1 1 1.377 1.758 1.347 1.510

Table 4.2: Average inter-point distances for 64 Ψ-optimal designs found for different
combinations of settings of F1 − F6.
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statistical analysis and we do not conduct any hypothesis testing. The ANOVA Table

4.3 the corresponding sum of squares.

From Table 4.3, factor F1 explains 11% of the variability in the spread of design points;

as the number of points increases, the average inter-point distance decreases, as would

be expected. We focus the rest of our discussion on design with n = 10 points; our

conclusions do not change greatly for n = 30.

We now discuss the impact of the different study factors on the designs based on Figures

4.1-4.8 and Tables 4.2 and 4.3. Each figure compares the effect of the values of R−1

and φ on the choice of the Ψ-optimal designs. To further demonstrate the impact of

the range of the correlation on the choice of optimal design we provide contour plots.

Contours display the average correlation between the centre point of the study region

and each other point on a 100× 100 grid, averaged across the prior distribution for φ.

Figure 4.1 corresponds to the case F1 = 0 and F2 = 0, and the first four rows of the

Table 4.2. It allows us to assess the effect of the decay parameter and the prior hyper-

parameter of the prior distribution for the trend parameters , F5 and F6, respectively,

on the choice of Ψ-optimal design. For the four combinations 0000, 0010, 0001, 0011, the

design points are spread to cover the study region and also they have similar average

inter-point distance, around 1.3, see Table 4.2.

When a nugget effect is included in the model, i.e. F4 = 1, then the correlation

decreases, indicated by the light yellow colour in Figures 4.3 and 4.4. The ranges of

the average correlation for ν = 0.5 are 0.2 and 0.18 for uniform and log-normal priors,

respectively, and the corresponding values for ν = 1.5 are 0.07 and 0.14. The plots of

the eight combinations of factors in these figures indicates that the Ψ-optimal designs

have similar space-filling designs to those obtained for F4 = 0; the points tend

Factors Sum of Squares Percentage of variation

F4 0.4021 35%
F2 0.1823 16%
F2F4 0.1469 13%
F1 0.1258 11%
F3 0.0864 7%
F1F2 0.0601 5%
F3F4 0.0564 5%
F6 0.0176 2%
F4F6 0.0084 1.5%
F1F6 0.0066 0.7%
F3F5 0.0056 0.6%
F2F6 0.0055 0.5%
F2F3F4 0.0049 0.5%
F2F3 0.0034 0.4%

Table 4.3: Anova table: important factors and interactions with the corresponding sum
of squares.
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Figure 4.1: Ψ-optimal designs for n = 10 runs (F1 = 0), constant mean (F2 = 0),
ν = 0.5 (F3 = 0) and δ2 = 0 (F4 = 0) (a) R−1 = 0.25 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure 4.2: Ψ-optimal designs for n = 10 runs (F1 = 0), constant mean (F2 = 0),
ν = 1.5 (F3 = 1) and δ2 = 0 (F4 = 0) (a) R−1 = 0.25 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure 4.3: Ψ-optimal designs for n = 10 runs (F1 = 0), constant mean (F2 = 0),
ν = 0.5 (F3 = 0) and δ2 = 1 (F4 = 1) (a) R−1 = 0.25 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure 4.4: Ψ-optimal designs for n = 10 runs (F1 = 0), constant mean (F2 = 0),
ν = 1.5 (F3 = 1) and δ2 = 1 (F4 = 1) (a) R−1 = 0.25 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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to cover the region with points allocated at the centre of the region. This is also

supported from Table 4.2 where the average inter-point distances are similar to those

for F4 = 0. However, we can spot a variation in the case of F3 = 1 and F4 = 1 where

the average inter-point distances are larger than the corresponding cases of F3 = 1 and

F4 = 0, indicating the interaction between factors F3 and F4. The sum of squares of

the interaction of F3 and F4 is 0.0564 and the interaction between these two factors

has a small effect (5%) on the spread of the design points, see Table 4.3.

Figures 4.5-4.8 correspond to the 16 combinations when the mean function is the linear

trend, i.e. F2 = 1. We can condition on the values of all the other factors and compare

the plots in Figure 4.1 and 4.5, Figure 4.2 and 4.6, Figure 4.3 and 4.7, Figure 4.4 and

4.8, respectively, to assess the effect of changing mean function.

From the figures and Table 4.3, we conclude that the designs are highly sensitive to the

choice of factors F2 and F4, and their interaction. The interaction between F2 and F4

introduced 13% variability to the spread of the design points and in fact when F2 = 0,

F4 has almost no effect. On the other hand, when F2 = 1 the largest difference in

the spread of the points is for F4 = 1. Factor F4 has the largest effect on the spread

of the design points and introduces 35% variability to this response and F2 16%. The

importance of mean function is also indicated in Table 4.2 where the average inter-point

distance of 16 combinations with F2 = 0 increases compared to those for F2 = 1 (see

columns F1 = 0, F2 = 0 and F1 = 0, F2 = 1 in Table 4.2).

We conclude that the impact of changing the mean function depends on the choice of

δ2(F4):

(i) When δ2 = 0 (F4 = 0), the Ψ-optimal designs in Figures 4.5 and 4.6 show that the

optimal designs are very similar to their corresponding designs for F2 = 0, see Figures

4.1 and 4.2. All the designs spread out the points in the design region but with some

points located at the centre. The average inter-point distance for designs with F2 = 1

and F3 = 0 varies from 1.282− 1.357, and we can notice that for F3 = 0, changing F6

results in higher average inter-point distances (Table 4.3) while F6, F2F3F4 and F2F3

have small effect on the spread of the designs, (5%, 0.5%, 0.4%).

(ii) When δ2 = 1 (F4 = 1), the pattern changes. The designs now are strongly influenced

by the choice of mean function. The designs spread out the points towards to the

boundaries, influenced by the need to estimate the trend parameters, see Figures 4.7

and 4.8. The corresponding average inter-point distance in Table 4.2 varies from 1.442−
1.758, larger than for the case of F2 = 0. Similarly to the case F2 = 0, when F3 = 1,

the average inter-point distance increases compared to F3 = 0, see Table 4.2.

The conclusions for F1 = 1 are similar to those for F1 = 0, see Figures A.1-A.8. In

general, for constant mean function, F2 = 0, the Ψ-optimal designs cover the region for

both F4 = 0 and F4 = 1. For linear mean function, F2 = 1, then the points spread out

for F4 = 1, and the Ψ-optimal designs contains repeated points.
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Figure 4.5: Ψ-optimal designs for n = 10 runs (F1 = 0), linear mean (F2 = 1), ν = 0.5
(F3 = 0) and δ2 = 0 (F4 = 0) (a) R−1 = 0.25I3 and φ having a uniform prior
distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25I3 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4I3 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4I3 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure 4.6: Ψ-optimal designs for n = 10 runs (F1 = 0), linear mean (F2 = 1), ν = 1.5
(F3 = 1) and δ2 = 0 (F4 = 0) (a) R−1 = 0.25I3 and φ having a uniform prior
distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25I3 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4I3 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4I3 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure 4.7: Ψ−optimal designs for n = 10 runs (F1 = 0), linear mean (F2 = 1),
ν = 0.5 (F3 = 0) and δ2 = 1 (F4 = 1) (a) R−1 = 0.25I3 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25I3 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4I3 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4I3 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure 4.8: Ψ-optimal designs for n = 10 runs (F1 = 0), linear mean (F2 = 1), ν = 1.5
(F3 = 1) and δ2 = 1 (F4 = 1) (a) R−1 = 0.25I3 and φ having a uniform prior
distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25I3 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4I3 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4I3 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ. In plots (c) and (d) three points
are repeated.
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4.3.2 Robustness of design efficiency

The particular values of δ2, ν, R−1 and φ assumed when finding an Ψ-optimal design

may not be appropriate, and different choices may be made when collecting the data.

For example, an optimal design found by assuming a uniform prior distribution for φ

might be less efficient when, in fact, a log-normal prior distribution is assumed. We

investigate this issue using the results for the 64 combinations of parameter values,

which we split into four sets according to the number of runs (n, F1) and the mean

function (M,F2).

Tables 4.4 and 4.5 give the relative efficiencies for 10 runs (F1 = 0) constant mean

(F2 = 0) and linear mean (F2 = 1) function, respectively; the corresponding tables for

30 runs (F1 = 1) are Tables A.1 and A.2, and can be found in Appendix A.2.

The rows of each table correspond to the different Ψ-optimal designs found for each of

the 16 combination of values of the remaining factors (F3 − F6), and we use the index

i1 = 1, . . . , 16 to denote ξj1k1i1
design across rows. Each column also corresponds to one

of the 16 combinations of F3 − F6 and we use the index i2 = 1, . . . , 16 to denote ξj2k2i2

design across columns.

Suppose that ξj1k1i1
where (i1 = 1, . . . , 16, j1 = 0, 1 and k1 = 0, 1) is an optimal design

for the i1th combination of values F3, F4, F5, F6 and j1, k1 the levels of F1 and F2,

respectively. We can calculate the efficiency of ξj2k2i2
relative to ξj1k1i1

with respect to

Ψ1(ξj1k1i1
) (i1 = 1, . . . , 16; i1 6= i, j1 = 0, 1 and k1 = 0, 1), see Chapter 3 for a definition

of relative efficiency.

Eff(ξj1k1i1
, ξj2k2i2

) =
Ψ1(ξj1k1i1

)

Ψ1(ξj2k2i2
)

i1, i2 = 1, . . . , 16, j1, j2 = 0, 1 k1, k2 = 0, 1.

The column i2 gives efficiencies of a design ξi2 under each of the other combinations

F3−F6, i.e. row is the numerator and column the denominator. Therefore, by looking

along each row, we can assess the variability in performance of the Ψ-optimal designs

for a given row of factor setting. Looking across each column allows us to assess

the different performance of each design under the combinations of factors. Study of

these tables supports the conclusions made in Section 4.3.1 based on the space-filling

properties.

Table 4.4 shows the relative efficiencies for designs found for constant mean, F2 = 0.

The Ψ-optimal designs for 8 combinations of factors 0000 − 0111, (factor F4 = 0 for

all 8 combinations, i1 = 1, . . . , 16 and i2 = 1, . . . , 8), are quite robust to the choice of

factors F3−F6 as the relative efficiencies of these designs are very high, 0.92− 1. Also,

the robustness of these designs is supported by the corresponding interquartile range

(IQR), last row of Table 4.4, which is very small, 0.01 for all 8 combinations.

When the nugget effect is included in the Gaussian process model (2.6), F4 = 1 the
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majority of the designs 1000− 1111 are robust, i.e. the IQR varying from 0.01− 0.09.

That is, some combinations of factors results in lower efficiencies, i.e. 0.75−1 (columns

i2 = 13, 15), especially when the efficiencies are found with respect the Ψ-optimal

designs for F3 = 0 and F4 = 0. These results are in line with those obtained in Table

4.3 where the interaction between F3 = 0 and F4 = 0 has a small effect (5%).

Table 4.5 shows the relative efficiencies for designs found for linear mean function,

F2 = 1. Here, the robustness of the Ψ-optimal designs vary substantially mainly

according to δ2, (F4), indicating the strong relationship between the mean function

and noise-to-signal ratio, (see Table 4.3 for interaction between F2 and F4). When

F4 = 0, the Ψ-optimal designs for combinations 0000 − 0111, (i1 = 1, . . . , 16 and

i2 = 1, . . . , 8), are robust with efficiencies varying from 0.95 − 1 and very small IQR

from 0.01 − 0.05. However, for F4 = 1 the efficiencies of the designs 1000 − 1111,

(i1 = 1, . . . , 16 and i2 = 9, . . . , 16), are smaller, i.e. 0.54 − 0.9 and the IQR is larger,

i.e. 0.03− 0.48. Also the Ψ-optimal designs for combinations 1101 and 1111 have zero

efficiencies with respect to the combinations 0100− 0111 as they have repeated points

(see Figure 4.8 (c) and (d)). This results in singular correlation matrices when these

designs are evaluated with respect the objective with F4 = 0, i.e. no nugget, δ2 = 0.

In general for n = 30 (F1 = 1) the results are very similar to those obtained for n = 10

(F1 = 1). However, the efficiency of the Ψ-optimal designs is more sensitive to varying

the values of the study factors, see Table A.1 and Table A.2. This is in line with

ANOVA Table 4.3 where the number of runs is an important factor explaining 11%

of the variation. There are specific combinations which result in designs which have

high efficiency for n = 10 but for n = 30 have much lower efficiency, for example the

rows for 0011 and 0101 in both tables. Also the number of designs that cannot be

evaluated under some combinations increases as there are more designs with repeated

points compared to n = 10 and cannot be evaluated under the objective function with

F4 = 0.

4.4 Summary

We have assessed how a Ψ-optimal design changes when features of the experiment,

model and prior distributions vary. The aim was to perform a sensitivity study to

investigate the robustness of the choice of a Ψ-optimal design when six factors are

assumed.

We conclude that a Ψ-optimal design is sensitive to the choice of mean function, the

degree and the range of the correlation, and if a nugget effect is included in the model.

More specifically:

1. when the constant mean function is chosen for the Gaussian process model, the

optimal designs are in general coverage designs (see Section 3.2.1) and the points
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are quite uniformly spread over the study region, with no two points close to-

gether. This is true regardless of the choice of the correlation function, the nugget

effect, the prior distribution of the decay parameter and the prior distribution of

the trend parameter. However, a combination of δ2 = 1 (F4 = 1) and ν = 1.5

(F3 = 1), which results in higher degree and narrower range of the correlation

compare to ν = 0.5 (F3 = 0), results in design points moving outward to the

boundaries of the study region. This indicates the sensitivity of the designs to

the degree and the range of the correlation.

2. when a linear mean function is chosen, then the Ψ-optimal designs are highly

influenced by the range and the degree of the correlation, and the presence of

the nugget effect in the model. The designs compromise between coverage and

spread of the design points. Particularly, when there is no nugget effect in the

model the designs are quite similar to coverage designs. When the range of the

correlation is smaller, this is controlled by the choice of ν (F3 = 1 results to a

correlation function with narrower range of correlation compare to F3 = 0), the

points generally move towards the boundaries, as with a constant mean, they still

spread points over the study region. On the other hand, when the nugget effect is

included in the model, δ2 = 1 (F4 = 1), the designs change considerably and are

more similar to spread designs. The points are concentrated at the corners and

the boundaries of the region, with very few points at the centre, and also some

points are repeated. The designs with linear mean function are affected by the

need to estimate the regression coefficients.

Zimmerman (2006) performed a small sensitivity study to investigate how the mean

function, the nugget effect and the degree of correlation affects the choice of an opti-

mal design found by minimising the maximum prediction variance (called K-optimal

designs). The main difference from our work is that he assumed known and fixed decay

parameter, φ, in the exponential correlation function (ν = 0.5). Initially, he investigated

two choices of mean function, constant and linear, three values of δ2 = 0, 0.25, 0.5 and

exponential correlation function with known and fixed values of φ = 0.62, 1.44, 4.54. For

these combinations Zimmerman (2006) concluded that the locations of design points for

K-optimal designs were mainly affected by the choice of the mean function; constant

mean resulted in points allocated to the study region quite uniformly regardless of the

choice of the decay and the noise-to-signal ratio parameters, whereas use of the linear

mean function gave rise to designs which concentrated the points near the boundaries

of the region and, especially for δ2 = 0.25, 0.5, at the corners of the region.

Also Zimmerman (2006) found optimal designs by minimising the average prediction

variance, i.e. Ψ(ξ) (3.7) for known and fixed decay parameter as for the maximum

prediction variance objective function and concluded that, although the location of the

points were not exactly the same as those found by minimising the maximum prediction

variance, their performance were very similar.
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Moreover, in order to assess the uncertainty resulting from the estimation of the covari-

ance parameter, Zimmerman (2006) proposed a criterion which minimises the maximum

of the prediction variance with known covariance parameters plus a term which takes

into account the covariance parameter estimation. The designs were still locally opti-

mal, requiring a known value for φ and δ2. This term was obtained by a first-order

expansion of the prediction variance at the true value and the optimal designs are

called EK-optimal designs. Zimmerman (2006) concluded that EK-optimal designs

had points located in a similar fashion to K-optimal designs but with some additional

clustering of points. In general, he concluded that designs depend on the strength of

the correlation, the mean function employed and the size of the nugget.

Our approach differs from the Zimmerman (2006) study as it is a Bayesian approach

and we consider φ unknown and investigate the sensitivity of the Ψ-optimal design

with respect to its prior distribution and also we investigate the impact on the choice

of correlation function, which is controlled through ν. When there is no nugget in the

model and φ is unknown, the Ψ-optimal design is strongly influenced by the small values

of φ in the support of its prior distribution (which correspond to high correlation).

Especially when ν = 1.5, our approach results in spreading out the points in the

region. We agree with Zimmerman (2006) that the designs are strongly influenced by

the strength, and we could also add the ranges of the correlation, the mean function

and the nugget.

In the sensitivity study in this chapter, we only investigated the case of known and

fixed δ2. However, we found that this parameters plays a crucial role in the choice and

the performance of the Ψ-optimal design, so in the next chapters we will investigate

the case of unknown δ2.

66



S
et

ti
n

gs
fo

r
fa

ct
or

s
F

4
F

3
F

5
F

6

ξj
1
k
1

i 1
ξj

2
k
2

i 2
,i

2
=

1,
··
·1

6

i 1
=

1,
··
·1

6
00

00
00

10
00

01
00

11
01

00
01

10
01

01
01

11
10

00
10

10
10

01
1
0
1
1

1
1
0
0

1
1
1
0

1
1
0
1

1
1
1
1

IQ
R

00
00

1
1
.0

0
1
.0

0
1.

00
0
.9

8
0
.9

9
0.

98
0
.9

9
0.

99
1
.0

0
1
.0

0
1.

0
0

0
.9

3
0
.9

8
0.

9
3

0
.9

7
0.

0
2

00
10

1.
00

1
1
.0

0
1.

00
0
.9

8
0
.9

9
0.

98
0
.9

9
0.

99
1
.0

0
1
.0

0
1.

0
0

0
.9

3
0
.9

7
0.

9
3

0
.9

7
0.

0
2

00
01

1.
00

1
.0

0
1

1.
00

0
.9

8
0
.9

9
0.

98
0
.9

9
0.

99
0
.9

9
0
.9

9
0.

9
9

0
.9

3
0
.9

7
0.

9
3

0
.9

7
0.

0
2

00
11

1.
00

1
.0

0
1
.0

0
1

0
.9

8
0
.9

9
0.

98
0
.9

9
0.

99
1
.0

0
1
.0

0
1.

0
0

0
.9

3
0
.9

7
0.

9
3

0
.9

7
0.

0
2

01
00

0.
92

0
.9

2
0
.9

4
0.

92
1

0
.9

9
1.

00
0
.9

9
0.

86
0
.8

9
0
.9

1
0.

9
1

0
.7

5
0
.9

1
0.

7
6

0
.9

2
0.

0
5

01
10

0.
96

0
.9

6
0
.9

8
0.

96
0
.9

9
1

0.
99

1
.0

0
0.

94
0
.9

5
0
.9

6
0.

9
6

0
.8

5
0
.9

6
0.

8
4

0
.9

5
0.

0
3

01
01

0.
92

0
.9

2
0
.9

4
0.

92
1
.0

0
0
.9

9
1

0
.9

9
0.

86
0
.8

9
0
.9

1
0.

9
0

0
.7

5
0
.9

0
0.

7
7

0
.9

2
0.

0
5

01
11

0.
96

0
.9

6
0
.9

8
0.

96
0
.9

9
1
.0

0
0.

99
1

0.
94

0
.9

5
0
.9

6
0.

9
6

0
.8

5
0
.9

5
0.

8
4

0
.9

5
0.

0
3

10
00

1.
00

1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1

1
.0

0
1
.0

0
1.

0
0

1
.0

0
1
.0

0
0.

9
9

1
.0

0
0
.0

0
2

10
10

1.
00

1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1.

00
1

1
.0

0
1.

0
0

1
.0

0
1
.0

0
1.

0
0

1
.0

0
0
.0

0
2

10
01

1.
00

1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1.

00
1
.0

0
1

1.
0
0

1
.0

0
1
.0

0
1.

0
0

1
.0

0
0
.0

0
1

10
11

1.
00

1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1.

00
1
.0

0
1
.0

0
1

1
.0

0
1
.0

0
1.

0
0

1
.0

0
0
.0

0
1

11
00

1.
00

1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

0
0

1
1
.0

0
1.

0
0

1
.0

0
0
.0

0
1

11
10

1.
00

1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

0
0

1
.0

0
1

1.
0
0

1
.0

0
0
.0

0
0
4

11
01

1.
00

1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

0
0

1
.0

0
1
.0

0
1

1
.0

0
0
.0

0
1

11
11

1.
00

1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

0
0

1
.0

0
1
.0

0
1.

0
0

1
0
.0

0
1

IQ
R

0.
01

0
.0

1
0
.0

1
0.

01
0
.0

1
0
.0

1
0.

01
0
.0

1
0.

02
0
.0

2
0
.0

1
0.

0
1

0
.0

9
0
.0

3
0.

0
9

0
.0

4

T
ab

le
4.

4:
R

el
at

iv
e

effi
ci

en
ci

es
fo

r
F

1
=

0,
j 1
,j

2
=

0
an

d
F

2
=

0,
k

1
,k

2
=

0
to

ge
th

er
w

it
h

in
te

rq
u

a
rt

il
e

ra
n

g
e

(I
Q

R
).

67



S
et

ti
n

gs
fo

r
fa

ct
or

s
F

4
F

3
F

5
F

6

ξj
1
k
1

i 1
ξj

2
k
2

i 2
,i

2
=

1,
··
·1

6

i 1
=

1,
··
·1

6
00

00
00

10
00

01
00

11
01

00
01

10
01

01
01

11
10

00
10

10
10

01
1
0
1
1

1
1
0
0

1
1
1
0

1
1
0
1

1
1
1
1

IQ
R

00
00

1
1
.0

0
1.

00
1
.0

0
0
.9

8
0.

99
0
.9

8
0
.9

9
0.

98
0
.9

5
0.

90
0
.8

6
0
.8

0
0.

8
6

0
.6

7
0
.6

8
0.

1
3

00
10

1.
00

1
1.

00
1
.0

0
0
.9

8
0.

98
0
.9

7
0
.9

8
0.

98
0
.9

6
0.

90
0
.8

8
0
.8

2
0.

8
7

0
.7

0
0
.7

0
0.

1
1

00
01

0.
99

0
.9

9
1

1
.0

0
0
.9

8
0.

99
0
.9

8
0
.9

9
0.

98
0
.9

6
0.

90
0
.8

7
0
.8

1
0.

8
6

0
.6

8
0
.6

9
0.

1
2

00
11

1.
00

0
.9

9
1.

00
1

0
.9

8
0.

98
0
.9

8
0
.9

8
0.

99
0
.9

7
0.

91
0
.8

9
0
.8

3
0.

8
8

0
.7

0
0
.7

1
0.

1
0

01
00

0.
92

0
.9

3
0.

94
0
.9

4
1

0.
99

1
.0

0
0
.9

9
0.

90
0
.7

9
0.

64
0
.5

7
0
.5

4
0.

6
2

0
0

0.
3
5

01
10

0.
92

0
.9

4
0.

95
0
.9

5
1
.0

1
1

1
.0

1
1
.0

0
0.

91
0
.8

0
0.

64
0
.5

7
0
.5

4
0.

6
2

0
0

0.
3
5

01
01

0.
92

0
.9

3
0.

95
0
.9

4
1
.0

0
0.

99
1

0
.9

9
0.

90
0
.7

9
0.

64
0
.5

7
0
.5

4
0.

6
2

0
0

0.
3
5

01
11

0.
92

0
.9

4
0.

95
0
.9

5
1
.0

1
1.

00
1
.0

1
1

0.
91

0
.8

0
0.

64
0
.5

7
0
.5

4
0.

6
2

0
0

0.
3
5

10
00

1.
00

1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1

1
.0

0
1.

00
0
.9

9
0
.9

9
0.

9
9

0
.9

7
0
.9

7
0
.0

0
4

10
01

1.
00

0
.9

9
1.

00
1
.0

0
1
.0

0
1.

00
1
.0

0
1
.0

0
1.

00
1

1.
00

1
.0

0
0
.9

9
1.

0
0

0
.9

8
0
.9

8
0
.0

0
3

10
10

0.
98

0
.9

7
0.

98
0
.9

8
0
.9

8
0.

97
0
.9

8
0
.9

8
0.

99
1
.0

0
1

1
.0

0
0
.9

9
1.

0
0

0
.9

8
0
.9

8
0.

0
2

10
11

0.
97

0
.9

7
0.

98
0
.9

8
0
.9

7
0.

97
0
.9

8
0
.9

7
0.

99
0
.9

9
1.

00
1

1
.0

0
1.

0
0

0
.9

8
0
.9

8
0.

0
2

11
00

0.
99

0
.9

8
0.

99
0
.9

9
0
.9

9
0.

99
0
.9

9
0
.9

9
0.

99
1
.0

0
1.

00
1
.0

0
1

1.
0
0

1
.0

0
1
.0

0
0.

0
1

11
10

0.
99

0
.9

9
0.

99
0
.9

9
0
.9

9
0.

99
0
.9

9
0
.9

9
1.

00
1
.0

0
1.

00
1
.0

0
1
.0

0
1

1
.0

0
1
.0

0
0.

0
1

11
01

0.
96

0
.9

5
0.

96
0
.9

6
0
.9

6
0.

95
0
.9

6
0
.9

6
0.

98
0
.9

8
0.

99
0
.9

9
1
.0

0
0.

9
9

1
1
.0

0
0.

0
4

11
11

0.
96

0
.9

5
0.

96
0
.9

7
0
.9

6
0.

95
0
.9

6
0
.9

6
0.

98
0
.9

8
0.

99
1
.0

0
1
.0

0
1.

0
0

1
.0

0
1

0.
0
4

IQ
R

0.
05

0
.0

5
0.

04
0
.0

4
0
.0

2
0.

01
0
.0

2
0
.0

1
0.

03
0
.0

8
0.

17
0
.2

1
0
.2

6
0.

2
0

0
.4

8
0
.4

8

T
ab

le
4.

5:
R

el
at

iv
e

effi
ci

en
ci

es
fo

r
F

1
=

0,
j 1
,j

2
=

0
an

d
F

2
=

1,
k

1
,k

2
=

1
to

ge
th

er
w

it
h

in
te

rq
u

a
rt

il
e

ra
n

g
e

(I
Q

R
).

68



Chapter 5

Designs for Spatial Processes

The objective of Chapter 5 is to provide a coherent and complete coverage of the deci-

sion theoretic approach for finding Bayesian optimal designs for continuous spatial data.

Firstly we review the existing approaches for optimal designs for spatial data. Then,

we introduce Bayesian optimal designs when the covariance parameters are known,

followed by our new methodology for optimal design when all the parameters are un-

known. A numerical study is given to validate our new closed-form design criterion

and examples of spatial designs found by this criterion are demonstrated. In Chapter 4

we concluded that the Bayesian optimal designs are sensitive to the choice of the mean

and correlation function, and also to the value of the noise-to-signal ratio. For this

reason, in this chapter we further investigate the impact of the noise-to-signal ratio

on the optimal design. Although the resulting designs are optimal for prediction at

unobserved locations, we also perform a simulation study to assess design performance

for inference about the unknown model parameters. Finally we compare our optimal

designs with designs from the literature.

5.1 Introduction

Modern problems in climate science, such as pollution damage to the natural envi-

ronment, have led to increased interest in the spatial design problem, i.e. the spatial

configuration of the monitoring stations where the data are collected (Zidek and Zim-

merman, 2010). In practice, the collected data are correlated and therefore we have

to take account of the strength and structure of the correlation in developing optimal

designs for setting up monitoring networks, see for example Section 1.1.1.

The geostatistical approach for these objectives is to assume there are n data points of

the form (xi, y(xi)), i = 1, . . . , n, where xi ∈ X , denotes the ith sampling location or

point within the study region, X ⊆ R2 and y(xi) denotes an observation taken at xi

on a single, random realisation of a spatial stochastic process. In practice, observations

y(xi) are noisy versions of the used spatial stochastic process and are described by the
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Gaussian process model (2.6).

In Gaussian process model (2.6), the large scale spatial variation, i.e the trend, is

modelled through the mean function f>(xi)β and the small scale spatial variation is

modelled through the Gaussian process Z(xi). The mean function can be a constant

intercept term only or a polynomial function of the geographic coordinates, known as

a trend surface model.

5.2 Literature Review

In this review we discuss both frequentist and Bayesian approaches for optimal design

for spatial data collection.

The design problem is often approached using one of two main schools of thought:

probability-based and model-based. The first approach is a model-free methodology

which does not rely on any knowledge on the distribution of the response. Usually,

this technique uses methods from sampling theory. By contrast, the aim of the second,

model-based, approach is to draw inferences about the structure of the model, i.e. esti-

mate the unknown parameters, and obtain predictions, using a highly efficient design.

The majority of environmental monitoring networks rely on the model-based approach

for estimation and prediction of characteristics of interest. A comprehensive review of

the two main approaches for design is presented by Dobbie et al. (2008) and Zidek and

Zimmerman (2010). Our research is focused on model-based designs achieved through

optimal design methods. Throughout this thesis we adopt the model-based approach

since statistical inference is the main goal for data collection, and hence the former

approach will not be discussed any further.

The main aims of optimal design for spatial data described by the model (2.6), are

to find optimal designs for (i) estimation of unknown parameters and (ii) spatial pre-

diction at an unmonitored location. Designs for estimation can be separated into two

categories: those for estimation of covariance parameters, σ2, φ and τ2, and those for

estimation of the trend parameter, β.

5.2.1 Designs for estimation of covariance parameters

It is generally agreed that the covariance structure in model (2.6) has an important

role in the analysis of spatial data. Usually the values of the covariance parameters

are unknown, and their estimates are influenced by the locations where the data are

observed. Ad-hoc estimation of the covariance parameters by examining the variogram

has been discussed by many authors, see Müller (2007) and references therein for a

comprehensive review. The variogram is related to the correlation function and visual

inspection of the empirical variogram can be used to suggest a possible parametric

model for the variogram function. Then, using least squares or generalised least squares,
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the parameters of the variogram can be estimated. Müller and Zimmerman (1999)

considered the problem of finding optimal design for variogram estimation and proposed

a modification of D-optimality as a design criterion. They found that their designs had

points or locations close to each other and were different from random and regular

designs.

