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Low birth weight is associated with increased risk for Attention-
Deficit/Hyperactivity Disorder (ADHD); however, the etiologi-
cal underpinnings of this relationship remain unclear. This study
investigated if genetic variants in angiogenic, dopaminergic,
neurotrophic, kynurenine, and cytokine-related biological path-
ways moderate the relationship between birth weightand ADHD
symptom severity. A total of 398 youth from two multi-site,
family-based studies of ADHD were included in the analysis. The
sample consisted of 360 ADHD probands, 21 affected siblings,
and 17 unaffected siblings. A set of 164 SNPs from 31 candidate
genes, representing five biological pathways, were included in
our analyses. Birth weight and gestational age data were collected
from a state birth registry, medical records, and parent report.
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Generalized Estimating Equations tested for main effects and
interactions between individual SNPs and birth weight centile in
predicting ADHD symptom severity. SNPs within neurotrophic
(NTRK3) and cytokine genes (CNTFR) were associated with
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ADHD inattentive symptom severity. There was no main effect of
birth weight centile on ADHD symptom severity. SNPs within
angiogenic (NRP1 & NRP2), neurotrophic (NTRK1 & NTRK3),
cytokine (IL16 & S100B), and kynurenine (CCBL1 & CCBL2)
genes moderate the association between birth weight centile and
ADHD symptom severity. The SNP main effects and SNP X birth
weight centile interactions remained significant after adjusting
for multiple testing. Genetic variability in angiogenic, neuro-
trophic, and inflammatory systems may moderate the associa-
tion between restricted prenatal growth, a proxy for an adverse
prenatal environment, and risk to develop ADHD.

Key words: Attention Deficit Hyperactivity Disorder; birth-
weight; gene-environment interaction; neurotrophin; Devel-
opmental Origins of Health and Disease

Attention-Deficit/Hyperactivity Disorder (ADHD) is character-
ized by persistent, pervasive, and developmentally inappropriate
levels of inattention, hyperactivity-impulsivity, or both. ADHD
arises from the complex interplay between genetic and environ-
mental factors [Thapar et al., 2013]. Consequently, there are likely
to be multiple etiological pathways leading from early risk to the
development of the disorder [Sonuga-Barke and Halperin, 2010;
Thapar et al., 2013]. In particular, environmental insults during
prenatal development have the potential to have lasting effects on
neurodevelopmental risk for ADHD [Lou, 1996; Toft, 1999; Lou
et al., 2004; Mill and Petronis, 2008]. Although multiple prenatal
environmental risk factors for ADHD have been identified [Bane-
rjee et al., 2007; Nigg et al., 2010; Froehlich et al., 2011], specific
developmental mechanisms that contribute to the emergence of
ADHD are poorly understood.

Restricted fetal growth phenotypes, like low birth weight
(<2,500 g) and small for gestational age, are among the strongest
risk factors for ADHD and lead to 1.5 to 3-fold increase in ADHD
risk [Breslau et al., 1996; Mick et al., 2002; Indredavik et al., 2004;
Linnet et al.,, 2006; Boulet et al., 2009]. The strength of this
association, however, varies across studies [Nigg, 2006] and is not
always replicated [Cornforth et al., 2012]. Consistent with the
dimensional nature of ADHD [Levy et al., 1997; Coghill and
Sonuga-Barke, 2012], the association between lower birth weight
and ADHD-related phenotypes is continuous and extends into
the normal birth weight range [Boulet et al., 2009; Phua
et al., 2012; Qiu et al., 2012; Walhovd et al., 2012]. Lower birth
weight is also associated with reduced anterior cingulate cortex,
caudate nucleus, and total brain volumes [Peterson et al., 2003;
Tolsa et al., 2004; de Kieviet et al., 2012; Walhovd et al., 2012],
which are linked with ADHD behavioral symptomatology [Frodl
and Skokauskas, 2012; Hart et al., 2013]. Identifying biological
mechanisms that contribute to the association between lower
birth weight and ADHD may further elucidate early develop-
mental pathways to ADHD.
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Similar to ADHD [Thapar et al., 2013], birth weight has multi-
factorial origins and a substantial heritability estimate [Mook-
Kanamori et al., 2012]. This allows for the possibility that birth
weight and ADHD share a common genetic liability. Twin studies,
however, demonstrate that prenatal environmental factors, rather
than shared genetic factors, largely account for the relationship
between birth weight and ADHD symptoms [Lehn et al., 2007;
Groen-Blokhuis et al., 2011; Ficks et al., 2013; Sharp et al., 2003] or
externalizing behavior [van Os et al., 2001; Wichers et al., 2002].
This suggests that environmental determinants of lower birth
weight contribute to the development of ADHD.

