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Abstract

The Space Debris population has grown rapidly over the last few decades with the consequent growth of impact risk
between current objects in orbit. Active Debris Removal (ADR) has been recommended to be put into practice by several
National Agencies in order to remove objects that pose the biggest risk for the space community. The most immediate
target that is being considered for ADR by the European Space Agency is the Earth-observing satellite Envisat. In order
to safely remove such a massive object from its orbit, a capturing process followed by a controlled reentry is necessary.
However, current ADR methods that require physical contact with the target have limitations on the maximum angular
momentum that can be absorbed and a de-tumbling phase prior to the capturing process may be required. Therefore, it
is of utmost importance for the ADR mission design to be able to predict accurately how the target will be rotating at
the time of capture. This article analyses two perturbations that affect an object in Low Earth Orbit (LEO), the Earth’s
gravity gradient and the eddy currents induced by the Earth’s magnetic field. The gravity gradient is analysed using
the equation of conservation of total energy and a graphical method is presented to understand the expected behaviour
of any object under the effect of this perturbation. The eddy currents are also analysed by studying the total energy of
the system. The induced torque and the characteristic time of decay are presented as a function of the object’s magnetic
tensor. In addition, simulations were carried out for the Envisat spacecraft including the gravity gradient perturbation
as well as the eddy currents effect using the International Geomagnetic Reference Field IGRF-11 to model the Earth’s
magnetic field. These simulations show that the combined effect of these two perturbations is a plausible explanation
for the rotational speed decay observed between April 2013 and September 2013.
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1. Introduction

Several studies carried out at National Agencies and
Universities (Kessler et al., 2010) foresee an increase of
the space debris population in the upcoming decades. This
has led to the development of new guidelines for the de-
sign of space missions in order to limit the generation of
new orbital debris (ESA, 2005; NASA, 2011). Some of
the rules dictated by ESA and NASA include a systematic
passivation of every stage left in orbit in order to mini-
mize break-ups and a maximum post-mission lifetime of
25 years. In addition, National Agencies recommend to
combine both post mission disposal measures and Active
Debris Removal (ADR) in order to stop the population
growth (UNOOSA, 2012).

Current ADR methods can be classified into contact
and contactless methods (Wormnes et al., 2013). At present,
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one of the main challenges of the contact ADR methods
is to be able to capture a non-cooperative rotating ob-
ject. Rigid capture systems, such as the robotic arm, are
not able to grab and stabilize objects which are rotating
faster than a few degrees per second (Nishida et al., 2011).
Other capturing systems such as the harpoon or the net
may have difficulties in capturing fast rotating objects due
to the possible entanglement of the tether with the target.
Some of these systems require a zero relative rotational ve-
locity state between the chaser and the target before the
docking/berthing phase. This step may pose difficulties if
the target has a complex rotational motion, such as a ro-
tation about the three principal axes. For these reasons, it
is crucial to predict accurately what will be the rotational
state of the space debris object at the time of capture in
order to choose the most suitable ADR method for the
mission.

Optical and radar observations carried out to deter-
mine the rotational state of these objects are on the in-
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crease. These initiatives will help understand what are
the expected space debris rotational states depending on
their orbit, shape configuration and materials. Up-to-date
observed rotational speeds vary greatly, from less than
1 deg/sec up to 60 deg/sec or even more (Papushev et
al., 2009). However, experts still have difficulty in finding
a physical explanation for some of the observed motions
of these objects. For instance, optical and radar mea-
surements carried out in 2012 for the Envisat spacecraft
showed intrinsic rotations of 0.2 degrees/sec along the axis
normal to the orbital plane which coincided approximately
with the minimum axis of inertia of the spacecraft (Lem-
mens et al., 2013). However, later radar measurements
showed a fast increase of the rotational speed at the be-
ginning of 2013, up to 2.8 deg/sec. In April 2013, the
rotational speed began to decrease again at a lower pace
(with a rate of period increase equal to 36.7 ms/day) until
the last observation made in September 2013 (Kucharski
et al., 2014). In addition, a change in the attitude was
observed which now has its minimum axis of inertia ap-
proximately pointing in the along track direction of the
orbit. This behavior is yet to be explained. Its under-
standing is of the utmost importance in order to predict
accurately its future attitude motion for the ADR mission
design, planned for 2021 by ESA (Biesbroek et al., 2013).

The present article focuses on two of the most impor-
tant perturbations that affect the rotational dynamics of
space debris objects in LEO: the Earth’s gravity gradi-
ent and the eddy currents induced by the Earth’s mag-
netic field (Ojakangas et al., 2012; Praly et al., 2012). The
torques induced by these perturbations will depend on the
physical properties of the spacecraft. The gravity gradi-
ent torque will affect bodies with a non-isotropic inertia
tensor and it is proportional to the inverse cubed of the
distance to the Earth (Hughes, 2004). In addition, the
Earth’s magnetic field will induce eddy current loops on
rotating conductive bodies and their influence also decays
with the cube of the distance to the Earth (Hughes, 2004;
Smith, 1965). The eddy current torques will be more no-
ticeable in those objects that have more conductive materi-
als electrically connected. Observations carried out for ro-
tating upper stages show that the eddy current torques can
outweigh the atmospheric drag perturbations at heights
lower than 500 km (Williams et al., 1978). Additional
environmental perturbations such as the solar radiation
pressure usually provides the dominating contribution at
higher altitudes (synchronous altitude). A comparison be-
tween these perturbations can be found in (Ojakangas et
al., 2012; Gerlach, 1965).

In this article, the Earth gravity gradient and the eddy
currents are analysed in detail given their importance in
LEO orbits. A case study is carried out for the Envisat
spacecraft and the results are compared with the observa-
tions carried out in 2013 (Kucharski et al., 2014) .

Figure 1: Rotation between the orbital and inertial reference frames.

2. Reference frames

Three different reference frames are used throughout
the document:

• Inertial Reference Frame: This reference frame has
its origin in the centre of the Earth and its axis co-
incide with the J2000 Inertial Reference Frame. The
nomenclature for this reference system is (Xi, Yi, Zi).

• Orbital Reference Frame: This reference frame has
its origin in the centre of gravity (COG) of the body
in orbit. The Y0 axis points in the along track di-
rection, parallel to the velocity of the body (~j0 =
~v
|~v| ) and the Z0 axis is perpendicular to the orbital

plane, parallel to the orbital angular momentum.
Finally, the X0 axis completes the reference frame
(~i0 = ~j0×~k0). In the case of a circular orbit, the X0

axis coincides with the nadir direction.

• Body Frame: This reference frame has its origin in
the COG of the body and coincides with the princi-
pal axes of inertia of the object. The nomenclature
for this reference system is (Xb, Yb, Zb).

