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Abstract

We develop tests for detecting possibly episodic predictability induced by a persistent pre-

dictor. Our framework is that of a predictive regression model with threshold effects and our

goal is to develop operational and easily implementable inferences when one does not wish to

impose à priori restrictions on the parameters of the model other than the slopes corresponding

to the persistent predictor. Differently put our tests for the null hypothesis of no predictability

against threshold predictability remain valid without the need to know whether the remain-

ing parameters of the model are characterised by threshold effects or not (e.g. shifting versus

non-shifting intercepts). One interesting feature of our setting is that our test statistics remain

unaffected by whether some nuisance parameters are identified or not. We subsequently apply

our methodology to the predictability of aggregate stock returns with valuation ratios and doc-

ument a robust countercyclicality in the ability of some valuation ratios to predict returns in

addition to highlighting a strong sensitivity of predictability based results to the time period

under consideration.
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1 Introduction

Predictive regressions are simple regression models in which a highly persistent variable is used as

a predictor of a noisier time series. The econometric difficulties that arise due to the combination

of a persistent regressor and possible endogeneity have generated an enormous literature aiming to

improve inferences in such settings. Common examples include the predictability of stock returns

with valuation ratios, the predictability of GDP growth with interest rates amongst numerous

others (see for instance Valkanov (2003), Lewellen (2004), Campbell and Yogo (2006), Jansson and

Moreira (2006), Rossi (2007), Bandi and Perron (2008), Ang and Bekaert (2008), Wei and Wright

(2013) and more recently Kostakis, Magdalinos and Stamatogiannis (2014)).

In a recent paper Gonzalo and Pitarakis (2012) have extended the linear predictive regression

model into one that allows the strength of predictability to vary across economic episodes such

as expansions and recessions. This was achieved through the inclusion of threshold effects which

allowed the parameters of the model to switch across regimes driven by an external variable.

Within this piecewise linear setting the authors developed a series of tests designed to detect

the presence of threshold effects in all the parameters of the model by maintaining full linearity

within the null hypotheses (i.e. restricting both intercepts and slopes to be stable throughout the

sample). Differently put this earlier work was geared towards uncovering regimes within a predictive

regression setting rather than determining the predictability of a particular predictor per se.

The goal of this paper is to develop a toolkit that will allow practitioners to test specifically

the null hypothesis of no predictability induced by a persistent regressor without restricting the

remaining parameters of the model (e.g. intercepts may or may not exhibit threshold effects).

Indeed, a researcher may wish to assess the presence of predictability induced solely by some

predictor xt while remaining agnostic about the presence or absence of regimes in the remaining

parameters. Moreover, in applications involving return predictability with valuation ratios such as

the Dividend Yield and a threshold variable proxying the business cycle, rejection of the null of no

predictability on the basis of a null hypothesis that restricts all the parameters of the model as in

Gonzalo and Pitarakis (2012) may in fact be driven by the state of the business cycle rather than

the predictability induced by the Dividend Yield itself.

The type of inference we consider in this paper naturally raises important identification issues

which we address by exploring the feasibility of conducting inferences on the relevant slope pa-

rameters that are possibly immune to any knowledge about the behaviour of the intercepts and in

particular to whether the latter are subject to regime shifts or not. Our null hypothesis of interest

here allows for the possibility of having nuisance parameters that may or may not switch across

regimes.
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Our proposed inferences are based on a standard Wald type test statistic whose distribution

we derive under the null hypothesis of no predictability induced by a highly persistent regressor.

The limiting distribution of our test statistic evaluated at a particular location of the threshold

parameter is then shown to be immune to whether the remaining parameters of the model shift

or not. Since the limiting distribution in question depends on a series of nuisance parameters it

is not directly usable for inferences unless one wishes to impose an exogeneity assumption on the

predictor. Using an Instrumental Variable approach we propose a modified Wald statistic whose

new distribution is shown to be standard and free of nuisance parameters under a very general

setting.