Suboptimal maternal-placental-fetal nutrient and oxygen trans-
port (e.g., placental insufficiency) is associated with restricted fetal
growth in most cases [Ghidini, 1996; Hendrix et al., 2008]. Prenatal
ischemia-hypoxia is considered the primary pathway to lower birth
weight, especially in well-nourished populations [Henriksen et al.,
2002]. Placental insufficiency and fetal growth restriction are
associated with altered angiogenic [Conde-Agudelo et al., 2013],
dopaminergic [Vucetic et al., 2010], neurotrophic [Malamitsi-
Puchner et al, 2007], and inflammatory responses [Amarilyo
et al., 2011], and numerous poor neurodevelopmental outcomes
[Baschat, 2011]. Prenatal ischemia-hypoxia is a common element
to multiple early risk factors for ADHD including maternal smok-
ing [Bush et al., 2000] and maternal alcohol use during pregnancy
[Bosco and Diaz, 2012] as well as ischemia-hypoxia related obstetric
complications [Pineda et al., 2007; Rennie et al., 2007; Getahun
etal., 2013]. Consistent with the Developmental Origins of Health
and Disease (DOHaD) framework [Gluckman et al., 2004; Mill
et al., 2008; Swanson and Wadhwa, 2008; Swanson et al., 2009;
Wadhwa et al., 2009], the association between lower birth weight
and ADHD may arise from prenatal ischemia-hypoxia. Prenatal
ischemia-hypoxia may directly disrupt or delay development or
lead to structural or functional adaptations to the adverse intra-
uterine environment. Such adaptations, however, may leave the
individual ill-equipped to function in a nutrient and oxygen rich
postnatal environment. For example, in response to prenatal
ischemia-hypoxia some fetuses preferentially redistribute blood
flow to the brain, known as the “brain-sparing effect” [Roza
et al., 2008]. Fetuses that demonstrate “brain-sparing” circulation
may be better protected from the immediate adverse effects of
ischemia-hypoxia, however, these fetuses may exhibit decreased
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cerebral vascular plasticity [Fu etal., 2006] and increased behavioral
problems [Roza et al., 2008; Figueras et al., 2011]. Genetic variabil-
ity in key ischemia-hypoxia related developmental systems may
further alter susceptibility to ADHD, following an adverse intra-
uterine environment.

Few studies have investigated how the interplay between
fetal growth and genetic variability contributes to ADHD’s complex
pathophysiology. Langley et al. (2008) found that “classic” candi-
date neurotransmitter gene (DAT1, DRD4, DRDS5, and SLC6A4)
variants did not moderate the association between birth weight and
ADHD. Another study reported that ADHD youth who also had
low birth weight were at increased risk for early-onset antisocial
behavior if they possessed the COMT Val/Val genotype [Thapar
etal., 2005]. This finding, however, was not replicated in a separate
ADHD clinical sample [Sengupta et al., 2006]. To examine mech-
anisms linking fetal growth with ADHD, it may be important to
broaden the search to genes implicated in the response to prenatal
ischemia-hypoxia, a main determinant of restricted fetal growth.

Prenatal ischemia-hypoxia impacts multiple neurodevelopmen-
tal systems [Schmidt-Kastner et al., 2012; Zhang et al., 2012; Wang
et al., 2013]. Of the many systems implicated in the ischemia-
hypoxia response, dopaminergic [Levy, 1991; Swanson et al., 2007],
neurotrophic [Ribases et al., 2008; Sanchez-Mora et al., 2009],
angiogenic [Kim et al., 2002; Jesmin et al., 2004], kynurenine
[Oades, 2011] and cytokine systems [Oades, 2011] are also impli-
cated in the development of ADHD and related conditions. There-
fore, genetic variants within these five systems were the focus of this
study. Variability in genes regulating these systems may alter
vulnerability to the effects of prenatal ischemia-hypoxia leading
to the neurodevelopmental deficits that mediate the ADHD behav-
ioral phenotype [Toft, 1999; Shaw et al.,, 2006; Rapoport and
Gogtay, 2008]. To address this hypothesis, we examined interac-
tions between genetic variants within ischemia-hypoxia response
systems and birth weight centile, adjusted for gestational age, to
predict ADHD symptom severity. We predicted that: (i) lower birth
weight centile would be associated with increased ADHD symp-
tomatology; and (ii) SNPs within dopaminergic, neurotrophic,
angiogenic, kynurenine and cytokine system genes would moderate
the association between birth weight centile and ADHD symptom
severity.

Participants were drawn from two larger studies - the North
Carolina Genetics of ADHD Project [NCGAP; Kollins
et al,, 2008; Anastopoulos et al., 2011] and the International
Multisite ADHD Genetics Project [IMAGE; Brookes et al., 2006;
Kuntsi et al., 2006; Neale et al., 2008b], the latter including 12
enrollment sites within Europe and Israel. The current analysis was
conducted on a subset of the NCGAP and IMAGE samples who
were singleton births and had birth weight, gestational age, and
genome-wide single nucleotide polymorphism (SNP) data. Birth
weight and gestational age data were only available for IMAGE
study sites in the United Kingdom, Ireland and the Netherlands.
Furthermore, we only included Caucasian participants due to
genotype imputation procedures (described below). Of the 398
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Site n % of total sample
Ireland 33 8.3
Netherlands - Amsterdam 101 25.4
Netherlands - Nijmegen 73 18.3
United Kingdom 84 21.1
IMAGE Subtotal 291 73.1
Duke 65 16.3
UNCG 42 10.6
NCGAP Subtotal 107 26.9
Total Sample 398 100

youth in the final sample (Table I), 86% met criteria for DSM-IV
ADHD Combined Type (n=327), 11% met for ADHD Inattentive
Type (n=42), 3% met for ADHD Hyperactive-Impulsive Type
(n=12), and 4% were unaffected (n = 17). For NCGAP [Anasto-
poulos et al., 2011] and IMAGE [Neale et al., 2008a], DSM-IV
ADHD diagnoses were based on parental responses to a clinical
interview as well as teacher and/or parent responses to behavior
rating scales. This study was approved by the affiliated institutional
review boards and conducted in accordance with human subjects
guidelines.