In this article, only circular orbits are considered. For
this type of orbit, the relationship between the orbital and
the inertial reference frame is a rotation around the −Z0

axis (axis perpendicular to the orbital plane) at a pace
equal to the angular velocity n = 2π

T
, where T is the orbital

period. Both frames are represented in figure 1.

In order to rotate from the orbital reference frame to
the body frame, a 1-3-2 Euler transformation is carried out
which consists of a sequence of three rotations (ψ, θ, φ) =
(Yaw,Pitch,Roll). Figure 2 shows a simplified representa-
tion of the Euler angles assuming that they are small.

The rotation matrix to lead from the body frame to
the orbital reference frame is shown in (1).

Rb→0 =
[

cos θ cosφ − sin θ sinφ cos θ
(cosφ sin θ cosψ+sinφ sinψ) (cosψ cos θ) (sinφ sin θ cosψ−cosφ sinψ)
(cosφ sin θ sinψ−sinφ cosψ) (sinψ cos θ) (sinφ sin θ sinψ+cosφ cosψ)

]

.

(1)
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Figure 2: Orbital Reference Frame and Euler Angles

The angular velocity vector between the body reference
frame and the orbital reference frame, expressed in the
body frame is shown in (2).

~ωb0 = (ψ̇ cos θ cosφ− θ̇ sinφ)~ib+

(φ̇− ψ̇ sin θ)~jb + (ψ̇ sinφ cos θ + θ̇cosφ)~kb.
(2)

The rotational velocity between the orbital reference
frame and inertial reference frame is shown in (3).

~ω0i = ~ωn = −n~k0 = −
2π

T
~k0 = −

√

µ

R3
~k0, (3)

where T is the orbital period and R is the distance from
the center of the Earth to the centre of gravity of the body
in orbit.

Therefore, the angular velocity of the body reference
frame with respect to the the inertial reference frame, ex-
pressed in the body frame is shown in (4).

~ωb→i =

(ψ̇ cos θ cosφ− θ̇ sinφ− n(cosφ sin θ sinψ − sinφ cosψ))~ib+

(φ̇− ψ̇ sin θ − n(sinψ cos θ))~jb+

(ψ̇ sinφ cos θ + θ̇cosφ− n(sinφ sin θsinψ + cosφ cosψ))~kb.

(4)

It should be noted that the Euler angles are advised to
be used in the integration process of the Euler equations
due to the singularity problems it entails (Hughes, 2004).
This can be observed easily in the rotation matrix between
the body frame and the orbital reference frame (1) which
is singular for certain values of the Euler angles. However,
this local representation will be employed for the theoret-
ical analysis of the gravity gradient and its later graphical
representation, as it is very helpful for the physical un-
derstanding of the equations and the interpretation of the
results. For the integration process, a more appropiate
representation was employed based on quaternions.

3. Gravity gradient

The attitude dynamics of a rigid body subject to the
Earth’s gravity gradient is a well-studied problem. Here,

a graphical interpretation of the attitude evolution of real
objects subject to the Earth’s gravity gradient is presented.
This will help to understand the behaviour of the system
when additional dissipative effects are included, such as
the eddy currents considered later. Existing studies on the
Earth’s gravity gradient usually focus on a purely mathe-
matical analysis of the stability conditions of the system’s
equilibrium points (Gerlach, 1965; Siahpush et. al., 1987;
Hughes, 2004). The presented graphical display of the re-
sults allows the reader to easily observe how the system
evolves, oscillating around equilibrium points or abandon-
ing the region of marginal stability (see section 3.4.1). Ad-
ditionally, it enables the reader to easily understand under
which kinetic energy conditions, the system has a bounded
or unbounded motion. In section 3.4.1 an analysis is pre-
sented for the Envisat spacecraft and in section 3.4.2 an
additional example is included were the equilibrium states
are not points but linear varieties.

3.1. General equations

The Earth’s gravitational force is inversely proportional
to the square of the distance to the centre of gravity of the
Earth. Therefore, if an object in orbit is divided into small
increments of mass dm, each one of them will be subjected
to a differential force dF as shown in (5).

d~F = −µ
~ρ dm

|~ρ|
3 , ~ρ = ~R+ ~r, (5)

where µ is the Earth’s gravitational constant (i.e., 0.3986×
1015 m3/s2), ~ρ is the distance from the Earth’s centre of

mass to the differential mass dm, ~R is the distance from
the Earth’s centre of mass to the centre of mass of the
body in orbit and ~r is the distance from the centre of mass
of the body to the differential mass.

The components of the gravity gradient’s torque in the
body frame, as a function of the Euler angles sequence
defined in section 2 are presented in (6), (7) and (8),

Tx =
3µ

2R3
(Iyy − Izz)sin2θ sinφ, (6)

Ty =
3µ

2R3
(Ixx − Izz)sin2φ cos

2θ, (7)

Tz =
3µ

2R3
(Ixx − Iyy)sin2θ cosφ. (8)

The mathematical process followed to obtain the grav-
ity gradient torque can be easily found in the literature
((Gerlach, 1965),(Hughes, 2004)). Using the Euler equa-
tions (Hughes, 2004), the differential equations obtained
are presented in (9), (10) and (11),

Ixxω̇x + (Izz − Iyy)ωyωz = −
3µ

2R3
(Izz − Iyy)sin2θ sinφ,

(9)

Iyyω̇y + (Ixx − Izz)ωxωz = −
3µ

2R3
(Izz − Ixx)sin2φ cos

2θ,

(10)
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Izzω̇z + (Iyy − Ixx)ωxωy = −
3µ

2R3
(Iyy − Ixx)sin2θ cosφ.

(11)
In the previous differential equations (9, 10, 11), the

variables ωx, ωy and ωz are the components of the ro-
tational velocity vector between the body frame and the
inertial reference frame expressed in the body frame (ex-
pression 4). In addition, the parameters Ixx, Iyy, Izz are
the components of the inertia tensor in the principal axes
of inertia of the body.

3.2. Energy conservation

The gravity gradient is a conservative force and there-
fore, the total energy of the system must remain constant.
This conservation law will help analyse the motion of the
space debris object. The kinetic energy expressed with the
components of the rotational velocity vector in the body
frame is shown in (12),

K =
1

2
(Ixxω

2
x + Iyyω

2
y + Izzω

2
z). (12)

Using Euler equations, the derivative of the kinetic en-
ergy is obtained. Since (~ω× I~ω) ·~ω = 0 and İ = 0, it holds
that:

K̇ = ~T · ~ω = I~̇ω · ~ω + (~ω × I~ω) · ~ω = I~ω · ~̇ω, (13)

where I is the inertia tensor of the body expressed in
the body frame. The potential energy of the gravity force
is defined in (14).

