Benchmarking computers and computer networks

Stefan Bouckaert, Jono Vanhie- Stephen C Phillips Jerker Wilander
Van Gerwen, Ingrid Moerman

IBBT - Ghent University, Belgium IT Innovation Centre, UK FIREstation

1. Introduction

The benchmarking concept is not new in the field of computing or computer networking. With
“benchmarking tools”, one usually refers to a program or set of programs, used to evaluate the
performance of a solution under certain reference conditions, relative to the performance of
another solution. Since the 1970s, benchmarking techniques have been used to measure the
performance of computers and computer networks. Benchmarking of applications and virtual
machines in an Infrastructure-as-a-Service (laaS) context is being researched in a BonFIRE
experiment and the benchmarking of wired and wireless computer networks is put forward as a
research topic in the research projects CREW and OnelLab?2. In this paper, we elaborate on the
interpretation of the term “benchmarking” in these projects, and answer why research on
benchmarking is still relevant today. After presenting a high-level generic benchmarking
architecture, the possibilities of benchmarking are illustrated through two examples:
benchmarking cloud services and benchmarking cognitive radio solutions.

2. Definition and benchmarking aspects

In the scope of the performance analysis of computer systems, we define benchmarking as the
act of measuring and evaluating computational performance, networking protocols, devices and
networks, under reference conditions, relative to a reference evaluation. The goal of this
benchmarking process is to enable fair comparison between different solutions, or between
subsequent developments of a System Under Test (SUT). These measurements include
primary performance metrics, collected directly from the SUT (e.g. application throughput, node
power consumption), and in case of wireless networks also secondary performance metrics,
characterizing the environment in which the SUT is operating (e.g. interference characteristics,
channel occupancy). The primary and secondary performance metrics may be complemented
by techno-economic metrics, such as device cost or operational complexity.

The following terminology will be used throughout this paper:

A benchmark contains a full set of specifications needed to enable the evaluation of the
performance of a certain aspect of a SUT. These specifications include (i) a scenario, (ii)
performance evaluation criteria, (iii) performance evaluation metrics, and (iv) a benchmarking
score. Depending on the context, the term benchmark may further also indicate a specific
experiment that is executed according to the benchmark; e.g.: to run a “throughput benchmark”

v.s. “the throughput benchmark is designed to fairly compare end-to-end throughput between x
and y under condition Z".

A scenario is a detailed description of the set-up of the experiment needed to run the
benchmark. For example, it may contain a network topology, protocol configuration parameters
or traffic traces. The criteria describe the high-level focus of the output of the benchmark.
Example criteria are energy efficiency or robustness to failing links. A metric is a quantitative
measure of a specific quality of a SUT. Metrics are determined according to a specific
methodology.

Although benchmarking, in its strictest sense, is limited to measuring performance, several
additional aspects are important to make benchmarking a meaningful research activity.
Therefore, the following aspects are to be considered when defining benchmarks;

Comparability should be a fundamental property of any benchmark; comparability means that
two independently executed benchmarks can be meaningfully compared to each other. One of
the factors influencing the comparability is repeatability: running an identical benchmark on an
identical solution at different moments in time should result in a (close to) identical result.
Furthermore, well-defined experimentation methodologies are a key factor in achieving
comparability.

Ideally, benchmarking scores should not only be comparable to other scores obtained using the
same testbed, but also with scores obtained from different testbeds with similar capabilities but
potentially running different operating systems, or based on different types of hardware. The
success of a specific benchmark may very well depend on whether this interoperability aspect
is satisfied or not.

Test infrastructures may be equipped with benchmarking functionality. In this case, the
configurability of the testbed environment is crucial: in wired networks, a benchmark may
require a specific topology and links of specific quality; in wireless networks, a trace containing
reference background traffic may need to be played back during the execution of a benchmark.
If such benchmarking scenarios are considered, obviously, the testbed needs to support these
configuration settings.