Conners’ parent rating scale (CPRS; Conners, 1997). Parent
responses to the CPRS 18-item DSM-IV ADHD total subscale, as
well as 9-item Inattentive and Hyperactive—Impulsive subscales
were summed and converted to #-scores adjusting for age and
gender of each participant [Conners et al., 1998]. Parents were
instructed to rate their child’s ADHD symptoms when not taking
medication prescribed for ADHD. The resulting scores were con-
tinuous measures of ADHD symptom severity and served as out-
comes in this study. The CPRS ADHD Total (skewness = —0.81;
SE =0.12), Inattentive (skewness = —0.50; SE = 0.12), and Hyper-
active—Impulsive (skewness = —0.85; SE =0.12) scores were non-
normally distributed. Therefore, transformed CPRS ADHD Total
(square root of reflected score transformation; skewness = —0.03;
SE=0.12), Inattentive (squared transformation; skewness=
<0.01; SE=0.12), and Hyperactive-Impulsive scores (square
root transformation; skewness = —0.07; SE =0.12) were selected
for analysis based on normality.

Birth weight centile range. Birth weight centiles were calculat-
ed for each participant adjusting for gestational age and sex, based
on separate normative samples for the Netherlands, United King-
dom/Ireland, and United States participants.

NCGAP. Birth weight and gestational age for the NCGAP
sample was retrieved through medical records, parental report,
and state birth registry. Birth weight centiles for NCGAP were
created using all singleton births from 2000xps12004 from the
CDC National Vital Statistics natality files. For consistency, indi-
vidual centiles were then converted to the centile ranges described
below.
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IMAGE. Forthe Dutch sample, birth weight and gestational age
were obtained through retrospective parent report. The
Netherlands Perinatal Registry reference curves were used to cal-
culate birth weight centiles for the Dutch sample [Visser
et al., 2009]. The Netherlands Perinatal Registry reference curves
provide 11 normative references at 2.3, 5, 10, 16, 20, 50, 80, 84, 90,
95, and 97.7 centiles [Visser et al., 2009]. Therefore, 12 birth weight
centile ranges were created (0-2.29, 2.3-4.9, 5-9.9, 10-15.9, 16—
19.9, 20-49.9, 50-79.9, 80-83.9, 84-89.9, 90-94.9, 95-97.6, 97.7—
100). Lower scores on the resulting ordinal severity scale of birth
weight centile ranges represented higher levels of fetal growth
restriction.

Birth weight and gestational age for samples from Ireland and the
UK were obtained from retrospective parent report. The UK
reference curves [Pan et al., 2010; Cole et al., 2011] were used to
calculate birth weight centiles for the UK and Ireland samples, based
onbirth weight, gestational age, and sex. For consistency, individual
birth weight centiles were converted to birth weight centile ranges
identical to those created in the Dutch sample.

Genotyping. SNP genotyping for the NCGAP subsample
was performed using the Illumina Infinium HumanHap300 duo
(Ilumina, Inc., San Diego, CA) at the Center for Human Genetics
at Duke University Medical School. Two Centre d’Etude du
Polymorphism Humain (CEPH) controls and blinded duplicates
were used for every 94 samples and required to match 100%.
Additional quality checks of the genotyping data were examined
using PLINK [Purcell et al., 2007]. Call rates exceeded 98% for all
individuals. Individuals were excluded due to gender discrepancy
and if per-family Mendelian errors were in excess of 1%. SNPs
were excluded from analysis if they had Mendelian errors in >4
families or deviated from Hardy-Weinberg Equilibrium (HWE;
P <0.000001).

SNP genotyping for the IMAGE subsample was performed at
Perlegen Sciences (Mountain View, CA) on a microarray designed
for the Genetic Association Information Network (GAIN). Quality
checks were completed by the National Center for Biotechnology
Information (NCBI) using GAIN QA/QC, version 0.7.4 [Abecasis
Gopalakirshnana]. Individuals were excluded due to gender dis-
crepancy and if per-family Mendelian errors were in excess of 2%.
SNPs were excluded if the: (i) call rate was <95%; (ii) heterozygosity
was >32%; (iii) discrepancy in SNP call was <10% in whole sample;
or (iv) HWE P < 0.000001.