UG =

∫

−
µdm

∣

∣

∣
~r + ~R

∣

∣

∣

. (14)

Taking into account that |~r| <<
∣

∣

∣

~R
∣

∣

∣
, UG can be ex-

panded in a Taylor series and the following expression for
the potential energy is reached (Hughes, 2004), including
up to second order perturbation terms:

UG = −
µm

R
+

3µ

2R3
Ix0x0, (15)

where Ix0x0 is the moment of inertia with respect to
the orbital axis ~i0 (see appendix A). The first term that
affects the rotational dynamics of a body subject to the
Earth’s gravity gradient is shown in (16).

UGG =
3µ

2R3
Ix0x0 =

3µ

2R3
(Ixx cos

2θ cos2φ+ Iyy sin
2θ + Izz cos

2θ sin2φ).

(16)

It should be noted that UGG only depends on two of
the Euler angles, which will later enable 3D figures to be
plotted, allowing the stability of the overall system to be
analysed.

The next step is the evaluation of the time derivative
of UGG to obtain its relationship with that of the kinetic
energy K.

dUGG
dt

= −
3µ

2R3
[Ixx(φ̇ sin2φ cos

2θ + θ̇ sin2θ cos2φ)

−Iyy θ̇ sin2θ + Izz (θ̇ sin2θ sin
2φ− φ̇ sin2φ cos2θ)] =

−~T · ~ωb0.

(17)

The scalar product ~T · ~ω is evaluated as shown in (18).

~T · ~ω = ~T · ~ωb0 + ~T · ~ωn =

−
dUGG
dt

+ ~T · ~ωn.
(18)

The term ~ωn is the rotational velocity between the or-
bital reference frame and the inertial reference frame. The
product ~T · ~ωn acquires the form presented in (19),

~T · ~ωn =

n
3µ

2R3
[Ixx(−sinψ cosθ sin2θ − cos2φ sin2θ cosψ)

+Iyy(cosψsin2θ)

+Izz(sinψ cosθ sin2φ− sin2φ cosψsin2θ)] =

−n
3µ

R3
Ix0y0,

(19)

where Ix0y0 is one of the products of inertia of the in-
ertia tensor in the orbital reference frame (see appendix
A).

Finally, the time derivative of the energy adopts the
form presented in (20),

d(K + UGG)

dt
= ~T · ~ωn = −n

3µ

R3
Ix0y0. (20)

The term (~T · ~ωn) can also be expressed as a derivative
of a potential function. This term appears due to the fact
that a non-inertial reference frame is used. Landau & Lif-
shitz Vol 01 Mechanics Book (Landau, 1976) provide the
expression that relates the energies in an inertial reference
frame and a non-inertial reference frame (21),

E = Einertial +∆E = Einertial − ~H ~ω0i. (21)

In the case at hand ω0i = n~k0 is the angular velocity
vector between the orbital reference frame and body frame.
The vector ~H is the angular momentum of the system:

~H = I ~ωbi = Ixxωx~ib + Iyyωy ~jb + Izzωz ~kb. (22)

Therefore, the term ∆E can be expressed as shown in
(23).
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∆E = −(I~ωbi) · ~ωn = n(I~ωbi) · ~k0. (23)

In appendix B, the mathematical derivation that proves
−d∆E

dt
= ~T · ~ωn is included.

Finally, the energy conservation for the rotational dy-
namics of a body due to the gravity gradient effect is ex-
pressed as shown in (24),

E = K + UGG +∆E = Constant, (24)

where:

K =
1

2
(Ixxω

2
x + Iyyω

2
y + Izzω

2
z), (25)

UGG =
3

2
n2Ix0x0 =

3

2
n2(Ixxcos

2θ cos2φ+ Iyy sin
2θ + Izz cos

2θ sin2φ),

(26)

∆E = n(I~ωbi) · ~k0 = −(I~ωbi) · ~ωn. (27)

The equation of energy conservation can be regrouped
into two terms using a pseudo-kinetic energy K ′. The
function K ′ gathers all the terms that are function of the
rotational velocity ~ωbi. The potential energy UGG takes
into account terms which only depend on the position pa-
rameters (~Θ = [ψ, θ, φ]). For the sake of simplicity, ~ωbi
will be expressed hereinafter as ~ω.

E = UGG(~Θ) +K ′(~ω),

K ′ = K +∆E =
1

2
~ωtI~ω + n~kt0I~ω

(28)

It is observed that the pseudo-kinetic energy K ′ can be
both positive and negative. Therefore, the constant value
of the energy E does not guarantee the movement of the
system to those regions where UGG(~Θ) < E. However, an
offset can be added to the pseudo-kinetic energy equal to
its minimum value in each state, K ′

min(
~Θ), to guarantee

that it will be non-negative. The minimum value of the
function is given by (29).

∂K ′

∂~̇ω
= ~0 →

I~ω + nI~k0 = ~0 → ~ω = −n~k0 = ~ωn.

(29)

Note that this minimum of K ′ occurs when ~ωb0 = ~0

and hence, for the stationary states (~̇Θ = [ψ̇, θ̇, φ̇]) = ~0.

Therefore, K ′−K ′
min is strictly positive except for ~̇Θ = ~0,

when it is zero. The offset K ′
min is shown in (30),

K ′
min(~Θ) =

n2

2
~kt0I

~k0 − n2~kt0I
~k0 = −

n2

2
Iz0z0. (30)

The energy equation remains unchanged if the same
magnitude is added and subtracted as follows:

E = (K ′ + |K ′
min|) + (UGG − |K ′

min|) (31)

Now, the new kinetic energy K ′ + |K ′
min| will always

be greater than or equal to 0. It becomes zero for ~̇Θ = ~0.
This result will enable intuitive reasoning of the system’s
motion based on thresholds of the potential energy consid-
ered. Therefore the energy equation is grouped into two
terms: the new kinetic energy will be refered to as non-
inertial kinetic energy, KNI , and the potential energy will
be refered to as non-inertial potential energy, UNI . Equa-
tions (32), (33) and (34) show the final expressions for
the total energy of the system E, the non-inertial kinetic
energy KNI and the non-inertial potential energy UNI re-
spectively,

E = KNI + UNI = constant, (32)

KNI =
1

2
ωtb0Iωb0, (33)

UNI =
1

2
n2(3Ix0x0 − Iz0z0). (34)

Equation (33) is obtained by substituting ~ω = ~ωb0+~ωn
in KNI = K ′ + |K ′

min|. Note that the final expression
for (33) corresponds to the kinetic energy in the orbital
reference frame which justifies its denomination as “non-
inertial kinetic energy”.