3. A benchmarking framework

Defining benchmarks is one challenge; executing a benchmark in an experimenter-friendly way,
sharing benchmarks with the research community, and/or building a sustainable framework is
equally important. Figure 1 presents a conceptual drawing that captures the building blocks of a
benchmarking framework that can be implemented on top of testbed infrastructures.

benchmark benchmark
score ~ scenario

'y

@~
QO&;Q\
C“F\\\

Y

metric(s) feedback,| experiment
config

‘ generic

testbed specific

Y

monitoring testbed control

r

system under

environment
test

Figure 1: high level overview of a benchmarking framework

The building blocks below the dash-dotted line indicate testbed specific building blocks, while
the building blocks above this line are of generic nature. As indicated in the previous section,
the benchmarking scenario contains the configuration of the experiment, the metrics that will be
determined, and the way for determining the benchmarking score.

Every testbed implementing the benchmark will then implement the benchmark scenario in a
testbed-specific way via the testbed control functionality. The testbed control functionality is
responsible for the configuration of the SUT, but also -mainly in wireless networks- for the
configuration of the environment. As an example, it is possible that an experimenter wants to
benchmark the reliability of a wireless system in terms of end-to-end packet loss, with a
predefined number of wireless nodes generating interference by sending predefined packet
sequences. These interfering nodes are considered to be part of the wireless environment
rather than the SUT, since they are not the subject of the performance evaluation.

The monitoring block is responsible for gathering raw data while the experiment is running;
monitoring functions may collect data from the SUT as well as from the environment. Different
testbeds may collect data in different ways, be it by storing values in databases, or for example

in comma separated value (CSV) log files. Note that in this representation, the testbed control is
responsible for configuring the monitoring functions that are active during an experiment.

(1)
system (2) 5| raw monitoring
under test data
(3) [1
ex.1: packet loss
performance = f(packets sent, packets received)
metric

(1) data from environment ex.2: wireless medium availability
e.g. PSD values, interfering packets from = f’(Power Spectral Density values)
devices not taking part in the experiment G

(2) externally observable data

e.g. number of packets sent benchmarking | ©X- pr:?tocol relial?ility o
(3) additi | dat ted by SUT score :f”(w;refe§smed;um availability
addrtional data generated by before/during/after test, packet loss)

e.g. buffer overflow statistics, number
of packets received

Figure 2: determining a protocol reliability score based on data
collected from the environment and the SUT

In a next step, the raw data is converted according to the specifications of the metrics that are
unambiguously defined by the benchmark. Thus, while the raw monitoring data may still be
testbed dependent, the metric(s) are not.

Figure 2 illustrates the relation between data and metrics; Raw data can be collected from an
experimental set-up in different ways: (1) dedicated solutions may be added in the environment
of the SUT, to collect performance data. For example, during an experiment involving wireless
networks, a spectrum analyser may be used to collect power spectral density (PSD) values in
certain parts of the frequency spectrum to characterize the occupation of the wireless
environment. In this example, the measured PSD values do not necessarily characterize the
SUT itself, but may be of interest to the experimenter to explain anomalies in test results,
caused by external interferers such as microwave ovens. (2) Certain characteristics of the SUT
may be measured without interfering with the operation of the SUT itself. For example, a
wireless sniffer or Ethernet packet sniffer may be used to capture packets sent by a SUT. (3)
Other types of data characterizing the SUT may only be available when an experimenter has
access to the internal operation of a SUT. For example, buffer overflow statistics of a particular
node in a network can only be accessed by directly interfacing with that node itself.

In a next step, from this raw data, no matter what the source or exact type of it and no matter
how it is stored in a particular testbed, unambiguous metrics are derived. Providing

unambiguous metrics is only possible by providing clear and agreed upon definitions of how the
metrics are determined from the raw data, and by ensuring that the raw data itself was
measured according to standardized methodologies. An example metric is end-to-end link layer
packet loss between two nodes during an experiment, which is defined as the difference in the
number of link layer packets sent by the sending node to a receiving node and the number of
these packets that are received at the link layer by the receiving node, relative to the total
number of link layer packets sent. In this case, the raw data could be link layer packet traces,
and the metric is a single number.