The plan of the paper is as follows. Section 2 presents our operating model and the underlying

probabilistic assumptions. Section 3 develops the large sample inferences. Section 4 illustrates their

properties and usefulness via a rich set of simulations. Section 5 applies our proposed methods to

the predictability of aggregate US equity returns using a wide range of valuation ratios and Section

6 concludes.

2 The Model and Assumptions

We operate within the same setting as in Gonzalo and Pitarakis (2012). Our predictive regression

model with threshold effects or Predictive Threshold Regression (PTR) is given by

yt+1 = (α1 + β1xt)I(qt ≤ γ) + (α1 + β1xt)I(qt > γ) + ut+1 (1)

where the highly persistent predictor xt is modelled as the nearly integrated process

xt = ρTxt−1 + vt, ρT = 1− c

T
(2)

with c > 0 and qt = µq + uqt denoting the stationary threshold variable. It is useful to reformulate

(1) in matrix form as y = Z(γ) θ + u with θ = (α1, β1, α2, β2), Z(γ) = (X1(γ) X2(γ)) and with

the Xi(γ) matrices stacking the elements of (I(qt ≤ γ) xtI(qt ≤ γ)) and (I(qt > γ) xtI(qt > γ)) for

i = 1, 2. We will also use the notation I1t and I2t to refer to I(qt ≤ γ) and I(qt > γ) and we let the

column vectors xi and Ii stack the elements xtIit and Iit so that Z(γ) = (I1 x1 I2 x2). Finally and

throughout the paper we make use of I(qt ≤ γ) ≡ I(F (qt) ≤ λ) with F (.) denoting the distribution

function of qt. This allows us to refer to the threshold parameter of interest as γ or λ. Given the

assumptions that will be imposed on qt (e.g. strict stationarity and ergodicity) it is also useful to

note that E[I1t] = λ and E[I2t] = 1−λ ∀t. In what follows it will be understood that λ ∈ Λ = [λ, λ]

with 0 < λ < λ < λ < 1. Note that this is the same parameterisation as the one used in Gonzalo

and Pitarakis (2012) but its key details are repeated here for self containedness considerations.

Throughout this paper we will also refer to the true value of the threshold parameter as either γ0

or λ0 when relevant.
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Our main goal is to focus on the sole predictive power of xt without imposing any restrictions

on the α’s. Note for instance that a null hypothesis such as α1 = α2, β1 = β2 = 0 may be

rejected solely due to α1 6= α2 while continuing to be compatible with an environment in which

xt has no predictive content. It is this aspect that we wish to address in the present paper whose

goal is to develop inferences about the β’s without imposing any constraints on the α’s in the

sense that they may or may not be regime dependent. More specifically we will be interested in

exploring testing strategies for testing the null hypothesis H0 : β1 = β2 = 0 while allowing the

α’s to be free in the background. In what follows we outline our operating assumptions regarding

the probabilistic properties of ut, vt, qt and their joint interactions. Throughout this paper we let

the random disturbance vt be described by the linear process vt = Ψ(L)evt with the polynomial

Ψ(L) =
∑∞

j=0 ΨjL
j having Ψ(1) 6= 0, Ψ0 = 1 and absolutely summable coefficients. We also let

ζt = (ut, evt)
′ and introduce the filtration Ft = σ(ζs, uqs|s ≤ t).

ASSUMPTIONS A1: E[ζt|Ft−1] = 0, E[ζtζ
′
t|Ft−1] = Σ̃ > 0, suptEζ

4
it < ∞. A2: The se-

quence {uqt} is strictly stationary, ergodic, strong mixing with mixing numbers αm such that∑∞
m=1 α

1
m
− 1
r < ∞ for some r > 2. A3: The probability density function fq(.) of qt is bounded

away from zero and ∞ over each bounded set.