More recently, a more rigorous model-based approach to covariance parameter esti-

mation using inferential procedures has been developed, with Zhu and Stein (2005),

Zimmerman (2006) and Xia et al. (2006) being the most recent contributions. We now

give further details on each of these papers.

Zhu and Stein (2005) investigated optimal design for maximum likelihood (ML) esti-

mation of the covariance parameters for model (2.6) with mean function equal to zero,

when the inverse information matrix approximates the covariance of the ML estimators

of the parameters. They used a Matérn correlation function given by (2.4). They were

the first to address the problem of unknown covariance parameters, i.e. φ, ν, σ2 and τ2,

in the objective function for the D-criterion and proposed using three types of designs:

• a locally optimal design where estimates or guesses for the covariance parameters

are plugged into the objective function;

• a maximin design using the relative efficiency of a design that achieves the max-

imum value, over the set of all possible locally optimal designs, of the minimum

efficiency over all possible parameter values;

• a pseudo-Bayesian design where a prior distribution is assigned to the param-

eters. They used, as utility function, the relative efficiency of the performance

of a design with respect to the locally optimal design averaged over the prior

distribution. This is equivalent to Bayesian D-optimality only if we consider the

relative efficiency on the log scale, using the log ratio of the determinant.

In all cases, an optimal design was found using a simulated annealing algorithm and

a discrete design region. The authors concluded that the covariance parameters are

estimated more precisely by a locally optimal design rather by a regular or random

design. However, the locally optimal designs are more sensitive to mis-specification

of parameters values and the locally optimal design can change dramatically. The

maximin and Bayesian designs gave more accurate estimates of the unknown parameters

and outperformed the regular designs. The Bayesian designs were found to be more

computationally expensive.

Zimmerman (2006) obtained similar results by maximising the determinant of the in-

verse of information matrix M(ξ). He called this the CP-criterion to indicate the

dependency on the covariance parameters. He again considered model (2.6) and com-

pared the cases of constant mean (k = 1) and linear mean function (planar mean,

k = 3). He used the exponential correlation function and found optimal designs for

estimating the unknown parameters σ2 and φ when the nugget is equal to τ2 = 0,
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0.25σ2 and 0.50σ2.

From this study, he concluded that when the aim of experiment is the estimation of

the covariance parameters, an optimal design has a larger number of small distances

between the points than a regular or random design. The designs also have large

distances and an appropriate distribution of distances is achieved by regularly spaced

clusters, lying mostly around the edge of the design space. He observed that including

a nugget effect in the model changed the strength of spatial correlation and, as a result,

the optimal design.

The difference between Zimmerman (2006) and Zhu and Stein (2005) is that former

author considered the case of constant or linear mean function instead of setting the

mean function zero. Also Zimmerman (2006) assumed an exponential correlation func-

tion whereas Zhu and Stein (2005) considered the more general Matérn with unknown

smoothness parameter.

Xia et al. (2006) used likelihood-based methods to find optimal designs that allow both

covariance and trend estimation. Their criterion was to maximise the trace of the

information matrix which has block diagonal form corresponding to trend and covari-

ance parameters. The authors considered algorithms such as sequential selection, block

selection and stochastic search. They concluded that block selection gives different

designs compared to sequential selection approach.

Entropy-based designs are very popular for estimating the unknown covariance pa-

rameters. Shannon (1948) introduced the entropy to measure the amount of available

information. In the field of design of experiments Lindley (1956) used this measure

to determine the information provided by the experiment. The better understanding

of the process corresponds to the lower values of entropy. Entropy is defined as the

gain of information between prior and posterior distribution. Maximum Entropy de-

signs were suggested by Shewry and Wynn (1987), who showed that maximising the

information about the unknown parameters is equivalent to maximising the informa-

tion for prediction at unobserved locations. The maximum entropy designs correspond

to the D-optimal designs for the case of the linear model with correlated errors. Also

Sebastiani and Wynn (2000) showed that the experiment which maximises the entropy

of the marginal entropy of the data will be most informative for the estimation of the

parameters.

The theory of optimal design for the linear regression model with uncorrelated errors

has influenced the development of model-based designs through the work of Müller

(2007, Ch.5) and Spöck and Pliz (2010). The idea is to approximate the spatial model

with a linear model having uncorrelated errors using a linear approximation to random

fields such as the Karhunen-Loeve approximation and the polar spectral representation

of an isotropic random field. Then classical experimental design theory is applied

to this regression model. The problem is then to choose the design points for efficient

estimation of the trend parameter β which now incorporates the correlation parameters.
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This approach is difficult to use in realistic models such as model (2.6) because of the

difficulty in finding an infinite expansion to approximate the model, see Zidek and

Zimmerman (2010).

5.2.2 Designs for prediction at unmonitored sites

The ultimate objective for analysing spatial data is often prediction at unmonitored

sites based on the data that are taken at monitored sites. The choice of an optimal

design for prediction depends on the spatial covariance function and whether or not the

covariance parameters are known or unknown. Several authors, for example, McBart-

ney et al. (1981) and Su and Cambanis (1993), considered the case of known covariance

parameters and model (2.6) with constant mean (k = 1). They concluded that an

optimal design for prediction minimising either the average or the maximum prediction

variance forms a fairly regular grid.

More recently, Zimmerman (2006) investigated the influence of the mean function on

the choice of optimal designs for prediction where the covariance parameters (σ2, φ, τ2)

are assumed known. He used nine combinations of values (φ, τ2), namely, (φi, 0), no

nugget, (φi, 0.25σ2) and (φi, 0.5σ
2) for φ1 = 0.62, φ2 = 1.44 and φ3 = 4.54. He found

designs for model (2.6) with constant mean (k = 1) and with planar mean (k = 3)

by minimising the maximum prediction variance, and compared them graphically. He

concluded that both the strength of the correlation and the presence or absence of

the nugget effect have much less impact on the design points than the choice of mean

function. He observed that the designs were uniformly dispersed over the study region

for the constant mean model, whilst most of the points were located around the edge

of the design for the linear mean function. These results are in line with our findings,

see Section 4.4.

Generally, different designs are obtained when the aim is prediction and the covari-

ance parameters are unknown, compared with designs for estimating the covariance

parameters. Zhu and Stein (2006) and Zimmerman (2006) combined these two goals in

a single design criterion with an objective function formed as a linear combination of

the two separate functions, one that measures the quality of the design with respect to

prediction with known covariance parameters, and one with respect to covariance pa-

rameter estimation. They considered model (2.6) with an isotropic correlation function

and both Zhu and Stein (2006) and Zimmerman (2006) proposed criterion for predic-

tion that takes into account the additional prediction uncertainty due to estimation

of the unknown covariance parameters. Zhu and Stein (2006) considered the problem

of redesigning an existing network, while Zimmerman (2006) the problem of adding a

location to existing network. The best linear predictor is a function of the responses at

the observed sites and of the unknown parameters. For this reason the unknown pa-

rameters are estimated using ML or Restricted maximum likelihood and the estimates

are plugged into the best linear predictor. Then the prediction variance is adjusted to
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incorporate the uncertainty due to the estimation of the unknown parameters. Both

demonstrated the behaviour of their optimal designs for numerous simulations and real

examples. All the designs found were locally optimal, for given values of covariance

parameters.

Zimmerman (2006) also proposed a criterion to compromise between the optimal es-

timation of the unknown covariance parameters and optimal prediction. His criterion

is the maximum value of the asymptotic approximate prediction error variance of the

estimated best linear unbiased predictor (E-BLUP) over all sites in the design region,

known as the empirical kriging EK-criterion. His simulation studies showed that an

EK-optimal design is similar overall to an optimal design for prediction with known

covariance parameters but contains a few small clusters enabling compromise between

opposing objectives.

Zhu and Stein (2006) aimed to find optimal designs that minimise a combination of the

kriging variance and the uncertainty in the estimated mean squared prediction error

(MSPE) in order to incorporate the uncertainty due to unknown covariance parameters.

Their criterion was a weighted linear combination of Zimmerman (2006) and the vari-

ance of the plug-in kriging variance estimator. The uncertainty in minimising MSPE

was considered by approximating the variance of the plug-in kriging variance using a

second order Taylor expansion of the kriging variance. This criterion is preferred if

we are interested in estimating the MSPE of the best linear predictor more accurately.

They also introduced an alternative criterion that is a weighted linear combination of

the kriging variance and an approximation of the Kullback divergence of the plug-in

conditional density from the conditional density evaluated at the covariance parame-

ters. For a specific value of the weight, the two criteria are almost equivalent and for

this value the criterion was called estimation adjusted, EA-criterion. Similarly to the

work of Zhu and Stein (2005), Zhu and Stein (2006) used EA-criterion to find:

• locally optimal designs where the covariance parameters are assumed fixed or

estimates for the covariance parameters are plugged into the objective function;

• maximin designs designs that maximise the minimum relative efficiency criterion

for the EA-criterion. The relative efficiency of EA-criterion measures the relative

performance of a design with respect to the locally optimal design.

• pseudo-Bayesian designs where they average the EA-criterion over the prior distri-

bution of the unknown parameters. They did not follow a full Bayesian approach

which makes inference from the posterior predictive distribution because they

found it computationally infeasible to carry out a brute force Bayesian calcula-

tion in this context;

The resulting designs have some clustered points rather than being regularly spaced.

Moreover, they concluded that finding minimax and Bayesian designs is computation-

ally expensive and for large sample size they introduced a two-step algorithm to find
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optimal design instead of using simulating annealing algorithm.

As we have mentioned entropy designs are very popular for designs for estimation of

the unknown model parameters. However, based on the entropy of the posterior pre-

dictive distribution, entropy designs can be used for prediction problems. Fuentes et al.

(2007) proposed a new entropy-based design criterion based on evaluating the posterior

predictive entropy, which maximise the determinant of the covariance matrix between

locations to be added to the design. They followed a Bayesian approach to incorporate

the uncertainty about the covariance parameters. Fuentes et al. (2007) considered non-

stationary correlation function, which is a mixture of a family of stationary process,

and used simulated annealing to obtain an optimal subnetwork design. More discussion

about entropy based design can be found in Zidek and Zimmerman (2010).

The development and rapid utilisation of computer algorithms and MCMC techniques

have contributed to the introduction of the Bayesian spatial design in recent years. The

Bayesian method for spatial data modelling was firstly introduced by Kitanidis (1986)

who examined the effect of parameter uncertainty in a Bayesian framework and used

the posterior distribution to gain an estimate for the unknown parameters.

Diggle and Lophaven (2006) investigated Bayesian optimal designs for two cases. The

first one concerned how to add or remove locations from an existing network by min-

imising the average prediction variance, known as “the retrospective design problem”.

The second is how to design before any data are available by minimising the expec-

tation of the average prediction variance with respect to the marginal distribution of

the data, known as “ prospective design problem”. They considered model (2.6) with

constant mean, i.e. k = 1, and exponential correlation function.

For the retrospective design problem, they found Bayesian designs with a diffuse prior

distribution for β, σ2, a uniform prior distribution for φ, and either a known value for

δ2 = τ2/σ2, the noise-to-signal ratio δ2 = 0, 0.3 and 0.6 or unknown δ2 with uniform

prior distribution. They also compared these designs with locally optimal designs where

all the parameter values are assumed known. These designs had points that were well

separated compared with the Bayesian designs which had some close pairs of points.

The Bayesian optimal designs changed according to the value of δ2 and whether or

not the ratio δ2 was considered known or unknown. They also compared the posterior

predictive variance for the nine different optimal designs evaluated under the Bayesian

criterion and found that the Bayesian designs to be 5 to 10 times better than the locally

optimal design whether δ2 is known or not.

For the prospective design problem they did not find Bayesian optimal designs but they

compared the performance of a regular lattice with a lattice plus close pairs design and

a lattice plus infill designs which are designs with irregularly spaced locations. They

evaluated the design criterion for each one of the three designs by assuming diffuse prior

distribution for β, σ2 and uniform prior distributions for φ and δ2. They concluded that

a lattice plus close pairs design results in lower values of the design criterion and the
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lattice plus infill design is slightly better than the regular lattice see Section 5.6.

In general we have seen that if we assume that the covariance parameters are known the

optimal design for prediction is a design with more regular spacing. However, when the

covariance parameters are assumed unknown then the optimal designs contain clusters

of points to incorporate the estimation of the unknown parameters.

Our approach for optimal designs for spatial data is Bayesian and we concentrate on

the prediction problem but we take into account the uncertainty due to unknown model

parameters. Our proposed approach is different from the approaches in the existing

literature because we follow a decision theoretic approach which is natural in Bayesian

approach. In contrast with Diggle and Lophaven (2006), we assume that we do not

have any data available before the experiment and we find designs that minimise the

average prediction variance.

5.3 Optimal Design With Known Covariance Parameters

In this section, we apply the Bayesian decision theoretic approach described in Chapter

3 when the aim is to find the optimal designs to maximise predictive accuracy. Here

we consider the simplest case where the covariance parameters, φ and δ2 are known.

The objective function to be minimised is given by (3.7) and as we have mentioned this

integral is tractable and the objective function can be evaluated analytically.

The posterior distribution of a future observation π(y(xp)|y) is a t-distribution given

by (2.30). Therefore if we assume that φ and δ2 are known the second part of the

objective function (3.9) vanishes, and the objective function is:

Ψ(ξ) =

∫
XP

Σ∗
∫
Y

b+ 1
2(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

2a+ n− 2
π(y)dydxp

=

∫
XP

Σ∗
2b+ 2bn

2a−2

2a+ n− 2
dxp

=
b

a− 1

∫
XP
{1 + δ2 − ω>Σ−1ω+

(f>p − ω>Σ−1F)(F>Σ−1F + R)−1(f>p − ω>Σ−1F)>}dxp. (5.1)

The integral with respect to the unknown data is calculated using the quadratic form

(3.13), where µ and K are the mean vector and variance-covariance matrix of ε re-

spectively. Here we apply ε = (y − Fβ0), Λ = [Σ + FR−1F>]−1, µ = E(ε) = 0 and

K = 2b
2a−2 [Σ + FR−1F>].

To illustrate, we assume the Gaussian process model (2.6) with mean function which

is taken to be a linear function of the geographic coordinates only and the exponential

correlation function

ρ(dij ;φ) = exp−φdij ,
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where dij is the Euclidean distance between two sampling locations xi,xj ∈ [−1, 1]2.

The choice of optimal design is affected by the strength of the correlation between

two observations at their corresponding sampling locations. Therefore the parameters

which play a crucial rule here are the decay parameter φ and the fixed noise-to-signal

ratio δ2.

Initially, 50 random starting designs each having 10 sampling locations in the square

study region X = [−1, 1]2 are generated, i.e the design points xi : (i = 1, . . . , 10)

form an independent random sample from a uniform distribution on X . The prior

distributions for β|σ2 and σ2 are chosen to be N(0, σ2I) and IG(3, 1), since we assume

conjugate prior distributions for evaluating the objective function (5.1) and also the

prior hyperparameters are chosen in order to have finite variance for the inverse gamma.

We assume four values for φ = 0.1, 1, 10 and 100 and three values for δ2 = 0, 0.5, 1. We

choose the smallest value of φ to be 0.1 because any smaller value makes the correlation

matrix, C(φ), numerically singular. We choose φ = 100 as the largest value because

any larger value makes the correlation matrix almost equal to the identity matrix, so

we have almost uncorrelated observations.

In order to find the optimal designs, we employ the coordinate exchange algorithm

(Subsection 3.6.1) and from the 50 random starting designs we choose the design with

the minimum value of Ψ(ξ) (5.1). We seek a design to predict at a regular 10 × 10

grid of points, i.e. |XP | = 100, and the objective function (5.1) is averaged across these

points. We investigate how choices for φ and δ2 affect the design by finding optimal

designs for each of the 12 combinations of values φ and δ2.

(i) δ2 = 0. There is no nugget effect in the model, i.e. τ2 = 0, and the variance-

covariance matrix is equal to C(φ). Then an optimal design depends only on the decay

parameter which describes how the correlation decreases. The correlation between a

corner point and the centre of the region is 0.86, 0.25, 10−7 and ' 0 for φ = 0.1, 1, 10

and 100 respectively. When φ is small, the observations become more highly correlated.

Figure 5.1 shows optimal designs for δ2 = 0. The two plots in the first row are for small

values of φ which correspond to strong correlation between the observations. It can be

seen that, for these small values of φ, the design points are scattered throughout the

study region with no two points close together.

In contrast, for larger values of φ all the design points are concentrated at the periphery

of the study region X , for example as in Figure 5.1(d). For these values of φ, the data

tend to be less correlated. An optimal design for prediction takes into account the

estimation of the unknown coefficients in the trend parameter and hence is strongly

influenced by the linear trend. The optimal design for uncorrelated data would only

include the four corner points.

(ii) δ2 = 0.5 and δ2 = 1. Figures 5.2 and 5.3 show optimal designs for δ2 = 0.5 and

δ2 = 1, respectively. For these cases the correlation between a corner point and the

centre point of the region is 0.57 for φ = 0.1 and δ2 = 0.5, and 0.43 for φ = 0.1 and
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δ2 = 1. When φ = 1 the corresponding correlations drops to 0.16 and 0.12 respectively.
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Figure 5.1: Ψ-optimal designs for prediction, found by minimising (5.1), when δ2 = 0
and (a) φ = 0.1, (b) φ = 1, (c) φ = 10, and (d) φ = 100.
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Figure 5.2: Ψ-optimal designs for prediction, found by minimising (5.1), when δ2 = 0.5
and (a) φ = 0.1, (b) φ = 1, (c) φ = 10, and (d) φ = 100.
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Figure 5.3: Ψ-optimal designs for prediction, found by minimising (5.1), when δ2 = 1
and (a) φ = 0.1, (b) φ = 1, (c) φ = 10 and (d) φ = 100.

For each combination of φ and δ2, the designs are similar for the two values of δ2. It

can be observed from the plots that, when the value of φ is very small, the optimal

design is mainly influenced by the noise-to-signal ratio, δ2. Hence, for very small values

of φ and a non-zero value of δ2, the correlation is a constant function of the distance

and any point in the region [−1, 1]2 has similar values of correlation. For this reason

the sampling locations move towards the boundaries. Similar patterns can be seen for

very large value of the decay parameter, e.g φ = 100, and non-zero δ2, where again the

distance between the design points does not affect the correlation. Figures 5.2 (d) and

5.3 (d), corresponding to φ = 100 and δ2 = 0.5 and δ2 = 1 respectively, show that the
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points tend to concentrate at the four corners.

These results are in line with Zimmerman (2006). He considered this kind of problem

from the frequentist point of view and indicated that as correlation decreases the points

move to the corners for the case of a linear trend.

5.4 Optimal Design With Unknown Covariance Parame-

ters

The optimal designs discussed in the preceding section require the assumed covariance

parameters are known and fixed. However, in practice, we will not know the values

of the decay, φ, and noise-to-signal, δ2, parameters and more realistically we need to

allow for uncertainty in the values of all of the model parameters.

In this section we develop optimal designs for spatial data when the objective of the

design is efficient prediction assuming that the values of the covariance parameters are

unknown. As described in Chapter 3, in this case the optimality criteria become more

complicated as the posterior and predictive distributions cannot be expressed in closed-

form and subsequently objective function Ψ(ξ) (3.7) cannot be evaluated analytically.

5.4.1 Assessment for closed-form approximation for spatial experi-

ments

Here, a numerical study is presented to explore the relationship between Ψ(ξ) and

Ψ1(ξ) and to study how the choice of the parameters in the experiment and model

affects the accuracy of the approximation from Conjecture 3.1. We perform a factorial

study similar to that in Chapter 4 but here we consider five crossed factors and two

nested factors, each with either two or three levels. For each combination of factor

levels, we evaluate the objective function Ψ(ξ).

There are five crossed factors given in Table 5.1 together with their levels and coded

values.

Levels

Factors 0 1 2

F1: Number or runs n = 5 n = 10
F2: Mean function M = β0 M = β0 + β1x1 + β2x2

F3: Correlation function ν = 0.5 ν = 1.5
F4: Noise-to-signal ratio δ2 = 0 δ2 = 1 δ2 ∼ Unif(0, 1)
F5: Decay parameter φ ∼ Unif(0.1, 1) φ ∼ log-normal(−1.1, 1)

Table 5.1: Five crossed factors together with their levels and coded values.
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There are also two nested factors. For the regression parameters β we assume a normal

prior with prior mean β0 and matrix R−1.

1. Factor F6 determines the prior mean of trend parameters, and is nested within

factor F2 (form of mean function) and has two levels:

F6|(F2 = 0) =

{
0, ⇒ β0 = 0

1, ⇒ β0 = 1

F6|(F2 = 1) =

{
0, ⇒ β0 = (0, 0, 0)

1, ⇒ β0 = (1, 1, 1).

2. Factor F7 determines the prior precision of trend parameters, and is nested within

factor F2 (form of mean function) and has three levels:

F7|(F2 = 0) =


0 ⇒ R−1 = 0.25

1 ⇒ R−1 = 1

2 ⇒ R−1 = 4

F7|(F2 = 1) =


0 ⇒ R−1 = 0.25I3

1 ⇒ R−1 = I3

2 ⇒ R−1 = 4I3.

All possible combinations of the levels of these factors are considered. The total number

of combinations investigated is 288. For each combination, we generate 100 random

designs with n = 5 and n = 10 points in X = [−1, 1]2 and assume prediction is required

across XP = 10 × 10 grid. For each design we evaluate Ψ(ξ) and each of Ψ1(ξ) and

Ψ2(ξ).

We consider the results separately for uniform and log-normal prior distributions on φ.

(i) Uniform prior on φ. When δ2 is assumed known (δ2 = 0 or δ2 = 1), the objective

function Ψ(ξ) is given by (3.10), with Ψ1(ξ) and Ψ2(ξ) given (3.14) and (3.15), respec-

tively, and approximated numerically by (3.33) and (3.34). When δ2 is unknown and a

uniform prior is assumed, then the objective function Ψ(ξ) is given by (3.9) with Ψ1(ξ)

and Ψ2(ξ) given by (3.11) and (3.12), respectively, and approximated by (3.29) and

(3.30) respectively.

(ii) Log-normal prior on φ. We approximate the integrals using Gauss-Hermite quadra-

ture methods with Ψ1(ξ) and Ψ2(ξ) evaluated by (3.33) and (3.34). For unknown δ2,

Ψ(ξ) is given by (3.9) and the two parts, Ψ1(ξ) and Ψ2(ξ), are approximated by (3.31)

and (3.32), respectively.

Tables 5.2 and 5.3 show the correlation between the values of Ψ(ξ) and Ψ1(ξ) for n = 5

(F1 = 0) and n = 10 (F1 = 1), respectively. For each combination of the factor

82



levels in Table 5.1 we found the values of Ψ(ξ) and Ψ1(ξ) for 100 randomly generated

designs. For each combination we then calculate dthe correlation between Ψ(ξ) and

Ψ1(ξ) using those 100 values. As can be seen, for all 288 combinations of study factors,

the correlation between Ψ(ξ) and Ψ1(ξ) is very high, almost equal to one. This evidence

suggests that ordering of designs is preserved under Ψ(ξ) and Ψ1(ξ).

In general Tables 5.2 and 5.3 show that the two objective functions yield very similar

results and we can conclude that regardless the choice of mean function, the value of the

precision matrix, the correlation function, (exponential or Matérn ν = 1.5), and either

known or unknown δ2, the closed-form approximation Ψ1(ξ) is a good approximation

for the objective function and can be used as a design selection criterion for Bayesian

optimal designs. The same conclusions can be drawn for either n = 5 or n = 10.

From substantial numerical evidence, we conclude that Ψ1(ξ) ' Ψ(ξ) and in fact always

Ψ2(ξ) << Ψ1(ξ). We have strong evidence to assume that Ψ2(ξ) ' 0 and approximate

the objective function Ψ(ξ) (3.9) or (3.10), by Ψ1(ξ).

5.4.2 Discussion of analytical results

This numerical evidence is also supported by Lemma 3.1 in Section 3.4.1 and the con-

nection between the objective function Ψ(ξ) and the integrated likelihood. Since Ψ2(ξ)

is mainly dependent on the posterior density of the unknown covariance parameters,

which is linked with the LI(φ, δ2), we can have a more thorough understanding about

our proposed approximation if we understand LI(φ, δ2).

As we have seen, the values of LI(φ, δ2) are always smaller than a function which

depends on φ and δ2 and LI(φ, δ2) decreases much faster than any chosen values of φ

and δ2. This is true regardless of δ2 being known and fixed or unknown. In Section 3.4.1

we made the connection between LI(φ, δ2) and the second part, Ψ2(ξ), of the objective

function Ψ(ξ). Since the value of LI(φ, δ2) tends to get very small very quickly, then

the second part Ψ2(ξ) always yields small values, much smaller in magnitude than the

values of Ψ1(ξ).

5.4.3 Theoretical insight into Ψ2(ξ)

To theoretically investigate the closed-form approximation and provide intuition about

the domination of Ψ2(ξ) by Ψ1(ξ), we derive a linear approximation to the integrand

of Ψ2(ξ). We investigate the general case where both covariance parameters φ and δ2

are unknown; similar results can be derived when only φ is unknown.

Function Ψ2(ξ) depends on the mean, µ∗, of the predictive posterior distribution given

by (2.27). We define θ = (φ, δ2) and µ∗(θ) = E [y(xp)|y,θ] .
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Recall that Ψ2(ξ) is given by

Ψ2(ξ) =

∫
XP

∫
Y
E θ|y[(µ∗ − E θ|y(µ∗))(µ∗ − E θ|y(µ∗))>]π(y)dydxp

=

∫
XP

∫
Y

∫
θ
[(µ∗ − E θ|y(µ∗))(µ∗ − E θ|y(µ∗))>]π(θ|y)π(y)dθdydxp. (5.2)

The objective function Ψ2(ξ) is the average, with respect to the data y, of the variance of

µ∗ with respect to the posterior distribution of θ, where the mean, µ∗, of the predictive

distribution depends on both θ and the data y. We employ a linear approximation to

µ∗(θ) about the prior mean of θ, i.e. θ = E θ[θ].

Our aim is to show that the predictive mean µ∗ does not depend on θ, the posterior

distribution (2.34) does not affect the value of µ∗, and as a result does not give rise to

large values of Ψ2(ξ).

A first order Taylor expansion about θ = θ gives

µ∗(θ) ' µ∗(θ) +

∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

(θ − θ). (5.3)

Initially, we approximate the term E θ|y(µ∗)

E θ|y(µ∗) =

∫
θ
µ∗(θ)π(θ|y)dθ

'
∫
θ
µ∗(θ)π(θ|y)dθ +

∫
θ

∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

(θ − θ)π(θ|y)dθ

' µ∗(θ) +

∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

∫
θ
θπ(θ|y)dθ −

∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

θ. (5.4)

Hence, we have

µ∗ − E θ|y(µ∗) '
∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

(θ − E θ|y(θ)). (5.5)

We substitute (5.5) into (5.2) to obtain:

Ψ2(ξ)'
∫
Y

∫
θ

(∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

(θ − E θ|y(θ))

)(∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

(θ − E θ|y(θ))

)>
π(θ|y)π(y)dθdy

'
∫
Y

∫
θ

∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

(θ − E θ|y(θ))(θ − E θ|y(θ))>
∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣>
θ=θ

π(θ|y)π(y)dθdy

'
∫
Y

∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣
θ=θ

Cov[θ|y]

∣∣∣∣∂µ∗(θ)

∂θ

∣∣∣∣>
θ=θ

π(y)dy. (5.6)
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The partial derivatives of µ∗ with respect to the φ and δ2 are then calculated.

∂µ∗

∂φ
=

[
−∂ω

>

∂φ
Σ−1F + ω>Σ−1∂Σ

∂φ
Σ−1F

]
(F>Σ−1F + R)−1Rβ0 +

(fp − ω>Σ−1F)(F>Σ−1F + R)−1F>Σ−1∂Σ

∂φ
Σ−1F(F>Σ−1F + R)−1Rβ0

+
∂ω>

∂φ
Σ−1y − ω>Σ−1∂Σ

∂φ
Σ−1y − ∂ω>

∂φ
Σ−1F(F>Σ−1F + R)−1F>Σ−1y

+ω>Σ−1∂Σ

∂φ
Σ−1F(F>Σ−1F + R)−1F>Σ−1y

+(fp − ω>Σ−1F)(F>Σ−1F + R)−1F>Σ−1∂Σ

∂φ
Σ−1F(F>Σ−1F + R)−1F>Σ−1y

−(fp − ω>Σ−1F)(F>Σ−1F + R)−1F>Σ−1∂Σ

∂φ
Σ−1y. (5.7)

∂µ∗

∂δ2
=ω>Σ−1 ∂Σ

∂δ2
Σ−1F(F>Σ−1F + R)−1Rβ0 +

(fp − ω>Σ−1F)(F>Σ−1F + R)−1F>Σ−1 ∂Σ

∂δ2
Σ−1F(F>Σ−1F + R)−1Rβ0

−ω>Σ−1 ∂Σ

∂δ2
Σ−1y + ω>Σ−1 ∂Σ

∂δ2
Σ−1F(F>Σ−1F + R)−1F>Σ−1y

+(fp − ω>Σ−1F)(F>Σ−1F + R)−1F>Σ−1 ∂Σ

∂δ2
Σ−1F(F>Σ−1F + R)−1F>Σ−1y

−(fp − ω>Σ−1F)(F>Σ−1F + R)−1F>Σ−1 ∂Σ

∂δ2
Σ−1y. (5.8)

To proceed, we now make the assumption of exponential correlation function (2.4) with

ν = 0.5 to provide analytical tractable derivatives for ∂Σ
∂φ and ∂Σ

∂δ2
, involved in both (5.7)

and (5.8).

Then, we substitute (5.7) and (5.8) into (5.6) to obtain

Ψ2(ξ) '
∫
XP

∫
Y

(
∂µ∗

∂φ
,
∂µ∗

∂δ2

)
Cov(φ, δ2|y)

(
∂µ∗

∂φ
,
∂µ∗

∂δ2

)>
π(y)dydxp. (5.9)

We now evaluate (5.9) for a variety of combinations of β0 and R−1, the prior hyperpa-

rameters for β, by the following steps:

• assign prior distributions to φ and δ2

• generate a sample from the marginal posterior of π(y)

• evaluate the derivatives (5.7) and (5.8) at the prior mean of φ and δ2 respectively

• generate a sample from the posterior distribution π(φ, δ2|y) (2.34) and evaluate

the Cov(φ, δ2|y)

• evaluate (5.9) using Monte Carlo integration.
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Prior mean β0

R−1 (0, 0, 0) (1,1,1) (10,10,10)

diag(0.25) 0.0021 0.0025 0.0378
diag(1) 0.0010 0.0012 0.0166
diag(4) 0.0008 0.0009 0.0034
diag(10) 0.0007 0.0008 0.0013

Table 5.4: Values of the linear approximation to Ψ2(ξ).

