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Low birth weight is associated with increased risk for Attention-

Deficit/Hyperactivity Disorder (ADHD); however, the etiologi-

cal underpinningsof this relationship remainunclear. This study

investigated if genetic variants in angiogenic, dopaminergic,

neurotrophic, kynurenine, and cytokine-related biological path-

waysmoderate the relationship betweenbirthweight andADHD

symptom severity. A total of 398 youth from two multi-site,

family-based studies ofADHDwere included in the analysis. The

sample consisted of 360 ADHD probands, 21 affected siblings,

and 17 unaffected siblings. A set of 164 SNPs from 31 candidate

genes, representing five biological pathways, were included in

our analyses. Birthweight andgestational agedatawere collected

from a state birth registry, medical records, and parent report.
2014 Wiley Periodicals, Inc.
Generalized Estimating Equations tested for main effects and

interactions between individual SNPs and birth weight centile in

predicting ADHD symptom severity. SNPs within neurotrophic

(NTRK3) and cytokine genes (CNTFR) were associated with
691
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ADHDinattentive symptomseverity. Therewasnomaineffect of

birth weight centile on ADHD symptom severity. SNPs within

angiogenic (NRP1 & NRP2), neurotrophic (NTRK1 & NTRK3),

cytokine (IL16 & S100B), and kynurenine (CCBL1 & CCBL2)

genesmoderate the association between birth weight centile and

ADHDsymptom severity. The SNPmain effects and SNP� birth

weight centile interactions remained significant after adjusting

for multiple testing. Genetic variability in angiogenic, neuro-

trophic, and inflammatory systems may moderate the associa-

tion between restricted prenatal growth, a proxy for an adverse

prenatal environment, and risk to develop ADHD.

� 2014 Wiley Periodicals, Inc.
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INTRODUCTION

Attention-Deficit/Hyperactivity Disorder (ADHD) is character-

ized by persistent, pervasive, and developmentally inappropriate

levels of inattention, hyperactivity-impulsivity, or both. ADHD

arises from the complex interplay between genetic and environ-

mental factors [Thapar et al., 2013]. Consequently, there are likely

to be multiple etiological pathways leading from early risk to the

development of the disorder [Sonuga-Barke and Halperin, 2010;

Thapar et al., 2013]. In particular, environmental insults during

prenatal development have the potential to have lasting effects on

neurodevelopmental risk for ADHD [Lou, 1996; Toft, 1999; Lou

et al., 2004; Mill and Petronis, 2008]. Although multiple prenatal

environmental risk factors for ADHD have been identified [Bane-

rjee et al., 2007; Nigg et al., 2010; Froehlich et al., 2011], specific

developmental mechanisms that contribute to the emergence of

ADHD are poorly understood.

Restricted fetal growth phenotypes, like low birth weight

(<2,500 g) and small for gestational age, are among the strongest

risk factors for ADHD and lead to 1.5 to 3-fold increase in ADHD

risk [Breslau et al., 1996; Mick et al., 2002; Indredavik et al., 2004;

Linnet et al., 2006; Boulet et al., 2009]. The strength of this

association, however, varies across studies [Nigg, 2006] and is not

always replicated [Cornforth et al., 2012]. Consistent with the

dimensional nature of ADHD [Levy et al., 1997; Coghill and

Sonuga-Barke, 2012], the association between lower birth weight

and ADHD-related phenotypes is continuous and extends into

the normal birth weight range [Boulet et al., 2009; Phua

et al., 2012; Qiu et al., 2012; Walhovd et al., 2012]. Lower birth

weight is also associated with reduced anterior cingulate cortex,

caudate nucleus, and total brain volumes [Peterson et al., 2003;

Tolsa et al., 2004; de Kieviet et al., 2012; Walhovd et al., 2012],

which are linked with ADHD behavioral symptomatology [Frodl

and Skokauskas, 2012; Hart et al., 2013]. Identifying biological

mechanisms that contribute to the association between lower

birth weight and ADHD may further elucidate early develop-

mental pathways to ADHD.
Similar to ADHD [Thapar et al., 2013], birth weight has multi-

factorial origins and a substantial heritability estimate [Mook-

Kanamori et al., 2012]. This allows for the possibility that birth

weight and ADHD share a common genetic liability. Twin studies,

however, demonstrate that prenatal environmental factors, rather

than shared genetic factors, largely account for the relationship

between birth weight and ADHD symptoms [Lehn et al., 2007;

Groen-Blokhuis et al., 2011; Ficks et al., 2013; Sharp et al., 2003] or

externalizing behavior [van Os et al., 2001; Wichers et al., 2002].

This suggests that environmental determinants of lower birth

weight contribute to the development of ADHD.

Suboptimal maternal-placental-fetal nutrient and oxygen trans-

port (e.g., placental insufficiency) is associated with restricted fetal

growth inmost cases [Ghidini, 1996; Hendrix et al., 2008]. Prenatal

ischemia-hypoxia is considered the primary pathway to lower birth

weight, especially in well-nourished populations [Henriksen et al.,

2002]. Placental insufficiency and fetal growth restriction are

associated with altered angiogenic [Conde-Agudelo et al., 2013],

dopaminergic [Vucetic et al., 2010], neurotrophic [Malamitsi-

Puchner et al., 2007], and inflammatory responses [Amarilyo

et al., 2011], and numerous poor neurodevelopmental outcomes

[Baschat, 2011]. Prenatal ischemia-hypoxia is a common element

to multiple early risk factors for ADHD including maternal smok-

ing [Bush et al., 2000] and maternal alcohol use during pregnancy

[Bosco andDiaz, 2012] aswell as ischemia-hypoxia relatedobstetric

complications [Pineda et al., 2007; Rennie et al., 2007; Getahun

et al., 2013]. Consistent with the Developmental Origins of Health

and Disease (DOHaD) framework [Gluckman et al., 2004; Mill

et al., 2008; Swanson and Wadhwa, 2008; Swanson et al., 2009;

Wadhwa et al., 2009], the association between lower birth weight

and ADHD may arise from prenatal ischemia-hypoxia. Prenatal

ischemia-hypoxia may directly disrupt or delay development or

lead to structural or functional adaptations to the adverse intra-

uterine environment. Such adaptations, however, may leave the

individual ill-equipped to function in a nutrient and oxygen rich

postnatal environment. For example, in response to prenatal

ischemia-hypoxia some fetuses preferentially redistribute blood

flow to the brain, known as the “brain-sparing effect” [Roza

et al., 2008]. Fetuses that demonstrate “brain-sparing” circulation

may be better protected from the immediate adverse effects of

ischemia-hypoxia, however, these fetuses may exhibit decreased



TABLE I. Sample Size by Site

Site n % of total sample
Ireland 33 8.3
Netherlands - Amsterdam 101 25.4
Netherlands - Nijmegen 73 18.3
United Kingdom 84 21.1
IMAGE Subtotal 291 73.1

Duke 65 16.3
UNCG 42 10.6
NCGAP Subtotal 107 26.9

Total Sample 398 100
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cerebral vascular plasticity [Fu et al., 2006] and increasedbehavioral

problems [Roza et al., 2008; Figueras et al., 2011]. Genetic variabil-

ity in key ischemia-hypoxia related developmental systems may

further alter susceptibility to ADHD, following an adverse intra-

uterine environment.

Few studies have investigated how the interplay between

fetal growth andgenetic variability contributes toADHD’s complex

pathophysiology. Langley et al. (2008) found that “classic” candi-

date neurotransmitter gene (DAT1, DRD4, DRD5, and SLC6A4)

variants did notmoderate the association between birth weight and

ADHD. Another study reported that ADHD youth who also had

low birth weight were at increased risk for early-onset antisocial

behavior if they possessed the COMT Val/Val genotype [Thapar

et al., 2005]. This finding, however, was not replicated in a separate

ADHD clinical sample [Sengupta et al., 2006]. To examine mech-

anisms linking fetal growth with ADHD, it may be important to

broaden the search to genes implicated in the response to prenatal

ischemia-hypoxia, a main determinant of restricted fetal growth.

Prenatal ischemia-hypoxia impactsmultiple neurodevelopmen-

tal systems [Schmidt-Kastner et al., 2012; Zhang et al., 2012; Wang

et al., 2013]. Of the many systems implicated in the ischemia-

hypoxia response, dopaminergic [Levy, 1991; Swanson et al., 2007],

neurotrophic [Ribases et al., 2008; Sanchez-Mora et al., 2009],

angiogenic [Kim et al., 2002; Jesmin et al., 2004], kynurenine

[Oades, 2011] and cytokine systems [Oades, 2011] are also impli-

cated in the development of ADHD and related conditions. There-

fore, genetic variants within these five systemswere the focus of this

study. Variability in genes regulating these systems may alter

vulnerability to the effects of prenatal ischemia-hypoxia leading

to the neurodevelopmental deficits that mediate the ADHD behav-

ioral phenotype [Toft, 1999; Shaw et al., 2006; Rapoport and

Gogtay, 2008]. To address this hypothesis, we examined interac-

tions between genetic variants within ischemia-hypoxia response

systems and birth weight centile, adjusted for gestational age, to

predict ADHDsymptom severity.Wepredicted that: (i) lower birth

weight centile would be associated with increased ADHD symp-

tomatology; and (ii) SNPs within dopaminergic, neurotrophic,

angiogenic, kynurenine and cytokine systemgeneswouldmoderate

the association between birth weight centile and ADHD symptom

severity.

