
 Corresponding author. Contact phone number: +44 (0)23 8059 8964 
E-mail addresses: m.so@soton.ac.uk (M. So) 
 

Lending Decisions with Limits on Capital Available: The 

Polygamous Marriage Problem 

 
      Mee Chi So*1         Lyn C. Thomas1          Bo Huang2 

1Southampton Management School, University of Southampton, Southampton SO17 1BJ, United Kingdom. 

2School of Finance, Renmin University of China, NO.59 Zhongguancun Street, Haidian District, Beijing, 
P.R.China, 100872 

 

Abstract 

In order to stimulate or subdue the economy, banking regulators have sought to impose caps 

or floors on individual bank’s lending to certain types of borrowers. This paper shows that the 

resultant decision problem for a bank of which potential borrower to accept is a variant of the 

marriage/secretary problem where one can accept several applicants. The paper solves the 

decision problem using dynamic programming. We give results on the form of the optimal 

lending problem and counter examples to further “reasonable” conjectures which do not hold 

in the general case. By solving numerical examples we show the potential loss of profit and 

the inconsistency in the lending decision that are caused by introducing floors and caps on 

lending. The paper also describes some other situations where the same decision occurs. 
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1. Introduction 

Financial regulators in several countries have sought to rein in or alternatively encourage 

lending to borrowers by putting caps or floors on the amount a bank can lend over a given 

time period. Countries such as China, India or Turkey have imposed caps on lending for a 

number of years. More recently, the UK government also sought to have an annual floor on a 

bank’s lending to small and medium sized enterprises (SMEs). Imposing such regulations on 

lending will change the decisions on whom to lend to as well as making the lending less 

profitable for the bank and in consequence leading to inefficient lending. It can also mean 

there is unfairness in the lending as the accept/reject decision by the bank depends on how 

much capital is still available before the limit is reached and how long it is until the end of the 

lending restriction horizon. The objective of this study therefore is to identify the impact of 

putting caps/floors on inefficiencies and unfairness by solving the lender’s accept/reject 

decision problem optimally.  

 

This paper develops a set of Markov Decision Processes (MDP) models which address the 

lending problem with constraints on the total capital lent. From these, it is possible to 

investigate the optimal lending policies and how they differ in which borrowers are being 

accepted and the lender’s total profitability compared with the optimal policy when there is 

no restriction on capital. The models themselves have a flavour of multiple choice secretarial 

or marriage problems, or the house hunting problem but are quite different in the objective to 

be optimized and the information available to the decision maker. In this problem the 

objective is to maximise the total profit to the lender rather than maximising the probability 

of choosing the k most profitable borrowers. When a potential borrower requested a loan, the 

lender is told two characteristics – the size of the loan requested and the probability of the 

borrower not defaulting on the loan. The latter of these is given by a credit score.  The form 

of the optimal policy is to accept a borrower if their probability of non-default is above a 

certain value which translates into the credit score being above some cut-off score. However, 

unlike the traditional problem with unlimited capital available, this cut-off level will vary 

depending on the capital still available and the time until the lending restrictions end. These 

models show how significant is this unfairness to borrowers and also the drop in the lender’s 

profitability that these capital restrictions cause. 
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In section 2, we review the literature outlining the restrictions on consumer lending, the basic 

consumer lending model and the related literature on the secretary problem. In section 3 we 

define the lending model with a cap on the amount of capital that can be lent in a given time 

period. This is a Markov Decision Process model and we describe the optimality equation 

and the form of the optimal policy. We also suggest two other policies including the optimal 

policy if there is no cap on the capital. Section 4 describes a discrete state space 

simplification of the model. This allows us to calculate several numerical examples including 

some that prove to be counter examples to reasonable conjectures concerning the optimal 

policy. It also means we can evaluate the difference between the optimal capped and 

uncapped policies and so address the fairness and profit sub optimality of the former. Section 

5 looks at the problem where there is a floor on the capital that must be lent. This has been 

advocated by several governments particularly for bank lending to SMEs. It turns out that this 

problem leads to essentially the same Markov Decision Process model as the lending problem 

with a cap on the capital. We write the original problem with general cost functions though 

we describe the problem in the text in terms of the lending problem. In section 6 we describe 

three other problems which can lead to the model of section 3. We draw some conclusions in 

the final section.   

2. Literature Review 

In the last decade, regulators in several countries have sought to improve the economy by 

putting floors or caps on the annual level of an individual bank’s lending to consumers or 

small businesses. The Central Bank of China set annual limits on the new lending by 

individual banks (Bloomberg, 2012) for a number of years. In 2011, Turkey’s bank regulator 

penalised banks that exceeded a limit on consumer lending. On the other hand, some 

governments sought to increase the lending to companies, particularly small and medium 

sized (SMEs) ones by putting floors on each bank’s lending in that sector. The most notable 

of these was the agreement between the UK government and four international banks 

enshrined in the Merlin Project (Bank of England, 2012). The Bank of India had already in 

2006 imposed a floor on banks’ lending in this sector (Reserve Bank of India, 2009). 

 

The impacts of these restrictions on the individual lending decisions are modelled in this 

paper. Opportunities to invest arrive according to a random process and are described by two 

characteristics – the size of the resource required and the probability of the opportunity being 
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successful. The distribution of these over the whole set of possible opportunities is known but 

not their value on a specific opportunity until it appears. If the opportunity is rejected it 

cannot subsequently be accepted. The objective is to maximise the total expected profitability 

of the opportunities accepted assuming that there is a fixed time horizon for investment and a 

limit on the resource available. This has the flavour of a number of classic decision problems 

but does differ from them in several aspects. 