3.3. Stability analysis

In order to define the stability around an equilibrium
point X, a generic ordinary differential equation (ODE)
ẋ = f(t, x) is considered, where x is a n-dimensional vari-
able. The system is said to be asymptotically stable around
a given equilibrium point X in the sense of Lyapunov if:

1. Given any ǫ > 0 for any t0 ≥ 0, there exists a
δ1 = δ1(ǫ, t0) such that

|x(t0)−X| < δ1 ⇒ |x(t)−X| < ǫ, ∀t ≥ t0 ≥ 0, (35)

2. There exists δ2(t0) ≥ 0 for any t0 ≥ 0 such that

|x(t0)−X| < δ2 ⇒ |x(t)−X| → 0 as t→ ∞. (36)

The first condition requires that the state trajectory
of the system is confined to an arbitrarily small domain
(radius ǫ) centered at the equilibrium point given an ar-
bitrary initial state which is sufficiently close to the equi-
librium point. If a system only complies with the first
requirement, it is said to be ‘marginally stable’.

The conservative behaviour of the gravity gradient prob-
lem given by equation (32), enables a region of marginal
stability to be defined where the system evolution may
be bounded, depending on the energy potential threshold.
This region of marginal stability is defined as a domain
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around an equilibrium point where the function UNI is
monotonically increasing. The potential threshold for a
given relative or absolute minimum of the non-inertial po-
tential energy (UNI(~ΘUNImin)) is presented in (37),

∆UNI = min(UNI(~Θ)− UNI(~ΘUNImin))

~Θ ∈ Region of marginal stability,
(37)

where ~ΘUNImin is the state vector for which UNI reaches
the relative or absolute minimum.

This gives rise to two different possible behaviours of
the system under the gravity gradient perturbation. The
first one is a “bounded motion”. Given that the non-
inertial kinetic energyKNI is a definitive positive function,
this situation will take place when the system initially does
not have enough kinetic energy to abandon the region of
marginal stability.

The second type of behaviour is an “unbounded mo-
tion”. A sufficient condition to allow the system to aban-
don the region of marginal stability is that the non-inertial
kinetic energy of the system is above the threshold (KNI >
∆UNI). As the UNI function has an absolute maximum
equal to 1

2n
2(3Imax − Imin), even for the absolute mini-

mum, its region of marginal stability is finite. Therefore,
it can be inferred that the aforementioned “unbounded
motion” exists.

However, the system can also have more complex mo-
tions if the equilibrium states are not isolated points but
linear varieties (see section 3.4.2). In this case, when the
system does not have enough kinetic energy, its motion is
obliged to stay in the vicinity of the linear varieties. This
defines a sub-domain of states which can be reached by
the system, more complex than in the case of an isolated
equilibrium point. For instance, in the case study (3.4.2),
this sub-domain is multiply connected.

The non-inertial potential energy UNI , given by (34),
has an absolute minimum, which therefore corresponds to
the most stable state. Equation (34) shows that the mini-
mum is reached when the inertia about the nadir direction
is minimum Ix0x0 = Imin and the inertia about angular
momentum vector of the orbit is maximum Iz0z0 = Imax.
This coincides with the well-known equilibrium point given
by the gravity gradient (Langford et al., 1964; Hughes,
2004).

The existent gravity gradient stability analyses are usu-
ally carried out in the vicinity of the equilibrium points.
This gives local information on whether a given orienta-
tion of the principal axes of the body is stable or unstable.
However, a simple graphical representation of the poten-
tial energy values integrated throughout time can be a very
powerful tool to observe the overall behaviour of the sys-
tem and the expected behaviour for any given initial con-
dition (initial attitude and rotational velocity of the space
debris object) which need not be close to an equilibrium
point.

Two possible graphical representations are suggested to
visualise the evolution of the system subject to the gravity
gradient.

The first one consists of plotting the 2D plane func-
tion UNI = f(ix0x0, iz0z0), where ix0x0 = Ix0x0/Imax and
iz0z0 = Iz0z0/Imax are the normalised inertias of the or-
bital axis X0 and Z0. The parameters ix0x0 and iz0z0 will
always be positive and will vary between imin and 1 (min-
imum and maximum inertias of the body). Figure 3 shows
all the boundaries of the domain of definition of this func-
tion. The first boundary is given by the minimum and
maximum values of the inertias of the rigid body. This de-
fines the rectangle ACFH in figure 3. The second bound-
ary comes from the fact that the trace of the inertia tensor
is constant. This trace, tr(I), is calculated as:

tr(I) = Ix0x0 + Iy0y0 + Iz0z0 = Imax + Imed + Imin, (38)

where Imax, Imed, Imin are the maximum, intermediate
and minimum values of the principal inertias. Now, this
equation can be normalised with Imax as shown in (39),

ix0x0 + iy0y0 + iz0z0 = 1 + imed + imin, (39)

where imax = 1,imed = Imed

Imax

and imin = Imin

Imax

. This
condition generates two parallel linear boundaries which
are at 45 degrees and with negative slope (line IG and
BD). The system must remain within these two lines. The
two boundaries in the plane ix0x0, iz0z0 are the following:

ix0x0 + iz0z0 = 1 + imed + imin − iy0y0 →

→

{

ix0x0 + iz0z0 ≤ 1 + imed Boundary BD

ix0x0 + iz0z0 ≥ imed + imin Boundary IG
.
(40)

The third boundary is given by the energy equation
(32) and it corresponds to the line GE in figure 3. Taking
into account that KNI ≥ 0, the inequality (42) is reached,

E − UNI ≥ 0, (41)

iz0z0 − 3ix0x0 +
E

n2

2 Imax
≥ 0. (42)

It must be noted that the energy and trace bound-
aries can be tangent or outside the rectangle ACFH and
therefore, the restraint may not be active. Depending on
the specific data of each problem, this generic domain will
follow different patterns. In addition, depending on the
initial conditions, only a part of the allowed domain will
be filled by the state of the system. Several examples are
presented later in the article.

The second possible graphical representation consists
in plotting the function UGG = f(θ, φ). This term of the
gravity potential only depends on two Euler angles which
enables 2D representations to be used. It should be high-
lighted that this representation only takes into account
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Figure 3: Boundaries of the domain of definition of the function
UNI = f(ix0x0, iz0z0)

part of the UNI function. Nevertheless, the following ex-
amples (section 4.4) show that this graphical representa-
tion can be very useful when dissipative effects such as the
eddy currents are involved in order to visualise the possible
asymptotic convergence that may arise.

Due to the multivaluated behaviour of the Euler angles,
it is convenient to carry out this graphical representation,
restricting the angles to a specific interval. In the following
simulations, the Euler angles were restricted to the interval
[−180,+180] degrees by a congruence of modulus of 360
degrees. This also gives valuable information concerning
the evolution of the system and shows the ‘unbounded’
and ‘bounded’ behaviours. The following simulations show
these methodologies in more detail.

