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Optimising Plant and Soil Management

by James Paul Heppell

This thesis is an accumulation of work regarding the role of phosphorus (P)
and water in soils in relation to crop growth and food production. We use a multi-
scale modelling approach to initially capture the interactions of soil and water on a
single cylindrical root and further expand to a growing root structure. Moreover,
we have a multi-physics problem involving fluid dynamics of water uptake in
plants, and reactive solute transport in the soil for plant P uptake. We use
detailed climate data and the super computer at the University of Southampton
(Iridis 4) to parameterise our models. These facilities allow us to analyse the root
structure as well as P and water in the soil in great detail. The collaboration of
mathematics, biology and operational research makes it possible to complete this
project.

The analytical models recently developed within our group have shown to
agree remarkably well with full 3D simulation models. These analytical models
help provide the structure for the models used within this thesis and will for the
first time enable us to start using optimisation techniques to find the optimal
conditions for increasing plant P uptake efficiency.

By using mathematical models to predict plant P and water uptake within the
soil, we have addressed a number of questions surrounding the optimal plant root
structure for P accumulation, and the survival of crops in a low P environment.
In addition, we were able to predict the behaviour of water in the soil over the
course of a full year. And finally, utilising all the above, we have outlined the
optimal fertiliser and soil management strategy.
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1 A vector of 1’s < The set of real numbers
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f(x) A functions for multi-objective optimisation xr A reflection point in the Nelder-Mead Algorithm
f(x) A generic function xu An upper bound
g(x) A functions for multi-objective optimisation y(x) An unknown function
g(x) Inequality constraint ŷ(x) Surrogate model
h(x) A functions for multi-objective optimisation Z(x) A local deviation from the global model
h(x) Equality constraint α Reflection parameter in the Nelder-Mead Algorithm
K Lipschitz constant γ Expansion parameter in the Nelder-Mead Algorithm
Km Michaelis constant θ Correlation vector parameter
N Number of sampled points κ Parameter effecting the Gaussian distribution
n Number of a given term µ A constant global model
nic Number of inequality constraints ρ Contraction parameter in the Nelder-Mead Algorithm
nec Number of equality constraints Σ A covariance matrix
P Phosphorus σ Standard deviation
p Probability φ Water saturation level
p̃ Bounded probability φ(x) Probability density of sampling a new point in GBNM
psel Probability of selection Ω A bounded space
q Vector for Kriging ω Shrinkage parameter in the Nelder-Mead Algorithm
R An n by n matrix

Table 1: Notation list for Chapter 1.
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Chapter 1

Introduction

This thesis is an accumulation of work accomplished by the author regarding the

role of phosphorus (P) and water in soils in relation to crop growth and food

production. By using mathematical models to predict plant P uptake within

the soil, we address the following questions. What could the optimal plant root

structure for P accumulation be? Can crops survive in soils with low P content?

Can we predict the behaviour of water in the soil over the course of the year?

What could the optimal fertiliser and soil management strategy be?

The material presented in this thesis has in part been used to address the Defra

Link “Targeted P” project on “Improving the sustainability of phosphorus use in

arable farming”. The overall “Targeted P” project involves combining laboratory

studies, field experiments and modelling to provide new insights to guide decisions

on soil and fertiliser management strategies, to help farmers adapt for future P

use. The academic papers presented in this thesis relate to the modelling work

carried out and experimental data is used to validate the models and to provide

a comparison against estimated plant P uptake.

This Chapter is split into four Sections. In Section 1.1 we cover the background

of plant and soil management, in Section 1.2 we cover plant and soil models, in

1
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Section 1.3 we cover operational research techniques used, and finally in Section

1.4 we cover the structure of the paper based Chapters within the thesis and

declaration of work within them.

1.1 Background to Plant and Soil Management

All plants require 13 nutrients to survive, if any of these are lacking the plant

can not complete its full life cycle. The combination of all of the nutrients is

important, a message well described by Liebig’s barrel [76]. Imagine a barrel full

of water (signifying crop yield) and each plank of wood around the edge a key

nutrient, where its height is equal to the amount available to the plant. The total

amount of water in the barrel will be restricted by the most limited nutrient.

Increasing the amount of other nutrients will not increase the water held in the

barrel (yield). To make matters worse an excess of one nutrient can prohibit

the uptake of another [154], essentially giving a finite amount of wood to use to

construct the barrel. In addition to this scenario, different quantities of nutrients

are required at different times throughout the crop life cycle and so the height

of each plank of wood could be changing over time. It is therefore important to

know the state of nutrients in the soil before applying fertilisers, and to stop over

fertilisation of certain nutrients, such as phosphorus. For example, if a wheat field

has an Olsen P index of 3 (> 45 mg P/l) then no additional P from fertiliser is

allowed for that harvest (RB209 fertiliser manual, UK).

Agricultural soils generally provide an adequate supply of all nutrients that

plants need, but the ones that can be most limiting, are phosphorus (P) and

nitrogen (N). The most limited nutrients in the soil are therefore topped up by

the use of fertilisers. Two methods are commonly used to estimate the P fertiliser

requirements for a given crop, soil tests every 5-10 years and sampling how much
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P was taken out of the soil from the previous cropping season. The later is done by

measuring the P content using the ascorbate/molybdate blue method of Murphy

and Riley [126].

1.1.1 The Role of Phosphorus

The macro-nutrient phosphorus (P) is essential to crops since it is a major building

block of adenosine triphosphate (ATP). ATP is found in all living cells and stores

energy required for most processes. In addition, P plays an important role in

photosynthesis, respiration, seed and fruit production and promotes root growth.

P is taken up by plants in the form of orthophosphate (PO3−
4 ) through the root

system in the soil. Two signs that a crop is lacking P are the lack of growth and

discolouring of leaves (yellow leaves with purple tips) [140]. Plants are affected

by P in the soil, when in a low P environment plants allocate a greater biomass

to the root system to grow longer root hairs in search for P [52, 72].

Generally 70% of the total phosphorus in soil is found in inorganic particulates

[144, 201] and the three main elements that bind to phosphorus in soils are iron,

aluminium and calcium [110].

P in the soil exists in at least two main states, bound and unbound. The un-

bound state includes P in solution, which has been dissolved into the soil solution

via water pathways, and is taken up by the plant roots directly. A soil is fertile if

the unbound P is repeatedly replenished by bound P, where bound P has reacted

with calcium or aluminium to make it soluble. As the amount of P absorbed by

the soil increases the amount of P in solution also increases. Bound P contains

very insoluble inorganic phosphate compounds and organic compounds that are

hard to mineralise by aid of micro-organisms. It is often the case that there is a

very slow conversion of bound P to unbound P and this results in P being locked

into the soil for many years.
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One way for differentiating between soils, in terms of their P soil availability,

is the soil buffer power. The buffer power is a term which describes the capacity

of a soil to re-supply P to the soil solution, and relates to the time scale of release

of bound P to unbound P. A high buffer power means the re-supply is low and

P is kept in the bound state. Whereas, a low buffer power means the re-supply

is high and the unbound P is being replenished quicker, generally giving a more

fertile soil. Nutrients have different buffer power values in soil and P is generally

much higher than others, Table (1.1) [161].

Nutrient Buffer power

NO−3 1.0

K 39

S 2

P 239

Mg 1.2

Ca 156

Table 1.1: Soil buffer power values for different nutrients from [161].

There are many factors that effect P availability in the soil and hence the

measurement of the P concentration of a soil. These factors include, soil pH, com-

paction, aeration, moisture, temperature, texture, organic matter, crop residues,

plant root systems and mycorrhizae. Throughout history there have been many

soil tests used to estimate the total amount of P in the soil and also the amount

accessible by the plant root system. One of the earliest and simplest methods

separates the total amount of P into three fractions, inorganic P extracted with

0.5 M sulphuric acid, inorganic P not extracted with 0.5 M sulphuric acid and

organic P [202]. A variety of accepted methods for measuring soil P are used in

different parts of the world due to varying soils conditions. In 1945 Bray and
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Kurtz developed the Bray P1 and P2 method, the difference being the strength

of the hydrochloric acid used (4 times stronger in P2) [19]. The Bray test was

used to estimate the unavailable P in the soil contributed to by rock phosphate,

which at the time farmers were “over-using”. The Bray method is widely used

in Midwestern and North Central United States of America [51]. In 1954, S.R.

Olsen developed the Olsen (sodium bicarbonate) method which estimates the P

concentration in alkaline soils, something the Bray test cannot do accurately [137].

The Olsen method however needs its own calibration method and therefore gives

different results in labs across the world, because methods are not consistent.

The Mehlich 1 method was developed in 1953 by Dr. Adolf Mehlichin for use

on coastal plain soils of Eastern America [117]. Later in 1984, he developed the

Mehlich 3 method which correlates well with the Bray P1 test in acid soils and

with the Olsen method for alkaline soils [118]. Finally the Morgan’s test, devel-

oped in 1932 by Morgan, can be used for a wide range of soils and is the main test

for soils in Scotland [123]. An extension called modified Morgan’s was introduced

to include micro-nutrient analysis [189].

These current methods for estimating P in soil are not consistent across Eu-

rope, with a wide range of methods and techniques, causing similar soils to have

uncorrelated results [90, 129]. This provides confirmation that due to the diversity

of methods used, site specific treatments are needed and one method is not best

for all soils. New methods however, are being developed that estimate the amount

of available P within the soil. A more advanced technique compared to the very

sensitive approach of Olsen P, uses iron oxide-impregnated paper to estimate P re-

moval from soil [195]. Another method, Diffusive Gradients in Thin films (DGT)

measures the diffusion of P taken from a soil sample to calculate the available

P [185]. These new methods are trying to develop a robust method for all soils

and if successful could result in a breakthrough and a better understanding of P
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within the soil.

There has been a lot of discussion about how the readily available P reserves

around the world will become depleted within the next 50-130 years [32, 35].

As a result, the agriculture systems will suffer severely as they heavily rely on

constant supplies of this finite resource [191]. This need to reduce our reliance on

rock phosphate may also become exacerbated by political control as the remaining

reserves are highly spatially localised, being mainly owned by China, Morocco and

the US, who together control 85% of the known global rock phosphate reserves

[47].

P is typically applied in large quantities in most productive cropping systems

(> 20 kg P ha−1). However, it is often used inefficiently with a large proportion

of the added P subsequently becoming unavailable for plant P uptake or lost

altogether. To achieve greater sustainability within agriculture requires that new

strategies are developed to either reduce the P demand of the crop or to promote

greater root recovery of the added P such that less fertiliser is required. This

would reduce the negative aspects of P use in agriculture (e.g. eutrophication) as

well as yielding higher economic returns for farmers. Due to repeated fertilisation

over the last couple of decades many agricultural soils are now close to, or at,

total P holding capacity [17]. While this makes P readily available to the plant,

it also stimulates vertical loss down the soil profile and allows P to be readily

released from particles when surface runoff enters freshwaters [68]. Therefore,

one mitigation strategy is to “run down” soil P reserves by reducing P inputs

relative to the amount of P taken up by the crop. Maintaining of yields, however,

necessitates that P is used more efficiently by the crop. It is therefore important

to assess how crops will cope under a reduced P environment, and if that is not

plausible, determine what plant-based soil options are available for adapting to

these conditions.
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There are many potential strategies to help tackle the reduced P scenario, from

changing plant traits by targeting plant breeding (e.g. desired seed P content and

changes in root architecture), to altering the properties of soil [106, 196]. Plants

are estimated to take up less than 15% of the P added into the soil, and therefore

an alternative method to tackle this involves manipulating the chemistry and

biology of the rhizosphere to make more of the added P available to plants [149].

As P is often highly immobile in soil, one method could be to adapt the root

system architecture to obtain P more efficiently [73, 204]. From manipulating

plant root traits to varying soil cultivation techniques, increasing P use efficiency

is of great importance.

1.1.2 The Role of Water

In addition to studying how P behaves in the soil it is also important to consider

the role of water. Water helps P become soluble in soil and increases its availability

to plant roots. Water plays a vital role for crops providing them with their most

useful resource. As seeds are planted they first grow deep roots down into the soil

to look for water. Once this is established, the plant has a much better chance

of being healthy and for a crop it means producing a greater yield [188]. The

crop uses water for growth and to reduce its temperature via evapotranspiration.

Evapotranspiration is made up of two processes, transpiration and evaporation.

Transpiration is the term used to describe water lost from small openings on the

surface of the leaves, called stomata. Evaporation is water lost from the plant

surface or from wet soil. It is important not to put the plant under water stress

as this can lead to a poor grain yield and therefore estimation of water in soil is

important.

A common method used to measure the water saturation levels in soil is to use

time domain reflectrometry (TDR) probes, which can produce readings of up to
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every 10 minutes. Alternatively, a neutron probe can be dropped into the soil for

an instant reading of the water saturation levels with depth. Neutron probes are

only used a few times within the year (as they are a one-shot) to give a snap shot

analysis of the water concentration levels within the soil; they are more accurate

than TDR probes and are thus used in conjunction with TDR probes.

In 2001, world agriculture accounted for approximately 70% of freshwater con-

sumption [145] and food production may soon be limited by the availability of

water [92]. In the UK, significant reductions of crop yield by up to 30% can be

seen from severe weather conditions, such as drought [11]. In order to optimize

soil-water and plant management strategies it is necessary to understand current

plant-soil systems and their reactions to varying rainfall and climate patterns.

This becomes a more pressing question with the onset of global warming as cli-

mate patterns are likely to change. Simultaneously, the need for water is set to

increase to critical levels due to the growing global population and corresponding

increases in food production [203]. With both supply and demand varying, there

is a need to optimise water management across all sectors: urban, industrial,

environmental and agricultural.

1.1.3 Soil Cultivation and Fertiliser Strategies

There are many options available to farmers when deciding which crop manage-

ment strategy to implement. Different ways of cultivating soil include: mixing the

soil to different depths 0− 25 cm (ploughing), minimum tillage which distributes

P in the soil into bands; 0−5 cm, 5−10 cm and 10−15 cm with a P concentration

ratio of 1.5 : 1 : 0.5 respectively and an inverted plough which flips the current

soil profile down to 15 cm. Each of these techniques are used and implementation

generally depends on site specific conditions. Ploughing is the most common as it

evenly distributes P within the soil profile and makes it available to the plant root
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system. P fertiliser is applied by either, branding or broadcasting P within the

seed bed, foliarly or as a seed coating. The branded application involves injecting

fertiliser pellets 5 − 10 cm below the soil and/or 5 cm away from the seed. The

idea is to place the fertiliser close to the root system to try and maximise plant

P uptake at the right time in the root system development. The broadcasted

application evenly distributes fertiliser on top of the soil and is either mixed in or

left to diffuse for future crops. Foliar applications are made part way through the

crop life cycle as P is spread onto the leaves in a solution. However, difficulties can

occur when trying to get P taken up directly by the leaves, as P solution instead

drips off the leaves and onto the soil and slowly diffuses downwards. In addition,

foliar P can negatively affect crops by lowering root colonization by arbuscular

mycorrhizal fungi (AMF) thus potentially reducing uptake of other nutrients [170].

One solution to improve foliar application is to apply stickers or adhesive on the

leaves to help P accumulation into the leaves [139]. Seed coating methods add

fertiliser with seeds as they are planted producing a similar effect to the branded

application. Fast- and slow-release P pellets are used, which provide P for early

root growth and throughout the crop life cycle, respectively.

Methods that work well for specific sites are generally repeated to ensure sim-

ilar crop yields, however, there is no ‘best’ method as strategies are different

for sites around the world. A large European study assessing the effect of soil

tillage on crop growth found that no tillage reduced yields by 8.5% while con-

servation tillage only reduced yields by 4.5% compared with conventional tillage

[192]. These methods would save money on tillage costs to compensate for lower

yields, and present viable solutions to areas that might have restrictions due to

machinery requirements. In addition, negative effects of tillage (e.g. soil dis-

turbance) could be reduced by applying a deep tillage in conjunction with crop

rotation, including crops other than cereals [192]. Deep tillage in low rainfall ar-
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eas can increase P supply to the root system, but may also lead to environmental

degradation such as increased erosion, and rapid drying of soils can further lead

to immobilisation of soil P [200]. When placing a mix of Nitrogen, Phosphorus

and Potassium (NPK) fertiliser one study showed that to maximise total leaf area

and yield for a maize crop, banded fertilisation was used which placed P 20 cm

from the plant and 10 cm under the soil [141].

Climate conditions often have a big impact on which strategy farmers imple-

ment. For example, if the soil temperature has not risen enough over the spring

then the summer crop cannot be planted and a late harvest can result in poor

yields [58]. On the other hand if there is a forecast for heavy rain, applying fer-

tiliser on top of the soil will mean that the applied P has a better chance of being

taken up in the rooting zone (taking into account run-off effects).

1.2 Background to Plant and Soil Models

Models used to represent plant and soil systems can be split into those that

consider nutrients and those that don’t. We first look at models for plant water

uptake (without nutrients) and then those that consider plant nutrient uptake,

namely P.

Water Models

A number of agronomic models exist that estimate changes in water saturation

levels within the soil in response to climate conditions and plant water uptake.

However, many of these models only estimate the average water saturation levels

within the plant root zone and do not include nutrients. Common examples used

in agriculture (and to some extent, in engineering [29]) include Decision Support

System for Agrotechnology Transfer (DASSAT) [89], the Agricultural Production
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Systems Simulator (APSIM) [115] and Cropwat, a decision support tool developed

by the Land and Water Development Division of FAO [31]. These macroscopic

models are quick to implement as they use simple algebraic mass balance equations

to estimate the total soil water content.

Cropwat carries out a water balance calculation for the rooting zone, deter-

mining an average soil saturation which varies in response to rainfall infiltration

and plant evapotranspiration, calculated using the Penman-Monteith Equation

[3]. Many of these models are adequate for simple crop management and irri-

gation purposes. However, applications in engineering and agricultural sciences

need models to more accurately represent the soil-plant-atmosphere continuum,

in particular the water movement and saturation within specific parts of the soil

profile. For example, this is important for understanding crop behaviour in re-

sponse to different patterns in climate [155]. In engineering, the stability of many

embankments and cut slopes is dependent on the presence of soil suctions both

within and below the rooting zone, and more advanced models are needed to

investigate vegetation management options [21, 104].

A difficulty with trying to model the water saturation levels at different soil

depths is the characterisation of the parameters that control the soil water sat-

uration and flow processes. Both soil water retention and permeability can be

difficult to measure accurately, and there is often little or no site specific data, yet

modelling responses can be very sensitive to these parameters [164, 176]. Data

on root structures and temporal soil and plant interactions with time can also

be sparse. However, there are often good records for water saturation levels and

climate conditions, which can be used to calibrate models.



12 CHAPTER 1. INTRODUCTION

Single Root Nutrients Models

Microscopic nutrient modelling began in the 1960’s with models estimating nutri-

ent uptake for a single cylindrical root surrounded by an infinite extent of soil, with

a prescribed far field nutrient concentration [7, 133, 138]. Due to non-linearity in

the root nutrient uptake boundary condition, only a numerical solution was found

[7, 133], which meant that adapting a single root model to a more realistic root

system was computationally expensive (Nye-Tinker-Barber model).

The Nye-Tinker-Barber absorption-diffusion model is described by Equations

(1.2.1 - 1.2.4),

(φ+ b)
∂c

∂t
− aV

r

∂c

∂r
=

φD

r

∂

∂r
(r
∂c

∂r
) (1.2.1)

φD
∂c

∂r
+ V c =

Fmc

Km + c
on r = a, (1.2.2)

c→ c0 as r →∞, (1.2.3)

c = c0 at t = 0. (1.2.4)

where φ is the water saturation level, b is the soil buffer power, c is the concen-

tration of P in pore water, a is the root radius, V is the water flux into the root,

r is the polar radius, t is time, D is the diffusion coefficient of P in pore water,

Fm and Km are properties of the root surface and c0 is the far field concentration

away from the root.

In 2001 a fully explicit analytical solution to the Nye-Tinker-Barber model

was derived which enabled a more realistic model that utilises a more complex

root branching structure [161, 162]. In all four papers [7, 133, 161, 162] the

uptake of P by roots is represented by the Michaelis-Menten uptake law, and

all of these models use a linear convection-diffusion model with a nonlinear root

surface uptake condition. The rate of convective transport of P can be shown to be

negligible relative to diffusion [91] and this has been fully analysed and justified
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[161, 162]. For a complete solution of the convection-diffusion equations for P

transport to plant roots see [162]. To estimate the total uptake of P an initial set

of parameters is required, which represents the P concentration, water saturation

and root parameters, such as length and radius [161]. Spatial components to

represent P and water concentration are added in [159, 160] respectively. The P

depletion zone along all roots is captured and this analytical solution for a single

ordered root is scaled up to produce an accurate estimate for plant P uptake per

soil surface area [161]; extrapolating surface area to produce field scale results.

The assumption of a constant P concentration with depth is changed to a depth

dependent P concentration in [159].

Although alternative models have been developed to investigate the influence

of root architecture on plant P acquisition [54, 60, 107], these studies followed a

detailed 3 dimensional approach [108] that presents difficulties with up-scaling to

the field level [163]. A review of the current 3 dimensional models is well described

in [44] providing strengths and weaknesses of each approach.

Crop Models

Statistical data based models (descriptive models) have been developed for crop

growth, by scientists at Wageningen starting in the 1960’s, by modelling the photo-

synthetic rate of crop canopies [36]. The static model in [36] was used to estimate

potential food production for different areas within the world. Following this,

in 1970 an Elementary CROp growth Simulator (ELCROS) was created which

included the static photosynthesis model and added the effect of crop respiration

being related to a fraction of the total biomass [37]. With the addition of mi-

crometeorology, models could better predict transpiration and in 1978 the BAsic

CROp growth Simulator (BACROS) was created [38]. BACROS is used as a ref-

erence model for further simulation models created at Wageningen, for example to
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create a summary model called the Simple and Universal CROp growth Simulator

(SUCROS) [194].

A simulation program (SISOL) compares different technical choices to assess

the effect of tillage on the soil profile. The SISOL model simulates spatial variation

of the soil structure in regards to precision agricultural and climate effects. In

addition, the SISOL model has been validated with over 7 years of field studies

on loamy soils [158].

Models used to describe the behaviour of a field, or fields owned by a farmer are

useful for local decisions, however larger scale models are required to understand

behaviour on a global scale. The ability to use these larger scale models, such

as General Circulation Models (GCMs), has improved models for crop growth, as

extra data enables more accurate predictions [119].

Conclusion

By simulating plant P uptake by a growing root system using mathematical mod-

els it is possible to capture many more scenarios, in less time and at significantly

lower costs, than via experimentation. However, experimentation is essential to

provide validation and parameters for models. In this thesis experimental data

and model simulations are brought together to further advance the understanding

of P uptake by plant root systems. Optimisation algorithms are used to further

synthesise new knowledge from the models and to maximise the usage of the

collected data.

The models presented by Roose in the literature [159, 160, 161] describing

water and P uptake into plants and movement through soil, have been adapted

and extended for use in this thesis. In order of progression we match Chapters to

published work; Chapter 2 to [161], Chapter 3 to [160] and Chapters 4 and C to

[159].



1.3. BACKGROUND TO OPERATIONAL RESEARCH TECHNIQUES 15

1.3 Background to Operational Research Tech-

niques

In this Section we provide a background about operational research techniques

and how they are applicable to solve certain practical problems. In addition, we

outline and describe algorithms used within the thesis to provide context to the

paper based Chapters.

1.3.1 Introduction

Operational research is a discipline that uses advanced analytical methods to

help make better decisions. This might relate to finding a better solution for

a problem (lower cost) or predicting what may happen to a commodity in the

future (forecasting). The advanced analytical methods are generally in the form

of algorithms which are used to find the optimal solution of a problem. The main

properties of an algorithm include, the run time, convergence and function calls.

These properties are different between algorithms, with each algorithm having

its own strengths and weaknesses for certain types of problem. For a non-trivial

problem, picking the ‘best’ algorithm increases the chance of finding an optimal

solution given desired constraints.

An optimisation problem is generally of the form,

minimise f(x1, x2, ..., xn)

subject to gi(x) ≤ 0, i = 1, . . . , nic

hi(x) = 0, i = 1, . . . , nec,

(1.3.1)

for an objective function f(x), with n variables, nic inequality constraints g(x),

and nec equality constraints h(x). The type of variables used can either be integer,

continuous or mixed depending on the problem, however in this thesis we will only
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look at the most common type which is continuous. We only consider non-linear

optimisation problems as the differential equation style models used within this

thesis produce non-linear objective functions. In addition, the differential equation

style models use only ‘box constraints’, where each variable is bounded. We will

therefore now discuss unconstrained optimisation problems.

Non-linear unconstrained optimisation methods can be split into two cate-

gories, local and global optimisation methods. Local optimisation methods, or de-

cent methods, can be categorised further into zero-, first- or second-order methods.

Zero-order methods do not use any derivatives of the objective function through-

out the optimisation process, for example Simplex search [127], Hooke and Jeeves

method [2] and a Conjugate Direction method [148]. First-order methods take

first-order derivatives of the objective function throughout the optimisation pro-

cess, for example Gradient Descent [64], Quasi-Newtons method [39] and a Conju-

gate Gradient method [57]. As it follows, second-order methods use second-order

derivatives throughout the optimisation process, for example Newtons method [8],

a trust-region method [23] and Levenberg-Marquardts method [122]. The ability

to use more information from the objective function generally improves, but slows

down the optimisation process. Derivatives give an indication of how far to search

in a possible optimal direction. Local optimisation methods however, converge to

local optima and do not necessarily perform well on the global scale, heavily rely-

ing on good initial starting points. For non-linear objective functions, where there

are many local optimal points, local search algorithms tend to perform worse than

global search algorithms.

Global optimisation methods can be split into two types, deterministic and

stochastic. Deterministic methods involve no element of randomness and therefore

any change to the optimal solution comes from different initial starting points

or parameters set at the beginning of the optimisation process. Deterministic



1.3. BACKGROUND TO OPERATIONAL RESEARCH TECHNIQUES 17

global optimisation algorithms include Lipschitz optimisation ideas [172], covering

methods that iteratively tighten bounds on the global solution [65] and generalised

descent methods where local optima are penalised to encourage global search

[25]. Stochastic global algorithms include clustering methods [186], random search

methods, for example simulated annealing [1] and genetic algorithms [143], and

methods based on stochastic models, for example Bayesian methods [120], and

Kriging [50] which in addition, approximates the objective function.

There are many algorithms available for use in global optimisation each having

advantages and disadvantages for different types of problem. Models range from

having cheap to expensive objective functions, where the number of function calls

from an algorithm can become an issue. Expensive objective functions in combi-

nation with a large number of function calls makes certain algorithms unusable.

A major concern with global optimisation is the number of variables used within

a model, where the greater the number, the bigger the search space and less likely

that optimal points will be found within a reasonable computational time. For

problems with a large number of variables, approximations to models can be made

which sacrifice accuracy for speed.

In Section 1.3.2 we describe how initial starting points are chosen and how

they are used for a variety of different algorithms. In Section 1.3.3 we provide

details of global algorithms including Lipschitz Optimisation, Genetic Algorithms,

Multi-Start Nelder-Mead and Kriging. Finally, in Section 1.3.4 we explain how to

handle problems that have more than one objective function.

1.3.2 Initial Sampling Methods

When trying to cover a search space (landscape) with a set of sample points, the

higher the dimension the greater number of points are needed for the same res-

olution. The curse of dimensionality limits the potential power of an algorithm
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and as such models are reduced down to a minimum number of variables. Increas-

ing the number of variables exponentially increases the search space. Having n

variables each with size a predictions, creates a search space of an.

Two basic steps to follow for a global optimisation problem are, where to

start sampling (initial sampling methods) and once started, how to continue until

optimal parameter values have been found (using an algorithm). The design of

experiments (DOE) is the term used to describe the initial selection of parameters

to be input into the model. This can be at one point or a set of points depending

on the algorithm. However, which are the best starting points: the corners, the

middle, a random point? The starting point for a given algorithm can be critical

to its success, as getting stuck in local optima often happens. We describe three

methods to show the process of how to find initial starting points, where some of

these methods involve taking pseudo random numbers [55, 99].