 

In the secretary problem, sometimes called the marriage problem and reviewed by Freeman 

(1983) and Ferguson (1989), each opportunity only has one characteristic whose probability 

distribution is not known. The objective is to maximise the probability of choosing the 

opportunity with the maximum characteristic value. There have been many variants of this 

problem including Smith (1975) who allows the opportunity to refuse to be accepted and 

Yoshidi (1984) who allows a change point in the probability distribution. Preater (1994) 

looked at the multiple-choice problem where one can choose	 , where 1, opportunities 

and the objective is to maximise a utility function of the ranks of the  opportunities chosen. 

Bateni et al (2010) reviewed a number of multiple choice secretarial problems where the 

objective is to maximise the expectation of a submodular function based on the skills of the 

secretarial group chosen. Extension of the classical problem has also been done by Chun 

(1999) who looks at the decision problems when there are more than one choices are 

available or by Stein et al. (2003) who compares the computational complexity of three 

heuristic solution approaches.  

 

In the house hunting problem (Derman and Sachs, 1960; Ferguson and Klass, 2010), there is 

a cost of examining each opportunity. The value of the characteristic of each opportunity is 

i.i.d. and the distribution is known. The objective is to stop at an opportunity so the total 

value of the characteristic of that opportunity less the examination costs is maximised. 

 

Choice problems closer to that considered in this paper are the sequential allocation problems 

first introduced by Derman, Lieberman and Ross (1975). In these problems, opportunities 

arrive according to a random process over a finite time horizon. The decision maker has a 

limited amount of resource to invest and the profit from each opportunity invested in is the 

same non-decreasing function of the investment level. The difference with the problem 

considered in the following sections is that the amount to invest is a decision by the investor 

whereas with us it is a characteristic of the opportunity. Moreover, our opportunities have 
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different profits since these depend on the probability of repayment of the opportunity. 

Prastacos (1983) extended this problem by allowing the profit to depend on the quality of the 

opportunity. However, the decision is still how much to invest rather than whether or not to 

invest the amount required, which is the case in our problem. 

 

Another way of thinking about the problem is as a dynamic stochastic knapsack problem 

(Kleywegt and Papastavrou, 1998). In this problem, items arrive to be loaded on a container 

of fixed size (the resource). The size and value of each item is unknown until the item arrives 

although the distribution of sizes and values is known. There is a holding cost per unit time 

until it is decided to dispatch the shipment and there is a value for any unused capacity. The 

objective is to maximise the expected overall value dispatched less the costs. The decisions 

are whether to accept an item and when to dispatch the shipment. Setting the holding cost and 

the value of unused capacity to zero would lead to a problem similar to the simplest one 

considered in this paper.  Kleywegt and Papastavrou (1998) look only at the case where all 

items are the same size, which is akin to the case in Theorem 2 of this paper. Kleywegt and 

Papastavrou (2001) looked at the case of variable sizes but when there is no deadline on when 

the shipment needs to be sent. They also looked at the problem with a shipment deadline and 

found under what conditions the optimal policy had some monotone properties, something 

that did not hold in general. Subsequent works (van Slyke and Young, 2000; Zhuang et al., 

2012) have modified the problem to deal with the conditions that arise in yield management. 

The difference to the problem considered in this paper is that our opportunities have a 

probability of success and so the optimal policy is based on a cut-off on the riskiness of the 

opportunity rather than a control limit policy on the size of the loan. Moreover, the boundary 

conditions of fully funding or partially funding the opportunities that edge over the constraint 

cannot be used in the knapsack approach. Similarly, the floor problem we discuss does not fit 

into the knapsack approach. 

3. Lending Model with Ceiling on Capital Available 

Opportunities arrive according to a Poisson process with arrival rate . Think of these as 

borrowers applying for a loan. Each opportunity 	requires an investment of  and has a 

probability	 	of a successful outcome with a reward of  per unit invested if successful and a 

loss of –F per unit invested if a failure.. The expected reward is then 	 1 . 

For the lending problem to consumers, the model found in Thomas (2009) suggests  
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, 	                                                                                (1) 

where  is the interest rate charged on the loan;   is the risk free interest rate at which the 

lender can borrow the money that is being subsequently lent;   is the loss given default on 

the loan, which is the percentage of the loan that is finally lost at the end of the collections 

process. The lender does not know in advance the required investment level or risk 

probability of each loan but does know that the overall distribution of , 	is given by a 

density function , .  

When the borrower arrives the lender finds out the  and  for that applicant. The latter is 

usually expressed as their credit score. The decision maker has to decide when each 

opportunity arrives whether to accept it or reject it but is only allowed to invest 	in total in 

the time horizon  of interest. The aim is to maximise the expected reward in this period. 

 

Let , , ,  be the future expected reward given an opportunity has just arrived with  

more of the period to go and there is  of the investment capital still available while the 

opportunity that has arrived requires an investment of  and has a probability of success of .  

 

Let ,  be the optimal expected future reward if there is still  to go and  investment 

capital available and no opportunity currently available.  

 

Similarly, let ,  be the optimal expected future reward with  to go, and  investment 

capital still available when there is an opportunity available but whose  and  is not yet 

revealed.  These are connected by the following dynamic programming optimality equations: 

 .  