We investigate the case of a linear trend as it is the most interesting. The value of Ψ2(ξ)

is evaluated for β0 = (0, 0, 0), β0 = (1, 1, 1) and β0 = (10, 10, 10) and R−1 = 0.25I3,

R−1 = I3, R−1 = 4I3 and R−1 = 10I3. We assign uniform prior distributions for both

φ and δ2, Unif(0.1, 1) and Unif(0, 1) respectively. We investigate 50 random designs

with 10 points and for all cases the value of the linear approximation of Ψ2(ξ) is always

less than 5%. In Table 5.4 we summarised the results for one design.

To summarise, the choices of the prior mean and precision matrix of the trend pa-

rameters do not affect the value of Ψ2(ξ). The value is always very small ( Ψ2(ξ) <

0.01Ψ1(ξ)) and this is in line with results from our numerical study (Section 5.4.1).

Moreover, in order to find out how much information is contributed by the posterior

distribution to the linear approximation for Ψ2(ξ), we evaluate 10 samples from the

posterior distribution π(φ, δ2|y) given by (2.34) and we evaluate the posterior covari-

aince Cov(φ, δ2|y) for each one of these samples. Always, Cov(φ, δ2|y) < 0.05 and as a

result yields very small values for the second part of the objective function.

5.4.4 Examples of optimal designs

We now demonstrate the methodology for the general problem of sensor placement.

For example, if the objective of the experiment is to predict at unobserved locations in

the geographical region of interest, we address the problem of finding optimal locations

to place sensors. We find Bayesian optimal designs for prediction using minimisation

of the closed-form approximation Ψ1(ξ) as a selection criterion.

Optimal designs are found with n = 10 or n = 20 sampling locations in the study region

X = [−1, 1]2. The Gaussian process model (2.6) depends on both the mean function

and the correlation function, and we investigate the effect of both on the Bayesian

optimal design. The optimal designs are found by minimising the average of Ψ1(ξ)

across a 10× 10 regular prediction grid, XP ⊆ [−1, 1]2.

In Chapter 4, we demonstrated that the form of the optimal design is affected most

strongly by the choice of mean function, correlation function and covariance parameters.

Hence, here we find examples of optimal designs for constant and linear mean function,

the Matérn correlation function, with ν = 0.5 and ν = 1.5, and (a) four assumed values

of δ2 with unknown φ or (b) unknown δ2 and φ. We also consider a normal prior for the
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regression coefficients with zero mean and variance-covariance matrix σ2I; in Chapter

4 it was shown that the optimal design is robust to the choice of precision matrix and

prior mean of β.

Specifically, designs are found for:

• n = 10 and n = 20 points

• mean function:

(1) f>(x)β = β0

(2) f>(x)β = β0 + β1x1 + β2x2

• Matérn correlation function with either ν = 0.5 and ν = 1.5.

• prior distributions:

– σ2 ∼ IG(3, 1), recall that the hyperparmeters a, b of the inverse gamma prior

do not affect the choice of design as a, b only influence the objective function

through a multiplicative constant, see Section 3.5.1.

– (1) β ∼ N(0, σ2)

(2) β ∼ N(0, σ2I)

– Two different prior distributions for φ are chosen, having the same prior

mean:

(1) π(φ) ∼ Uniform(0, 1, 1)

(2) π(φ) ∼ log-normal(−1, 1, 1)

– Two different cases for δ2 are considered

(1) known and fixed values δ2 = 0, 0.5, 1 and 2.5

(2) unknown with δ2 ∼ Uniform(0.1, 1).

In total, we investigate 80 combinations of these individual settings. For each combina-

tion we generate 50 random designs selected from the design region. For each of these

starting designs, the coordinate exchange algorithm (Section 3.6.1) is used to find a

design that minimises Ψ1(ξ). The final choice of design is that which has the smallest

value of Ψ1(ξ) among these 50 designs.

Here, we will present the result for n = 10; similar results and conclusions are obtained

for n = 20 and can be found in Appendix A.4. Figures 5.4–5.9 show the Bayesian

optimal designs for n = 10 with contours displaying the average, with respect to the

prior values on δ2 and φ, correlation between each point in the study region, X =

[−1, 1]2, and the centre point.
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Figure 5.4: Ψ-optimal designs for a linear mean function, Matérn correlation function
with ν = 0.5, uniform prior distribution on φ and known δ2: (a) δ2 = 0, (b) δ2 = 0.5
(c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between each
point and the centre of the design region, averaged across the prior distribution for φ.
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Figure 5.5: Ψ-optimal designs for a linear mean function, Matérn correlation function
with ν = 1.5, uniform prior distribution on φ and known δ2: (a) δ2 = 0, (b) δ2 = 0.5
(c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between each
point and the centre of the design region, averaged across the prior distribution for φ.
In plots (c) and (d) four points are repeated.
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Constant mean function

When we assume constant mean function, Ψ-optimal designs are not much influenced

by the values of parameters. Table 5.5 shows that Ψ-optimal designs for constant

mean have similar coverage and spread values. The results here are in line with those

in Chapter 4. Figures A.9–A.14 correspond to the Ψ-optimal designs for a Gaussian

process with constant mean function.

Linear mean function

The linear mean function models the large scale variation in a spatial process. Figures

5.4–5.9 correspond to the Ψ-optimal designs for a Gaussian process with linear mean

function, and different combinations of prior distributions on φ, δ2 and correlation

functions. The contour plots show the average correlation between each point in the

study region and the centre, averaged across the prior distributions for φ and δ2. As the

correlation between observations is not affected by the mean function, these contours

are identical to those in Figures A.9–A.14.

The optimal designs are influenced by the range and the strength of the correlation.

(i) ν = 0.5: Figures 5.4 and 5.6 correspond to Ψ-optimal designs for ν = 0.5 and

uniform prior distribution for φ, and ν = 0.5 and log-normal prior distribution for

φ, respectively. When the Gaussian process model (2.6) does not include a nugget

effect (i.e. δ2 = 0), the optimal design spreads points throughout the study region,

see Figures 5.4 (a) and 5.6 (a) for uniform and log-normal prior distributions.

However, when a nugget is included in the model, and potentially as the value

of δ2 increases, the correlation between observations decreases. Therefore, the

choice of optimal design points are strongly influenced from the mean function.

For large values of δ2, i.e. δ2 = 2.5, (Figures 5.4 (d) and 5.6 (d)), the points move

to the corners of the region mimicking the optimal design for problems assuming

a linear model and uncorrelated errors.

(ii) ν = 1.5: Figures 5.5 and 5.7 correspond to Ψ-optimal designs for ν = 1.5 and

uniform prior distribution for φ, and ν = 1.5 and log-normal prior distribution

for φ, respectively. For this correlation function, large values of δ2 correspond to

designs with repeating points and especially, with points at the corners, see for

example Figure 5.5 (d) and Figure 5.7 (d) and for uniform and log-normal prior

on φ respectively. Moreover, if we compare Figure 5.4 with Figure 5.5 and Figure

5.6 with Figure 5.7 for uniform and log-normal prior distributions respectively,

we conclude that the mean function is even more influential as the range of the

correlation is smaller.

In general, if we compare the designs obtained here with the corresponding designs in

Chapter 4, we see that they are not exactly the same. This is because the optimal

design is not unique and every time we obtain a different optimal design. The optimal

designs are not unique because we are finding exact designs and efficient or near-optimal
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Figure 5.6: Ψ-optimal designs for a linear mean function, Matérn correlation function
with ν = 0.5, log-normal prior distribution on φ and known δ2: (a) δ2 = 0, (b) δ2 = 0.5
(c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between each
point and the centre of the design region, averaged across the prior distribution for φ.

93



(a)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2

0.0

0.2

0.4

0.6

0.8

1.0

 0.7 

 0.75 

 0.8 

 0.85 

 0.9 

 0.95 

●

●

●

●

●

●

●

●

●

●

(b)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2
0.0

0.2

0.4

0.6

0.8

1.0

 0.44 

 0.
44

 

 0.
44

 

 0.44 

 0.46 

 0.46 

 0.46 

 0.46 

 0.48 

 0.5 

 0.52 

 0.54 

 0.56 

 0.58 

 0.6 

 0.62 

 0.64 

 0.66 

●

●

●

●

●

●

●

●

●

●

(c)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2

0.0

0.2

0.4

0.6

0.8

1.0

 0.34 

 0.34 

 0.34 

 0.34 

 0.36 

 0.38 

 0.4 

 0.42 

 0.44 

 0.46 

 0.48 

●

●

●●

●

●

●

●

●

●

(d)

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2

0.0

0.2

0.4

0.6

0.8

1.0

 0.19 

 0.19 

 0.19 

 0.19  0.2 

 0.21 

 0.22 

 0.23 

 0.24 

 0.25 

 0.26 

 0.27 

 0.28 

●

●●

● ●●

●

●

● ●

Figure 5.7: Ψ-optimal designs for a linear mean function, Matérn correlation function
with ν = 1.5, log-normal prior distribution on φ and known δ2: (a) δ2 = 0, (b) δ2 = 0.5
(c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between each
point and the centre of the design region, averaged across the prior distribution for φ.
In plot (c) two points are repeated and in plot (d) four points are repeated.
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Figure 5.8: Ψ-optimal designs for a linear mean function, uniform prior distribution on
φ and uniform prior distribution on δ2 with Matérn correlation function (a) ν = 0.5
and (b) ν = 1.5.
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Figure 5.9: Ψ-optimal designs for a linear mean function, log-normal prior distribution
on φ and uniform prior distribution on δ2 with Matérn correlation function (a) ν = 0.5
and (b) ν = 1.5.
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Case Coverage Spread
Linear Constant Linear Constant

Uniform prior distribution φ

ν = 0.5

δ2 = 0 0.2756 0.2643 0.7228 0.7090

δ2 = 0.5 0.3136 0.2672 0.7669 0.6430

δ2 = 1 0.3436 0.2632 0.7703 0.6196

δ2 = 2.5 0.3999 0.2574 0.6432 0.6361

δ2 unknown 0.3084 0.2675 0.7656 0.6440

ν = 1.5

δ2 = 0 0.2771 0.2730 0.7352 0.7339

δ2 = 0.5 0.3879 0.3131 0.6150 0.7023

δ2 = 1 0.4659 0.3022 1.094 0.5901

δ2 = 2.5 0.5934 0.2871 0.9999 0.4405

δ2 unknown 0.3854 0.3081 0.6313 0.7203

Log-normal prior distribution φ

ν = 0.5

δ2 = 0 0.2767 0.2557 0.7062 0.6697

δ2 = 0.5 0.3162 0.2584 0.7410 0.6362

δ2 = 1 0.3607 0.2261 0.6575 0.6389

δ2 = 2.5 0.4553 0.2584 0.5333 0.6351

δ2 unknown 0.3103 0.2585 0.7693 0.6361

ν = 1.5

δ2 = 0 0.2717 0.2658 0.7211 0.7140

δ2 = 0.5 0.3675 0.2878 0.7040 0.7122

δ2 = 1 0.4335 0.2795 0.9858 0.6551

δ2 = 2.5 0.5934 0.2660 0.9999 0.5261

δ2 unknown 0.3626 0.2850 0.7150 0.7135

Table 5.5: Coverage and spread of designs in Figures 5.4–5.9 and Figures A.9–A.14.
Best design for coverage is the one with the smallest value and the best design for
spread is the one with the largest value.

designs are found using computer search.

However, the key point here is that all the designs yield very similar values of the

objective function and they are all highly efficient.

Next, we assign a uniform prior distribution on δ2 and find the optimal design for

ν = 0.5 and ν = 1.5 and both prior distributions of φ. The resulting designs are those

indicated in Figures 5.8 and 5.9.

By comparing Figure 5.8 to Figures 5.4 and 5.5, and Figure 5.9 to Figures 5.6 and 5.7,

it is clear that the designs for unknown δ2 are strongly influenced by small values of δ2.

That is, the choice of points for designs with unknown δ2 resembles those designs for

low δ2. As seen before, designs for ν = 1.5 have points near the corners of the study

region, due to higher and more equal correlation across the region.

To further demonstrate the impact of the range of the correlation on the choice of opti-
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mal design, in Figures 5.10 and 5.11 we provide density plots of the average correlation

between observations at the centre point of the study region and each other point (on a

100× 100 grid) for the four values of δ2 used in the quadrature scheme to approximate

Ψ1(ξ) (3.29). In these plots, the correlation is averaged with respect to the uniform

prior distribution on φ.

From Figure 5.10, when δ2 = 0 and the correlation function is Matérn with ν = 0.5,

the range of the correlation is wider compared with the corresponding range for Matérn

with ν = 1.5 (Figure 5.11); the latter case has much higher mean. This pattern is the

same for all other values of δ2 considered. In general the range of the correlation is

much smaller for ν = 1.5 but the mean is higher.

To summarise, the optimal designs compromise between minimax designs, i.e. the

design points tend to cover the study region and maximin designs, i.e. the design

points are spread out, according to the choice of correlation and mean function and the

prior information on the decay parameter φ and noise-to-signal parameter δ2. Table

5.5 shows the coverage and spread values for 20 Ψ-optimal designs.

Especially for the case of linear mean function, the designs for δ2 = 0 give good coverage

properties but are not good for spread. The designs with the best spread are those for

δ2 = 1, 2.5. The optimal designs are strongly influenced by the degree and the range of

correlation, i.e. the spread of the design points depends crucially on the distribution

of the correlations with less uniform correlations across the study region producing

designs with better coverage properties. Also for more uniform correlations, we see

more influence of the mean function.

Diffuse prior distribution on regression parameters

Design criterion (3.9) is formulated assuming conjugate prior distributions for β and

σ2. If a diffuse prior is used for the trend and variance, namely,

π(β, σ2) ∝ 1

σ2
,

we are able to derive analytically the posterior distributions β|y, φ, δ2 and σ2|y, φ, δ2,

and the predictive distribution yn+1|y, φ, δ2. However, the analytical derivation of the

marginal distribution of the data is not feasible. That is, the distribution y|φ, δ2 does

not have a closed form and this prevents the derivation of the objective function.

However, we can approximate a diffuse distribution if we assign a matrix, R−1, to the

prior distribution of β with very large diagonal elements. We find Bayesian optimal

designs minimising Ψ1(ξ) where a normal prior distribution for the trend parameters

is assumed with zero mean and matrix R−1 = 1000I3.

Also both decay, φ, and noise-to-signal, δ2, parameters are considered unknown with

uniform prior distribution for both. The correlation function is chosen to be the Matérn,
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Figure 5.10: Density plots of the average correlation between observations at the centre
of the study region and all other points for the Matérn correlation function ν = 0.5 and
δ2 = 0, (b) δ2 = 0.2307, (c) δ2 = 0.5 and (d) δ2 = 0.953. The correlation is averaged
with respect to the uniform prior distribution on φ.
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Figure 5.11: Density plots of the average correlation between observations at the centre
of the study region and all other points for the Matérn correlation function ν = 1.5 and
δ2 = 0, (b) δ2 = 0.2307, (c) δ2 = 0.5 and (d) δ2 = 0.953.The correlation is averaged
with respect to the uniform prior distribution on φ.
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Figure 5.12: Optimal designs for linear mean function, diffuse prior distribution on
β, uniform prior distribution on φ and uniform prior distribution on δ2 with Matérn
correlation function (a) ν = 0.5 and (b) ν = 1.5.

we consider both ν = 0.5 and ν = 1.5, corresponding to two different ranges of corre-

lation.

In general, we have seen that the choice of precision matrix does not affect the design.

Based on that we can assume that our Bayesian optimal designs are not sensitive on

the choice of prior for the regression coefficients and we would obtain the same result

if we were assuming a non-informative prior.

Figure 5.12 shows the Bayesian optimal designs for ν = 0.5 and ν = 1.5. If we compare

these two designs with those in Figure A.14, we can see that very similar designs are

obtained when R−1 = 1000I3 and R−1 = I3. We evaluate the efficiencies of the designs

in Figure 5.12 with respect to the optimal designs found by assuming R−1 = I3 (Figure

A.14) and are very high, 0.997 and 0.990, for ν = 0.5 and ν = 1.5 respectively. This

evidence supports our findings in Chapter 4 that our optimal designs are robust to the

choice of prior distribution for β.

5.5 Inference About the Unknown Model Parameters

In general our aim in this thesis is to develop optimal designs for prediction at unob-

served points. However, a secondary objective in many experiments is inference about

the unknown parameters. In this section, we assess the performance of optimal de-

signs for prediction in terms of information gained about unknown model parameters.

Throughout, we use Markov Chain Monte Carlo methods to make inference about the

posterior distributions.
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5.5.1 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo (MCMC) methods are popular for sampling from posterior

distributions which do not have a standard form, see, for example, Gelman et al. (2003).

The main idea of MCMC is to generate a Markov chain whose stationary distribution

is the posterior distribution of interest and then collect samples from that chain. The

two most popular MCMC algorithms are the Metropolis-Hastings (Metropolis et al.,

1953; Hastings, 1970) and the Gibbs sampling (Geman and Geman, 1984) algorithms.

We start this section with these two techniques.

1. Metropolis-Hastings Algorithm

The Metropolis-Hasting algorithm samples from a non-standard posterior distri-

bution through an acceptance-rejection mechanism. A proposal distribution is

used to suggest an arbitrary next step in the chain and the accept-reject step

controls the moves of the chain. Assume that we want to obtain a sample from

the density π(θ̃|y), for some unknown model parameters θ̃. The MH algorithm

proceeds as follows:

i. Choose a starting value θ̃0, at t = 1

ii. At iteration t draw a candidate value θ̃∗ from the proposal distribution

q(θ̃∗|θ̃t−1)

iii. Calculate the acceptance probability, α = min
{

1, π(θ̃∗|y)q(θ̃t−1|θ̃∗)
π(θ̃t−1|y)q(θ̃∗|θ̃t−1)

}
iv. Sample U ∼ Unif(0, 1)

v. If U < α then accept θ̃∗ = θ̃t else assign θ̃t−1 = θ̃t

vi. set t = t+ 1, go to ii.

According to the choice of the proposal distribution there are some special cases

of the MH algorithms, the Random-Walk Metropolis and Independent Metropolis-

Hastings algorithms. For the former, we assume that the proposal distribution

is symmetric, i.e. q(θ̃∗|θ̃t−1) = q(θ̃t−1|θ̃∗), and depends on the previous state,

while for the latter case the proposal distribution is independent of θ̃t−1.

2. Gibbs Sampler

The Gibbs sampler samples θ̃ = (θ̃1, . . . , θ̃k) from full conditional posterior dis-

tributions. Unlike the MH algorithms, the Gibbs sampler updates the chain one

component at a time. The Gibbs sampler proceeds as follows:

i. Choose a starting value θ̃0
1, . . . , θ̃

0
k, at t = 1

ii. Repeat draws:

θ̃t1 ∼ π(θ̃1|θ̃t−1
2 , θ̃t−1

3 , . . . , θ̃t−1
k ,y)

θ̃t2 ∼ π(θ̃2|θ̃t1, θ̃
t−1
3 , . . . , θ̃t−1

k ,y)

θ̃t3 ∼ π(θ̃3|θ̃t1, θ̃t2, . . . , θ̃
t−1
k ,y)
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...

θ̃tk ∼ π(θ̃k|θ̃t1, θ̃t2, . . . , θ̃tk−1,y)

Typically, we monitor the performance of an MCMC algorithm by inspecting the value

of the acceptance rate and using diagnostic plots and statistics to decide about the

mixing, i.e. has the chain sufficiently explored the entire posterior distribution, and the

convergence. As a matter of practice, we throw out a certain number of the first draws,

known as the burn-in, in order to make sure that our sample does not depend on the

starting point and is closer to the stationary distribution. Another issue is the choice of

simulated sample size and since iterateions in an MCMC algorithm are not independent,

we can use the effective sample size. That is an estimate of the equivalent number of

independent iterations that the chain represents. The formula for the effective sample

size is given by:

ESS =
N

1 + 2
∑∞

t=1 ρt
, (5.10)

where N is the original sample size and ρt is the autocorrelation at lag t. Autocorrela-

tion of lag t is the correlation between samples that are t time steps apart.

5.5.2 Example using a Ψ-optimal design

In this section we make inference about the unknown parameters of the model using

optimal designs for prediction for the following three cases:

(i) both φ and δ2 known,

(ii) φ unknown and δ2 known,

(iii) both φ and δ2 unknown.

For all three cases, we assume the Gaussian process model (2.6) with linear mean

function and exponential correlation function with Euclidean distance.

We select informative normal-inverse gamma prior distributions for β and σ2, with

β ∼ N(0, σ2I) and σ2 ∼ IG (3, 1).

Initially, we find the Ψ-optimal design for prediction when there is no prior data avail-

able. We find a design with n = 10 runs for prediction on a 10×10 grid. For each design,

a simulated dataset is generated in the region X = [−1, 1]2 from the Gaussian process

model (2.6), with zero mean, i.e. β = 0 and covariance parameters σ2 = 1, φ = 0.2

and δ2 = 0 or δ2 = 1. We refer to this model as the simulation model. We choose this

simulation model since Diggle and Lophaven (2006) used it in their simulation studies.

Case (i) Known φ and δ2: When the covariance parameters are known, the posterior

distributions of the unknown parameters can be expressed analytically. The posterior
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Figure 5.13: Ψ-optimal designs for prediction: (a) φ = 0.2 and δ2 = 0, (b) φ = 0.2 and
δ2 = 1.

distribution π(β|y) is a multivariate t-distribution (2.18), with inverse gamma (2.19)

for π(σ2|y), see Chapter 2.

The objective function Ψ1(ξ) when φ and δ2 are known is derived in Section 5.3. Initially

we find the optimal design by minimising Ψ (5.1). We considered two combinations

of known values of φ and δ2, (φ, δ2) = (0.2, 0) and (φ, δ2) = (0.2, 1). The first combi-

nation correspond to a correlation of 0.56 for observations at two points separated by

the maximum Euclidean distance,
√

8. The second combination corresponds to a low

correlation, i.e. 0.23 for distance
√

8. Figure 5.13 shows the optimal designs for the

two combinations.

Firstly, using the optimal design for (φ, δ2) = (0.2, 0) (Figure 5.13 (a)), we simulate

100 independent data sets yk : (k = 1, . . . , 100) from the simulation model. For each

simulated data set, we directly simulate 1000 values from the posterior distributions of

the unknown parameters β and σ2.

Figures 5.14 and 5.15 show histograms of posterior samples, with the posterior densities,

from the simulated data sets for δ2 = 0 and δ2 = 1, respectively. In this case, only the

regression coefficients and the variance of the Gaussian process are unknown and are

presented in plots (a), (b), (c) and (d).

Table 5.6 summarises these results in terms of marginal posterior means and 95%

Highest Posterior Density (HPD) intervals for the unknown model parameters. For

each parameter, the 95% HPD intervals include the true values from the simulation

model.
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δ2 = 0 δ2 = 1

Parameter True value 95% CI 95% CI

β0 0 -0.6863, 0.8473 -1.5310, 1.3691

β1 0 -0.1679, 0.5944 -0.9560, 1.0371

β2 0 -0.5684, 0.2359 -1.0561, 0.8149

σ2 1 0.3382, 1.5411 0.2528, 1.1316

Table 5.6: 95% Highest Posterior Density intervals for the parameters of the model
fitted using the Ψ-optimal design for (φ, δ2) = (0.2, 0) and (φ, δ2) = (0.2, 1).
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Figure 5.14: Posterior histograms of parameters for the Ψ-optimal design for (φ, δ2) =
(0.2, 0) (a) β0, (b) β1, (c) β2, (d) σ2. In each figure, the red line represents the prior
density and vertical black line the true value.
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Figure 5.15: Posterior histograms of parameters for the Ψ-optimal design for (φ, δ2) =
(0.2, 1) (a) β0, (b) β1, (c) β2, (d) σ2. In each figure, the red line represents the prior
density and vertical black line the true value.

For each one of the 100 simulated data sets we found the posterior distributions for β

and σ2. Table 5.7 shows the average posterior mean and variance across the data sets

for δ2 = 0 and δ2 = 1. We can see that the average posterior mean are close to the

true value of the parameters. In particular, the posterior mean of the Gaussian process

variance is substantially closer to the true value (= 1) than the prior mean (= 0.5031).

However, the spread is large, as can be seen from the average posterior variance.
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Figure 5.16: Ψ-optimal designs for prediction for unknown φ: (a) δ2 = 0 and (b) δ2 = 1.

Case (ii) Unknown φ and known δ2: The Ψ-optimal design is found by minimising

the objective function Ψ1(ξ) given by (3.33). The optimal designs for δ2 = 0 and

δ2 = 1 are displayed in Figure 5.16. Again we generate 100 simulated data sets for each

design using the simulation model and find the marginal posterior distributions of the

unknown parameters for each data set.

For this case, there is no analytical form for the posterior distributions and hence infer-

ence must be performed by simulations. A uniform distribution on [0.1, 1] is assumed

for φ and samples from the posterior distributions of the unknown parameters are

obtained using MCMC methods, employing similar procedure to the Metropolis with

Gibbs algorithm described by Diggle and Ribeiro (2007):

1. Using a MH algorithm with log-normal proposal distribution (as φ is positive),

we generate from the posterior distribution (2.32).

2. Given the sampled value of φ, we generate from the conditional distributions of β

and σ2, a t-distribution (2.18) and inverse gamma (2.19) distribution respectively.

3. We repeat the procedure until 1000 samples are taken from the marginal posterior

distribution of φ, β and σ2.

Case Average posterior mean Average posterior variance
β0 β1 β2 σ2 β0 β1 β2 σ2

δ2 = 0 -0.0313 0.0354 0.0258 0.7192 3.6329 0.9475 0.94801 0.1004

δ2 = 1 0.0149 0.0430 0.0215 0.6997 4.6013 2.0205 1.8986 0.09479

Table 5.7: Average posterior mean and variance across the 100 simulated data sets
when φ and δ2 are known.
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Figure 5.17: Posterior histograms of parameters for the Ψ-optimal design for unknown
φ and δ2 = 0 (a) β0, (b) β1, (c) β2, (d) σ2, (e) φ. In each figure, the red line represents
the prior density and vertical black line the true value.

Figures 5.17 and 5.18 show the posterior densities for the for δ2 = 0 and δ2 = 1. Once

again, the plots of these posterior samples are based only one simulated dataset.

The shapes of the posterior densities for β and σ2 resemble that of normal and inverse

gamma densities respectively. Table 5.8 summarises the results in terms of 95% HPD

intervals for the unknown model parameters. For both values of δ2, the 95% HPD

intervals include the true values of the unknown trend parameters. However, it is

generally known that when a nugget effect is included in the model, it is difficult to

estimate σ2.

Table 5.9 shows the average posterior mean and variance across the 100 data sets.

Again, the difficulty in estimating σ2 when δ2 is non-zero is clear; when δ2 = 0 the

average posterior variance is 0.0362 whereas for δ2 = 1 is 0.0937. The noise-to-signal

ratio and the variance are strongly related, as δ2 = τ2/σ2, and for this reason there is

a difference between the cases.
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Figure 5.18: Posterior histograms of parameters for the Ψ-optimal design for unknown
φ and δ2 = 1 (a) β0, (b) β1, (c) β2, (d) σ2, (e) φ. In each figure, the red line represents
the prior density and vertical black line the true value.
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Figure 5.19: Ψ-optimal designs for prediction for unknown φ and δ2.

Case (iii) Unknown φ and δ2: Here we assign to δ2 a uniform prior distribution on

the interval [0, 1]. The Ψ-optimal design in Figure 5.19 was obtained by minimising the

objective function Ψ1(ξ) given by (3.29). Using this design, we generate 100 data sets

from the simulation model, as before.

To sample from the posterior distribution and make inference about the unknown pa-

rameters we follow a similar algorithm to that described for unknown φ and known

δ2. The only difference is that we employ a MH algorithm to sample from the joint

posterior distribution of φ and δ2, given by (2.34). We use a log-normal proposal dis-

tribution for φ and a uniform distribution for to propose values of δ2. We then sample

from the conditional distributions for β and σ2. We repeat this procedure in order to

obtain 1000 samples of (β, σ2, φ, δ2).

Table 5.10 summarises the results in terms of posterior means and 95% HPD intervals

for all the parameters of the model. With regard the covariance parameters, σ2, φ

and δ2, the width of the credible intervals underline the difficulty of estimating these

parameters precisely.

δ2 = 0 δ2 = 1

Parameter True value 95% CI 95% CI

β0 0 -0.6470, 0.6055 -0.7508, 0.7128

β1 0 -0.5646, 0.3164 -0.9195, 0.3665

β2 0 -0.4809, 0.4069 -0.1329, 1.2383

σ2 1 0.3270, 1.3714 0.2433, 1.2682

φ 0.2 0.0797, 0.7789 0.0977, 0.8775

Table 5.8: 95% Highest Posterior Density intervals for the parameters of the model
fitted using the Ψ-optimal design for unknown φ and δ2 = 0 and δ2 = 1.
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Case Average posterior mean
β0 β1 β2 σ2 φ

δ2 = 0 -0.0322 -0.0461 0.0248 0.3895 0.5614

δ2 = 1 - 0.0104 0.0348 -0.0792 0.6703 0.5405

Average posterior variance
β0 β1 β2 σ2 φ

δ2 = 0 0.13523 0.0788 0.0688 0.0362 0.0403

δ2 = 1 0.2654 0.1961 0.19115 0.0937 0.0527

Table 5.9: Average posterior mean and variance across the 100 simulated data sets
when φ is unknown and δ2 is known.

δ2 = 0 δ2 = 1

Parameter True value 95% CI 95% CI

β0 0 -0.7145, 0.3855 -0.5693, 0.7548

β1 0 -0.2838,0.4599 -0.3895, 0.6649

β2 0 -0.4659, 0.2715 -0.1847, 0.8709

σ2 1 0.1785, 0.9384 0.5235, 2.5182

φ 0.2 0.1130, 0.8813 0.2233, 0.9834

δ2 0/1 0.0213, 0.9431 0.2943, 0.9989

Table 5.10: 95% Highest Posterior Density intervals for the parameters of the model
fitted using the Ψ-optimal design for unknown φ and δ2.