There are many ways of sampling an n-dimensional space, including methods

that use uniform points and/or randomly distributed points. Higher dimensions

are harder to visualise so for a proof of concept we will only display sampling

techniques in 2D and 3D. Randomly distributing points is an intuitive way to

initially sample an n-dimensional space and implementation is not difficult, Figure

1.1. The main problem with a random distribution is that there are large spaces

of un-sampled areas as well as areas with a high distribution of points. As the goal

is to evenly cover the search space, these are not the ideal starting set of points.

Uniform sampling is another method which evenly covers an n-dimensional space

and will not produce a dense cluster of points. However, the rigid structure of the

sampling points causes large planes of un-sampled areas. An objective function

with a repeating pattern at certain intervals between the uniform points, would

be missed by this set of sample points. In addition, the points do not project an

even distribution in each direction (variable). A more advanced technique using
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a space filling maximin Latin Hyper Cube (LHC) [84, 116, 124], tries to fill an

n-dimensional space with points such that it maximises the minimum distance

between them [50, 79]. The Latin hyper cube method is an extension of a Latin

square, where for each n-dimension every column and row has a permutation of

1, 2, ..., n. For a given n-dimensional space we look for the Latin square/hypercube

where the minimum distance between two points is maximised (maximin). This

provides a projection of each variable in each dimension and attempts to cover

the search space evenly. Due to the large number of possible Latin squares, an

evolutionary search algorithm is used to find this best solution, or a near best

approximation.

Figure 1.1: A diagram of initial sample plans, from left to right, for uniform,
pseduo-random and Latin Hyper Cube techniques in 2 (top) and 3 (bottom)
dimensions.

1.3.3 Global Algorithms

There are many global optimisation algorithms for solving non-linear models

with one objective value. We look more closely at three types, a deterministic

method (Lipschitz Optimisation), stochastic methods (Genetic Algorithms and
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Multi-Start Nelder-Mead) and an approximation method (Kriging), and address

their strengths and weakness for such problems.

Deterministic Methods - Lipschitz Optimisation

There are a number of deterministic methods for global optimization and we will

address one of them, Lipschitz Optimisation, which is ‘a sequential method seeking

the global maximum of a function’ [172]. To perform Lipschitz Optimisation we

must first assume knowledge of a Lipschitz constant (K) which is a bound on the

rate of change of the objective function. The idea behind Lipschitz Optimisation

is to bound a function and then try to continuously tighten the bounds until

the function is detailed enough that estimates for optimal points are satisfactory.

Many advances have been made from this initial idea, so first we shall describe

Lipschitz Optimisation (Shubert’s algorithm) and follow with advances made to

the original algorithm (namely, DIRECT search).

A function f : DH ⊆ <d → < is called Lipschitz-continuous if there exists a

positive constant K ∈ <+ such that,

|f(x)− f(x′)| ≤ K|x− x′|, ∀x, x′ ∈ DH . (1.3.2)

For example, in 1D problems for a function f(x) with lower and upper bounds

xl and xu respectively, x ∈ [xl, xu], we have

f(x) ≥ f(xl)−K(x− xl), (1.3.3)

f(x) ≥ f(xu) +K(x− xu), (1.3.4)

X(xl, xu, f, k) =
xl + xu

2
+
f(xl)− f(xu)

2K
, (1.3.5)

B(xl, xu, f, k) =
f(xl) + f(xu)

2
− K(xu − xl)

2
. (1.3.6)
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Equations (1.3.5) and (1.3.6) form the basis of Shubert’s algorithm [172]. We

start by computing the lower and upper limits (xl and xu respectively) of a func-

tion f(x) and compute the value of X and B as in Equations (1.3.5) and (1.3.6)

respectively, Figure 1.2.

xl xu X 

Slope K Slope -K 

B 

f(𝑥) 

Figure 1.2: The initial set up for Shubert’s algorithm in 1D, for a function f(x)
bounded by xl and xu.

The first point x1 = X(xl, xu, f,K) is computed with the objective function

and divides the search space into two intervals, [xl, x1] and [x1, xu]. Each interval

is searched for the one with the lowest B value, which in the first iteration is the

same. To settle ties a lower bound is chosen x2 = X(xl, x1, f,K) which divides

the search space into three intervals, [xl, x2], [x2, x1] and [x1, xu]. This process is

repeated until the minimum value of B is within a prespecified tolerance of the

current optimal solution.

Shubert’s algorithm is a deterministic global search which means there is no

need for additional runs. There are few parameters and only K needs to be known,

i.e., there is no need for fine tuning. The Lipschitz constant K gives a bound on
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the error which means the algorithm does not need to rely on the number of

iterations as a stopping condition. The disadvantages of Shuberts’s algorithm is

that finding K can be difficult for some problem types. In addition, the algorithm

scales badly and the speed of convergence is slow as it has to evaluate all the

corners. A larger value of K results in a more global search but leads to a slower

convergence, and as K is a bound on the rate of change it is generally set quite

high.

The DIRECT algorithm is an improvement on Shubert’s algorithm as it re-

duces the number of function calls and more importantly removes the need to

have a known Lipschitz constant [87]. To reduce the number of function calls the

DIRECT algorithm evaluates points at the centre of each variable rather than at

the end points. This requires a new set of equations for calculating which points

to pick in each iteration and to check that the initial bound is satisfied for a given

function.

For a 1D problem with a function f(x) bounded by xl and xu, we find a centre

point xm = (xl + xu)/2. The function f(x) must now satisfy,

f(x) ≥ f(xm) +K(x− xm), for x ≤ xm, (1.3.7)

f(x) ≥ f(xm)−K(x− xm), for x ≥ xm, (1.3.8)

which means that there is a weak lower bound of the function at f(xm)−K(xu−

xl)/2. To continue sampling midpoints and cutting the search space in half, the

two new intervals ([xu, xm] and [xm, xu]) are cut into thirds, sampling the third

cut furtherest from xm. Suppose a number of intervals have now been made

[xli, xui], i = 1, . . . ,m, and the midpoints have been calculated by the objective

function. To choose which interval to sample next, a graph is drawn of f(xm)

against (xu − xl)/2, for all points sampled. A pareto front is drawn through the
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‘best’ sample points, and the slope between these points is calculated, resulting

in different values for K.

This methods allows the sampling of all ‘potentially optimal’ intervals and

continues by selecting one of the points from the pareto front. The centre points

are calculated as described above and the algorithm continues its iteration. The

1D DIRECT algorithm is a modified Shubert’s algorithm because it samples centre

points and considers all potentially optimal intervals during an iteration. If the

Lipschitz constant is known then a lower bound can be placed on the function

and the search can stop within some tolerance of the current optimal solution.

To extend the DIRECT algorithm into multiple dimensions it is first as-

sumed that every variable has a lower bound of 0 and an upper bound of 1,

reducing the search space into an n-dimensional unit hypercube (essentially non-

dimensionalisation). The DIRECT algorithm starts by sampling the points xm±

δei, i = 1, . . . , n, where xm the is centre of the hypercube, δ is a third of the side

length of the hypercube, and ei is the ith unit vector. These points (xm ± δei)

split the hypercube into a collection of hypercubes and hyperrectangles, where

the ‘best’ points are given the largest splitting. This encourages the algorithm

to search near points with good objective functions, increasing emphasis on lo-

cal search. When dividing the rectangles only the long dimension is considered,

ensuring that rectangles shrink on every iteration. The rest of the algorithm is

similar to the 1D case where initially the centre is sampled. In each iteration we

identify the potentially optimal hyper-rectangles, sample a midpoint and repeat,

until a set number of iterations are completed or the given stopping criteria is

met.

The global convergence of the DIRECT algorithm is guaranteed for a contin-

uous function, due to the fact that, as the iteration number tends to infinity, the

number of iterations within a subset of the unit hypercube become dense. There-
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fore at any given point x, in the unit hypercube, and any δ > 0, the DIRECT

algorithm will eventually sample a point within a distance δ of x [87].

The main strength of the DIRECT algorithm is not requiring a known value for

the Lipschitz constant, instead searching with all possible values. It was created

to solve global optimisation problems with bound constraints [48]. The algorithm

can operate in a high dimensional space, is derivative free, deterministic, and is

most effective for low dimensions requiring relatively few function evaluations for

six dimensions [87].

A review of other derivative-free deterministic global optimisation methods

can be found in [157], in which other partitioning methods are described, such

as Multilevel Coordinate Search (MCS) [78] and Branch-and-Bound (BB) search

[147].

Stochastic Methods - Genetic Algorithms

Genetic Algorithms (GAs) have been around since the early 1960s and are adap-

tive heuristic search algorithms based on the ideas of evolution and Charles Dar-

win’s principle of “survival of the fittest”. The idea of a GA is to take a population

of individuals and rank them by their fitness. Each member of the population has

a binary string which represents a solution for a given model. Through some

selective process, the ‘best’ individuals (parents) reproduce and create a new pop-

ulation (children) which will have similar traits (solutions). The child population

is mutated to maintain diversity and unique individuals, such as in evolution. This

mutated child population is then evaluated and ordered by fitness and the itera-

tion continues. Stopping conditions for a GA consist of: a solution satisfying the

minimum criteria, a fixed number of generations has been reached or time taken,

the best solution has not improved after a certain number of iterations and/or by

manual inspection to stop the code and taking the current best solution.
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The initial population can be taken from a Latin Hypercube as explained in

Section 1.3.2 and evaluation of the individuals just means computing the objective

function of a model for the individual’s parameter values. The main processes

involved within a GA are selection (which parents should be chosen) and crossover

(how to make the children from the parents). There is no known ‘best’ method

for selection and crossover, each method provides different advantages.

The idea of selection is to pick the best individuals from the current population

such that their good traits can be passed onto the next generation, producing

fitter individuals. There are a number of traditional mechanisms for selection

including, proportionate selection (Roulette wheel), ranking selection (truncation)

and tournament selection [174], and these will be discussed below.

A popular method from proportionate selection is to use Roulette wheel selec-

tion [75], where individuals have a proportion of a roulette wheel associated with

them based on their fitness. Individuals are randomly chosen to become parents

based on their proportion. This is done by calculating the cumulative fitness of

all individuals (TOTf ) and then computing the individuals’ probability of selec-

tion (psel), which is their actual fitness (f) divided by the cumulative fitness, i.e.

psel = f/TOTf . The number of individuals (n) selected usually equals the current

population size.

A common ranking selection method is truncation selection, where a propor-

tion of the population (0 < p ≤ 1) of the fittest individuals are selected and

reproduced 1/p times, producing a new population of equal size. This method is

quite basic and by only keeping the best individuals a very elitist population can

arise.

Finally tournament selection is a method where two individuals are chosen at

random and the fitter of the two is selected to be a parent with a given probability

(0.5 < p ≤ 1). This method can be extended for a given number of winners in
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any size tournament.

The population size between each iteration is generally kept constant, this

can avoid confusion and keep it easy to track the progress within each iteration.

However, it has been shown that starting with a large population and decreasing

to a small population compared to a constant size population (where the average

population size is the same) can be beneficial. This is because greater information

at the start of the algorithm provides a better initial signal for the GA evolution

process [63].

The main difference between the selection methods is the diversity of the

selected population. If selection is very elitist (only picking from the very best

individuals) then the GA generally converges quicker, but sacrificing diversity

means potentially converging on local optima. If selection is more general (weak

members are allowed a chance to be selected) then the GA will converge slowly,

but having too high a diversity means the GA could never converge as there needs

to be a drive towards reaching an optimal solution. A balance is needed between

diversity and convergence, and depending on the landscape of a given problem,

some methods work better than others. Elitist picking is best if there are few

local optima, whereas a more general selection is best for multiple local optima

and/or noisy landscapes.

There are a number of crossover techniques that are used to create the child

population, and they generally require two parents to create two children. Meth-

ods include single-point crossover, 2-point crossover, multi-point crossover, vari-

able to variable crossover and uniform crossover [69].

Single point crossover takes two binary strings (two chosen parents) and ran-

domly chooses one point as a crossover marker. Child one is made from the first

part of parent one and the second part of parent two. Child two is made from the

first part of parent two and the second part from parent one. Two- and multi-
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point cross over work in the same way but with more crossover points, each time

swapping between parent one and parent two.

Variable to variable crossover is used when the binary string of the parents can

be separated into sub-strings. This can happen for a problem with more than one

variable, as each variable is converted into a binary string. Single-point crossover

is then used on each variable (sub-string) to create two children as before. This

means that each design variable is more likely to change as they are being targeted

separately.

Finally uniform crossover uses a different approach where a randomly created

binary string of equal length to a parent is created (a mask). If the mask has a

1 then the child’s binary digit for that gene is taken from parent one, if it is a 0

then the gene is taken from parent two. The opposite of the mask can be used to

create a second child or a new random mask can be generated.

The number of crossover points determines how the GA searches, fewer crossover

points encourages exploitation (local search), whereas uniform crossover encour-

ages exploration (global search).

The child population is mutated before beginning the next iteration. Mutation

helps to provide diversity within the population which stops early convergence at

local optima. The mutation rate is usually equal to one over the binary string

length, resulting in one gene being changed per individual on average. Mutation

rates that are too high result in evolution having little effect and the GA becomes

a random search algorithm; mutation rates that are too low can result in early

convergence.

GAs use a lot of function calls due to each iteration generating a new popu-

lation which has to be evaluated. GAs are partially useful in problems that are

non-differential, non-continuous and multidimensional and are easy to implement.

Difficulties occur when using GAs on constrained optimisation problems as check-
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ing feasible solutions are not part of the algorithmic process. Tricks that ‘repair’

or ‘mend’ a gene sequence have to be implemented to keep feasible solutions which

add to the computational time and in some cases are impossible. GAs have no

guarantee of finding the optimal solution and bounds on the computational time

are difficult, which limits their use in real time applications.

Stochastic Methods - Multi-Start Nelder-Mead

A classic method for multidimensional optimisation was developed in 1965 by

Nelder and Mead, called the Nelder-Mead algorithm [127]. The Nelder-Mead

algorithm is a local optimiser, however by adding a probabilistic restart it can

be turned into a global search algorithm. The Nelder-Mead algorithm will be

discussed, followed by the addition of the probabilistic restart, which results in

the Globalized Bounded Nelder-Mead (GBNM) algorithm [105].

The Nelder-Mead algorithm starts by creating (n+1) vertices for an n-dimensional

space. Each point is evaluated and the one with the worst objective value is re-

placed by a new point which is projected though the midpoint of the current set

of vertices. This new point is either created via reflection (xr in Figure 1.3), con-

traction (xc in Figure 1.3) or expansion (xe in Figure 1.3), or if all these points

yield worse values than the current worst, then (n-1) new points are created via

shrinkage. This process is then repeated with the updated set of (n+1) points

until convergence. Each of the four operations, reflection, expansion, contraction

and shrinkage comes with an associated parameter α, γ, ρ and ω respectively. The

value of the parameters most used in applications are set from empirical observa-

tions, α = 1, γ = 2, ρ = −0.5, ω = 0.5. By altering these values the convergence

of the Nelder-Mead algorithm changes.

To describe the Nelder-Mead algorithm we set up a minimisation problem for

the function f(y1, y2, ..., yn) for n variables (dimensions). A set of parameters in
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this space is given by x which has length n.

• Step 1. Evaluate and order the vertices f(x1) ≤ f(x2) ≤ ... ≤ f(xn+1).

• Step 2. Calculate x0 the center of gravity of all points excluding xn+1.

• Step 3. Reflection: Compute the reflected point xr = x0 + α(x0 − xn+1) If

f(x1) ≤ f(xr) < f(xn) then obtain a new simplex by replacing the worst

point xn+1 with the reflected point xr, and go back to step 1.

• Step 4. Expansion: If f(xr) < f(x1) then compute the expansion point

xe = x0 + γ(x0 − xn+1). If f(xe) < f(xr) then obtain the new simplex

by replacing xn+1 with xe and go back to step 1, otherwise obtain a new

simplex by replacing xn+1 with xr and go back to step 1.

• Step 5. Contraction: We must have that f(xr) ≥ f(xn) therefore compute

the contraction point xc = x0 +ρ(x0−xn+1). If f(xc) < f(xn+1) then obtain

a new simplex by replacing xn+1 with xc and go back to step 1.

• Step 6. Shrinkage: We must have that f(xc) ≥ f(xn+1) therefore compute

a new simplex by replacing all points expect the best with xi = x1 +ω(xi−

x1)∀i ∈ {2, ..., n+ 1} and go back to step 1.

Convergence of the Nelder-Mead algorithm can be set from among: the cur-

rent best point has not changed for a set number of iterations (flat), iteration

number/time taken, and if the rate of improvement has slowed down below a cer-

tain threshold (small and/or degenerate). As the algorithm alone is deterministic,

the final solution is sensitive to the initial simplex, methods such as multi-start

(running the algorithm with different initial start points) can help provide global

convergence.

The probabilistic restart is a way of restarting the algorithm if it has found

a local optima, allowing it to search a different space with the hope of finding a
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Figure 1.3: Nelder-Mead algorithm selection in 2D for the initial simplex
[x1,x2,x3] with a search direction through the mid-point x0 of the worst two
points, for reflection xr, contraction xc and expansion xe.

better solution. The number of restarts is unknown, as it depends on how the

Nelder-Mead algorithm behaves.

The probability (p(x)) of having sampled a point x is given by a Gaussian

Parzen-windows approach,

p(x) =
1

N

N∑
i=1

pi(x), (1.3.9)

where N is the number of sampled points, and pi is the normal multidimensional

probability density function,

pi(x) =
1

(2π)n/2(det(
∑

))1/2
· exp

(
−1

2
(x− xi)T

∑
−1(x− xi)

)
, (1.3.10)
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where n is the number of variables and
∑

is the covariance matrix,

∑
=


σ2

1 0

. . .

0 σ2
n

 , (1.3.11)

where the variance (σ2
j ) is given by,

σ2
j = κ(xmaxj − xminj )2, (1.3.12)

where κ is a positive parameter that governs the length of the Gaussian distribu-

tions and xmaxj and xminj are the bounds in the jth direction.

A probability density function integrated over from negative infinity to positive

infinity is equal to 1, however as a bounded space is considered (Ω) a bounded

probability (p̃(x)) is calculated,

p̃(x) =
p(x)

M
, M =

∫
p(x)dxΩ, (1.3.13)

such that
∫
p̃(x)dxΩ = 1.

The probability density of sampling a new point (φ(x)) is equal to the proba-

bility density of not having sampled x before. An assumption is made such that

only the best point xH of p̃(x) has zero probability of being sampled in the next

iteration. Therefore the probability density of sampling a new point (φ(x)) is

given by,

φ(x) =
H − p̃(x)∫

(H − p̃(x))dxΩ

, H = maxx∈Ωp̃(x). (1.3.14)

The maximum of φ is equal to the minimum of p and therefore the param-

eters influencing p are: the points kept for the calculation of p (x), the number

of points used to calculate the maximum of φ (Nr) and the parameter effecting
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the Gaussian distribution (κ). These three parameters change how the GBNM

performs and different values are used for different problems, much like the GA.

The probabilistic restart is used when the Nelder-Mead converges for a partic-

ular reason, being small, flat or degenerate. A flow chart is presented in [105]

(Figure 2 in Luersen) which runs through the algorithm. The GBNM algorithm

is good for multi-modal, discontinuous optimisation problems where perhaps a

global optimisation algorithm cannot be afforded. It is noted that the GBNM al-

gorithm performs better than an evolutionary algorithm for both numerical cost

and accuracy for given engineering problems [105].

Approximation Methods - Kriging

The Kriging algorithm carefully picks each sample point to reduce the number of

function calls, and therefore the algorithm is mainly used for engineering systems,

where the model’s objective function is expensive to compute. In addition, the

Kriging algorithm is efficient for small size problems under 20− 30 parameters.

The Kriging algorithm uses a set of radial basis functions to estimate a land-

scape, via a surrogate model, which is used to predict new possible points to

sample. The idea is to minimise the number of expensive function evaluations

while obtaining the global optimum. The surrogate model created by Kriging is

an estimate of the actual objective function and goes through all the points eval-

uated by the objective function (a kind of interpolation). The Kriging algorithm

assumes that the objective function is continuous and smooth. Some noise in the

objective function is acceptable, but if this is high then it may need to be filtered

or it will affect the performance of the Kriging algorithm, and cause early con-

vergence. The surrogate model is used to search for potentially optimal points.

Once a point or set of points are found they are evaluated in the actual objective

function. Each point evaluated updates the surrogate model and provides a bet-
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ter estimate for the next iteration. The Kriging algorithm uses a set of equations

to find optimal points to search for, either locally or globally. There are many

derivations of the Kriging procedure, first presented in [94]; however we will step

through one below by [50] due to its clear explanation.

The Kriging model assumes that the unknown function y(x) is

y(x) = µ+ Z(x), (1.3.15)

where x is an n-dimensional vector (n design variables), µ is a constant global

model and Z(x) is a local deviation from the global model. The sample points x

are interpolated with the Gaussian random function and the correlation between

Z(x1) and Z(x2) is strongly related to the correlation between x1 and x2.

A special weighting distance between points (d(x1, x2)) is used rather than

Euclidean, as the weights are not equal across all design variables,

d(x1, x2) =
m∑
k=1

θk|x(1,k) − x(2,k)|2, (1.3.16)

where θk, for (0 ≤ θk ≤ inf), is the kth element of the correlation vector parameter

θ. Therefore the correlation between points x1 and x2 is,

Corr[Z(x1), Z(x2)] = exp[−d(x1, x2)], (1.3.17)

and hence the Kriging prediction (ŷ(x), the surrogate model) becomes,

ŷ(x) = µ̂+ q′R−1(y − 1µ̂), (1.3.18)

where µ̂ is the estimated value of µ, R stands for the n by n matrix whose (i, j)

term is Corr[Z(x1), Z(x2)], q is a vector whose ith element is Corr[Z(x), Z(xi)]

and y is a vector [y(x1), ..., y(xn)].
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The unknown parameter θ is estimated by maximising the likelihood function

below,

ln(µ̂, σ̂2, θ) = −n
2
ln(2π)−n

2
ln(σ̂2)−1

2
ln(|R|)− 1

2σ̂2
(y−1µ̂)′R−1(y−1µ̂). (1.3.19)

Maximising this function creates an n-dimensional unconstrained non-linear

optimisation problem, which can be solved for a given θ, knowing µ̂ and σ̂2 in the

following forms,

µ̂ =
1′R−1y

(1′R−11)
, (1.3.20)

σ̂2 =
(y − 1µ)′R−1(y − 1µ)

n
. (1.3.21)

The strength of Kriging lies in the fact that it is much quicker to evaluate

potentially optimal points on the surrogate model compared with using the actual

objective function. Kriging also uses the response of the surface of the surrogate

model to determine where potentially optimal points are, thus using the maximum

amount of information to carry out the optimisation procedure.

A key benefit of the Kriging algorithm is the ability to estimate the error in

its predictions, where the estimated variance for an ordinary Kriging model [165]

is

s2(x) = σ2

[
1− q′R−1q +

(1− 1TR−1q)2

1TR−11

]
, (1.3.22)

which allows an estimate for the expected improvement on potentially optimal

points found on the surrogate model. A Gaussian distribution is fitted in the

space between sampled points to calculate the probability of expected improve-

ment. New points can be picked that either have the best expected improvement

(exploration) or just the best minimum (exploitation). A mixture of exploitation

and exploration is generally used to converge to the global optimum.

To summarise, the Kriging algorithm takes an initial set of search points to
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first construct the surrogate model; this is taken from an initial sampling plan,

for example a maximin Latin Hyper cube. Additional points are sampled via two

different search methods, exploitation and exploration. Convergence can be set

from among: the current best point has not changed for a set number of iterations,

iteration number/time taken, if the rate of improvement has slowed down below a

certain threshold and/or if the expected improvement is below a certain threshold.

The Kriging algorithm is preferred over the GBNM and GA if the objective

function is particularly expensive. The Kriging algorithm can also be used on

cheap functions, but time is wasted on choosing search points rather than actually

evaluating the objective function.

The models used within this thesis are expensive, solving complex non-linear

differential equations, hence the Kriging algorithm is used to solve them. In

addition, the Kriging algorithm is efficient for small size problems under 20− 30

parameters which also matches the models used within this thesis.

1.3.4 Multi-Objective Optimisation

In most optimisation problems there is more than one objective function that

needs to be minimised or maximised, and it can be difficult to choose between

them. A weighting can be given to each objective function to convert multiple

objection functions into one objective function. For example, for two objective

functions f(x1, x2) and g(x1, x2) for given variables x1 and x2, we might combine

them and produce one objective function h(x1, x2) = A1f(x1, x2) + A2g(x1, x2)

for weighted parameters A1 and A2, where A1 = A2 gives equal weighting to both

objectives. By solving for h(x1, x2) for different values of A1 and A2 (generally

set between 0 and 1) a set of solutions can be obtained, and to visually compare

solutions we plot the objective functions (f(x1, x2) and g(x1, x2)) against each

other, Figure 1.4. A set of non-dominated solutions can be connected where any
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increase in one object function causes a decrease in another objective function.

The optimal solution is then chosen from this curve (pareto front) given other

criteria. For example, there might be variability among the variables (x1, x2) and

a small change (e.g. 1%) could alter the objective value in some way beyond

the current constraints. Therefore opting for a ‘safe’ solution is best, keeping the

objective functions within satisfactory constraints.
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Figure 1.4: A set of solutions for two objective functions highlighting a non-
dominated set, called the pareto front.

1.4 Structure of Paper Based Chapters and Dec-

laration of Work

The structure of the thesis follows a paper style format in which each Chapter (2,

3 and 4) is an academic paper of the author, see publications page.

In Chapter 2 we describe how changing the root branching structure of a wheat

plant can affect the amount of P taken up by the plant. Experimental work was

carried out to validate the model (biological data collection carried out by Pete
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Talboys at Bangor University) and we found that changing from a linear to an

exponential distribution of first order branches (a high number of branches at the

top of the soil) improves P uptake by 142% for low P soils. This is however not

enough to compensate a drop from, a high P soil to a low P soil (35.5 to 12.5 mg

P l−1 respectively, using Olsen P index). This paper was written by the author

and edited by the co-authors, except for Section 2.3.1 which was written by Pete

Talboys and edited by the co-authors. The modelling work was completed by the

author and experimental data by Pete Talboys.

In Chapter 3 we describe the movement of water in the soil around a plant root

system during a year. The model provides an estimate of the water saturation

levels within the soil at different depths, and the uptake of water by the root

system. The model was validated using field data, which includes hourly water

content values at five different soil depths under a grass/herb cover over one year,

to obtain a fully calibrated system for plant water uptake with respect to climate

conditions. When compared quantitatively to a simple water balance model, our

model achieves a better fit to the experimental data due to the variation of water

content with depth. We find that to accurately model the water content levels in

the soil profile, the sensitive Van Genuchten soil suction parameter and hydraulic

conductivity values need to vary with depth. The Kriging algorithm is used here

to find optimal parameter values which fit the model to the data set. This paper

was written by the author and edited by the co-authors. The base code from

[160] was written by Konstantinos Zygalakis and adapted and changed heavily

by the author to enable simulation on Southampton’s super computer, Iridis.

Experimental data was taken from [175], carried out by Joel Smethurst.

In Chapter 4 we present a model for different fertiliser strategies to find which

one maximises total P taken up by the plant. The model represents the develop-

ment of P and water profiles within the soil as spatial systems. Current cultivation
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techniques such as ploughing and a reduced till gradient are simulated along with

fertiliser options to feed the top soil or below the seed. We find that a well-mixed

soil (inverted and 25 cm ploughing) is critical for optimal P uptake and provides

the best environment for the root system for a given crop cycle. This paper was

written by the author and edited by the co-authors except for Section 4.3.4 which

was written by the co-authors and edited by the author. The base code from

[159] was written by Konstantinos Zygalakis and adapted and changed heavily,

similar to the model in Chapter 3. The experimental work was carried out by

Pete Talboys, field trial data was taken from Roger Sylvester-Bradley (ADAS)

and Robin Walker (SRUC), and fertiliser and soil management strategies were

guided by David Langton (Agrii).