0

1

0 0

( , ) :
( , , , ) max (2)

( (1 ) ) ( , ) :

where ( , ) = ( , )  

and W( , ) ( , ) ( , , , ) (3)

t s

R l t reject
V l t x p

x Sp p F R l x t acccept

R l t e W l t s ds

l t dp dxf x p V l t x p

 




     






 

 

 

Theorem 1: The optimal policy is accept the opportunity if  
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*( , , ) where

1 ( , ) ( , )
*( , , )

p p l t x

R l t R l x t
p l t x F

S F x



      

                                    (4) 

 

Proof. The proof follows trivially from (2). 

 

There are three variants of this model depending on what the lender is allowed to do when the 

next opportunity, if accepted would break the investment limit. This is the situation in the 

state , , ,  where 0 . The three possibilities are: 

 

a) Allow overshoot of the limit so the loan is fully funded  

, , ,
,
1

                                    (5) 

b) Allow the loan to be partially funded  

, , ,
,
1

                         (6) 

c) Loan is not funded at all 

, , , ,
0

                                     (7) 

 

It follows from this that the decision rule (4) changes in the situation when 0 to 

1 ( , )
*( , , ) min{  ,1} fully funded

1 ( , )
*( , , ) min{ , 1}  partially funded

*( , , ) 1                             not funded

R l t
p l t x F

S F x

R l t
p l t x F

S F l

p l t x

     
     



           (8) 

 

These follow since ,  must be 0 if 0 . In the subsequent work, Initially we 

concentrate on the results in the fully funded case because (5) is of the same form as (2) 

provided we set , 0 for all 	0. We will discuss the other two cases when they give 

different results. 
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We can prove result about , ,  and ∗  by using value iteration, which is a standard 

approach to solving Markov Decision Processes (Bauerle and Rieder, 2011). We use the 

following value iteration equations to help prove such results:  

1

0

1

n 0 0

0 0 0

( , )
( , , , ) max (9)

( (1 ) ) ( , )

where ( , ) = ( , )  

and W ( , ) ( , ) ( , , , )  (10)

V ( , , , ) ( , ) ( , ) 0

n
n

n

t s
n n

n

R l t
V l t x p

x Sp p F R l x t

R l t e W l t s ds

l t f x p dp V l t x p dx

l t x p W l t R l t










     





  


 

 

 

Lemma 1: 

i) , , , , ,  and ,  are non-decreasing in  and hence converge to 

, , , , ,  and , ; 

ii) , , , , ,  and , 	are all non-decreasing in  and in ; , , ,  is non-

decreasing in . 

 

Proof:  

i) That , , , , ,  and ,   are all non-decreasing in  follows by induction 

on  where the critical induction step is recognising that  

(11) 

So the iterates of ,  and  are all non-decreasing and bounded by . And so converge to 

bounded functions. Hence from Puterman (1994) they converge to the solution of 

equations (2) to (3). 

 

ii) Again this is proved using induction on the iterates of value iteration. Induction trivially 

holds at 0  since 0 0 0( , ) ( , ) ( , , , ) 0W l t R l t V l t x p   . Assume the result holds for 

. , . , . , .  then by (10) and (9) it trivially holds for . , .  and for . , . . Lastly from 

(8) it then holds for . , . , . , . and the induction step is complete. The impact of  on 

. , . , . , .  is trivial from (2). 

 

1

1 1

1 1

1 1

( , ) : ( , ) :
max

( , , , ) ( , , , ) max ( (1 ) ) ( , ) ( (1 ) ) ( , )

( , ) ( , ) :
min 0

( , ) ( , )

n n

n n n n

n n

n n

R l t R l t

V l t x p V l t x p x Sp p F R l x t x Sp p F R l x t

R l t R l t

R l x t R l x t
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One might expect results concerning the capital available and the time available, namely the 

more capital available the higher has to be the quality of the applicants accepted. Similarly 

one might expect that the more time available the higher an applicant’s quality has to be so as 

to be accepted. However, as a counter example given in the next section shows, the result 

concerning capital is not true in the general case. The relationship between capital available 

and acceptance decision is true only if all applicants apply for the same amount of capital. 

This is what the next theorem implies.  

 

Theorem 2: Suppose , 1,  so all applicants only apply for loans of  then 

i) , , 	 , 	 and , , ,  are all concave in ; 

ii) ∗ , ,  is non-increasing in . 

 

Proof. 

i) If every loan application is for , then the capital available dimension of the state space 

becomes 	 	0 1 . So to prove concavity in  it is enough to 

show that  

, , , 1 , , ,  

	 1 , , , , , ,                       (12) 

 

If , , ,  is concave in  then ,  and ,  are also concave in  since if ,  

is concave in  the integral ,  is also concave in . 

 

We prove the result by induction on  the iteration value in equations (8) to (10). The 

result holds for 0  since , , , 	 , , 0 . Assume the 

hypotheses hold for , , , 	 , ,  then since 

 

max , max , max , min ,          (13) 

 

One has  

, , , 1 , , ,

min , 1 , ; 1 ,

2 , , 1 ,  
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1 , , ; ,

1 , 1 , , , , , ,               (14) 

where the middle equalities hold because the induction hypotheses gives the concavity of 

,  in . So the induction holds and , . , . , .  is concave in . Hence so are 

, .  and , .  and also the limit functions of the iteration scheme, , . , . , . , 

, .  and , . . 