MATERIALS AND METHODS

Subjects
Participants were drawn from two larger studies - the North

Carolina Genetics of ADHD Project [NCGAP; Kollins

et al., 2008; Anastopoulos et al., 2011] and the International

Multisite ADHD Genetics Project [IMAGE; Brookes et al., 2006;

Kuntsi et al., 2006; Neale et al., 2008b], the latter including 12

enrollment sites within Europe and Israel. The current analysis was

conducted on a subset of the NCGAP and IMAGE samples who

were singleton births and had birth weight, gestational age, and

genome-wide single nucleotide polymorphism (SNP) data. Birth

weight and gestational age data were only available for IMAGE

study sites in the United Kingdom, Ireland and the Netherlands.

Furthermore, we only included Caucasian participants due to

genotype imputation procedures (described below). Of the 398
youth in the final sample (Table I), 86% met criteria for DSM-IV

ADHDCombined Type (n¼ 327), 11%met for ADHD Inattentive

Type (n¼ 42), 3% met for ADHD Hyperactive-Impulsive Type

(n¼ 12), and 4% were unaffected (n¼ 17). For NCGAP [Anasto-

poulos et al., 2011] and IMAGE [Neale et al., 2008a], DSM-IV

ADHD diagnoses were based on parental responses to a clinical

interview as well as teacher and/or parent responses to behavior

rating scales. This study was approved by the affiliated institutional

review boards and conducted in accordance with human subjects

guidelines.
Measures
Conners’ parent rating scale (CPRS; Conners, 1997). Parent

responses to the CPRS 18-item DSM-IV ADHD total subscale, as

well as 9-item Inattentive and Hyperactive–Impulsive subscales

were summed and converted to t-scores adjusting for age and

gender of each participant [Conners et al., 1998]. Parents were

instructed to rate their child’s ADHD symptoms when not taking

medication prescribed for ADHD. The resulting scores were con-

tinuous measures of ADHD symptom severity and served as out-

comes in this study. The CPRS ADHD Total (skewness¼ �0.81;

SE¼ 0.12), Inattentive (skewness¼�0.50; SE¼ 0.12), and Hyper-

active–Impulsive (skewness¼�0.85; SE¼ 0.12) scores were non-

normally distributed. Therefore, transformed CPRS ADHD Total

(square root of reflected score transformation; skewness¼�0.03;

SE¼ 0.12), Inattentive (squared transformation; skewness¼
<0.01; SE¼ 0.12), and Hyperactive–Impulsive scores (square

root transformation; skewness¼�0.07; SE¼ 0.12) were selected

for analysis based on normality.

Birth weight centile range. Birth weight centiles were calculat-

ed for each participant adjusting for gestational age and sex, based

on separate normative samples for the Netherlands, United King-

dom/Ireland, and United States participants.

NCGAP. Birth weight and gestational age for the NCGAP

sample was retrieved through medical records, parental report,

and state birth registry. Birth weight centiles for NCGAP were

created using all singleton births from 2000xps12004 from the

CDC National Vital Statistics natality files. For consistency, indi-

vidual centiles were then converted to the centile ranges described

below.
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IMAGE. For theDutch sample, birthweight andgestational age

were obtained through retrospective parent report. The

Netherlands Perinatal Registry reference curves were used to cal-

culate birth weight centiles for the Dutch sample [Visser

et al., 2009]. The Netherlands Perinatal Registry reference curves

provide 11 normative references at 2.3, 5, 10, 16, 20, 50, 80, 84, 90,

95, and 97.7 centiles [Visser et al., 2009]. Therefore, 12 birth weight

centile ranges were created (0–2.29, 2.3–4.9, 5–9.9, 10–15.9, 16–

19.9, 20–49.9, 50–79.9, 80–83.9, 84–89.9, 90–94.9, 95–97.6, 97.7–

100). Lower scores on the resulting ordinal severity scale of birth

weight centile ranges represented higher levels of fetal growth

restriction.

Birthweight andgestational age for samples from Ireland and the

UK were obtained from retrospective parent report. The UK

reference curves [Pan et al., 2010; Cole et al., 2011] were used to

calculate birthweight centiles for theUKand Ireland samples, based

onbirthweight, gestational age, and sex. For consistency, individual

birth weight centiles were converted to birth weight centile ranges

identical to those created in the Dutch sample.

Genotyping. SNP genotyping for the NCGAP subsample

was performed using the Illumina Infinium HumanHap300 duo

(Illumina, Inc., San Diego, CA) at the Center for Human Genetics

at Duke University Medical School. Two Centre d’Etude du

Polymorphism Humain (CEPH) controls and blinded duplicates

were used for every 94 samples and required to match 100%.

Additional quality checks of the genotyping data were examined

using PLINK [Purcell et al., 2007]. Call rates exceeded 98% for all

individuals. Individuals were excluded due to gender discrepancy

and if per-family Mendelian errors were in excess of 1%. SNPs

were excluded from analysis if they had Mendelian errors in >4

families or deviated from Hardy-Weinberg Equilibrium (HWE;

P< 0.000001).

SNP genotyping for the IMAGE subsample was performed at

Perlegen Sciences (Mountain View, CA) on a microarray designed

for the Genetic Association Information Network (GAIN). Quality

checks were completed by the National Center for Biotechnology

Information (NCBI) using GAIN QA/QC, version 0.7.4 [Abecasis

Gopalakirshnana]. Individuals were excluded due to gender dis-

crepancy and if per-family Mendelian errors were in excess of 2%.

SNPswere excluded if the: (i) call ratewas<95%; (ii) heterozygosity

was>32%; (iii) discrepancy inSNPcallwas<10% inwhole sample;

or (iv) HWE P< 0.000001.

Candidate genes were selected based of literature review of

candidate signaling pathways [Reichardt, 2006; Shibuya, 2008],

ischemia–hypoxia response genes [Schmidt-Kastner et al., 2006],

ADHD etiological studies [Gizer et al., 2009; Oades et al., 2010;

Oades, 2011] and genotyping platform coverage. SNPs within

dopaminergic (COMT, DAT1, DRD2, DRD3, and DRD5), neuro-

trophic (BDNF,NGF,NT3,NGFR,NTRK1,NTRK2, andNTRK3),

angiogenic (VEGFA, VEGFR1, VEGFR2, NRP1, NRP2, HIF1A,

and HIF1AN), kynurenine (CCBL1, CCBL2, and KYNU) and

cytokine related genes (CNTF, CNTFR, CRLF1, IL6, IL13, IL16,

LIF, LIFR, and S100B) that passed quality control measures were

considered for inclusion in the analysis. To increase genetic overlap

across NCGAP and IMAGE, genotype data were imputed with

the use of the phased data from the HapMap samples (CEU;

build 36, release 22) and MACH [http://www.sph.umich.edu/
csg/abecasis/MaCH/download; Li et al., 2009, 2010]. Imputed

SNPs with an R2 value <0.3, indicating poor imputation quality,

were excluded from analysis (see Supplementary Table SI for

SNP imputation quality). Note that not all SNPs attributed to

candidate genes in this build are attributed to the same genes in

NCBI build 37.

A total of 2,014 dopaminergic, neurotrophic, angiogenic,

kynurenine and cytokine SNPs were available for this study and

submitted for quality checks. The majority of these SNPs were not

functional. To reduce the number of statistical tests conducted,

remaining SNPs with a: (i) minor allele frequency (MAF)<0.1; (ii)

genotype frequency below seven; or (iii) in linkage disequilibrium

(LD; R2� 0.64) were eliminated. A total of 164 SNPs in dopami-

nergic, neurotrophic, angiogenic, kynurenine, and cytokine sys-

tems remained.
Data Analysis
Bivariate correlations and Pearson product-moment correlation

coefficients examined the associations among demographic, peri-

natal risk, and ADHD variables. In addition, t-tests and ANOVAs

were used to test for differences between demographic groups on

perinatal and ADHD variables. Alpha was set at 0.01 for these

analyses.

Generalized Estimating Equations (GEEs) tested formain effects

of SNP genotype and birth weight centile range, and the interaction

between SNP and birth weight centile range in predicting ADHD

symptom severity. Given that within family data are more corre-

lated than between family data, GEEs account for the family

correlation among siblings within the sample. An independent

working correlation matrix and the model-based robust estimator

covariance matrix were selected, which provides a reliable covari-

ance estimate even when the correlation matrix is not correctly

specified.

Linear GEEs were employed to test the SNP and birth weight

centile rangemain effects on ADHD symptom severity after adjust-

ing for research site, age, and sex as covariates. Next, to test the

hypothesis that SNP genotype moderates the association between

birth weight centile and ADHD symptom severity, the covariates of

site, age, and sex andmain effects of SNP genotype and birth weight

centile range were entered into the model, followed by the SNP�
birth weight centile range interaction. Wald chi-square tests calcu-

lated with Type III sums of squares tested the significance of main

and interactive effects. In addition, continuous variables were

centered to ease the interpretation of model effects. No specific

genetic model was assumed in the primary analysis, as the genetic

model could differ depending on the genetic variant. Additive,

dominant, and recessive genetic models were tested on a secondary

basis.