Assumption A1 requires the error process driving (1) to be a martingale difference sequence with

respect to Ft hence rules out serial correlation in ut (but not in vt or qt) while also imposing

conditional homoskedasticity. Both vt and qt are allowed to be sufficiently general dependent

processes. This setting mimics closely the standard framework used in the predictive regression

literature (e.g. Campbell and Yogo (2006), Jansson and Moreira (2006)) and is in fact slightly

more general since we do allow vt to be serially correlated. At this stage it is also important

to clarify our stance regarding the joint interactions of our variables. Our assumptions about

the dependence structure of the random disturbances together with the finiteness of moments

requirements imply that a Functional Central Limit Theorem holds for wt = (ut, utI1t−1, vt). More

formally T−
1
2
∑[Tr]

t=1 wt ⇒ (Bu(r), Bu(r, λ), Bv(r)
′ = BM(Ω) with Ω =

∑∞
k=−∞E[w0w

′
k]. Our

analysis will impose a particular structure on Ω = [ωij ] i, j = 1, 2, 3 which governs and restricts the

joint interactions of ut, vt and qt. More specifically we impose

Ω =


σ2
u λσ2

u σuvΨ(1)

λσ2
u λσ2

u λσuvΨ(1)

σuvΨ(1) λσuvΨ(1) σ2
eΨ(1)2

 (3)

where σ2
u = E[u2

t ], σ
2
v = E[v2

t ] and since E[utev,t−j ] = 0 we also write σuv = E[utvt] = E[utvt] =

σue. The chosen structure of Ω is general enough to encompass the standard setting used in the

linear predictive regression literature that typically imposes {ut, vt} to be a martingale difference

sequence and ut and vt solely contemporaneously correlated. Our assumptions allow us to operate

within a similar environment while also permitting the shocks to the threshold variable to be
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contemporaneously correlated with ut and/or vt. As in Caner and Hansen (2001) and Pitarakis

(2008), Bu(r, λ) refers to a two-parameter Brownian Motion which is a zero mean Gaussian process

with covariance kernel (r1∧ r2)(λ1∧λ2)σ2
u so that we implicitly also operate under the requirement

that E[u2
t |qt−1, qt−2, . . .] = σ2

u as well as E[utvt|qt−1] = E[utvt] ≡ σuv and E[utvt−k|qt−1, qt−2, . . .] =

0 ∀k ≥ 1. Given our nearly integrated specification for xt and A1-A3 above it is also clear (see

Phillips (1988)) that x[Tr]/
√
T ⇒ Jc(r) with Jc(r) = Bv(r) + c

∫ r
0 e

(r−s)cBv(s)ds denoting a scalar

Ornstein-Uhlenbeck process. For later use we also define the demeaned versions of Jc(r) and Bu(r)

as J∗c (r) = Jc(r)−
∫
Jc(r) and B∗u(r) = Bu(r)−

∫
Bu(r).

3 Large Sample Inference

Since within model (1) H0 : β1 = β2 = 0 is compatible with either α1 = α2 or α1 6= α2, in a first

instance it will be important to establish the large sample properties of our threshold parameter

estimator γ̂ (or λ̂) under the two alternative scenarios on the intercepts.

3.1 Threshold Paramater Estimation

The threshold parameter estimator we consider throughout this paper is based on the least squares

principle and defined as

γ̂ = arg min
γ
ST (γ) (4)

with ST (γ) denoting the concentrated sum of squared errors function obtained from (1) under the

restriction β1 = β2 = 0 i.e. ST (γ) = y′y −
∑2

i=1 y
′Ii(I

′
iIi)
−1I ′iy. Recall that throughout this paper

we use γ̂ and λ̂ = arg minλ∈(0,1) ST (λ) interchangeably. Naturally, the behaviour of λ̂ is expected

to depend on whether the underlying true model has α1 6= α2 (i.e. identified threshold parameter)

or α1 = α2 in which case λ vanishes from the true model. The following Proposition summarises

the large sample behaviour of λ̂ under the two scenarios.

Proposition 1. Under Assumptions A1-A3, H0 : β1 = β2 = 0 and as T → ∞ we have (i)

T |λ̂−λ0| = Op(1) when α1 6= α2 and (ii) λ̂
d→ λ∗ with λ∗ = arg maxλ∈Λ[Bu(λ)−λBu(1)]2/λ(1−λ)

when α1 = α2.