 

ii) It is enough to show ∗ , , ∗ 1 , ,  

	 

0 0
0 0

0

0 0
0 0

0

( , ) ( ( 1) , )1
*( , , )

( ( 1) , ) ( ( 2) , )1
*( ( 1) , , )

R L mx t R L m x t
p L mx t x F

S F x

R L m x t R L m x t
F p L m x t x

S F x

    
      
     

      

       (15)

   

Where the inequality follows from the concavity proved in Theorem 2 (i). 

 

In the general case when the borrowers can request different loan amounts, Theorem 2 fails. 

The problem can be seen if one thinks of the decision whether to give a loan of 2  as 

consisting of whether to accept the first   and then subsequently accept the extra . One 

would accept the first if ∗ , ,  but only accept the second if 

∗ 1 , ,  which may not hold. In that case should one reject or accept the 

loan. Under both decisions one loses the concavity of the , .  function. 

 

There are two obvious suboptimal policies that could be considered for this problem. The 

first is the optimal uncapped policy where the lender ignores the cap on lending completely 

and accepts a borrower with probability  of paying off a loan of  provided: 

 

, ,  (16) 

  

Note ∗ , , 	 	 	 , ,  so the uncapped policy is less strict than the optimal capped 

policy. The uncapped policy is suboptimal because it can run out of capital while there is 

time for more “good” borrowers to appear.  
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Another obvious suboptimal policy seeks to just use up all the capital under the assumption 

that the future is deterministic. Let ̅  be the expected value of a loan requested by future 

borrowers. So 

̅ ,  

Let  be the cumulative probability that a borrower will have a probability of  or less of 

repaying the loan. So 

,  

If there is  capital remaining and a time 	 until the cap horizon is reached then the 

deterministic future heuristic accepts a loan of  from a borrower with probability  of 

repaying the loan provided  	max	 , , , , ,  where 

 

̅ 1                                              (17) 

 

The RHS of this expression is the expected number of future applicants multiplied by the 

average loan requested multiplied by the probability they will be accepted if the existing 

decision continues to be applied. The LHS is the capital available if this loan is accepted. So 

this is set equal to the capital that would be used up if the current policy continued to be used 

in this deterministic future. However, sometimes there is so much capital this equality means 

the lender will take unprofitable customers, hence the need to take the maximum of this 

probability and that of the uncapped case, which takes only the profitable customers. The 

heuristic is sub optimal because it assumes the future decisions will be the same as the current 

one. In the next section numerical examples are used to investigate how sub optimal it is. 

4. Discrete Time Approximation to the Lending Model 

Puterman (1994) outlines three ways of solving continuous time Markov decision processes. 

One can discretize time, use a semi Markov approach or apply uniformization of the Markov 

process by introducing decisions at times chosen by an independent Poisson process.  The 

latter two approaches are not appropriate for this problem since the time of the decision until 

the end of the lending horizon is part of the state space. So the time until the end of the 

lending horizon 0   is discretized into 1  decision points 	 / ,
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1 / , 2 / , … . / , …	 / . The chance no applicant 

appears between one time point and the next is 1 μ where  

 

1 	 1 o 	1/ ))=1  

  

So μ /  is the chance an applicant arrives in that period. One can always choose  

large enough that the chance of two or more applicants appearing in the same discrete time 

interval is negligible. 

 

The  and  parts of , , ,  can be discretized by assuming there are only a finite number 

of loan amounts that can be offered. If one takes  to be the greatest common denominator 

of these amounts, then the loan amounts can at most be 	, 2 , 3 , … , , … ,  where 

	 / 0 . The amount of capital still available must then be  where 

0,1,2, … , . where 1 . The probability  of the lender repaying in full is also 

discrete since it is given by a credit scorecard which can only take a discrete number of 

values. We let the corresponding probabilities be , , … , , . . ,  . The probability that an 

applicant arrives with success probability  and asks for loan amounts	  is , . In our 

examples, we assume	  and  are independent. With these assumptions we can modify the 

optimality equation given in equations (1) to (3) into the following calculation process.  This 

involves rewriting 	, / , ,  as , , ,  and 	

	, /  as , , 0, . .  This latter definition follows because there being no applicant 

at a given time is the same as there being an applicant for a loan of zero. In such a case the 

probability of repaying is not important. The optimality equation then reduces to the 

following 

 

, , ,

max

1 , 1,0, . , , 1, ,
,

1 1 , 1,0, . , , 1, ,
,

 

(18) 

This reduces in the case 0 to 
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, , 0, . 1 , 1,0, . , , 1, ,
,

 

The boundary conditions are , , , , , , 0 for all , . 

 

We can apply this calculation scheme to find ,  for several values of	  and ∗ , , 	for 

several combinations of ,  and  with several choices of parameters. 

 

4.1 Numeric Examples 

Example 1 

The following are parameters used in our numeric examples: 

 

10; 12; 2; 1; μ 0.5; 

6;	 , , … , 0.7,0.8,0.85,0.9,0.95,0.99 ; , , ∀ , ;	  

0.2; 0.1; 0.5;	  

Using (1), this gives	 0.1 and 0.6. 