3.4. Simulations

Two case studies are analysed with different inertia ma-
trices. The first one corresponds to the Envisat spacecraft
and the second one corresponds to a spin stabilised inertia-
like spacecraft. This second example was included in the
article in order to show a case of equilibrium states in the
form of linear varieties, which differ greatly from that of
the Envisat spacecraft.

3.4.1. Case study: Envisat

The European Space Agency is planning a mission to
capture and de-orbit the Envisat spacecraft in 2021 (Bies-
broek et al., 2013). In order to choose the most suitable
ADR method, it is crucial to be able to accurately predict
Envisat’s rotation during the mission’s time frame. En-
visat is currently in a low Earth orbit at an altitude of 770
km (N2YO Webpage, 2006). At this altitude, the main
perturbation that affects Envisat is the gravity gradient.
The inertia tensor, in its principal axes of inertia, consid-
ered for Envisat is shown in equation (43) (Bastida et al.,
2014).

I0 =





129180.25 0 0
0 124801.21 0
0 0 16979.74



 kg ·m2. (43)

Figure 4: Envisat UGG function

For this spacecraft, an upper limit of the threshold of
the non-inertial potential energy UNI is computed. The
maximum absolute and minimum absolute of the UNI func-
tion are known (see section 3.3). Therefore, an upper limit
of the threshold of the non-inertial potential energy UNI
can be computed as defined in (44).

∆UNI = UNI(φUNImax
, θUNImax

))− UNI(φUNImin
, θUNImin

)

≤ 0.48J

(44)

For Envisat’s altitude and inertia matrix, the UGG po-
tential energy is portrayed in figure 4. The valleys of the
UGG function correspond to the expected equilibrium po-
sitions of the minimum axis of inertia pointing towards
nadir and the maximum axis of inertia perpendicular to
the orbital plane.

The results of two different simulations are described
below in order to show the possible bounded and unbounded
motions. It should be highlighted that the initial condi-
tions chosen for the spacecraft (attitude and angular ve-
locity) are not based on real data and were only selected
to show the two possible behaviours. A third example is
included using as initial conditions, real data derived from
the last radar observations carried out in 2013.

In the first simulation, Envisat’s initial attitude is as-
sumed to be close to one of the equilibrium points and
its kinetic energy is low enough to be trapped within the
area of attraction of that equilibrium point. The initial
conditions for the simulation were:

• Rotational velocity in the inertial reference frame
~ω0 = [0.05, 0.05, 0.05] deg/sec

• Initial attitude (Yaw,Pitch,Roll)= [0.3, 1, 88] degrees

The initial state gives an initial kinetic energy, KNI ,
equal to KNI = 0.2541 J which is below the threshold
(44). This is a necessary condition, but not sufficient, for
the system to have a bounded motion. Two different repre-
sentations were used to visualise the evolution of Envisat’s

7



Figure 5: Case 1 Simulation of Envisat with gravity gradient:
UGG(θ, φ)

Figure 6: Case 1 Simulation of Envisat with gravity gradient:
UNI(Ix0x0, Iz0z0)

rotational state and check if the motion of the system is
bounded. Figure 5 shows how the UGG(θ, φ) function of
the system evolves. It is observed that the attitude of the
spacecraft is confined and the system oscillates around the
equilibrium point. In addition, figure 6 plots the function
UNI(Ix0x0, Iz0z0). In this graphic, the system also remains
in the vicinity of the equilibrium point which corresponds
to the minimum value of Ix0x0 and the maximum value of
Iz0z0. In this case, one of the trace boundaries and the
energy boundaries are active.

For the second simulation, the kinetic energy is in-
creased and the system no longer stays in the vicinity of
an equilibrium point. The initial conditions considered for
the second simulation are:

• Rotational velocity in the inertial reference frame
~ω0 = [1, 1, 1] deg/sec

• Initial attitude (Yaw,Pitch,Roll)= [0.3, 100, 88] de-
grees

The initial state gives an initial kinetic energy KNI

equal to KNI = 45.58 J which is far above the threshold
(44) and it will give rise to an unbounded motion. Figure
7 shows the evolution of the system in the UGG map. In
this case, the system is no longer confined and moves freely
within the map. Figure 8 shows the evolution of the system
in the plane UNI(Ix0x0, Iz0z0) which is constrained by the
inferior trace boundary and the rest of the boundaries are

Figure 7: Case 2 Simulation of Envisat with gravity gradient:
UGG(θ, φ)

Figure 8: Case 2 Simulation of Envisat with gravity gradient:
UNI(Ix0x0, Iz0z0)

not active. The system does not fill all the allowed domain
due to the initial conditions.

The most up-to-date published measurements on the
rotational speed of Envisat are the measurements dated
September 25th 2013 (Kucharski et al., 2014), which was
considered to initialise the following simulation. The mea-
sured spin rate of Envisat on the 25th of September 2013
was 2.67 deg/sec. The inertial spin axis direction was per-
pendicular to the along track direction Y0 and formed an
angle of 62 degrees with the nadir direction X0. The spin
axis was in the positive quadrant of the plane defined by
X0, Z0. Regarding the initial attitude, it was assumed the
spin axis to be parallel to the maximum axis of inertia of
the spacecraft and the minimum axis of inertia pointing in
the along track direction.

• Initial rotational velocity in the inertial reference
frame ~ω0 = [1.2535, 0, 2.3575] deg/sec

• Initial attitude (Yaw,Pitch,Roll)= [90, 62, 0] degrees

The initial state gives an initial kinetic energy, KNI ,
equal to KNI = 140.06 J which is far above the threshold
(44) and it will give rise to an unbounded motion. This
will occur regardless of the initial attitude of the space-
craft. Therefore, just under the effect of the gravity gradi-
ent, the system will never stabilise within the equilibrium
state given by the UNI function (minimum axis of inertia
pointing towards the Earth and maximum axis of inertia

8



Figure 9: Envisat attitude observed in 2013 (Kucharski et al., 2014).

Figure 10: UGG(θ, φ) evolution of Envisat with gravity gradient:
Initial data from 2013 observations

perpendicular to the orbit). Instead, the gravity gradient
can abruptly alter the attitude and spin axis of the space-
craft, as long as the total energy of the system is conserved.
This behaviour is clearly verified by the evolution of the
effective energy potential UGG(θ, φ) in figure 10.

Figure 11 shows the evolution of the total energy po-
tential UNI(Ix0x0, Iz0z0). The system is bounded by the
inferior trace boundary while the energy boundary is out-
side the allowed domain and, thus, it is not active. The
system only fills part of the allowed domain due to the
initial conditions.

3.4.2. Case study: spin stabilised spacecraft

Despite the fact that the only real case studied in the
article is Envisat, it was deemed appropriate to include
a second example of theoretical nature, to display some
peculiarities of the stability problem. In this case, it will
be observed that the equilibrium positions are not limited
to isolated points but rather to linear connected domains.