When β1 = β2 = 0 is imposed on the fitted model and α1 6= α2 we have a purely stationary

mean shift specification and the result in part (i) of Proposition 1 is intuitive and illustrates the

T-consistency of the least squares based threshold parameter estimator. This is in fact a well

known result in the literature which we report for greater coherence with our subsequent analysis

(see Hansen (2000) and Gonzalo and Pitarakis (2002)). The result in part (ii) of Proposition 1
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is particularly interesting and highlights the fact that the threshold parameter estimator obtained

from a model that is linear and contains no threshold effects converges in distribution to a random

variable given by the maximum of a normalised squared Brownian Bridge process. Although the

maximum of a Brownian Bridge is well known to be a uniformly distributed random variable an

explicit expression or closed form density for λ∗ is to our knowledge not available in the literature.

We next concentrate on the limiting distribution of a Wald type test statistic for testing H0 :

β1 = β2 = 0 in (1).

3.2 Testing H0 : β1 = β2 = 0

For a given λ ∈ (0, 1) and letting R = {(0, 1, 0, 0), (0, 0, 0, 1)} denote the 2 × 4 restriction matrix

we write the Wald statistic for testing H0 : β1 = β2 = 0 in (1) as

WT (λ) = θ̂(λ)′R′(R(Z(λ)′Z(λ))−1R)−1Rθ̂(λ)/σ̂2
u(λ) (5)

with σ̂2
u(λ) referring to the residual variance estimated from the unrestricted specification in (1). In

what follows WT (λ̂) denotes the Wald statistic evaluated at the estimated threshold parameter λ̂

as defined in (4). The limiting behaviour of WT (λ̂) is now summarised in the following Proposition.

Proposition 2 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 and as T → ∞
we have

WT (λ̂) ⇒
[∫
J∗c (r)dBu(r, 1)

]2
σ2
u

∫
J∗c (r)2

+ χ2(1) (6)

regardless of whether α1 = α2 or α1 6= α2.

Proposition 2 above highlights the usefulness of the Wald statistic for conducting inferences

about the β′s without having to take a stand on whether the α′s are regime dependent or not. The

interesting point here is the fact that the limiting distribution of the Wald statistic evaluated at λ̂

is the same regardless of whether α1 = α2 or α1 6= α2 in the underlying model. One shortcoming of

our expression in (6) is caused by the presence of the unknown noncentrality parameter c making

it difficult to tabulate in practice. Due to the allowed correlation between Bu and Bv it is also the

case that the first component in the right hand side of (6) will depend on σuv. There is however an

instance under which the limiting distribution simplifies considerably as summarised in Proposition

3 below.

Proposition 3 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 together with the

requirement that σuv = 0 (exogeneity) in (3) and as T →∞ we have

WT (λ̂) ⇒ χ2(2) (7)
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regardless of whether α1 = α2 or α1 6= α2.

The above result highlights a unique scenario whereby the magnitude of the noncentrality parameter

no longer enters the asymptotics of the Wald statistic despite a nearly integrated parameterisation

in the DGP. See also Rossi (2005) for interesting similarities between our asymptotics in Proposition

2 and distributions arising within a related structural break framework.

We next introduce an Instrumental Variable based modified Wald statistic designed in such a

way that its limiting distribution remains a nuisance parameter free χ2(2) random variable regard-

less of whether σuv is zero or not. This is achieved through an IV method developed in Phillips

and Magdalinos (2009) in the context of the cointegration literature and which we adapt to our

current context (see also Breitung and Demetrescu (2014)). The key idea is to instrument xt with

a slightly less persistent version of itself using its own innovations (hence the IVX terminology).