 

The results for the numerical examples for fully funded, partially funded and not funded are 

shown in Figure 1, 2 and 3 respectively. In these figures, the x-axes represent the time , 

where the higher the  the closer it is to the end of the planning horizon. The y-axes represent 

the optimal cut-off value ∗ of the corresponding , , . In each of these graphs, there are 

two curves which indicate the cut-off value corresponding to 1,2  respectively. For 

example, the optimal cut-off for ∗ 0,0,1  is 0.85715 as shown in Figure 1a. This means if 

the lender has not lent any money yet ( 0) and it is at the beginning of the planning 

horizon ( 0), s/he will lend to a borrower, who asks for 1 unit of money ( 1), only if 

this borrower has a credit score higher than 0.85715. This is the probability of being Good 

which means the borrower is expected to be profitable. It is the cut-off value for all borrowers 

in the unrestricted case. 

 

[Figure 1 about here] 

 

In Figure 1a (where 0 indicates all capital is available), the optimal cut-off values ∗ for 

all 1,2 throughout the whole planning horizon are almost identical and are close to the 

unconstrained cut-off value.   When the lender has lent out 5  (shown in Figure 1b), the 
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cut-off values are higher than those of 0 because there is less capital available and so the 

lender needs to be more discriminating. Also, in Figure 1b, the cut-off values ∗decreases 

with . This makes sense since the lender is running out of time and so needs to accept riskier 

borrowers. As might be expected, most of the time the cut-off probability ∗ , ,  

decreases with  and decreases as  increases. The lender needs to be more relaxed in whom 

to accept if they are well below the cap or they have little time left. They never though accept 

borrowers who are not profitable ( 0.85715). The cut-off probabilities tend to be concave 

functions of the time since the start of the period. One extra unit of time makes a larger 

difference to the cut-off probabilities when there is little time left than when it is a long time 

to the time horizon. Another observation for Figure 1a and 1b is that the cut-off value for 

1 is lower than those of 2. This means the model favours those borrowing lower amount.   

∗ , ,  varies from the profitable limit of 0.85715 up to almost 1.00 when there is little 

capital and lots of time available . This is quite a major level of unfairness especially when 

compared with the uncapped policy which shows the same cut-off probability - 0.85715 - for 

everyone. 

 

When 9 (shown in Figure 1d), the cut-off for 2 is much lower than those of 1.  

This is the lender taking advantage that full funding allows him to “overshoot” the capital cap 

and lend 11 units not just 10 in this case. This leads to a larger profit. When 8 (shown in 

Figure 1c), it is more favourable to lend money to borrower who asked for 1	than those 

who wanted 2. With 8, the lender will use up all the capital immediately if it gives 

credit to those asking for 2.  But accepting those with 1 allows the possibility of 

overshooting in the next period. 

 

[Figure 2 and 3 about here] 

 

For the partially funded and no funded cases (shown in Figure 2 and 3 respectively), the 

optimal cut-off values for a low  are very similar to those of fully funded cases. However, 

as  approaches the cap on the capital ( 12), the optimal cut-off for no funded are the 

highest, following by the partially funded and the fully funded cases have the lowest cut-off 

value. This is because, including the overshoot capital, the fully funded cases have slightly 

more capital which essentially leads to a more lax policy. Comparing the partially funded and 

the no funded cases, since the later has much less opportunities, it tends to be more careful. 
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So for example at 8 and 0, the partially funded case accepts borrowers provided 

their probability of being Good is around 0.95 while in the no funding case, the lender should 

only accept 1 borrowers if their Good probability is close to 1. This is partly because in 

the no funding case the lender cannot accept any one asking for a loan of 2 if they only 

have 1 unit left, so do not like having only one unit of capital available.  

 

In terms of profitability we compare the expected profits ,  whose discrete time 

equivalent is , , 0, .  (which corresponds to , )  relative to the optimal 

uncapped profit. The latter is  

 

∑ , max	 0,                          (19) 

 

Using the parameters in our example, the above equals to 12 0.5 /4 0 0 0

.7 0.99 .6 .7 0.95 .6 .7 0.9 .6 	 0.0235 12 . In Table 1, we 

show the uncapped profits as  varies and the capped profits as both  and  vary. If there is 

plenty of time (12 units) and plenty of capital (10 units), the capped profits are almost the 

same as the uncapped ones. However, they drop down to well under 50% as the amount of 

capital available drops. Note that since the expected profit from 1 unit of capital seems to be a 

maximum of 0.1 if the borrower has 1, the expected profit if there is only one unit 

of capital available exceeds this. This is because of the overshooting effect where the lender 

waits for a Good borrower with high  who needs 2 units to borrow before lending the 1 unit. 

Table 1 can be thought of as the loss in profit due to capping but also the errors if one uses 

the uncapped policy to approximate the capped profits. 

  

[Table 1 about here] 

 

The second approximation to the optimal policy is the deterministic future heuristic given by 

(17). The deterministic time version of this heuristic is  

̅
1   with ∗ max	 ,            (20) 

 

Using the parameters of Example 1, this translates to  
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 ∗ , ,

0.989		 	10 0.125 12
0.949		 	0.125 12 10 0.25 12
0.899	 	0.25 12 10 0.375 12

0.8571	 		0.375 12 10

              (21) 

The corresponding profits for this policy compares with the optimal uncapped policy is given 

in Table 2. 

[Table 2 about here] 

 

From Table 2, we see this heuristic has values close to those of the optimal policy when 

2  but they drop below the optimal policy values when  is large. The former shows that 

when there is less time 12  available than capital 10  available the heuristic is 

essentially optimal. The latter suggests that when there is little capital available it is less 

accurate. This follows since the LHS of (17) which defines the heuristic is  which 

suggests the loan is granted. If one assumed the loan was not granted the LHS of (17) should 

be . This clearly matters when , the capital available, is small.  