Case Average posterior mean

β0 β1 β2 σ2 φ δ2

δ2 = 0 -0.0944 -0.0671 -0.0049 0.3059 0.4655 0.3844

δ2 = 1 0.0733 -0.0163 -0.0424 0.8361 0.5650 0.6799

Average posterior variance

β0 β1 β2 σ2 φ δ2

δ2 = 0 0.1172 0.0583 0.0587 0.0228 0.0470 0.0664

δ2 = 1 0.3123 0.1998 0.1998 0.2068 0.0524 0.0528

Table 5.11: Average posterior mean and variance across the 100 simulated data sets
when φ and δ2 are unknown.

Histograms of the posterior samples for each parameters for one simulated data set are

presented in Figures 5.20 (δ2 = 0) and 5.21 (δ2 = 1) respectively.

Table 5.11 shows the average of the posterior mean for all the unknown parameters

across the 100 generated data sets. Similarly to the previous case of unknown φ and

fixed δ2, we again see that the covariance parameters are difficult to estimate.
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Figure 5.20: Posterior histograms of parameters for the Ψ-optimal design for unknown
φ and δ2 (a) β0, (b) β1, (c) β2, (d) σ2, (e) φ, (f) δ2. In each figure, the red line represents
the prior density and vertical black line the true value.
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Figure 5.21: Posterior histograms of parameters for the Ψ-optimal design for unknown
φ and δ2 (a) β0, (b) β1, (c) β2, (d) σ2, (e) φ, (f) δ2. In each figure, the red line represents
the prior density and vertical black line the true value.
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5.6 Comparison With Existing Designs

The majority of designs for spatial data in the existing literature were found using a

frequentist approach with either the covariance parameters assumed known a priori or

estimated using likelihood methods and then their estimated values plugged into the

design objective function.

The Bayesian approach has not been very popular due to computational issues. How-

ever, Diggle and Lophaven (2006) proposed a Bayesian design criterion which minimised

the averaged prediction variance, Ψ(ξ) (3.7), similar to our approach. The difference

between their approach and our approach is that we propose an approximation to the

objective function Ψ(ξ) (3.7) and, hence if we use conjugate priors we are able to in-

tegrate out the data. The approximation allow us to optimise the objective function

and find optimal designs. Rather that find optimal designs under Ψ(ξ), Diggle and

Lophaven (2006) assumed two classes of designs, regular lattice, i.e. a set of points

that are equally spaced in the study region, augmented with close pairs or infill points.

1. They defined the lattice plus close pairs design as a design which consists of

locations in a regular p × p lattice together with a further m points, each of

which is located uniformly at random within a disc of radius a whose centre is a

randomly selected point of the lattice. They use the notation (p× p,m, a).

2. They defined the lattice plus infill design as a regular p× p lattice together with

further locations in a more finely spaced r × r lattice within m randomly chosen

cells of the primary lattice. Hence, r2−4 additional points are added in the initial

lattice. Their notation for design is (p× p,m, r × r).

Diggle and Lophaven (2006) stated that the exact choice of close pairs or infill pairs

has only a small impact on the Bayesian objective function.

In this section we illustrate the efficiency of our Bayesian Ψ-optimal designs relative

to (i) a regular lattice, (ii) a lattice plus close pairs designs (LPCPD) and (iii) lattice

plus infill designs (LPIFD), when the total number of points is n = 36. Specifically,

we use the regular lattice 6 × 6, the (4 × 4, 20, 0.5) lattice plus close pairs design and

the (4 × 4, 4, 3 × 3) lattice plus infill design with our Bayesian optimal design found

by minimising the objective function Ψ1(ξ), (3.9). All the designs were constructed

on the unit square, i.e. X = [0, 1]2 with XP a 10 × 10 regular grid. We compare the

performance of these four designs under our objective function.

The lattice plus close pairs design (4 × 4, 20, 0.5) and the lattice plus infill design

(4× 4, 4, 3× 3) vary because of the random selection of the additional locations and for

this reason we average the objective function over five independent replicates. Figure

5.22 shows examples of a (4×4, 20, 0.5) lattice plus close pairs design and a (4×4, 4, 3×3)

lattice plus in-fill design.

We consider the Gaussian process model (2.6) with two cases of mean function, constant
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Figure 5.22: Examples of a (a) (4 × 4, 20, 0.5) lattice plus close pairs design, and (b)
(4× 4, 4, 3× 3) lattice plus in-fill design.

and linear, and exponential correlation function. The exponential correlation function

is chosen as it is the function used by Diggle and Lophaven (2006). In addition, the

correlation in the region X = [0, 1]2 is very high for the Matérn ν = 1.5, 2.5, resulting

in near singular correlation matrices and computational issues. The prior specification

for the model parameters is as follows. For φ we used a uniform prior distribution

(0.1, 1.5) which corresponds to range of correlation from 0.22 to 0.90 for a pair of points

at the maximum distance. We also chose a uniform prior distribution (0.07, 0.4) which

correspond to a narrower range of correlation from 0.67 to 0.99. Diggle and Lophaven

(2006) considered for φ a uniform prior distribution (0.4, 10000) which corresponds to

a range of correlation from 0.65 to ' 0. For δ2 we used a uniform prior distribution on

(0, 1), following Diggle and Lophaven (2006). For σ2 and β a normal-inverse gamma

conjugate prior distribution is assumed, in contrast to the diffuse prior which was

used by Diggle and Lophaven (2006). In order to approximate their diffuse prior, we

assume β ∼ N(0, 1000σ2) for a model with a constant mean and β ∼ N(0,R−1σ2) with

R−1 = 1000I3 for a model with linear trend. Similar to preceding sections, we choose

σ2 ∼ IG(3, 1).

Initially, we found the Bayesian optimal designs for each prior specification by min-

imising the objective function Ψ1(ξ) in (3.9). The method for selecting an optimal

Bayesian design for this example is as follows. We generate 30 randomly selected start-

ing designs from X = [0, 1]2 with 36 points. Then for each starting design we use the

coordinate exchange algorithm to find a design that minimises Ψ1(ξ). From the 30

designs obtained we select the design with the minimum Ψ1(ξ) value.

In order to compare the designs we evaluate the objective function Ψ(ξ), (5.1), for each
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of the four designs (Ψ-optimal, regular lattice, LPCPD, LPIFD) for all combinations

of φ = 0.2, 0.4, 0.6, 0.8, 1 and δ2 = 0, 0.2, 0.4, 0.6, 0.8, 1.

Figures 5.23 and 5.24 compare the performance of the four designs for constant and

linear trend respectively, with the regular 6× 6 lattice, (4× 4, 20, 0.5) lattice plus close

pairs, and (4× 4, 4, 3× 3) lattice plus infill design. For both constant and linear mean

function the Bayesian Ψ-optimal design performs better than the other three designs,

giving the smallest value of the objective function for all combinations of φ and δ2.

If we compare Figures 5.23 and 5.24 with similar results from Diggle and Lophaven

(2006), we see that we do not obtain the same ordering of designs. Those authors

found that the LPCPD gave lower values of the objective function compared with

LPIFD and regular lattice designs. The reason for the difference to our results is due

to the assumed correlation parameters. In the region [0, 1]2 the maximum distance

between points is
√

2 and for the values of φ = 0.2, 0.4, 0.6, 0.8, 1 the correlation is

0.753, 0.568, 0.428, 0.326, 0.243, averaged across δ2, at this distance. The correlation

parameters assumed by Diggle and Lophaven (2006) correspond to very low correlation,

i.e. 0.008, 0.029, 0.094, 0.17, 0.243.

The highest correlation considered in Diggle and Lophaven (2006) corresponds roughly

to the lowest we considered. We use different correlation parameters compared to

Diggle and Lophaven (2006) to get more interesting designs, as the main objective is

to study how high correlation affects the choice of optimal design points.

These results are in line with our findings in previous sections. If we assume a constant

mean, a Ψ-optimal design has points uniformly spread across the study region, see

Section 5.4.4 and Figures A.9-A.14. Hence in Figure 5.23, the Bayesian Ψ-optimal

design and the regular lattice give lower values of the objective function than the other

two designs. However, when a linear trend is assumed, the designs are influenced by

the need to estimate the trend parameters and design points can be close together,

especially when the correlation is lower. For this reason, in Figure 5.24 (d) and (f),

the LPCPD which has points very close together, gives smaller values of the objective

function that the LPIFD.

Based on our evidence that the Bayesian optimal design is sensitive to the range of

the correlation, (Section 5.4.4) we also considered a second prior on φ ∼Unif(0.07, 0.4),

which corresponds to a smaller range of prior values. The comparison between the

Bayesian optimal design and the other three designs is displayed in Figure 5.25 for

constant mean and in Figure 5.26 for the linear mean function.

The ranks of the LPCPD, LPIFD and lattice design is the same here as for the first prior

distribution on φ. The difference between Figures 5.23–5.26 is only for the Bayesian

Ψ-optimal design. In the second case the Bayesian Ψ-optimal design yields objective

function values very close values to these of lattice design because of smaller range of

correlation. As this prior distribution indicates higher correlation, the best design in
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Figure 5.23: Comparison under objective function Ψ (5.1) of the Ψ-optimal design for
constant mean, the regular 6×6 lattice, the (4×4, 20, 0.5) LPCPD, the (4×4, 4, 3×3)
LPIFD for φ ∼Unif(0.1, 1.5).
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Figure 5.24: Comparison under objective function Ψ (5.1) of the Ψ-optimal design for
linear mean, the regular 6 × 6 lattice, the (4 × 4, 20, 0.5) LPCPD, the (4 × 4, 4, 3 × 3)
LPIFD for φ ∼Unif(0.1, 1.5).
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φ ∼ Unif(0.1, 1.5) φ ∼ Unif(0.07, 0.4)
Design Constant mean Linear mean Constant mean Linear mean

Ψ-optimal 0.3267 0.3287 0.2872 0.2907

Lattice 0.3283 0.3308 0.2880 0.2922

LPCPD 0.3337 0.3357 0.2893 0.2926

LPIFD 0.3316 0.3345 0.2890 0.2940

Table 5.12: Evaluation of the objective function Ψ1(ξ) (3.29) when φ and δ2 are un-
known for Ψ-optimal, lattice, LPCPD, LPIFD designs.

this case pushes points as far apart as possible as two points close together will provide

highly correlated observations and provide very similar information for predictions at

a nearby location.

Up to this point, we have compared designs by evaluating the average prediction vari-

ance at combination of values for φ and δ2. In Table 5.12 we evaluate the objective

function Ψ1(ξ) (3.29) for φ and δ2 both unknown. This objective function is approx-

imated by quadrature methods as it described in Section 3.5.1. Again, the Bayesian

Ψ-optimal design for both constant and linear trend results to lower values of the ob-

jective function Ψ1(ξ) (3.29) compared to lattice, LPCPD and LPIFD designs.

5.7 Summary and Discussion

In this chapter we applied a Bayesian optimality criterion for spatial experiments that

minimises the average prediction variance. Numerical search is used to find the optimal

design, employing the coordinate exchange algorithm. Our main contribution to the

area of the spatial design is to consider all the model parameters unknown and follow

a fully Bayesian approach to design.

Although our approach is less computationally expensive than, for example, Monte

Carlo evaluation of the objective function, searching for the optimal design can still be

very hard. The coordinate exchange algorithm and the optimisation method used in

this thesis allows some design points to be very close together, which leads to an almost

singular correlation matrix, especially when there is no nugget in the model. A possible

solution to avoid this numerical complication is to add an extra step in our coordinate

exchange algorithm to prevent points being placed within a distance of specific radius

from another point.

117



(a)

0.2 0.4 0.6 0.8 1.0

0.
01

0.
02

0.
03

0.
04

0.
05

φ

ob
je

ct
iv

e 
fu

nc
tio

n

●

●

●

●

●

δ2 = 0

● Lattice
LPCPD
Ψ−optimal
LPIFD

(b)

0.2 0.4 0.6 0.8 1.0
0.

13
0.

14
0.

15
0.

16
0.

17
0.

18
φ

ob
je

ct
iv

e 
fu

nc
tio

n
●

●

●

●

●

δ2 = 0.2

● Lattice
LPCPD
Ψ−optimal
LPIFD

(c)

0.2 0.4 0.6 0.8 1.0

0.
24

0.
25

0.
26

0.
27

0.
28

0.
29

φ

ob
je

ct
iv

e 
fu

nc
tio

n

●

●

●

●

●

δ2 = 0.4

● Lattice
LPCPD
Ψ−optimal
LPIFD

(d)

0.2 0.4 0.6 0.8 1.0

0.
34

0.
35

0.
36

0.
37

0.
38

0.
39

0.
40

0.
41

φ

ob
je

ct
iv

e 
fu

nc
tio

n

●

●

●

●

●

δ2 = 0.6

● Lattice
LPCPD
Ψ−optimal
LPIFD

(e)

0.2 0.4 0.6 0.8 1.0

0.
46

0.
48

0.
50

0.
52

φ

ob
je

ct
iv

e 
fu

nc
tio

n

●

●

●

●

●

δ2 = 0.8

● Lattice
LPCPD
Ψ−optimal
LPIFD

(f)

0.2 0.4 0.6 0.8 1.0

0.
56

0.
58

0.
60

0.
62

φ

ob
je

ct
iv

e 
fu

nc
tio

n

●

●

●

●

●

δ2 = 1

● Lattice
LPCPD
Ψ−optimal
LPIFD

Figure 5.25: Comparison under objective function Ψ (5.1) of the Ψ-optimal design for
constant mean, the regular 6×6 lattice, the (4×4, 20, 0.5) LPCPD, the (4×4, 4, 3×3)
LPIFD for φ ∼Unif(0.07, 0.4).
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Figure 5.26: Comparison under objective function Ψ (5.1) of the Ψ-optimal design for
linear mean, the regular 6 × 6 lattice, the (4 × 4, 20, 0.5) LPCPD, the (4 × 4, 4, 3 × 3)
LPIFD for φ ∼Unif(0.07, 0.4).
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Large spatial datasets pose computational challenges to the application of a Gaussian

process model. In particular, estimation and prediction involve inversion of an n × n
covariance matrix for a dataset of size n, which can be computationally intractable for

large datasets. We briefly review three recently developed approaches for modelling

large spatial data sets that have shown promise as general methodologies to overcome

this obstacle.

The first approach is based on a reduced rank approximation of the Gaussian process.

Banerjee et al. (2008) proposed a method to reduce the dimensionality of a Gaussian

process model when the aim is spatial prediction. The idea here is the spatial informa-

tion available from the dataset observed at all the locations can be summarised from

a smaller but representative set of locations, called the knots. The lower dimensional

subspace is chosen by the user by selection a set of knots where the parent process is de-

fined instead of the original process. The parent process is realisations of the Gaussian

process at the knots. The best linear unbiased prediction of the Gaussian process at

any fixed point based on the parent process is the predictive process, which is defined

as a kriging interpolator and has a covariance function that is completely specified by

the parent covariance function. A drawback of this approach is that it fails to capture

the small scale dependence accurately. Finley et al. (2009) discussed this limitation of

the reduced rank method and also indicated the importance of knot design, that is how

the set of knots is chosen.

The second approach for large datasets was proposed by Kaufman et al. (2008) where

the covariance function is tapered and a sparse covariance matrix approximation to

covariance matrix is constructed. This method introduces zero covariance for distant

pairs of observations and then efficient sparse matrix techniques can be applied. In

contrast to reduced rank methods, which account for the large scale variation effectively,

the covariance tapering method of Kaufman et al. (2008) may fail to capture the large

scale variation and may limit modelling flexibility. For this reason it is important to

choose the mean function since now all the large scale variation is captured through

the mean function. However, this method is very effective for small scale variation.

Sang and Huang (2012) proposed a third approach which combined the two approaches

of Banerjee et al. (2008) and Kaufman et al. (2008) called full scale approximation of the

covariance function. Using both a reduced rank representation and tapered covariance

function, it captures both the large scale and small scale variations. For this approach

we need to specify two parameters, the number of knots and the taper range.

These three approaches have been applied in the statistical analysis and modelling of

large spatial datasets. Inversion of the covariance matrix is repeated many times in our

exchange algorithm when finding an optimal design, and hence extension of work in

this chapter could be to apply these three methods to the problem of Bayesian optimal

designs to reduce the computational burden.

Another, related avenue of future work could be to extend our method to choose the
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optimal set of knots for the reduced rank method. Banerjee et al. (2008) and Finley

et al. (2009) indicated that the selection of knots is a challenging problem, and consid-

ered standard space filling designs and the model-based approach introduced by Diggle

and Lophaven (2006). Recently, Gelfand et al. (2013) indicated that a model-based

approach for knot selection is preferable to standard space-filling techniques as it in-

corporates the dependence structure into the knot design. Both Finley et al. (2009)

and Gelfand et al. (2013) proposed an algorithm to find the optimal knot design using

as a design criterion the minimisation of the average prediction variance.

Gelfand et al. (2013) performed simulation studies to explore how the size and the

configuration of the set of knots affected model fitting. They investigated a space

filling design, the lattice plus close pairs designs and lattice plus infill designs of Diggle

and Lophaven (2006) and an optimal design minimising the average prediction variance.

They concluded that the optimal design provide improved model fit and prediction over

the other designs. Therefore an extension of our work with regard to knot selection

is to use our closed-form approximation Ψ1(ξ) to find the optimal set of knots. The

advantage of our approach is that instead of using a sequential search algorithm to find

an optimal designs, we are going to employ the coordinate exchange algorithm and

optimise.

One of the assumptions we have made about the Gaussian process model is that a

stationary isotropic correlation function describes the correlation between observa-

tions at two locations. However, we can extend the stationary correlation functions

to anisotropic correlation functions where the spatial correlation between two obser-

vations depends upon the separation vector and not only on its length. In general

anisotropy is difficult to deal with but there are some cases which it is tractable see

for example Banerjee et al. (2004) and reference therein. The most popular case is

the geometric anisotropy where the coordinate space can be linearly transformed to

an isotropic function, more details can be found in Banerjee et al. (2004). Using an

anisotropic correlation function we have to define more parameters, and then from the

Bayesian prospective to assign prior to those parameters as well. Thus the complexity

of the Gaussian process model increases and the problem of finding Bayesian optimal

designs is more complicated. In Chapter 7 we use separable anisotropic correlation

functions and allow different correlation parameters in each dimension.

In many real examples of collecting spatial data the stationarity assumption may also

violated. Banerjee et al. (2004) presented approaches for nonstationary spatial process

models. In the context of spatial design, Fuentes et al. (2007) employed a non-stationary

covariance function and proposed an entropy-based design criterion based on evaluating

the posterior predictive entropy. An alternative solution to this problem can be the

use of Bayesian treed Gaussian process models, proposed by Gramacy and Lee (2008),

where the region of interested is partitioned and a stationary Gaussian process model

is fitted to the data in each partition. The latter approach can directly apply to our

Bayesian design criterion and is an area for future research.
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Finally, moving away from the Gaussian framework increases the complexity of finding

optimal designs. Recently, Evangelou and Zhu (2012) considered the case of augmenting

an existing design for discrete data by minimising the average prediction variance.

They proposed an approximation to the posterior predictive variance as the prediction

variance is not analytically tractable even for the case of known correlation parameters.

Questions related to the design problems when the correlation parameters are unknown

have yet to be addressed and also the problem has yet to be viewed from a Bayesian

perspective.
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Chapter 6

Application of Spatial Design to

Monitoring Chemical Deposition

The main objective of this chapter is to demonstrate the design methodology from

Chapter 3 on a real environmental example. We start with the monitoring network in

the eastern USA as described in Section 1.1.1 and consider the deletion of locations

from the network of 122 stations. The network measures chemical deposition, including

pollutants such as sulphur dioxide, nitrogen oxides and heavy metals. These chemicals

are emitted to the air, transformed to acid and return to the Earth through wet depo-

sition. In the eastern USA, this chemical deposition is mainly because of large fossil

fuel power plants.

We distinguish between two design situations for reducing the existing network: prospec-

tive design, where we find the optimal design in advance of data collection, and ret-

rospective design where we incorporate data from the existing monitoring network to

find an optimal design.

6.1 Introduction

The monitoring dataset contains deposition data measured at 122 stations irregularly

placed over the eastern USA. A map of the region with the respective locations of the

122 measurement stations is displayed in Figure 6.1 together with the 10 sites at which

prediction is required. The available data give the measurements of weakly deposition

for the 52 weeks in the year 2001.

Boxplots of the weekly sulphate deposition levels (kilograms per hectare) are plotted

in Figure 6.2. The plots confirm the intuitively obvious fact that deposition levels are

higher on average for the wetter spring and summer months than the dryer winter

months; see for example, Brook et al. (1995).

The average weekly wet sulphate deposition at these stations for the year 2001 yields
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Figure 6.1: Monitoring locations ( ) of the chemical deposition dataset and prediction
locations ( ) within the region of the eastern USA.

the total sulphate deposition in eastern USA for this year. At this point, we consider

only the spatial correlation between the data collected at the stations, and for this

reason we remove the temporal correlation by averaging the deposition across time and

consider as the response the annual total sulphate deposition measured at each station.

This annual deposition is displayed in Figure 6.3.
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Figure 6.2: Boxplots of weekly deposition: wet sulphate.
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Figure 6.3: Contour plot of the total annual sulphate deposition in 2001, together with
sampling ( ) and prediction ( ) locations.

The prediction sites are chosen in order to be spread across the study region without

forming clusters. Also they are chosen to be in areas which are exposed to all levels of

sulphate deposition, see for example Figure 6.3. Finally, we chose some sites to be in

areas where there are no close monitoring stations.

In this chapter, we assume the Gaussian process model (2.6) for the chemical deposition

data and consider both constant mean, k = 1, and linear trend, k = 3. The correlation

between observations is modelled by the Matérn correlation function (2.4) with ν = 0.5,

resulting in the commonly applied exponential correlation function.

We use the geodesic distance between two locations with given latitudes, λ1 and λ2,

and longitudes, γ1 and γ2, i.e. the geodesic distance d is the distance at the surface of

the Earth considered as a sphere of radius R = 6371km. The geodesic distance is the

length of the arc of a great circle joining the two locations, defined as

d = R arccos{sin(λ1) sin(λ2) + cos(λ2) cos(γ1 − γ2)}.

The design problem for this environmental application concerns which monitoring sta-

tions to remove if it is necessary to reduce the network to 40 stations. We want to find

the optimal way to reduce the number of the stations with minimum loss of prediction

accuracy. We address both the prospective and the retrospective design problems. The
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former approach does not take into account any available data, while the latter ap-

proach uses available data to update the prior information assumed when finding the

optimal configuration of the stations.

6.2 Design Search via the Modified Fedorov Point Ex-

change Algorithm

In order to find a Ψ-optimal design, we employ the modified Fedorov point exchange

algorithm, Atkinson et al. (2007, Ch. 3). This algorithm is a natural choice if we

consider the 122 stations as a candidate list of possible design points. This small list

of possible design points mitigates many of the advantages of the coordinate exchange

algorithm described in Section 3.6.1 and employed in Chapter 5.

The basic steps for the modified Fedorov algorithm are given below:

1. Construct a candidate list with N points.

2. Pick a starting design composed of n points, chosen, for example, randomly from

the candidate list and calculate the design performance measure (objective func-

tion) for the chosen criterion.

3. Set i = 1, j = 1.

4. Exchange the ith design point with the jth candidate point. Keep the exchange

if it improves the objective function, otherwise, reverse the set up.

5. If j < N , set j = j + 1 and go to 4, otherwise, if i < n, set i = i + 1, j = 1 and

return to 4.

6. If i = n, return to 3 and repeat until no improvement can be made.

In this chapter, the starting design is composed of 40 points which are randomly selected

from the 122 locations of monitoring stations, and then these points are swapped with

the 122 points in the candidate list. This algorithm does not allow repeat points in

the design. In each iteration, the objective function Ψ1 (3.29) is evaluated. The same

algorithm is applied for both prospective and retrospective designs.

6.3 Prospective Design

In this section we apply our methodology for Bayesian optimal designs when no prior

data are available. The correlation between the observations at two stations is modelled

by the exponential correlation function, (2.4) with ν = 0.5, using the geodesic distance

between two monitoring stations. The correlation function depends upon the unknown

decay parameter φ and three different ranges of correlation are considered:
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(i) very low correlation, resulting in almost uncorrelated observations, using a uni-

form prior distribution for φ on the interval [0.1, 1], i.e. π(φ) ∼ Unif(0.1, 1),

(ii) medium correlation between the observations, using a uniform prior distribution

for φ on the interval [10−4, 10−3], i.e. π(φ) ∼ Unif(10−4, 10−3),

(iii) high correlation, using a uniform prior distribution for φ on the interval [10−6, 10−5],

i.e. π(φ) ∼ Unif(10−6, 10−5).

The noise-to-signal ratio δ2 is considered unknown with π(δ2) ∼ Unif(0, 1).

6.3.1 Constant mean function

In this section, we find Ψ-opitmal designs under a Gaussian process model (2.6) with

constant mean. Conjugate normal inverse gamma prior distributions are assumed for

the constant mean parameter, β|σ2 ∼ N(0, σ2), and variance σ2 ∼ IG(3, 1).

Initially, 30 random designs are generated, each with 40 sampling locations. Then for

each one of these designs we use the modified Fedorov point exchange algorithm to

find a Ψ-optimal design minimising the objective function Ψ1(ξ) (3.29). From the 30

resulting designs, we select the design with the smallest objective function. Figure 6.4

gives the Ψ-optimal design for low correlation and Figure 6.5 the designs for medium

and high correlation.

With constant mean and very low correlation, we find that any choice of locations gives

equal average prediction variance. This equivalence of designs is because (i) the sets
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Figure 6.4: Two Ψ-optimal designs with constant mean for n = 40 sites with low spatial
correlation correlation.
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of candidate and predictions points are disjoint, and (ii) observations taken at any of

the candidate points are essentially independent of observations at the prediction sites.

That is, there is no advantage to choosing any particular set of location over any other

set. The maps in Figure 6.4 show two designs, which both of them yield the same value

for the objective function.

However, when the spatial correlation is stronger we find a unique Ψ-optimal design

for each of 30 random starts of the point exchange algorithm. Figure 6.5 (a) shows the

optimal design for medium correlation, i.e the prior range for correlation is [0.1−0.8] be-

tween two prediction points at the maximum distance (2778km). The optimal sampling

locations are those closest to the prediction locations. Mainly the optimal locations are

clustered around the prediction locations. This is natural as the correlation function is

now a non-constant function of distance, and hence precise prediction will be provided

by a design with locations close to the prediction points.

The map in Figure 6.5 (b) gives Ψ–optimal design for high correlation, i.e. φ ∼
Unif(10−6, 10−5) and the corresponding prior range of the correlation between two

prediction locations at the maximum distance is [0.97 − 0.99]. Compared to case of

medium correlation, here the strength of the correlation is higher and also the range

of the correlation is narrower. For this case we can see that the Ψ-optimal design has

locations that are close to the prediction locations, similar to the medium range of

correlation. The difference between Figure 6.5 (a) and Figure 6.5 (b) is that there are

fewer sampling locations at the centre of the region for Figure 6.5 (b). The optimal

locations form larger clusters.
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Figure 6.5: Ψ-optimal designs with constant mean for n = 40 sites with (a) medium
spatial correlation and (b) high spatial correlation.
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Figure 6.6: Correlations between two prediction and two optimal points for 25 com-
binations of φ and δ2 obtained from the quadrature points used to approximated the
objective function Ψ1 for medium and high correlation, ( ) corresponds to medium cor-
relation (case (ii)) and ( ) corresponds to high correlation (case (iii)): (a) prediction
point 1 and design point 1, (b) prediction point 1 and design point 2, (c) prediction
point 1 and design point 2 and (d) prediction point 2 and design point 2.

In order to have a better understanding why for the case of high correlation the optimal

sampling locations form some clusters, for example at the top left corner of Figure 6.5

(b), we evaluate the correlation between the prediction points and those optimal design

points that differ between the two Ψ-optimal designs from Figure 6.5 (a) and (b). Figure

6.6 shows the correlations between the prediction points at the top left corner of maps

of Figure 6.5 (a) and the two additional optimal points in the top left corner of Figure
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6.5 (b). The correlation between the prediction and optimal points are evaluated for

the 25 combinations of the quadrature points of φ and δ2 used to approximate the

objective function Ψ1(ξ) (3.29) for both medium and high correlation, (cases (ii) and

(iii) respectively). From Figure 6.6 we conclude that for case (ii), for all 25 combinations

of φ and δ2, the correlations between the prediction points and the optimal points are

always smaller than the corresponding correlations for case (iii). These plots indicate

that the points that do not belong to the optimal design for medium correlation, case

(ii), are not informative for the two prediction points; however, for the high correlation,

case (iii), are more highly correlated with both prediction points.

6.3.2 Linear mean function

In this section, we find designs for a Gaussian process model (2.6) with a linear mean

function, i.e. we make the assumption that there is a linear trend with respect to

the longitude and latitude of a point within the geographical region. We model this

trend using a first order polynomial, i.e. k = 3 with the regression functions f(xi) =

[1, x1, x2] with x1 and x2 corresponding to the coordinates of the sampling locations of

the stations.

The conditional prior distribution for the regression coefficients is assumed to be a

normal distribution with zero mean and variance covariance matrix σ2I, i.e. β|σ2 ∼
N(0, σ2I). For σ2 we assume the conjugate inverse-gamma prior σ2 ∼ IG(3, 1). The

Ψ-optimal designs are found by minimising objective function Ψ1(ξ) (3.29) using the

modified Fedorov point exchange algorithm to choose n = 40.

We find designs for three cases of spatial correlations described in Section 6.3. The

maps in Figure 6.7 correspond to the Ψ-optimal designs for each of the three cases of

correlation. Figure 6.7 (a) gives the Ψ-optimal design when the spatial correlation is

very low (case (i)). In contrast to the findings for a constant mean function, now all

the 30 random starts of the point exchange algorithm gave the same Ψ-optimal design.

The optimal locations for the stations are those close to the boundaries of the region,

and there are no locations in the interior. The Ψ-optimal design is strongly influenced

by the linear mean function and the requirement to estimate the unknown regression

coefficients.

However, when the spatial correlation is higher, then the pattern for the Ψ-optimal

designs changes. Figure 6.7 (b) shows the optimal locations for the stations when the

prior correlation is between [0.1−0.8], case (ii). The Ψ-optimal design chooses stations

which are close to the prediction locations, and is very similar to the corresponding

optimal design for the constant mean function, Figure 6.5 (a).