In Chapter 5 we provide a summary of all the work included in the thesis,

what was learnt and avenues for future progress, written solely by the author.



Notation list for Chapter 2

A Maximum branching density distribution
a Root radius
B Strength of exponential root branching
b Soil buffer power
c P concentration in pore water
cs P held on the sold phase
ctot Total P in soil
D Diffusion coefficient of nutrient in pore water
d Denotes solution culture and soil systems
di Length of final branching zone
FD Flux of nutrients
Fm Maximum rate of P uptake
G Number of roots per cm
Ki The ith-order root length
Km Michaelis constant
Li Order i root growth rate
l Current root length
la Non-branching zone at the bottom of the root
lb Non-branching zone at the top of the root
ln Root branching interval
lni Distance between 2 root hairs of order i
Ni Total number of roots of order i
P Phosphate
P Probability

Psol Available P measured by Olsen NaHCO3 extract method
ri Order i initial root growth rate
t Time
t2 Two-tailed t-test value
tD Time in days
α Measure of effect of root hairs
γ Euler’s constant
ρb Soil bulk density
ψ Soil volumetric water content

Table 1.2: Notation list for Chapter 2.

39





Chapter 2

How changing root system
architecture can help tackle a
reduction in soil phosphate (P)
levels for better plant P
acquisition
J. Heppell1,2,3,4, P. Talboys6, S. Payvandi5,4, K. C. Zygalakis2,4, J. Fliege3,

P. J. A. Withers6, D. L. Jones6 T. Roose5,4

1Institute for Complex Systems Simulation, 2Mathematical Sciences, Faculty of

Social and Human Sciences, 3Centre of Operational Research, Management

Sciences and Information Systems, 4IFLS Crop Systems Engineering, 5Faculty of

Engineering and the Environment, University of Southampton, Southampton and

6School of Environment, Natural Resources and Geography, University of Bangor,

Bangor 57 2UW, UK

2.1 Abstract

The readily available global rock phosphate (P) reserves may run out within the

next 50 − 130 years, causing soils to have a reduced P concentration which will

affect plant P uptake. Using a combination of mathematical modelling and ex-

perimental data we investigated potential plant-based options for optimising crop

P uptake in reduced soil P environments.

By varying the P concentration within a well-mixed agricultural soil, for high

41
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and low P (35.5 to 12.5 mg l−1 respectively, using Olsens P index), we investigated

branching distributions within a wheat root system that maximise P uptake.

Changing the root branching distribution from linear (evenly spaced branches)

to strongly exponential (a greater number of branches at the top of the soil),

improves P uptake by 142% for low P soils when root mass is kept constant

between simulations. This causes the roots to emerge earlier and mimics topsoil

foraging. Manipulating root branching patterns, to maximise P uptake, is not

enough on its own to overcome the drop in soil P from high to low P. Further

mechanisms have to be considered to fully understand the impact of P reduction

on plant development.

2.2 Introduction

Fertiliser prices are continuing to increase, following a dramatic rise and fall in

2008. The increased volatility in the price of nutrients is linked to the price

of oil, and doubt about the limitation of rock P availability in the medium term,

maybe outweighed by limitations in energy and sulphur to process rock phosphate.

Further, there have been repeated and increasing warnings stating that the readily

available global rock phosphate (P) reserves will become exhausted within the next

50-130 years [32, 35]. Therefore careful use of this finite resource in agricultural

systems is clearly warranted [191]. This need to reduce our reliance on rock P

may also become exacerbated by political control as the remaining reserves are

highly spatially localised, being mainly owned by China, Morocco and the US,

who together control 85% of the known global phosphorus reserves [47].

P is typically applied in large quantities in most productive cropping systems

(>20 kg P ha−1), however, it is often used inefficiently with a large proportion of

the added P subsequently becoming unavailable for plant P uptake or lost alto-
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gether. To achieve greater sustainability within agriculture requires new strategies

that will either reduce the P demand of the crop or promote greater root recovery

of the added P such that less fertiliser is required [208]. This would reduce the

negative aspects of P use in agriculture (e.g. eutrophication) as well as yielding

greater economic returns for farmers. Repeated fertilisation over many decades

can lead agricultural soils close to, or at, P saturated levels [17]. While this in-

creases organic and readily available P in the soil it also stimulates vertical loss

down the soil profile and allows P to be readily released from particles when sur-

face run-off enters freshwaters [68, 179]. One mitigation strategy is therefore to

‘run down’ soil P reserves by reducing P inputs relative to the amount of P offtake

in the crop. To maintain yields, however, necessitates that P is used more effi-

ciently by the crop. It is therefore important to assess how crops will cope under

a reduced P environment, and if that is not plausible, determine what plant-based

options are available, for adapting to these conditions.

There are many potential strategies to help tackle the reduced P scenario, from

changing the plant traits by targeted plant breeding (e.g. reduced seed P content,

changes in root architecture), to altering the properties of the soil [106, 196].

Plants are estimated to take up less than 15% of the P added in the soil, and

therefore an alternative method involves manipulating the chemistry and biology

of the rhizosphere to make more of the added P available to plants [149]. As P

is often highly immobile in soil, one method could be to adapt the root system

architecture to obtain P more efficiently [73, 204].

Simulating P uptake by a growing root system using mathematical models

enables us to capture a multitude of scenarios in less time and at significantly

lower costs than via experimentation. However, the experimentation is essential to

provide validation and parameters for the model. In this paper experimental data

and model simulations are brought together to further advance the understanding
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of P uptake by plant root systems. Optimisation algorithms are used to further

synthesise new knowledge from the models and to get the most out of the collected

data. Although previous models have been developed to investigate the influence

of root architecture on plant P acquisition [54, 60, 107], these studies followed a

pseudo 3 dimensional approach [108] that presents computational problems in up-

scaling to the field level [163]. A review of the current 3D models is well described

in [44] providing strengths and weaknesses of each approach. Here we present

an alternative approach to modelling P uptake: using an adaptation of the more

efficient root system model of [161] to simulate P uptake of a crop on a field scale.

This model is comparable to other density based root models [46]. In addition,

this model captures the nutrient depletion zone along all roots and scales up an

analytical solution for a single-ordered root to produce an accurate estimate for

plant P uptake per soil surface area; extrapolating surface area to produce field

scale results [161].

Wheat (Triticum aestivum L.) is a key crop for global food production, with

total worldwide yields for 2012 estimated to be 652.17 Mt [135]. In this study, the

increasingly popular winter wheat cultivar variety Gallant was used to provide

the root parameters for the model in [161]. This model has been adapted so that

different root structural patterns can be simulated and the optimal root branching

structure that maximises P uptake determined. To check if a certain root structure

will give adequate compensation, the effect of lowering the soil P concentration

level will be assessed.
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2.3 Materials and Methods

2.3.1 Experimental Collection of Plant Parameters

Plant Root Growth

Given the variability of rooting within crop varieties [178], and the scarcity of

studies quoting such basic root system characteristics, our own cultivar specific set

of rooting parameters were produced, Table 2.1. In all experiments the soils were

passed through a 5 mm sieve before use. All plants were grown in a greenhouse

maintained at a minimum of 200C, supplied with artificial lighting providing at

least 16 h days. Experiments were conducted in the UK winter, therefore the

temperature and number of daylight hours rarely exceeded these values.

Units 0 order root 1st order root 2nd order root

Growth rate mm d−1 15.83± 5.2a 8.97± 2.6b 4.00*

Inter-root branch distance mm n/a 3.64± 2.2a 2.44± 1.3b

Root diameter mm 0.516± 0.090a 0.229± 0.037b 0.192± 0.049c

Length of no branching zone mm 43± 8a 12.2± 3.4b n/a

Tip to root hair distance mm 0.48± 0.15a 0.0615± 0.037b 0.376± 0.20c

Root angle on lower ordered root degrees n/a 60.6± 9.0a 63.8± 14.7a

Number of root hairs on root cm−1 202± 52a 250± 63b 444± 120c

Root hair length mm 0.59± 0.25a 0.49± 0.13b 0.43± 0.11c

Length of root mm 1000** 79 2.8

Table 2.1: Experimental values for nine wheat root characteristics for zero-, first-
and second-order roots used in the mathematical modelling of wheat. The only
non-significant values are between the root angles for first- and second-order roots.
Values represent means ± SD and those bearing the same alphabet are not signif-
icantly different within a row. *Result estimated from experimental data which
is consistent with [142]. **Result taken from [183].

To measure the physical characteristics of the roots required by the model,

seeds were planted to a depth of 1 cm in perspex rhizotrons (30 cm x 30 cm x 1 cm)

filled with a Eutric Cambisol sandy clay loam textured soil (Abergwyngregyn, UK)

which had a high available P content due to repeated long-term fertilisation (Olsen
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P = 33 mg L−1 for further details of the soil see [88]). This soil was maintained

at 80% water holding capacity by watering three times a week. We used two-

dimensional rhizotrons as these have been shown to be representative of basic

root architecture for cereal plants growing unconstrained [66]. The rhizotrons were

tilted at a 300 angle to allow visualisation of the root system and measurement of

root attributes: root growth of roots growing along the edge of the rhizotrons were

measured by monitoring their progress with a ruler, and visible branching angles

were measured using a protractor. It should be noted, however, the short length

of the second order roots meant that measurement of their growth rate was not

possible using this approach. At 21 d after emergence the plants were harvested.

The roots were washed thoroughly by hand in distilled water, floated out on water

in transparent plastic trays, and scanned using a flatbed scanner (Epson Perfection

4990 Photo, Epson America, Inc., California, USA). The diameter of each root

order was then determined, using WinRhizor software (Regent Instruments Inc.,

Québec, Canada). The inter branch distances, non-branching zone lengths and

maximum root lengths were then measured manually for each root system using

a ruler. To estimate root hair density and average lengths, 1 cm samples from

the centre of each of these washed roots were mounted on slides in 50% glycerol

and observed using a light microscope (Axioplan 2; Carl Zeiss Ltd, Cambridge,

UK). The number of hairs protruding from each cm section of root as seen when

mounted on microscope the microscope slide was doubled to account for half the

root not being visible, and then used to define the root hair density for each root

order. The length of the root hairs in these sections was measured using the

microscopes eyepiece graticule, and then the average for each root order was then

used to define the root hair lengths in the model.
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Rooting Responses to P

A key component of the plant physiological response to P is the variation of root

production [42]. To ensure this would be factored into the model, an experiment

was designed to measure the difference in rooting characteristics in low and high

P soils. Seeds were incubated in aerated de-ionised water overnight at room

temperature and then grown on moist tissue paper until the roots reached ≈ 5

cm. This represents the start time in the model. These seedlings were then planted

in 50 ml centrifuge tubes each containing 55 g of either Morfa Cambisol (low P,

Olsen P = 12.6 mg L−1) or Eutric Cambisol (high P, Olsen P = 33.0 mg L−1)

soils (both Abergwyngregyn, UK), maintained at 80% water holding capacity, and

kept in a greenhouse (as previously described) for 10 d. Despite this being a small

mass of soil, the plant available P supply remains significantly greater than the

plants total P demand over such a limited timeframe, Table 2.2. As the model

assumes the relationship of soil solution P to sorped P is at equilibrium, it was

decided that using a soil high in native P that was already at equilibrium would

provide better high-P model fits than applying soluble P fertiliser to a low-P soil,

which would then perturb the sorption equilibrium. After 10 d the plants were

harvested and the root systems were washed in water to remove the soil, excised

from the remainder of the plant, dried to remove surface water with tissue paper

and weighed to assess the differences in root mass between low- and high-P soil

environments, Table 2.3. The same cultivation method was also used to produce

plants with which to measure the impact upon inter-branch distance of order 1

branches in low and high P soils, Table 2.3: the inter-branch distance measured

by scanning each root system using the flatbed scanner (Epson Perfection 4990

Photo) and then using the resulting images to measure the distance between each

order 1 root branch on the seminal roots of each plant.
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Days after sowing (initial root length was between

10 and 15cm over three roots) 0 1 2 4 6 8 10

Low P average uptake (µmol P plant−1) 0a 0.058a 0.14a 0.37a 0.79a 1.3a 2.1a

Standard deviation (µmol P plant−1) n/a 0.19 0.35 0.34 0.37 0.54 0.49

High P average uptake (µmol P plant−1) 0a 0a 0.12a 0.70a 1.5a 2.1a 3.2b

Standard deviation (µmol P plant−1) n/a 0.051 0.28 0.24 0.26 0.12 0.29

Table 2.2: Experimentally derived average P uptake (µmol plant−1) measured
over the 10 d growth period after sowing, for high- and low-P soil environments.
After 10 d, the P uptake values become significantly different, for a two-tailed test
with P < 0.05. Means bearing the same alphabet are not significantly different
within a column.

Low P High P

Average inter-root branching distance (mm) 4.2± 2.4a 3.7± 1.7a

Average root mass (mg per plant) 586± 141.7a 313± 117.1b

Table 2.3: The average inter-root branching distances of first order roots and
masses of fresh weight roots for high- and low-P soil environments. The average
root mass was significantly different between high and low P, whereas the average
inter-root branching distance was not. Values represent means ± SD and those
bearing the same alphabet are not significantly different within a row.

Plant P Demand

To estimate plant P demand, wheat seeds were germinated on moist tissue paper

until the roots had reached approximately 5 cm after which the seedlings were

transferred to pots containing the high-P Eutric Cambisol soil (150 g). Over the

next 10 d, plants were sequentially harvested, washed to remove the soil, and

dried at 850C overnight. The plants were then dry-ashed (5500C, 16 h), the

residue dissolved in 0.5 M HCl and then their P content determined according to

the ascorbate/molybdate blue method of Murphy and Riley [126].
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Soil tests

The relationship between P in solution (c, mol/l) and P held on the solid phase

of soil particles (cs, mol/kg) is described by the soil buffer power (b),

b = dctot/dc, (2.3.1)

for

ctot = (c · ψ) + (cs · ρb), (2.3.2)

where ψ is the soils volumetric water content (dm3 dm−3), and ρb is the soil bulk

density (kg dm−3).

To determine b (a constant (only when ψ is constant) used within the math-

ematical model), cs and c a sorption isotherm was measured [7]. Using varying

initial solution concentrations of 33P-labelled KH2PO4 (0-1 mM; 1 kBq mL−1,

American Radiolabeled Chemicals Inc., USA), 5 mL of P solution was added to

1 g air-dry soil, shaken (200 rpm, 24 h), centrifuged (16000 g, 15 min), the su-

pernatant solution mixed with the liquid scintilant Optiphase ‘Hisafe’ 3 (Perkin-

Elmer, Boston, MA, USA), and 33P concentration (c) measured using a Wallac

1404 a liquid scintillation counter (Perkin-Elmer, Boston, MA, USA). The amount

of P sorbed to the solid phase (cs) was calculated by difference. A Langmuir

isotherm was then fitted to the experimental data using SigmaPlot v11 (Systat

Software Inc., San Jose, CA) to enable calculation of c, cs and b for each soil. This

was done by using the middle of each Olsen P index band from DEFRA (2010)

(Table 2.4) as the total P (ctot) value for high and low P soils. The corresponding

c, cs and b values for that ctot on the Langmuir isotherm were used as the initial

conditions in the model, with b remaining fixed throughout the duration of the

experiments.
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DEFRA agronomic index value P(mg L−1) P(mmol L−1) Psol=c(µmol L−1)

Index 0 (very low P) 0− 9 0− 0.2903 0− 12.3

Index 1 (low P) 10− 15 0.3226− 0.4839 13.7− 20.5

Index 2 (moderate P) 16− 25 0.5161− 0.8065 21.9− 34.2

Index 3 (high P) 26− 45 0.8387− 1.4516 35.6− 61.6

Table 2.4: Relationship between the Department for Environment Food and Rural
Affairs (2010) agronomic index values for available soil P measured using the Olsen
NaHCO3 extract method and actual levels in the soil and soil solution (Psol). Psol
is equivalent to the concentration of nutrients in pore water c and is dependent
upon the soil buffer power b and the water saturation (ψ).

Statistics Applied to Experimental Data

To test whether means from experimental data are significantly different to each

other a two-tailed t-test was performed, where P < 0.05 would yield a positive

significance. For two means, x1 and x2, with corresponding standard deviations,

s1 and s2, and sample numbers, n1 and n2, Equation (2.3.3) calculates the value

of t2,

t2 =
x̄1 − x̄2√(

(n1−1)s21+(n2−1)s22
n1+n2−2

)(
1
n1

+ 1
n2

) . (2.3.3)

The following assumptions are made; there are two independent samples, the

data is normally distributed and the samples have the same variance. Once t2 is

known the degrees of freedom (calculated from (n1 − 1) + (n2 − 1)) is needed to

produce a P value which is then compared to the confidence interval, 0.05 for 5%.

If P < 0.05 then the means are significantly difference.

2.3.2 Phosphate Uptake Model

Previous models for nutrient uptake of a single cylindrical root surrounded by

an infinite extent of soil have been studied [7, 133], where the nutrient concen-
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tration is equal to the farfield nutrient concentration away from the root. Due

to nonlinearity in the root nutrient uptake boundary condition, the models were

only solved numerically, which meant that adapting a single root model to a more

realistic root system was computationally expensive [7, 133]. However, model ad-

vancements made it possible to provide a fully explicit ‘approximate’ analytical

solution to the Nye-Tinker-Barber model which enabled a more realistic model

that utilises a more complex root branching structure [161, 162]. In all four

previous studies [7, 133, 161, 162] the uptake of P by roots is represented by

Michaelis-Menten uptake kinetics and a convection-diffusion model containing a

linear diffusion equation with a nonlinear root surface uptake condition. The rate

of convective transport of nutrients is assumed to be negligible relative to diffusion

[91, 161, 162]. For a complete solution of the convection-diffusion equations for P

transport to plant roots see [162]. The total uptake of nutrients given an initial set

of parameters are calculated in [161], which represent the nutrient concentration,

water saturation and root parameters, such as length and radius. The analytical

solution for the flux of nutrients FD(t; a) into a root of radius a in [161] is given

by,

FD =
2Fmc

Km + c+ L+ (4cKm + (Km − c+ L)2)1/2
, (2.3.4)

with,

L =
Fma

2ψD
ln

(
1 + 4e−γ

ψD

(ψ + b)a2
tD

)
, (2.3.5)

where Fm represents the maximum rate of P uptake (µmol cm−2 s−1), c is the far

field concentration of P in pore water (µmol cm−3), Km is the Michaelis constant

(µmol cm−3), γ ≈ 0.5772 is Eulers constant, ψ is the water saturation (dm3

solution dm−3 soil), D is the diffusion coefficient of nutrient in pore water (cm2

s−1), b is the soil buffer power (dimensionless) and tD represents time (days). The

values of these parameters, taken from [161], are presented in Table 2.5, and it
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is assumed that the farfield concentration of P is constant within the soil. The

model calculates the uptake of P for one zero order root (as in Equation (3.13) in

[161]), and this is extrapolated to five to account for the number of primary root

axes in a developing wheat root system.

Parameter Description Value Unit

ψ Soil volumetric water content 0.3 L solution L soil−1

D P diffusion coefficient in pore water 0.3× 10−5 cm2 s−1

b P buffer power in soil 239 -

Fm Maximum rate of root P uptake 3.26× 10−6 µmol cm−2 s−1

γ Euler’s constant 0.5772 -

Km Michaelis constant for root P uptake 5.8× 10−3 µmol cm−3

Table 2.5: Soil and nutrient uptake parameters, with values and units, taken from
[161].

To capture the effect of root hairs on nutrient uptake, we will apply the method

of [101] where three different models for nutrient uptake were considered. A di-

mensionless parameter α is calculated and depending on the morphological and

physiological properties of the root hairs 3 scenarios occur. For α ∼ 1, a concen-

tration gradient dynamically develops within the root hair zone, for α > 1, the

uptake by root hairs is negligibly small and for α < 1, P in the root hair zone is

taken up instantaneously. The dimensionless parameter α is given by,

α = loge

(
dlni
DKm

Fm

)/
loge

(
lni
Ki

)
, (2.3.6)

where d is dimensionless factor that distinguishes between solution culture and

soil systems (in the solution culture d = 1; in soil d = 1/(ψ + b)), lni is the

distance between two root hairs on the ith-order root (cm) and Ki is the ith-order

root length (cm).
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The value of α for zero-, first- and second-order roots is 0.466, 0.703 and 1.477,

respectively. For zero- and first-order roots α < 1, which means root hairs effec-

tively extend the root radius by the root hair length. For second-order roots

α > 1, which means the roots hairs have a small uptake compared to the roots

and are neglected. Experimental data showed root hairs appearing everywhere on

all ordered roots and as a result, increased root radius occurred over the entire

root length.

Equation (2.3.4) is used to construct a model for the nutrient uptake of a plant

root system. The root system consists of a distribution of roots of radius a and

length l. Figure 2.1 shows the layout of the root structure where the top section

of the root is labelled lb and the bottom section la, which are the non-branching

zones. The main root is called 0 order, side branches of this are called 1st order

and so forth. The root system branches by creating smaller side roots between

the non-branching zones lb and la, and this starts commencing when the original

root reaches the length lb+ la. Given a root of length l, there are [(l− la− lb)/ln]+

branches, where ln is the interval for each branching root.

Different order growing roots will have different radii ai, and will grow at

different rates Li(t). The elongation of roots of order i decreases with age and is

described by,

dl

dt
= Li = ri

(
1− l

Ki

)
, (2.3.7)

where l is the length of the root (cm), ri is the initial rate of growth (cm d−1) and

Ki is the ith-order root length (cm).

The model in [161] uses a constant branching rate to define root architecture,

thereby creating an even branching distribution. To change the root architecture

we replace the constant value by a root branching distribution parameter, which

interpolates between an even branching distribution and one which exponentially

decreases in root length density down the soil profile. An exponential branching
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𝑙𝑛 inter branch 
distances 

𝑙𝑏 basal non-branching 
zone at the top of the root 

branching zone 

𝑙𝑎 apical non-branching 
zone 

Order 0 

Order 1 

Order 1 

Order 2 

Order 2 

Figure 2.1: Branching structure of a root system, with non-branching zones la
and lb, and inter-root branch distance ln. The main root, order 0, branches order
1 roots which in turn branch order 2 roots.

distribution is used where the same final volume of roots is grown; however, it

creates a root system where top soil foraging is maximised [197]. This also matches

observations of root proliferation in top soils (0 − 30 cm) when fertilisers are

strategically placed [114]. The exponential branching distribution (G, the number

of roots per cm) is described by,

G = Ae−Bl, (2.3.8)

where two variables define the branching structure, A (cm−1) denotes the max-

imum density distribution (i.e. the maximum number per cm) and B (cm−1)

denotes how density decays towards the tip of the main root l. For example, at a

linear branching distribution of 0.7 cm we set A = 1/0.7 cm−1 and B = 0 cm−1.

The branching points are calculated by first varying l between 0 and di, where
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di is the length of the final branching zone along the main root. Secondly, the total

area created by the curve in Equation (2.3.8) from l = 0 to l = di is calculated.

Thirdly, a point l such that the area covered by the curve from l = 0 to l = l1

is calculated to be equal to the total area divided by the number of branching

roots. The next point l2 is chosen such that the area created between the two

points l1 and l2 is the same as between 0 and l1. Finally, continuing this approach

will generate an equal number of branching roots, but the distribution will be

exponential rather than linear.

The two-parameter family in Equation (2.3.8) can be reduced to a single pa-

rameter if the total final length of the root system is kept the same. This sim-

plifies the fitting process, discussed in Section 2.4.3, as fewer parameters reduce

the search space and thus the computational time of the model. The method is

described in the set of equations below, which begins with the total number of

roots Ni, which are in the length range (0, di) for root order i.

∫ di

0

Ae−Bldl = Ni. (2.3.9)

Simplifying and solving Equation (2.3.9) for A produces,

A = − NiB

e−Bdi − 1
, (2.3.10)

which generates the root branching distribution G that conserves the final size of

the root system, just in terms of the new variable B.

G =
NiB

1− eBdi
e−Bl. (2.3.11)

The values of di are prescribed to be equal to 100 and 7.9 cm for the main

root and order 1 root, respectively, and Ni equal to the number of roots for
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each given order calculated from the experimental data presented in Table 2.1.

The chosen variable B will be bounded, such that at its minimum, 0 cm−1, the

root branching is linear and at its maximum, 10 cm−1, the root branching is

exponential and almost all the side roots branch at the top of the branching zone.

Figure 2.2 shows the root structure (with only 50 side roots for simplification) for

the cases where B is 0, 5 and 10 cm−1 and the different initial branching scenarios

can be clearly seen between Figure 2.2a (B = 0 cm−1) and Figure 2.2c (B = 10

cm−1). The minimum branching distance measured from the experimental data

(0.067 cm) was also set as the minimum branching distance in the model, i.e.

at the upper bound when B = 10 cm−1. As we assume there is a constant P

concentration within the soil, every root is therefore given their own depletion

zone which does not overlap with others (no inter-root competition) for the entire

growth of the root system.

For modelling purposes the growth angles of the roots in our experiments are

not used, all other values in Table 2.1 are used in the model. This is due to the

fact that the initial P concentration in the soil is constant, and roots will achieve

the same uptake from any position; it is therefore sufficient to just calculate the

time at which a root started growing. This simplification in the root system is

justified by the comparison made in [100], where the P uptake from the roots in

the model by [161] was shown to be comparable to the one of a 3D plant root

system.

The second-order roots are experimentally shown to grow where the density

of root mass is greatest rather than in a linear or exponential distribution. The

greatest density of second-order roots on a first-order branch was experimentally

calculated to be 1.153 second order roots per mm. Therefore the second-order

roots were modelled such that there were a greater number of branches at higher

density areas with the greatest density capped at 1.153 roots per mm. This
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Figure 2.2: The simulated root structure (with only 50 order 1 roots for simpli-
fication) for three different branching distributions; (a) shows a linear branching
distribution (B = 0 cm−1), (b) shows a slight exponential distribution (B = 5
cm−1), and (c) shows a strong exponential distribution (B = 10 cm−1).

distribution can be seen in Figure 2.3 where the position of the second-order

roots is affected by the exponential distribution of the first-order roots. In the

linear branching distribution case all of the root branches are constant whereas

for the exponential branching distribution case, the majority of second-order roots

appear nearer the top of the plant as there is a greater density of roots there.

2.4 Results

2.4.1 Model Parameterisation

The experimentally derived values for wheat root characteristics for zero-, first-

and second-order roots are summarised in Table 2.1. Significant differences were

apparent for all characteristics for the different root types, except for ‘root angle
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Figure 2.3: The root distribution of order 2 roots; (a) shows the distribution of
order 2 roots for a linear branching distribution of order 1 roots, and (b) shows
the distribution of order 2 roots for an exponential distribution of order 1 roots.
The greater the exponential distribution the denser the order 2 roots become.

on lower ordered root’. We used these values to parameterise the model to es-

timate the P uptake for different root branching distributions in soil possessing

two contrasting P contents, 35.5 mg L−1 (high P) and 12.5 mg L−1 (low P)(Table

2.4).

Experimental analysis showed that the biomass of roots grown in a low P soil

was reduced on average by 45% in 10-day-old plants compared to those grown in a

high P soil, and yielded a significant difference (P < 0.05; Table 2.3). However, the

inter-branch distance for the emergence of first order roots was not significantly

greater when the roots were grown in a high P environment (P > 0.05; Table

2.3). To capture this P-induced change in root architecture within the model, the

simulation scenarios for the low-P soil had the maximum root length for all order

roots capped to match the experimental data. To determine the impact of this

capping, simulations were undertaken with both reduced and constant root mass.