In the GEEs, alpha was set at .01 for nominally significant

findings. A total of 164 independent GEEs were calculated. The

Benjamini–Hochberg False Discovery Rate (FDR) test [Benjamini

and Hochberg, 1995] was used to adjust for multiple comparisons.

The FDR q-value threshold was set at 0.05 to determine statistical

significance. This study is adequately powered to detect reasonably

sized SNP� birth weight centile interactions on ADHD without

accounting for multiple testing and is underpowered to detect
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interactions after FDR correction (Supplementary Table SII).

Exploratory Sobel tests were conducted to examine if birth weight

centilemediated the effect of SNPs onADHDsymptomseverity. All

analyses were completed using SAS.

RESULTS

Demographic, Perinatal, and ADHD Variables
A total of 398 youth participated in the current study (seeTable I for

sample size by site), including 360 ADHD probands, 21 affected

siblings, and 17 unaffected siblings. The sample had a mean age of

10.7 years (SD¼ 3.02 years; range 5–17 years) andwas 83%male. In

terms of birth characteristics, the samples’ mean birth weight

(M¼ 3,389.25 g; SD¼ 565 g) and gestational age (M¼ 39.56

weeks; SD¼ 1.94 weeks) were in the normal range.

Table II gives a summary of the relationships between continu-

ous demographic, perinatal, andADHDvariables. Older youth had

lower birth weight centile range scores and higher CPRS ADHD

Total scores. There were no differences between females and males

in birth weight centile range (t(396)¼ 0.67, p¼ 0.50), birth weight

(t(396)¼N�0.707, p¼ 0.48), or gestational age (t(396)¼ 0.72,

p¼ .47).

Birth weight centile range scores, varied across data collection

sites, F(5, 397)¼ 8.34, P< 0.01 (Duke, M¼ 6.92, SD¼ 0.28;

UNCG, M¼ 7.98, SD¼ 0.34; Ireland, M¼ 6.26, SD¼ 0.24;

Netherlands–Amsterdam, M¼ 5.77, SD¼ 0.22; Netherlands–Nij-

megen, M¼ 5.88, SD¼ 0.26; UK, M¼ 7.24, SD¼ 0.39). In addi-

tion, CPRS ADHD Total scores varied across data collection sites,

F(5, 397)¼ 4.09, P< 0.01. In general, IMAGE samples had higher

CPRSADHDTotal scores compared to theNCGAPsamples (Duke,

M¼ 74.24, SD¼ 13.96; UNCG, M¼ 75.19, SD¼ 14.49; Ireland,

M¼ 79.27, SD¼ 9.26; Netherlands–Amsterdam, M¼ 76.35, SD

¼ 8.22; Netherlands–Nijmegen, M¼ 78.32, SD¼ 7.82; UK,

M¼ 81.58; SD¼ 8.33).

Analysis of SNP main effects on ADHD symptom severity.

After controlling for site, age, sex, and multiple testing, three out

of 164 SNPs had a significant main effect on the CPRS Inatten-

tive score (see Table III and Supplementary Tables SVII and

SVIII for SNP main effects from each statistical model). In the

cytokine system, rs10758268 (CNTFR; q¼ 0.005) and rs7044318

(CNTFR; q¼ 0.021) genotypes were associated with the CPRS

Inattentive score. In the neurotrophic system, rs3825885
TABLE II. Correlations Between Selected De

Age CPRS A
Age —
CPRS ADHD Total 0.21a

Birth Weight Centile Range �0.14a 0
Birth Weight (g) �0.08 0
Gestational Age 0.08 0

Note: N¼ 398. CPRS, Conners’ Parent Rating Scale.
aCorrelation is significant at the 0.01 level (2-tailed).
(NTRK3; q¼ 0.021) genotype predicted the CPRS Inattentive

score. SNP main effects on ADHD Total Score and Hyperactivi-

ty–Impulsivity were not significant after adjusting for multiple

testing (Table III).

Main effect of birth weight centile range on ADHD symptom

severity. Contrary to the first hypothesis, birth weight centile

range was not associated with ADHD Total (b¼ 0.26; SE¼ 0.21;

95% CI¼ �0.15–0.68; P¼ 0.21), Inattentive (b¼ 0.28; SE¼ 0.20;

95% CI¼�0.11–0.67; P¼ 0.16) or Hyperactive–Impulsive

(b¼ 0.14; SE¼ 0.23; 95% CI¼�0.30–0.59; P¼ 0.53) scores.

Note for interpretative purposes the above statistics are from

non-transformed ADHD subscale models (P-values are consistent

with transformed ADHD subscale models)

Interactions between SNPs and birth weight centile on ADHD

symptom severity. Out of the 164 interaction effects tested

below without assuming a specific genetic model (Supplementary

Table SIII), multiple SNP� birth weight centile interactions

predicted ADHD symptom severity after multiple testing correc-

tion (Table IV). Significant interactions included SNPs within

angiogenic, neurotrophic, kynurenine, and cytokine systems.

Specifically, for ADHD Total symptom severity, interactions

between SNPs within the CCBL1, NTRK1, and NTRK3

genes and birth weight centile range were significant (Fig. 1).

The interaction between a CCBL2 SNP and birth weight

centile range predicted Inattentive symptom severity (Fig. 2).

Finally, eleven SNPs in the CCBL1, CCBL2, IL16, NRP1, NRP2,

NTRK1, NTRK3, and S100B genes moderated the association

between birth weight centile range and Hyperactive-Impulsive

symptom severity (Fig. 2). Interactions involving dopaminergic

SNPs were no longer significant after the multiple testing

correction.

Exploratory analyses were conducted assuming additive, domi-

nant, and recessive genetic models. Dominant genetic models

produced five interactions predicting ADHD total score, two

interactions predicting Inattentive symptom severity, and eleven

interactions predicting Hyperactive-Impulsive score after multiple

testing correction (Supplementary Table SIV). Fewer interactions

were observed for additive and recessive genetic models (Supple-

mentaryTables SVandSVI, respectively). Finally, sobel tests didnot

provide evidence that the relationshipbetween individual SNPs and

ADHD symptom severity was mediated by birth weight centile for

any of the models (results not shown).
mographic, Perinatal, and ADHD Variables

DHD total
Birth weight
centile range Birth weight (g)

—
.02 —
.04 0.76a —
.10 �0.09 0.50a
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DISCUSSION

Examining biologically informed gene by environment interactions

in ADHD may aid in the identification of novel genes associated

with ADHD and further the search for neurodevelopmental mech-

anisms underlying vulnerability for ADHD. Lower birth weight is

commonly associated with ADHD [Nigg et al., 2010]; however, it is

unclear what accounts for the phenotypic overlap between restrict-

ed fetal growth andADHD.Therefore, this study examinedwhether

SNPs within ischemia-hypoxia responsive systems interact with

birth weight centile to predict ADHD symptom severity.

Contrary to previous work, lower birth weight centile was not

independently associated with increased ADHD symptom sever-

ity in our data set. In general, literature demonstrates there is an

association between restricted fetal growth and ADHD symptom

severity [Bhutta et al., 2002; Indredavik et al., 2004; Lahti

et al., 2006], however, null findings have also been reported

[Cornforth et al., 2012]. In this sample largely consisting of

ADHD cases, levels of inattention and hyperactivity-impulsivity

were elevated and represented the upper end of the ADHD risk

spectrum. Thus, reduced variability in ADHD symptom severity

in case-only [Langley et al., 2007] or family-based designs may

have made the relationship between lower birth weight and

ADHD more difficult to detect. These results emphasize the

heterogeneity in the relationship between lower birth weight

and ADHD risk.

Regarding genetic main effects, one SNP within NTRK3 (de-

scribed below) and two SNPs within CNTFR were associated with

ADHD inattentive symptom severity, after adjusting for multiple

testing. CNTFR encodes for ciliary neurotrophic factor receptor

and is implicated in neurodevelopment and neuron survival

[DeChiara et al., 1995]. In independent samples of children and

adults, a three-marker CNTFR haplotype was associated with

ADHD [Ribases et al., 2008]. Taken together, these findings suggest

that CNTFR may be implicated in the development of ADHD.