Finally, Figure 6.7 (c) gives the Ψ-optimal design corresponding to high correlation

between the observations at two stations, case (iii). The optimal choice locates the

stations at the boundaries of the region, with no stations in the centre. This selection
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Figure 6.7: Ψ-optimal designs with a linear trend for n = 40 sites with (a) low spatial
correlation, (b) medium spatial correlation and (c) high spatial correlation.

is strongly influenced by the prior range of the correlation, which corresponds to [0.97−
0.99]. Hence, most variation between observations at different stations is explained via

the mean function.

6.4 Retrospective Design

In this section, we consider the reduction of 122 stations to a set of 40, chosen using a

Ψ-optimal design that now takes into account available prior data. This is achieved by

constructing posterior distributions for all the model parameters using this data, and
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then using these distributions as priors for design selection. As before, we employ the

closed-form approximation Ψ1(ξ) (3.29) and find designs for both constant and linear

mean function.

As already discussed in Chapter 2, when the correlation parameters and the noise-to-

signal ratio are unknown there are no closed form solutions for the posterior distribu-

tions of any of the parameters. However, conditional on these unknown parameters

and by employing MCMC procedures, we are able to obtain samples from the posterior

distributions. The procedure to obtain posterior samples is the following:

1. Set prior distributions for φ and δ2.

2. Using a MH algorithm with log-normal proposal distribution for φ and a uniform

distribution proposal for δ2 we generate a sample from the posterior distribution

of π(φ, δ2|y) (2.34).

3. Given the sampled values of φ and δ2 we generate from the conditional distri-

butions π(β|y, φ, δ2) and π(σ2|y, φ, δ2), which are a t-distribution (2.18) and an

inverse gamma distribution (2.19), respectively.

4. We repeat the procedure until sufficient samples are taken from the marginal

posterior distributions of β, σ2, φ, δ2.

6.4.1 Constant mean function

Initially we assume a Gaussian process model with constant mean function. The prior

distributions for the regression coefficients and the variance are normal and inverse

gamma respectively, β|σ2 ∼ N(0, σ2) and σ2 ∼ IG(3, 1). For the noise-to-signal ra-

tio we assume a uniform distribution δ2 ∼ Unif(0, 1) and for the decay parameter

φ ∼ Unif(10−5, 0.01) which corresponds to a wide prior range for the correlation, i.e.

between 0.1 to 0.97. This choice of prior distribution of φ results in medium-high spatial

correlation and covers case (ii) and case (iii) in Section 6.3.

Figure 6.8 gives trace plots and empirical density plots for samples from the posterior

distributions π(φ|y) and π(δ2|y). Initially, we generated a sample of size 3000 but both

chains mixed very poorly, and for this reason we doubled the sample size. The plots

are based on sampling after a burn-in of 3000 iterations. The mixing of the chains is

fairly poor because there is high correlation and it is difficult to explore the parameter

space. However, for the purpose of this study the mixing of the chain is considered

sufficient. The effective sample size (5.10), is larger than 350 for both φ and δ2, which

we consider sufficient for this study because the aim is not to make any inference using

the posterior distributions of φ and δ2. In particular, we use these MCMC samples to

approximate the values of posterior densities for each node of the quadrature points

that we use to approximate the objective function.

Figure 6.9 shows the posterior distributions for the regression coefficient β and the
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Figure 6.8: (a) Trace plot and (b) empirical density plot from MCMC samples for
decay parameter φ, (c) trace plot and (d) empirical density plot from MCMC samples
for noise-to-signal ratio δ2.

variance of the Gaussian process σ2. The mixing of these chains is very good and the

effective sample size for both posterior distributions is larger than 3000. To find designs

using approximation Ψ1(ξ) we require conjugate conditional distributions, We approx-

imate the posterior distribution for β by a normal distribution β ∼ N(9.70, 5.11) and

for σ2 with an inverse gamma distribution, σ2 ∼ IG(7.5, 133.5). The hyper-parameters

of the normal and inverse gamma distributions were found via matching moments of

the distributions, using the mean and the variance of the posterior sample of β and σ2

obtained from the MCMC procedures.
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Figure 6.9: (a) Trace plot and (b) empirical density plot from MCMC samples for
regression coefficients β, trace plot and (d) empirical density plot from MCMC samples
for variance σ2.

As it can be seen from the density plots in Figure 6.8 the posterior densities of φ

and δ2 do not resemble densities from known distributions. The objective function

Ψ1(ξ) (3.11) is approximated using Gauss-Legendre quadrature method (Section 3.5)

by (3.29). The weights w1
i and nodes α1

i are obtained from the Legendre polynomials

from the prior distribution of φ, and w2
i and nodes α2

i from prior distribution for δ2. The

Gauss-Legendre quadrature method requires uniform distributions for φ and δ2 and as

the posterior densities obtained from MCMC do not resemble uniform distributions we

approximate for each node α1
i and α2

i the values π(φα1
i
) and π(δ2

α2
i
) from the empirical
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Figure 6.10: Retrospective Ψ-optimal designs for n = 40 sites for constant mean func-
tion.

densities and multiply them by w1
i and w2

i . The values are:

π(φα1
i
) = (91.131, 392.272, 20.178, 0.0077, 0.0077)

π(δ2
α2
i
) = (1.058, 2.982, 0.756, 0.095, 0.075).

The modified Fedorov point exchange algorithm is employed, with 30 random starts.

The resulting Ψ-optimal design for a retrospective study is presented in Figure 6.10;

all 30 random starts gave the same Ψ-optimal design. The optimal locations are those

close to the prediction locations and also there are some locations spread in the interior

of the geographical region.

We now compare this retrospective design to the three prospective designs, for different

priors on φ found in Section 6.3. In order to do this comparison, we evaluate the value

of the objective function Ψ1(ξ) (3.29) under each prior distribution and then find the

efficiency

eff(ξ∗, ξ) =
Ψ1(ξ∗)

Ψ1(ξ)
,

where 0 ≤ eff(ξ∗, ξ) ≤ 1. An efficiency close to 1 means that the design ξ is as good

as the optimal design ξ∗. Table 6.1 shows the efficiencies of the four designs evaluated

under each prior distribution for the prospective and retrospective studies.

As it can be seen, the efficiency is always 1 when the designs are evaluated under the

case of low correlation. This is in line with our discussion in Section 6.3 for very low

correlation and constant mean, here any choice of designs will be Ψ-optimal. When the

designs are evaluated for medium and high correlation, then the retrospective design

is highly efficient (0.9986). Similarly, when we assess all four designs under the retro-
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Figure 6.11: Retrospective Bayesian optimal design for 40 sites for linear mean function.

spective prior distributions we see that the optimal designs under medium and high

correlation are both highly efficient, with the designs for medium correlation having

efficiency just 1% higher than that for the high correlation.

These comparisons are supported by the density plot of decay parameter φ, see Figure

6.8, where the density of the posterior distribution is higher for φ in the interval [0 −
0.003]. This interval is included in the support of the uniform prior distribution assumed

for φ in the prospective design for medium correlation, π(φ) ∼ Unif(0.0001, 0.001).

Once again our conclusions is that the range of the correlation is crucial in influencing

the Ψ-optimal design.

6.4.2 Linear mean function

Similar to the procedure followed for constant mean function, a Ψ-optimal design has

been found for the Gaussian process model (2.6) with linear mean function, k = 3. The

considered mean function is a linear function of the longitude and latitude of a point

within the geographical region. The prior distributions for the unknown parameters

are assumed the same as for the case of constant mean function, i.e. normal inverse-

Prospective Retrospective

Optimal Design Low Medium High High - Medium

Retrospective 1 0.9986 0.9998 1
Prospective 1 1 0.9707 0.9995 0.9531
Prospective 2 1 1 0.9999 0.9970
Prospective 3 1 0.9951 1 0.9836

Table 6.1: Efficiencies of Ψ-optimal designs for constant mean function. Low, medium
and high column headings correspond to the degree of spatial correlation.
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Figure 6.12: (a) Trace plot and (b) empirical density plot from MCMC samples for
decay parameter φ, (c) trace plot and (d) empirical density plot from MCMC samples
for noise-to-signal ratio δ2.

gamma prior distributions for trend parameters and Gaussian process variance, β ∼
N(0, σ2I), σ2 ∼ IG(3, 1), and uniform prior distributions for both δ2 and φ, Unif(0, 1)

and Unif(10−5, 0.01), respectively.

Figures 6.12 and 6.13 give the trace plots and empirical density plots for samples from

posterior distributions of the unknown model parameters. A sample of size 6000 is

generated and after the burn-in we keep 3000. The trace plots and the effective sample

size for β, σ2, φ and δ2 indicate sufficient mixing of the chains for this study.
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Figure 6.13: (a) Trace plot and (b) empirical density plot from MCMC samples for
regression coefficients β, trace plot and (d) empirical density plot from MCMC samples
for variance σ2. 138



In line with the approach followed for the case of constant mean, Section 6.4.1 we

approximate the posterior distribution for β by a normal distribution with mean a 3×1

vector (0.862,−0.143,−0.069)> and a 3 × 3 variance covariance matrix with diagonal

elements 14.506, 0.006, 0.025, and for σ2 we use an inverse gamma distribution with

a = 7.73 and b = 98; all hyper-parameters are obtained by matching moments.

The density plots for φ and δ2 (Figures 6.12) show that the posterior densities do not

resemble uniform distributions and to approximate the objective function Ψ1(ξ) (3.11)

using the Gauss-Legendre quadrature method (3.29) we approximate for each node α1
i

and α2
i the values π(φα1

i
) and π(δ2

α2
i
) from the empirical densities and multiply them

by weights w1
i and w2

i . The values are:

π(φα1
i
) = (16.779, 460.922, 30.474, 0.009, 0.009)

π(δ2
α2
i
) = (0.390, 1.379, 1.524, 0.741, 0.238).

Again, the modified Fedorov point exchange algorithm is employed, with 30 random

starts and the design which minimises the objective function Ψ1(ξ) is saved as the

optimal choice. The resulting Ψ-optimal design is displayed in Figure 6.11. The optimal

locations are those near the prediction locations.

The final step is to compare the retrospective designs to the three prospective designs

obtained for different priors on φ found in Section 6.3. Table 6.2 shows the efficiencies

of the four designs evaluated under each prior distribution for the prospective and

retrospective studies. From to this table, we conclude that the prospective design

with very high spatial correlation is efficient for low spatial correlation and this is true

because for both cases the linear trend strongly influences the design. When the designs

are evaluated for medium and high correlation, then the retrospective design is highly

efficient and when we assess all four designs under the retrospective prior distributions

we see that the optimal design under medium correlation gives the largest efficiency

(0.9989) compare to those for low and high correlation.

Prospective Retrospective

Optimal Design Low Medium High High - Medium

Retrospective 0.9917 0.9994 0.9923 1

Prospective 1 1 0.8715 0.9989 0.9077

Prospective 2 0.9894 1 0.9896 0.9989

Prospective 3 0.9996 0.88271 1 0.9180

Table 6.2: Relative efficiencies of Ψ-optimal designs for linear mean function. Low,
medium and high column headings correspond to the degree of spatial correlation.
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6.5 Summary

To summarise, in this chapter we employed the decision theoretic approach for finding

Bayesian optimal designs on a real environmental example of a monitoring network in

the eastern USA. We distinguished between two design approaches, the prospective and

retrospective designs and we compared these two approaches.

We concluded that if the chosen prior range of the spatial correlation, described by the

prior distribution of the decay parameter, corresponds to medium spatial correlation

then both retrospective and prospective designs give designs with similar efficiency.

The Ψ-optimal designs obtained from the retrospective approach have very similar

efficiencies to those obtained from the prospective approach and medium correlation.

In general, the designs are strongly influenced by the degree and the range of the

correlation, the choice of the mean function and the assumed prediction grid.

In the retrospective design, we did not consider any missing data. In fact, some stations

had missing data for some weeks out of the 52. We did not take into account the

variability that may be introduced to the posterior analysis due to the missing data.

An alternative approach would be to obtain the dataset with observations per week,

impute the missing data and then average across the time.

Moreover, in a future investigation, the temporal correlation should be taken into ac-

count. In this chapter, we only considered the spatial correlation between the sampling

location but we could investigate how the design changes according to the time that ob-

servations are taken. Although we propose a Bayesian methodology for spatio-temporal

optimal designs in Chapter 8, the set up is somewhat limited and future investigation

is needed in order to be applied to a real dataset.
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Chapter 7

Design for Computer

Experiments

The objective of this chapter is to apply the decision theoretic approach to develop

Bayesian optimal designs for prediction in computer experiments. We start by in-

troducing the field of computer experiments and reviewing the existing approaches for

design. We then introduce Bayesian Ψ-optimal designs for computer experiments found

by our new methodology. A numerical study is performed to validate the approximation

necessary to find a closed-form objective function for design selection, and examples of

Ψ-optimal designs are demonstrated.

7.1 Introduction

Many physical phenomena are difficult to investigate via physical experimentation,

which may be financially prohibitive, dangerous, unethical or impossible to pursue.

Computer experiments are becoming an alternative to traditional physical experiments,

where a computer model provides a representation of the real physical system that can

be investigated and explored.

Scientists and engineers make use of computer models to study relationships between

the input and output variables of a system or process, and explore the entire experimen-

tal region. Although computer power has significantly increased during the last years,

the mathematical models underlying the computer simulations are often very complex;

for example there is no simple explicit mathematical formula which describes the rela-

tionship between the input and the output for the finite element model mentioned in

Chapter 1. As a result, computer codes that implement these relationships may have

very long run times, taking minutes, hours or days to produce a single response. There-

fore, computer simulations can be time consuming and very computationally expensive

to run, and there is need to find a computationally inexpensive surrogate model, or
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metamodel or emulator as it often called, that can replace to a lesser degree the com-

puter model. Such a surrogate model allows fast prediction of the outputs at untested

input points.

A very popular surrogate model, introduced to the field of computer experiments in

the pioneering paper of Sacks et al. (1989), is the Gaussian process because it is an

adaptive and flexible non-parametric interpolator/smoother. A Gaussian process sur-

rogate model can be used to gain insight into the computer model over the whole design

region and makes tasks such as sensitivity analysis, uncertainty analysis, validation and

calibration feasible (see Santner et al. (2003) and Fang et al. (2006)).

The main focus of this chapter is on the selection of the points at which to run the com-

puter model to obtain good predictive performance of the Gaussian process surrogate

model. In practice, time and computational resources are limited, so an experimen-

tal design plays a crucial role by identifying a set of inputs at which the underlying

computer code will be evaluated. Such a set of points is called the design of the com-

puter experiments. The prediction quality of the surrogate model is influenced by both

the type of model used and the design points where the computer model is evaluated.

Hence, in order to increase the quality of the predictions form the surrogate model, an

optimal choice of the design points is crucial.

7.2 Statistical Surrogate

The computer model, implemented in code, can be considered as a function f with

inputs x ∈ X and the output y ∈ Y. The surrogate model treats the computer code as

a black box, with no assumed knowledge about the function f . We model the computer

output using the Gaussian process model (2.6). Figure 7.1, as it is presented in Fang

et al. (2006), shows the idea of the surrogate model.

Figure 7.1: Role of the surrogate model, or metamodel, for computer experiments
(taken from Fang et al. (2006)).
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For deterministic computer experiment applications, it is natural to consider the Gaus-

sian process model from a Bayesian perspective, where it represents our prior uncer-

tainty about the function f . Following the Bayesian approach, the predictions are

achieved by combing the prior information about the function with information ob-

tained from the data, see for example Chapter 2 and Section 2.4 for a detailed deriva-

tion of the posterior predictive distribution. Currin et al. (1991) presented the Bayesian

interpretation of prediction for computer experiments and adopted a plug-in approach

with the parameters estimated via maximum likelihood.

For deterministic computer models, it may be natural to set the nugget τ2 = 0 to

provide an interpolating Gaussian process. To show this interpolation property, we

consider the MSPE predictor for yn+1, ŷn+1, given by (2.7), we set τ2 = 0 and assumed

that all model parameters are known. Then, if we choose a prediction point to be a

point from the design, i.e. xn+1 = xi where i = 1, · · · , n we have that fn+1 = f>(xi)

and ω> now corresponds to ith row of the correlation matrix C. Hence, ω>C =

[0, · · · , 1, · · · , 0]> = e>i . Substituting e>i into (2.7) with τ2 = 0 we have ŷn+1 =

f>(xi)β + yi − f>(xi)β = yi, where yi is the observation for xi.

However, several authors have proposed including the nugget in the surrogate model to

ensure numerical stability and overcome computational issues due to near-singularity of

the correlation matrix, see Ababou et al. (1994) and Neal (1997). Apart from computa-

tional issues, Gramacy and Lee (2012) indicated more reasons why a nugget should be

included in modelling for computer experiments. They discussed the role of the nugget

in improving the adequacy of the statistical surrogate, even for deterministic computer

models, via mitigating incorrect surrogate modelling assumptions, such as stationarity.

Increasingly, computer models may include intrinsic stochastic elements, for example,

Monte Carlo simulators, and hence produce (pseudo) random output requiring the use

of a nugget term.

Gramacy and Lee (2012) also argued that a nugget effect captures the computer model

bias, i.e. that the mathematical model of the physical process is not a perfect description

of reality, and that uncertainty about the true function is best modelled by a random

process that smooths rather than interpolates. For all these reasons, in our approach

for finding optimal designs for computer experiments we include a nugget effect.

7.2.1 Parametric correlation functions

In this section, we outline the key difference between Gaussian process models for

spatial data and computer experiments. Recall in the Gaussian process model (2.6),

the correlation matrix C, the key element of a Gaussian process Z(xi), is typically

determined by a stationary and isotropic parametric correlation function. Examples

include the isotropic power and Matérn correlation functions described in Section 5.4.4.

However, in many computer experiments applications, the correlations due to some
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inputs is stronger than for other inputs, and for this reason we need to use a anisotropic

correlation function.

It is common to use a separable correlation function, i.e. we take the product of

correlation functions across each dimension, each of which are stationary:

ρ(xi,xj ;φ) =

d∏
k=1

ρk(xik, xjk;φk).

Here, the decay parameter φk controls the correlation in the kth direction. The resulting

correlation function is not isotropic as each dimension has a different decay parameter.

In general, the isotropic correlation function in Section 5.4.4 is a special case of separable

correlation function when φk = φ for k = 1, . . . , d.

In this chapter we focus on two popular choices of product correlation functions: the

Power Exponential and the Matérn correlation function which are extensions of the

isotropic functions described in Section 5.4.4.

(a) Matérn separable correlation function

The product Matérn exponential correlation function has the form

ρ(xi,xj ;φ, ν) =
d∏

k=1

1

2ν−1Γ(ν)
(2
√
ν|xik−xjk|φk)νKν(2

√
ν|xik−xjk|φk) ν > 0, φk > 0.

(7.1)

The parameter ν controls the smoothness of the Gaussian process.

(b) Power exponential separable correlation function

The product power exponential correlation function has the form

ρ(xi,xj ;φ, ν) =

d∏
k=1

exp (−φk(|xik − xjk|)ν) 0 < ν ≤ 2, φk > 0. (7.2)

For ν = 1, we obtain the product exponential correlation function and for ν = 2, the

product Gaussian correlation function.

The decay parameters in the correlation functions can be interpreted as measuring the

importance or activity of the input. Therefore for large φk, the kth variable is not

important as the correlation in the kth direction is largely independent of the distance

between the points xi and xj ; for small values of φk, the correlation depends on the

distance and hence the variable is important, see Linkletter et al. (2006).

7.3 Literature Review

The area of design for computer experiments has received great attention in recent

years and there is a considerable literature that indicates its rapid development, see for
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example Santner et al. (2003), Fang et al. (2006) and Kleijnen (2008).

Two classes of designs for computer experiments have been considered: the model-

free and model-based approaches. The former approach does not make use of any

assumptions about the statistical model that approximates the computer code, whereas

the latter approach explicitly accounts for the statistical surrogate model. The most

popular model-free approach is space-filling designs whereas, the model-based approach

is separated into designs for prediction and designs for estimation. Pronzato and Müller

(2012) gave a general overview of both approaches and described many of the existing

methods for finding a design for a computer experiment.

7.3.1 Space-filling designs

There are several ways to define “space-filling” via a distribution of the design points

which covers the input space. Three common approaches use :

• measures of distance between the design points, i.e geometric criteria (Johnson

et al., 1990), see Chapter 3,

• sampling methods (McKay et al., 1979),

• statistical measures of uniformity (Fang et al., 2000).

Another way of selecting the design points makes use of sampling methods, in particular,

simple random sampling, stratified random sampling and Latin hypercube sampling.

A comparison of these three methods of selecting a design was given by McKay et al.

(1979). Simple random sampling selects the n points of the design at random from the

design region X with respect to a uniform distribution. Although simple to apply, in

high dimensions this method exhibits clustering of points and poorly covered areas of

the design space. To overcome this problem, stratified random sampling was proposed

to select the points. The design region is divided into n equally spread strata and then

one point from each strata is randomly selected. Using stratified sampling promotes

coverage of the entire experimental region.

In general, it is desirable for a design for a computer experiment to have good pro-

jection properties, i.e. when the output is influenced by only some input variables we

want the points evenly spaced across the projections onto these significant inputs. This

requirement led McKay et al. (1979) to introduce Latin Hypercube Designs (LHD),

which have the property that the points are evenly spaced across the one-dimensional

projections. The idea is to divide the design region into equally-sized cells and then

randomly select n cells under the restriction that the projections of the selected cells

on to each axis do not overlap. McKay et al. (1979) compared the three methods of

sampling, and concluded that Latin Hypercube Designs gave more precise, as in low

variance, estimator for the mean and the variance. Since this pioneering paper, Latin

Hypercube Designs have became the most popular sampling method for computer ex-
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periments; they are easy to generate, computationally simple and have good projection

properties. Due to this popularity, several authors have proposed different extensions

of Latin Hypercube Designs (see for example Handcock (1991) and Tang (1993)).

The last approach for space-filling designs considers the problem of finding a design

that mimics a uniform distribution on the design space, i.e. the distribution of the

points of the design is comparable to our expectation from a uniform distribution.

This comparison is made through calculation of a discrepancy measure. Discrepancy,

and the criteria that rely on it, were introduced by Fang (1980). An optimal uniform

design ξ∗ minimises

D(ξ) = max
x∈X
|Fn(x)− U(x)|,

where Fn(·) is the empirical distribution function of design ξ and U(·) is the empirical

distribution function of the uniform distribution. This discrepancy measures how the

distribution of the design differs from the uniform distribution. The lower this discrep-

ancy is, the more uniform the designs points are scattered over the design region. Fang

et al. (2000) proposed algorithms to construct nearly uniform designs and explored the

possibility of uniform designs being orthogonal.

Several authors considered the case of combining aspects of these three methods of

finding designs for computer experiments. For example, a discrepancy criterion can be

applied to the class of Latin Hypercube Design to find the most uniformly distributed

design. Alternatively, a geometric criterion can be used to find, for example, a maximin

Latin Hypercube Design, see Morris and Mitchell (1995), Santner et al. (2003, Ch. 5)

and references therein.

7.3.2 Model-based designs

The model-based approach for the design of computer experiments assumes a Gaussian

process model for the response, and finds designs for either prediction or estimation of

the unknown model parameters.

When the aim of the experiment is prediction at untested inputs, the most popular

design criteria for computer experiments are functions of the Mean Square Prediction

Error (MSPE), introduced by Sacks et al. (1989) and described in detail in Santner

et al. (2003, Ch. 6). Designs are typically found by minimising the Maximum Mean

Square Prediction Error (MMSPE) or, more commonly the Integrated Mean Square

Prediction Error (IMSPE). The IMSPE averages the mean square prediction error over

the design region. Sacks et al. (1989) proposed the use of a quasi-Newton algorithm

to find IMPSE optimal designs. An IMPSE optimal design ξ∗ minimises the IMSPE

objective function

η(ξ) = σ2
{

1 + δ2 −
∫
XP ω

>Σ−1ω + (f>p − ω>Σ−1F)(F>Σ−1F)−1(f>p − ω>Σ−1F)>dxp

}
,
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where the elements of this function are defined in Chapter 2.

These MSPE criteria depend on the correlation parameters φ (through Σ and ω) and δ2,

which are usually assumed known. However, in practice these parameters are unknown

and Sacks et al. (1989) proposed a two-stage approach where a LHD is used to collect

data to estimate the unknown model parameters, which are then plugged-in to the

MSPE objective function. These authors also proposed using robustness studies to

assess the performance of given IMPSE optimal designs for a range of values of the

correlation parameters for the power exponential correlation function (7.2). A more

recent sequential approach was proposed by Picheny et al. (2010).

Harari and Steinberg (2014) used a spectral decomposition (Karhunen-Loéve expan-

sion) of the Gaussian process model, with known constant mean and known correlation

parameters, to find IMSPE designs. They investigated the performance of this criterion

when a nugget effect is included in the model and, similar to Section 2.4.4 in this thesis

reparameterised using the noise-to-signal ratio δ2 to overcome computational issues.

They extended their model to unknown constant mean and compared IMSPE designs

for both known and unknown mean and concluded that the two models yielded similar

designs.

More recent work has incorporated the unknown correlation parameters by averaging

the values of IMSPE weighed according to possible values of the correlation parameters.

Leatherman et al. (2014) proposed the Weighted-IMSPE

ηw(ξ) =

∫
η(ξ)π(φ)dφ, (7.3)

where π(φ) can be viewed as a prior distribution from a Bayesian perspective. However,

ηw(ξ)-optimal designs are still locally optimal with respect to δ2.

The important differences between the Ψ1(ξ) (3.10) and the ηw(ξ) (7.3) is that the latter

is derived from frequentist perspective and is equivalent to applying non-informative

prior for β; for this reason, we have the matrix R in (3.10) which is the prior variance-

covariance matrix for the trend parameters. In (7.3) this matrix is set equal to zero.

This connection leads to the results in this chapter demonstrating that the WIMSPE

is also a good approximation to the Bayesian decision theoretic design approach.

Another popular design criterion for prediction in computer experiments is the min-

imisation of the average kriging variance which is equivalent to IMSPE; see Chapter 5

and the literature for spatial experiments.

When the aim of the experiment is the estimation of the unknown correlation param-

eters, the most popular designs maximise entropy in the posterior distribution (see

Shewry and Wynn (1987), and Chapter 5 in this thesis). Currin et al. (1991) proposed

an algorithm to find maximum entropy designs for computer experiments when the

correlation parameters are known. Also, Johnson et al. (1990) stated that for very

weak correlation, the entropy designs are maximin designs.
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We do not chose to compare maximin entropy designs to Ψ-optimal designs because

the maximum entropy design is tailored to the estimation of the unknown parameters,

while our design is optimal for prediction.

The majority of the literature for designs for computer experiments is focused either

on Latin hypercube designs or on a model-based approach with known correlation

parameters. In this chapter, we apply our model-based approach to find designs for

situations with unknown correlation parameters and also unknown trend parameters.

Appling a Bayesian methodology allows the incorporation of uncertainty in all these

features.

7.4 Bayesian Optimal Design for Computer Experiments

7.4.1 Assessment for closed-form approximation for computer exper-

iments

The decision theoretic framework for optimal designs for prediction, as it is described in

Chapter 3, can be applied in the context of computer experiments. Our proposed design

criterion minimises the average posterior predictive variance, with objective function

Ψ(ξ) is given by (3.10). Throughout this chapter we consider the case of known and

fixed noise-to-signal ratio δ2, taking one of two values, δ2 = 0 and δ2 = 1, which

correspond to nugget τ2 = 0 and when τ2 = σ2.

In this section we demonstrate the relationship between Ψ(ξ) and Ψ1(ξ), and study

how the choice of the parameters in the experiment and model affects the accuracy of

the approximation. We perform a factorial study similar to that in Chapter 5 with four

crossed factors and two nested factors, each with either two or three levels. For each

combination of factor levels, we evaluate the objective function Ψ(ξ). The factors are

listed below in Table 7.1, together with their levels and coded values.

The first level of the correlation function (F3 = 0) indicates the same decay parameter

for the three dimensions, i.e. an isotropic correlation function, whereas the second level

corresponds to different decay parameter in each dimension, a separable correlation

function.

Levels

Factors 0 1

F1 n = 5 n = 10

F2 M = β0 M = β0 + β1x1 + β2x2

F3 ρ =
∏3
k=1 e

−φ|xik−xjk| ρ =
∏3
k=1 e

−φk|xik−xjk|

F4 δ2 = 0 δ2 = 1

Table 7.1: Four crossed factors together with their levels and coded values.

148



We also have two nested factors which correspond to the prior distributions for the

unknown parameters β and φ, factors F5 and F6 respectively. Factor F5 determines

the prior precision of the trend parameters and is nested within factor F2 (form of mean

function):

F5|(F2 = 0) =

{
0 ⇒ R=1

1 ⇒ R=0.25.

F5|(F2 = 1) =

{
0 ⇒ R = I4

1 ⇒ R = 0.25I4.

Factor F6 determines the prior distribution for the decay parameter φ and is nested

within factor F3 (form of correlation function):

F6|(F3 = 0) =

{
0 ⇒ φ ∼ Unif(0.1, 1)

1 ⇒ φ ∼ log-normal(−1.1, 1)

F6|(F3 = 1) = 0⇒


φ1 ∼ Unif(0.1, 1)

φ2 ∼ Unif(1, 3)

φ3 ∼ Log-Normal(−1.1, 1).

The hyperparameters a and b for the inverse gamma prior distribution for σ2 are kept

constant for all the combinations of F1 to F6, σ2 ∼ IG(3, 1), similar to previous chapters.

All 48 possible combinations of the levels of these factors are considered. For each

combination, we generate 200 random designs from X = [−1, 1]3 and assume prediction

is required across a grid with |XP | = 40 points chosen as a maximin LHD. For each

design we evaluate Ψ(ξ) (3.10) using Monte Carlo integration and quadrature. When

F6|(F3 = 0), Ψ1(ξ) and Ψ2(ξ), are approximated by (3.33) and (3.34) respectively.

When F6|(F3 = 1) then Ψ1(ξ) and Ψ2(ξ) approximated by

Ψ1(ξ) '
∫
XP

1

2

d∑
k=1

m1∑
i=1

w1
ikf1

(
b1k − a1k

2
a1
ik +

b1k + a1k

2
,xp

)
dxp, (7.4)

and

Ψ2(ξ) '
∫
XP

1

2

1

N

N∑
j=1

d∑
k=1

m1∑
i=1

w1
ikf2

(
b1k − a1k

2
a1
ik +

b1k + a1k

2
,xp,yj

)
dxp,(7.5)

where f1(·), f2(·) is defined in 3.5.1. We approximate Ψ1 and Ψ2 via independent

quadrature rules in each dimension, and w1
ik and a1

ik are the corresponding weights and

nodes obtained from the Legendre polynomial for the uniform distributions for φk for

the kth direction.