Candidate genes were selected based of literature review of
candidate signaling pathways [Reichardt, 2006; Shibuya, 2008],
ischemia—hypoxia response genes [Schmidt-Kastner et al., 2006],
ADHD etiological studies [Gizer et al., 2009; Oades et al., 2010;
Oades, 2011] and genotyping platform coverage. SNPs within
dopaminergic (COMT, DAT1, DRD2, DRD3, and DRD5), neuro-
trophic (BDNF, NGF, NT3, NGFR, NTRK1, NTRK2, and NTRK3),
angiogenic (VEGFA, VEGFR1, VEGFR2, NRP1, NRP2, HIF1A,
and HIFIAN), kynurenine (CCBL1, CCBL2, and KYNU) and
cytokine related genes (CNTF, CNTFR, CRLFI, IL6, IL13, IL16,
LIF, LIFR, and S100B) that passed quality control measures were
considered for inclusion in the analysis. To increase genetic overlap
across NCGAP and IMAGE, genotype data were imputed with
the use of the phased data from the HapMap samples (CEU;
build 36, release 22) and MACH [http://www.sph.umich.edu/
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csg/abecasissMaCH/download; Li et al., 2009, 2010]. Imputed
SNPs with an R” value <0.3, indicating poor imputation quality,
were excluded from analysis (see Supplementary Table SI for
SNP imputation quality). Note that not all SNPs attributed to
candidate genes in this build are attributed to the same genes in
NCBI build 37.

A total of 2,014 dopaminergic, neurotrophic, angiogenic,
kynurenine and cytokine SNPs were available for this study and
submitted for quality checks. The majority of these SNPs were not
functional. To reduce the number of statistical tests conducted,
remaining SNPs with a: (i) minor allele frequency (MAF) <0.1; (ii)
genotype frequency below seven; or (iii) in linkage disequilibrium
(LD; R* > 0.64) were eliminated. A total of 164 SNPs in dopami-
nergic, neurotrophic, angiogenic, kynurenine, and cytokine sys-
tems remained.

Bivariate correlations and Pearson product-moment correlation
coefficients examined the associations among demographic, peri-
natal risk, and ADHD variables. In addition, t-tests and ANOVAs
were used to test for differences between demographic groups on
perinatal and ADHD variables. Alpha was set at 0.01 for these
analyses.

Generalized Estimating Equations (GEEs) tested for main effects
of SNP genotype and birth weight centile range, and the interaction
between SNP and birth weight centile range in predicting ADHD
symptom severity. Given that within family data are more corre-
lated than between family data, GEEs account for the family
correlation among siblings within the sample. An independent
working correlation matrix and the model-based robust estimator
covariance matrix were selected, which provides a reliable covari-
ance estimate even when the correlation matrix is not correctly
specified.

Linear GEEs were employed to test the SNP and birth weight
centile range main effects on ADHD symptom severity after adjust-
ing for research site, age, and sex as covariates. Next, to test the
hypothesis that SNP genotype moderates the association between
birth weight centile and ADHD symptom severity, the covariates of
site, age, and sex and main effects of SNP genotype and birth weight
centile range were entered into the model, followed by the SNP x
birth weight centile range interaction. Wald chi-square tests calcu-
lated with Type III sums of squares tested the significance of main
and interactive effects. In addition, continuous variables were
centered to ease the interpretation of model effects. No specific
genetic model was assumed in the primary analysis, as the genetic
model could differ depending on the genetic variant. Additive,
dominant, and recessive genetic models were tested on a secondary
basis.

In the GEEs, alpha was set at .01 for nominally significant
findings. A total of 164 independent GEEs were calculated. The
Benjamini-Hochberg False Discovery Rate (FDR) test [Benjamini
and Hochberg, 1995] was used to adjust for multiple comparisons.
The FDR g-value threshold was set at 0.05 to determine statistical
significance. This study is adequately powered to detect reasonably
sized SNP X birth weight centile interactions on ADHD without
accounting for multiple testing and is underpowered to detect
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interactions after FDR correction (Supplementary Table SII).
Exploratory Sobel tests were conducted to examine if birth weight
centile mediated the effect of SNPs on ADHD symptom severity. All
analyses were completed using SAS.

A total of 398 youth participated in the current study (see Table I for
sample size by site), including 360 ADHD probands, 21 affected
siblings, and 17 unaffected siblings. The sample had a mean age of
10.7 years (SD = 3.02 years; range 5-17 years) and was 83% male. In
terms of birth characteristics, the samples’ mean birth weight
(M=3,389.25g; SD=565g) and gestational age (M =39.56
weeks; SD = 1.94 weeks) were in the normal range.

Table II gives a summary of the relationships between continu-
ous demographic, perinatal, and ADHD variables. Older youth had
lower birth weight centile range scores and higher CPRS ADHD
Total scores. There were no differences between females and males
in birth weight centile range (t(396) = 0.67, p = 0.50), birth weight
(t(396) =N—0.707, p=0.48), or gestational age (t(396)=0.72,
p=.47).