The effects of a reduced root mass could present problems with current plant

nutrition strategies, and perhaps placement of nutrients could produce greater

yields [152].
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2.4.2 Model Simulations

Figure 2.4: Model estimates for whole plant P uptake (µmol P plant−1) for dif-
ferent branching distributions (B) and initial soil P concentrations. At B = 0
we have a uniform branching distribution and for increasing values of B we have
more concentrated branching at the top of the soil profile.

Figure 2.4 shows the model predictions of plant P uptake across a range of P

concentrations within the soil for the different root branching distributions. For a

given line of constant branching distribution, there is a linear relationship between

P concentration and P uptake (R2 = 1 due to the model being deterministic).

However, for the line of constant P concentration, there is non-linear relationship

between branching distribution and P uptake.

Three scenarios in particular were studied; a linear branching distribution in

a low- and high-P soil and an exponential branching distribution in a low-P soil.

For each of these scenarios our model estimated the amount of P uptake by the

whole root system, Figure 2.5. In the high-P soil, the model predicted that the

plant would acquire 183% more P than a plant grown in the low-P soil. When the
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root branching distribution was changed from a linear to an exponential pattern

the model predicted that this improved plant P uptake by 142% in the low-P soil.

This represents a reduction of 14.5% in comparison with plants grown in a high-P

soil with a linear branching pattern.

Figure 2.5: Predicted cumulative plant P acquisition for three root branching
scenarios, a linear branching distribution in a high- and low-P soil and an expo-
nential branching distribution in a low-P soil; Panel (a) shows P uptake when the
final volume of roots is conserved, while panel (b) shows P uptake where there is
a 45% reduced root biomass after 10 d for the low P scenarios.

The results for cumulative P uptake for the 3 root branching scenarios over

a 90 d crop growth period are shown in Figure 2.5a. The end time of 90 d was

chosen as it gave suitable long-term behaviour for wheat growth. For the majority

of the time period, up to around 65 d, the exponential branching distribution in

a low-P soil (green-dashed) possessed the greatest P uptake even when compared

with the linear branching distribution in a high-P soil (red-solid). This is due to

the fact that the side roots emerge earlier and therefore there is a greater surface

area to enable earlier P uptake. After 65 d, the linear branching distribution in a

high-P soil catches up with and overtakes the exponential branching distribution

in a low-P soil and can take advantage of the rich P environment. The shape of

the P uptake curve is defined by the branching distribution. In both linear root

branching examples (red-solid and blue-dotted) there is smooth hinge shape curve,

however in the exponential root branching example (green-dashed) a saturation
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growth curve is observed, which is expected as the root system grows to its full

length.

With the negative effect of reduced root mass in the low-P soil (Figure 2.5b),

the difference between the low- and high-P soil was magnified. Plant P uptake

for the exponential branching distribution in a low-P soil (green-dashed) fell by

74% compared to when the root system growth was not capped (Figure 2.5a)

and matches a linear exponential branching distribution with an effective Olsen

P index of 3.7 (39 mg L−1). Changing from a linear to an exponential branching

distribution improves P uptake by 151% in the low-P soil, but this is a large de-

crease of 78% when compared with a high-P soil using a linear branching pattern;

which is expected given the large reduction in root mass.

2.4.3 Model Validation and Optimisation

The estimated P uptake from our model was compared with the experimental

data collected for a root system grown in a high- and low-P environment (Table

2.2, Figure 2.6). The parameter for the root branching structure, B, was fit to

minimise the sum of squares difference between our model and the experimental

data. The estimated total plant P uptake fits well with experimental data within

the initial 10 d of growth; for the comparisons, high P with B = 1.5 cm−1 and high

P data, and low P with B = 7 cm−1 and low P data. The scenario for a low-P soil

with B = 7 cm−1 is not enough to capture the effects of the experimental high P

uptake, because it is difficult to overcome the 45% reduced root mass and beyond

the 10 d mark this difference is amplified.
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Figure 2.6: Experimental and model values for the cumulative uptake of P by
wheat seedlings over a 10 d period when grown in high- and low-P soil for a
range of root branching distributions. The model values comprise of, a high-P
soil with a weak exponential distribution (B = 1.5 cm−1), and a low-P with a
strong exponential distribution (B = 7 cm−1).

2.5 Discussion

The important question that needs addressing is how alteration of root system ar-

chitecture could (by breeding or genetic manipulation) produce greater P uptake.

To that end, the model in [161] has been adapted by introducing a parameter that

changes the root branching distribution. Our model has two parameters that we

will directly manipulate, the nutrient concentration in the soil c and the root

branching distribution parameter B. By looking at the effect of changing the P

level against the root branching distribution, by altering c (Table 2.4) and B, the

P uptake is estimated.

Our study estimated the P uptake using our experimental soil and plant pa-

rameters found in Table 2.1. Our model is adapted from [161] such that the
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branching density distribution is allowed to change from linear to exponential, to

see the effects that root structure with different P concentrations in the soil, has

on P uptake. Three scenarios were considered, a high and low P concentration

level with a linear branching distribution and a low P concentration with an expo-

nential branching distribution. In these scenarios the effect of reduced root mass

in low P soils is considered, as seen in our experimental results.

The experimental P uptake (Table 2.2, Figure 2.6) fits best with a weak ex-

ponential root branching distribution for P3 data, which can be seen for certain

crops. A shift towards increased early lateral rooting has previously been shown

experimentally to increase P uptake efficiency [213], and this scenario is success-

fully captured in the model. The strong exponential branching modelled here

is however more aggressive than our data suggests and is currently seen within

wheat root developmental plasticity. Perhaps breeding varieties to adopt this

rooting strategy would be limited by carbon availability from photosynthesis. Al-

though our model simulates a uniform soil P profile, that top soil foraging has

been shown to be an essential component of plant P acquisition [212], provides

further emphasis upon the need to produce lateral roots early in the plants growth;

helping to improve root-foraging strategies [156]. By modelling a non-uniform soil

P profile [159] a better fit to the data could be achieved, given necessary depth

dependent data of available soil P. This is the subject of our follow on work which

will be published separately.

Our model shows that changing the root structure of the plant, to produce

more lateral roots earlier, has a positive effect on the uptake and can help plants

survive in lower phosphate environments. This is corroborated by previous ex-

perimental approaches [213]. On average a 147% increase in P uptake is achieved

from having a highly exponential root branching distribution over a linear one.

However this positive increase is not enough to completely overcome the difference
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between a high- and low-P soil environment. Therefore, although increasing early

lateral root production will enhance P uptake, other plant- and fertiliser-based

strategies would be required to produce the required yields at low soil P levels.

For example, an increase to all root lengths of all orders in combination with the

exponential root branching distribution is sufficient, as only an 8% improvement

is needed to match an exponential branching distribution in a low-P soil, with a

linear branching distribution in a high-P soil (without accounting for the reduced

root mass in a low-P soil).

The exponential branching distribution however does provide greater early P

uptake in low-P soils when compared to linear branching root systems grown in

high-P, Figure 2.4a. Early growth, and yield size, have been shown to be most

significantly correlated with early P uptake levels [16, 20, 59, 62], and greater early

P uptake, and the corresponding early vigour seedlings display is also viewed by

industry as insurance against problems which may occur in the growing period

such as adverse weather conditions. Vigorous early growth also provides quicker

soil surface cover, and therefore is useful in the reduction of soil erosion which

can be a significant driver of environmental problems, and loss of P from agricul-

tural systems [146]. The diminished uptake that exponential branching in low P

displays over linear branching in high P could still potentially impact final yields,

where P-uptake from the environment is still required to augment grain filling

[15, 59, 121], and also to facilitate carbohydrate translocation into the ripening

grain [182]. However, such a small difference in final P uptake could potentially

be met by a small targeted application of P late in the growing season, whilst

still allowing for significantly lower application rates of P fertiliser than in current

systems. The enhanced effectiveness of the exponential branching distribution

provides an insight into the potential benefits possible from crop breeding, Figure

2.4a. The extent of the wheat root system already varies significantly between
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varieties [178], and plant breeding efforts have been made to use plant breeding

to produce cultivars with an enhanced ability to acquire P [53]. Significant im-

provements in crop growth and output have been demonstrated to be possible

from targeted breeding to improve varieties [173], therefore a re-profiling of root

branching distribution is potentially possible, and could drive an increase in crop

P-acquisition. Additional and more rigorous experiments would need to be un-

dertaken to properly validate possible improved root structures and their effects

in high- and low-P soil. Given the variations in root system size present in com-

mercially available wheat varieties [178], a targeted breeding programme has the

potential to provide a range of root architectural variations which may prove to be

more suited to low-P soils. Furthermore, other parameters from Table 2.1, such

as root hair dynamics, could be re-calculated to find possible differences between

high- and low-P soils.

Due to the root structure being diminished in a low-P environment we im-

plemented the reduced root mass scenario. The difference between the high- and

low-P soils generated a substantial 45% root mass decrease after 10 days which

heavily affected the P uptake values in the low-P environment. In a low-P en-

vironment, targeting P close to early root growth (seed dressing or placement of

fertiliser in bands 5 cm down from seed) is emphasised as even more essential due

to the fact that the plants ability to search out P in a low P soil is severely limited

by the smaller area of soil the root system can cover.

In this Chapter we provided modelling basics towards the development of

whole plant nutrient uptake models, by assessing what root structures are needed

for given concentrations of P in the soil to maximise plant P uptake.





Notation list for Chapter 3

a Zero order root radius u Volume flux of water
a1 First order root radius W Volume flux of water into the soil at the surface
ak Fourier Transformation Signalling algorithm parameter WS Wind Speed
bk Fourier Transformation Signalling algorithm parameter x Depth
c Correction constant for estimating water flux xi The ith model data value
D0 Diffusivity of water in non-saturated soil x̂i The ith experimental data value
Fw Uptake of water by plant roots y Objective value for sum of squares equation
g Gravitational acceleration z Depth
H Humidity α Parameter for the linear estimation of W
k Soil permeability α1 Parameter for the non-linear estimation of W

k̂ Unit vector in the downwards direction α2 Parameter for the non-linear estimation of W
kr Root radial water conductivity parameter α3 Parameter for the non-linear estimation of W
Ks Saturated hydraulic conductivity β Parameter for the linear estimation of W
ks Water permeability in fully saturated soil β1 Parameter for the non-linear estimation of W
kz Root axial hydraulic conductivity β2 Parameter for the non-linear estimation of W
L Maximum length of the order 0 root β3 Parameter for the non-linear estimation of W
L1 Maximum length of the order 1 root γ Parameter for the linear estimation of W
ld Root length density γ1 Parameter for the non-linear estimation of W
lw The depth at which zero flux occurs γ2 Parameter for the non-linear estimation of W
m Van Genuchten soil suction parameter γ3 Parameter for the non-linear estimation of W
N Number of points δ Parameter for the estimation of W
P Initial water pressure θ Volumetric water content
p Water pressure in the soil θr Residual water content
pa Atmospheric pressure θs Soil porosity
pc Characteristic suction pressure λ1 Parameter for the estimate of P
pr Root internal xylem pressure λ2 Parameter for the estimate of P

p0r Baseline root pressure λ3 Parameter for the estimate of P
R Rainfall µ Dynamic viscosity of water
S Relative water saturation ρ Density of water
T Temperature φ Angle between zero and main order root
t Time ψ1 Density of first order roots on the zeroth order roots

Table 2.6: Notation list for Chapter 3.
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3.1 Abstract

Management and irrigation of plants increasingly relies on accurate mathematical

models for the movement of water within unsaturated soils. Current models often

use values for water content and soil parameters that are averaged over the soil

profile. However, many applications require models to more accurately represent

the soil-plant-atmosphere continuum, in particular, water movement and satura-

tion within specific parts of the soil profile. In this paper a mathematical model

for water uptake by a plant root system from unsaturated soil is presented. The

model provides an estimate of the water content level within the soil at different

69
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depths, and the uptake of water by the root system. The model was validated

using field data, which includes hourly water content values at five different soil

depths under a grass/herb cover over 1 year, to obtain a fully calibrated system

for plant water uptake with respect to climate conditions. When compared quan-

titatively to a simple water balance model, the proposed model achieves a better

fit to the experimental data due to its ability to vary water content with depth.

To accurately model the water content in the soil profile, the soil water retention

curve and saturated hydraulic conductivity needed to vary with depth.

3.2 Introduction

In the UK, shrink and swell displacements caused by seasonal changes in clay soil

water content can cause serviceability problems for vegetated earthworks [5, 134]

and exacerbate the progressive failure of clay slopes [198]. Clay shrinkage in dry

summers also regularly causes damage to older buildings constructed on shallow

foundations [43].

With the onset of global warming, weather systems and in particular rainfall

patterns are likely to change. This climatic change will have an impact on plants

that interact with engineered structures such as earthworks and shallow founda-

tions [29]. In order to optimise soil water and plant management strategies it is

necessary to understand current plant-soil systems and their reactions to varying

rainfall and climate patterns.

A number of agronomic models exist that calculate changes in water content

within the soil in response to climate and plant water uptake. However, many of

these models only estimate the average water saturation level within the plant root

zone. Common examples used in agriculture (and to some extent, in engineering,

e.g. [29]) include Dassat [89], Apsim [115] and Cropwat [30, 31].
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Cropwat carries out a water balance calculation for the rooting zone, deter-

mining an average soil saturation which varies in response to rainfall infiltration

and plant evapotranspiration, calculated using the Penman-Monteith Equation

[3]. Many of these models are adequate for simple crop management and irri-

gation purposes. However, applications in engineering and agricultural sciences

need models to more accurately represent the soil-plant-atmosphere continuum, in

particular the water movement and content within specific parts of the soil profile.

In engineering, the stability of many embankments and cut slopes is dependent

on the presence of soil suctions both within and below the rooting zone, and

more advanced models are needed to investigate vegetation management options

[21, 104].

A difficulty with trying to model the water content levels at different soil depths

is the characterisation of the parameters that control the soil water content and

flow processes. Both soil water retention and permeability can be difficult to

measure accurately, and there is often little or no site specific data, yet modelling

responses can be very sensitive to these parameters [132, 151, 164, 176]. Data

on root structures and temporal soil and plant interactions with time can also

be sparse. However, there are often good records for water content and climate

conditions, which can be used to calibrate models.

In this paper we develop a computational approach to calculate the water

content at different depths in the soil based on an extension of the model for

water flow and plant water uptake given by [160]. Environmental inputs are

added which estimate the water flux into the soil and root internal pressure. This

model is validated against climate and water content data measured by [176] at a

site in Newbury. A numerical procedure is then used to optimise the model input

parameters and distributions of some of the more uncertain soil parameters (such

as soil permeability, soil-water retention and root density) to obtain a best fit to
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the measured water content data. The model is spatially explicit, allowing the

distribution of water within the soil profile to be determined.

3.3 Materials and Methods

3.3.1 Field Data

The field data used to calibrate the numerical model have been taken from in-

strumentation installed into a cut slope adjacent to the A34 Newbury bypass in

England (Ordnance Survey grid reference SU455652). The site, and the full range

of instrumentation installed, is described in detail in [175, 176]. The 16o, 8 m

high slope is cut entirely within London Clay, which is weathered over a depth of

about 2.5-3.0 m below the original ground level, Figure 3.1.

The vegetation cover is primarily rough grass with herbs, with some small

shrubs mainly of Hazel, which towards the start of the study (the data used are

from 2005) were generally less than 0.5 m high. Recent observations made from

shallow vertical faces cut into the slope indicate that the roots extend to about 0.8

m depth. Although detailed root density measurements were not taken in 2005,

the plants had been growing on the slope for over 6 years, and therefore were well

established.

Time domain reflectrometry (TDR) probes were installed at depths of 0.3,

0.45, 0.6, 0.9 and 1.5 m at different locations (A and C; Figure 3.1) on the slope,

to record volumetric soil water content (units of m3 of water per m3 of soil) every

hour. A climate station was installed at the site to measure rainfall, air tempera-

ture, humidity, wind speed and solar radiation. Surface runoff and interflow (flow

of water through the topsoil) were measured using an interceptor drain cut to 0.35

m depth across the face of the slope. Soil pore water pressures (or suctions) were

also recorded every hour, as described in [176].
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Figure 3.1: A cross section through the Newbury site showing the locations of
installed instrumentation. Taken from [176].

3.3.2 Model

Water Movement and Plant Water Uptake Model

A model describing the movement of water within an unsaturated soil surrounding

a root was developed by [160]. The model provides an estimate of the soil water

content at different depths, and the uptake of water by the root system. The

important aspects of the model are presented here; full details are given in [160].

A 1 year data set (2005) collected from [176] was used to validate the model

from [160], which included determining optimal values of some root and soil water

parameters. These were then used within the model with further climate data to

see if the optimised model was able to produce predictions of changes in water

content comparable with those measured in later years. A number of changes

were made to the model in [160] to allow it to link with climate parameters such

as rainfall, air temperature, wind speed and humidity and hence to the measured

data; these changes are discussed below.
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The model is based on the equation for the conservation of water in the soil

(Richards Equation), which is given by:

θs
∂S

∂t
+∇ · u = −FW , (3.3.1)

where S is the relative water saturation in the soil (S = (θ − θr)/(θs − θr),

where θ is the volumetric water content, θs is soil porosity and θr is the residual

water content; S also denotes the normalized volumetric water content, with the

Eurocode 7 descriptor Θ), u is the volume flux of water (m s−1) and FW is the

uptake of water by the plant roots (volume per unit time per unit volume of soil).

The residual water content θr was taken as zero since at very high suctions in clay

soils it does become close to zero [34], Figure 3.2. The volume flux of water is

represented by Darcy’s law,

u = −k
µ

[∇p− ρgk̂], (3.3.2)

where k is the soil permeability (m2), p is the water pressure in the soil (Pa), µ is

the dynamic viscosity of water (kg s−1 m−1), ρ is the density of water (kg m−3), g

is the gravitational acceleration (m s−2) and k̂ is the unit vector in the downward

direction.

It is also possible to write the water pressure in the partially saturated soil

pores in terms of the relative saturation via the soil water retention curve [193],

pa − p = pcf(S), f(S) = (S−1/m − 1)1−m, (3.3.3)

where pa (Pa) is the atmospheric pressure, pc (Pa) is a characteristic suction

pressure determined from experimental data for different types of soil and m

denotes the Van Genuchten soil suction parameter, where 0 < m < 1. Measuring
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gauge pressures relative to atmospheric pressure gives pa = 0.
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Figure 3.2: Soil water retention curves for two different values of m(0.3 and 0.4)
and pc (23200 Pa and 2320 Pa). The curves for pc = 23000 Pa are representative
of those used to model the Newbury site.

Soil permeability is influenced by soil saturation, and therefore the soil per-

meability is written in terms of relative water content using [193],

k = ksK(S) = ksS
1/2
[
1− (1− S1/m)m

]2
, (3.3.4)

where ks is the water permeability in fully saturated soil (m2), and K(S) repre-

sents the reduction in water mobility in the soil due to the reduction in relative

saturation. The air entry value (the soil suction at which the volumetric water

content reduces from full saturation) is represented in the Van Genuchten expres-

sion (Equation (3.3.3)) by a combination of m and pc. It is most sensitive to pc

and decreases as pc decreases, Figure 3.2.

The water uptake by a single cylindrical root is calculated from the difference

between soil pore water pressure and root xylem pressure (the water pressure in

the root), and is given by

FW = 2πaldkr(p− pr) = 2πaldkr(−pcf(S)− pr), (3.3.5)
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where 2πald is the root surface area density, ld is the root length density (m of

roots per m3 of soil), a is the average zero order root radius (m), kr is the root

radial water conductivity parameter (m s−1 Pa−1) and pr is the root internal xylem

pressure (Pa).

Using Equations (3.3.3) and (3.3.4), we can write Equation (3.3.1) in terms of

the relative saturation S only,

θs
∂S

∂t
= ∇ ·

[
D0D(S)∇S −KSK(S)k̂

]
− FW , (3.3.6)

where the water “diffusivity” in the soil is D0D(S) = (k/µ)| δp
δS
|,

D0 =
pcks
µ

(
1−m
m

)
, (3.3.7)

D(S) = S1/2−1/m
[
(1− S1/m)−m + (1− S1/m)m − 2

]
, (3.3.8)

and Ks is the saturated hydraulic conductivity (m s−1) given by,

Ks =
ρgks
µ

. (3.3.9)

The boundary conditions for the model are

D0D(S)
∂S

∂x
−KsK(S) =

 −W at x = 0

0 at x = lw

, (3.3.10)

where W is the volume flux of water into the soil at the surface, representing both

infiltration due to precipitation and evaporation (volume of water per unit soil

surface area per unit time), and lw is the depth at which zero water flux occurs.

The balance between the axial and radial fluxes of water inside a single cylin-



3.3. MATERIALS AND METHODS 77

drical root is given by

2πakr(−pcf(S)− pr) = −kz
∂2pr
∂x2

, (3.3.11)

with the following boundary conditions,

∂pr
∂x
− ρg = 0 at x = L, (3.3.12)

pr = P at x = 0, (3.3.13)

where kz is the root axial hydraulic conductivity calculated using Poiseuilles law

(m4 Pa−1 s−1), P is the initial water pressure at the top of the root (Pa) and L

denotes the maximum length of the root (m). The single root uptake equation is

scaled up using the multi-scale analysis presented in [160] to represent macroscopic

behaviour (e.g. many roots within a vegetated soil profile) in determining FW with

the depth of the soil.

The model is written in terms of relative water saturation (S) as it is more

stable to numerically solve for Richards Equation via a finite volume method. To

summarise, the one-dimensional (1D) model describing water movement in the

soil and plant water uptake is,

∂S

∂t
=

∂

∂z

[
D0D(S)

∂S

∂z
−KsK(S)

]
− FW , (3.3.14)

where

FW =
2πa1kr + (2πa1krkz)

1/2ψ1(z)

π(a+ L1cosφ)2
[−pcf(S)− pr]. (3.3.15)

where ψ1 is the density of first order roots on the zeroth order roots, a1 is the first

order root radius, L1 is the maximum length of the first order branches and φ is

the angle between the main root and the first order branches.



78 CHAPTER 3. MODEL FOR WATER UPTAKE

The boundary conditions for the model are

D0D(S)
∂S

∂x
−KsK(S) =

 −W at x = 0

0 at x = lw

. (3.3.16)

The root internal pressure pr is calculated from

2πakr(−pcf(S)− pr) = −kz
∂2pr
∂x2

, (3.3.17)

with

∂pr
∂x
− ρg = 0 at x = L, (3.3.18)

pr = P at x = 0. (3.3.19)

In the following sections we validate this model against the soil saturation data

provided by [176].

Adjustments to the Model and Dataset

Figure 3.3 shows the water content measured with the TDR probes at different

depths at location A for the year 2005. A reduction in the water content is

observed at 0.3 m, 0.45 m and 0.6 m depths between June and October, reflecting

the summer drying period. The traces for the shallowest three probes show a series

of short upward spikes in response to heavy winter rainfall events. The spikes in

water content are likely caused by pulses of water passing downward through the

upper (more silty) part of the profile after heavy rainfall events, returning after the

event to field capacity (the equilibrium water content of soil held against gravity).

The very rapid spikes in the measured traces of water content were difficult

to model as they were misleading the model fitting procedure. The model cannot

represent these short time dynamic conditions, as it is designed to track seasonal
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variations on the timescale relevant to plant water uptake rates than response to

fast hourly/daily extreme weather events. It was decided therefore to focus on

modelling the saturation level at field capacity during the winter, and its reduc-

tion during the summer and early autumn. A Fourier Transformation Signalling

algorithm [177] was used to eliminate the spikes found in raw data and produce

smoother curves that reflect the long-term change in the soil saturation level. The

algorithm uses the following equation:

p(x) =
N∑
k=0

akcos(kx) + bksin(kx), (3.3.20)

where ak and bk are variables to be solved for a fixed N and at a set of chosen

points, x, and their value p(x). The spike smoothing process involves taking

uniformly spaced points along the x-axis and smoothing the curve between them

using Equation (3.3.20). The result of this process is shown in Figure 3.3 which

shows the smoothed data for the corresponding raw data. Initially curves consist

of about 2000 data points, which when smoothed reduce to about 50 data points.

In order to generate a full data set again, the 50 data points are extrapolated

back to 2000. The sum of squares scores between the original and new (with

spikes removed) data sets is low at an average of 2.7 for location A and 0.2 for

location C. The smoothing method eliminates the peaks while maintaining the

main characteristics of the curves. The physical meaning of removing the spikes

relates to removing surface water accumulation and run-off effects, essentially

scaling how much rainfall water actually makes it into the soil. From now on

mention to the probe/experimental data is referring to the smoothed data, of

Figure 3.3.

The water flux at the ground surface is modelled by considering the net flux

of water into the soil W , which is based on environmental factors such as rainfall

(R), humidity (H), wind speed (WS), temperature (T ) and a constant (c), using
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Figure 3.3: TDR probe data at location A for 2005 showing the volumetric water
content at different soil depths: (left) the raw data; and (right) the data smoothed
by the Fourier Transformation signalling algorithm.

either linear (Equation (3.3.21)) or non-linear (Equation (3.3.22)) expressions,

W = δR + αH + βT + γWS + c, (3.3.21)

W = δR+α1H+α2H
2 +α3H

3 +β1T+β2T
2 +β3T

3 +γ1WS+γ2WS2 +γ3WS3 +c,

(3.3.22)

where the parameter vectors δ, α, β, γ and c are to be determined from the optimal

fit to the soil water content data of [176]. The flux of water W has units ms−1 of

water and from this units can be assigned to the remaining parameters as shown in

Table 3.1. Equations (3.3.21) and (3.3.22) can essentially be considered as Taylor

expanded versions of other non-linear relationships often used for calculation of

evaporation/transpiration such as the Penman-Monteith Equation.

The driving pressure (P ) inside the root is dominated by atmospheric humid-

ity and temperature as the stomata in the leaves open and close depending on

the environmental conditions [190]. When the air temperature is high and/or hu-

midity is low the plant closes its stomata to slow down the loss of water and this

leads to an increase in the pressure of water inside the roots. Due to the direct

change to the water pressure within the plant roots, we use the following formula
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for P for the boundary Equation (3.3.19) to model the total pressure,

P = (p0
r + λ3) + λ1T + λ2H, (3.3.23)

where p0
r is the baseline root pressure and λ1 (Pa/degC), λ2 (Pa/% humidity) and

λ3 (Pa) are determined by seeking the optimal fit to the soil water content data.

The parameter values are given in Table 3.1 while the inputs and outputs for this

model are given in Table 3.2.

3.3.3 Numerics

To solve Equations (3.3.14-3.3.19) numerically the x-axis was discretised into 800

equidistant points over the depth of the assumed soil profile (0-2 m depth). A high-

resolution Monotone Upstream-centred Scheme for Conservation Laws (MUSCL)

proposed by [95] was used which set 1600 cells as that required to obtain the true

solution for the soil profile; it was found that 800 cells gave a less than 1% error

for the model output (plant water uptake) with a significant reduction in run time

(between a factor of 5 and 6) and this was selected as the final grid size.

3.3.4 Validation Techniques

In Roose and Fowler (2004) the flux of water into the soil at the soil surface (W )

and the pressure down the root (pr(z)) were set to have a constant value in time.

To more accurately represent the effect of the climate on these factors they were

set as external time dependant inputs.

Equations (3.3.21) and (3.3.22) for the flux of water into the soil (W , in essence

rainfall minus the runoff and evaporation) are simpler than other models for poten-

tial evapotranspiration (PET) such as the Penman-Monteith Equation [3]. Simple

linear and non-linear relationships between evaporation/evapotranspiration, tem-
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perature, humidity and wind speed (similar to Equations (3.3.21) and (3.3.22))

have been proposed in the literature, and demonstrated to work well for site spe-

cific locations [18, 49].

The water flux into the soil is calculated from the climate data collected by

[176]. Since the characteristics of the climate data vary across the different sea-

sons, the climate data were split into blocks of about 3 months representing each

of winter, spring, summer and autumn, and the model used to simulate each 3-

month period separately. The initial model starting condition for each seasonal

period was based on the finishing point of the preceding season.