Table 7.2 shows the correlations between the values of Ψ(ξ) and Ψ1(ξ) for the 48
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F1 F2 F3

F4 F5 F6 000 001 010 011 100 101 110 111

0 0 0 0.99998 0.99901 0.99995 0.99808 0.99994 0.99995 0.99988 0.99872
0 0 1 0.99994 - 0.99992 - 0.99987 - 0.99994 -
0 1 0 0.99992 0.99903 0.99962 0.99895 0.99999 0.99962 0.99992 0.99987
0 1 1 0.99996 - 0.99613 - 0.99998 - 0.99970 -
1 0 0 0.99999 0.99946 0.99999 0.99997 0.99991 0.99978 0.99876 0.99951
1 0 1 0.99998 - 0.99937 - 0.99999 - 0.99999 -
1 1 0 0.99957 0.99997 0.99996 0.99930 0.99843 0.99858 0.99844 0.99934
1 1 1 0.99890 - 0.99919 - 0.99975 - 0.99260 -

Table 7.2: Correlation between objective functions Ψ and Ψ1 for 200 random designs
for each factor level combinations of F1, F2, F3, F4, F5, F6.

combinations of factors F1 to F6. The columns correspond to the number of runs (F1)

mean (F2) and correlation (F3) functions, and the rows to noise-to-signal ratio (F4),

precision matrix (F5|F2), and decay parameter (F6|F3). As can be seen, there is always

a very high correlation between Ψ(ξ) and Ψ1(ξ), i.e. almost equal to one. In fact,

Ψ(ξ) ' Ψ1(ξ), with Ψ2(ξ) always close to zero. This study shows that our numerical

results from Chapter 5 extend to models with more than two dimensions and with

anisotropic correlation functions.

Therefore, from this substantial numerical evidence, we conclude that it is sufficient to

approximate the objective function Ψ(ξ) (3.10) by Ψ1(ξ) alone. In what follows in the

next sections, we use minimisation of Ψ1(ξ) as a design selection criterion.

In Chapter 3 we gave a theoretical insight about the closed-form approximation. In fact,

the assumptions necessary for those results are not restricted to isotropic correlation

functions, and can be extended. Recently, Ren et al. (2013), focusing on parameter

estimation in spatial modelling, showed that the integrated likelihood for anisotropic

correlation functions is also a bounded function of the correlation parameters. Hence,

the integrated likelihood tends to zero faster than the correlation parameters (Lemma

3.1 in Chapter 3).

7.4.2 Example

We now present an example of a simple computer experiment, and compare the designs

resulting from model-free and model-based approaches. We compare the maximin Latin

hypercube design and our Bayesian Ψ-optimal design.

This example uses data from a simple simulator of a helical compression spring (Tudose

and Jucan (2007), Forrester et al. (2008, p. 200-202)). The model can be used to

determine the correct dimensions and geometry of the input values required to satisfy

a given loading condition. The three main characteristics of a helical compression spring

that we take into account are the wire diameter, the spring index and the coefficient of

the distance between the coils at the maximum load.
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Figure 7.2: Helical spring example: Prediction points, |XP | = 40, obtained by a max-
imin Latin Hypercube design.

Available data are modelled by a Gaussian process model given by (2.6), with a linear

mean function, and the correlation between the three variables is modelled by

ρ(xi,xj ;φ) =
3∏

k=1

exp(−φk|xik − xjk|) for xi,xj ∈ [−1, 1]3. (7.6)

Our aim is to find Ψ-optimal designs with n = 10 runs when we want to predict at 40

untested points, i.e. |XP | = 40 for two different prior distributions on the correlation

parameters. The prediction points are obtained by a maximin LHD and the projections

are shown in Figure 7.11.

We consider conjugate normal inverse gamma prior distributions for trend parameters

β and Gaussian process variance σ2, and assign two different priors for the correlation

parameters φ and δ2:

• prior 1: δ2=0, φ1 ∼ Unif(1, 3), φ2 ∼ Unif(3, 5), φ3 ' 0,

• prior 2: δ2=0.5, φ1 ∼ Unif(1, 3), φ2 ∼ Unif(1, 3), φ3 = 0.
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Figure 7.3: Helical spring example: Ψ-optimal design ( ) and maximin Latin hypercube
design ( ) for prior 1.
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Figure 7.4: Helical spring example: Ψ-optimal design ( ) and maximin Latin hypercube
design ( ) for prior 2.
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For prior 1, we considered the model without a nugget effect, i.e. τ2 = 0, and assign

different priors for the correlation parameter φ in each dimension. In prior 2, we intro-

duce the nugget effect in the model, so there is a random error, and also the correlation

in the third variable is equal to one for all |xik − xjk|. These prior distributions were

obtained by analysing data from a maximin Latin hypercube (Morris and Mitchell,

1995) obtained by Tudose and Jucan (2007).

The Figures 7.3 and 7.4 show Ψ-optimal designs, denoted by black dots, and a maximin

Latin hypercube design, denoted by red triangles, for prior 1 and prior 2 respectively.

For prior 1, the Ψ-optimal design has similar space-filling properties as the maximin

LHD. The average inter-point distance is 1.43 for the Ψ-optimal design and 1.40 for

the maximin LHD. However, the Ψ-optimal design has 30% smaller average posterior

predictive variance. For prior 2, where there is a change in correlation strength as a

nugget is introduced to the model and the correlation parameter φ3 in x3 is now zero,

we observe that the design points in the third dimension collapse onto the extremes.

This happens because there is constant correlation between the observations in the

third dimension, and hence the design is heavily influenced by the linear trend. This

second design has posterior predictive variance 18% lower than that of the LHD.

To summarise, this example indicates the advantages of using a model-based approach

to the design of computer experiments, where sufficient prior information is available,

and is in line with the conclusions from Pronzato and Müller (2012).

The designs we have studied are influenced by the degree of correlation, with larger

correlation parameters and hence greater changes in correlation leading to designs

which are close to space-filling, but still providing lower prediction variance than LHDs.

However, in practice model-based optimal designs are more difficult to construct than

space-filling designs because they require more prior information, including complete

specification of the mean function and the covariance structure of the Gaussian process

model.

7.5 Examples of Optimal Design for Computer Experi-

ments

In this section, we present further examples of Ψ-optimal designs and more comparisons

to space-filling designs. For all the examples presented in this section, we assume a

Gaussian process model (2.6) with either constant or linear mean function. The prior

distributions for the unknown correlation parameters are assumed to be either uniform

or log-normal. The noise to signal ratio is considered know and fixed at two values

δ2 = 0 and δ2 = 1. The correlation function is either assumed to be an isotropic or a

separable power exponential or Matérn function. If an isotropic correlation function is

assumed, then Ψ1(ξ) is approximated by (3.33), otherwise for a separable function the
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numerical approximation when a uniform prior is assumed for each φ in each dimension

is given by (7.4) .

The method for selecting an optimal design for computer experiments is as follows:

1. Generate 50 randomly selected starting designs from the region X = [0, 1]d, d = 2

and d = 3, with the number of points required for each example, i.e. n = 3, 5, 7

or 10.

2. For each starting design, use the coordinate exchange algorithm (Section 3.6.1)

to find a design that minimises Ψ1(ξ), approximated via (3.33) for an isotropic

correlation functions and (7.4) for an anisotropic correlation function.

3. From the 50 designs obtained by the algorithm, select the design with the mini-

mum Ψ1(ξ) value. In the event of ties, choose at random from the tied designs.

7.5.1 Ψ-optimal designs for d = 2

Here, we demonstrate our methodology for d = 2 and obtain Bayesian optimal designs

with n = 3, 5, 7 and the aim is to predict on a 10 × 10 regular grid. We choose these

numbers of points, and the correlation function, in order to compare our results with

the minimax and maximin designs of Johnson et al. (1990). Hence, we adopt the

exponential correlation function with Euclidean distance, i.e.

ρ(xi,xj ;φ) = exp

−φ{ 2∑
k=1

(xik − xjk)2

}1/2
 .

For one example with n = 7, we also consider the exponential correlation function with

rectangular distance,

ρ(xi,xj ;φ) = exp

[
−φ

2∑
k=1

|xik − xjk|

]
. (7.7)

(i) Euclidean distance

The Ψ-optimal designs for Euclidean distance and constant mean function are similar

for n = 3, 5, 7; all design points lie in the interior of the study region, X = [0, 1]2, with

no points at the edges. When there is no nugget in the model, i.e. δ2 = 0, there are

points near the centre of X (Figure 7.5, top row (a) and (b)).

When a nugget is added, i.e. δ2 = 1, the correlation between two observations a given

distance apart in X is smaller than when δ2 = 0, and the centre point moves towards an

edge of X . The design gives less coverage compared to the designs for high correlation.

This is illustrated in bottom row of Figure 7.5 (c) and (d).

Figure 7.6 shows the Ψ-optimal designs for a linear mean trend and correlation using
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Figure 7.5: Bayesian Ψ-optimal designs with constant mean and correlation using eu-
clidean distance: (a) uniform prior and δ2 = 0; (b) log-normal prior and δ2 = 0;
(c)uniform prior and δ2 = 1; (d) log-normal prior and δ2 = 1.

Euclidean distance and n = 7. When δ2 = 0, the Ψ-optimal design has points dis-

tributed across the study region, with points in the interior of X . Once again, when

δ2 = 1, the design points move towards to the boundaries of the region. The bottom

row of Figure 7.6, (c) and (d), illustrate this distribution of points further. There are

points at the corners of the region, matching the optimal design for prediction from a

linear model with uncorrelated observations.

We only present the designs for n = 7, however this pattern holds regardless of the

number of runs. Similarly, by comparing plots (a) with (b), and (c) with (d), we see
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Figure 7.6: Bayesian Ψ-optimal designs with linear mean and correlation using eu-
clidean distance: (a) uniform prior and δ2 = 0; (b) log-normal prior and δ2 = 0;
(c)uniform prior and δ2 = 1; (d) log-normal prior and δ2 = 1.

that the choice of prior distribution for the correlation parameter φ also has little input

on the design. The designs are affected by the range and degree of correlation, mostly

determined by δ2, and the choice of mean function.

Figure 7.7 gives the minimax and maximin designs with Euclidean distance as found

in Johnson et al. (1990). Based on a visual comparison between minimax and maximin

designs, Figure 7.7 (a) and (b), and Ψ-optimal designs, Figures 7.5 and 7.6, we conclude

that Ψ-optimal designs with constant mean and Ψ-optimal designs with linear mean

and δ2 = 0 distribute the points similarly to the minimax design. When δ2 = 1, then
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Figure 7.7: (a) Minimax design and (b) Maximin design for 7 points designs with
Euclidean distance.

Ψ-optimal designs are more similar to maximin designs, especially when a linear trend

is assumed.

In order to numerically compare Ψ-optimal designs with the corresponding minimax

and maximin designs, for each design we evaluate (i) the objective function Ψ1(ξ); (ii)

the inter-point Euclidean distance.

Mean function
Constant Linear

n Ψ-optimal Minimax Maximin Ψ-optimal Minimax Maximin

3 δ2 = 0 0.0993 0.1094 0.1157 0.1219 0.1619 0.1272
δ2 = 0 0.0904 0.0985 0.1046 0.1127 0.1483 0.1162
δ2 = 1 0.7648 0.7687 0.7808 0.8209 1.2775 0.9419
δ2 = 1 0.7504 0.7808 0.7642 0.8089 1.2678 0.9311

5 δ2 = 0 0.0709 0.0752 0.0844 0.0738 0.0873 0.0850
δ2 = 0 0.0663 0.0709 0.0782 0.0699 0.0817 0.0793
δ2 = 1 0.7038 0.7048 0.7152 0.7415 0.9094 0.7818
δ2 = 1 0.6909 0.6917 0.7009 0.7318 0.9033 0.7734

7 δ2 = 0 0.0584 0.0601 0.0643 0.0605 0.0638 0.0653
δ2 = 0 0.0551 0.0568 0.0606 0.0576 0.0606 0.0619
δ2 = 1 0.6730 0.6740 0.6777 0.7006 0.7755 0.7424
δ2 = 1 0.6612 0.6621 0.6655 0.6922 0.7699 0.7361

Table 7.3: Ψ1 objective function values for Ψ-optimal designs, minimax and maximin
designs for Euclidean distance, and n = 3, 5, 7.
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Table 7.3 shows the values of the objective function Ψ1 under of each one of the 24

combinations. As expected, Ψ-optimal designs always give smaller values for the Ψ1

objective function than either the minimax or maximin designs. In the case of constant

mean, the difference between the three designs is small, whereas for linear trend the

difference is more obvious, up to 18%, especially, when a nugget is included in the model.

The Ψ-optimal design takes into account the uncertainty of the trend parameters and

with smaller correlation, the design is more strongly influenced by the need to estimate

the trend parameters.

The average inter-point Euclidean distances are 0.72, 0.71 and 0.66 for the Ψ-optimal

design, with n = 3, 5 and 7 respectively, and constant mean, δ2 = 0 and either a

uniform or a log normal prior distribution for φ; when nugget is added to the model,

δ2 = 1, the average inter-point distances are 0.64, 0.66 and 0.65 for n = 3, 5 and 7. The

corresponding average inter-point distances for maximin design is 1.03, 0.96, 0.79 and

for the minimax design is 0.54, 0.59, 0.64.

Therefore space-filling properties of the Ψ-optimal design are somewhere between the

minimax and maximin designs, i.e. Ψ-optimal designs compromise between minimax

and maximin designs.

A similar pattern in the inter-point distances occurs for the designs for a linear trend

when δ2 = 0. However, when there is a nugget in the model the average distance

increases for the Ψ-optimal design as the points are influenced by the linear trend and

move towards to the boundaries of X .

(ii) Rectangular distance

We now find Ψ-optimal designs using the correlation function (7.7) based on rectangular

distance. We keep all other model parameters the same. We present designs for n = 7

and again compare to maximin and minimax designs found by Johnson et al. (1990).

Figure 7.8 gives Ψ-optimal designs for constant mean function and Figure 7.9 for a mean

function being a linear trend. These designs display similar distributions of points to

these found using Euclidean distance. Figure 7.9 indicates that, in general, use of the

rectangular distance and linear trend results in designs with more points in the interior

of the design region than use of Euclidean distance. When a nugget is included, δ2 = 1,

the number of points at or near the boundaries is again larger compare to the designs

with δ2 = 0.

The minimax and maximin designs with rectangular distance, from Johnson et al.

(1990), are given in Figure 7.10. The points are distributed throughout the region,

and having a similar pattern to the Ψ-optimal designs with δ2 = 0. The average

inter-point rectangular distance for the minimax design is 0.888 and for the maximin

design is 1.057. The Ψ-optimal design with constant mean, uniform prior on φ and

δ2 = 0 has very similar average rectangular distance, 0.868, to the minimax design,

and the other three cases from Figure 7.8 have distances of 0.921, 0.922 and 0.922
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Figure 7.8: Bayesian Ψ-optimal designs with constant mean and correlation using rect-
angular distance: (a) uniform prior and δ2 = 0; (b) log-normal prior and δ2 = 0;
(c)uniform prior and δ2 = 1; (d) log-normal prior and δ2 = 1.

which are between the average inter-point rectangular distance values for the minimax

and maximin designs. For the case of linear mean, see Figure 7.9, the two Ψ-optimal

designs from the top row both have average rectangular distance 0.868. When δ2 = 1,

and the points are pushed to the boundaries, Ψ-optimal designs of the bottom row have

average rectangular distance close to the maximin design, 1.01.

We again also compare designs by evaluating the objective function Ψ1(ξ) (Table 7.4).

Similar to the previous case of Euclidean distance, all the designs have almost the same

average posterior predictive variance and the Bayesian optimal designs give slightly
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Figure 7.9: Bayesian Ψ-optimal designs with linear mean and correlation using rect-
angular distance: (a) uniform prior and δ2 = 0; (b) log-normal prior and δ2 = 0;
(c)uniform prior and δ2 = 1; (d) log-normal prior and δ2 = 1.

smaller values compared to the space-filling designs. Also, Ψ-optimal designs always

give smaller values for the Ψ1 objective function, and when a nugget is included in the

model the difference is up to 13%.

To summarise, the Ψ-optimal designs for d = 2 for both distance metrics give the small-

est value for the objective function Ψ1(ξ) and also they have smaller average prediction

variance compared to the very popular maximin and minimax designs. Usually when

δ2 = 0, the Ψ-optimal designs are closer to the minimax designs, and when δ2 = 1 they

are closer to the maximin. This relationship is due to the reduced correlation; δ2 = 1
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Figure 7.10: (a) Minimax design and (b) Maximin design for 7 points designs with
rectangular distance.

leads to the points being moved closer to the boundaries X .

7.5.2 Ψ-optimal designs for d = 3

In this section, we demonstrate the methodology for d = 3 variables. Ψ-optimal designs

are found for n = 5 and n = 10 points in the study region X = [−1, 1]3, when the aim

is to predict at |XP | = 40 points chosen from a random Latin Hypercube sample, see

Figure 7.11. We investigate the influence of five crossed factors and one nested factor,

shown in Table 7.5, on the designs found. Once again, these factors vary features of

the model and design.

Nested factor F6 determines the prior precision of the trend parameters, and is nested

Mean function
Constant Linear

n Ψ1(ξ) Ψ-optimal Minimax Maximin Ψ-optimal Minimax Maximin

7 φ = 0 δ2 = 0 0.0619 0.0647 0.0753 0.0635 0.0668 0.0754
φ = 1 δ2 = 0 0.0992 0.1028 0.1119 0.1067 0.1100 0.1163
φ = 0 δ2 = 1 0.6888 0.6896 0.6985 0.7135 0.7658 0.7483
φ = 1 δ2 = 1 0.7066 0.7087 0.7162 0.7034 0.8015 0.7817

Table 7.4: Ψ1 objective function values for Ψ-optimal designs, minimax and maximin
designs for rectangular distance, and n = 7.
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Figure 7.11: Prediction points, |XP | = 40 obtained by a maximin Latin Hypercube
design.

within factor F2 (form of mean function):

F5|(F2 = 0) =

{
0 ⇒ R=1

1 ⇒ R=0.25.

F5|(F2 = 1) =

{
0 ⇒ R = I4

1 ⇒ R = 0.25I4.

In total, we investigate 32 combinations of these individual settings. For each com-
bination, we generate 20 random designs selected from the design region. For each of

these starting designs, the coordinate exchange algorithm (Section 3.6.1) is used to find

a design that minimises Ψ1(ξ). The final choice of Ψ-optimal design is that which has

the smallest value of Ψ1(ξ) among these 20 designs. Here, we will present the result

for n = 10; similarly results and conclusions are obtained for n = 5 (Appendix 7.3).

To assess and compare the space-filling properties of our designs we will use coverage

and spread as defined in Section 3.2.1. These measures are given for all designs in Table

7.6.
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Levels

Factors 0 1

F1 n = 5 n = 10

F2 M = β0 M = β0 + β1x1 + β2x2

F3 ρ =
∏3
k=1 e

(−φk|xik−xjk|) ρ =
∏3
k=1 e

(−φk(xik−xjk)2)

F4 δ2 = 0 δ2 = 1

F5 φ1, φ3 ∼ Unif(0.1, 1) φ1 ∼ Unif(0.1, 1)

φ2 ∼ Unif(2, 3) φ2 ∼ Unif(2, 3), φ3 ∼ Unif(0.2, 0.5)

Table 7.5: Five crossed factors together with their levels and coded values.

Each of the plots in Figures 7.12 - 7.13 and A.37-A.42 shows the 2-D projections of

Ψ-optimal design for one of the settings of F1 to F5; the upper triangle corresponds to

design with a nugget effect in the model, i.e. δ2 = 1 (F4 = 1), and the lower triangle

corresponds to the case of δ2 = 0 (F4 = 0).

From visual inspection of the plots in Figures 7.12 and 7.13, and in Appendix A.6

Figures A.37-A.42, we conclude

i. Including a linear trend changes the designs, and there is interaction between in-

cluding a linear trend and the value of δ2 (see 7.12 and 7.13). When the mean

function is constant (F2 = 0), then the design points are distributed uniformly

across the design region X for both δ2 = 0 and δ2 = 1. The designs have similar

coverage values (Table 7.6) and most points lie in the interior of the region. When

a linear trend is assumed (F2 = 1), the points are more spread out, and if we com-

pare the spread values between F2 = 0 and F2 = 1, we can see that these values

increase up to 15% and 23% for δ2 = 0 and δ2 = 1 respectively.

ii. No other factors make a substantial difference to the designs. In fact based on

Table 7.6 we can see that the corresponding designs for F6 = 0 and F6 = 1 have

similar coverage and spread values; especially when F3 = 1 these values are almost

equal. Also for the two specific levels of F5, the designs are quite robust in the

choice of the prior distribution of decay parameters; the coverage and spread values

are close with slightly smaller coverage values and slightly larger spread values for

F5 = 1 compared to F5 = 0.

Table 7.6 shows the coverage (3.1) and spread (3.2) values for the maximin LHD,

maximin design and Ψ-optimal designs found for 32 combinations of F1 to F5. From

Table 7.6, it can be seen that in general Ψ-optimal designs spread out the points more

than the maximin LHD and the maximin designs, but have high coverage values. That

is, under coverage, they are not as good as maximin LHD or maximin designs.

Finally, we assess robustness of Ψ-optimal designs to the choice of the prediction grid.

The examples up to this point used 40 prediction points from a random LHD. Now for

four combinations of F1 to F5, 000010, 000110, 010010, 010110, Ψ-optimal designs were

found for 10 different sets of 40 prediction points, each from a different LHD.
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Figure 7.12: Two dimensional projections of Ψ-optimal designs for d = 3 and for
F1 − F5 = 100000 ( ) and 100100 ( ).
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Figure 7.13: Two dimensional projections of Ψ-optimal designs for d = 3 and for
F1 − F5 = 110000 ( ) and 110100 ( ).
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F5

0 1

Coverage Spread Coverage Spread

Maximin LHD 0.257398 0.452268 0.257398 0.452268
Maximin design 0.322719 0.721585 0.322719 0.721585

F1 F2 F3 F4 F6

1 0 0 0 0 0.508650 0.873641 0.474310 0.781800
1 0 0 0 1 0.474311 0.861156 0.504193 0.819752
1 0 0 1 0 0.536063 0.757443 0.495561 0.780442
1 0 0 1 1 0.565556 0.791025 0.495392 0.775948
1 0 1 0 0 0.503221 0.865005 0.505389 0.866427
1 0 1 0 1 0.503968 0.869538 0.506063 0.870295
1 0 1 1 0 0.513142 0.867845 0.514124 0.882879
1 0 1 1 1 0.517175 0.884678 0.505793 0.922701
1 1 0 0 0 0.533666 0.884293 0.505793 0.922701
1 1 0 0 1 0.548022 0.900444 0.527085 0.949808
1 1 0 1 0 0.528585 0.998736 0.521236 1.027515
1 1 0 1 1 0.503219 1.045473 0.529560 1.011731
1 1 1 0 0 0.505972 0.897517 0.503842 0.897859
1 1 1 0 1 0.508097 0.911310 0.505413 0.909315
1 1 1 1 0 0.584152 1.013485 0.505793 0.906742
1 1 1 1 1 0.604165 1.075390 0.580091 1.005707

Table 7.6: Coverage and spread for the maximin LHD, maximin design and Ψ-optimal
designs found for 32 combinations of F1 to F5. Note that the value of φ does not affect
the coverage and spread for the maximin LHD and maximin designs; the values are
regarded to aid comparisons.

Table 7.7 shows the values of the objective function Ψ1(ξ) (3.33) and the coverage and

spread values for each of the 10 designs; Ψ1(ξ) is calculated each time using the LHD

for which the designs was found.

The value of the objective function varies between the prediction sets but the difference

is small, i.e. the maximum difference for the combinations 000010 and 000110 is 5%,

for 010010 is 8% and for 010110 is 6%. However, the spread and coverage values of

the designs vary substantially. This is may because, for each combination of F1 to F6,

there are many near Ψ-optimal designs, each having different space-filling properties.

When we apply the coordinate exchange algorithm to obtain the optimal designs, in

the event of ties between designs found for different runs of the algorithm, we pick up a

design at random. The numerical evidence from Table 7.7 indicates that in our future

work, it may be beneficial to adjust our algorithm in the event of ties to pick the design

with the best space-filling properties.
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F1 F2 F3 F4 F5 F6

000010 000110 010010 010110

Ψ1 C S Ψ1 C S Ψ1 C S Ψ1 C S

1 0.338 1.029 0.993 0.320 0.624 0.915 0.389 0.559 1.347 0.429 1.001 1.496
2 0.334 0.903 0.855 0.321 0.768 1.055 0.411 0.916 1.453 0.421 0.764 1.524
3 0.339 0.734 1.130 0.321 0.732 0.853 0.393 0.755 1.451 0.428 0.507 1.563
4 0.344 0.763 0.857 0.323 0.642 1.038 0.413 0.702 1.368 0.405 0.956 1.538
5 0.328 0.765 1.359 0.309 0.505 0.897 0.408 0.785 1.279 0.426 0.829 1.579
6 0.336 0.899 0.933 0.322 0.833 0.943 0.397 0.819 1.511 0.435 1.156 1.407
7 0.332 0.581 0.870 0.320 0.717 0.903 0.386 0.972 1.372 0.408 1.069 1.532
8 0.338 0.747 0.895 0.307 0.576 1.131 0.383 0.919 1.337 0.425 0.667 1.572
9 0.331 0.585 1.118 0.321 0.590 0.964 0.394 0.858 1.283 0.434 1.028 1.424
10 0.333 0.824 1.159 0.325 0.538 0.889 0.418 0.648 1.383 0.405 0.669 1.584

Table 7.7: Values of the objective function Ψ1 (3.10), coverage and spread, denoted by
C and S respectively, and four different combinations of factors F1 − F6 for Ψ-optimal
designs found using 10 different prediction sets.

7.6 Summary and Discussion

The design of computer experiments is a growing research area with many practical

applications. The goal of this chapter was to demonstrate how we can go beyond the

standard plug-in approach, which is mainly found in the literature, to a fully Bayesian

approach, including the specification of priors for the Gaussian process model param-

eters. Use of the closed-form approximation to the objective function from Chapter 3

allowed Bayesian optimal designs to be found numerically.

In this chapter, we made the common assumption of stationarity of the Gaussian process

model. If this assumption is violated then there are implications in both design and

analysis of computer experiments. A way to overcome this problem is to use the

Bayesian treed Gaussian process models proposed by Gramacy and Lee (2008), where

the input space is partitioned and a different stationary Gaussian process model is

fitted in each partition. An additional research problem from the design prospective is

how we can optimally select the points to partition the input space and fit the model

using the treed partition.

In many computer experiments, at each design point information is available on the

partial derivatives of the computer model with respect to the input variables. This

derivative information is important for transmission of error and sensitivity analysis,

i.e. how uncertainty in the model inputs relates to uncertainty in the model outputs.

Moreover, derivatives can help with input screening, to identify which parameters are

important. Obtaining derivative information has a computational cost. Therefore, the

problem for design is at which design points the response should be observed, and at

which points both response and derivatives should be observed. The optimal design, i.e.

the optimal choice of the design points where the response and/or the derivatives are

observed is crucial, as it allows us to save computational time and resources. The partial

derivatives of a Gaussian process are also Gaussian processes and, as a result, joint

modelling of the response and derivatives is possible. Morris et al. (1993) applied this

166



joint modelling and investigated maximin space-filling designs. However they assumed

that at every design point you observe both the response and the derivatives and, as a

result, there is extra computational cost. It is more efficient to identify at which design

points we should observe the response or the derivatives only, and at which design

points it is better to observe both.

Also most literature for computer experiments makes the assumption that all the fac-

tors are quantitative. However, computer modelling can also include qualitative factors.

Qian et al. (2008) proposed a general approach for both design and analysis of com-

puter experiments using Gaussian process model and include both quantitative and

qualitative factors. This methodology could be extended from a Bayesian prospective

to model-based design selection.

Finally, a common assumption made for the Gaussian process model is that of homose-

cedasity, i.e. the variance is constant for all inputs. However, in many real application

we often face the problem that the variance depends on the input. An interesting future

direction is to incorporate heteroscedasity in the Gaussian process model and extend

our Bayesian design approach. This approach could also be applied in the spatial ap-

plications in Chapter 5. Existing work for design under a heteroscedastic Gaussian

process model was presented by Boukouvalas et al. (2014). Their work is an exten-

sion of Zhu and Stein (2005) and they developed designs for estimating the unknown

correlation parameters.
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Chapter 8

Designs for Spatio-temporal

Processes

The objective of Chapter 8 is to extend the methodology in earlier chapters to find

Bayesian designs for prediction of spatio-temporal processes. We investigate our previ-

ously developed closed-form approximation for a particular spatio-temporal correlation

structure. We give examples of optimal designs for two situations: (i) when the ob-

servations are taken at fixed temporal lags, and (ii) when both space and time are

optimised.

8.1 Introduction

A wide variety of scientific areas require understanding and prediction of spatial pro-

cesses that evolve over time. For example, in many environmental applications, such

as the one described in Section 1.1.1, we are interested not only in the spatial nature

of the chemical deposition, but also in how this chemical deposition changes over time.

Similar to spatial data, an important characteristic of spatio-temporal data is that ob-

servations taken nearby in space, and now also time, tend to be more alike than those

taken further apart.

From a methodological point of view, two cases of spatio-temporal data are often iden-

tified, with time being discrete or continuous: (i) if time is continuous, i.e. t ∈ R+ =

(0,∞), we can employ a Gaussian process model to model spatio-temporal data; (ii) if

time is viewed as discrete, discrete time series models can be used, such as conditionally

autoregressive regression models or dynamic models. The latter case is beyond of the

scope of this thesis and further explanation can be found in Banerjee et al. (2004),

Cressie and Wikle (2011) and Mateu and Muller (2012).

In this thesis we focus on Gaussian processes in which every design point x can be

viewed as a point in X ⊆ R2 ×R+. Here we denote the point x = (s, t), corresponding
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to the location s = (s1, s2) and time t. Although we can consider the time as an

additional coordinate and from a probabilistic point of view we can assume a process

on R3, from a physical perspective time differs from space in that time moves only

forward and we cannot compare spatial differences with temporal differences.