Birth weight centile range scores, varied across data collection
sites, F(5, 397)=8.34, P<0.01 (Duke, M=6.92, SD=0.28;
UNCG, M =7.98, SD=0.34; Ireland, M =6.26, SD=0.24;
Netherlands—Amsterdam, M = 5.77, SD = 0.22; Netherlands—Nij-
megen, M =5.88, SD =0.26; UK, M =7.24, SD =0.39). In addi-
tion, CPRS ADHD Total scores varied across data collection sites,
F(5, 397) =4.09, P < 0.01. In general, IMAGE samples had higher
CPRSADHD Total scores compared to the NCGAP samples (Duke,
M =74.24, SD =13.96; UNCG, M =75.19, SD = 14.49; Ireland,
M =79.27, SD =9.26; Netherlands—Amsterdam, M = 76.35, SD
=8.22; Netherlands—Nijmegen, M =78.32, SD=7.82; UK,
M =81.58; SD =8.33).

Analysis of SNP main effects on ADHD symptom severity.
After controlling for site, age, sex, and multiple testing, three out
of 164 SNPs had a significant main effect on the CPRS Inatten-
tive score (see Table III and Supplementary Tables SVII and
SVIII for SNP main effects from each statistical model). In the
cytokine system, rs10758268 (CNTFR; g=0.005) and rs7044318
(CNTFR; g=0.021) genotypes were associated with the CPRS
Inattentive score. In the neurotrophic system, rs3825885

Age
Age —
CPRS ADHD Total 0.21°
Birth Weight Centile Range —0.14°
Birth Weight (g) —0.08
Gestational Age 0.08

Note: N = 398. CPRS, Conners’ Parent Rating Scale.
“Correlation is significant at the 0.01 level (2-tailed).

CPRS ADHD total
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(NTRK3; g=0.021) genotype predicted the CPRS Inattentive
score. SNP main effects on ADHD Total Score and Hyperactivi-
ty-Impulsivity were not significant after adjusting for multiple
testing (Table III).

Main effect of birth weight centile range on ADHD symptom

severity. Contrary to the first hypothesis, birth weight centile
range was not associated with ADHD Total (b=0.26; SE=0.21;
95% CI= —0.15-0.68; P=0.21), Inattentive (b =0.28; SE = 0.20;
95% CI=-0.11-0.67; P=0.16) or Hyperactive-Impulsive
(b=0.14; SE=0.23; 95% CI=-0.30-0.59; P=0.53) scores.
Note for interpretative purposes the above statistics are from
non-transformed ADHD subscale models (P-values are consistent
with transformed ADHD subscale models)

Interactions between SNPs and birth weight centile on ADHD

symptom severity. Out of the 164 interaction effects tested
below without assuming a specific genetic model (Supplementary
Table SIII), multiple SNP x birth weight centile interactions
predicted ADHD symptom severity after multiple testing correc-
tion (Table IV). Significant interactions included SNPs within
angiogenic, neurotrophic, kynurenine, and cytokine systems.
Specifically, for ADHD Total symptom severity, interactions
between SNPs within the CCBL1, NTRK1, and NTRK3
genes and birth weight centile range were significant (Fig. 1).
The interaction between a CCBL2 SNP and birth weight
centile range predicted Inattentive symptom severity (Fig. 2).
Finally, eleven SNPs in the CCBL1, CCBL2, IL16, NRP1, NRP2,
NTRK1, NTRK3, and S100B genes moderated the association
between birth weight centile range and Hyperactive-Impulsive
symptom severity (Fig. 2). Interactions involving dopaminergic
SNPs were no longer significant after the multiple testing
correction.

Exploratory analyses were conducted assuming additive, domi-
nant, and recessive genetic models. Dominant genetic models
produced five interactions predicting ADHD total score, two
interactions predicting Inattentive symptom severity, and eleven
interactions predicting Hyperactive-Impulsive score after multiple
testing correction (Supplementary Table SIV). Fewer interactions
were observed for additive and recessive genetic models (Supple-
mentary Tables SV and SVI, respectively). Finally, sobel tests did not
provide evidence that the relationship between individual SNPs and
ADHD symptom severity was mediated by birth weight centile for
any of the models (results not shown).

Birth weight

centile range Birth weight (g)

0.02 —
0.04 0.76° =
0.10 —0.09 0.50°
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SNP Main Effect

Minor Allele Count Mean (SD)

q-value

p-value

MAF

SNP
rs10758268

Gene
CNTFR

System

Phenotype
ADHD Total

0.083
0.083
0.093
0.142
0.005
0.021
0.021
0.074
0.231
0.231
0.231
0.162
0.179
0.202

0.001
0.001
0.002
0.003
3.1E-05
3.4E-04
3.9E-04
0.002
0.009
0.009
0.010
0.001
0.002
0.004

= = =y >

11.64)
7.28)
9.41)
9.89)
11.39)
9.64)
3.61)
10.26)
4.86)

e e e e e e e e e e o o

67.26
61.00
74.30
74.85
70.70
73.55
87.67
81.26
86.29

8.77)
10.27)
10.92)
9.62)
9.01)
10.83)
10.96)
12.04)
11.92)

e e e e e e e e e e e e )

7’6.94
76.76
?5.85
75.88
’1.19
?3.76
70.25
71.69
70.96
73.47
?0.23
79.47
76.97
’e.11

8.94)
10.18)
10.15)
9.76)
9.16)
10.57)
9.92)
8.75)
10.34)
10.53)
8.52)
11.53)
10.99)
11.15)

e e e e e e e e e o

79.94

78.37
79.13

(C] 0.1
(G) 0.46
(6) 0.15

Note. MAF, minor allele frequency; CYTK, cytokine; DA, dopaminergic; NT, neurotrophic; ANG, angiogenic; p-value, nominal p-value; g-value, FDR corrected p-value.