The metrics may be used directly by an experimenter to evaluate the performance of the
solution. However, in the proposed benchmarking approach, an additional level of abstraction is
introduced: one or multiple metrics can be combined to form one or multiple benchmarking
scores. Each benchmarking score may shed light on the performance of the SUT related to a
specific criterion. Example criteria are energy efficiency or reliability. In the example of Figure 2,
a reliability benchmarking score is determined based on (wireless) packet loss and wireless
medium availability before, during and after an experiment. An example outcome could be a
“high” or "good” reliability benchmarking score in case packet loss is close to zero when the
relevant part of the RF spectrum is already heavily loaded. In a next experiment, the reliability
score could be relatively lower, even when fewer packets are lost, because the wireless
spectrum is almost unoccupied at the moment that the experiment takes place.

Obviously, determining how to combine metrics into a particular benchmarking score is a non-
trivial task. However, it is worth the effort as by converting a set of metrics to a benchmarking
score, additional performance analysis features are enabled;

Firstly, when scheduling a single experiment (i.e. one fixed set of configuration parameters for
the SUT), benchmark scores provide no additional information compared to the performance
metrics - in fact the benchmarking score hides performance details. However, a thorough
performance analysis may require tens, hundreds or even thousands of tests to be scheduled.
In this case, studying the individual metrics is a lot of work. If a benchmarking score is then
defined in such way that it combines all relevant metrics for the criteria under evaluation, the
benchmark scores greatly help to quickly classify the experiments relative to each other.
Provided that the comparability and interoperability requirements are satisfied, the
benchmarking scores can then be used to quickly and fairly compare the performance of
different solutions, or of subsequent developments of a single solution. Moreover, the
performance of a single solution in varying environments can be determined and compared.

Secondly, under the assumption that meaningful benchmarking scores can be defined,
performance comparison of different solutions may by possible by non-experts, since no
detailed understanding is required of the specific metrics. Furthermore, the benchmarking
scores can be used as a way to reconfigure experiments, in order to automate performance
evaluation. This is indicated by the dashed arrows in Figure 1: Based on the benchmarking
score, a computer program can detect the influence of a particular experiment configuration on
the performance. The program could then propose a new configuration (for example, run the

same experiment again, but with a single parameter such as “beacon interval” set to a different
value), re-evaluate the score, and auto-optimize a particular SUT. In those zones with a large
benchmark score variation, a finer grained tuning of the configuration parameters could be
scheduled. Eventually, a user could define ranges for different parameters of the SUT to be
varied, and then let the benchmarking framework and testbed take care of intelligently
scheduling additional tests, finally presenting a user with an easy-to-understand overview of the
performance of the SUT.

4. Bonfire Case: Cloud Benchmarks

4.1 Context

Today, different Infrastructure-as-a-Service (laaS) providers describe their infrastructure
offerings in different ways and don’t necessarily provide very much information, if at all, about
the infrastructure being offered. For instance, Amazon EC2 describes (and prices) their
infrastructure in terms of Amazon EC2 Compute Units (ECU). A machine providing the
capability of one ECU is said to be equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon
processor. Given the limited and heterogeneous information provided by laaS providers, how
can anyone know what resources they will need to execute their application with a particular
quality of service (QoS)? If the application is already adapted for the laaS provider's system
then it may be possible to just try the application out and measure its performance, scaling the
deployment as required. But what if the application is not yet adapted, or what if you want to
choose between several laaS providers?