The field data are taken from a highway cutting in which the ground slopes

at about 16o. A one- and two-dimensional unsaturated finite element simulation

of a clay slope was carried out by [21], with the one-dimensional column model

having the same vertical geometry as the mid-slope of the two-dimensional model.

Both were analysed with the same surface boundary flux representing climate and

vegetation, and the results of the one-dimensional column model agreed closely

with the two-dimensional model. This was because horizontal water flow due

to gravity was found to be small compared with vertical water flow due to the

flux boundary at the ground surface. It was therefore considered reasonable to

model the effects of the vegetation here in one-dimension only. In this case, use

of a one-dimensional model allows an optimisation of some of the soil parameters

(described in Section 3.3.5) that would be difficult to do with a two-dimensional

model. The impermeable base of the model was assumed to be at 2 m depth.

This was based on there being only a small change in measured water content and

pore pressure at this depth [176] with most of the change due to the vegetation

occurring in the top 0.8 m of the profile. The impact of a more diffuse boundary

condition at the bottom could be investigated within future work.

The water permeability in fully saturated soil ks and the soil suction parameter
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m are linked in Equation (3.3.7), and control how the water moves through an

unsaturated soil. These values were assumed to be constant in the original model

in [160]. However, measurements and modelling indicate that these values can

vary both with depth and time [4, 102]. For example, surface soils are often quite

structured with a higher organic matter content and larger cracks/fissures caused

by root penetration and repeated drying and wetting cycles. A greater number

of larger voids in the soil will give a lower air entry value and more rapid water

drainage from the soil at lower suction, thus changing the shape of the soil water

retention curve (SWRC). In this case, there are no site specific data for variation

of m with depth, and few if any measurements of this type appear to have been

carried out for a stiff clay soil. The parameter m was allowed to vary to obtain an

optimal fit to the water content data, with m modelled using a bounded arbitrary

function. The value of m was allowed to change between the points at which the

experimental water content levels were recorded (at 0, 0.3, 0.45, 0.6, 0.9 and 1.5

m), giving 6 different values of m for the full soil profile. The values of m were

optimised for each of seasonal time periods considered.

At location A there is a variation of soil characteristics with depth, going

from a layer of more silty weathered London Clay at the top to a layer of lower

permeability grey London Clay below, Figure 3.1. This transition occurs around

x2 = 0.9 m, which for the purpose of the numerical simulations is taken to be an

exact depth, Figure 3.4. Two scenarios were considered for location A: in scenario

1, ks has a constant value for both types of soil, whereas in scenario 2, ks linearly

decreases with depth in the weathered London Clay region and is constant in the

grey London Clay. Since location C consists only of grey London Clay, ks was set

to linearly decrease with depth, as seen in scenario 3. Some measured data for

permeability at the site were available, from deeper depths in the clay (mainly

below 1.0 m; [176]). The site data were used to define the value of ks at depth, and
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arbitrary increases were applied to the relevant scenarios above this. The model is

found to be more sensitive to changes in m compared to ks, hence the values of ks

were held constant over the full year of modelled data where scenario 2 was set for

location A, and scenario 3 was set for location C. This means that the model does

not incorporate the influence of potential surface desiccation cracking. Evidence

is investigated in Section 3.4 to support the hypothesis that water permeability

decreases with greater depths.
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Figure 3.4: Three scenarios used to model the change in saturated water perme-
ability (ks) with depth: (a) scenario 1; (b) scenario 2; (c) scenario 3. The value
of ks is bounded between ks,min and ks,max which are 5.78× 10−9 and 5.78× 10−8

m2 respectively (Table 3.1).

The exact root distribution of the vegetation at the site in Newbury is not

known and the water uptake parameter kr and root length density ld were set as

constant with time within each seasonal period but allowed to vary between these.

It was assumed the roots at the Newbury site had already grown to full length,

and the length of the main root (zero order) was fixed at 0.8 m.

3.3.5 Optimisation Procedure

The optimisation model output is the optimal set of values for the following pa-

rameters: 2 for the water uptake (Equation (3.3.17)), 2 for the root length param-
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eters (Equation (3.3.5)), 5 or 11 respectively for the linear or non-linear systems

for the flux of water at the soil surface (Equations (3.3.21) and (3.3.22)), 3 for the

water pressure inside the root (Equation (3.3.23)) and 6 for the Van Genuchten

soil suction parameter m. This set of parameters was combined with the model to

produce an accurate representation of the water movement within the soil, from

the given climate data and the root and soil parameters seen in Table 3.1 (please

see page 94 at end of Chapter).

An upper bound for the input flux of water W was imposed, because at high

values of rainfall (conditional to parameters such as water uptake into the plant

roots and water diffusivity) the model becomes invalid as the soil profile becomes

fully saturated, and Equation (3.3.16) no longer holds. The upper bound was dis-

tributed between the parameters in Equations (3.3.21) and (3.3.22), as they sum

to the value of W . These bounds restricted the parameters to be within realistic

values and Table 3.1 shows the enforced upper bounds. The experimental data

show that the surface was never fully saturated and therefore Equation (3.3.16)

holds for unsaturated soil.

Once the values for the flux of water W are determined together with the rest

of the model parameters, Equation (3.3.14) can be solved numerically to obtain

the resulting water profile. The calculated water profile was then compared to

the experimental data (i.e. the values for the water content at different depths)

by using the sum of squares differences between observed and simulated data.

Equation (3.3.24) denotes the formula for the sum of squares (SOS) difference for

the objective value y,

y =
N∑
i=1

(xi − x̂i)2, (3.3.24)

where xi are the model points and x̂i are the data points, for a set of N points.

The optimisation procedure used the global optimisation method Kriging [50],

which stops as the objective value either reaches 0, shows no sign of change after
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a set number of iterations, or until a maximum number of iterations has occurred.

A large number of the simulation runs stopped due to no sign of change as they

converged on the global/local optima.

As described above, the simulation has up to 24 parameters in the non-linear

case and just one output, the sum of squares fit. An optimisation procedure

was used as opposed to an exhaustive search (evaluating every combination), to

find the optimal set of parameters which minimises the sum of squares fit. The

optimisation procedure was twofold; firstly a set of initial starting points are

chosen and then evaluated; secondly a process takes these points and converges

on an optimal solution.

The initial search plan was based on the Latin Hyper Cube Technique [79],

where the points picked are as far away from each other as possible. This method

uses a Genetic Algorithm to optimise for the greatest distance between the initial

points. The conventional number of points to pick is ten times the number of

dimensions (parameters).

Once these initial search points are found their objective value was calculated

using the full model given in Section 3.3.2. The next set of points to be sam-

pled was calculated from the Kriging algorithm [50], which produced a surrogate

model to imitate the full model. The Kriging procedure was iterative and used

all of the information from the points calculated at the previous time step to

estimate the best local and global points using two techniques; exploitation and

exploration. Exploitation works like a local search or hill climber, as opposed

to exploration which fills the gaps between existing sample points, placed at the

maximum estimated error. These points were found on the surrogate model as it

was much less expensive to traverse and find potentially optimal points within the

surrogate than for the full model. This process was continued until the desired

stopping condition was reached, which depended on the convergence of the opti-
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mal set of parameters, the number of sample points and the value of the expected

improvement.

3.4 Results

The model was validated using the climate data from [176] following the approach

described in Section 3.3.4. The difference between the sum of squares fit for the

two locations A and C, with linear and non-linear expressions for the climate

input data, and the different seasons (wet and dry periods), is compared below.

The profile of the Van Genuchten parameter m is also considered.

3.4.1 Fitting the 2005 data

In Figure 3.5 we show the fitting for the whole year (reconstructed from the

seasonal segments) for all of the probes in both locations A and C for the year

2005 for a linear formulation of the climate conditions, and demonstrate that

the model simulation accurately represents the soil water content. The model

fluctuates a little around the experimental data, and better fits were obtained at

deeper depths due to the smaller overall change in the water content.

In Figure 3.5 there are large differences between the model and experimental

data in the autumn season, indicating a poor fit, especially for 0.6 m depth at

location A. This is in contrast to the other seasons where good fits are obtained.

The reason for the poor fit in autumn is due to the change in climate and soil

conditions from mid-October to mid-November, where there is a large and sudden

increase in the soil water content at 0.3 m depth from 0.17 to 0.36. In this

period the model changes more slowly than the measured trace, and takes several

days to catch up with it, matching it again in December when the winter season

starts. This could be due to the values for saturated permeability used in the
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model, which may not reflect the near-surface clay cracking that occurs during

the summer period. The model does not capture the hysteresis of the SWRC,

which would also potentially allow a rapid increase in water content on wetting.

Better fits were obtained for the sum of squares (SOS) values for location

C compared to location A by roughly a factor of 2.5, when normalised. The

fittings are much tighter for location C than location A, especially at 1.5 m depth.

However, in autumn at 0.3 m depth the fitting again takes some time to catch up

with the sudden increase in measured water content. In winter and spring, the

model fits the data very well, especially at location C where the SOS values are

below or close to 1. The smoothed experimental data for location A provided a

better landscape for the model fit compared to the raw data.

There was found to be little difference in the model fit to the field data resulting

from the linear and non-linear climate expressions, Equations (3.3.21) and (3.3.22)

respectively. However, there was a difference between the different locations and

seasons as seen in Table 3.3, which shows the final sum of squares scores for each

of the scenarios.

3.4.2 Soil Suction Parameter (m)

The Van Genuchten soil suction parameter m denotes a fitting parameter which

is normally determined by fitting a curve to data points obtained experimentally

from samples of soil. Small samples of soil are usually tested under zero total

stress, and the laboratory results may not capture either the bulk structure of

the soil (and its variability throughout locations A and C), nor the likely change

in water retention properties with increasing total stress. It would not be un-

reasonable to expect the value of m to change, both between locations A and

C, and with depth below the ground. The effects of volume changes and stress

states have been considered on the SWRC by [130], who show that under higher
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stress there are lower rates of desorption, likely caused by the existence of average

smaller pore size distributions in the soil. The value of pc which largely controls

the air entry value of the SWRC was fixed at a value of 23 kPa, intended to be

representative of a structured clay soil [21]. Changes in the air entry value due to

the particle size and structure of the soil, and changes in soil stress, are thus not

modelled; this is a limitation of the current simulations and may be incorporated

in further investigations.

In analysis of the SWRC, an increase in the value of m gives a smaller value

of soil suction for the same value of volumetric water content; thus coarser soils

or those with structure should have water retention behaviour defined by higher

values of m. At higher stresses the pore sizes will decrease, consistent with a

smaller value of m at depth.

Previous models (Hydros, which uses the ROSETTA pedotransfer functions

by [167] and a plant water uptake model by [160]) use one value of m for the

full soil profile, but here the optimisation was able to determine the values for

m that produce the best fit to the measured water content data. The results

of the optimisation procedure showed that the profile of m with depth generally

conformed into one distribution, where the averages are seen in Figure 3.6.

The profiles in Figure 3.6 indicate that the value of m varies with depth. The

four profiles for locations C and A (linear and non-linear formulation of the climate

conditions) are very similar. Below 0.9 m the value of m is fairly uniform with

depth, perhaps as a result of increasing soil uniformity deeper within the profile.

For the layer of soil between 0 and 0.9 m there is an increase in the value of m

immediately below the soil surface followed by a decrease. A high value of m

indicates a coarser soil, which is consistent with a generally more structured soil

around the root system. As explained earlier, water permeability changes with

depth [102] and it is therefore plausible that m will also change with depth (they
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are coupled by Equation (3.3.7)). The values form can be estimated using a fractal

approach, for different soil types, and improve the root mean square error values

given from the ROSETTA model [56]. However, the range of values estimated

for m still differed widely; for example in a silty clay loam the maximum and

minimum values were 0.48 and 0.09 respectively. No experimental studies seem

to have been carried out to quantify the change in m with depth within a stiff

clay; nonetheless the profiles obtained from the model look sensible, and in future

could be checked against experimental measurements.

3.4.3 Predictions and Comparisons

To test how effective the validation of the model was, the optimal fitting param-

eters from the 2005 validation were used to run the model for the following year,

2006. Figure 3.7 shows the results of the model plotted with the experimental

data for 2006; these look quite similar to that of 2005 (Figure 3.5), where the

model achieved a good fit. The SOS scores for the 2006 model run (Table 3.3) are

slightly worse than for the 2005 fitting procedure as may be expected; the 2006

scores were approximately twice as large, summing over the year. Averaging the

input parameters from 2 or more years of fittings would help improve the forecast-

ing ability, as the unknown soil and water parameters would likely be matched to

a higher degree of accuracy with more available data.

The average soil water content from the model was compared with that cal-

culated using Cropwat with the Penman-Monteith Equation, as used by [176] to

model the same site. In Figure 3.8 we show the comparison of the Cropwat model,

the updated model from [160], and the average soil water content for locations

A and C calculated from the TDR probe data (a weighted average of the probe

readings at different depths). Throughout the year the average water content at

location C is 11% lower than location A, despite the climate conditions being
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equal. This is due to the different soil properties between the measurement lo-

cations, and the different initial saturation of the soil. The updated model from

[160] accounts for this whereas the simple water balance in Cropwat does not. The

updated model from [160] produces a much better fit to the TDR probe data, due

to the more detailed mathematical formulation used to describe the plant, soil and

water movement, when compared with models such as Cropwat which produce an

average value for the depth of the soil column.

A separate sensitivity analysis on all of the parameters in the model was carried

out; where the new SOS score was calculated after individually changing each

parameter by ±5%. It was found that the most sensitive parameters were those

associated with the pressure in the xylem vessels, i.e. plant parameters appear to

be very important. This indicates that it is important that the good estimates of

these parameters are determined (if they can be experientially measured, which is

the case) and future work will involve more careful measurements and modelling

of the pressure in the xylem vessel.

Finally, to demonstrate that the parameter optimisation procedure is valuable

when dealing with large parameter uncertainty, the model was used to fit the

2005 data, but this time using fixed and uniform with depth ‘best guess’ values

for ks and m. This model run (Figure 3.9) gave poor results with an SOS of 203.

The fittings at 0.45 and 0.6 m were acceptable due to the value of m being close

to the earlier values used at these depths. However, the model did not match

the other probe depths well, as there was a difference in the value of m from the

fully optimised model fit. This also supports the idea that ks and m are depth

dependent, and that outputs from models of this type can be sensitive to having

the correct soil-water parameters.
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Location A C

Season Winter Spring Summer Autumn Winter Spring Summer Autumn

2005 Linear W, SOS 5.79 6.45 17.30 19.94 0.28 0.65 4.07 4.52

2005 Non-linear W, SOS 3.77 4.70 15.07 16.62 2.08 0.39 2.57 3.31

2006 Non-linear W, SOS 22.23 8.91 26.79 18.78 1.72 1.28 3.94 9.77

Table 3.3: The SOS results for linear and non-linear W, in the different locations
and seasons: fitted results for 2005 and forecast model run results for 2006.

3.5 Discussion

The modified Roose and Fowler (2004) model has made use of climate data and soil

information to estimate the water content within the soil. It provides a variation in

water content with depth in the soil profile rather than an average such as obtained

from simple water balance models. The proposed model also estimates the uptake

of water into plant roots. A procedure for fitting the model to measured data has

been used to estimate and optimise soil-water and plant parameters which may

be particularly uncertain and to which the outputs from this type of model can

be particularly sensitive.

The fitting procedure was used on water content data measured at a clay

cutting slope site near Newbury, Berkshire. The changes made to the profiles

for saturated water permeability ks (Figure 3.4) had relatively little effect on

the model outputs compared to the change in the Van Genuchten soil suction

parameter m. The permeability does vary with saturation (Equation (3.3.4)),

however, permeability was not allowed to sufficiently increase to represent clay

cracking, and this resulted in generally poor model fits to the real data during the

autumn/winter soil re-wetting. The model could be adjusted to allow optimisation

of saturated permeability, as well as the water retention parameter m. The profiles

of m from the model output (Figure 3.6) show an average larger pore size for the

root zone; this is where the soil is likely to be more disturbed or structured in
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practice.

A sensitivity analysis was carried out and showed that the most sensitive pa-

rameters in the model were those involved with the pressure in the xylem vessel. It

is therefore important to measure these plant parameters accurately; to help with

this, the optimisation procedure is useful for estimating values that are uncertain.

The model may be used for sites such as vegetated clay earthworks to estimate

the extent of drying and effective stress changes in the soil in response to climate

or changes in vegetation. Where measured water content or pore water pressure

data are available, these may be used with the fitting procedure to assess difficult

parameters such as ks and m.

The model has the potential to be used for different soil types, climate condi-

tions and for growing root systems; as long as the set of parameters in Table 3.1

are obtained or estimated. Therefore the model should aid soil and plant man-

agement strategies through better understanding the soil and water configuration,

and by forecasting soil conditions for potential scenarios.
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Variables Range Units
δ 0 to 5×10−3 -
α1 0 to 5×10−6 ms−1 of water
α2 0 to 2.5×10−11 ms−1 of water
α3 0 to 1.25×10−16 ms−1 of water
β1 0 to 5×10−5 ms−1 of water/degC
β2 0 to 2.5×10−9 ms−1 of water/degC2

β3 0 to 1.25×10−13 ms−1 of water/degC3

γ1 0 to 2.5×10−3 ms−1 of water/ms−1 of air
γ2 0 to 6.25×10−6 ms−1 of water/m2s−2 of air
γ3 0 to 1.5625×10−8 ms−1 of water/m3s−3 of air
λ1 −5× 10−3 to 5× 10−3 Pa
λ2 −1.5× 10−3 to 1.5× 10−3 Pa/% humidity
λ3 −0.25 to 0.25 Pa/degC
c 0 to 2.5× 10−3 ms−1 of water
m 0.1 to 0.5 -
kr 0 to 2.5× 10−4 ms−1Pa
kz 0 to 4.6× 10−11 m4s−1Pa−1

Fixed values Value Units
φ 0.4 -
ρ 2.6× 103 kg m−3

pc 0.232× 105 Pa
D0 1.1574× 10−6 m2s−1

kS 5.78× 10−9 to 5.78×10−8 m2

a 5× 10−4 m
ld 1.785× 103 m of roots per m3 of soil
L 0.8 m

Table 3.1: A list of variables and fixed values used within the model in Chapter
3.

Inputs Outputs
Water flux at the top of the soil Water uptake by root system

Root parameters Water saturation levels overtime for any
given depth up to 2 m

Soil parameters

Table 3.2: Inputs and outputs for the model in Chapter 3.
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Figure 3.5: Model fittings for 2005 for locations A and C for five and three probe
depths, respectively, with a linear formulation of the climate conditions. Output
of model at (a) 0.3, 0.6 and 1.5 m against data for site A; (b) 0.45 and 0.9 m
for site A; (c) 0.3, 0.6 and 1.5 m for site C. Graphs (d), (e), (f) show volumetric
water content taken at 4032, 7200 and 8760 h respectively.
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Figure 3.6: The profile for m for locations A (a, c) and C (b, d) with linear/non-
linear input water flux formulations, respectively.



3.5. DISCUSSION 97

Figure 3.7: Model run to forecast water content changes in 2006 for locations A
and C for five and three probe depths, respectively, with a linear formulation of
the climate conditions. Output of model at (a) 0.3, 0.6 and 1.5 m against data for
site A; (b) 0.45 and 0.9 m for site A; (c) 0.3, 0.6 and 1.5 m for site C. Graphs (d),
(e), (f) show volumetric water content taken at 4032, 7200 and 8760 h respectively.
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Figure 3.8: The comparison between the Penman-Monteith/Cropwat model, the
validated Roose and Fowler model and the measured TDR data for both sites.
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Figure 3.9: The model fittings for 2005 for location A for constant values of m
and ks: (a) output of model at 0.3, 0.6 and 1.5 m against site data; (b) output of
model at 0.45 and 0.9 m against site data.





Notation list for Chapter 4

b Soil buffer power
c P concentration in pore water
D0 Water diffusivity
Df P diffusivity in free water
D(S) Reduction in water diffusivity in response to S decrease
d Impedance factor
E constant for the linear estimation of Wdim

F Rate of P uptake
Fw Uptake of water by plant roots
H Humidity
Ki Maximum length of order i root
Ks Saturated hydraulic conductivity
k(S) Reduction in hydraulic conductivity in response to S decrease

k̂ Unit vector in the downwards direction
li Current length
lw The depth at which zero flux occurs
m Van Genuchten soil suction parameter
P Phosphate
P Pressure at top of xylem in root
p0
r Baseline root pressure

Qdim Rate of fertilisation
R Rainfall
RT Rate of root growth
ri Initial rate of growth for order i root
S Relative water saturation
T Temperature
t Time
u Volume flux of water

Wdim Volume flux of water into the soil at the surface
WS Wind speed
z Depth
α Parameter for the linear estimation of Wdim

β Parameter for the linear estimation of Wdim

γ Parameter for the linear estimation of Wdim

δ Parameter for the linear estimation of Wdim

λ1 Parameter for the estimate of P
λ2 Parameter for the estimate of P
λ3 Parameter for the estimate of P
φ Soil porosity
φ1 Volumetric water content

Table 3.4: Notation list for Chapter 4.
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4.1 Abstract

The readily available global rock phosphate (P) reserves may run out within the

next 50 − 130 years, causing soils to have a reduced P content thus affecting

plant P uptake. Careful use of this finite resource in agriculture systems is clearly

warranted. We develop a model that allows us to assess a range of P fertiliser

and soil management strategies, in order to find which one maximises plant P

uptake for a given set of climate conditions. In this paper we present the results

103
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for Barley; however the model is adaptable for other types of crops, subject to

root structure data being available. The model describes the development of the

P and water profiles within the soil space. Current cultivation techniques such as

ploughing and a reduced till gradient are simulated along with fertiliser options

to feed the top soil or below the seed. We find that a well-mixed soil (inverted

and 25 cm ploughing) is critical for optimal plant P uptake and provides the best

environment for the root system. However, the model is sensitive to the initial

state of P and its distribution within the soil profile; experimental parameters

which are sparsely measured. The combination of modelling and experimental

data provides useful predictions for site specific locations.

4.2 Introduction

Within the agricultural industry, the management of soils and crops varies widely

around the world [90], and slight adjustments to reduce costs and/or increase

crop yields can make substantial differences on the global scale. The demand

for food is increasing; from 1992 to 2012 the production of cereals worldwide

increased from 1.97 bn to 2.55 bn tonnes (http://faostat.fao.org/). In 2012 the

UK alone produced 19.5 m tonnes of cereals, 5.52 m of which was barley. One

of the most important nutrients for plant growth is phosphate (P), which is often

the most limiting due to its low mobility in soils [24]. The current world rate of P

consumption for fertilisers is not sustainable, and there are warnings that readily

available global rock P reserves may be depleted within the next 50 − 130 years

[32, 35, 191].

As an attempt to increase the sustainable use of P, European governments

[40, 96] are reducing the amount of P in agricultural sites from a high Olsen P

index 3 (26− 45 mg P/l) to either index 2 (16− 25 mg P/l) or index 1 (10− 15
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mg P/l), thereby reducing P fertilisation. However, lower P content soils can lead

to reduced yields [208]. Therefore it is vital to identify optimal soil management

strategies for more efficient use of P [45]. However, optimal strategies can depend

upon the current climate and the distribution of P within the soil. The distribution

of P is a feature which is generally unknown for field situations, but is becoming

more regularly sampled [200, 179].

Farmers implement a range of soil strategies based on information from a va-

riety of sources. The fertiliser manual (RB209) published by the Department for

Environmental, Food & Rural Affairs (DEFRA) provides a guide to farmers as

to the amount of fertiliser to use for given soil types [40]. Field-specific advice is

also given by agronomists based on this “tribal memory” about P use. Previous

history of any specific site also remains an important factor as repeating crop-

ping strategies for similar environments provides experience on which strategies

perform best [153]. The general guidelines in the RB209 manual for applying

fertiliser are based on soil P concentrations, often taken from spot measurements.

The amounts of P application recommended are classified into different categories.

However, this classification means that soils, which have similar soil P concentra-

tions, but lie across the boundaries of the classification can have entirely different

fertiliser recommendations. This leads to a varying selection of treatments on

similar plots of land and makes it difficult to reduce the amount of P in soils,

as a recent study in Ireland showed [96]. Site-specific guidelines may provide a

better basis to implement optimal fertiliser and soil cultivation strategies when

it comes to cultivating crops. The aim is to more efficiently use applied P, not

over-apply in cases where it is not needed or under apply it and not meet crop

yield targets. Therefore, instead of having a table of discrete amounts of fertiliser

to add, a simple linear or saturating continuously graded expression could govern

how much P to add. Also, a better classification of soils is needed; much like the
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varied descriptions of soils in Scotland [181].

Increasing information collected about soil type and characteristics can provide

a better understanding of which fertiliser treatment to apply, resulting in a more

successful crop for a given season. However, collecting detailed data about soils is

expensive. In addition, it is difficult to ascertain how much data is actually needed

to give the best prediction for a successful strategy [93]. Models can provide the

analysis needed to evaluate a large range of strategies that cannot all be tested

at the field scale, due to time, money and location specific restrictions [82, 171].

Once optimal strategies are found, they can be tested and evaluated among other

strategies to prove their validity, in the hope to support evidence for a better

understanding of applying P to soils.

Many models used to describe the root system consider a density of root mass

for a given volume in soil. The root mass can be estimated from averaging a 3D

growth approach [27, 108] or considering a 3D growth model, for example L sys-

tems [100]. These approaches however cannot be easily assessed experimentally

(due to image analysis of segmenting root radii) and can lead to numerical inaccu-

racies of up to 30% when compared to computed plant P uptake, when up-scaling

to the field level [163]. In this paper, we model the movement of P and water

within the soil profile over time. We extend the models in [71, 159] to estimate the

uptake of P by crop roots for a given surface area of soil. This extended model is

comparable to other density-based models [46], and accounts for the P depletion

zone along all roots. We compare the extended model’s output, estimating plant

P uptake (kg P/ha), against two sets of field trial data for barley. Following this,

the extended model is used to predict the optimal fertiliser and soil cultivation

strategy which maximises plant P uptake. As a result, the optimal strategy should

also maximise ‘P efficiency use’ within a low P environment.

In Section 4.3 we discuss P and water uptake models, looking more closely
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at [71, 159] and our adaptations made to them. We then describe how the data

is collected and the values used for the extended model. Modelling results are

described in Section 4.4 followed by Section 4.5 where we describe our findings

and future avenues for work.

4.3 Materials and Methods

4.3.1 Phosphate and Water Uptake Model

It is expensive to experimentally determine, in detail, the distribution and move-

ment of water and P within the soil and the consequent uptake into the plant

root system. The use of modelling in combination with experimental data allows

us to predict optimal management strategies in agricultural systems. Many mod-

els exist that estimate water and P movement within soil. For example a model

was developed that predicts plant P uptake by estimating the distribution of P

in 3D [44]. The 3D P information can be combined with other models, such as

one that estimates the fractal geometry of simulated root systems in 1, 2 and 3D

[108]. However, due to memory and computational limitations, these models are

not appropriate for up-scaling to the field level [163]. Other models focus on the

root architecture and the uptake of P by the root system [54, 60, 107, 161], one

of which captures the P depletion zone along all roots and obtains an analyti-

cal solution [161]. The model in [161], estimates plant P uptake per soil surface

area and can be used to predict plant P uptake on a field scale. The model is

further advanced by estimating the movement of water and P spatially [159]. In

this paper, for the first time, we extend the model in [159] by adding the effect

of climate, via surface water flux and xylem pressures as in [70]. This extension

allows comparing of the model’s output, estimating plant P uptake, against field

study experimental data, for different environmental conditions. In addition, we
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incorporate temperature-dependent root growth so that the model can be used for

winter crops, as there is little or no growth at low temperatures. We first describe

details of the model by [159] and then the adaptations made to it.