 

Example 2 
Theorem 1 showed that if all borrowers required the same amount then the cut-off 

probabilities increased as the capital available increased. We promised to give a counter 

example to this in the general case and Example 2 is such a counter example. The parameters 

in this case are 

 

4; 3; 2; 1; μ 0.5; 

6;	 , , … , 0.7,0.8,0.85,0.9,0.95,0.99 ; 

1, . , 2, . , ∀ ;	  

0.2; 0.1; 0.5;	 0.1 and 0.6. 

 

Figure 4 shows that for both 0 and 1, as  increases, the cut-off probabilities ∗ , 0,1  

and ∗ , 1,1  are non-monotonic. This is because it is much more likely for borrowers to 

request a loan of 2 rather 1. So the lender prefers to have an even amount of capital in the no 

funding case (and an odd amount in the fully funding case). When a borrower wanting 1 unit 

applies the lender is more relaxed if he has 1 left (i.e. 2) rather when he has 2 left (i.e. 

1 ). This reasoning also explains why ∗ 2,0,1 ∗ 2,0,2  whereas ∗ 1,0,1
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∗ 1,0,2 , so that sometimes the lender should be more conservative with loans of 1 and 

other times with loans of 2. 

[Figure 4 about here] 

5. Lending Decision with Floor on Total Capital Lent 

Whereas the regulators in some countries have put caps on the annual lending to some of the 

banks’ retail portfolios, other countries’ regulators have been putting floors on the amount a 

bank should lend to a particular portfolio. One example would be the Project Merlin 

proposals started by the UK government in 2011 which put a floor particularly on a bank’s 

lending to SMEs. Models when there is a floor on the amount to be lent in a given period are 

related to the lending models when there are caps on lending as in the model of Section 3.  To 

see this, suppose the lender must lend at least  of the resources in a time horizon 	 . 

Applicants arrive according to a Poisson process with parameter . An applicant is described 

by two parameters –  the amount of the resource (the loan) they require and their probability 

 of paying back the loan. The distribution of these values over all the applicants is given by 

identical independent distributions with density function	 , .  

 

Let , , ,  be the expected future profit to the lender if there is a current applicant with 

loan size  and probability of repayment of , and the lender is still  below the resource floor 

( i.e.  has been lent so far) and there is  until the end of the lending horizon. ,  is 

the expected future profit if there is currently no applicant wanting a loan with the lending 

still  below the lending floor and  until the end of the lending horizon. Similarly, ,  is 

the expected future profit if there is an applicant waiting but his characteristics  and  are 

not yet known and the lending is  below the lending floor and there is  until the end of the 

lending horizon. Note that  will be in the range ∞,  where a negative value means the 

lending is already above the floor value. 

 

The optimality equation for these future expected values satisfies 
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V (l,t, x, p)  max
R(l,t) : reject

x(Sp (1 p)F ) R(l  x,t) : acccept
(22)







where R(l,t) = esW (l,t  s)
0

t ds (23)

and W(l,t)  dp dxf (x, p)
0

 V (l,t, x, p)
0

1  (24)

with the boundary condition R(l,0)=-Ml if l>0; =0 if l  0

 

 

Where M is the penalty imposed if the lending floor is not reached. This is the same 

optimality equations as (1) to (3) except for the boundary condition. So with one exception – 

the value functions are non-increasing in  - we get the same results as Lemma 1. Hence an 

optimal policy similar to that in Theorem 1. This can be written as 

 

Lemma 2: , , , , ,  and 	 ,  are all non-increasing in l and non-decreasing in , 

, , ,  is non-decreasing in . 

Proof.  The proof follows Lemma 1 except that , 0  is non-increasing in  and this 

condition goes through the induction hypothesis.  

 

The next theorem looks at the form of the optimal policy. 

Theorem 3: The optimal policy is such that in state , , ,  one accepts an applicant if 

 

∗ , ,

, ,
, , 	 0

																							 0		
                           (25) 

 

Proof. The result for 0  follows directly from (22). For 0  the floor restriction is 

satisfied and so this is equivalent to the uncapped situation. 

 

Note that as ,  is non-increasing in , ∗ , ,  and so the lender needs to take 

riskier applicants than the uncapped case until the floor is reached. 

 

Example 3 

For this lending example with a floor in the lending the parameters are the same as those of 

Example 1. For the boundary condition, we assume 10 , i.e. a penalty of 10 for every 

unit of capital that the lending is below the floor requirement. In the floor model, the lender 
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either does not fund an applicant or funds them fully as there is no upper restriction on the 

amount of capital to lend. Note that from Theorem 3, the lender is more relaxed in his policy 

while he is below the floor compared with the unconstrained case.  Figure 5 describes the cut-

off probabilities as a function of  the time since the start of the time horizon. Surprisingly 

this looks almost like a bang-bang policy swapping between taking only profitable borrowers 

and taking all borrowers. As  increases and so there is less time available the cut-off 

decreases since the lender is more and more concerned about reaching the floor. Eventually 

this condition is so important the lender takes everyone. This desperate decision occurs 

earlier and earlier the less capital that has been already lent. At 0 the lender takes 

everyone from 0; for 5 it occurs 3 periods from the start and with 9 and so 

only one more unit of capital to meet the floor it is not until period 10.  

 

[Figure 5 about here] 

The probability cut-off is of the bang-bang type as  varies both for loans of value  and 2 . 