Providing tools to help choose the appropriate laaS provider and predict application
performance lies within the realm of the Platform-as-a-Service (PaaS) provider as part of the
wider role of helping the application provider develop, deploy and manage their application. To
create Software-as-a-Service (SaaS) either an existing application requires adaptation or a new
application is created. In either case, PaaS tools help in the process of creating software to
execute on an laaS provider (see Figure 1 below). The major PaaS providers today (Google
App Engine and Microsoft Azure) take the role of laaS provider as well, but this needn’t
necessarily be the case. In the future the laaS market may be more developed and we will
need a standard way to compare providers. This is one case where benchmarks and
application models can help (see below).

(Vg
Application Adaptation or Creation g
W
Service Engineering Tools Service Management
Application Modelling S5LA Management ©
Performance Estimation Workflow Management Q)
Development Environment Advertisement & Discovery Q)
Testing Environment Monitoring (g
Reservation

Virtualised Resources (o))

Execution Environment (o))

Compute, Network, Storage w

Figure 3: Application modelling is a service in the Platform as a Service layer.

The BonFIRE project has an embedded experiment researching how to measure the
performance of the virtual machines deployed by laaS providers. Rather than just executing
standard benchmark tests on the virtual infrastructure, the experiment is working at a higher
level of abstraction by using so called “dwarf” benchmarks - an approach first introduced by
Colella in 2004 [1], which has been further developed at UC Berkeley [2]. Dwarf benchmarks
are intended to capture known computational patterns and may map more directly onto
application performance.

4.2 Application Modelling
This paper has discussed a general framework for collecting performance data and has
described the complexity and advantages of converting this performance data into simpler
benchmark scores. However, that is not the end of the story: How can benchmark scores be
used to make decisions?

To give a simple example: If you had a computer application which purely did floating point
operations (no 10, no network) and you had to choose which computer to buy to run your
application then you could look up the SPECfp scores [3] for the CPUs in the candidate
computers and buy the fastest computer (in this limited sense) for your budget.

This simple case is unrealistic. Applications do not map onto benchmark scores in such a
straightforward way. Given an application and a hardware configuration you need to

understand a certain amount of detail of your application’s behaviour to know what benchmark
or benchmarks are most appropriate to use in your analysis.

To predict application performance, an application model is required that can relate application
workload, hardware characteristics and application performance. A description of the hardware
in terms of Amazon ECUs or similar opaque terms from other providers is not sufficient to
produce a predictive model. Would it help to know in detail the hardware being offered by the
laaS provider? Possibly, but laaS providers are not generally going to give their customers this
information as it is confidential.

The IRMOS project [4] has constructed some performance models of applications taking into
account the detail of the hardware, and whilst they can be predictive, these models are time-
consuming to create and require expert knowledge. Instead we need a middle ground. The
BonFIRE experiment previously mentioned is researching whether virtual hardware descriptions
couched in terms of dwarf benchmark scores can make application models simpler and yet still
sufficiently predictive to help in a variety of ways:

e Making better provisioning decisions: Deploying the infrastructure resources required for
a given application QoS rather than over-provisioning.

e Making better application scheduling decisions: Knowing the application runtime with a
good reliability permits more intelligent scheduling.

e Determining the optimal application configuration: The performance of complex
applications and business or industrial data processing workflows with many
components can be greatly affected by their configuration such as buffer sizes and
number of threads.

e Tracking uncertainty in business processes: Many processes are non-deterministic,
predicting the likelihood of completing tasks allows for the management of risk.

Application modelling is a broad field covering many modelling techniques including discrete
event simulations, Bayesian belief networks, artificial neural networks and finite state machines.
All these models are underpinned by the description of the system that the application is running
on, making benchmarking an important asset today for business and economic reasons.