SNPs within angiogenic, neurotrophic, kynurenine, and cyto-

kine genes moderated the association between birth weight centile

and ADHD symptom severity. In the neurotrophic pathway,

NTRK1 and NTRK3 SNPs moderated the association between

birth weight centile and ADHD total and hyperactive-impulsive

symptom severity. NTRK1 and NTRK3 encode for tyrosine kinase

receptors TrkA and TrkC, respectively. Nerve growth factor (NGF)

preferentially binds to TrkA whereas neurotrophin-3 (NT3) binds

at high affinity to TrkC to promote neuron survival and synaptic

plasticity [Lamballe et al., 1991; Reichardt, 2006], including in

hypoxic conditions [Lee et al., 2003; Lin et al., 2006; Ishitsuka

et al., 2012]. TrkA is expressed in various neuronal populations

including cholinergic neurons in the basal forebrain and striatum

[Holtzmanet al., 1995].TrkC is expressed throughout thebrain and

is most abundant in the hippocampus [Ernfors et al., 1992]. A

previous molecular genetic study has implicated neurotrophic

factors, especially, NT3, in ADHD risk, though not NTRK1 or

NTRK3 [Ribases et al., 2008]. Additionally in the present study, one

SNP within NTRK2 moderated the relationship between birth

weight centile and ADHD hyperactive-impulsive symptoms at a

trend level. Together these findings support the notion that neuro-

trophic receptor genotype is implicated in the development of



TABLE IV. Summary of SNP and Birth Weight Centile Range Interactions (P< 0.01) Predicting the Transformed CPRS ADHD Total,
Inattentive, and Hyperactive-Impulsive T-Scores

SNP Main Effect Interaction

Phenotype System Gene SNP NCBI n MAF p-value q-value p-value q-value

ADHD total NT NTRK1 rs962879 155113379 397 (C) 0.14 0.889 0.979 3E�06 4E�04*
KYN CCBL1 rs10793967 130642111 397 (A) 0.15 0.805 0.949 1E�04 0.009*
NT NTRK3 rs8037291 86308935 380 (G) 0.18 0.021 0.274 3E�04 0.016*
NT NTRK3 rs17755717 86426100 377 (A) 0.18 0.454 0.852 0.003 0.088
KYN CCBL2 rs4656076 89190875 389 (C) 0.23 0.261 0.697 0.003 0.088
NT NTRK3 rs1017757 86355556 390 (G) 0.15 0.097 0.507 0.006 0.161
ANG NRP2 rs17682318 206285589 391 (C) 0.3 0.998 0.998 0.008 0.188

Inattentive KYN CCBL2 rs4656076 89190875 389 (C) 0.23 0.195 0.669 3E�04 0.049*
CYTK IL16 rs11634770 79383455 397 (T) 0.13 0.785 0.953 6E�04 0.051
NT NTRK3 rs8037291 86308935 380 (G) 0.18 0.048 0.426 0.003 0.159
NT NTRK3 rs17755717 86426100 377 (A) 0.18 0.36 0.773 0.007 0.262
ANG NRP1 rs2273466 33551053 397 (C) 0.19 0.269 0.689 0.008 0.262
CYTK IL16 rs931963 79263756 393 (T) 0.15 0.706 0.926 0.01 0.264

Hyperactive-impulsive NT NTRK3 rs8037291 86308935 380 (G) 0.18 0.153 0.719 4E�06 7E�04*
NT NTRK1 rs962879 155113379 397 (C) 0.14 0.979 0.989 9E�06 7E�04*
KYN CCBL2 rs10922552 89212813 387 (G) 0.11 0.422 0.793 8E�05 0.003*
NT NTRK3 rs1017757 86355556 390 (G) 0.15 0.004 0.202 6E�05 0.003*
KYN CCBL1 rs10793967 130642111 397 (A) 0.15 0.983 0.989 8E�05 0.003*
ANG NRP1 rs2065364 33634008 395 (T) 0.29 0.809 0.982 2E�04 0.005*
ANG NRP2 rs13419677 206266851 395 (C) 0.15 0.301 0.788 5E�04 0.013*
ANG NRP1 rs2073320 33593263 396 (A) 0.4 0.883 0.988 0.001 0.021*
NT NTRK3 rs2114251 86465797 384 (A) 0.15 0.868 0.988 0.001 0.023*
CYTK IL16 rs8039027 79343327 393 (A) 0.24 0.628 0.917 0.002 0.026*
CYTK S100B rs2839361 46848617 395 (C) 0.14 0.875 0.988 0.003 0.037*
ANG NRP1 rs3780867 33587815 397 (A) 0.47 0.879 0.988 0.005 0.069
NT NTRK2 rs11141486 86522947 396 (G) 0.31 0.862 0.988 0.008 0.099
DA DRD3 rs963468 115345577 397 (A) 0.39 0.909 0.988 0.009 0.102

Note. MAF, minor allele frequency; KYN, kynurenine; CYTK, cytokine; DA, dopaminergic; NT, neurotrophic; ANG, angiogenic.
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ADHD and this relationshipmay depend on prenatal environmen-

tal influences, such as ischemia-hypoxia.

The angiogenic system regulates the formation of new blood

vessels. In the angiogenic system, NRP1 andNRP2 SNPs interacted

with birth weight centile to predict hyperactive-impulsive symp-

tom severity. NRP1 and NRP2 encode for neuropilin-1 and neuro-

pilin-2, co-receptors for the vascular endothelial growth factor

(VEGF) and semaphorin families [Pellet-Many et al., 2008].

NRP1 and NRP2 are expressed in the central nervous system

and endothelial cells and play an essential role in vascular develop-

ment and axonal guidance [Polleux et al., 2000; Rossignol et al.,

2000; Gu et al., 2003; Pellet-Many et al., 2008]. Following cerebral

ischemia, NRP1 disrupts axonal guidance near the ischemic area

[Hou et al., 2008]. Further, NRP1 plays a central role coordinating

neuronal migration and guidance of axons that project from the

thalamus to the cortex [Lopez-Bendito et al., 2006], which has been

implicated in the development of ADHD [Ivanov et al., 2010;

Shaw, 2010] and externalizing behavior problems [Arcos-Burgos

et al., 2012].

Cytokines are implicated in inflammatory, immune, and oxida-

tive stress responses [Capuron et al., 2011]. Genetic variation in
IL16 and S100B interacted with birth weight centile to predict

hyperactive-impulsive symptom severity. IL16 encodes for inter-

leukin-16 and regulates the inflammatory response [Cruikshank

et al., 2008]. IL16 is expressed in T-cells, macrophages, and micro-

glia [Cruikshank et al., 2008; Jana et al., 2009]. S100B, a calcium

binding protein, is a glial cytokine with neurotrophic properties

[Steiner et al., 2007]. S100B is released in astrocytes following a

restricted nutrient and oxygen supply [Gerlach et al., 2006]. Similar

to the current findings, IL16 and S100B serum levels are associated

with hyperactive-impulsive symptom severity within ADHD cases,

andADHDtotal symptomseverity across cases and controls [Oades

et al., 2010].WithinADHDcases, S100B and IL16 serum levels have

also been linked to pre- and perinatal risk factors including birth

weight, gestational age, and maternal smoking during pregnancy

[Oades, 2011], which makes them good candidates for a role in

disease etiology.

The kynurenine pathway metabolizes tryptophan and plays a

role in glial and dopaminergic functioning, as well as inflammatory

and immune responses [Steiner et al., 2012; Vecsei et al., 2013].

SNPs within CCBL1 and CCBL2 moderated the relationship be-

tween ADHD total, inattentive, and hyperactive-impulsive symp-



FIG. 1. Significant SNP x birth weight centile interactions predicting ADHD total symptom severity.

698 AMERICAN JOURNAL OF MEDICAL GENETICS PART B
tom severity. CCBL1 and CCBL2 encode kynurenine aminotrans-

ferase I and II, respectively, which transaminate kynurenine into the

neuroprotective kynurenic acid [Guillemin et al., 2007; Myint

et al., 2007; Vecsei et al., 2013]. Kynurenic acid is an antagonist

at the N-mehtyl D-aspartic acid (NMDA) and a7 nicotinic acety-
lochoine (a7nACH) receptors that are implicated in learning

[Hilmas et al., 2001]. In rats, kynurenic acid in the prefrontal

cortex is inversely related to glutamate, acetylcholine anddopamine

levels, a relationship that has been detected even with minor

changes in kynurenic acid [Wonodi et al., 2010]. In youth with

ADHD, kynurenic acid in serum was positively associated with

adverse events during the third trimester, at a trend level

[Oades, 2011]. In light of these findings, prenatal ischemia-hypoxia

may put individuals with susceptible CCBL1 andCCBL2 genotypes

at risk for ADHD by leading to suboptimal expression of kynur-

enine aminotransferase I and II. Thus, variability in cytokine and

kynurenine genes may alter risk for ADHD following exposure to

pre- and perinatal risk, potentially by affecting glial functioning

[Todd and Botteron, 2001; Russell et al., 2006; Oades et al., 2010].