Letting φT = (1−cz/T δ) for some cz > 0 (say cz = 1 as discussed in Phillips and Magdalinos (2009)

and Kostakis, Magdalinos and Stamatogiannis (2014)) and δ ∈ (0, 1) the IV variable is constructed

as h̃t =
∑t

j=1 φ
t−j
T ∆xj . Within our present context we instrument xtIit in (1) with h̃tIit for i = 1, 2

and refer to the vectors stacking the h̃tI1t and h̃tI2t observations as h̃1 and h̃2. We also define

H̃1 = (I1 h̃1), H̃2 = (I2 h̃2) and let H̃ = (H̃1 H̃2). The IV based estimator of θ(λ) in (1), say

θ̂IV (λ) can now be formulated as

θ̂IV (λ) = (H̃(λ)′Z(λ))−1H̃(λ)′y. (8)

and the IV based Wald statistic for testing β1 = β2 = 0 in (1) is given by

W IV
T (λ) = (R θ̂IV (λ))′[R(H̃(λ)′Z(λ))−1H̃(λ)′H̃(λ)(H̃(λ)′Z(λ))−1R′]−1(R θ̂IV (λ))/σ̂2(λ).(9)

Proposition 4 Under the null hypothesis H0 : β1 = β2 = 0, assumptions A1-A3 and as T → ∞
we have W IV

T (λ̂)⇒ χ2(2) regardless of whether α1 = α2 or α1 6= α2.

The above results provides a convenient test statistic for testing H0 : β1 = β2 = 0. Inferences are

based on a limiting distribution that does not depend on c or any endogeneity induced parameter

(as opposed to our formulation in (6)). The parameter δ controls the degree of persistence of the

Instrumental Variable.

4 Finite Sample Evaluation

The goal of this section is twofold. First, we wish to demonstrate the validity and finite sample

accuracy of our theoretical results presented in Propositions 3-4 through simulations. Second,

we wish to evaluate the finite sample performance of our Wald statistics through size and power

experiments. We initially concentrate on our result stating that the limiting distribution of the
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Wald statistic for testing H0 : β1 = β2 = 0 in (1) is χ2(2) regardless of whether α1 = α2 or α1 6= α2

and regardless of the magnitude of the noncentrality parameter c appearing in the DGP.

Our chosen DGP is given by (1) with β1 = β2 = 0. For the parameterisation of the inter-

cepts we consider two scenarios. Namely, {α1, α2} = {1, 1} and {α1, α2} = {1, 3}. In the lat-

ter case we set γ0 = 0.25 with the threshold variable taken to follow the AR(1) process qt =

0.5qt−1 + uqt while we set vt = 0.5vt−1 + et for the shocks associated with the nearly inte-

grated variable xt. Finally we take (ut, et, uqt) to be a Gaussian vector with covariance given

by Σ = {(1, σue, σuq), (σeu, 1, σeq), (σuq, σeq, 1)}. We initially focus on a scenario characterised by

exogeneity setting Σ = Id3 and subsequently also consider the more general case that allows contem-

poraneous correlations across all random disturbances by setting (σue, σuq, σeq) = (−0.5, 0.3, 0.4).

Table 1 below displays the simulated finite sample critical values of WT (λ̂) together with those

of the χ2(2) under c = 1 and c = 10. The number of Monte-Carlo draws is set at N = 5000

throughout. Overall we note an excellent match of the simulated quantiles with their asymptotic

counterparts. It is also clear that varying c has little impact on the quantiles as expected by our

result in Proposition 3. Perhaps more importantly we note the robustness of the estimated quantiles

to the two scenarios about the α′s. Even under moderately small sample sizes such as T = 200,

the cutoffs of the asymptotic distribution of WT (λ̂) under α1 = α2 and α1 6= α2 remain extremely

close as confirmed by our theory.