The behaviour of the system with regard to the gravity
gradient changes with the inertia of the spacecraft. Spin
stabilised spacecraft usually have one axis of inertia greater
than the other two. In this example the following inertia

Figure 11: UNI(Ix0x0, Iz0z0) evolution of Envisat with gravity gra-
dient: Initial data from 2013 observations

tensor was considered:

I0 =





1000 0 0
0 1000 0
0 0 10000



 kg ·m2. (45)

For this spacecraft, an upper limit of the UNI function
can be computed subtracting the absolute maximum and
minimum values of the function:

∆UNI = UNI(φUNImax
, θUNImax

))− UNI(φUNImin
, θUNImin

)

≤ 0.036J

(46)

Figure 12 shows the shape of the UGG function for this
type of satellite. The orbital height considered to obtain
this function was 760 km. Instead of local minima, the
function has linear varieties where UGG acquires its mini-
mum value. The system will have an unpredictable motion
moving freely through the map with minimum potential
energy. The initial attitude and rotational velocity con-
sidered for the spacecraft are listed below.

• Rotational velocity in the inertial reference frame
~ω0 = [0.5, 0.5, 0.5] deg/sec

• Initial attitude (Yaw,Pitch,Roll)= [0.1, 0.1, 0.1] de-
grees

The initial state gives an initial kinetic energy, KNI ,
equal to KNI = 0.029 J which is below the threshold
(46). The simulations reveal that the system does not
possess enough kinetic energy to reach the peaks of the
energy potential function. However, due to the absence of
local minima points, the system can move with a certain
degree of freedom. This behaviour can be clearly observed
in figure 13. Figure 14 indicates that the inertia Ix0x0
remains close to its minimum value and Iz0z0 remains close
to its maximum value which is in line with figure 13, where
the potential energy remains close to its minimum value.

4. Eddy currents

The metallic structure along with the subsystem com-
ponents is assumed to be a rigid body and therefore moves
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Figure 12: Flat Satellite UGG function

Figure 13: Flat Satellite simulation with gravity gradient: UGG(θ, φ)
evolution

Figure 14: Flat Satellite simulation with gravity gradient:
UNI(Ix0x0, Iz0z0) evolution

as a single entity. Due to the existence of an external mag-
netic field, the rotation of the object induces electric cur-
rents following Lenz’s Law. These currents are responsible
for a dissipative effect caused by Joule’s Law which trans-
lates into a torque that opposes to the general rotational
movement of the object.

In this work, a model of the metallic structure is de-
fined within the simulation process. Equation (55) is used
to compute the magnetic tensor M , which is constant
throughout the integration process in the body reference
frame. Using this tensor, equation (50) provides the torque
in each time step of the simulation. Finally, this torque is
introduced as a new term in the Euler equations and the
dissipative effects explained throughout the article are thus
observed. In section 4.1, the mathematical models that
allow the induced torque to be evaluated are developed.
Later on, their main effects on space debris objects are ex-
plained and finally, a case study on the Envisat spacecraft
is presented.

4.1. General equations

This perturbation is caused by the Earth’s magnetic
field and therefore, it is only noticeable in LEO. When a
conductive rotating body is under the effect of a magnetic
field, eddy current loops are induced in the object (Lan-
dau, 1984). This generates torques which decrease the
rotational speed of the target and that may also cause a
precession of the object’s axis of rotation (Ormsby, 1967).

In order to study this phenomenon, the space debris
object is assumed to be a rigid body and the conductive
materials are assumed to have a relative permeability close
to 1. Typical metallic structures of spacecraft and upper
stages are made of this type of material (i.e., aluminum,
titanium, copper). Under these assumptions, the general
equations that describe this phenomenon are (Praly et al.,
2012; Landau, 1984) shown in (47), (48) and (49) as,

∇ ·~j = 0 ∀P ∈ V, (47)

∇×~j = σ(~ω × ~B) ∀P ∈ V, (48)

~j · ~nv = 0 ∀P ∈ ∂V, (49)

where ~j is the electric current density vector that is in-
duced in the volume V , ~ω is the rotational velocity vector
of the object, ~B is the magnetic field, σ is the conductiv-
ity of the body and ~nv is a vector normal to the contour
surface ∂V .

Unlike the gravity gradient, the eddy currents phe-
nomenon is a dissipative effect. The derivative of the ki-
netic energy K̇ is always negative or equal to zero. This
is explained by Joule’s effect as the kinetic energy of the
system is transformed into heat and the rotational velocity
of the object is damped (Landau, 1984).

The general formula of the torque induced by the eddy
currents is defined in (50),

~T = (M(~ω × ~B))× ~B, (50)
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where M is the magnetic Tensor defined in Ortiz &
Walker (2014). The formula for the eddy currents torque
(50) generalises the analytical solutions given by previous
authors ((Ormsby, 1967), (Smith, 1962)).

The general solution of the magnetic tensor can be de-
rived from equations (47,48,49) together with Joule’s Law
which can be expressed as a function of the magnetic ten-
sor as shown in (51).

K̇ = −ΩtMΩ ≤ 0 = −

∫

j2

σ
, (51)

where ~Ω = ~ω × ~B.
Equations (47,48,49) can be solved with a generic F.E.M.

which will give the solution for ~j at the gaussian points of
the elements of the grid. Solving these equations for the

three cases Ω(1) =





1
0
0



, Ω(2) =





0
1
0



, Ω(3) =





0
0
1



, a set

of solutions for the vector ~j(k)(~r) is obtained. Taking into

account that the solution of ~j is linear in ~Ω = ~ω × ~B (see

equations (47,48,49)), the solution for a given Ω =





Ω1

Ω2

Ω3





acquires the form:

~j =

3
∑

k=1

Ωk ·~j
(k)(~r). (52)

Finally, entering in equation (51), the following formula
for the magnetic tensor is reached:

Mkl =
∑

(el)

∫

V (el)

~j(k) ·~j(l)

σ
dV. (53)

In addition, an explicit formula for the magnetic tensor
M can be obtained using the most simple finite element,
which is a straight two-nodes bar. The key to reach this
formula is to express the general solution for equations
(47,48,49) as:

~j = ~jpart − σ∇ψ,

~jpart =
σ

2
(

~
ω × ~B)× ~r,

(54)

where ψ is an unknown scalar function and ~r is a state
position vector of the elements of the F.E.M. The space
debris object is divided in m bars and n nodes and the
following matrices must be computed:

• D is a diagonal matrix of dimensions m × m that
contains the constitutive constants of the bars that
form the grid. The constitutive constant of each bar
is D(k, k) = σkAk

Lk

(k = 1, ..,m), where σk is the
conductivity, Ak is the cross section and Lk is the
length of the bar.