N — — — — — —

e e e e e e

395
391
385
393
397
397
387
3

rs324035
rs?044318
rs?171540
rs10758268
rs3825885
rs7044318
rs6476455
rs42042?2
rs2731960
rs2067951
rs10266564
rs?171540
rs1017757

DRD3
CNTFR
IL16
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Examining biologically informed gene by environment interactions
in ADHD may aid in the identification of novel genes associated
with ADHD and further the search for neurodevelopmental mech-
anisms underlying vulnerability for ADHD. Lower birth weight is
commonly associated with ADHD [Nigg et al., 2010]; however, it is
unclear what accounts for the phenotypic overlap between restrict-
ed fetal growth and ADHD. Therefore, this study examined whether
SNPs within ischemia-hypoxia responsive systems interact with
birth weight centile to predict ADHD symptom severity.

Contrary to previous work, lower birth weight centile was not
independently associated with increased ADHD symptom sever-
ity in our data set. In general, literature demonstrates there is an
association between restricted fetal growth and ADHD symptom
severity [Bhutta et al., 2002; Indredavik et al., 2004; Lahti
et al., 2006], however, null findings have also been reported
[Cornforth et al., 2012]. In this sample largely consisting of
ADHD cases, levels of inattention and hyperactivity-impulsivity
were elevated and represented the upper end of the ADHD risk
spectrum. Thus, reduced variability in ADHD symptom severity
in case-only [Langley et al., 2007] or family-based designs may
have made the relationship between lower birth weight and
ADHD more difficult to detect. These results emphasize the
heterogeneity in the relationship between lower birth weight
and ADHD risk.

Regarding genetic main effects, one SNP within NTRK3 (de-
scribed below) and two SNPs within CNTFR were associated with
ADHD inattentive symptom severity, after adjusting for multiple
testing. CNTFR encodes for ciliary neurotrophic factor receptor
and is implicated in neurodevelopment and neuron survival
[DeChiara et al., 1995]. In independent samples of children and
adults, a three-marker CNTFR haplotype was associated with
ADHD [Ribases et al., 2008]. Taken together, these findings suggest
that CNTFR may be implicated in the development of ADHD.

SNPs within angiogenic, neurotrophic, kynurenine, and cyto-
kine genes moderated the association between birth weight centile
and ADHD symptom severity. In the neurotrophic pathway,
NTRK1 and NTRK3 SNPs moderated the association between
birth weight centile and ADHD total and hyperactive-impulsive
symptom severity. NTRK1 and NTRK3 encode for tyrosine kinase
receptors TrkA and TrkC, respectively. Nerve growth factor (NGF)
preferentially binds to TrkA whereas neurotrophin-3 (NT3) binds
at high affinity to TrkC to promote neuron survival and synaptic
plasticity [Lamballe et al., 1991; Reichardt, 2006], including in
hypoxic conditions [Lee et al., 2003; Lin et al., 2006; Ishitsuka
et al.,, 2012]. TrkA is expressed in various neuronal populations
including cholinergic neurons in the basal forebrain and striatum
[Holtzmanetal., 1995]. TrkCis expressed throughout the brain and
is most abundant in the hippocampus [Ernfors et al., 1992]. A
previous molecular genetic study has implicated neurotrophic
factors, especially, NT3, in ADHD risk, though not NTRK1 or
NTRK3 [Ribases et al., 2008]. Additionally in the present study, one
SNP within NTRK2 moderated the relationship between birth
weight centile and ADHD hyperactive-impulsive symptoms at a
trend level. Together these findings support the notion that neuro-
trophic receptor genotype is implicated in the development of
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SNP Main Effect Interaction

Phenotype System Gene SNP NCBI n MAF p-value g-value p-value g-value
ADHD total NT NTRK1 rs962879 155113379 397 (C) 0.14 0.889 0.979 3E-06 4E—04*
KYN CCBL1 rs10793967 130642111 397 (A) 0.15 0.805 0.949 1E—04 0.009*

NT NTRK3 rs8037291 86308935 380 (G) 0.18 0.021 0.274 3E—04 0.016*

NT NTRK3  rs17755717 86426100 377 (A) 0.18 0.454 0.852 0.003 0.088

KYN CCBL2 rs4656076 89190875 389 (C) 0.23 0.261 0.697 0.003 0.088

NT NTRK3 rs1017757 86355556 390 (G) 0.15 0.097 0.507 0.006 0.161

ANG NRP2 rs17682318 206285589 391 (C) 0.3 0.998 0.998 0.008 0.188

Inattentive KYN CCBL2 rs4656076 89190875 389 (C) 0.23 0.195 0.669 3E—04 0.049*

CYTK IL16 rs11634770 79383455 397 (T) 0.13 0.785 0.953 6E—04 0.051

NT NTRK3 rs8037291 86308935 380 (G) 0.18 0.048 0.426 0.003 0.159

NT NTRK3  rs17755717 86426100 377 (A} 0.18 0.36 0.773 0.007 0.262

ANG NRP1 rs2273466 33551053 397 (C) 0.19 0.269 0.689 0.008 0.262

CYTK IL16 rs931963 79263756 393 (T) 0.15 0.706 0.926 0.01 0.264

Hyperactive-impulsive NT NTRK3  rs8037291 86308935 380 (G) 0.18  0.153 0.719 4E-06 ‘E—04*
NT NTRK1 rs962879 155113379 397 (C) 0.14 0.979 0.989 9E—06 7E—04*