4.3.2 Roose and Fowler Model

Roose and Fowler model water and P flow through soil to calculate uptake into

a surrounding plant root system using Richards Equation coupled to a diffusion-

convection equation describing P movement in the soil [159]. They assume that

the soil is homogeneous and neglect horizontal movement for water and P, since

at the field scale the differences in the horizontal variation for the root length

density are negligible compared to the vertical variation [160]. The dimensional

model is described by the following two equations for water and P conservation,

respectively,

φ
S

∂t
= ∇ ·

[
D0D(S)∇S −KSk(S)k̂

]
− Fw(S,Z, t), (4.3.1)

∂

∂t
[(b+ φS)c] +∇ · [cu] = ∇ · [Dfφ

dSd∇c]− F (c, S, t)., (4.3.2)

where the speed of water movement in the soil, u, is given by Darcys law,

u = −D0D(S)∇S +KSk(S)k̂, (4.3.3)

with S being the relative water saturation given by S = φ1/φ, φ1 being the vol-

umetric water content, and φ being the porosity of the soil. D0 (cm2 day−1) and

KS (cm day−1) are the parameters for water ‘diffusivity’ and hydraulic conduc-

tivity, respectively. D(S) and k(S) characterize reduction in water ‘diffusivity’

and hydraulic conductivity in response to the relative water saturation decrease,

where the functional forms for partially saturated soil are given by [193]. k̂ is the



4.3. MATERIALS AND METHODS 109

vector pointing vertically downwards from the soil surface and Fw is the water

uptake by the plant root system per unit volume of soil as given by [160].

For the P conservation equation, c is the P concentration in pore water, b is

the soil buffer power, Df is the P diffusivity in free water and d is an impedance

factor given by the range 1.5 ≤ d ≤ 3 [7, 133]. F (c, S, t) describes the rate of P

uptake by a surrounding root branching structure as in [161]. Both Fw and F are

affected by the root structure which is predefined, water is only taken up by the

main order roots while P is taken up by all roots.

For the soil surface boundary condition, a flux of water due to rainfall at the

soil surface is applied, Wdim (cm s−1) [159], which is the volume flux of water per

unit soil surface area per unit time;

−D0D(S)
∂S

∂z
+KSk(S) = Wdim at z = 0. (4.3.4)

The P soil surface boundary condition, given a rate of fertilisation Qdim (µmol

cm−2 s−1), is,

−Dfφ
dSd

∂c

∂z
+Wdimc = Qdim at z = 0. (4.3.5)

The boundary condition at the ‘bottom’ of the soil is assumed to be a zero

flux boundary condition at a given level lw, and is shown below for both water

and P, respectively,

−D0D(S)
∂S

∂z
+KSk(S) = 0 at z = lw. (4.3.6)

−Dfφ
dSd

∂c

∂z
= 0 at z = lw. (4.3.7)

Solving for relative water saturation (S) and P concentration (c) produces

water and P profiles in depth and time.

The root growth rate equation used in the model by [161], allows the rate of
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growth to slow down over time, i.e., the rate of growth is given by,

∂li
∂t

= ri

(
1− li

Ki

)
, (4.3.8)

where li is the length of the order i root, ri is the initial rate of growth of the

order i root and Ki is the maximum length of an order i root.

4.3.3 Adaptations to Roose and Fowler Model

To combine the model in [159] with experimental data, climate parameters from

a weather station are used, including rainfall, wind speed, temperature and hu-

midity. These parameters allow for a more accurate calculation of the plant tran-

spiration rate and the movement of water inside the soil and within the plant.

These adaptations are made in [70] and successfully capture the movement of

water within the soil profile and plant transpiration rates.

To model the water saturation levels in the soil, the flux of water into the soil

(Wdim) is estimated from a combination of environmental factors. These include

rainfall (R), humidity (H), wind speed (WS), temperature (T ) and a constant

(E), using a linear expression,

Wdim = δR + αH + βT + γWS + E, (4.3.9)

where the parameters δ, α, β, γ and E are to be determined from the optimal

fit to the soil water saturation and climate data [70]. The flux of water (Wdim)

can essentially be considered as Taylor expanded versions of any other non-linear

relationships, for example the Penman-Monteith Equation [12]. Therefore, the

formulation of Equation (4.3.9) allows for easy comparison with other models,

should this be necessary.

The driving pressure, P (Pa), inside the root is determined by the environ-
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mental conditions (humidity and temperature) causing the stomata in the leaves

to open and close [190]. When the air temperature is low and/or humidity is high,

the plant opens its stomata to speed up the loss of water and cause cooling, and

this leads to a decrease in the pressure of water inside the roots. Thus the water

pressure within the plant roots (P ) is given by,

P = (p0
r + λ3) + λ1T + λ2H, (4.3.10)

where p0
r (Pa) is the baseline root pressure and λ1 (Pa/oC), λ2 (Pa/% humidity)

and λ3 (Pa) are determined by seeking the optimal fit to soil saturation data and

are used to help calculate Fw [70]. These parameters have been determined by

[70] for a given geographical monitoring site.

A new feature is added to the model to match the root growth over the cropping

season (where little growth is seen over the winter period) by making the rate of

growth, temperature dependent. This transforms Equation (4.3.8) into,

∂li
∂t

= r(T (t))

(
1− li

Ki

)
, (4.3.11)

where r(T (t)) is taken from experimental data on temperature dependant root

growth rates, Table 4.1.

In summary, the data needed for the adapted model to run includes: initial

distributions of water and P concentrations in the soil, climate data for rainfall,

humidity, wind speed and temperature values, fertiliser application and amount,

soil cultivation strategy and temperature dependant root growth rates which are

obtained from experimental data. Henceforth, when referring to the ‘model’ we

mean the adapted model extended from the one in [159], unless otherwise stated.
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Temperature (oC) 5 10 20 30

Average root growth rate (cm day−1) 0 0.2340 0.8234 1.299

Standard deviation / number of samples 0 0.0175 0.0150 0.0129

Table 4.1: Wheat root growth rates at four different temperature, 5, 10, 20 and
30oC measured by WINRHIZO after 24 hours.

Type of data Parameter Value Units Source

Model parameter D0 103 cm2 day−1 [159]

Model parameter KS 5 cm day−1 [159]

Model parameter Df 10−5 cm2 day−1 [159]

Model parameter d 3 - [159]

Model parameter lw 200 cm [159]

Model parameter p0r 1 Pa [159]

Model parameter K0 150 cm [183]

Model parameter K1 7.9 cm [71]

Model parameter b 23.28 - [71]

Model parameter m 0.1 to 0.5 - [70]

Model parameter δ 2.69×10−2 - [70]

Model parameter α 1.2×10−6 m s−1 of water [70]

Model parameter β 2.22×10−6 m s−1 of water/degC [70]

Model parameter γ 5.35×10−4 m s−1 of water/ m s−1 of air [70]

Model parameter E 5×10−4 m s−1 of water [70]

Model parameter λ1 2.7×10−3 Pa/ degC [70]

Model parameter λ2 8.46×10−4 Pa/% humidity [70]

Model parameter λ3 7.9×10−2 Pa [70]

Model input φ 0.3 - [159]

Type of data Description Source

Model parameter Temperature dependant root growth as in Table 4.1 Bangor pot experiment

Model input Fertiliser strategies, Figure 4.2 Agrii*

Model input Cultivation methods, Figure 4.2 Agrii*

Model input Climate values for rainfall, wind speed, temperature and humidity [70]

Model input P concentrations at different depths, Figure 4.1 Bangor field experiment

Model output comparison P uptake (kg P/ha) at GS39 and GS92 for Barley, Figure 4.3 ADAS field experiment

Model output comparison P uptake (kg P/ha) at GS31, GS45 and GS91 for Barley, Figure 4.4 SRUC field experiment

Table 4.2: Types of data used in the modelling and where it is sourced. *General
strategies used on fields across the UK were provided by Agrii.
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4.3.4 Data Collection

From the Literature

To run the adapted mathematical model a set of parameters were taken from [70,

71, 159, 183], consisting of values for plant root dynamics and soil characteristics,

Table 4.2.

Pot Trials

Triticum aestivum seeds were soaked overnight in aerated, de-ionised water to

induce germination. They were then placed on filter papers, moistened with

deionised water, put in parafilm sealed Petri dishes covered in aluminium foil and

incubated at 20oC. After 48 hours the root lengths of each emerged seminal root

were measured non-destructively using a ruler. The filter papers were re-moistened

and the Petri dishes were grouped into different controlled temperatures, heating

at 5, 10, 20 and 30oC. After another 24 hours the lengths of the seminal roots were

again measured, and the differences in root length for each root were recorded as

the average root growth rate per day.

Plant root growth rates increased from 5oC at which a zero growth rate was

observed, Table 4.1. A linear curve was fitted to the data such that the information

could be translated into the mathematical model, for temperature T we set the

growth rate RT to be,

RT =

 0 for T ≤ 50C

0.053(T − 5) for T > 50C
. (4.3.12)

Field Trials

Two data sets were taken from field scale trials, which consisted of a set of sce-

narios for different fertiliser techniques measuring plant P uptake (offtake), one
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winter barley and one spring barley. The winter barley data has values for P

offtake at two different time periods, growth stages 39 and 92; 232 and 313 days

respectively. The spring barley data has values for P offtake at three different

time periods, growth stages 31, 45 and 91; 61, 77 and 151 days respectively. The

spring barley variety used was Shuffle, being grown from seed, with typical farm

inputs used (e.g. fertiliser, herbicide, fungicide, e.t.c.) except P which was im-

posed based on experimental requirements. The trial was based near Aberdeen

in Scotland, approximately 57oN. The trial was ploughed in January and ground

power harrowed on the day of sowing (23-March-2011). The crop was rolled af-

ter sowing to consolidate the seedbed and reduce the risk of stone damage to

harvesting equipment.

The field scale data only uses one Olsen P value for a given plot and there is no

distinction concerning how P is distributed with depth. Therefore, to assess how

P might be distributed within the soil profile, P concentrations were calculated at

intervals of 10 cm down to a depth of 1 m, for three sets of soils; Olsen P index

5, 3 and 2, Figure 4.1. To match the data a constant P profile with depth and

an exponentially decaying P profile with depth will be compared when running

model simulations.

To provide a description of how plant-available P varies with soil depth, soil

was collected from different depths within a spring wheat field trial located at

Abergwyngregyn, North Wales. The soil is classified as a free draining, sand

textured Eutric Cambisol. Samples were taken from four replicate plots (3 m

× 12 m in size) at growth stage 39 at 10 cm intervals down the soil profile.

Plant-available P was determined by extracting the soil with 0.5 M acetic acid

(1:5 w/v) for 30 min, centrifuging the extracts (4000 g, 15 min) and colorimetric

determination of P [126].
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Figure 4.1: The concentration of P down the soil profile, taken at intervals of 10
cm down to 1 m, for three different sites; Olsen P index 2, 3 and 5.

4.3.5 Fertiliser Strategies

The model adapted in this paper is used to mimic field trials and predict plant P

uptake (kg P/ha). In addition to the scenarios used in the field trial experimental

data, we analyse the effects of different environmental conditions for a range of

fertiliser and soil cultivation strategies.

We estimate that on average the ploughing depth is 25 cm. We use detailed

climate data acquired from a site in Newbury, UK, consisting of hourly values for

temperature, humidity, wind speed and rainfall (as in [70]). We used the climate

data to calibrate the plant water uptake model from Chapter 3, and therefore the

calibrated parameters and data are used within the adapted model.

The amount of fertiliser applied in an average cropping season ranges from

0 to 120 kg P/ha. Fertiliser can be applied in two different ways, branded and

broadcasted. The branded application involves injecting fertiliser pellets 5-10 cm
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below the soil and 5-10 cm away from the seed. This is represented in the model

as fertiliser placed 9 cm below the seed. The aim is to put fertiliser next to

where most of the roots are likely to grow to try to maximise root P uptake. The

broadcasted approach spreads fertiliser on top of the soil. Note that the model

can also be used to compare different fertiliser products that release P into the

soil at different rates [184].

The adapted model estimates how different fertiliser strategies influence plant

P uptake. The set of fertiliser strategies compared in the model are shown in

Figure 4.2. The soil is first cultivated and then fertiliser is applied. During the

cultivation phase, different methods are used to mix P in the soil. Ploughing

evenly mixes P to a specific depth between 10-25 cm, whereas a reduced till

gradient distributes P into bands; 0-5 cm, 5-10 cm and 10-15 cm with a P concen-

tration ratio of 1.5:1:0.5 respectively, inverted plough inverts the P concentration

between 0-15 cm, and lastly there is an option of no cultivation. We model either

top soil fertilisation, fertilisation applied at 9 cm below the seed or no fertilisation,

and use climate data with or without an increased amount of rainfall. For each

strategy the model estimates plant P uptake which is then compared to a control

with no fertilisation or cultivation for a given soil type and climate data.

Cultivation Fertiliser Climate 

A very wet climate 

Site specific climate Banded 5cm Broadcasted 
Plough at 25, 
20 or 10 cm 

Inverted plough 

Min till gradient No cultivation No fertiliser 

Figure 4.2: A set of scenarios to test the mathematical model; ploughing at 25, 20
or 10 cm, an inverted plough or using the reduced till gradient, top soil fertilisation,
no fertilisation or fertiliser applied at 5 cm below and to the side of the seed, and
finally using climate data with or without an additional constant heavy rainfall.
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4.4 Results

Our adapted model based on the one by [159] estimates plant P uptake per soil

surface area (kg P/ha). This adapted model is fitted against experimental field

trial data to produce a site specific model. A selection of fertiliser strategies

are then simulated using the model (Figure 4.2), and values for plant P uptake

are compared to predict which strategy might, under certain climate conditions,

estimate the highest plant P uptake.

By looking at the experimental data we find that the initial P distribution in

the soil has a high concentration at the top of the soil and then the concentration

decays with depth; at 1 m there is very little P left, Figure 4.1. This decay is

much stronger for higher initial P concentrations, whereas at P index 1 there

are almost indistinguishable changes in the P distribution (no decay). To assess

the difference at P index 1 between a constant and an exponentially decaying

P profile, we will model both profiles. In each case (constant and exponentially

decaying P profiles) the total P down to 0.55 m is kept identical to represent

similar amounts of P being available to the root system. The P profiles for a

constant and exponentially decaying distribution are represented in Figures 4.5a

and 4.5c, respectively, for time = 0 days.

A decimal code system is used to measure the growth stages of barley based

on description stages [22], and we will also be using their notation. The model

fits the winter barley data better at growth stage 39 (GS 39) compared with

growth stage 92 (GS 92). At GS 39 the model predictions are within the error

bars except for the scenario; 30 kg P/ha placed, Figure 4.3a. At GS 92 the model

under predicts on all scenarios, but follows the trend of increasing plant P uptake

values for increasing amounts of TSP applied, Figure 4.3b. The main reason

for the under prediction stems from the unknown parameters, which include soil

buffer power and the initial P profile in the soil. The initial P profile, at index
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1, is depleted before the end of harvest and the final total plant P uptake is

therefore capped. This depletion effect is also seen when modelling the spring

barley data (Figures 4.4b and 4.4c), and in addition at GS 31 the model fails

to capture the effects between small and large amounts of TSP applied, fitting

well at 0-20 kg/ha but not at 30-90 kg/ha, Figure 4.4a. In regards to the spring

barley crop, GS 31 is only a short time of 61 days and this is perhaps why little

effects are seen between modelling different amounts of applied TSP. The amount

of available P is unaffected by an additional supply as there is only a small root

system generated by GS 31. The plant P uptake estimate from the model, on

average decreases from a constant P distribution to an exponentially decaying P

distribution. There is a decrease of 4.7% (GS 39) and 18.3% (GS 92) for winter

barley, and -10.5% (GS 31), -12.3% (GS 45) and 5.0% (GS 91) for spring barley.

The reason for a negative value (an increase in plant P uptake) for spring barley

at GS 31 and 45 is due to a small root system, and as a consequence the P deeper

in the soil profile has yet to be utilised.

The depletion of P for different initial P profiles can be seen in Figure 4.5.

In a low P content soil (P1) with an exponentially decaying initial P distribution

there is a reduction in plant P uptake rate after 147 days. This is because the

majority of the available P is taken up at an early growth stage. This effect is not

seen with a constant initial P distribution as P is spread out more evenly with

depth; however the available P is still all taken up by the end of the simulation

(GS 92, 313 days). For a high P content soil (P3) there is no decrease in the plant

P uptake rate and most of the available P is taken up by the root system.

We tested the sensitivity of the model’s output, plant P uptake, for two differ-

ent parameters (soil buffer power and initial volumetric soil water content) to see

if unknown or badly measured parameters would have an effect. We compared

four different soil buffer power values 20, 23.28, 30 and 40 and found that plant
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Figure 4.3: Experimental data and model predictions for winter barley at growth
stages 39 (a) and 92 (b), for two modelled distributions for the initial P concen-
tration, 10 mg P/l ‘flat’ and 20 mg P/l ‘decay’.

P uptake is sensitive to the soil buffer power value, Figure 4.6a. Plant P uptake

values at GS39 ranged between 8-12 kg P/ha, a large difference for only a small

change in realistically measured soil buffer power values.

The initial volumetric soil water content is also changed to check its sensitivity,

however little differences of 1% are seen between starting values of 0.1 to 0.5,

Figure 4.6b. Thus, the initial volumetric soil water content has little effect on

plant P uptake. Instead, the climate conditions throughout the cropping season

affect plant P uptake as discussed below.

The model is simulated for a range of fertiliser and soil cultivation strategies

under wet and normal climate conditions at GS 92, for an initial low P Olsen

index soil (P1 20 mg/l P ‘decay’; Figure 4.7a-normal, Figure 4.7b-wet) and a

high P Olsen index soil (P3 60 mg/l P ‘decay’; Figure 4.7c-normal, Figure 4.7d-
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Figure 4.4: Experimental data and model predictions for spring barley at growth
stages 31 (a), 45 (b) and 91 (c), for two modelled distributions for the initial P
concentration, 16.425 mg P/l ‘constant’ and 30 mg P/l ‘decay’.

wet). Instead of considering different amounts of applied fertiliser, six cultivation

techniques are simulated (mix 25, 20 and 10 cm, inverted plough, min till and no

cultivation) alongside 3 fertiliser treatments (placed 90 kg P/ha, incorporated 90

kg P/ha and no fertiliser). At GS 92 the highest plant P uptake is achieved from an

inverted plough down to 15 cm and placing 90 kg P/ha, followed by mixing the soil

to 25 cm and placing 90 kg P/ha. Under a wet climate, plant P uptake values are

increased on average by 2% across all fertiliser and soil cultivation strategies; the

highest increase of 5% was seen when broadcasting fertiliser. When broadcasting

fertiliser the increased water helped diffuse the top soil P and allowed more to be

taken up by the plant. In a high P index soil (P3) there is almost no response

to plant P uptake values when adding P fertiliser, which is to be expected. For a

low P index soil, plant P uptake is limited due to a lack of available P (depletion
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Figure 4.5: Model predictions for plant P uptake and P concentration against
depth at five different times, 0, 72, 146, 225 and 313 (GS92) days, for a) an initial
P concentration of 10 mg P/l ‘flat’ (P1-low), b) an initial P concentration of 30
mg P/l ‘flat’ (P1-high), c) an initial P concentration of 20 mg P/l ‘decay’ (P3-low)
and d) an initial P concentration of 60 mg P/l ‘decay’ (P3-high).

0

2

4

6

8

10

12

14

20 23.28 30 40

P
 u

p
ta

ke
 a

t 
G

S3
9

 (
kg

 P
/h

a)
 

Buffer power 

a) 

10

10.2

10.4

10.6

10.8

11

11.2

11.4

0.1 0.25 0.45 0.55

P
 u

p
ta

ke
 a

t 
G

S3
9

 (
kg

 P
/h

a)
 

Volumetric soil water content 

b) 

Figure 4.6: Model estimates for plant P uptake by the root system at growth
stage 39 for a) four different soil buffer power values, 20, 23.28, 30 and 40; b) four
different initial volumetric soil water content values, 0.1, 0.25, 0.45 and 0.55.

of P as seen in Figure 4.5) and this results in little distinction between ploughing

techniques. Perhaps the simplistic implementation of the ploughing techniques

does not capture certain subtleties, such as changing of the soil structure.

In summary, applying P near the rooting zone (inverted plough and mixing
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Figure 4.7: Model predictions for the set of scenarios described in Figure 4.2, for 6
cultivation strategies (mix at 25, 20 and 10 cm, no cultivation, inverted plough and
min till) and 3 fertiliser placement options (90 kg P/ha incorporated (broadcast)
or placed (banded) and no fertiliser), for a) and b) an initial P concentration of
20 mg P/l ‘decay’ (P1-low) for a normal and wet climate respectively, and c) and
d) an initial P concentration of 60 mg P/l ‘decay’ (P3-high) for a normal and wet
climate respectively.

at 25 cm while placing fertiliser) provides the best chance for maximising plant P

uptake, and could result in a 4% increase to plant P uptake over doing nothing.

4.5 Discussion

To determine the optimal strategy for maximising plant P uptake, a set of fer-

tiliser and soil cultivation strategies are simulated in the model. The difference

between broadcasting and banding fertiliser depends upon price, accessibility and

soil cultivation, etc. [111]. For example, applying fertiliser 20 cm away from the

plant and at a depth of 10 cm in the soil gave optimal conditions for a certain
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Maize plant study [141], and placing (banding) P was found to be better than

broadcasting because of the enhanced P concentration within the rooting zone

[152]. However, similar yields were seen between applying large amounts of P

fertiliser via broadcasting or banding, and it was effects from starter P with rates

as low as 20 lb P2O5/A that dramatically increased corn yields [180]. The model

predicted that in a single harvest the ability to mix P in the rooting zone (inverted

plough and mix at 25 cm) is highly desired over a min till gradient. In addition,

placing fertiliser (banding) below the seed, rather than broadcasting, gave a size-

able increase of 11% to plant P uptake (6% for a wet climate). The effect of a

heavy rainfall throughout the cropping season slightly increased average plant P

uptake by 2% across all scenarios. The additional water could help increase the

availability of P in the soil, and hence enhance plant P uptake.

The field trial data only had one Olsen P index to characterise the amount of

available P in the soil. To represent this in the model, we let the P concentration

in the soil have either an exponentially decaying or constant distribution with

depth. By only knowing sparse information about the initial P concentration in

the soil, a number of problems can arise. Firstly, if the concentration of P found in

the soil is near a boundary (between Olsen P index 2 and 3, for example) then it is

treated as an average in that category. Set amounts of fertiliser are prescribed to

such soils and in certain cases this can cause a waste of resources [77]. In countries

such as Ireland, there are stricter rules to the amount of applied P added to soils.

Obtaining only one soil test for a field site can be misrepresentative and allow for

more fertiliser to be added where perhaps it is not necessary. Secondly, there is a

range between each Olsen P index and modelling a particular indexed soil can be

ambiguous. For example, the model estimates that in a P index 1 soil, using an

initial constant P distribution of 10 mg P/l will give a lower plant P uptake than

15 mg P/l by 33%. Perhaps further classification is needed when characterising
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soils, to more accurately prescribe an optimal amount of fertiliser to add. This is

the case in Scotland, where soils are given extra classification (namely descriptive

features including, colour, texture, structure, consistence, organic matter, roots,

stones, moisture, mottles and thickness of the horizon) to help use fertiliser more

efficiently [181].

Current methods for calculating available P in soil are not consistent across

Europe, with a wide range of techniques, each with their own methods, causing

similar soils to have uncorrelated results [90, 129]. This provides confirmation

that due to these current methods, site specific treatments are needed and one

method cannot be used on all soils. However, new methods are being developed

that calculate the amount of available P within the soil, that use more advanced

methods compared to the very sensitive approach of Olsen P for example [195].

One method, Diffusive Gradients in Thin films (DGT) measures the diffusion of

P taken from a soil sample to calculate the available P [185]. These new methods

are trying to develop a robust method for all soils and if successful could result

in a breakthrough and a better understanding of P within the soil.

Within some field sites there is little notion of how available P is distributed

within the soil profile, with respect to depth. The idea that the majority of P

added through fertilisers is given to the crop is partly true, as a set amount is

locked up by the soil. However, from the modelling work presented in this paper

we can conclude that the distribution of initial P within the soil profile affects

total plant P uptake. There was a increase in plant P uptake, from a constant

P distribution to an exponentially decaying P distribution, of 18.3% (GS 92)

for winter barley, and 5.0% (GS 91) for spring barley. The field data for the

distribution of P with depth showed an exponential decay of available P, with the

majority of P situated within the top 30 cm. The steepness of the decay differs

from P index to P index, decreasing with lower P content. In addition, it has been
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shown that the steepness of decay for similar P content soils also differs from site

to site [83] and this could alter the optimal fertiliser strategy. Data concerning

the state and distribution of P within the soil is now becoming more available, as

it can be used to save on fertiliser costs [209].

The soil buffer power value, a term used to describe the relationship between

available and non-available P (in equilibrium), is very sensitive within the model.

The higher the soil buffer power value the greater amount of P is bound to the

soil and made unavailable. Small changes to the soil buffer power value causes

plant P uptake values to vary by 50% (for soil buffer power values of 40 and

23.28, Figure 4.5). Field trial data generally has at best one value for the soil

buffer power for a plot of land (sometimes its not even measured), despite the

fact that there is evidence to show that this value changes within plots, and even

with depth [13]. Therefore, to accurately model the available P within the soil,

the soil buffer power value should be validated for site specific data and this could

affect the optimal fertiliser and soil cultivation strategy. For example, for a high

soil buffer power value a lot of applied P will be bound straight into the soil and

form non-available P pools which the plant cannot access. For a high soil buffer

power value there is a lower chance of adding P and getting a response in plant

P uptake. In addition, when P is saturated so highly in a soil, possibly due to

over-fertilisation [17], there is an increased loss of P due to eutrophication [68].

The idea to run down sites from a high P index 3, to 1 and 2 is achievable, but

happening at a much slower rate due to over fertilisation where it is not necessarily

needed [96]. It is therefore important to study which processes can help improve

crop yields in low P content soils and perhaps more information is needed in this

area. For example, field tests and the collection of more data in conjunction with

models are necessary for the future.

Within this paper we have studied the effect of plant P uptake in barley for
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different fertiliser and soil cultivation strategies given certain initial conditions.

However in reality, these initial conditions change from year to year and what

is best in one year is not necessarily best in the following year. A sustainable

strategy is needed as well as a way of estimating how this will affect the soil 5

or 10 years from now. As long term field trials are expensive, models provide the

ability to simulate the effects of different strategies.

Our advanced plant and soil model from Chapter 4 has been validated with

experimental field study data, as well as climate data, resulting in a tool for

estimating plant P uptake over the course of a crop life cycle. This work has given

us a better understanding of the important factors concerning cultivation methods

and fertiliser treatments for crops on a field scale. The aim of the modelling work

is to guide future experimental studies on potential optimal strategies which can

improve P efficiency in crops.

As a case study, the model from Chapter 4 was used to estimate how plant P

uptake would be affected by adding combinations of struvite (slow release P fer-

tiliser) and/or di-ammonium phosphate (DAP, fast release P fertiliser) to wheat.

We found that a combination of both P fertilisers was optimal for plant P uptake,

providing P early to boost initial root mass and later to maintain P uptake once

the root system was at its biggest. For more details please see Appendix C.



Chapter 5

Conclusions and Future Work

In this Chapter we first summarise the findings from Chapters 1-4 and then discuss

future ideas that would be extensions of the work carried out within this thesis.

5.1 Summary of Thesis Work

At the start of the thesis we began by introducing plant and soil management

ideas focusing on the role of water and phosphorus (P). The use of models was

discussed, which estimate water and P movement within the soil, from which

predicting optimal soil cultivation and fertiliser management strategies can be

achieved, via estimating plant P uptake. We use operational research techniques

to find optimal parameter values, which maximise plant P uptake, and hence find

potentially optimal strategies.