In practice, observations y(x) = y(s, t) are noisy versions of a spatio-temporal stochastic

process and may be described by the Gaussian process model (2.6) which we restate

here for completeness. The observations made at each location s1, . . . , sn and at each

time t1, . . . , tT are collected in an nT × 1 vector Ys
> = (Y>(s1), . . . ,Y>(sn)), where

Y(si) = (y(si, t1), . . . , y(si, tT ))>, i = 1, . . . , n, (see Banerjee et al. (2004)). Our model

is then

Ys|β, σ2,θ1,θ2, τ
2 ∼ N(Fsβ,ΣYs), (8.1)

where β, σ2, τ2 are trend, Gaussian process variance and nugget parameters as defined

in (2.6), θ1 and θ2 are spatial and temporal correlation parameters, respectively, Fs is

the nT × k model matrix and ΣYs is the nT × nT spatio-temporal covariance matrix.

Basically, the covariance structure of the Gaussian process Z(x) describes the depen-

dency between observations taken at different points in both space and the time. There-

fore, we need to specify a valid spatio-temporal covariance function, i.e. for any set of

locations and any set of time points, the resulting covariance matrix is positive definite.

All the properties of the Gaussian process described in Chapter 2 can be extended on

the space-time domain R2 × R+ and in the next section we are going to present all

the relevant spatio-temporal concepts. In later sections, we will give a numerical study

to validate our closed-form design criterion and examples of spatial-temporal designs

found by this criterion. Our aim in this chapter is to find Bayesian optimal designs

for spatio-temporal data; the design problem is to find the optimal sampling locations

and observation times when the question of interest is how to predict, in a region XP
(X ⊆ XP), at given locations at a future time.

8.2 Characteristics of Space-time Covariance Functions

A weak or second order stationary spatio-temporal process Z(s, t) : (s, t) ∈ R2 × R+

has constant mean and covariance function K, defined in XP ⊆ R2 × R+, such that

Cov[Z(s, t), Z(s + h, t+ u)] = K(h, u) ∀ s ∈ R2 and ∀ t ∈ R+,

for any spatial separation vector h ∈ R2 and temporal separation u ∈ R+. The covari-

ance function K here is called the space-time covariance function and its margins K(·, 0)

and K(0, ·) are purely spatial and purely temporal covariance functions, respectively.

A consequence of this assumption is constant variance of Z(s, t).

Throughout this chapter we employ a second-order stationary Gaussian process with
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space-time covariance function K(h, u). Moreover, we make the assumption that the

space-time covariance function is separable which means that there exist purely spatial

and purely temporal covariance functions Ks and Kt such that

K(h, u) = Ks(h)Kt(u) ∀ (h, u) ∈ R2 × R+.

Thus, the space-time covariance function decomposes as the product of individual spa-

tial and temporal covariance functions and indicates that the dependence weakens in a

multiplicative manner across space and time.

If the space-time covariance function cannot be expressed as the product of spatial and

temporal covariance function, it is called nonseparable.

Based on the covariance function K, we can define the spatio-temporal correlation

function associated with K as

ρ(h, u) = K(h, u)/K(0, 0), h ∈ R2, u ∈ R+,

where K(0, 0) = σ2, the variance of the Gaussian process Z(x). The correlation func-

tion represents the spatio-temporal dependence in continuous space and continuous

time. The separability assumption of the covariance function implies that the spatio-

temporal correlation function satisfies

ρ(h, u) = ρs(h, 0)ρt(0, u), ∀ h ∈ R2, u ∈ R+.

As in the rest of the thesis, we restrict our choices of correlation functions ρs and ρt

to those from the families of parametric, isotropic correlation functions described in

Section 5.4.4.

Separable correlation functions dominate the literature because of their easy interpre-

tation and also the reduction in the computational burden of the necessary matrix

calculations; the spatio-temporal covariance matrix can be written as the kronecker

product of two smaller dimensional matrices.

Motivated by the high demand for statistical modelling of spatio-temporal data, our

aim is to make some preliminary steps towards identifing the optimal locations and/or

optimal times to collect such data. By specifying an optimal spatio-temporal design, we

answer the questions where and when should we take observations in order to minimise

the uncertainty in predicting future observations. We find separable spatio-temporal

designs, i.e. one set of sampling locations and one set of time points.

8.3 Literature Review

In this section, we give a general overview on the existing approaches for spatio-temporal

design. A recent review of the state of art is given by Mateu and Muller (2012). Most
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of the approaches that tackle the problem of optimal allocation of sampling locations

and/or optimal time at which to take measurements can be classified into two categories:

(i) probability-based and (ii) model-based, as for spatial designs. Our methodology

belongs to the model-based approach and we focus on this approach in our review.

The majority of the literature on spatio-temporal designs using a model-based approach

assumes a dynamic model, for example Wikle and Royle (1999, 2005). In both these

papers, the authors described spatially dynamic designs for ecological and environmen-

tal applications, i.e. observations at different spatial locations are taken in discrete

time with the locations at time t+ 1 selected using data up to time t. Wikle and Royle

(1999) described the spatially dynamic designs for Gaussian processes and Wikle and

Royle (2005) for non-Gaussian data.

In this chapter, we develop non-dynamic designs for spatio-temporal process using

the Gaussian process model. This topic seems to have received less attention in the

literature. Recently, Heuvelink et al. (2013) proposed a design criterion to find spatio-

temporal design as an extension of geostatistical applications. As they discussed, from

a methodological point of view the extension of spatial data approaches is very possible.

However, they indicated two important differences: firstly, in spatio-temporal predic-

tion the assumption of isotropy is violated more often compared to spatial prediction;

secondly, the cost of collecting spatio-temporal data may be cheaper if time series of

data is collected at fixed spatial locations.

Heuvelink et al. (2013) proposed a design criterion which simultaneously minimises the

variance of the estimation error of a linear trend and the interpolation error of the

prediction (kriging) residual. They stated that this criterion is equivalent to minimis-

ing the average kriging variance. They employed a simulated annealing algorithm and

considered three optimisation scenarios: firstly, to reduce the number of sampling lo-

cations from an existing static design; secondly, to reduce the number of locations but

allowing the location to move within the region of interest; and thirdly, to reduce the

number of location at different times. Based on the results of their case study, they

concluded that the third optimisation scenario is better compare to the other two in

terms of prediction accuracy.

The approach for spatio-temporal designs proposed by Heuvelink et al. (2013) is based

on the frequentist approach, where the unknown parameters are estimated from avail-

able data and plugged into the objective function. Uncertainty in these parameters is

not addressed. Our approach is Bayesian and we do not assume any available data.

Moreover, they considered n spatio-temporal points and the correlation in space and/or

time is modelled by a space-time covariance function which has three components: the

purely spatial covariance function, the purely temporal, and the space-time interac-

tion covariance function. In our approach, we consider a separable form of covariance

function.
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8.4 Optimal Design for Spatio-temporal Processes

The purpose of this section is to extend the methodology of spatial optimal design

described in Chapter 5 to include the time component. The observations made at

each of the locations s1, . . . , sn and at each of the times t1, . . . , tT are modelled by

the Gaussian process model (8.1). We also make the assumption that observations

are made at all optimal locations at all time points. Now, the covariance matrix ΣYs

has dimension nT × nT , potentially making calculations very difficult if n or T is

large. Due to this practical limitation, separable covariance functions have become

very popular and as we have mentioned in Section 8.2, our approach is limited to this

class of covariance functions, i.e. ΣYs = σ2Cs(θ1) ⊗ Ct(θ2) + τ2I where Cs(θ1) is the

spatial correlation matrix and Ct(θ2) is the temporal correlation matrix.

The posterior and predictive distributions derived in Chapter 2 involve the inverse

and/or the determinant of ΣYs . Using the properties of Kronecker products and the

assumption that τ2 = 0, we are able to evaluate:

|ΣYs | = |σ2Cs(θ1)⊗ Ct(θ2)| = (σ2)nT |Cs(θ1)|n|Ct(θ2)|T ,

and

Σ−1
Ys

= [Cs(θ1)⊗ Ct(θ2)]−1 = [Cs(θ1)]−1 ⊗ [Ct(θ2)]−1.

Hence, we need only the determinant and the inverse of an n× n and a T × T matrix

instead of an nT × nT matrix, expediting evaluations of the posterior and predictive

distributions and the also evaluation of the design selection objective function.

The posterior predictive distribution can be expressed in closed form, conditional on

correlation parameters θ1 and θ2. The predictive distribution, found in similar way to

those presented in Chapter 2, and replacing Σ with ΣYs and setting δ2 = 0 in all the

posterior densities, is given by

y(xp)|ys,θ1,θ2 ∼ t2a+nT [1, µ∗,
2b∗

2a+ nT
Σ∗],

where y(xp) is the observation for a point xp = (s, t) ∈ XP and

µ∗ = (f>p − ω>s ⊗ ω>t Σ−1
Ys

F)(F>Σ−1
Ys

F + R)−1Rβ0

+ [ω>s ⊗ ω>t Σ−1
Ys

+ (f>p − ω>s ⊗ ω>t Σ−1
Ys

F)(F>Σ−1
Ys

F + R)−1F>Σ−1
Ys

]y

Σ∗ = (1− ω>s ⊗ ω>t Σ−1
Ys
ω>s ⊗ ω>t )

+ (f>p − ω>s ⊗ ω>t Σ−1
Ys

F)(F>Σ−1
Ys

F + R)−1(f>p − ω>s ⊗ ω>t Σ−1
Ys

F)>

b∗ = b+
1

2

[
(y − Fβ0)>[ΣYs + FR−1F>]−1(y − Fβ0)

]
, (8.2)

where ωs, ωt are the n× 1 vector of spatial and T × 1 vector of temporal covariances

between the response at each of the existing inputs and the response at xp respectively,

fp is the k × 1 vector of regression functions for xp, and F is the nT × k matrix of
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regression functions, β0 and R−1 are prior hyperparameters for β, and a and b are

prior hyperparameters for σ2.

The design criterion we employ for spatio-temporal studies is the minimisation of the

average posterior prediction variance, as it derived in Chapter 3, and the objective

function Ψ(ξ) is given by equation (3.7). Under the assumption of separable correlation

functions for space and time and zero nugget, we can again use the laws of total

expectation and total variance, (2.20) and (2.21), to decompose the objective function

for Ψ-optimal designs:

Ψ(ξ) =

∫
XP

∫
Y

var(y(xp)|ys)π(ys)dysdxp

=

∫
XP

∫
Y
Eθ1,θ2|ys

{var(y(xp)|ys,θ1,θ2)}+varθ1,θ2|ys
{E(y(xp)|ys,θ1,θ2)}π(ys)dysdxp

= Ψ1(ξ) + Ψ2(ξ). (8.3)

8.4.1 Closed form approximation to the design selection criterion

We now present numerical evidence that the closed-form approximation, Ψ1(ξ), devel-

oped in Chapter 3, is a good approximation for the objective function Ψ(ξ) (8.3) for

spatio-temporal problems. We investigate how choices for correlation parameters θ1

and θ2 affect Ψ1(ξ) by considering two cases:

i. θ1 unknown and θ2 known and fixed,

ii. both θ1 and θ2 unknown.

For both cases, to evaluate Ψ1(ξ) and Ψ2(ξ) we need to employ numerical methods,

Monte Carlo and quadrature as introduced in Chapter 3.

Case i: When the temporal correlation parameters θ2 are fixed, the approximations

for Ψ1(ξ) and Ψ2(ξ) are similar to those in Section 3.5.2, (3.14), where µ∗,Σ∗ and

b∗ are now given by (8.2). The approximation of Ψ1(ξ) for a uniform, Unif(a1, b1),

and log normal, lnN(µ, σ2), prior distributions for θ1 are given by (3.29) and (3.31),

respectively, and can be expressed for the case of known θ2 as:

Ψ1(ξ) ' 1

2

m1∑
i=1

w1
i f1

(
b1 − a1

2
a1
i +

b1 + a1

2

)
(uniform)

Ψ1(ξ) ' 1√
π

1

2

m1∑
i=1

w1
i f1

(
eµ+a1i σ

√
2
)
, (log-normal) (8.4)

where a1
i and w1

i are the quadrature abscissae and weights, different for the uniform and

log-normal cases and obtained from the Legendre polynomials for uniform distribution,

and from the Hermite polynomials for log-normal distribution and f1(·) is the integrand

of Ψ1(ξ); see Chapter 3.
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The approximation for Ψ2(ξ) is given by

Ψ2(ξ) ' 1

N

1

2

N∑
k=1

m1∑
i=1

w1
i f2

(
b1 − a1

2
ai +

b1 + a1

2
,yk

)
(uniform)

Ψ2(ξ) ' 1

N

1√
π

N∑
k=1

m1∑
i=1

w1
i f2

(
eµ+a1i σ

√
2,yk

)
, (log-normal) (8.5)

where yk: k = 1, . . . , N is a random sample, where for each yk, quadrature is ap-

plied to approximate numerically the first integral in Ψ2(ξ), Monte Carlo integration

approximates the second integral, and f2(·) is the integrand of Ψ2(ξ); see Chapter 3.

Case ii: When the temporal correlation parameters θ2 are unknown, the approxima-

tions of Ψ1(ξ) and Ψ2(ξ) can be extended from those in Section 3.5.1, (3.11), with

µ∗,Σ∗ and b∗ given by (8.2).

For uniform prior distribution for both on θ1 and θ2, we can obtain

Ψ1(ξ) ' 1

2

1

2

m1∑
i=1

m2∑
j=1

w1
iw

3
jf1

(
b1 − a1

2
a1
i +

b1 + a1

2
,
b2 − a2

2
a3
j +

b2 + a2

2

)
,

Ψ2(ξ)'
∫

1

4

m1∑
i=1

m2∑
j=1

w1
iw

3
i f2

(
b1 − a1

2
ai+

b1 + a1

2
,
b2 − a2

2
a3
i+
b2 + a2

2
,y

)
π(y)dy

' 1

N

1

4

N∑
k=1

m1∑
i=1

m2∑
j=1

w1
iw

3
jf2

(
b1 − a1

2
ai +

b1 + a1

2
,
b2 − a2

2
a3
i +

b2 + a2

2
,yk

)
,

Eθ1,θ2|y(µ∗)' 1

N

1

4

N∑
k=1

m1∑
i=1

m2∑
j=1

w1
iw

3
jµ
∗
(
b1 − a1

2
a1
i +

b1 + a1

2
,
b2 − a2

2
a3
i +

b2 + a2

2
,yk

)
.

(8.6)

where µ∗ is given by (8.2) and is a function of θ1 and θ2 and y, a1
i and w1

i are the

abscissae and weights obtained from the Legendre polynomials for the uniform prior

distribution for θ1, a3
j and w3

j are the abscissae and weights obtained from the Legendre

polynomials for the uniform prior distribution for θ2, and yk: k = 1, . . . , N is the

random sample necessary for Monte Carlo integration.

We find designs with points from the study region X = [−1, 1]2 × [0, 1]. The aim is to

predict at a 10× 10 regular-spaced grid for a specific new time, t0 = 2. In contrast to

Chapters 5 and 7, here we do not perform a factorial study to examine the behaviour

of the objective function. Instead we restrict our study to one situation for which we

will later find the Ψ-optimal design.

The set up for this problem is as follows:

1. The number of runs is n = 10, T = 3, i.e. we have n = 10 sampling locations

from [−1, 1]2 and at T = 3 times obtained from [0, 1].

2. The mean function is assumed to be the linear trend β0 +β1s1 +β2s2 +β3t, where
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s1, s2 are the spatial coordinates and t is time. This model assumes that there is

no spatio-temporal interaction.

3. The correlation functions are assumed to be exponential functions (2.4) for both

space and time, i.e. for θ1 = (φ1, ν)> and θ2 = (φ2, ν)>, with ν = 0.5,

ρs(si, sj ;φ1) = exp(−φ1‖si − sj‖)

ρt(ti, tj ;φ2) = exp(−φ2|ti − tj |).

4. We always allow uncertainty in the regression parameters β, the variance σ2 and

the spatial correlation parameter φ1. The temporal correlation parameter φ2 is in

turn considered both known and unknown. Therefore the prior distributions for

the unknown parameters are as follows, with two choices for φ1 and four choices

for φ2:

• β ∼ N(0, σ2I)

• σ2 ∼ IG(3, 1)

• φ1 =

{
Unif(0.1, 1), coded 0

log-normal(−1.1, 1), coded 1

• φ2 =


0.1, coded 0

1, coded 1

10, coded 2

Unif(0.1, 1), coded 3.

In a similar fashion to Chapters 5 and 7, to investigate the relationship between Ψ(ξ)

and both Ψ1(ξ) and Ψ2(ξ), we generate 50 random designs and for each of these designs

we evaluate Ψ(ξ) and each of Ψ1(ξ) and Ψ2(ξ).

We calculate the correlation between Ψ(ξ) and Ψ1(ξ) for each set of designs and these

correlation values are displayed in Table 8.1. Once again, the correlation between Ψ(ξ)

and Ψ1(ξ) is very high, almost equal to 1.

Regardless the choice of prior distribution for the spatial correlation parameter, φ1, the

values of Ψ1(ξ) and Ψ(ξ) are very similar and Ψ2(ξ) is much smaller than Ψ1(ξ). Based

on the numerical evidence, for these specific examples, we are able proceed using our

closed-form approximation to find Ψ-optimal designs.

In the recent work of Ren et al. (2013), they studied the limiting behaviour of integrated

likelihood for non-informative priors and separable correlation functions. Similar to the

case of spatial data, the integrated likelihood is bounded by a function of the correlation

parameters and can quickly become very small. As a result Ψ2(ξ) is once again very

small in magnitude, as it depends mainly on the integrated likelihood, supporting our

numerical results.
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φ1 φ2

0 1 2 3
0 0.999976 0.999998 0.999992 0.999800
1 0.999976 0.999997 0.999993 0.999801

Table 8.1: Correlation between values of Ψ and Ψ1 for 50 random designs and 8 com-
binations of values of φ1 and φ2.

A more thorough factorial study could be conducted in future work to make more

general statements about the closed-form approximation, e.g. for different correlation

functions. However, for this thesis we only focus on separable correlation functions.

8.4.2 Examples of Bayesian spatio-temporal designs

In this section we find Ψ-optimal designs for four different scenarios, presented in Table

8.2. For all four scenarios, the spatial correlation parameter φ1 is unknown, whereas the

temporal correlation parameter φ2 is either known or unknown. We always consider the

situation with optimally selected spatial locations, and for the time points we consider

situations with fixed observation times and also with optimally selected observation

times. The notations V and F in Table 8.2 represent that the variable of interest is

non-constant (V) or it is fixed (F) at specific values respectively.

The steps we follow to select a Ψ-optimal design under each scenario are as follows:

(i) When the times are fixed, i.e. Time=F

• generate 30 randomly starting designs from [−1, 1]2 with n sampling locations,

• for each starting design, we use the coordinate exchange algorithm to optimise

the sampling locations only in order to find a design that minimises Ψ1(ξ); we

select the design from this list with minimum Ψ1(ξ) value.

(ii) When the times are allowed to vary and we want to find a set of the optimal times

at which to take observations, i.e. Time=V

• generate 30 randomly selected starting designs from X = [−1, 1]2 × [0, 1] with n

sampling locations and t time points,

• for each starting design, we use the coordinate exchange algorithm to optimise the

Scenario Space Time φ1 φ2

1 V F V F
2 V F V V
3 V V V F
4 V V V V

Table 8.2: Optimal designs scenarios, where V indicates that the variable is non-
constant and F indicates that the variable is fixed.
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sampling locations by keeping fixed the times and then we employ the coordinate

exchange algorithm to optimise the time,

• we repeat the coordinate exchange algorithm for both space and time until there

is no further improvement in the value of Ψ1(ξ); we select the design from this

list with minimum Ψ1(ξ) value.

For this latter case of non-fixed time points, we do not need to include any constraints

in our coordinate exchange algorithm with respect to the time. The time-order does

not affect the model (8.1) due to the assumption of separability, and so we are able to

use the coordinate exchange algorithm and then the optimal time points can be ordered

from the smallest to largest value.

We find optimal spatio-temporal designs with n = 10 sampling locations and T = 3 or

T = 6 time points. For all cases, the spatial correlation parameter is unknown and a

uniform prior is assigned, φ1 ∼ Unif(0.1, 1). When the temporal correlation parameter

is assumed known, it takes one of the values, φ2 = 0.01, which corresponds to high

temporal correlation, φ2 = 0.5, which corresponds to medium correlation and φ2 = 10,

corresponding to very low correlation. Two spatial correlation functions are considered,

the exponential and the Matérn, (2.4) with ν = 0.5 and ν = 1.5 respectively, and for

the temporal correlation function we assumed the exponential correlation function.

Scenario 1: Initially we find Bayesian optimal designs for Scenario 1 as shown in Table

8.2, with fixed times and the temporal correlation parameter assumed known. These

designs found by minimising Ψ1(ξ) (8.4). We consider two temporal designs:

Times 1 : t1 = 0.76726, t2 = 0.84199, t3 = 0.88814

Times 2 : t1 = 0.001, t2 = 0.1, t3 = 0.2.

We chose these times to investigate spatial designs when the time points are close

together.

Figure 8.1 (a) shows the Ψ-optimal spatial design for exponential correlation function

and φ2 = 0.01. The design is quite space-filling, with points reasoning equally spread

over the study region. The Ψ-optimal design for Matérn correlation function Figure

8.1 (b) has fewer points in the centre of the region, with more points allocated to the

boundaries.

For φ2 = 0.5 and φ2 = 10 and exponential correlation function, Figure 8.1 (c) and

(e), most points are at the boundaries of the design region, whereas using the Matérn

correlation function, Figure 8.1 (d) and (f), results in design points moving to the

corners. Here, spatial correlation is stronger than the exponential correlation function,

and the range of correlation is also smaller.

The pattern of the spatial designs is similar if we assumed the second fixed set of times

(Times 2 ); the corresponding designs can be found in Appendix A.7.
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Figure 8.1: Spatial Ψ-optimal designs for fixed times (set Times 1 ) (a) ν = 0.5 and
φ2 = 0.01; (b) ν = 1.5 and φ2 = 0.01; (c) ν = 0.5 and φ2 = 0.5; (d) ν = 1.5 and
φ2 = 0.5; (e) ν = 0.5 and φ2 = 10; (f) ν = 1.5 and φ2 = 10. In plots (d) and (f) four
points are repeated. 179
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Figure 8.2: Spatial Ψ-optimal designs for randomly selected times: (a) ν = 0.5, φ2 = 0.5
and T = 3; (b) ν = 1.5, φ2 = 0.5 and T = 3; (c) ν = 0.5, φ2 = 0.5 and T = 6; (d)
ν = 1.5, φ2 = 0.5 and T = 6. In plots (b) and (d) four points are repeated.

We have also generated random sets of T = 3 times from the interval (0, 1), to check

if sets of time points result in different spatial designs. We observe that the pattern

for the spatial designs is the same regardless of the time points, i.e. if the time points

are close together or not, the spatial design is the same. Only the correlation strength

of the temporal correlation, which is controlled through the parameter φ2, affects the

spatial designs.

We also assess if the number of time points chosen for the temporal design affects the

spatial designs. We found designs for T = 3 and T = 6, both assuming φ2 = 0.5 and

exponential and Matérn correlation functions. Figure 8.2 shows that the same spatial

designs result for both T = 3 and T = 6.

Scenario 2: The second scenario we consider has φ2 unknown and assigned a uniform
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Figure 8.3: Spatial Ψ-optimal designs for fixed times when φ2 is unknown: (a) ν = 0.5
and Times 1 (b) ν = 1.5 and Times 1 (c) ν = 0.5 and Times 2 (d) ν = 1.5 and Times
2. In plots (b) and (d) four points are repeated.

prior distribution, Unif(0, 1). The objective function to be minimised is Ψ1(ξ) (8.6).

The temporal designs are fixed at either the set Times 1 or Times 2. Figure 8.3 (a) and

(c) show the spatial Ψ-optimal designs for ν = 0.5. We see that the resulting designs

are very similar to each other, with points distributed similarly. When the spatial

correlation function changes to Matérn ν = 1.5, the spatial designs differ from those

obtained by exponential correlation function, but again the two designs for ν = 1.5 are

very similar.

If we compare the designs obtained with φ2 unknown to those with known and fixed

φ2, Figures 8.1 and 8.3 respectively, we can see that the designs for the latter case are

similar with those for φ2 = 0.5, the mid-point of the support of the prior distribution

assumed for φ2.
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Figure 8.4: Spatial and temporal Ψ-optimal designs for exponential spatial and tem-
poral correlation functions: (a) φ2 = 0.01; (b) φ2 = 0.01; (c) φ2 = 0.5; (d) φ2 = 0.5;
(e)φ2 = 10; (f) φ2 = 10.
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Until this point, we have only considered fixed temporal designs, with optimisation only

performed for the spatial locations. However, in many applications, we additionally

need to find out when are the optimal times to observe data. As a result, the last two

scenarios investigated here focus on optimising the time as well as spatial locations.

Scenario 3: Figure 8.4 shows the Bayesian Ψ-optimal designs in space and time found

by minimising Ψ1(ξ) (8.4) for φ2 = 0.01, 0.5 and 10 and the exponential correlation

function. The spatial designs are identical to those in the previous two Scenarios, see

for example Figures 8.1 and 8.3. The temporal designs in Figure 8.4 indicate that

the optimal strategy is to take observations at equally spaced times if the temporal

correlation is high and as the temporal correlation decreases, begin to coalesce, see

Figure 8.4 (d) and (f). That is, as φ2 increases, the temporal correlation decreases, and

the design is influenced by the linear trend in time.

Similar results are obtained when we assumed a Matérn spatial correlation function.

The optimal spatial designs are the same as those obtained for fixed sampling times.

The optimal temporal designs again are formed from equal spaced points for φ2 = 0.01,

and for larger values of φ2, the second time point moves towards to the upper point,

the same as those in Figure 8.4.

Scenario 4: The final, most general case is shown in Figure 8.5, with both spatial

locations and time points optimised and all parameters considered unknown and given

prior distributions. When the spatial correlation is assumed to be exponential, the

Ψ-optimal design is the same as that obtained when φ2 = 0.5, Figures 8.4 (c) and

(d) for space and time respectively. This result agrees with our conclusion that the

spatial Ψ-optimal design is not affected by the configuration of the time points but it

is affected by the temporal correlation parameter φ2. Similar conclusions are obtained

for the Matérn correlation function, see Figure 8.5 (d) where the design is quite similar

to that in Figure 8.4 (d).

In order to investigate temporal designs in more detail, we generate 100 random spatial

designs and for each found the Ψ-optimal of time points for both T = 3 and T = 6 with

φ2 ∼ Unif(0.1, 1). The optimal temporal designs were always equally spaced points in

the region (0, 1).

Finally, we compare the spatial Ψ-optimal designs obtained when we minimise the

spatio-temporal objective function (8.6) with the spatial Ψ-optimal designs obtained

by minimising the spatial objective function Ψ1(ξ) (3.11) for n = 10, δ2 = 0 and

φ ∼ Unif(0.1, 1). As demonstrated in Chapter 5, when ν = 0.5 the Ψ-optimal design

is a coverage design, see Figure 5.4 (a), and when ν = 1.5, Figure 5.5 (a), the points

move towards to the boundaries of the design region with few points at the centre. In

order to compare the spatial designs obtained from the two different selection criteria,

we evaluated the efficiencies of the corresponding optimal designs, see Table 8.3. The

efficiencies are very close to 1, indicating that the Ψ-optimal spatial designs obtained

by minimising the spatial objective function do not greatly differ in performance from
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Figure 8.5: (a) Spatial and (b) temporal designs for ν = 0.5 and (c) spatial and (d)
temporal designs ν = 1.5.

those obtained from the spatio-temporal approach regardless the choice of time points.

Table 8.3 shows the efficiencies for all the spatial Ψ-optimal designs found under each

one of the four scenarios with both T = 3 and T = 6 time points and either the

exponential, ν = 0.5, or the Matérn, ν = 1.5, correlation function and when φ2 is

assumed known and fixed is equal to φ2 = 0.5 .

To investigate how the spatio-temporal correlation affects the designs, we evaluate the

correlation between any spatial location s = (s1, s2) and time t and the centre of the

region (0, 0) at t = 0 for each of the times 0, 0.2, 0.4, 0.6, 0.8, 1. The corresponding

spatio-temporal correlation is evaluated by the formula:

ρ(s,0; t, 0) = ρs(s,0)ρt(t, 0).
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Figures 8.6–8.7 show the spatio-temporal correlation for two different values of φ2 =

0.5, with exponential or Matérn correlation functions for the spatial correlation. The

contour plots display the spatio-temporal correlation between each spatial point to the

centre of the spatial region at time t = 0, averaged across the prior distribution for φ1 for

each time point t = 0.2, 0.4, 0.6, 0.8, 1. In all cases, red indicates high spatio-temporal

correlation and light yellow indicates low spatio-temporal correlation.

These figures show how the spatio-temporal correlation affects the choice of the spatial

design. The spatio-temporal correlation is given by the Kronecker product of the spatial

and temporal correlations; multiplying each entry of the spatial correlation by the

temporal correlation may lead to different correlations compared to the purely spatial

correlations in Chapter 5. Therefore, a point which has high spatial correlation with

the centre point at time t = 0 may have very different correlation for t = 1.

Figures 8.6 and 8.7 show that the spatio-temporal correlation is a non-constant function

of distance in space and time; see for example Figures 8.6 (a) and Figures 8.6 (f), where

the degree of the correlation decreases as the time increases. For this reason, spatial

designs in Figure 8.1 (c) and (d) have less points in the centre of the region compared

to their corresponding spatial designs in Figure 8.1 (a) and (b).

To summarise, for all the cases if we keep φ2 constant and compare plots for ν = 0.5

and ν = 1.5, we can see that the strength of the correlation increases from ν = 0.5 to

ν = 1.5. However, the range of the correlation for ν = 1.5 is smaller than ν = 0.5.

Moreover, as the value of φ2 increases, i.e. between φ2 = 0.01 and φ2 = 0.5, the spatio-

temporal correlation decreases and for this reason the corresponding spatial designs for

φ2 = 0.01 tend to cover the spatial region whereas for φ2 = 0.5 the points move towards

to the boundaries of the region, e.g. Figure 8.4 (a) and (c).

8.5 Summary

In this chapter we introduced the problem of finding Bayesian optimal designs for

prediction of a spatio-temporal process. Our aim was to introduce some ideas based

on design criteria for Gaussian process models. As discussed earlier, this problem has

received little attention in the literature. We extended our methodology for spatial

design to design for both in space and time together.