KYN CCBL2  rs10922552 89212813 387 (G) 0.11 0.422 0.793 8E—05 0.003*

NT NTRK3 rs1017757 86355556 390 (G) 0.15 0.004 0.202 6E—05 0.003*

KYN CCBL1 rs10793967 130642111 397 (A) 0.15 0.983 0.989 8E—05 0.003*

ANG NRP1 rs2065364 33634008 395 (T) 0.29 0.809 0.982 2E—04 0.005*

ANG NRP2 rs13419677 206266851 395 (C) 0.15 0.301 0.788 SE—04 0.013*

ANG NRP1 rs2073320 33593263 396 (A) 0.4 0.883 0.988 0.001 0.021*

NT NTRK3 rs2114251 86465797 384 (A) 0.15 0.868 0.988 0.001 0.023*

CYTK IL16 rs8039027 79343327 393 (A) 0.24 0.628 0.917 0.002 0.026*

CYTK S100B rs2839361 46848617 395 (C) 0.14 0.875 0.988 0.003 0.037*

ANG NRP1 rs3780867 33587815 397 (A) 0.47 0.879 0.988 0.005 0.069

NT NTRK2 rs11141486 86522947 396 (G) 0.31 0.862 0.988 0.008 0.099

DA DRD3 rs963468 115345577 397 [(A) 0.39 0.909 0.988 0.009 0.102

Note. MAF, minor allele frequency; KYN, kynurenine; CYTK, cytokine; DA, dopaminergic; NT, neurotrophic; ANG, angiogenic.

ADHD and this relationship may depend on prenatal environmen-
tal influences, such as ischemia-hypoxia.

The angiogenic system regulates the formation of new blood
vessels. In the angiogenic system, NRP1 and NRP2 SNPs interacted
with birth weight centile to predict hyperactive-impulsive symp-
tom severity. NRP1 and NRP2 encode for neuropilin-1 and neuro-
pilin-2, co-receptors for the vascular endothelial growth factor
(VEGF) and semaphorin families [Pellet-Many et al., 2008].
NRP1 and NRP2 are expressed in the central nervous system
and endothelial cells and play an essential role in vascular develop-
ment and axonal guidance [Polleux et al., 2000; Rossignol et al.,
2000; Gu et al., 2003; Pellet-Many et al., 2008]. Following cerebral
ischemia, NRP1 disrupts axonal guidance near the ischemic area
[Hou et al., 2008]. Further, NRP1 plays a central role coordinating
neuronal migration and guidance of axons that project from the
thalamus to the cortex [Lopez-Bendito et al., 2006], which has been
implicated in the development of ADHD [Ivanov et al., 2010;
Shaw, 2010] and externalizing behavior problems [Arcos-Burgos
et al., 2012].

Cytokines are implicated in inflammatory, immune, and oxida-
tive stress responses [Capuron et al., 2011]. Genetic variation in

IL16 and S100B interacted with birth weight centile to predict
hyperactive-impulsive symptom severity. IL16 encodes for inter-
leukin-16 and regulates the inflammatory response [Cruikshank
et al., 2008]. IL16 is expressed in T-cells, macrophages, and micro-
glia [Cruikshank et al., 2008; Jana et al., 2009]. S100B, a calcium
binding protein, is a glial cytokine with neurotrophic properties
[Steiner et al., 2007]. S100B is released in astrocytes following a
restricted nutrient and oxygen supply [Gerlach et al., 2006]. Similar
to the current findings, IL16 and S100B serum levels are associated
with hyperactive-impulsive symptom severity within ADHD cases,
and ADHD total symptom severity across cases and controls [Oades
etal.,2010]. Within ADHD cases, S100B and IL16 serum levels have
also been linked to pre- and perinatal risk factors including birth
weight, gestational age, and maternal smoking during pregnancy
[Oades, 2011], which makes them good candidates for a role in
disease etiology.