• S is a matrix of dimensions m× 3 that contains the
cross products ~rk × ~Lk (k = 1, ..,m), where ~rk is the

position of the COG of each bar and ~Lk = Lk~lk is a
vector in the direction of the bar and norm equal to
its length.

• I is the identity matrix of dimensions m×m.

• F = Ht(HDHt)−1H where H is a matrix of dimen-
sions m × n that indicates the connectivity of the
nodes in the grid. The term H(k, l) of the matrix
will be 1 if the intensity of the bar Jk is entering the
node l, −1 if the intensity is leaving the node and
zero if the intensity Jk does not flow through node l.

Using the previous parameters of the grid, the general
solution for the magnetic tensor is:

M =
1

4
StD(I − FD)D−1(I −DF )DS. (55)

4.2. Characteristic time of decay

Equation (50) shows that if the rotational velocity vec-

tor ~ω is parallel to the magnetic field ~B, there is no induced
torque. Therefore, only the perpendicular component of
the magnetic field is damped. If there is an additional com-
ponent parallel to the magnetic field, the object will pre-
cess its axis of rotation until the rotational velocity vector
is parallel to the magnetic field. By introducing the eddy
currents torque into the Euler equations, the characteristic
time of decay can be inferred,

I~̇ω + (~ω × I~ω) = (M(~ω × ~B))× ~B, (56)

τi ≈
Ii

Mj B2
⊥

, 1 ≤ i 6= j ≤ 3. (57)

Each characteristic time of decay τi corresponds to
three independent cases of the body rotating about a theo-
retical uniaxial axis equal to each principal axis of inertia.
This value will give an estimate of the expected time of
decay along each principal axis. Ii and Mj are the corre-
sponding components of the inertia tensor and magnetic
tensor of the object. B⊥ is the perpendicular component
of the magnetic field with respect to each principal axis.
The ratio Ii/Mj accounts for the amount of conductive
material that is present on the spacecraft.

4.3. Stability analysis

Once the dissipative effect (eddy currents) has been
added on top of a conservative effect (gravity gradient),
the previous region defined as ‘region of marginal stabil-
ity’ might be referred to now as a ‘basin of attraction’. The
eddy currents phenomenon will make the system lose ki-
netic energyKNI with time and the system may eventually
converge towards a local minimum of the potential energy
function UNI . In this case, the system is now asymptoti-
cally stable. If the potential energy UNI has different local
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Figure 15: Envisat metallic structure model

minima, the system may converge to one equilibrium point
or another depending on the initial conditions.

Nonetheless, the example considered in (3.4.2) shows
the need for flexibility in this type of lexicon because the
real debris may disconcert in for their diversity of qualita-
tive behaviours.

4.4. Case study: Envisat

The magnetic tensor of Envisat was obtained with the
Finite Element Method model presented in figure 15. This
model accounts for the effective metallic material which
will generate eddy currents (e.g. shielded components
will not be affected by the magnetic field and the con-
tribution from unconnected plates is disregarded). Most
of the metallic structural material is concentrated on the
service module while the structural materials of the pay-
load module are mainly composed of composite materials
(ESA, 1998). The service module structure was modeled
as an aluminum cubical shell of 4× 4× 4 m3 and an alu-
minum thickness of 0.3 mm. For the payload module, it
was considered that the composite structure has an alu-
minum frame. The frame was modeled with circular bars
of 40 mm in diameter and 0.3 mm of thickness. All these
materials are assumed to be electrically connected and as-
sumed to have a conductivity of 3.5e7 S/m. Therefore the
conservative estimate of the total amount of effective con-
ductive material is 2.5% of the total mass of the spacecraft
7827.9 kg (Bastida et al., 2014). Under these conditions,
the magnetic tensor obtained for Envisat is shown in (58).

M =





1.0590 0 0
0 1.0590 0
0 0 0.9315



 · 106 S ·m4. (58)

A simulation was carried out including the Earth’s grav-
ity gradient and magnetic field. The Earth’s magnetic field

Figure 16: Envisat rotational velocity between inertial and body
reference frames, expressed in the body frame.

was modeled based on the International Geomagnetic Ref-
erence Field (IGRF-11). Envisat is placed at a circular
orbit at an altitude and inclination of 770 km and 98.4
degrees respectively (N2YO Webpage, 2006) with the fol-
lowing initial conditions (Kucharski et al., 2014).

• Initial rotational velocity in the inertial reference
frame ~ω0 = [1.2535, 0, 2.3575] deg/sec

• Initial attitude (Yaw,Pitch,Roll)= [90, 62, 0] degrees

• Initial date: 25-September-2013

• Propagation Time: 20 days

Figure 16 shows the three components of the rotational
velocity vector between the body frame and the inertial
reference frame expressed in the body frame of the space-
craft. The major contribution of the rotational speed goes
along the Xb axis (maximum axis of inertia of the space-
craft) and it can be observed how this component decreases
with time. The other two components start oscillating due
to the change in direction of the Earth’s magnetic field
along the orbit and the Earth’s gravity gradient. These
two components also decrease with time but at a lower
rate.

The kinetic energy decreases with time and the system
will converge for t → ∞ to a local minima of the poten-
tial energy function. This behaviour is observed in figure
17 where the function UGG(θ, φ) is depicted. A color code
was used to show the time evolution of the system, starting
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Figure 17: Envisat simulation with gravity gradient and eddy cur-
rents: UGG(θ, φ) evolution.

in red and finalising the simulation in green. The initial
conditions of the attitude and angular velocity determine
which local minima the system converges to. In the case
of Envisat, for t → ∞, the rotational velocity decreases
to zero and the attitude of the spacecraft will point its
minimum axis of inertia towards the Earth and its maxi-
mum axis of inertia towards the axis perpendicular to the
orbital plane.

The simulation also provided the mean value of the
Earth’s magnetic field along the principal axis of inertia of
the spacecraft as shown in (59).

~Bmean = [9.1, 17.9, 17.9] µT . (59)

The mean value obtained for the Earth’s magnetic field
was used to obtain three representative values of the char-
acteristic time of decay along the principal axes of inertia
of the body. Each characteristic time of decay τi corre-
sponds to three theoretical cases in which the body is as-
sumed to have a uniaxial rotation along one of the princi-
pal axis of inertia. For each principal axis, the correspond-
ing perpendicular component of Bmean⊥ was considered
and the following values were obtained:

τ1 = 2277.6 days.

τ2 = 3475.6 days.

τ3 = 541.9 days.