5. CREW case: benchmarking cognitive networks

5.1Context
During the past decades, an explosive emergence of wireless communication technologies and
standards could be witnessed. Today, many people use multiple wireless communication
devices on a daily basis, and expect an ever increasing wireless bandwidth. In addition,
wireless communication is increasingly being used for machine-to-machine communication. The
increasing number of wireless application and wireless devices goes hand in hand with an rising
number of devices coexisting in the same environment, which compete for the same (scarce)
spectral resources. Both in licensed and unlicensed radio frequency bands, the coexistence
issue gets increasingly problematic. Researchers investigating Cognitive Radio and Cognitive

Networking protocols and algorithms, seek to resolve the coexistence problems by optimizing
the use of the wireless spectrum, either by improving coordination between devices operating in
the same frequency band, or by attempting to opportunistically use spectrum in other
underutilized (licensed) bands.

While a large part of the research on wireless networks is still based on theoretical models and
simulation results, there is also an increasing awareness in the wireless research community
that experimentally-supported research may help to identify issues that cannot be discovered
through theory or simulation only. This observation is reflected in the topics of international
conferences that increasingly welcome experimentally-driven research and the interest of the
European Commission in experimental facilities for future Internet research.

The main target of the CREW (Cognitive Radio Experimentation World) project is to establish an
open federated test platform, which facilitates such experimentally-driven research in the field of
advanced spectrum sensing, cognitive radio and cognitive networking strategies. The CREW
platform is based on four existing wireless testbeds, augmented with state-of-the-art cognitive
spectrum sensing platforms. The individual testbeds are based on different wireless
technologies and include heterogeneous ISM, heterogeneous licensed, cellular, and wireless
sensor components.

If the CREW platform is to become an established infrastructure where researchers are able to
evaluate their cognitive solutions in an efficient and reliable way, providing a reproducible test
environment is essential. Within the CREW work package on benchmarking, the goal is to
design a benchmarking framework that will facilitate such a reproducible test environment. The
platform will offer reliable performance indicators for cognitive radio solutions and will enable
researchers to compare their solutions against existing solutions.

5.2Example benchmark for cognitive networks

One of the problems with experimental validation in wireless networks in general, is that every
environment and every device has its own characteristics, making it difficult to repeat
experiments or compare results with results obtained by other researchers. Moreover, if
different research teams measure the quality of their solutions in different set-ups (topology,
background traffic, sources of interference), using different metrics or determine those metrics in
a different way, the significance of experimental results may be low. Comparing the
performance of wireless networking protocols in general or cognitive protocols more specifically
is thus a challenging task. Therefore, creating a reproducible test environment for wireless
networking is the primary goal of the benchmarking framework in the CREW project. One of the
major CREW targets is to characterize the wireless environment and to analyse its influence on
the SUT. By using benchmarking, a strict experimentation methodology is enforced that will
increase the relevance of experimental results, while also speeding up the experimentation
process.

As an example, one of the planned CREW use-cases evaluates a Zigbee-based sensor network
(e.g. used for temperature monitoring) in an emulated home environment which also houses a
Wi-Fi access point and multiple Wi-Fi clients. The plan is to emulate a home environment inside

an interference-free testbed building, by configuring a set of Wi-Fi based network nodes to
transmit specific packet traces, which are modelled according to measured packet traces in a
real home environment. In this emulated home environment, the Zigbee-based sensor network
is evaluated using a reliability benchmarking score; a first time as a “standard” sensor network
solution (reference evaluation), and next after augmenting the sensor network with cognitive
interference-avoidance protocols (novel cognitive solution - SUT). In this cognitive case, the
sensor devices use their built-in RF scanning functionality to determine the occupation degree
of the different channels in the ISM band, and adjust their transmitting and receiving channels to
optimize the coexistence with the Wi-Fi network.