In Chapter 2 the root branching structure of a wheat crop was altered to see

the effects it had on plant P uptake in a low P soil. Experimental work was

carried out to validate the model and we found that changing from a linear to

an exponential distribution of first order branches (a high number of branches at

the top of the soil) improved plant P uptake by 142% for low P soils. This was

however not enough to compensate plant P uptake for a drop from, a high P soil
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to a low P soil (35.5 to 12.5 mg P l−1 respectively, using Olsen P index).

In Chapter 3 we described the movement of water in the soil around a plant

root system during a year. The adapted model provided an estimate of the water

content levels within the soil at different depths, and the uptake of water by the

root system [160]. This model was validated using field data, which included

hourly water content values at five different soil depths under a grass/herb cover

over one year, and obtained a fully calibrated system for plant water uptake with

respect to climate conditions. When compared quantitatively to a simple water

balance model, our model achieved a better fit to the experimental data due to its

ability to vary water content with depth. We found that to accurately model the

water content levels in the soil profile, the sensitive Van Genuchten soil suction

parameter and hydraulic conductivity values need to vary with depth. The Kriging

algorithm was used to find optimal parameter values which fitted the model to

the data set.

In Chapter 4 we considered different fertiliser strategies to find which one

maximises total P taken up by the plant, estimated from advances to the model

by [159]. The adapted model represented the development of the water and P

profiles within the soil as spatial systems. Current cultivation techniques such as

ploughing and a reduced till gradient were simulated along with fertiliser options

to feed the top soil or below the seed. We found that a well-mixed soil (inverted

and 25 cm ploughing) is critical for optimal plant P uptake and provided the best

environment for the root system.

5.2 Future Work

A great deal of work has been presented within this thesis, looking at different

models for predicting plant P and water uptake, and as a result a number of
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extensions could be made to advance scientific understanding. Extensions 1 and

2 are part of the brief of an accepted-pending Post Doctoral Research Assistant

position for the author, and are the subject for future publications.

5.2.1 Extension 1 - Coupling Root and Leaf Growth Mod-

els

Introduction

The model in Chapter 4 estimates plant P and water uptake by the root system

and captures processes in the soil such as the root system and water and P diffu-

sion. To more accurately model the whole plant, an above ground model could be

added (leaf model), which tracks leaf growth and photosynthetic rates to estimate

carbon mass stored by the plant. With the addition of a leaf model, carbon and

leaf mass can be estimated during the crop life cycle. The role of carbon is used in

conjunction with temperature to set the root growth rate [112]. As the two mod-

els are coupled they generate a feedback loop (in this case positive); an increase

in plant P uptake from the roots increases carbon production via photosynthesis

in the leaves, and vice versa.

This new model (root and leaf) can be compared against field trial data, and

the set of scenarios from Chapter 4 Figure 4.2 can be evaluated to track the new

models behaviour and predicted outcomes. Leaf mass estimates provide extra

validation against experimental data (as leaf mass results at harvest are often

recorded). In addition, carbon and leaf mass values provide a simple step to being

able to estimate grain yield, another important validation against experimental

data.

Two changes to the root model in Chapter 4 include, addition of a leaf model

and root growth rate dependence upon temperature and carbon, which will be
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discussed below in respective order.

The Leaf Model

We use a leaf model taken from Thornley [187], which estimates the mass of

the leaf ML (KgL), carbon Mc (KgC) and phosphorus Mp (KgP) as well as the

concentration of free Carbon [C] = Mc/M (KgC/KgL) and free P [P ] = Mp/M

(KgP/KgL) within the plant. The leaf model takes into account photosynthesis,

leaf litter and we have altered the leaf growth term, Gsh, to also be dependent

upon the air temperature (AT ), as well as carbon and P. The governing equations

are given below,

dML

dt
= Gsh −

Klitt

1 + Kmlitt
ML

ML, (5.2.1)

dMc

dt
= εk1[P ]− fcGsh − βc[C], (5.2.2)

dMp

dt
= −fpGsh + (α + δ)− βp[P ]− kpε[P ]k1, (5.2.3)

where,

Gsh = kgML[C][P ]
As1T

ss12 + As1T
, (5.2.4)

ε =
KCML(

1 + ML

km

)(
1 + [C]

JC

) , (5.2.5)

where kg is the leaf growth rate constant, Klitt is the litter rate constant, Kmlitt

is the litter Michealis-Menten constant, KC is the photosynthesis constant, km is

the self shading constant, JC is the product inhibition constant, fc is the fraction

of carbon (C) used for leaf growth, fp is the fraction of phosphorus used for leaf

growth, k1 is the amount of P used for photosynthesis, kp is the P:C ratio for

photosynthesis production, βc is the rate of C output to the phloem, βp is the rate

of phosphorus output to the phloem, α is the rate of P entry from the xylem, δ is
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the rate of P entry from foliar application and s1 and s2 are fitting parameters.

The parameter values and units for the leaf model are given in Table 5.1.

Parameter Definition Value Units Acquired

kg leaf growth rate constant 1000
(

KgC
KgL

KgP
KgL

day
)−1

Thornley [187]

klitt litter rate constant 0.05 day−1 Thornley [187]

kmlitt litter Michealis-Menten constant 0.5 KgL Thornley [187]

kC photosynthesis constant 0.1 KgC
KgL

day−1 Thornley [187]

km self shading constant 1 KgL Thornley [187]

JC product inhibition constant 0.1 KgC
KgL

Thornley [187]

fc fraction of C used for leaf growth 0.5 KgC
KgL

Thornley [187]

fp fraction of P used for leaf growth 0.005 KgP
KgL

Thornley [187]

k1 P used for photosynthesis 400 KgL
KgP

[183]

kp P:C ratio for photosynthesis production 0.005-0.05 KgP
KgC

estimated

βp rate of P output to phloem 0 KgL
day

n/a

α rate of P entry from xylem Root Model KgP
day

Root Model

δ rate of P entry from foliar application 0 KgP
day

n/a

AT Air temperature Taken from data oC Climate station

Fitting Parameter Definition Bounds Units Acquired

βc rate of C output to phloem Fitting variable KgL
day

Fitting

s1 Air temperature slope constant 0-20 - Fitting

s2 Air temperature Transition constant 0-30 oC Fitting

Table 5.1: Parameter values and units used in the adapted Thornley leaf model.

The leaf model (Equation (5.2.1)-(5.2.3)) is coupled with the root model from

Chapter 4 to obtain a full crop model. The equations are solved at the same time,

where plant P uptake is an output from the root model (F in Equation (4.3.2)) and

an input to the leaf model (α in Equation (5.2.3)), and carbon mass is an output

of the leaf model (Mc in Equation (5.2.2)) and an input to the root model (C in

Equation (5.2.6)). The main outputs of the coupled model are, plant P uptake by

the root system (F in Equation (4.3.2)) and leaf mass (ML in Equation (5.2.1))

which can be validated against experimental data. Other outputs of the model

include, carbon mass (Mc in Equation (5.2.2)), different ordered root lengths (l

in Equation (4.3.8)) and by extension, root mass.

Unknown parameters in the leaf model, βc, s1 and s2, are fitted when validating

against experimental field data for plant P uptake (Figures 4.3 and 4.4) and leaf

mass values (Tables 5.2 and 5.3).
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P fertilisation (kg P/ha) Treatment GS 31 s.e GS 45 s.e GS 91 s.e

0 n/a 1377.22 45.64 3016.13 162.93 14255.56 1462.39

5 inc 1342.94 98.39 2876.68 124.28 13783.33 2209.60

10 inc 1527.33 21.30 3310.92 395.58 13734.72 954.98

20 inc 1901.52 275.14 3502.36 221.67 13734.72 964.95

30 inc 2021.98 168.94 3706.82 367.20 13825.00 376.04

60 inc 2882.25 296.63 4232.44 560.19 14966.67 669.05

90 inc 3069.20 416.45 4111.29 222.79 15647.22 1148.89

10 plac 1679.89 92.90 3284.96 116.38 13894.44 833.62

20 plac 2129.09 192.46 3522.21 324.82 14715.28 967.73

30 plac 1893.09 296.84 4214.00 210.20 13122.22 1332.26

Table 5.2: Leafmass values (kg/ha) for spring barley at GS 31, 45 and 91 for
different treatments of fertiliser, incorporated (inc) and placed (plac).

P fertilisation (kg P/ha) Treatment GS 39 s.e GS 92 s.e

0 n/a 490.34 24.50 11147.22 553.14

15 inc 579.37 51.82 11616.96 567.39

30 inc 622.04 22.18 11123.91 168.39

60 inc 657.34 21.19 11429.05 717.31

90 inc 684.23 10.66 11979.22 221.34

120 inc 693.18 14.00 12167.73 525.69

15 plac 591.78 7.70 11763.60 719.50

30 plac 660.28 16.55 11788.30 198.42

Table 5.3: Leafmass values (kg/ha) for winter barley at GS 39 and 92 for different
treatments of fertiliser, incorporated (inc) and placed (plac).

Root Growth Rate

The root growth rate used in Chapter 4, Equation (4.3.11), depends only upon

temperature. Carbon mass is now estimated by the leaf model and can therefore

also be used to affect the root growth rate. However, the root growth rate values
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from Chapter 4 Table 4.1 measured at different temperatures, do not have values

for carbon mass. We therefore let the root growth rate r(T,C) be a function of

carbon multiplied by a function of temperature, i.e. r(T,C) = f(C)g(T ). The

function of carbon is a saturating one,

f(C) =
C

γ + C
, (5.2.6)

where γ is the plant carbon mass when the root growth rate is half of its possible

maximum. The value of γ is estimated by multiplying the fraction of structural

carbon in structural dry matter by half the maximum root mass [187].

The function of temperature is similar to the one in Chapter 4 where the

growth is represented by a linear distribution, Equation (4.3.12),

RT =

 0 for T ≤ 50C

A(T − 5) for T > 50C
, (5.2.7)

where the constant A is set to fit the experimental data. As in Chapter 4 we set

the root growth rate equal to zero when the temperature is less than or equal to

5oC. The function of temperature is only valid for temperatures below 30oC as the

experimental data does not go beyond this. The root growth rate will eventually

start to decrease as the temperature rises above a survivable threshold. For the

UK climate this is not an issue with rarely maintained high temperatures above

30oC, however higher temperature experiments would need to be carried out to

provide values for possible root growth rates, for hotter climates.

Therefore, to match the root growth rate experimental data (Table 4.1), we

set A = 0.1961 to minimise the SOS error and this fits the temperature profile as

most curves are within the error bars, Figure 5.1.
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Figure 5.1: Comparison of experimental root growth rates against a function of
carbon and temperature.

Results

The unknown parameters for the root and leaf model (βc, s1 and s2) can be fitted

by validating the model with the experimental data for plant P uptake from

Chapter 4 and leaf mass values for the two barley sites, Tables 5.2 and 5.3.

It is possible to simulate the set of scenarios seen in Chapter 4, Figure 4.2.

This will allow for a direct comparison with the root model alone. In addition,

leaf mass estimates can be compared against experimental data available for the

two barley trials.

Conclusion

The model in Chapter 4 underestimated plant P uptake compared with the exper-

imental data at growth stage 91 and 92, for spring and winter barley respectively,

perhaps because some processes were missing. With the addition of the leaf model
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we hope to more accurately describe the whole crop system and capture the effects

seen at harvest (plant P uptake and leaf mass values).

5.2.2 Extension 2 - P Dependent Root Growth

At present we use the model prescribed in Chapter 4 and Subsection 5.2.1 to

estimate plant P and water uptake and the distribution of water and P within the

soil profile. The model has only been partially validated from experimental data

found in the literature, and two site specific data sets. However, in order to be fully

predictive and to enable the model to be linked to graphical information systems

(GIS) and maps to aid government decision-making, it needs to be validated to

site specific data collected from farms across the whole country. Therefore, the

model requires further enhancements that include, updating the model for new site

specific data sets and to combine extra processes, such as groundwater movement

and P dependant root growth (which occur in the soil). Currently the model uses

one value for the buffer power which denotes the amount of available P within

the soil. However, new evidence has shown that the amount of available and

non-available P differs substantially between soil types and location [13]. When

modelling the different sites it will be useful to compare buffer power values against

plant P uptake.

To build upon the model from Chapter 4 and Subsection 5.2.1, we would

initially validate the model against site specific data collected from farmers and

industrial companies such as Agrii, ADAS and Teagasc. Secondly, additional

features could be added into the model if they were found to be significant. The

primary target would be to include a method to model the available P in the soil

by using the buffer power, as it is very sensitive within each site and potentially

with depth. Data provided by Agrii, for depth dependant P concentrations within

the soil, will enable us to validate and test the model. P dependent root growth
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rates can be collected experimentally from pot trials, similar to data obtained

by Pete Talboys from Bangor University. In addition, water movement within

the soil can be measured from TDR probes, and climate data for specific sites is

available from the Met office.

The main aim of this research is to get a better understanding of the exact

state of P within the soil, and therefore, relaying this valuable information to

farmers via the external companies, agronomists (David Langton, Agrii), and the

RB209 document from the Department of Environment, Food and Rural Affairs

(DEFRA). This extension will give us a model which can be carried forward

and applied to other sites and address other important questions of timings and

amounts of fertiliser, for where there is only experimental evidence available. The

combination of experimental data and modelling is key to efficiently use resources

and predict possible outcomes.

5.2.3 Small Extensions

Grain Yield Approximation

We use plant P uptake (estimated from the models within this thesis) as a measure

for P use efficiency, and hence try to find scenarios that maximise it. Another

measure for P use efficiency is crop yield. Additionally, there are more crop

yield data available to validate the model, and when conversing with industries,

agronomists and farmers, having model outputs that are easy to understand and

meaningfully (such as crop yield) are essential.

There are two main ways of estimating grain yield for the current models

used within this thesis. The first and easiest, would be to convert the plant P

uptake and leaf mass estimates into an estimate for grain yield. Data collected

consisting of values for grain yield, plant mass and plant P uptake can be used to

calculate a correlation between plant mass and plant P uptake against grain yield,
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i.e. A1 ∗plant mass +B1 ∗plant P uptake = grain yield, where the parameters A1

and B1 can be estimated from the best fit of the data.

A more advanced technique, using the model from Subsection 5.2.1 (where

carbon and leaf mass are estimated), is to actually model grain production. During

the crop life cycle, part of the carbon produced from photosynthesis is stored

within the plant, and along with the uptake of P, they are used to convert the leaf

mass into grain. This process could be modelled by switching the crop’s ability

to store carbon and P, and instead grow grain depending upon the total amounts

of carbon and P stored.

Implementing the Depth Dependent Van Genuchten Soil Suction Pa-

rameter

In Chapter 3 we found evidence that the Van Genuchten soil suction parameter

along with the saturated hydraulic conductivity should change with the depth of

the soil rather than remain constant. This could be further validated by taking

the Cropwat model used as a comparison within the paper in Chapter 3 and

adapting it, such that it does not use a constant value for the saturated hydraulic

conductivity. The differences in the Cropwat model, between a constant and

depth dependent saturated hydraulic conductivity, could then be assessed. The

Cropwat model has the advantages of being quick to compute and it would be

interesting to see how much the prediction of the water profile changes.

Comparing P Soil Test Methods

A number of soil tests for measuring P concentration within the soil were touched

upon in Section 1.1.1, and different soil tests are more appropriate for different

types of soil. Experimental data used within this thesis only used Olsen P values

to estimate P concentration, but other sites have a range of soil test results. It
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would be possible to estimate the error in the model’s prediction for plant P

uptake, from using other soil test methods. In addition, we may need to add

additional processes to the model to account for different soil tests, such as the

pH of the soil.

Virtual Plant Platform

A very long term plan for the work presented in this thesis is for the models to

become part of a Virtual Plant Platform, which can take any model and estimate

fertiliser requirements and soil cultivation strategies given certain site specific

conditions. Our models along with others in the literature would go towards

providing information based on agricultural problems facing farmers [44, 46, 60,

89, 101, 108, 115, 119, 142].

The Virtual Plant Platform would need to manage high amounts of computa-

tional data and require co-ordination between the many groups involved. This is

because its aim is to use data from all sites and methods and link all treatments,

such that each site can be given the best choice when it comes to managing crops.

All parties involved will be able to share techniques and resources to benefit

the community. It is however still important to keep diversity among different

methods in case of failures, but perhaps techniques for a number of different sites

can be improved via the community getting involved together.

To some extent this is already being started, for example the International Soil

Modelling Consortium (ISMC) has a range of models for agricultural and climate

purposes.
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Dissolution curves for P release
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Figure A.1: Experimental release rates for a slow release fertiliser, Struvite.

Using the experimental data for struvite and DAP, we can plot curves for

total P release against time and concentration against time, Figures A.1 and A.2.

Integrating under the area of the total P release curve generates a plot for release

rate of P against time. It is then possible to plot concentration of P against
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Figure A.2: Experimental release rates for a fast release fertiliser, DAP.

release rate of P (Figures A.1 and A.2) which is used as an input into the model

in Chapter C. For a given concentration of P within the soil, an amount of P

will be released. There is a maximum and minimum release rate for Struvite and

DAP; at zero P concentration the release rates are 0.29 µ mol day−1 and 115

µ mol day−1 respectively, and the release rates for each drop to zero when the

concentration is above 0.001225 Mol/l and 0.4244 Mol/l, respectively.
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Root Structure for Struvite and

DAP Experiments

Combinations of fertiliser are experimentally tested to see how plant P uptake

and dissolved P recovery differs. Ratios tested (Struvite:DAP) are equivalent to

0:0, 80:0, 24:40, 24:56, 15:64, 8:72 and 0:80 kg/ha P2O5.

To adjust for the fast release fertiliser (DAP) stimulating earlier root growth,

we adjust the branching frequency of first- and second-order roots. As in Chapter

2, we let the root branching distribution become exponential instead of linear,

where at one extreme we have linear branching and the other, the majority of

roots branch nearer the top of the soil. In addition, we also set the first 5 or

20 cm of the main ordered root to have a constant branching rate which then

exponentially decreases, as this behaviour is seen from experimental data. We set

the maximum branching density factor at 2.3, producing a maximum branching

rate of 2.3*(0.7 cm−1). Therefore, by adding only fast release fertiliser (DAP) we

have the maximum branching rate and when adding no fertiliser (control) we have

the minimum or standard branching rate (density factor is 1). To find the density

factor for the mixed scenarios of slow and fast release fertiliser we fit a logarithm
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curve bounded by the minimum and maximum values.

To fit a logarithm curve we first take the amount of P that is dissolved within

the 90 day experiments for each ratio of fertiliser added. We add an amount to

each (105 µmol P) and then calculate the percentage increase from the control, xi.

We then fit these data points to a logarithmic equation log(a(xi + b)), for fitting

parameters a and b and match the ends points where the density factor is 1 and 2.3,

for 0:0 and 0:80, respectively. A best fit is achieved by setting a = 0.007946 and

b = 342.0861, minimising the SOS. To conserve the total number of root branches,

the value for how exponential the branching density is (b from Equation (2.3.11)),

is different for the two cases, 5 and 20 cm of constant branching. In Table B.1

the value of b for each strategy is shown.

Application 5 cm b value 20 cm b value
0:0 0 0
80:0 0.28 0.4
24:40 1.62 2.62
24:56 1.93 3.24
16:64 2.05 3.51
8:72 2.18 3.79
0:80 2.29 4.05

Table B.1: The value for the exponential branching constant b, for each fertiliser
scenario for 5 or 20 cm of constant branching at the top of the root.

We can run the model for different ratios of fertiliser, to estimate plant P

uptake and dissolved P recovery rates.
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C.1 Abstract

The increasing costs and inefficiency of using high rates of water-soluble phos-

phorus (P) fertilisers in global agriculture and the rapid depletion of finite rock

phosphate reserves have led to a growing interest in the use of recycled sources

of P, such as struvite extracted from wastewater. Struvite is markedly less sol-

uble than conventional P fertilisers such as triple super phosphate (TSP) and

di-ammonium phosphate (DAP), but is potentially more efficient because it con-

tinues to release P late in the growing season to meet total crop P demand. Using

laboratory experiments, pot trials and mathematical modelling of the root system

we found that struvite can be a component of an effective P fertiliser management

strategy for crops. We show that struvite has greatly enhanced solubility in the
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presence of organic acid anions; buckwheat which exudes a high level of organic

acid was more effective at mobilising struvite P than the low level exuder spring

wheat. Furthermore fertiliser mixes containing struvite and DAP applied to spring

wheat demonstrated higher rates of P-fertiliser recovery, whilst also allowing op-

timal early P-uptake. These results indicate the potential resource savings and

efficiency benefits of utilising a recycled slow release fertiliser like struvite and

offers a more sustainable alternative to only using conventional, high solubility,

rock phosphate based fertilisers.

C.2 Introduction

Phosphorus (P) is a plant macro-nutrient essential for cellular function and plant

growth. In agriculture, P is often applied in the form of processed phosphate salt

granules which dissolve into soil pore water allowing plant P uptake. Alongside

other nutrient inputs, the application of these P fertiliser salts has enabled the

rapid expansion in agricultural productivity in the developed countries during the

20th century. Conventional mineral P fertilisers are derived from rock phosphate,

global reserves of which, whilst not as limited as previously thought [47], remain

finite and concentrated in only a handful of countries [81]. Our high dependency

on P and the likely increase in their cost as rock phosphate reserves become

harder to mine cost-effectively has prompted a renewed and urgent interest in

the concept of re-cycled P [208]. For example, the P extracted from sources such

as animal manures [61] or wastewater [98] can be processed into user-friendly

fertiliser products for agriculture.

The development of fertilisers for agricultural use at a commercial scale using

the P recycled from wastewater has gained much recent attention [33]. The greater

usage of recycled P enabled by such products has the potential to be more efficient
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from a global resource management perspective, prolonging the lifespan of existing

rock P reserves, whilst also competing with rock P to ensure that P fertiliser prices

remain affordable [47, 207]. The use of un-processed waste material that contains

P is often difficult to spread and logistically complex; low P content can limit

its value [125] and metal contamination can restrict its maximum limit of safe

application [131]. Fertiliser-grade struvite (NH4MgPO4·6H2O) is one recycled P

product that has good potential to overcome these difficulties, as it is easy to

spread, has a high P content and can be produced with minimal heavy metal

contamination [6].

Struvite is produced as a by-product of wastewater treatment; at locations

within treatment plants where there are rapid pressure changes, it forms a scale

on lines and clogs pipes [80]. However, controlled struvite precipitation can be

triggered in specialised reactors by manipulation of the sludge digestion process to

overcome these problems [9]. This can produce struvite granules that are useable

as a fertiliser product for agriculture, whilst also removing > 85 % of solution P

complying with UK environmental emission standards [6, 9, 168, 205]. Previous

experimental evidence has shown that struvite can be at least as effective as

mineral P sources when used as the sole P fertiliser [6, 113]. However, these have

been end-point studies with results collected only at grain harvest, which have not

assessed the potential pitfalls of using struvite as the sole P fertiliser on P uptake

in the crucial early stages of plant growth and establishment [16, 20, 59, 62].

In addition to savings in resource use, the use of struvite provides potential

efficiency savings and environmental benefits over conventional fertilisers due to its

low solubility [14, 85, 113]. Conventional mineral P fertilisers are readily soluble

and are either applied before crop sowing or top-dressed onto the soil surface.

When applied in the seedbed, highly water-soluble P fertilisers causes high soil

solution P concentrations in the early stages of crop development, but much of this
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P becomes adsorbed onto soil particle surfaces [26]. This results in a much more

limited P supply to crops in the later stages of growth, contrary to the timing of

crop P demand which is far higher during the later stages of plant development

[199]. When applied onto the soil surface, highly water-soluble fertilisers also

cause high P concentrations in land runoff when rain falls soon after application

[67, 206], with increased risk of eutrophication of receiving waterbodies. Struvite,

as a less soluble slow release fertiliser, could provide longer term source of P for

crop growth than readily soluble forms of P, thus more closely matching the plants

demand for P later in the growing season and increasing its efficiency of use [208].

The slower dissolution of struvite could also reduce the amount of fertiliser P that

becomes adsorbed on to soil particles, or released to land runoff. Un-processed

rock P has previously been used as a slow release fertiliser with qualified success

[28]. However, struvite is more soluble than rock P, whilst remaining significantly

less so than conventional processed P fertilisers, which makes it more promising as

a predictable slow release fertiliser [113]. These benefits could therefore potentially

be used to either increase crop yields, or allow reduced application rates of P

whilst maintaining or increasing yields with minimum environmental impact: all

of which would be economically advantageous to the agricultural industry as it

moves towards sustainable intensification in the future.

In this study, we investigated in laboratory and pot experiments whether stru-

vite represents a more efficient and sustainable alternative fertiliser to conventional

rock phosphate based fertilisers by answering the following questions. (1) Given

that struvite is readily soluble in low pH conditions [136], does pH in the range

found in UK agricultural soils (5.5-8.0) significantly affect its potential as a P

fertiliser? (2) Do compounds exuded from plant roots, such as organic acids, af-

fect the dissolution of struvite P, and does this influence its plant uptake? (3)

Is replacing the application of readily soluble P fertiliser with struvite beneficial



C.3. MATERIALS AND METHODS 147

for plant P uptake? (4) Does the slow release of P from struvite negatively im-

pact early plant growth, and can this be compensated for by fertilisation with

mixtures of soluble P and struvite? We uniquely included mathematical mod-

elling to help answer these questions because of its ability to predict root uptake

of nutrients [54, 60, 107]. Early root system models aimed to re-create detailed

three-dimensional root systems [108], which were not conducive to simulating

field scale growing conditions [163]. In the present study, in combination with

pot-based experiments, we use the field scale root system model of [71, 159] which

allows the significant up-scaling required to translate pot experiments into field

scale predictions. This enabled us to assess with greater confidence which fertili-

sation strategies from the work in short term pot trials are viable candidates for

future field experimentation.

C.3 Materials and Methods

C.3.1 Struvite Source

Struvite granules commercially distributed under the trade name Crystal Greenr

were provided by Ostara Nutrient Recovery Technologies Inc. These white gran-

ules have been classified as fertiliser grade material in the UK and measured

approximately 2.4 mm in diameter. Crystal Green is precipitated from wastewa-

ter using the WASSTRIPTM [9] and PEARLr processes and the granules contain

> 99 % struvite (NH4MgPO4·6H2O) equivalent to 12% P (28 % P2O5).

C.3.2 Struvite Solubility Assays

Reactions to test struvite solubility under varying pH conditions, using different

counter-ions and in the presence of different organic acids including nil addition

controls were performed in 1.5 ml tubes filled with deionised water. The deionised
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water was buffered with 0.01 M Di-sodium EDTA and 0.01 M NaCl to stabilise

both the pH, and salinity during the early period of dissolution. Solution pH was

adjusted to between 5.5 and 8.0 using HCl and NaOH. Struvite granules weighing

between 30 mg and 40 mg were then submerged in 1 ml of these solutions per

replicate, and the resulting reaction mixtures were kept at room temperature.

Solution aliquots of 5 µl were taken at successive time intervals, and their P

content was determined using the ascorbate/molybdate blue method of Murphy

and Riley [126]. Changes in solution P concentrations with time were plotted

using a modified Mitscherlich Equation, which has been previously used to model

rock P dissolution [109]:

c = a(1− bt), (C.3.1)

where b is the curvature coefficient, a is the asymptote (equilibrium P concentra-

tion), c is the solution P concentration in mM and t is time elapsed in days.

Initial dissolution rates were calculated from the differential of Equation (C.3.1):

dc

dt
= −aln(b)etlnb. (C.3.2)

For the assays including organic acids or counter-ions, all replicates were ad-

justed to pH 6.0 after the addition of either acetic acid, malic acid, oxalic acid,

citric acid, MgCl2, NH4Cl or K2HPO4. The organic acids selected are known to

be exuded by plant root systems [86], and are mono- (acetic acid), di- (malic

acid, oxalic acid) or tri-valent (citric acid). The counter-ions are those present in

struvite and therefore might be expected to affect dissolution rates.