We are encouraged by the promising findings of this study, but

also recognize there are some study limitations. First, this study had

a modest sample size and therefore, replication studies of these
results are warranted. Second, youth in the study were either

diagnosed with ADHD or at genetic risk for ADHD by nature of

having a sibling with ADHD. This resulted in constrained variabil-

ity in ADHD symptom severity compared with the general popu-

lationwhich couldhave reduced statistical power and the likelihood

of significant findings. Third, birth weight centile range served as a

proxymeasure for an adverse intrauterine environment as no direct

measure was available. Therefore, inferences about the underlying

environmental pathogen were made in this study. Fourth, this

design is unable tomethodological control for genetic determinants

of birth weight. This allows for the possibility that that genetic,

rather than environmental determinants of birth weight are inter-

acting with SNPs to predict the ADHD phenotype. Fifth, we also

acknowledge that we used an earlier NCBI build of the genome and

as a result, some of the SNPs that we analyzed are now attributed to

other genes. For example, SNPs identified in significant interactions

which are no longer attributed to the same gene include: rs962879

(NTRK1 to CD1B), rs10793967 (CCBL1 to ABL1), rs4656076

(CCBL2 to GBP3), rs10922552 (CCBL2 to intergenic region)

and rs13419677 (NRP2 to PARD3B). Thus, it is possible that the

association signals we detected are in LD with a genetic variant in a

neighboring gene. Finally, the design of this study was unable to



FIG. 2. Significant SNP x birth weight centile interactions predicting inattentive and hyperactive-impulsive symptom dimensions.
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rule-out the effect ofmaternal genotypeon theobservedSNPxbirth

weight centile range interactions [Waldman, 2007]. Future research

should include both maternal and child genotype when investigat-

ing the developmental origins of ADHD.

Taken together, this study raises the possibility that angiogenic,

neurotrophic, cytokine and kynurenine genetic variants moderate

the association between birthweight andADHDsymptom severity.

To our knowledge, this is the first study to support the involvement

ofCCBL1,CCBL2, IL16,NRP1,NRP2,NTRK1,NTRK3, andS100B

genes in the development of ADHD which highlights the impor-

tance of including measures of environmental risk when searching
for novel genetic variants associated with ADHD. Although overall

the pattern of results is consistent with expectations, we are

pursuing replication datasets to further elucidate the relationships

between these SNPs, birth weight centile, and ADHD risk. If

replicated, these results provide a basis for future targeted gene

methylation investigations. Findings also support the use of the

DOHaD framework [Gluckman et al., 2004] in conceptualizing the

etiological underpinnings of the association between lower birth

weight and ADHD. Further application of this framework may aid

in isolating specific prenatal environmental pathogens and genetic/

epigenetic pathways implicated in the development of ADHD.



FIG. 2. (Continued)

700 AMERICAN JOURNAL OF MEDICAL GENETICS PART B
ACKNOWLEDGMENTS

Thank you to Marie Lynn Miranda and Claire Osgood from the

Children’s Environmental Health Initiative at Duke University

for helping to provide birth weight and gestational age data for a

subset of NCGAP sample. This research has been previously

published as part of a Doctoral Dissertation at the University of

North Carolina at Greensboro. This research was supported in

part by a National Institute of Health grants T32MH19927 to

Rhode Island Hospital (T. Smith) and NS049067 awarded to A.

Ashley-Koch.
The IMAGE project is a multi-site, international effort sup-

ported by NIH grants R01MH62873 and R01MH081803 to S.V.

Faraone. Genotyping resources were provided by the Genetic

Association Information Network (GAIN), a public-private part-

nership of the Foundation for theNational Institutes ofHealth, Inc.

(FNIH) that, at the time of genotyping, involved the National

Institutes of Health (NIH), Pfizer, Affymetrix, Perlegen Sciences,

Abbott, and the Eli and Edythe Broad Institute (of MIT and

Harvard University) (http://www.fnih.org/GAIN2/home_new.

shtml). The IMAGEsitePrincipal Investigators arePhilipAsherson,

Tobias Banaschewski, Jan Buitelaar, Richard P. Ebstein, Stephen V.



SMITH ET AL. 701
Faraone, Michael Gill, Ana Miranda, Fernando Mulas, Robert D.

Oades, Herbert Roeyers, Aribert Rothenberger, Joseph Sergeant,

Edmund Sonuga-Barke, and Hans-Christoph Steinhausen. Senior

co-investigators areMargaret Thompson, Pak Sham, PeterMcGuf-

fin, Robert Plomin, IanCraig andEric Taylor. Chief Investigators at

each site are Rafaela Marco, Nanda Rommelse, Wai Chen, Henrik

Uebel, Hanna Christiansen, Ueli Mueller, Cathelijne Buschgens,

Barbara Franke, Lamprini Psychogiou. We thank all the families

who kindly participated in this research.

In the last24monthsProfessorSonuga-Barkehas receivedspeaker

fees from Janssen Cilag, Shire, Medice and QBtech and consultancy,

grant funding, advisory board fees and conference support from

Shire. Dr. Buitelaar has been in the past 3 years a consultant to /

member of advisory board of / and/or speaker for Janssen Cilag BV,

Eli Lilly, Shire,Novartis, Roche and Servier.He is not an employee of

any of these companies, and not a stock shareholder of any of these

companies. He has no other financial ormaterial support, including

expert testimony, patents, royalties. Dr. Oades has received research

funding and conference attendance support from Shire. In the past

year, Dr. Faraone received consulting income and/or research sup-

port from Akili Interactive Labs, VAYA Pharma, and SynapDx and

research support from the National Institutes of Health (NIH). His

institution is seeking a patent for the use of sodium-hydrogen

exchange inhibitors in the treatment of ADHD. In previous years,

he received consulting fees orwasonAdvisoryBoardsorparticipated

in continuing medical education programs sponsored by: Shire,

Alcobra, Otsuka, McNeil, Janssen, Novartis, Pfizer and Eli Lilly.

Dr. Faraone receives royalties from books published by Guilford

Press: Straight Talk about Your Child’s Mental Health and Oxford

University Press: Schizophrenia: The Facts.
REFERENCES

Abecasis G, Gopalakirshnana S. GAIN QA and QC software package.
Available at http://www.sph.umich.edu/csg/abecasis/GainQC/.

Amarilyo G, Oren A, Mimouni FB, Ochshorn Y, Deutsch V, Mandel D.
2011. Increased cord serum inflammatory markers in small-for-gesta-
tional-age neonates. J Perinatol 31(1):30–32.

Anastopoulos AD, Smith TF, Garrett ME, Morrissey-Kane E, Schatz NK,
Sommer JL, Kollins SH, Ashley-Koch A. 2011. Self-regulation of emo-
tion, functional impairment, and comorbidity among children with AD/
HD. J Atten Disord 15(7):583–592.

Arcos-Burgos M, Velez JI, Solomon BD, Muenke M. 2012. A common
genetic network underlies substance use disorders and disruptive or
externalizing disorders. Hum Genet 131(6):917–929.

Banerjee TD, Middleton F, Faraone SV. 2007. Environmental risk factors
for attention-deficit hyperactivity disorder. Acta Paediatr 96(9):1269–
1274.

Baschat AA. 2011. Neurodevelopment following fetal growth restriction
and its relationship with antepartum parameters of placental dysfunc-
tion. Ultrasound Obstet Gynecol 37(5):501–514.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A
practical and powerful approach tomultiple testing. J R Stat Soc. Series B
(Methodological) 289–300.

BhuttaAT,ClevesMA,CaseyPH,CradockMM,AnandKJ. 2002.Cognitive
and behavioral outcomes of school-aged children who were born pre-
term: A meta-analysis. JAMA 288(6):728–737.
Bosco C, Diaz E. 2012. Placental hypoxia and foetal development versus
alcohol exposure in pregnancy. Alcohol Alcohol 47(2):109–117.

Boulet SL, Schieve LA, Boyle CA. 2011. Birth weight and health and
developmental outcomes in US children, 1997–2005. Matern Child
Health J. 15(7):836–844.

Breslau N, Brown G, DelDotto J, Kumar S, Ezhuthachan S, Andreski P,
Hufnagle K. 1996. Psychiatric sequelae of low birth weight at 6 years of
age. J Abnorm Child Psychol 24(3):385–400.

BrookesKJ,Mill J,GuindaliniC,CurranS,XuX,Knight J,ChenCK,Huang
YS, Sethna V, Taylor E, ChenW, Breen G, Asherson P. 2006. A common
haplotype of the dopamine transporter gene associated with attention-
deficit/hyperactivity disorder and interacting with maternal use of alco-
hol during pregnancy. Arch Gen Psychiatry 63(1):74–81.

Bush PG, Mayhew TM, Abramovich DR, Aggett PJ, Burke MD, Page KR.
2000. Maternal cigarette smoking and oxygen diffusion across the
placenta. Placenta 21(8):824–833.

Capuron L, Miller AH. 2011. Immune system to brain signaling: neuro-
psychopharmacological implications. Pharmacol Ther 130(2) 226–238.

CDC National Vital Statistics Natality Files. 2000–2004. Atlanta, GA.

Coghill D, Sonuga-Barke EJ. 2012. Annual research review: Categories
versus dimensions in the classification and conceptualisationof child and
adolescent mental disorders—Implications of recent empirical study.
J Child Psychol Psychiatry 53(5):469–489.

Cole TJ, Williams AF, Wright CM, Group RGCE. 2011. Revised birth
centiles for weight, length and head circumference in the UK-WHO
growth charts. Ann Hum Biol 38(1):7–11.

Conde-Agudelo A, Papageorghiou AT, Kennedy SH, Villar J. 2013. Novel
biomarkers for predicting intrauterine growth restriction: A systematic
review and meta-analysis. BJOG 120(6):681–694.