The kynurenine pathway metabolizes tryptophan and plays a
role in glial and dopaminergic functioning, as well as inflammatory
and immune responses [Steiner et al., 2012; Vecsei et al., 2013].
SNPs within CCBL1 and CCBL2 moderated the relationship be-
tween ADHD total, inattentive, and hyperactive-impulsive symp-
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FIG. 1. Significant SNP x birth weight centile interactions predicting ADHD total symptom severity.

tom severity. CCBL1 and CCBL2 encode kynurenine aminotrans-
ferase [ and II, respectively, which transaminate kynurenine into the
neuroprotective kynurenic acid [Guillemin et al., 2007; Myint
et al., 2007; Vecsei et al., 2013]. Kynurenic acid is an antagonist
at the N-mehtyl D-aspartic acid (NMDA) and a7 nicotinic acety-
lochoine (a7nACH) receptors that are implicated in learning
[Hilmas et al., 2001]. In rats, kynurenic acid in the prefrontal
cortex isinversely related to glutamate, acetylcholine and dopamine
levels, a relationship that has been detected even with minor
changes in kynurenic acid [Wonodi et al., 2010]. In youth with
ADHD, kynurenic acid in serum was positively associated with
adverse events during the third trimester, at a trend level
[Oades, 2011]. In light of these findings, prenatal ischemia-hypoxia
may put individuals with susceptible CCBL1 and CCBL2 genotypes
at risk for ADHD by leading to suboptimal expression of kynur-
enine aminotransferase I and II. Thus, variability in cytokine and
kynurenine genes may alter risk for ADHD following exposure to
pre- and perinatal risk, potentially by affecting glial functioning
[Todd and Botteron, 2001; Russell et al., 2006; Oades et al., 2010].

We are encouraged by the promising findings of this study, but
also recognize there are some study limitations. First, this study had
a modest sample size and therefore, replication studies of these

results are warranted. Second, youth in the study were either
diagnosed with ADHD or at genetic risk for ADHD by nature of
having a sibling with ADHD. This resulted in constrained variabil-
ity in ADHD symptom severity compared with the general popu-
lation which could have reduced statistical power and the likelihood
of significant findings. Third, birth weight centile range served as a
proxy measure for an adverse intrauterine environment as no direct
measure was available. Therefore, inferences about the underlying
environmental pathogen were made in this study. Fourth, this
design is unable to methodological control for genetic determinants
of birth weight. This allows for the possibility that that genetic,
rather than environmental determinants of birth weight are inter-
acting with SNPs to predict the ADHD phenotype. Fifth, we also
acknowledge that we used an earlier NCBI build of the genome and
as a result, some of the SNPs that we analyzed are now attributed to
other genes. For example, SNPs identified in significant interactions
which are no longer attributed to the same gene include: rs962879
(NTRK1 to CDIB), rs10793967 (CCBL1 to ABLI1), rs4656076
(CCBL2 to GBP3), rs10922552 (CCBL2 to intergenic region)
and rs13419677 (NRP2 to PARD3B). Thus, it is possible that the
association signals we detected are in LD with a genetic variantina
neighboring gene. Finally, the design of this study was unable to



SMITH ET AL.

699

A CCBL2: 14656076 B NTRK3: rs8037291
90 - 2 90
o 85 5 85
5 80 - 2 80 -
8 754 o g 75 -
= 65 , *g 65 ‘
60 o 5 60 G
a
10th-16th 84th-90th f’ 10th-16th 84th-90th
Birth Weight Centile Range Birth Weight Centile Range
C NTRKI1: 15962879 D CCBL2: rs10922552
o 90 - o 90 4
> | > i
‘A 85 - ‘7 85
2 80 2 80 v v -8
E 75 g 754
& 70 4 2 70 -
5 65 - 5 65 -
i 60 - i 60 -
E‘ 10th-16th 84th-90th E‘ 10th-16th 84th-90th
Birth Weight Centile Range Birth Weight Centile Range
E NTRK3: rs1017757 F CCBL1: 1510793967
g % | g % |
7 85 Z 85
2 80 - 2. 80 -
£ 75+ E 75 4
g g
g 65 - g 65 -
g 60 - 5 60 -
E‘ 10th-16th 84th-90th E& 10th-16th 84th-90th
Birth Weight Centile Range Birth Weight Centile Range
Minor Allele Genotype

@ ) =i | —e—2

FIG. 2. Significant SNP x birth weight centile interactions predicting inattentive and hyperactive-impulsive symptom dimensions.

rule-out the effect of maternal genotype on the observed SNP x birth
weight centile range interactions [Waldman, 2007]. Future research
should include both maternal and child genotype when investigat-
ing the developmental origins of ADHD.

Taken together, this study raises the possibility that angiogenic,
neurotrophic, cytokine and kynurenine genetic variants moderate
the association between birth weight and ADHD symptom severity.
To our knowledge, this is the first study to support the involvement
of CCBL1,CCBL2,IL16,NRP1,NRP2,NTRK1,NTRK3, and S100B
genes in the development of ADHD which highlights the impor-
tance of including measures of environmental risk when searching

for novel genetic variants associated with ADHD. Although overall
the pattern of results is consistent with expectations, we are
pursuing replication datasets to further elucidate the relationships
between these SNPs, birth weight centile, and ADHD risk. If
replicated, these results provide a basis for future targeted gene
methylation investigations. Findings also support the use of the
DOHabD framework [Gluckman et al., 2004] in conceptualizing the
etiological underpinnings of the association between lower birth
weight and ADHD. Further application of this framework may aid
in isolating specific prenatal environmental pathogens and genetic/
epigenetic pathways implicated in the development of ADHD.
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FIG. 2. (Continued)
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