C.3.3 Pot Experiments

The pot experiments used P fertilisers in the form of di-ammonium phosphate

(DAP), triple super phosphate (TSP) or struvite, applied as granules placed at a
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depth of 5 cm beneath the soil surface. Varying mixtures of DAP and struvite were

also examined in the same manner. Placement of P fertilisers in this manner has

previously been shown to offer significant advantages in P uptake over broadcast

application, by enhancing the P content in the rooting zone [152]. Three seeds

of Triticum aestivum (spring wheat) or Fagopyrum esculentum (buckwheat) were

planted in 8 cm diameter 6.5 cm deep pots filled with 300 g sandy loam soil (30

and 36 day experiments), or for the long-term experiment (90 days) to mature

grain yield in 11 cm diameter 30 cm deep drainpipes filled to the top with 3 kg

of the same sandy loam soil. This soil (from Abergwyngregyn, UK) had a low

Olsen P concentration of 12 mg l−1 which provided a P-limiting environment for

plant growth according to current recommendation systems used in England and

Wales [40]. The mass of each fertiliser (or mixtures of fertilisers) applied per

pot was adjusted according to the pot surface area to produce a recommended

constant rate of P fertilisation equivalent to 35 kg P ha−1 (80 kg ha−1 P2O3−
5 ). An

additional mixture of struvite and DAP supplying 28 kg P ha−1 (64 kg P2O3−
5 )

was also included in one pot trial.

At crop emergence, the excess seedlings were removed to leave only the largest

seedling in each pot. The pots were kept in a heated greenhouse with artificial

lighting set to produce an air temperature of 20 oC and a minimum 16 hours of

day length. Soil water holding capacity was measured gravimetrically, and the

pots were watered thrice weekly by filling saucers at the bottom of the drainpipes

for the long-term experiments or by maintaining the soil at 80 % of water holding

capacity for the short-term experiments. To ensure that P was the only limiting

macronutrient, the equivalent of 60 kg ha−1 N (as 1 M NH4NO3 solution) and 60

kg ha−1 K2O (as 1 M KCl solution) were applied to each pot at seedling emergence.

For the long-term experiment, an additional 60 kg ha−1 N was also applied at the

stem extension growth stage as per current recommendations [40]. Micronutrients
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were supplied in a weekly application of 10 ml of a solution containing: 5 mM

CaCl2; 2 mM MgSO4; 765 nM ZnSO4; 320 nM CuSO4; 46.3 µM H3BO3; Na2MoO4

497 µM; 9.14 µM MnCl2 and 38.7 µM Fe. EDTA (all Sigma Aldrich, Poole, UK).

At harvest, the whole plant was extracted from the pot, the seed removed and

weighed (if applicable), and then the root system washed in deionised water to

remove any soil particles. All plant tissue was then dried at 85 oC overnight,

weighed, and dry-ashed (550 oC, 16 h). The residue was dissolved in 0.5 M HCl

and the P content was determined [126]. Any remaining stuvite granules were

extracted from the soil, air dried, any adhering soil particles brushed off, and re-

weighed at the end of each experiment. There were no discernable TSP or DAP

granules remaining at the end of the short or long-term experimental periods.

C.3.4 Modelling P Uptake From a Growing Root System

A model that has previously been used to simulate P uptake from wheat root

systems by accounting for P-fertiliser inputs and the resulting alterations in root

branching was used [71, 159]. To account for the variations in solubility of different

P fertilisers, a source term was added at a given soil depth to the P conservation

equation used in the model. By varying the rate of fertiliser source over time,

the model mimicked the effect of different combinations of soluble P (in this case

DAP) and slow release P (in this case struvite) fertiliser on P uptake. The model

was set up so that fertiliser P was released at depths between 0 cm and 10 cm

below the seed, with peak release rates at 5 cm and a linear decline to zero at 0

cm and 10 cm. In order to match the release of fertiliser P in the model to the

dissolution of DAP and struvite, a set of dissolution curves were produced (see

Appendix A). This was done by placing a granule of DAP or struvite into 1 ml

deionised water, and measuring the solution P concentration over time [126]. This

was performed in triplicate for both fertilisers, with granule weights ranging from
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30 to 40 mg as used in the pot trials.

The DAP and struvite P dissolution rates were first fitted by a modified

Mitscherlich Equation (Equation C.3.1). The total release of P (µmol) was fit-

ted against time, and integrated to acquire the release rate of P over time (µmol

day−1). Plots of concentration of P (mol l−1, x) against release rate of P (µmol

day−1, y) were best fitted by a straight line. For DAP the equation was y =

(x − x0)/y0, where x0 is 0.4253 mol l−1 and y0 is -0.003712 106day l−1, whereas

for struvite the equation was y = (x− x1)/y1, where x1 is 0.0.001225 mol l−1 and

y1 is -0.004200 106day l−1. Therefore, at a given soil solution P concentration, P

was released from each fertiliser at an experimentally measured rate. When the

soil solution P concentration rose above the point where P dissolution reached

equilibrium for a fertiliser granule, its P release was halted. For DAP and struvite

these values were estimated at 0.4253 mol l−1 and 0.001225 mol l−1 respectively.

The two orders of magnitude difference in these values reflect the large difference

in solubility between the two fertiliser types. In order to determine the change

in soil P content as a result of P application for the model simulations, air dried

samples were extracted according to the Olsen P method [137], or the acetic acid

method [150] and P determined by colour [126].

To account for the differences between treatments in root branching struc-

ture following fertiliser application, the maximum root branching rates for plants

under DAP, struvite and control (no fertiliser) treatments were calculated from

images of intact 36-day-old T. aestivum root systems grown as described in Sec-

tion C.3.3. The resulting maximum branching densities expressed relative to the

controls as density factors were used to create root branching structures. The un-

treated control simulations used a constant root branching rate as has been done

previously [71, 159] and the fertiliser treatments used a branching rate that de-

creased exponentially with increasing depth from a maximum that was calculated
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by multiplying the relevant density factor by the normal branching rate measured

previously [71]. In all simulations, the volume of the root system at 90 days was

kept constant so that the final simulation results were comparable in terms of

efficacy of treatments (see Appendix B).

The short-term pot experiments provided plant P uptake values 36 days after

sowing. In the model we set an initial root length between 5 cm and 10 cm,

which took approximately four days to reach in the experiments. The model was

therefore run for 32 days to mirror the pot experimental data for this time-point.

The model simulations used identical DAP and struvite treatments to the pot

experiments described in Section C.3.3, and was run to a 90 day time-point to

assess the effects of these treatments on total P uptake at harvest.

C.3.5 Statistical Details

Statistical testing was performed using Students t-test in Microsoft Excel, and

two way ANOVAs in SPSS. P recovery is calculated as plant P content minus

control treatment average plant P content, divided by applied fertiliser P.

C.4 Results

The solubility curves for struvite P over the pH range 5.5-8.0 provided good fits

(r2 > 0.9 for each replicate) to the modified Mitscherlich Equation, Figure C.1A.

The initial struvite P dissolution rate showed a strong negative correlation with

increasing pH (r2 = 0.78, Figure C.1B), but there was no discernible impact of

pH on the equilibrium P concentration in solution at the end point of the experi-

ment. When the initial concentration of the counter-ions Mg2+, NH+
4 and PO3−

4

was varied at constant pH, there was a significant inhibitory effect of increasing

initial PO3−
4 concentration on both initial dissolution rate and equilibrium P con-
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centration (p < 0.05). Increased NH+
4 concentration also significantly reduced

the end-point equilibrium P concentration (p < 0.05). Initial P dissolution rate

was not significantly affected by altering the starting NH+
4 or Mg+

2 concentration,

with Mg+
2 also having no significant effect upon equilibrium P concentration (p >

0.05).

The addition of four organic acids commonly exuded by plant roots [86], with

equal pH to no organic acid controls, resulted in marked increases in struvite P

solubility, Figure C.2. Both the initial rate of dissolution and the equilibrium P

concentration (Figure C.2B) showed significant increases (by up to 69 % and 39

%, respectively) in the presence of 1 mM acetate, oxalate, malate and citrate.

Furthermore, a pot experiment (Figure C.2C) found that the plant recovery of

the P applied in struvite was very similar to that of the P applied in DAP (a

positive control) when growing F. esculentum, which exudes organic acids in large

quantities [211]. However, for T. aestivum, which does not exude large quantities

of organic acids [128], the recovery of P applied in struvite remained at just 30 %

of the level of that applied in DAP over the 36 day experimental period.

When T. aestivum was grown to harvest, use of struvite produced very similar

rates of total P uptake (Figure C.3A) and grain yield (Figure C.3B) per plant

to those obtained with use of TSP. However the number of mature grain heads

produced was significantly increased (p < 0.05) by TSP application (control =

4.6 heads plant−1, struvite 4.8 heads plant−1, TSP 5.6 heads plant−1). The rate

of plant recovery of P from struvite was 175 % greater than from TSP (which had

been added at the same P application rate per pot) (Figure C.3C). Any residue

from the applied TSP granules could not be identified from the bulk soil and so

has been assumed for these purposes to be completely dissolved. However, there

were sizeable quantities of un-dissolved struvite after harvest in the long-term pot

experiments (ranging from 65.6 % to 82.3 % of the initial mass).
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Figure C.1: The effects of solution pH on struvite dissolution. 2.4 mm diame-
ter Struvite granules were submerged in 1 ml deionised water, adjusted to a pH
range of 5.5 8.0. There were three replicates per initial pH. The concentration
of solution P was measured over time, and the curve f(x) = a(1 − bx) fitted to
the data for each initial pH (A). All three replicates were used to fit each curve
in A. The curve f(x) = a(1− bx) was then fitted to each replicate individually, to
calculate their initial P dissolution rate (B), and final equilibrium P concentration
(C). The Pearson product-moment correlation coefficient for both datasets was
calculated: showing a strong negative correlation between increasing pH and dis-
solution rate (B, r = -0.88), but no strong correlation between pH and equilibrium
P concentration (C, r = 0.17).
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Figure C.2: Organic acids promote Struvite P dissolution and uptake. 2.4 mm di-
ameter Struvite granules were submerged in 1 ml solutions containing 1 µM oxalic
acid, malic acid, acetic acid, or citric acid; alongside an untreated control. There
were three replicates per treatment. The concentration of solution P was mea-
sured over time, and the curve f(x) = a(1−bx) was then fitted for each treatment
to its average value for each time (A). The curve f(x) = a(1− bx) was then fitted
to each replicate individually: and used to calculate their initial P dissolution rate
and final equilibrium P concentration and the mean of the three values for each
treatment are shown (B). Asterisks represent values that are significantly different
from the controls using students t-test (p < 0.05). (C) A 30-day pot experiment
was conducted, growing seedlings of Triticum aestivum and Fagopyrum esculen-
tum in 8 cm diameter pots containing a low-P loamy sand soil. P was applied
at the equivalent of 80 kg ha−1 P2O5 in the form of DAP or struvite alongside
untreated controls. At the end of the experiment remaining struvite granules were
recovered from the soil dried and re-weighed. Any remaining undissolved DAP
granules were not discernable from the bulk soil, and so were assumed to be 100
% dissolved The total plant P content, minus the average P content of untreated
control plants, was divided by the total quantity of P dissolved from the fertiliser
to determine the recovery rate of dissolved fertiliser P, which is expressed as a
percentage of the DAP treatments P uptake for each species. Asterisks repre-
sent values that are significantly different from the DAP positive controls for each
species using students t-test (p < 0.05, n ≥ 4). Error bars are standard errors of
the mean.

The 36 day pot experiments showed clearly that there was a significant reduc-

tion (by 39 %) in plant uptake of P within the first 36 days of growth using struvite
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Figure C.3: Struvite fertilisation produces comparable outcomes of Triticum aes-
tivum P uptake and yield to readily soluble P sources, with gains in P recovery
rate. A pot experiment was conducted, growing T. aestivum to mature grain
yield in 11 cm diameter, 30 cm deep pots containing a low-P loamy sand soil.
P was applied at the equivalent of 80 kg ha−1 P2O5 in the form of Struvite or
TSP alongside untreated controls. (A) The total P uptake resulting from each
treatment, expressed in µmol plant−1. (B) The grain yield, scaled up to t ha−1, of
each treatment. (C) The recovery rate in the harvested plants of the amount of P
that had dissolved from the fertiliser granules at the end point of the experiment.
At the end of the experiment remaining struvite granules were recovered from the
soil dried and re-weighed. Any remaining undissolved TSP granules were not dis-
cernable from the bulk soil, and so were assumed to be 100 % dissolved The total
plant P content, minus the average P content of untreated control plants, was
divided by the total quantity of P dissolved from the fertiliser to determine the
recovery rate of dissolved fertiliser P. In A and B, asterisks mark values that are
significantly different from the untreated negative controls, and in C they mark
values significantly different from the TSP positive control using students t-test
(p < 0.05, n = 5-8). Error bars are standard errors of the mean.

in comparison with the readily soluble P fertiliser DAP, Figure C.4A. The use of

mixtures of struvite with readily soluble P (where the struvite accounted for no

more than 20 % of the total applied P) provided comparable levels of initial plant

P uptake to the use of the readily soluble P fertiliser alone, Figure C.4A. Hence

DAP at 80 % of the P applied was required to maximise early growth. Mixtures
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of struvite with DAP in any ratio did not improve the rate of recovery in the plant

of the P dissolved from the fertiliser compared with the treatment in which DAP

alone was applied, Figure C.4B. This can be attributed to the presence of DAP

in the mixture, which reduced the rate of recovery of dissolved P to less than 35

% of that achieved when struvite alone was used.

The outputs of the root P-uptake model are broadly corroborated by the

results of the 36 day pot trial regarding both P uptake and recovery rate. In

models using either Olsen P or acetic acid P to account for changes in soil P, plant

P uptake over 36 days was very similar to that with DAP fertiliser alone for the

20:60 and 10:70 struvite:DAP treatments, whereas the P uptake for application

of struvite alone and other mixtures was lower and similar to untreated controls,

Figure C.4A. Similarly both models showed that recovery rates of dissolved P

were very similar to the DAP only application for all struvite:DAP mixtures, and

much lower than for struvite alone.

When the models were run to grain harvest at 90 days, exactly the same

trends were observed as after 36 days. However, the total plant P uptake rates,

and dissolved fertiliser P recovery rates were drastically different between the

Olsen P and the acetic acid models, with the Olsen P model predicting control

P uptake rates only 70 % of those predicted by the acetic acid model, Figure

C.5A. The effectiveness of P fertilisation over the controls was also greater for

DAP fertilisation alone (0:80) in the acetic acid model (87.8 %) than the Olsen P

model (66 %), whereas this was not the case for struvite fertilisation alone (80:0)

where the values were similar (10 % acetic acid model, 10 % Olsen P model).
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C.5 Discussion

C.5.1 Struvite P is recovered by roots in greater quantities

than for more soluble P fertilisers

The greater recovery rate in plants of P applied in struvite compared with the

readily soluble P fertilisers (Figures C.2C, C.3B and C.4B) supports the theory

that the slow rate of P release from struvite is closer to the development of the

crop root systems capacity to take up P [113]. Increasing the proportion of applied

fertiliser P taken up by the crop, as opposed to it replenishing stocks of residual soil

P taken up by current or previous years crops offers a number of potential benefits

to agricultural systems. Firstly, it decreases the crops allocation of photosynthate

to root growth, exudates or mycorrhizas required to access and take up soil P,

which is a significant cost for plants [97]. This may allow either a decrease in

application of non-P fertilisers or an increase in yield for the same rate of P

application. Secondly, the use of readily soluble P fertilisers has been shown

to significantly increase the transfers of dissolved P in land run-off [67, 206],

which has long been known to have the potential for serious environmental costs

including eutrophication of water bodies [41, 169]. By increasing the proportion

of applied fertiliser P taken up by the crop root system, potential pollution of

water-courses is reduced. Thirdly, any dissolved fertiliser P that does becomes

adsorbed to soil particle surfaces, or precipitated out by complexion with cations,

may be bound with a sufficiently high binding energy to make it less available

for plant uptake in the short term [10, 74]. This is of particular importance in

soils with a high P-binding capacity that occur in many tropical areas where

lack of food security is a serious issue for human well-being [166]. Strongly-bound

residual P is also a source of P in land runoff due to erosion. Thus, minimising the

amount of fertiliser P immobilised by the soil is economically and environmentally
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important and the use of slow release P fertilisers such as struvite can contribute

greatly to more sustainable crop production systems by maximising the proportion

of applied P that is up-taken by the crop root system.

C.5.2 Struvite application alone does not allow sufficient

early P uptake, but similar P uptake levels at har-

vest indicate benefits at later growth stages

The results show that use of struvite alone produces lower rates of P uptake early

in plant development than does use of more readily soluble P fertilisers, Figure

C.4A. This is a potential problem in agricultural systems, where initial establish-

ment and early growth are dependent upon early P uptake, and correlate well

with final crop yield [16, 20, 60, 62]. Good early growth is also viewed by the

agricultural industry as an insurance against problems such as adverse weather

conditions, pests, or diseases which may occur later in the growing period. Vig-

orous early growth also provides quicker soil surface cover, and therefore is useful

in the reduction of soil erosion which can be a significant driver of environmental

problems [145] and weed competition.

While in the pot experiments in controlled glasshouse conditions the yield of

grain obtained from plants fertilised with struvite alone was the same as that for

plants fertilised only with soluble P fertiliser, Figure C.3B, the plants grown with

struvite had a visibly reduced number of reproductive shoots and grain heads

in later growth stages. The number of grain heads has long been known to be

both a very significant driver of final yield and is also determined at early growth

stages [20], so this could be a disadvantage of use of struvite fertiliser alone in field

conditions. It is possible that, in the pot experiment, early disadvantages for plant

development of the slower release of P from struvite compared with more soluble P
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fertiliser, Figure C.4A, were subsequently compensated by a more sustained rate

of P release from struvite which was better able to meet plant P demand later in

the growing season. Although the re-distribution of P already taken up by the

plants meets a significant proportion of P demand for grain-filling, P-uptake from

the soil at later growth stages may still be required to augment this [15, 60, 121],

and also to facilitate carbohydrate translocation into the ripening grain [182].

C.5.3 Mixing struvite with a more soluble P source po-

tentially enhances crop recovery of applied P

This study also attempted to couple the early P uptake levels of readily soluble

DAP fertiliser (Section C.5.2) with the slow release and high plant P recovery rates

of struvite (Section C.5.1), by combining the benefits of both approaches through

the use of mixtures of the two fertiliser types. At 36 days, only a minimal quantity

of the applied struvite had dissolved (9 %, when applied alone at 35 kg P ha−1),

but a much greater proportion had dissolved in a struvite only set of replicates in

the pot trial taken to mature grain yield (26 %). These data further confirm that

struvite provides a source of late season P which may significantly enhance yield

[182]. In addition, the large quantities of undissolved struvite remaining after

harvest could also provide a valuable resource of P for future growing seasons

which is potentially a more readily plant available source of P than immobilised

residual soil P.

The prediction stated in this section, that mixtures of struvite and readily

soluble P fertilisers could maintain early plant P uptake, whilst elevating plant

recovery rates of P dissolved from fertiliser, is corroborated by the model simula-

tions, Figures C.4 and C.5. When using Olsen P to calibrate the model, the total

P uptakes after 36 days fit the experimentally derived results reasonably well for

the majority of treatments, Figure C.4A. However, using acetic acid extractable
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P produced notable over-estimations of P-uptake at 36 days. As acetic acid ex-

tracted much more P that Olsen in this sandy soil, this suggests that the release

of P from DAP increased soil available P beyond the level required for plant P

uptake at this stage.

Interestingly, the model simulations predicted P uptake better when grown to

harvest (90 days) when using acetic acid extractable P than Olsen extractable

P to calibrate the model, Figures C.3A and C.5A. This is probably due to the

model not including plant uptake from non-labile P-pools in the soil. The model

simulations show clear indications that substituting struvite for readily soluble P

in a fertiliser mixture has the potential to maintain soil P supplies for both early

and late crop growth stages. Whilst fertiliser P recovery rates at 36 days were

significantly lower for the fertiliser mixture treatments than for the application of

struvite alone, the model results indicate a potential gain in dissolved P recov-

ery rate after 90 days in the mixed treatments compared with use of the DAP

alone, Figure C.5. It is interesting to note that the model simulations, despite

being calibrated using struvite dissolution rates in controlled conditions, consis-

tently under-estimated the degree of fertiliser P uptake resulting from struvite

treatment alone (Figures C.4A and C.5A compared with Figures C.2C and C.3A

respectively). This under-estimation may be due to an increase in struvite disso-

lution rate when in close proximity to roots exuding organic acid anions, with the

amount of struvite dissolved in the model simulations only reaching 53 % (Olsen

P model) or 1 % (Acetic acid model) of the experimentally derived values at 36

days, and 55.4 % (Olsen P model) or 6 % (acetic acid model) at harvest.

The results obtained from this model, validated against and then extrapolat-

ing from pot experiments, show its potential to provide a quick, cheap tool for

assessing potential fertilisation strategies. Future utilisation of this method to

predict field trials would however require fitting the model to field data as an
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additional calibration step.

C.5.4 Struvites effectiveness as a P fertiliser may be en-

hanced for crop species that exude organic acids in

large quantities

The results of the struvite solubility experiments showed a clear increase in both

struvites P dissolution rate and the final solution equilibrium P concentration

when treated with 1 mM of each of the organic acid anions tested, Figure C.2A.

Fagopyrum esculentum also proved to be significantly more effective at taking up

P after struvite fertilisation than T. aestivum, a result that could be attributed to

its higher rate of organic acid exudation [210, 211]. The F. esculentum root system

is known to exude large quantities of oxalic acid even when unstressed [211] and

here we show that oxalic acid had the biggest impact on struvite solubility of the

organic acids tested, Figure C.2B. This shows the potential benefit of increasing

struvite use to fertilise other commercially valuable species whose root systems

also exude organic acids in large quantities: this includes Brassica napus which

exudes large quantities of malate and citrate [103] which were also shown to

significantly enhance struvite dissolution in the present study, Figure C.2B. This

interaction creates a specific advantage of struvite over conventional fertilisers for

sustainable nutrition of crops when it is applied at depth in the soil: given the slow

release of P from struvite in the absence of organic acids, relatively little of the P

applied in struvite would have dissolved before the root system reaches the depth

of the fertiliser. Then the proximity of the growing root system to the struvite

granules could result in elevated organic acid concentrations and an increased

rate of P release from the struvite in close proximity to the roots that can take up

that P. This therefore has the potential to be a far more spatially precise, efficient



C.5. DISCUSSION 163

method of fertilising plants with P than application of conventional, readily soluble

P fertilisers. Provided that it can be applied at the right depth relative to the

growing root system of a young plant the increased initial struvite P dissolution

rate in the presence of organic acid anions (Figure C.2) could also eliminate the

need for mixing struvite with readily soluble P fertiliser to fulfil the crops early P

uptake demands.

C.5.5 Soil pH, Mg2+ and NH+
4 concentrations, are unlikely

to be detrimental to struvite P-fertilisation

The present study showed the expected result [14] that the initial solubility of stru-

vite was increased by a reduction in pH, but the final equilibrium P concentration

was unaffected by pH, Figure C.1. When applied to soil in combination with

readily soluble P fertilisers, the initial P dissolution rate of struvite is rendered

unimportant: the soil solution P concentration will rapidly far exceed the point

at which struvite dissolution is arrested (Figure C.1A) until either soil P-fixation,

leaching or plant uptake removes sufficient of the dissolved P from solution. An

important factor in this mixed fertilisation method is the equilibrium P concen-

tration that struvite can maintain later in the growing season, once the effects of

the readily soluble fertiliser P have diminished. This is unlikely to be significantly

impacted by soil solution pH for this kind of fertiliser mix. The pot experiments

used only soils with a pH of 6.0, but [113] have previously shown struvite fertil-

isation to be effective in moderately alkaline soils (pH 7.6), which adds further

evidence that there is not a significant impact of pH within the range found in

agricultural soils upon struvite effectiveness.

Experimentation on the effects of the presence of counter-ions on struvite

P dissolution found that solution NH+
4 concentration had a negative effect on

the equilibrium P concentration. However, this effect was only small even over
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the wide range of concentrations tested, so it is unlikely to be an important

consideration when planning crop fertilisation strategies.

C.5.6 Conclusions

This study shows that replacement of readily soluble P fertilisers with struvite

significantly alters a plant P uptake profile over time, with positive impacts on the

proportion of fertiliser P recovered by the crop. Using mixtures of struvite and

readily soluble P have shown promise as a more sustainable fertiliser strategy that

maximises early crop nutrition, whilst also supplying P at later stages of plant

development when P demand is at its peak. Our experimental evidence indicates

that organic acids have a major impact on the rate of dissolution of P from struvite

and a plant species whose root system exudes large quantities of organic acids is

extremely effective at taking up P from struvite granules. Therefore struvite

has an especially high potential for spatial and temporal targeting of P for root

uptake for such crops. Further field experimentation is now required to assess the

effectiveness of these proposed P fertilisation strategies under field conditions, for

a wider range of soil types and cropping systems.
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Figure C.4: Applying Struvite together with DAP allows the maintenance of
early P uptake, whilst increasing P recovery in Triticum aestivum. In a 36-day
pot experiment with T. aestivum P was applied at the equivalent of 80 kg ha−1

P2O5 in the form of Struvite and/or DAP alongside untreated controls. These
were compared with model simulations carried out using measured concentrations
of either acetic acid extractable P (black bars) or Olsen extractable P (white bars)
to calibrate the total plant available P in the soil. (A) The total P uptake resulting
from each treatment, expressed in µmol plant−1. Asterisks mark pot trial values
that are significantly different from the untreated negative controls, and daggers
mark those that are significantly different from the 100 % DAP (0 : 80) positive
control using students t-test (p < 0.05, n ≥ 3). (B) The recovery rate of P that
had dissolved from the fertiliser granules at the end point of the experiment. At
the end of the experiment remaining struvite granules were recovered from the
soil dried and re-weighed. Any remaining undissolved DAP granules were not
discernable from the bulk soil, and so were assumed to be 100 % dissolved. The
total plant P content, minus the average P content of untreated control plants, was
divided by the total quantity of P dissolved from the fertiliser to determine the
recovery rate of dissolved fertiliser P. Letters denote pot trial values significantly
different from each other using students t-test (p < 0.05, n ≥ 3). Error bars are
standard errors of the mean.
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Figure C.5: Model results showing the benefit of applying struvite together with
DAP for recovery of dissolved P compared with DAP alone without compromising
P uptake in 90 day old Triticum aestivum plants. A-B Model simulations to 90
days after planting where P was applied at the equivalent of 80 kg ha−1 P2O5 in
the form of Struvite and/or DAP and/or alongside untreated controls. These were
compared with model simulations carried out using measured concentrations of
either acetic acid extractable P (black bars) or Olsen extractable P (gray bars) to
calibrate the total plant available P in the soil. (A) The total P uptake resulting
from each treatment, expressed in µmol plant−1. (B) The recovery rate of P that
had dissolved from the fertiliser granules at the end point of the experiment.
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[35] Déry, P., and Anderson, B. Peak phosphorus. Energy Bulletin (2007).

Post Carbon Institute. energybulletin.net/node/33164.

[36] De Wit, C. Photosynthesis of leaf canopies. Agricultural Research Reports

663 663 (1965). Wageningen: Pudoc.

[37] De Wit, C., Brouwer, R., and Penning De Vries, F. The simula-

tion of photosynthesis systems. in: I. setlik (ed.); prediction and measure-

ment of photosynthetic productivity. Proceeding International Biological

Program/Plant Production Technical Meeting Trebon (1970). Wageningen:

Pudoc.

[38] De Wit, C., and Goudriaan, J. Simulation of assimilation, respiration

and transpiration of crops. Simulation Monographs (1978), 140. Wagenin-

gen: Pudoc, D.F1.22.50.



172 BIBLIOGRAPHY
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