In the region as one moves from one extreme to the other the lender is more cautious with 

larger loans than smaller ones. This is because it is now likely the lender will reach his floor 

target and so is getting more concerned about the losses he is incurring on these loans. 

 

In this floor case, one needs to do a little more work to find the optimal expected profitability 

than just take , , 0, .  That value will contain the penalty for not reaching the floor in 

some cases. One needs to take the optimal policy obtained from the optimal equations and 

rerun the calculations allowing only those optimal actions and removing the boundary penalty 

for failing to meet the cap. The results of doing this compared with the profit from the capped 

policy are shown in Table 3.  

 

[Table 3 about here] 

Table 3 shows that imposing floors has a higher impact on profit than imposing caps. When a 

lender is still a long way from the floor the effect on his profit is very severe, sometime he 

only gets 1% of the optimal uncapped profit. 18% in the example under consideration 

corresponds to the policy of taking every applicant. Doing so in order to meet the floor has a 

major impact on profitability. Profits only start to recover to the uncapped case when  is 

high and k small. This means the lender has almost reached the floor and still has a long time 

to go before the time horizon. 
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6. Other Non-lending Examples 

This variant of the multiple choice secretary problem or the polygamous marriage problem 

can occur in several other contexts than consumer lending. Some examples are as follows. 

 

Anti-missile ship defence 

A warship is provided with L anti-missile missiles for ship defence. It believes it can come 

under missile attack and not be able to refurnish with anti-missile missiles for a period T. 

Attacking missiles are likely to arrive in a Poisson process with parameter λ. Each attacking 

missile is described by two parameters,  the damage it can cause if it hits the ship and  the 

probability that the anti missile will be able to destroy it. Take 1, 0 and . 

The objective is to minimise the damage to the ship, The corresponding model is a Markov 

decision process given by equations (1) to (3) with  added to the state space if necessary so 

that in state , , ,  there are  anti-missile missiles remaining,  until the end of the attack 

and the current attacking missile is described by parameters  and . 

 

Refugee Acceptance policy 

How many and which refugees should a country accept after a natural catastrophe or internal 

civil was in a neighbouring territory is an important humanitarian decision in current times. 

The problem is whether the refugees will suffer persecution (civil war) or starvation (natural 

catastrophe) if they are not allowed into the country. Let  be the number of refugees that will 

be allowed in over a period . Assume the refugees arrive according to a Poisson process with 

parameter . Each refugee family has two characteristics –  the size of the family and  the 

probability they will suffer persecution or hunger if they are not allowed in. Let 1, 0 

and the objective is to maximise the expected numbers who avoid hunger or persecution by 

being accepted as refugees. This can be modelled as a Markov decision process and its 

optimality equation coincides with (1) to (3). 

 

Inoculation Campaign 

One of the most successful ways of dealing with diseases like influenza, pneumonia or 

measles is by inoculation against the disease. If there is a new or unexpected outbreak of the 

disease then there will be a limit  on the number of vaccine shots available. It is expected 

the outbreak will last a time  and patients appear for inoculation during this period 
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according to a Poisson process with parameter . Each patient is assessed to estimate p the 

probability of them getting the disease if not inoculated. Let 1, 1, 0. The health 

authority wishes to maximise the expected number of patients who have been prevented from 

getting the disease by the inoculation campaign. The corresponding Markov Decision Process 

model leads to the same optimality equation as is found in (1) to (3). 

7. Conclusion 

Imposing floors and caps on the amount of capital a bank can lend in a given period is one 

way financial regulators are controlling the economy. This paper looks at the resultant 

decision that a bank has to make on which loan applicants to accept and which to reject. From 

these, we can identify the inefficiencies and unfairness such constraints cause.  

 

The decision is modelled as a continuous time Markov Decision Process. Doing so highlights 

several issues. Firstly is the cap an absolute or flexible limit on what is lent? Depending on 

which situation, one has three cases at the cap limit of fully funding, partially funding or not 

funding a loan which takes the bank over the cap.  Secondly one would expect that having 

more capital available means the bank will be less restrictive to whom it lends. Surprisingly, 

this is not the case in general but holds if all the loans are for the same amount. Similarly, one 

might expect the lender to be more restrictive for a higher amount of loan but again this is not 

the case. This is because the lending decision is affected by the distribution of loan amount 

that subsequent applicants may require. Thirdly we can use the model to compare 

numerically the optimal policy in the uncapped case of only taking profitable applicants with 

that in the capped case. The results show that capping imposes considerable drops in profit – 

up to 60% compared with the uncapped case. Also capping makes the accept/reject decision 

inconsistent with the cut-off probability of being Good in order to be accepted varying from 

0.857 to 1.00 even with the small levels of time and capital used in the example. 

 

The floor model also shows that imposing a floor on lending cuts the profitability to the bank 

by a considerable percentage – up to 82% in the extreme case. The optimal policy in the floor 

case is close to a bang-bang one switching between taking everyone and only those who are 

profitable. If past lending is well below the floor, the lender accepts everyone. With slightly 

higher levels of previous lending one takes some but not all the unprofitable applicants and 

all the profitable ones. When past lending is close to the floor or over it, the lender takes only 
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profitable applicants. We feel though that this paper addressed the main issues affecting 

banks decisions to lend when there are floors and caps put on lending over a given time 

horizon by the financial authorities.  