(60)

For each of the three cases, the spin period at a certain
time t is:

ω =
2π

T
→ T (t) = T0exp(

t

τ
). (61)

Therefore, the spin period change per unit time around
a certain date is:

Ṫ =
T (t)

τ
. (62)

Kucharski at al.,(Kucharski et al., 2014), measured a
spin period increase of 36.7 ms/day between day 100 and
day 270 in the year 2013. The spin period increase is
evaluated at the central point of the measurements carried
out in 2013, which corresponds to a spin period of T0 =

131.678 seconds. Using this value and the three different
τi, the spin period rate Ṫi is computed:

Ṫ1 = 59.6 ms/days.

Ṫ2 = 38.9 ms/days.

Ṫ3 = 251.1 ms/days.

(63)

These results may be viewed as representative values of
the period growth, depending on the variable attitude of
the satellite. The values are consistent with the measure-
ments carried out in 2013 and the eddy currents induced
by the Earth’s magnetic field are a possible explanation for
the current rotational speed decrease of Envisat. In order
to obtain more accurate simulations, a detailed descrip-
tion of the structural materials and components as well
as their conductive connectivity is necessary. This would
allow a better approximation of the magnetic tensor to be
obtained for the Envisat spacecraft.

5. Conclusion

The understanding and accurate prediction of the prob-
able rotational states of space debris objects is crucial in
the design of active debris removal missions. Current ADR
methods that require physical contact with the target have
important physical limitations depending on the rotational
speed and spin motion of the object. Therefore, an ac-
curate prediction of the rotational state at the time of
capture is necessary in order to choose the most suitable
ADR method and also to clarify if a de-tumbling phase
prior to the capturing phase is necessary. In this article
the effect of the Earth’s gravity gradient and the eddy
currents induced by the Earth’s magnetic field are studied
for the analysis of the rotational dynamics of space debris
objects. These two perturbations are noticeable in Low
Earth Orbits for objects which have a non-isotropic iner-
tia tensor (in the case of the gravity gradient) and which
have conductive materials (in the case of the eddy cur-
rents). A graphical interpretation of the gravity gradient
is presented and two possible patterns are encountered.
The first one is a ‘bounded motion’ in which the variation
of the object’s attitude is confined to a certain region of
marginal stability. In this pattern, the attitude oscillates
around a certain equilibrium state. The second possible
pattern is an ‘unbounded motion’ in which the attitude
of the body is not confined and the system will jump be-
tween different equilibrium states. This will occur when
the kinetic energy is above a certain threshold given by the
equation of the conservation of total energy. These two
patterns will only occur if the inertia tensor has the right
properties. Other more complicated patterns exist when
the equilibrium states are not points but linear varieties.
In addition, an analysis was carried out for the Envisat
spacecraft that became uncontrollable in April 2012. The
rotational speeds measured in 2013 indicate that Envisat
finds itself in an ‘unbounded motion’ and it will not be sta-
bilised by the gravity gradient unless additional dissipative
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effects act on the object. The second part of the article fo-
cused on the analysis of the natural eddy currents induced
by the Earth’s magnetic field. This is a dissipative effect
that appears on conductive bodies rotating in the pres-
ence of a magnetic field. It will exponentially decrease the
perpendicular component of the rotational velocity with
respect to the Earth’s magnetic field vector. It may cause
a precession of the axis of rotation if there is a component
of the rotational velocity vector parallel to the magnetic
field. Combining both the Earth’s gravity gradient and the
Earth’s magnetic field, the rotational speed of space debris
objects has been shown to decrease. This phenomenon is a
possible explanation for the rotational speed decrease rate
which was observed between April 2013 and September
2013 for the Envisat spacecraft.

A. Inertia matrix expressed in the orbital refer-

ence frame

The relationship between the inertia matrix expressed
in the orbital reference frame and the orbital reference
frame is:

I0 = Rb→0IbR
T
b→0, (64)

where I0 is the inertia matrix expressed in the orbital
frame, Ib is the inertia matrix expressed in the body frame
and Rb→0 is the rotation matrix to go from the body frame
to the orbital reference frame (1).

The inertia matrix in the orbital frame is:

I0 =





Ix0x0 Ix0y0 Ix0z0
Ix0y0 Iy0y0 Iy0z0
Ix0z0 Iy0z0 Iz0z0



 . (65)

Using equation (64), the relationship between the iner-
tias is obtained:

Ix0x0 = Ixx cos
2θ cos2φ+ Iyy sin

2θ + Izz cos
2θ sin2φ,

(66)

Iy0y0 = Ixx (cosφ sinθ cosψ + sinφ sinψ)2+

Iyy(cosψ cosθ)
2+

Izz(sinφ sinθ cosψ − cosφ sinψ)2,

(67)

Iz0z0 = Ixx (cosφ sinθ sinψ − sinφ cosψ)2+

Iyy(sinψ cosθ)
2+

Izz(sinφ sinθ sinψ + cosφ cosψ)2,

(68)

Ix0y0 = Ixx (cosθ cosφ)(cosφ sinθ cosψ + sinφ sinψ)−

Iyysinφ cosψ cosθ+

Izzsinφ cosθ (sinφ sinθ cosψ − cosφ sinψ),

(69)

Ix0z0 = Ixxcosθ cosφ (cosφ sinθ sinψ − sinφ cosψ)−

Iyy sinθ sinψ cosθ+

Izz sinφ cosθ (sinφ sinθ sinψ + cosφ cosψ),

(70)

Iy0z0 = Ixx (cosφ sinθ cosψ + sinφ sinψ)

(cosφ sinθ sinψ − sinφ cosψ)

+Iyy cosψ cos
2θ sinψ

+Izz (sinφ sinθ cosψ − cosφ sinψ)

(sinφ sinθ sinψ + cosφ cosψ),

(71)

B. Non-inertial term of the energy equation due

to the gravity gradient effect

In this section, it is demonstrated that the next rela-
tionship holds:

−
∆E

dt
= ~T · ~ωn, ∆E = −(I~ωbi) · ~ωn. (72)

The derivative of ∆E is:

∆E

dt
= nI~̇ωbi · ~k0 + nI~ωbi · ~̇k0 =

nI~̇ωbi · ~k0 − nI~ωbi · (~ωbi × ~k0)

(73)

where the following expression of the derivative of ~k0
in body axes has been used:

~̇k0 = −~ωb0 × ~k0 = −~ωbi × ~k0 (74)

as −~ω0i × ~k0 = ~0.
Now, using Euler equations:

I~̇ωbi + ~ωbi × I~ωbi = ~T → I~̇ωbi = ~T − ~ωbi × I~ωbi, (75)

∆E

dt
= n(~T − ~ωbi × I~ωbi) · ~k0 − nI~ωbi · (~ωbi × ~k0). (76)

Taking into account that I~ωbi ·(~ωbi×~k0) = (I~ωbi×~ωbi) ·
~k0, the former expression reduces to:

∆E

dt
= ~T · n~k0 = −~T · ~ωn. (77)
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