Conners CK, Sitarenios G, Parker JD, Epstein JN. 1998. The revised
Conners’ Parent Rating Scale (CPRS-R): Factor structure, reliability,
and criterion validity. J Abnorm Child Psychol 26(4):257–268.

Cornforth CM, Thompson JM, Robinson E,Waldie KE, Pryor JE, Clark P,
BecroftDM,Sonuga-BarkeEJ,Mitchell EA. 2012.Childrenborn small for
gestational age are not at special risk for preschool emotion and behav-
iour problems. Early Hum Dev 88(7):479–485.

CruikshankW,Little F. 2008. Interleukin-16: The ins andouts of regulating
T-cell activation. Crit Rev Immunol 28(6):467–483.

de Kieviet JF, Zoetebier L, van Elburg RM, Vermeulen RJ, Oosterlaan J.
2012. Brain development of very preterm and very low-birthweight
children in childhood and adolescence: A meta-analysis. Dev Med Child
Neurol 54(4):313–323.

DeChiara TM, Vejsada R, Poueymirou WT, Acheson A, Suri C, Conover
JC, FriedmanB,McClain J, PanL, StahlN, IpNY,YancopoulosGD.1995.
Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit
profound motor neuron deficits at birth. Cell 83(2):313–322.

Ernfors P, Merlio JP, Persson H. 1992. Cells expressing mRNA for neuro-
trophins and their receptors during embryonic rat development. Eur J
Neurosci 4(11):1140–1158.

Ficks CA, Lahey BB, Waldman ID. 2013. Does low birth weight share
common genetic or environmental risk with childhood disruptive dis-
orders?. J Abnorm Psychol 122(3):842–853.

Figueras F, Cruz-Martinez R, Sanz-Cortes M, Arranz A, Illa M, Botet F,
Costas-Moragas C, Gratacos E. 2011. Neurobehavioral outcomes in
preterm, growth-restricted infants with and without prenatal advanced
signs of brain-sparing. Ultrasound Obstet Gynecol 38(3):288–294.

Frodl T, Skokauskas N. 2012. Meta-analysis of structural MRI studies in
children and adults with attention deficit hyperactivity disorder indicates
treatment effects. Acta Psychiatr Scand 125(2):114–126.

http://www.sph.umich.edu/csg/abecasis/GainQC/


702 AMERICAN JOURNAL OF MEDICAL GENETICS PART B
Froehlich TE, Anixt JS, Loe IM, Chirdkiatgumchai V, Kuan L, Gilman RC.
2011. Update on environmental risk factors for attention-deficit/hyper-
activity disorder. Curr Psychiatry Rep 13(5):333–344.

Fu J, Olofsson P. 2006. Restrained cerebral hyperperfusion in response to
superimposed acute hypoxemia in growth-restricted human fetuses with
established brain-sparing blood flow. Early Hum Dev 82(3):211–216.

Gerlach R, Demel G, Konig HG, Gross U, Prehn JH, Raabe A, Seifert V,
Kogel D. 2006. Active secretion of S100B from astrocytes during meta-
bolic stress. Neuroscience 141(4):1697–1701.

Getahun D, Rhoads GG, Demissie K, Lu SE, Quinn VP, Fassett MJ, Wing
DA, Jacobsen SJ. 2013. In utero exposure to ischemic-hypoxic conditions
and attention-deficit/hyperactivity disorder. Pediatrics 131(1):e53–e61.

Ghidini A. 1996. Idiopathic fetal growth restriction: A pathophysiologic
approach. Obstet Gynecol Surv 51(6):376–382.

Gizer IR, Ficks C,Waldman ID. 2009. Candidate gene studies of ADHD: A
meta-analytic review. Hum Genet 126(1):51–90.

Gluckman PD, Hanson MA. 2004. Living with the past: evolution, devel-
opment, and patterns of disease. Science 305(5691):1733–1736.

Groen-Blokhuis MM, Middeldorp CM, van Beijsterveldt CE, Boomsma
DI. 2011. Evidence for a causal association of low birth weight and
attention problems. J Am Acad Child Adolesc Psychiatry 50(12):1247–
1254.e2.

GuC, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin
AL, Ginty DD. 2003. Neuropilin-1 conveys semaphorin and VEGF
signaling during neural and cardiovascular development. Dev Cell 5-
(1):45–57.

Guillemin GJ, Cullen KM, Lim CK, Smythe GA, Garner B, Kapoor V,
TakikawaO, Brew BJ. 2007. Characterization of the kynurenine pathway
in human neurons. J Neurosci 27(47):12884–12892.

Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. 2013. Meta-analysis
of functional magnetic resonance imaging studies of inhibition and
attention in attention-deficit/hyperactivity disorder: exploring task-spe-
cific, stimulantmedication, and age effects. JAMAPsychiatry 70(2):185–
198.

HendrixN, Berghella V. 2008. Non-placental causes of intrauterine growth
restriction. Semin Perinatol 32(3):161–165.

Henriksen T, Clausen T. 2002. The fetal origins hypothesis: Placental
insufficiency and inheritance versus maternal malnutrition in well-
nourished populations. Acta Obstet Gynecol Scand 81(2):112–114.

Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albu-
querque EX. 2001. The brain metabolite kynurenic acid inhibits alpha7
nicotinic receptor activity and increases non-alpha7 nicotinic receptor
expression: Physiopathological implications. J Neurosci 21(19):7463–
7473.

HoltzmanDM, Kilbridge J, Li Y, Cunningham ET, Jr., LennNJ, Clary DO,
Reichardt LF, Mobley WC. 1995. TrkA expression in the CNS: Evidence
for the existence of several novel NGF-responsive CNS neurons. J
Neurosci 15(2):1567–1576.

Hou ST, Keklikian A, Slinn J, O’Hare M, Jiang SX, Aylsworth A. 2008.
Sustained up-regulation of semaphorin 3 A, Neuropilin1, and double-
cortin expression in ischemic mouse brain during long-term recovery.
Biochem Biophys Res Commun 367(1):109–115.

Indredavik M, Vik T, Heyerdahl S, Kulseng S, Fayers P, Brubakk A. 2004.
Psychiatric symptoms and disorders in adolescents with low birth
weight. Archives of Disease in Childhood. Fetal and Neonatal Edition
89(5):F445.

Ishitsuka K, Ago T, Arimura K, Nakamura K, Tokami H, Makihara N,
Kuroda J, Kamouchi M, Kitazono T. 2012. Neurotrophin production in
brain pericytes during hypoxia: A role of pericytes for neuroprotection.
Microvasc Res 83(3):352–359.
Ivanov, I, Bansal R,HaoX, ZhuH,KellendonkC,Miller L, Sanchez-Pena J,
Miller AM, Chakravarty MM, Klahr K, Durkin K, Greenhill LL, Peterson
BS. 2010. Morphological abnormalities of the thalamus in youths with
attention deficit hyperactivity disorder. Am J Psychiatry 167(4):397–408.

Jana M, Pahan K. 2009. IL-12 p40 homodimer, but not IL-12 p70, induces
the expression of IL-16 in microglia and macrophages. Mol Immunol
46(5):773–783.

Jesmin S, Togashi H, Mowa CN, Ueno K, Yamaguchi T, Shibayama A,
Miyauchi T, Sakuma I, Yoshioka M. 2004. Characterization of regional
cerebral blood flow and expression of angiogenic growth factors in the
frontal cortex of juvenile male SHRSP and SHR. Brain Res 1030(2):172–
182.

Kim BN, Lee JS, Shin MS, Cho SC, Lee DS. 2002. Regional cerebral
perfusion abnormalities in attention deficit/hyperactivity disorder.
Statistical parametric mapping analysis. Eur Arch Psychiatry Clin
Neurosci 252(5):219–225.

Kollins SH, Anastopoulos AD, Lachiewicz AM, FitzGerald D, Morrissey-
KaneE,GarrettME,Keatts SL,Ashley-KochAE. 2008. SNPs in dopamine
D2 receptor gene (DRD2) and norepinephrine transporter gene (NET)
are associated with continuous performance task (CPT) phenotypes in
ADHD children and their families. Am J Med Genet B Neuropsychiatr
Genet 147B(8):1580–1588.

Kuntsi J, Neale BM, Chen W, Faraone SV, Asherson P. 2006. The IMAGE
project: Methodological issues for the molecular genetic analysis of
ADHD. Behav Brain Funct 2:27.

Lahti J, Raikkonen K, Kajantie E, Heinonen K, Pesonen AK, Jarvenpaa AL,
StrandbergT. 2006. Small body size at birth andbehavioural symptomsof
ADHD in children aged five to six years. J Child Psychol Psychiatry
47(11):1167–1174.

Lamballe F, Klein R, Barbacid M. 1991. TrkC, a new member of the trk
family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell
66(5):967–979.

Langley K, Holmans PA, van den Bree MB, Thapar A. 2007. Effects of low
birth weight, maternal smoking in pregnancy and social class on the
phenotypic manifestation of attention deficit hyperactivity disorder and
associated antisocial behaviour: Investigation in a clinical sample. BMC
Psychiatry 7:26.