We simplify the problem by making specific assumptions about the spatio-temporal

correlation function and consider the model without a nugget effect. However, such

models are only rarely seen in real applications of spatio-temporal data, due to their

limited ability to describe the space-time interactions, see for example Banerjee et al.

(2004); Cressie and Wikle (2011). We have also made the assumption that in each

spatial location we are able to take observations at all time points. We did not consider

the problem of any collecting data in some locations at some time points, i.e. to have
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a subset each time. These problems do not have the assumption of separability in the

correlation functions.

Future work could be extended by real applications, such as the chemical deposition

problem in Chapter 6 where data could be considered to be correlated in time.
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Figure 8.6: Contours displaying correlation between each spatial point and the centre of
the design region, across the prior value of φ1 for ν = 0.5 and φ2 = 0.5: (a) at time=0,
(b) at time=0.2, (c) at time=0.4, (d) at time=0.6, (e) at time=0.8, (f) at time=1.
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Figure 8.7: Contours displaying correlation between each spatial point and the centre of
the design region, across the prior value of φ1 for ν = 1.5 and φ2 = 0.5: (a) at time=0,
(b) at time=0.2, (c) at time=0.4, (d) at time=0.6, (e) at time=0.8, (f) at time=1.
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Chapter 9

Conclusions and Future Work

This last chapter contains a summary of the thesis, outlines the major contributions

and gives overall conclusions from the work. Also, we discuss some limitations of the

work and outline future work to extend the approaches adopted for Bayesian optimal

design for Gaussian process models.

9.1 Thesis Summary

In this thesis, we have discussed the problem of Bayesian optimal designs for pre-

diction from the Gaussian process model, as applied in geostatistical science, i.e. in

spatial and/or spatio-temporal environmental applications, and computer experiment

applications. The objective of the research was to develop methods for optimal de-

sign for precise prediction of the response at unobserved points using the Gaussian

process model. Throughout the thesis, we have drawn attention to the importance of

incorporating the uncertainties introduced into the model due to unknown covariance

parameters. To achieve this, our main contribution has been the development, imple-

mentation and assessment of a new closed-form approximation to the average expected

posterior predictive variance. The methodology has been demonstrated on a variety of

diverse applications, i.e. spatial data, computer experiments and spatio-temporal data.

Particular major contributions and conclusions from this work are:

New closed-form approximation to the design selection criterion: A major

problem of applying a fully Bayesian approach to design selection for Gaussian pro-

cess models is the computational burden associated with optimising an analytically in-

tractable function. In Chapter 3, we adopted a decision theoretic approach (Chaloner

and Verdinelli, 1995) to find Bayesian optimal designs that minimise the posterior pre-

dictive variance. The new proposed approximation allowed us to integrate out the

unknown data and avoid the use of Monte Carlo integration which was a key step to

overcoming the computational challenges usually associated with Bayesian designs. We
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provided theoretical results to give insight into the proposed approximation. Moreover,

in each of the application areas, Chapters 5, 7 and 8, we provided numerical studies to

justify that the closed-form approximation can form the basis of a good design selection

criterion.

Robustness and sensitivity: A major issue for design problems is how robust the

choice of an optimal design is to changes in the prior hyperpameters and the sensitivity

of the efficiency of an optimal design to these changes. In Chapter 4, we presented a

thorough investigation of both the robustness and the sensitivity and concluded that,

in general, an optimal design is mainly affected by the choice of the mean function, and

the value of the decay parameter and noise-to-signal ratio.

Bayesian optimal designs for spatial data: The proposed closed form approxima-

tion criterion was used to find spatial designs, that is an optimal choice of sampling

locations in a geographical region of interest. In Chapter 5, the designs we have studied

compromise between minimax and maximin designs according to the choice of corre-

lation and mean function and the prior information on the decay and noise-to-signal

ratio. In addition our methodology was compared to existing well developed methodol-

ogy for Bayesian optimal design. Diggle and Lophaven (2006) proposed and evaluated

two designs, the lattice plus close pairs design and the lattice plus infill design, and our

Bayesian Ψ-optimal design was compared with both. For all cases investigated, our

design performs better, i.e. has smaller average prediction variance. The comparisons

supported our findings that the designs are strongly influenced by the choice of mean

function, and the strength and range of the correlation. This thesis is motivated by the

need to obtain optimal sampling locations for environmental monitoring networks, and

in this context we used data on chemical deposition in the eastern USA (Chapter 6) to

inform the choice of both prospective and retrospective designs using our methodology.

These designs indicated which stations should be dropped from the existing monitoring

network.

Bayesian optimal design for computer experiments: In recent years design and

analysis of computer experiments has received increasing attention, with special em-

phasis on space-filling designs. After the pioneer paper of Sacks et al. (1989), who

proposed the Gaussian process for modelling the deterministic output of computer ex-

periments, much work remains to be done to develop model-based designs for computer

experiments. Therefore, in Chapter 7 we applied our methodology to the context of

computer experiments and using our closed-form approximation, we found Bayesian

optimal designs for prediction in two and three dimensions and compared them with

designs in the literature. We also drew attention to the fact that standard space-filling

designs may be inefficient for prediction when we take into account uncertainty in the

model parameters.

Bayesian optimal designs for spatio-temporal data: As the final part of this

thesis, we made some first steps towards extending the design methodology applied
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for spatial data to also find some optimal sampling times. A possible model for such

data is the Gaussian process model, and for this reason our closed-form approximation

can naturally be extended to incorporate both spatial and temporal correlations. Al-

though there is a literature on spatio-temporal statistical modelling, the literature for

Bayesian optimal design for spatio-temporal data is limited. The extension from spatial

design presents numerical challenges and hence we restricted our studies to separable

spatio-temporal correlation functions. Chapter 8 introduced the spatio-temporal de-

sign problem and in this final chapter we tried to give a general idea of the problem.

We concluded that the degree of the spatio-temporal correlation and the range of the

correlation strongly influence the choice of the optimal points.

9.2 Future Work

Throughout this thesis, possibilities for future work and improvements have been high-

lighted in each application area, i.e in Chapters 5, 7 and 8.

More generally, our methodology can also be applied to machine learning applications.

Rasmussen and Williams (2006) proposed the Gaussian process model (2.6) for regres-

sion and classifications problems in machine learning. The regression problem concerns

the prediction with continuous outputs whereas classification problem addresses dis-

crete output. Our approach can directly be applied in regression problems to identify

the best input points to provide precise predictions for the untested input points. For

the classification problem, a link function has to used since the output is discrete. Ex-

tension of our methodology to this second case could be interesting future research

problem.

Clearly, there is also scope to develop our methods to address problems from different

application areas, particularly in computer experiments. One example area would be

computational chemistry, where computer simulations are used to understand chemical

reactions, drug interactions and for molecular discovery. The next step for our research

is to develop our methods to design efficient and effective experiments for building sur-

rogates for these problems. A key step will be improving the computational algorithm

to enable larger designs to be found, and incorporating physical data to enable the

simulator to be calibrated and validated.
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Appendix A

A.1 Proof of Lemma 3.1

Auxiliary facts

Details can be found in Harville (2008).

1. Matrix determinant: Let A be a non-singular square matrix and u, v column

vectors of an appropriate size. Then

|A + uv>| = |A|(1 + v>A−1u) (A.1)

2. Sherman–Morrison formula: Let A be a non-singular square matrix and u, v are

column vectors. Then A + uv> is nonsingular matrix and

(A + uv>)−1 = A−1 − A−1uv>A−1

1 + v>A−1u
(A.2)

3. Sherman Morrison Woodbury formula: Let A, C, U,V be n × n, k × k, n × k
and k × n matrices respectively, with A and C non-singular. Then

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1 (A.3)

Proof :

The proof follows similar steps to that found in Ren et al. (2012).

Recall that integrated likelihood LI(φ, δ2) in (2.31) is

LI(φ, δ2) =

∫
f(y|β, σ2, φ, δ2)π(β, σ2)dβdσ2

=
|F>Σ−1F + R|−

1
2 |Σ|−

1
2[

b+ 1
2(y − Fβ0)>[Σ + FR−1F>]−1(y − Fβ0)

]a+n
2

,

which depends on ρ(φ; d) through Σ. The continuity of LI(φ, δ2) is a consequence of

continuity of the correlation function ρ(φ; d).
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Part (a): It is sufficient to show the variance-covariance matrix, Σ is positive-definite

and then LI(φ, δ2) > 0 for all φ and δ2.

• for (φ, δ2)→ (φ, 0+),

Σ = C(φ) + δ2I→ C(φ)

where C(φ) is a positive definite correlation matrix for any φ > 0.

• for (φ, δ2)→ (∞, δ2),

C(φ)→ I as φ→∞ and Σ = (δ2 + 1)I

Hence, Σ is positive definite matrix for any δ2.

• for (φ, δ2)→ (∞, 0+), Σ→ I

Hence, in each case, limφ→∞ L
I(φ, δ2) > 0.

Part (b): From Assumption 3.3, Σ = δ2I + 1n1>n + v(φ)D + o(v(φ)). Ignoring the

o(ν(φ)) term, and following Kazianka and Pilz (2012) who stated that 1n1>n + v(φ)D

is positive-definite and continuous with respect to its eigenvalues, we have

c11n1>n + (c2v(φ) + δ2)I ≤ Σ ≤ 1n1>n + (c3v(φ) + δ2)I (A.4)

where ≤ denotes the Lowewner partial ordering and c1 < 1, c2 < minλi>0λi and

c3 = maxi|λi| are positive constants, with λi, i = 1, . . . , n, being the eigenvalues of D.

Recall the properties of Loewner ordering for determinant and inversion, i.e. A ≤ B⇒
‖A‖ ≤ ‖B‖ and B−1 ≤ A−1 , see Siotani (1967). Then

|c11n1>n + (c2v(φ) + δ2)I| ≤ |Σ| ≤ |1n1>n + (c3v(φ) + δ2)I|,

and using (A.1) we have that

(c2v(φ) + δ2)n
(

1 +
c1n

c2v(φ) + δ2

)
≤ |Σ| ≤ (c3v(φ) + δ2)n

(
1 +

c1n

c3v(φ) + δ2

)
,

and hence

(c2v(φ) + δ2)n−1(c2v(φ) + δ2 + c1n) ≤ |Σ| ≤ (c3v(φ) + δ2)n−1(c3v(φ) + δ2 + n). (A.5)

It follows that, as φ→ 0+,

|Σ| = O
(
(δ2 + v(φ))n−1

)
. (A.6)

The next step is to find the determinant of the matrix |F>Σ−1F + R|. We apply (A.2)
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to find the inverse of Σ−1.

1

c3v(φ) + δ2

(
I− 1n1>n

c3v(φ) + δ2 + n

)
≤ Σ−1 ≤ 1

c2v(φ) + δ2

(
I− c11n1>n

c1n+ δ2 + c2v(φ)

)
.

(A.7)

We make use of

|FTΣ−1F + R| = |FTΣ−1FR−1 + I||R| (A.8)

and Theorem 13.7.3. and Corollary 13.7.4 from Harville (2008), which gives

|FTΣ−1FR−1 + I| =
k∑
r=0

∑
{i1,...,ir}

|FTΣ−1FR−1{i1,...,ir}|, (A.9)

where {i1, . . . , ir} is an r−dimensional subset of the first k positive integers, the second

summation is over all the k!/(k − r)!r! such subsets and FTΣ−1FR−1{i1,...,ir} is the

(k − r) × (k − r) principal submatrix of FTΣ−1FR−1 obtained by striking out the

{i1, . . . , ir}th rows and columns. We assume {i1, . . . , ir} is the empty set for r = 0.

From equation (A.7) we see that:

F>Σ−1FR−1 ≥ 1

c3v(φ) + δ2

(
F>FR−1 − F>1n1>n FR−1

c3v(φ) + δ2 + n

)

F>Σ−1FR−1 ≤ 1

c2v(φ) + δ2

(
F>FR−1 − c1F

>1n1>n FR−1

c2v(φ) + δ2 + c1n

)

and hence

|F>Σ−1FR−1| ≥ (c3v(φ) + δ2)−k|F>FR−1||I− (F>FR−1)−1F>1n1>n FR−1

c3v(φ) + δ2 + n
|

≥ (c3v(φ) + δ2)−k|F>FR−1|
(

1− 1>n F(F>F)−1F>1n

c3v(φ) + δ2 + n

)
≥ |F>FR−1|

(
c3v(φ) + δ2 + n− 1>n F(F>F)−1F>1n

(c3v(φ) + δ2 + n)(c3v(φ) + δ2)k

)
(A.10)

|F>Σ−1FR−1| ≤ (c2v(φ) + δ2)−k|F>FR−1||I− (F>FR−1)−1c1F
>1n1>n FR−1

c2v(φ) + δ2 + c1n
|

≤ (c2v(φ) + δ2)−k|F>FR−1|
(

1− 1>n F(F>F)−1F>1n

c2v(φ) + δ2 + c1n

)
≤ |F>FR−1|

(
c2v(φ) + δ2 + c1n− c11

>
n F(F>F)−1F>1n

(c2v(φ) + δ2 + c1n)(c2v(φ) + δ2)k

)
(A.11)
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As (A.10) and (A.11) hold for all submatrices |FTΣ−1FR−1{i1,...,ir}|, we can use (A.9)

to obtain:

|F>Σ−1FR−1 + I||R|≥
(
c3v(φ)+δ2+n−1>n F(F>F)−1F>1n

(c3v(φ)+δ2+n)(c3v(φ)+δ2)k

)∑k
r=0

∑
{i1,...,ir} |F

>FR−1{i1,...,ir}||R|

≥
(
c3v(φ) + δ2 + n− 1>n F(F>F)−1F>1n

(c3v(φ) + δ2 + n)(c3v(φ) + δ2)k

)
|F>F + R|

|F>Σ−1FR−1 + I|R|≤
(
c2v(φ)+δ2+c1n−c11>n F(F>F)−1F>1n

(c2v(φ)+δ2+c1n)(c2v(φ)+δ2)k

)∑k
r=0

∑
{i1,...,ir} |F

>FR−1{i1,...,ir}||R|

≤
(
c2v(φ) + δ2 + c1n− c11

>
n F(F>F)−1F>1n

(c2v(φ) + δ2 + c1n)(c2v(φ) + δ2)k

)
|F>F + R|

Note that PF = F(F>F)−1F> is a projection matrix. Hence, by Harville (2008)

Theorem 12.3.5, if 1n ∈ C(F), 1>nF(F>F)−1F>1n = 1>n 1n = n. Hence,

|F>Σ−1F + R| ≤


|F>F+R|(c2v(φ)+δ2+c1n−c11>n Px1n)

(c2v(φ)+δ2+c1n)(c2v(φ)+δ2)k
if 1 6∈ C(F)

|F>F+R|(c2v(φ)+δ2)
(c2v(φ)+δ2+c1n)(c2v(φ)+δ2)

if 1 ∈ C(F)

and

|F>Σ−1F + R| ≥


|F>F+R|(c3v(φ)+δ2+n−1>n Px1n)

(c3v(φ)+δ2+n)(c3v(φ)+δ2)k
if 1 6∈ C(F),

|F>F+R|(c3v(φ)+δ2)
(c3v(φ)+δ2)(c3v(φ)+δ2)

if 1 ∈ C(F).

So we have:

|F>Σ−1F + R| =

O
(
(δ2 + v(φ))−k

)
if 1 6∈ C(F),

O
(
(δ2 + v(φ))−k+1

)
if 1 ∈ C(F).

(A.12)

The final step is to find the limits for (Σ + FRF>)−1. Using the Sherman Morrison

Woodbury formula (A.3), we have

(Σ + FRF>)−1 = Σ−1 −Σ−1F(F>Σ−1F + R)−1F>Σ−1 = RG (A.13)

From (A.7) Σ−1 ≥ 1
δ2+c3v(φ)

(
I − 1n1>n

δ2+c3v(φ)+n

)
. Setting Σ equal to this lower-bound

and using (A.2) we have
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(F>Σ−1F + R)−1 =

(
F>F + R− F>1n1>n F

n+ δ2 + c3v(φ)

)−1

= (F>F + R)−1 +
(F>F + R)

−1
F>1n1>n F(F>F + R)−1

n+ δ2 + c3v(φ)− 1>n F(F>F + R)−1F>1n
.

Now we denote by P∗F = F(F>F + R)−1F> and c∗3 = n+ δ2 + c3v(φ) and

F(F>Σ−1F + R)−1F> = (c3v(φ) + δ2)

(
P∗F +

P∗F1n1
>
nP∗F

c∗3 − 1>nP∗F1n

)
.

Substituting all terms in (A.13) we have

(δ2 + c3vφ))RG =

(
I− 1n1

>
n

c∗3

)
−
(

I− 1n1
>
n

c∗3

)(
P∗F +

P∗F1n1
>
nP∗F

c∗3 − 1>nP∗F1n

)(
I− 1n1

>
n

c∗3

)
.

(A.14)

When (φ, δ2)→ (0+, 0+), c∗3 → n and from (A.14) we have that

(δ2 + c3vφ))RG →
(

I− 1n1
>
n

n

)
−
(

I− 1n1
>
n

n

)(
P∗F +

P∗F1n1
>
nP∗F

n− 1>nP∗F1n

)(
I− 1n1

>
n

n

)
.

(A.15)

Now, we need to show that n− 1>nP∗F1n 6= 0

P∗F = F(F>F + R)−1F>

= F[(F>F)(I + (F>F)−1R)]−1F>

= F[I + (F>F)−1R]−1(F>F)−1F>

Applying the Sherman-Morrison-Wodbury formula (A.3) to [I + (F>F)−1R]−1, we ob-

tain

P∗F = F(F>F)−1F> − F(F>F + R)−1R(F>F)−1F>.

If 1 ∈ C(F) then n − 1>n P∗x1n = n − n + 1>n F(F>F + R)−1R(F>F)−11n > 0 and if

1 /∈ C(F) then n− 1>n P∗x1n = n− 1>n Px1n + 1>n F(F>F + R)−1R(F>F)−11n > 0.

Therefore (δ2 + c3v(φ))RG is a bounded, non-zero matrix, and hence

S2 = (y − Fβ0)>(Σ + FRF>)−1(y − Fβ0) ∝ (δ2 + c3v(φ))−1,

and

S2 = O
(
(δ2 + v(φ))−1

)
. (A.16)

207



Combining statements (A.6), (A.12) and (A.16) completes the proof for (b).

Part (c): for (φ, δ2)→ (∞,∞), (φ, δ2)→ (φ,∞) or (φ, δ2)→ (0+,∞), it is sufficient

to show that Σ depends only on δ2. As δ2 → ∞, the correlation matrix C(φ) is a

function of the correlation parameter φ:

Σ = δ2(I +
C(φ)

δ2
)→ δ2I(1 + o(1)).

Hence,|Σ| = |δ2I(1+o(1))| = (δ2)n and |F>Σ−1F + R| ' (δ2)−k|F>F + R|. Therefore,

their respective order are given by the following equations:

|Σ| = O
(
(δ2n)

)
, (A.17)

|F>Σ−1F + R| = O
(
(δ2)−k

)
. (A.18)

Finally, we use Sherman-Morrison-Woodbury formula (A.3) to expand the matrix :

[Σ+FR−1F>]−1 = Σ−1 −Σ−1F(F>Σ−1F + R)−1F>Σ−1 = (δ2)−1(I− F(F>F + R)−1F).

Therefore,

S2 = O
(
(δ2)−1

)
. (A.19)

Equations (A.17), (A.18) and (A.19) complete the proof for (c).
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A.2 Sensitivity Study for n = 30
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Figure A.1: Ψ-optimal designs for n = 30 runs (F1 = 1), constant mean (F2 = 0),
ν = 0.5 (F3 = 0) and δ2 = 0 (F4 = 0) (a) R−1 = 0.25 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure A.2: Ψ-optimal designs for n = 30 runs (F1 = 1), constant mean (F2 = 0),
ν = 1.5 (F3 = 1) and δ2 = 0 (F4 = 0) (a) R−1 = 0.25 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure A.3: Ψ-optimal designs for n = 30 runs (F1 = 1), constant mean (F2 = 0),
ν = 0.5 (F3 = 0) and δ2 = 1 (F4 = 1) (a) R−1 = 0.25 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure A.4: Ψ-optimal designs for n = 30 runs (F1 = 1), constant mean (F2 = 0),
ν = 1.5 (F3 = 1) and δ2 = 1 (F4 = 1) (a) R−1 = 0.25 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure A.5: Ψ-optimal designs for n = 30 runs (F1 = 1), linear mean (F2 = 1),
ν = 0.5 (F3 = 0) and δ2 = 0 (F4 = 0) (a) R−1 = 0.25I3 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25I3 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4I3 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4I3 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure A.6: Ψ-optimal designs for n = 30 runs (F1 = 1), linear mean (F2 = 1),
ν = 1.5 (F3 = 1) and δ2 = 0 (F4 = 0) (a) R−1 = 0.25I3 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25I3 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4I3 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4I3 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure A.7: Ψ-optimal designs for n = 30 runs (F1 = 1), linear mean (F2 = 1),
ν = 0.5 (F3 = 0) and δ2 = 1 (F4 = 1) (a) R−1 = 0.25I3 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25I3 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4I3 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4I3 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ.
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Figure A.8: Ψ-optimal designs for n = 30 runs (F1 = 1), linear mean (F2 = 1),
ν = 1.5 (F3 = 1) and δ2 = 1 (F4 = 1) (a) R−1 = 0.25I3 and φ having a uniform
prior distribution (F5 = 0, F6 = 0), (b) R−1 = 0.25I3 and φ having a log-normal prior
distribution (F5 = 1, F6 = 0) (c) R−1 = 4I3 and φ having a uniform prior distribution
(F5 = 0, F6 = 1) and (d) R−1 = 4I3 and φ having a log-normal prior distribution
(F5 = 1, F6 = 1). Contours display correlation between each point in X and the centre
of the design region, averaged across the prior for φ. In plot (a) ten points are repeated,
(b) eight points are repeated, (c) twelve points are repeated and (d) eight points are
repeated.
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A.3 Examples of Spatial Optimal Designs for n = 10

Constant mean function

Figures A.9–A.14 displays Ψ-optimal designs and plots (a)-(d) give the design and the

correlation contours for δ2 = 0, 0.5, 1, 2.5 respectively.
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Figure A.9: Ψ-optimal designs for a constant mean function, Matérn correlation func-
tion with ν = 0.5, uniform prior distribution on φ and known δ2: (a) δ2 = 0, (b)
δ2 = 0.5 (c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between
each point and the centre of the design region, averaged across the prior distribution
for φ.
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Figure A.10: Ψ-optimal designs for a constant mean function, Matérn correlation func-
tion with ν = 1.5, uniform prior distribution on φ and known δ2: (a) δ2 = 0, (b)
δ2 = 0.5 (c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between
each point and the centre of the design region, averaged across the prior distribution
for φ.
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Figure A.11: Ψ-optimal designs for a constant mean function, Matérn correlation func-
tion with ν = 0.5, log-normal prior distribution on φ and known δ2: (a) δ2 = 0, (b)
δ2 = 0.5 (c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between
each point and the centre of the design region, averaged across the prior distribution
for φ.
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Figure A.12: Ψ-optimal designs for a constant mean function, Matérn correlation func-
tion with ν = 1.5, log-normal prior distribution on φ and known δ2: (a) δ2 = 0, (b)
δ2 = 0.5 (c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between
each point and the centre of the design region, averaged across the prior distribution
for φ.
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Figure A.13: Ψ-optimal designs for a constant mean function, uniform prior distribution
on φ and uniform prior distribution on δ2 with Matérn correlation function (a) ν = 0.5
and (b) ν = 1.5.
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Figure A.14: Ψ-optimal designs for a constant mean function, log-normal prior distri-
bution on φ and uniform prior distribution on δ2 with Matérn correlation function (a)
ν = 0.5 and (b) ν = 1.5.
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A.4 Examples of Spatial Optimal Designs for n = 20

Constant mean function
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Figure A.15: Ψ-optimal designs for a constant mean function, Matérn correlation func-
tion with ν = 0.5, uniform prior distribution on φ and known δ2: (a) δ2 = 0, (b)
δ2 = 0.5 (c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between
each point and the centre of the design region, averaged across the prior distribution
for φ.
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Figure A.16: Ψ-optimal designs for a constant mean function, Matérn correlation func-
tion with ν = 1.5, uniform prior distribution on φ and known δ2: (a) δ2 = 0, (b)
δ2 = 0.5 (c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between
each point and the centre of the design region, averaged across the prior distribution
for φ.
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Figure A.17: Ψ-optimal designs for a constant mean function, Matérn correlation func-
tion with ν = 0.5, log-normal prior distribution on φ and known δ2: (a) δ2 = 0, (b)
δ2 = 0.5 (c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between
each point and the centre of the design region, averaged across the prior distribution
for φ.
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Figure A.18: Ψ-optimal designs for a constant mean function, Matérn correlation func-
tion with ν = 1.5, log-normal prior distribution on φ and known δ2: (a) δ2 = 0, (b)
δ2 = 0.5 (c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between
each point and the centre of the design region, averaged across the prior distribution
for φ.
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Figure A.19: Ψ-optimal designs for a constant mean function, uniform prior distribution
on φ and uniform prior distribution on δ2 with Matérn correlation function (a) ν = 0.5
and (b) ν = 1.5.
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Figure A.20: Ψ-optimal designs for a constant mean function, log-normal prior distri-
bution on φ and uniform prior distribution on δ2 with Matérn correlation function (a)
ν = 0.5 and (b) ν = 1.5.
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Figure A.21: Ψ-optimal designs for a linear mean function, Matérn correlation function
with ν = 0.5, uniform prior distribution on φ and known δ2: (a) δ2 = 0, (b) δ2 = 0.5
(c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between each
point and the centre of the design region, averaged across the prior distribution for φ.
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Figure A.22: Ψ-optimal designs for a linear mean function, Matérn correlation function
with ν = 1.5, uniform prior distribution on φ and known δ2: (a) δ2 = 0, (b) δ2 = 0.5
(c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between each
point and the centre of the design region, averaged across the prior distribution for φ.
In plot (c) eight points are repeated and plot (d) eleven points are repeated.
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Figure A.23: Ψ-optimal designs for a linear mean function, Matérn correlation function
with ν = 0.5, log-normal prior distribution on φ and known δ2: (a) δ2 = 0, (b) δ2 = 0.5
(c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between each
point and the centre of the design region, averaged across the prior distribution for φ.
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Figure A.24: Ψ-optimal designs for a linear mean function, Matérn correlation function
with ν = 1.5, log-normal prior distribution on φ and known δ2: (a) δ2 = 0, (b) δ2 = 0.5
(c) δ2 = 1 and (d) δ2 = 2.5. Contours display the average correlation between each
point and the centre of the design region, averaged across the prior distribution for φ.
In plot (c) six points are repeated and plot (d) twelve points are repeated.
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Figure A.25: Ψ-optimal designs for a linear mean function, uniform prior distribution
on φ and uniform prior distribution on δ2 with Matérn correlation function (a) ν = 0.5
and (b) ν = 1.5. In plot (b) four points are repeated.
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Figure A.26: Ψ-optimal designs for a linear mean function, log-normal prior distribution
on φ and uniform prior distribution on δ2 with Matérn correlation function (a) ν = 0.5
and (b) ν = 1.5. In plot (b) four points are repeated.
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A.5 Examples of Designs for Computer Experiments d = 3

and n = 5
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Figure A.27: Two dimensional projections of Ψ-optimal designs for d = 3 and for
000000 ( ) and 000100 ( ).
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Figure A.28: Two dimensional projections of Ψ-optimal designs for d = 3 and for
010000 ( ) and 010100 ( ).
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Figure A.29: Two dimensional projections of Ψ-optimal designs for d = 3 and for
000001 ( ) and 000101 ( ).
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Figure A.30: Two dimensional projections of Ψ-optimal designs for d = 3 and for
000001 ( ) and 000101 ( ).
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Figure A.31: Two dimensional projections of Ψ-optimal designs for d = 3 and for
001010 ( ) and 001110 ( ).
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Figure A.32: Two dimensional projections of Ψ-optimal designs for d = 3 and for
001011 ( ) and 001111 ( ).
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Figure A.33: Two dimensional projections of Ψ-optimal designs for d = 3 and for
010011 ( ) and 010111 ( ).
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Figure A.34: Two dimensional projections of Ψ-optimal designs for d = 3 and for
011010 ( ) and 011110 ( ).
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Figure A.35: Two dimensional projections of Ψ-optimal designs for d = 3 and for
011011 ( ) and 011111 ( ).

A.6 Examples of Designs for Computer Experiments d = 3

and n = 10
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Figure A.36: Two dimensional projections of Ψ-optimal designs for d = 3 and for
100001 ( ) and 100101 ( ).

238



x1

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

●

●

●

●

●

●

●

●

●

●

x2

−1.0 −0.5 0.0 0.5 1.0

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x3

Figure A.37: Two dimensional projections of Ψ-optimal designs for d = 3 and for
100001 ( ) and 100101 ( ).
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Figure A.38: Two dimensional projections of Ψ-optimal designs for d = 3 and for
101010 ( ) and 101110 ( ).
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Figure A.39: Two dimensional projections of Ψ-optimal designs for d = 3 and for
101011 ( ) and 101111 ( ).
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Figure A.40: Two dimensional projections of Ψ-optimal designs for d = 3 and for
110011 ( ) and 110111 ( ).
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Figure A.41: Two dimensional projections of Ψ-optimal designs for d = 3 and for
111010 ( ) and 111110 ( ).
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Figure A.42: Two dimensional projections of Ψ-optimal designs for d = 3 and for
111011 ( ) and 111111 ( ).
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A.7 Spatio-temporal Designs

(a)

●

●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

s2

s 2

(b)

●●

●

●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
s2

s 2

(c)

●●

●

●

●

●

●●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

s2

s 2

(d)

●

●

●

●

●

●

● ●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

s2

s 2

(e)

●

●

●

● ● ●

●

●

●

●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

s2

s 2

(f)

●

●

●

●●

●

●●

●●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

s2

s 2

Figure A.43: Spatial Ψ-optimal designs for fixed times (set Times 2 ) (a) ν = 0.5 and
φ2 = 0.01; (b) ν = 1.5 and φ2 = 0.01; (c) ν = 0.5 and φ2 = 0.5; (d) ν = 1.5 and
φ2 = 0.5; (e) ν = 0.5 and φ2 = 10; (f) ν = 1.5 and φ2 = 10. In plots (d) and (f) four
points are repeated.
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