During the experiment, advanced external sensing engines are used to collect spectral
measurements spatially and temporally. These spectral measurements are used to monitor the
characteristics of the wireless networks under evaluation and to detect potential unwanted
interferers that are not part of the experiment. The benchmarking framework monitors whether
the primary metrics are significantly influenced by external interference. If so, the experiment is
not relevant and is therefore postponed or cancelled. During the benchmark both SUT and
environment are evaluated using primary and secondary metrics. The benchmarking framework
is further responsible for emulating the environment by replaying pre-modelled traces, so that it
approximates the home environment as specified in the benchmark definition

The used benchmarking system for this use case maps entirely on the framework given in
Figure 1:

e Benchmark scenario: a full description of the Zigbee nodes behaviour in the home
environment, together with the home environment model (traffic models for WiFi access
point and clients). It also contains the reference benchmark score and used primary and
secondary metrics to evaluate the scenario.

e Experiment config: is responsible for executing the benchmark on the Zigbee nodes and
configuring the Wi-Fi nodes (WiFi traces) so that they emulate the wireless home
environment interference.

e Metrics: evaluate the Packet Error Rates (PER) and throughput on application level
between the Zigbee nodes as the primary metrics. Spectrum information from the
specialised sensing devices is gathered as the secondary metric. The feedback loop to
the experiment configuration is used to evaluate the validity of the experiment results by
comparing the measured environment to the modelled environment.

e Benchmark score: a single score distilled by inverting the PER and comparing the
achieved throughput with the throughput of the reference benchmark.

The use of a benchmarking framework to realize the above plans leads to several interesting
research tracks, to be tackled in the CREW project, including: (i) how to determine and create
realistic and useful reference scenarios? This research question is not only to be solved for the
case of experimenting with cognitive networks in the ISM bands, emulating home and office
environments, but also for a wider range of cognitive radio cases in other (licensed) bands and
in other wireless scenarios. (i) How will reproducibility exactly be defined? When working with

wireless networks and experimenting over the air, 100% exact repeatability is not feasible in
every wireless testbed environment because of external interference. As a result, the
“reproducibility” concept may have to be redefined, by setting acceptable margins in which
results may vary. Even if perfect reproducibility is not realistic in a wireless experimental
environment, it is very important to be able to characterize the wireless environment using
advanced sensing techniques, and to analyse the impact of external interferers on the
performance of the SUT (iii) Common data formats are to be defined to guarantee compatibility
of benchmarks across multiple testing environments. Both input formats for a full experiment
description as output formats for data gathered from experiments (e.g. spectrum sensing data)
are to be defined. (iv) Definition of metrics and determining the methodologies to acquire the
measurements.

6. Conclusions

While the benchmarking concept itself is not new, new challenges in research domains such as
cloud computing or cognitive networking have renewed the interest of the research community
in benchmarking, and multiple European FIRE research projects are putting effort in designing
benchmarking solutions, or in closely related research topics such as measurements,
performance evaluation, monitoring, or methodology design.

This paper clarifies what is meant by benchmarking computers and computer networks in the
scope of some of these FIRE projects and indicates several benchmarking challenges still to be
tackled using the examples of application modelling and cognitive radio benchmarks. It is not
the ambition of this whitepaper to present a detailed survey of benchmarking or to fully detail the
different benchmarking approaches followed in these projects. However, we hope that the
presented terminology and high-level architecture can be a base for further discussions and
may help to identify similarities and differences between the research done in different projects.

7. Acknowledgements

The research leading to this white paper has received funding from the European Union's
Seventh Framework Programme (FP7/2007-2013) under grant agreements n°258301 (CREW
project) and n°257386 (BonFIRE project).

8. References

[1] P. Colella, Defining Software Requirements for Scientific Computing, 2004.

[2] K. Asanovic et al., "The Landscape of Parallel Computing Research: A View from Berkeley," Electrical
Engineering and Computer Sciences, University of California at Berkeley, 2006.

K. Asanovic et al., "A View of the Parallel Computing Landscape," Communications of the ACM, vol. 52,
no. 10, pp. 56-67, 2009.

[3] SPEC. (2011) Standard Performance Evaluation Corporation. [Online].
http://www.spec.org/index.html

[4] EC FP7-ICT IRMOS Project. [Online]. http://www.irmosproject.eu/