Langley K, Turic D, Rice F, Holmans P, van den BreeM, Craddock N, Kent
L, OwenM, O’donovanM, Thapar A. 2008. Testing for gene� environ-
ment interaction effects in attention deficit hyperactivity disorder and
associated antisocial behavior. Am JMed Genet B Neuropsychiatr Genet
147(1):49–53.

Lee YH, Lin CH, Hsu LW, Hu SY, Hsiao WT, Ho YS. 2003. Roles of
ionotropic glutamate receptors in early developing neurons derived from
the P19 mouse cell line. J Biomed Sci 10(2):199–207.

LehnH,Derks EM,Hudziak JJ, Heutink P, van Beijsterveldt TC, Boomsma
DI. 2007. Attention problems and attention-deficit/hyperactivity disor-
der in discordant and concordant monozygotic twins: Evidence of
environmental mediators. J Am Acad Child Adolesc Psychiatry 46-
(1):83–91.

Levy F. 1991. The dopamine theory of attention deficit hyperactivity
disorder (ADHD). Aust N Z J Psychiatry 25(2):277–283.

Levy F, Hay DA, McStephen M, Wood C, Waldman I. 1997. Attention-
deficit hyperactivity disorder: A category or a continuum? Genetic
analysis of a large-scale twin study. J Am Acad Child Adolesc Psychiatry
36(6):737–744.

Li Y,Willer C, Sanna S, Abecasis G. 2009. Genotype imputation. Annu Rev
Genomics Hum Genet 10:387–406.

Li Y,Willer CJ, Ding J, Scheet P, Abecasis GR. 2010.MaCH: using sequence
and genotype data to estimate haplotypes and unobserved genotypes.
Genet Epidemiol 34(8):816–834.



SMITH ET AL. 703
LinCH,ChengFC, LuYZ,ChuLF,WangCH,HsuehCM. 2006. Protection
of ischemic brain cells is dependent on astrocyte-derived growth factors
and their receptors. Exp Neurol 201(1):225–233.

Linnet K, Wisborg K, Agerbo E, Secher N, Thomsen P, Henriksen T. 2006.
Gestational age, birth weight, and the risk of hyperkinetic disorder. Br
Med J 91(8):655.

Lopez-Bendito G, Cautinat A, Sanchez JA, Bielle F, Flames N, Garratt AN,
Talmage DA, Role LW, Charnay P, Marin O, Garel S. 2006. Tangential
neuronal migration controls axon guidance: a role for neuregulin-1 in
thalamocortical axon navigation. Cell 125(1):127–142.

LouHC. 1996. Etiology and pathogenesis of attention-deficit hyperactivity
disorder (ADHD): significance of prematurity and perinatal hypoxic-
haemodynamic encephalopathy. Acta Paediatr 85(11):1266–1271.

LouHC, Rosa P, Pryds O, Karrebaek H, Lunding J, Cumming P, Gjedde A.
2004. ADHD: increased dopamine receptor availability linked to atten-
tion deficit and low neonatal cerebral blood flow. DevMed Child Neurol
46(3):179–183.

Malamitsi-Puchner A,Nikolaou K, Economou E, BoutsikouM, Boutsikou
T, Kyriakakou M, Puchner K, Hassiakos D. 2007. Intrauterine growth
restriction and circulating neurotrophin levels at term. Early Hum Dev
83(7):465–469.

Mick E, Biederman J, Prince J, FischerMJ, Faraone SV. 2002. Impact of low
birth weight on attention-deficit hyperactivity disorder. J Dev Behav
Pediatr 23(1):16–22.

Mill J, Petronis A. 2008. Pre- and peri-natal environmental risks for
attention-deficit hyperactivity disorder (ADHD): The potential role of
epigenetic processes in mediating susceptibility. J Child Psychol Psychi-
atry 49(10):1020–1030.

Mook-Kanamori DO, van Beijsterveldt CE, Steegers EA, Aulchenko YS,
Raat H, Hofman A, Eilers PH, Boomsma DI, Jaddoe VW. 2012. Herita-
bility estimates of body size in fetal life and early childhood. PLoSONE 7
(7). e 9901.

Myint AM, KimYK, Verkerk R, Scharpe S, SteinbuschH, Leonard B. 2007.
Kynurenine pathway in major depression: Evidence of impaired neuro-
protection. J Affect Disord 98(1-2):143–151.

Neale BM, Lasky-Su J, Anney R, Franke B, Zhou K,Maller JB, Vasquez AA,
Asherson P, Chen W, Banaschewski T, Buitelaar J, Ebstein R, Gill M,
Miranda A, Oades RD, Roeyers H, Rothenberger A, Sergeant J, Stein-
hausen HC, Sonuga-Barke E, Mulas F, Taylor E, Laird N, Lange C, Daly
M, Faraone SV. 2008. Genome-wide association scan of attention deficit
hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147B-
(8):1337–1344.

Neale BM, Sham PC, Purcell S, Banaschewski T, Buitelaar J, Franke B,
Sonuga-Barke E, Ebstein R, Eisenberg J, Mulligan A, Gill M, Manor I,
Miranda A, Mulas F, Oades RD, Roeyers H, Rothenberger A, Sergeant J,
Steinhausen HC, Taylor E, ThompsonM, ChenW, Zhou K, Asherson P,
Faraone SV. 2008. Population differences in the International Multi-
Centre ADHD Gene Project. Genet Epidemiol 32(2):98–107.

Nigg J, Nikolas M, Burt SA. 2010. Measured gene-by-environment inter-
action in relation to attention-deficit/hyperactivity disorder. J Am Acad
Child Adolesc Psychiatry 49(9):863–873.

Nigg JT. 2006. What causes ADHD? Understanding what goes wrong and
why. New York: Guilford Press.

Oades RD. 2011. An exploration of the associations of pregnancy and
perinatal features with cytokines and tryptophan/kynurenine metabo-
lism in children with attention-deficit hyperactivity disorder (ADHD).
Attention Deficit and Hyperactivity Disorders 3(4):301–318.

OadesRD,MyintAM,DauvermannMR, SchimmelmannBG, SchwarzMJ.
2010. Attention-deficit hyperactivity disorder (ADHD) and glial integ-
rity: An exploration of associations of cytokines and kynurenine metab-
olites with symptoms and attention. Behav Brain Funct 6:32.

Pan H, Cole TJ. 2010. LMSgrowth, a Microsoft Excel add-in to access
growth references based on the LMSmethod. Version . 2:69. http://www.
healthforallchildren.co.uk/.

Pellet-Many C, Frankel P, Jia H, Zachary I. 2008. Neuropilins: structure,
function and role in disease. Biochem J 411(2):211–226.

PetersonB,AndersonA,EhrenkranzR, StaibL,TageldinM,ColsonE,Gore
J, Duncan C,Makuch R,Ment L. 2003. Regional brain volumes and their
later neurodevelopmental correlates in term and preterm infants. Pedi-
atrics 111(5):939.

Phua DY, Rifkin-Graboi A, Saw SM, Meaney MJ, Qiu A. 2012. Executive
functions of six-year-old boys with normal birth weight and gestational
age. PLoS ONE 7(4). e 6502.

Pineda DA, Palacio LG, Puerta IC, Merchan V, Arango CP, Galvis AY,
GomezM, Aguirre DC, Lopera F, Arcos-BurgosM. 2007. Environmental
influences that affect attention deficit/hyperactivity disorder: Study of a
genetic isolate. Eur Child Adolesc Psychiatry 16(5):337–346.

Polleux F,Morrow T, Ghosh A. 2000. Semaphorin 3A is a chemoattractant
for cortical apical dendrites. Nature 404(6778):567–573.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D,
Maller J, Sklar P, deBakkerPI,DalyMJ, ShamPC.2007. PLINK:A tool set
for whole-genome association and population-based linkage analyses.
Am J Hum Genet 81(3):559–575.

QiuA,Rifkin-Graboi A,Zhong J, PhuaDY, Lai YK,MeaneyMJ. 2012. Birth
weight and gestation influence striatal morphology and motor response
in normal six-year-old boys. Neuroimage 59(2):1065–1070.

Rapoport JL, Gogtay N. 2008. Brain neuroplasticity in healthy, hyperactive
and psychotic children: Insights fromneuroimaging. Neuropsychophar-
macology 33(1):181–197.

Reichardt LF. 2006. Neurotrophin-regulated signalling pathways. Philos
Trans R Soc Lond B Biol Sci 361(1473):1545–1564.

Rennie JM,HagmannCF, RobertsonNJ. 2007.Outcome after intrapartum
hypoxic ischaemia at term. Semin Fetal Neonatal Med 12(5):398–407.

RibasesM,Hervas A, Ramos-Quiroga JA, BoschR, Bielsa A,Gastaminza X,
Fernandez-Anguiano M, Nogueira M, Gomez-Barros N, Valero S, Gra-
tacos M, Estivill X, Casas M, Cormand B, Bayes M. 2008. Association
study of 10 genes encoding neurotrophic factors and their receptors in
adult and child attention-deficit/hyperactivity disorder. Biol Psychiatry
63(10):935–945.