 

One possible extension is to model the situation where lender can defer decision on whether 

to offer the loan to later in the lending horizon. This allows lenders to have better knowledge 

on whether the constraints may be broken or not. However, during the delay time, the 

borrower may decide to withdrew their application for a loan and apply to a different 

borrower. A more complicated extension occurs in the credit union area. There the capital 

available depends on the total deposits of the savers in the credit union which is varying over 

time. Thus the cap on future lending is both unknown and varying. Addressing this issue will 

be of important in the future give the prominence that credit union are receiving as part of the 

debate on unfair lending practices.  
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(a.) ∗ 0, ,                                                      (b.)	 ∗ 5, ,                           

                               

 
 (c.)	 ∗ 8, ,                                                 (d.)	 ∗ 9, ,             

 
Figure 1. The cut-off value p* for Capped fully funded cases.  

 
 k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 

Uncappe
d Profit 

0.282 0.259 0.235 0.212 0.188 0.165 0.141 0.118 0.094 0.071 0.047 0.024 

Profit in percentage of uncapped profit to the corresponding k and m (i.e. 
	 	

	 	
%) 

m=0 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

m=1 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

m=2 98% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

m=3 97% 98% 98% 99% 99% 100% 100% 100% 100% 100% 100% 100% 

m=4 93% 95% 96% 97% 98% 99% 99% 100% 100% 100% 100% 100% 

m=5 88% 90% 92% 94% 96% 97% 98% 99% 100% 100% 100% 100% 

m=6 79% 82% 85% 87% 90% 92% 95% 97% 98% 99% 100% 100% 

m=7 70% 73% 75% 79% 82% 86% 89% 93% 96% 98% 100% 100% 

m=8 52% 55% 57% 61% 64% 68% 72% 77% 82% 87% 94% 100% 

m=9 40% 42% 45% 47% 50% 54% 58% 63% 70% 78% 88% 100% 

 
Table 1. The difference between Capped (fully funded) and Uncapped for the fully funded 

case.  
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(a.) ∗ 0, ,                                                      (b.)	 ∗ 5, ,                           

                               

 
(c.)	 ∗ 8, ,                                                 (d.)	 ∗ 9, ,             

 
Figure 2. The cut-off value p* for Capped partially funded cases.  
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(a.) ∗ 0, ,                                                      (b.)	 ∗ 5, ,                           

 
 

 
(c.)	 ∗ 8, ,                                                 (d.)	 ∗ 9, ,             

 
 

Figure 3. The cut-off value p* for Capped no funded cases.  
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(a.)	 ∗ , 0,  

 

 
(b.)	 ∗ , 1,  

 
Figure 4. A counter example for ∗ does not increase in . 
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Profit of Heuristics in percentage of optimal profit to the corresponding  and  

(i.e. 
	 	

	 	
%) 

k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 

m=0 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
m=1 98% 98% 99% 99% 100% 100% 100% 100% 100% 100% 100% 100% 
m=2 96% 97% 97% 98% 99% 99% 100% 100% 100% 100% 100% 100% 
m=3 92% 93% 95% 96% 97% 98% 99% 99% 100% 100% 100% 100% 
m=4 86% 88% 90% 92% 94% 95% 97% 98% 99% 100% 100% 100% 
m=5 74% 77% 81% 86% 88% 90% 92% 94% 96% 98% 100% 100% 
m=6 67% 69% 71% 74% 76% 79% 83% 88% 91% 94% 98% 100% 
m=7 69% 68% 66% 65% 65% 66% 68% 70% 71% 74% 80% 100% 
m=8 75% 73% 72% 70% 68% 66% 64% 62% 61% 60% 60% 66% 
m=9 80% 79% 77% 76% 74% 72% 69% 66% 62% 58% 54% 49% 

 

Table 2: Comparison of profits for optimal capped policy and deterministic future heuristic 

policy 
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(a.) ∗ 0, ,                                                      (b.)	 ∗ 5, ,                           

 
 (c.)	 ∗ 8, ,                                                 (d.)	 ∗ 9, ,             

Figure 5. The cut-off value p* for the example with floor on total capital lent  
 

 k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 

Uncappe
d Profit 

0.282 0.259 0.235 0.212 0.188 0.165 0.141 0.118 0.094 0.071 0.047 0.024 

Profit in percentage of uncapped profit to the corresponding k and m (i.e. 
	 	

	 	
%) 

m=0 23% 21% 20% 19% 18% 18% 18% 18% 18% 18% 18% 18% 
m=1 27% 24% 22% 20% 19% 18% 18% 18% 18% 18% 18% 18% 
m=2 32% 28% 25% 22% 20% 19% 18% 18% 18% 18% 18% 18% 
m=3 38% 34% 30% 26% 23% 21% 19% 18% 18% 18% 18% 18% 
m=4 47% 42% 37% 32% 28% 24% 21% 19% 18% 18% 18% 18% 
m=5 57% 51% 46% 40% 35% 30% 26% 22% 19% 18% 18% 18% 
m=6 68% 62% 57% 51% 45% 39% 34% 28% 23% 19% 18% 18% 
m=7 83% 77% 69% 63% 57% 51% 44% 37% 30% 23% 18% 18% 
m=8 93% 90% 85% 79% 72% 67% 61% 55% 47% 38% 28% 18% 
m=9 98% 97% 96% 93% 90% 84% 78% 68% 61% 52% 38% 18% 

m=10 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
Table 3. The difference between Floor and Uncapped (the fully funded case). 
 