Rossignol M, Gagnon ML, Klagsbrun M. 2000. Genomic organization of
human neuropilin-1 and neuropilin-2 genes: Identification and
distribution of splice variants and soluble isoforms. Genomics 70-
(2):211–222.

Roza SJ, Steegers EA, Verburg BO, Jaddoe VW, Moll HA, Hofman A,
Verhulst FC, Tiemeier H. 2008. What is spared by fetal brain-sparing?
Fetal circulatory redistribution and behavioral problems in the general
population. Am J Epidemiol 168(10):1145–1152.

Russell VA, Oades RD, Tannock R, Killeen PR, Auerbach JG, Johansen EB,
Sagvolden T. 2006. Response variability in Attention-Deficit/Hyperac-
tivity Disorder: A neuronal and glial energetics hypothesis. Behav Brain
Funct 2:30.

Sanchez-Mora C, Ribases M, Ramos-Quiroga JA, Casas M, Bosch R,
Boreatti-Hummer A, Heine M, Jacob CP, Lesch KP, Fasmer OB,
Knappskog PM, Kooij JJ, Kan C, Buitelaar JK, Mick E, Asherson P,
Faraone SV, Franke B, Johansson S, Haavik J, Reif A, Bayes M, Cormand
B. 2009.Meta-analysis of brain-derived neurotrophic factor p. Val66Met
in adult ADHD in four European populations. Am J Med Genet B
Neuropsychiatr Genet 153B(2):512–523.

http://www.healthforallchildren.co.uk/
http://www.healthforallchildren.co.uk/


704 AMERICAN JOURNAL OF MEDICAL GENETICS PART B
Schmidt-KastnerR, vanOs J, EsquivelG, SteinbuschHW,RuttenBP. 2012.
An environmental analysis of genes associated with schizophrenia:
Hypoxia and vascular factors as interacting elements in the neurodeve-
lopmental model. Mol Psychiatry 17(12):1194–1205.

Schmidt-Kastner R, van Os J, Steinbusch H, Schmitz C. 2006. Gene
regulation by hypoxia and the neurodevelopmental origin of schizophre-
nia. Schizophr Res 84(2-3):253–271.

Sengupta SM, Grizenko N, Schmitz N, Schwartz G, Ben Amor L, Belling-
ham J, deGuzmanR, PolotskaiaA, Ter StepanianM,ThakurG, JooberR.
2006. COMT Val108/158Met gene variant, birth weight, and conduct
disorder in children with ADHD. J Am Acad Child Adolesc Psychiatry
45(11):1363–1369.

SharpW, Gottesman R, Greenstein D, Ebens C, Rapoport J, Castellanos F.
2003. Monozygotic twins discordant for attention-deficit/hyperactivity
disorder: Ascertainment and clinical characteristics. J Am Acad Child
Adolesc Psychiatry 42(1):93–97.

ShawP. 2010. The shape of things to come in attention deficit hyperactivity
disorder. Am J Psychiatry 167(4):363–365.

Shaw P, Lerch J, Greenstein D, Sharp W, Clasen L, Evans A, Giedd J,
Castellanos FX, Rapoport J. 2006. Longitudinal mapping of cortical
thickness and clinical outcome in children and adolescents with atten-
tion-deficit/hyperactivity disorder. Arch Gen Psychiatry 63(5):540–549.

Shibuya M. 2008. Vascular endothelial growth factor-dependent and -
independent regulation of angiogenesis. BMB reports 41(4):278–286.

Sonuga-Barke EJ, Halperin JM. 2010. Developmental phenotypes and
causal pathways in attention deficit/hyperactivity disorder: Potential
targets for early intervention?. J Child Psychol Psychiatry 51(4):368–389.

Steiner J, Bernstein HG, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff
G, Bogerts B. 2007. Evidence for a wide extra-astrocytic distribution of
S100B in human brain. BMC neuroscience 8:2.

Steiner J, Bogerts B, Sarnyai Z,WalterM, Gos T, BernsteinHG,Myint AM.
2012. Bridging the gap between the immune and glutamate hypotheses of
schizophrenia and major depression: Potential role of glial NMDA
receptor modulators and impaired blood-brain barrier integrity. World
J Biol Psychiatry 13(7):482–492.

Swanson JD, Wadhwa PM. 2008. Developmental origins of child mental
health disorders. J Child Psychol Psychiatry 49(10):1009–1019.

Swanson JM, Entringer S, Buss C, Wadhwa PD. 2009. Developmental
origins of health and disease: Environmental exposures. Semin Reprod
Med 27(5):391–402.

Swanson JM,KinsbourneM,Nigg J, LanphearB, StefanatosGA,VolkowN,
Taylor E,CaseyBJ,Castellanos FX,WadhwaPD. 2007. Etiologic subtypes
of attention-deficit/hyperactivity disorder: Brain imaging, molecular
genetic and environmental factors and the dopamine hypothesis. Neuro-
psychol Rev 17(1):39–59.

Thapar A, Cooper M, Eyre O, Langley K. 2013. What have we learnt about
the causes of ADHD? J Child Psychol Psychiatry 54(1):3–16.

Thapar A, Langley K, Fowler T, Rice F, Turic D, Whittinger N, Aggleton J,
Van den Bree M, Owen M, O’Donovan M. 2005. Catechol O-methyl-
transferase gene variant and birth weight predict early-onset antisocial
behavior in children with attention-deficit/hyperactivity disorder. Arch
Gen Psychiatry 62(11):1275–1278.
ToddRD,BotteronKN.2001. Is attention-deficit/hyperactivity disorder an
energy deficiency syndrome? Biol Psychiatry 50(3):151–158.

Toft P. 1999. Prenatal and perinatal striatal injury: A hypothetical cause of
attention-deficit-hyperactivity disorder? Pediatr Neurol 21(3):602–610.

Tolsa C, Zimine S,Warfield S, FreschiM, Sancho R, Lazeyras F, Hanquinet
S, Pfizenmaier M, Huppi P. 2004. Early alteration of structural and
functional brain development in premature infants born with intrauter-
ine growth restriction. Pediatr Res 56(1):132.

van Os J, Wichers M, Danckaerts M, Van Gestel S, Derom C, Vlietinck R.
2001. A prospective twin study of birth weight discordance and child
problem behavior. Biol Psychiatry 50(8):593–599.

Vecsei L, SzalardyL, FulopF, Toldi J. 2013.Kynurenines in theCNS:Recent
advances and new questions. Nat Rev Drug Discov 12(1):64–82.

Visser GH, Eilers PH, Elferink-Stinkens PM, Merkus HM, Wit JM. 2009.
New Dutch reference curves for birthweight by gestational age. Early
Hum Dev 85(12):737–744.

Vucetic Z, Totoki K, Schoch H, Whitaker KW, Hill-Smith T, Lucki I,
Reyes TM. 2010. Early life protein restriction alters dopamine circuitry.
Neuroscience 168(2):359–370.

Wadhwa PD, Buss C, Entringer S, Swanson JM. 2009. Developmental
origins of health and disease: Brief history of the approach and
current focus on epigenetic mechanisms. Semin Reprod Med 27-
(5):358–368.

Waldman ID. 2007. Gene-environment interactions reexamined: Does
mother’smarital stability interact with the dopamine receptorD2 gene in
the etiology of childhood attention-deficit/hyperactivity disorder?. Dev
Psychopathol 19(4):1117–1128.

WalhovdKB, Fjell AM,BrownTT,Kuperman JM,ChungY,HaglerDJ, Jr.,
Roddey JC, Erhart M, McCabe C, Akshoomoff N, Amaral DG, Bloss CS,
Libiger O, Schork NJ, Darst BF, Casey BJ, Chang L, Ernst TM, Frazier J,
Gruen JR, KaufmannWE,Murray SS, van Zijl P, Mostofsky S, Dale AM,
Pediatric Imaging, Neurocognition, Study Group. 2012. Long-term
influence of normal variation in neonatal characteristics on human brain
development. Proc Natl Acad Sci U S A 109(49):20089–20094.

Wang Y, Cao M, Liu A, Di W, Zhao F, Tian Y, Jia J. 2013. Changes of
inflammatory cytokines and neurotrophins emphasized their roles in
hypoxic-ischemic brain damage. Int J Neurosci 123(3):191–195.

WichersM, Purcell S, DanckaertsM, DeromC, DeromR, Vlietinck R, Van
Os J. 2002. Prenatal life and post-natal psychopathology: Evidence
for negative gene–birth weight interaction. Psychol Med 32(07):1165–
1174.

Wonodi, I, Schwarcz R. 2010. Cortical kynurenine pathwaymetabolism: A
novel target for cognitive enhancement in Schizophrenia. Schizophr Bull
36(2):211–218.

Zhang YF, Wang XY, Guo F, Burns K, Guo QY, Wang XM. 2012.
Simultaneously changes in striatum dopaminergic and glutamatergic
parameters following hypoxic-ischemic neuronal injury in newborn
piglets. Eur J Paediatr Neurol 16(3):271–278.

SUPPORTING INFORMATION

Additional supporting information may be found in the online

version of this article at the publisher’s web-site.