Table 1. Simulated Quantiles of WT (λ̂) versus χ2(2) under Exogeneity

α1 = α2 α1 6= α2

10% 5% 2.5% 10% 5% 2.5%

χ2(2) 4.605 5.991 7.378 4.605 5.991 7.378

c = 1 c = 1

T = 200 4.900 6.397 7.833 5.032 6.525 7.800

T = 400 4.876 6.225 7.833 4.880 6.265 7.820

T = 1000 4.643 5.997 7.396 4.690 6.209 7.443

c = 10 c = 10

T = 200 4.851 6.527 8.052 4.929 6.324 7.916

T = 400 4.608 6.122 7.509 4.678 6.135 7.666

T = 1000 4.635 5.879 7.104 4.673 6.072 7.388

We next, concentrate on our IV based Wald statistic and evaluate the finite sample adequacy

of the asymptotic χ2(2) approximation to its distribution under endogeneity. We initially evaluate

the quantiles of its distribution across alternative scenarios and compare them with those of a χ2(2)

random variable. We subsequently implement a formal size experiment comparing empirical sizes
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with their nominal counterparts. Our results on the quantiles of W IV
T (λ̂) are presented in Table 2.

Note that for this set of experiments our IV variables have been generated using the persistence

parameter δ = 0.7 while in our subsequent and more formal size experiments we highlight more

extensively the sensitivity of the distributional properties of WT
IV (λ̂) to alternative magnitudes of

δ (see Table 3).

Focusing on Table 2 we note the close proximity of the quantiles of the distribution of WT
IV (λ̂)

to those of the χ2(2) regardless of the magnitude of the noncentrality parameter c or whether

α1 = α2 or α1 6= α2. The accurate matching of the quantiles also appears to be maintained across

moderately small sample sizes. Under T=400 for instance the 10% estimated quantile of WT
IV (λ̂)

was 4.876 under α1 = α2 and 4.880 under α1 6= α2 compared with 4.605 for the theoretical χ2(2)

counterpart. It is also clear however that for sample sizes such as T = 200 the finite sample quantiles

are slightly above their asymptotic counterparts which may result in mild size distortions. An issue

that is investigated below.

Table 2. Simulated Quantiles of W IV
T (λ̂, δ = 0.7) versus χ2(2) under Endogeneity

α1 = α2 α1 6= α2

10% 5% 2.50% 10% 5% 2.50%

χ2(2) 4.605 5.991 7.378 4.605 5.991 7.378

c=1 c=1

T = 200 4.900 6.397 7.833 5.032 6.525 7.800

T = 400 4.876 6.225 7.833 4.880 6.265 7.820

T = 1000 4.643 5.997 7.396 4.690 6.209 7.443

c=10 c=10

T = 200 4.851 6.527 8.052 4.929 6.324 7.916

T = 400 4.608 6.122 7.509 4.678 6.135 7.666

T = 1000 4.635 5.879 7.104 4.673 6.072 7.388

We next focus on the implied empirical size properties of W IV
T (λ̂) by evaluating the number of

times the computed pvalue of our test statistic exceeds a given nominal percentage. Results are

presented in Table 3 below. One additional goal of the present exercise is to highlight the sensitivity

of our IV based method to the choice of δ needed for constructing the instrumental variable.

Table 3. Empirical Size of IV Corrected and Uncorrected Wald Statistics
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W IV
T (λ̂) WT (λ̂) W IV

T (λ̂) WT (λ̂)

10% 5% 2.5% 10% 5% 2.5% 10% 5% 2.5% 10% 5% 2.5%

T=200, c=1 α1 = α2 α1 6= α2

δ = 0.70 11.6 6.3 3.1 15.0 8.7 5.0 12.6 6.3 3.4 15.5 8.9 4.7

δ = 0.75 11.8 6.7 3.5 15.0 8.7 5.0 12.7 6.7 3.5 15.5 8.9 4.7

δ = 0.80 12.4 7.0 3.6 15.0 8.7 5.0 13.2 7.1 3.7 15.5 8.9 4.7

δ = 0.85 12.8 7.2 3.9 15.0 8.7 5.0 13.7 7.1 3.8 15.5 8.9 4.7

T=400, c=1

δ = 0.70 10.9 5.9 3.0 14.2 8.1 4.6 11.3 5.6 3.0 14.4 7.9 4.7

δ = 0.75 11.4 6.4 3.0 14.2 8.1 4.6 11.9 5.2 3.2 14.4 7.9 4.7

δ = 0.80 12.2 6.3 3.3 14.2 8.1 4.6 12.2 6.2 3.4 14.4 7.9 4.7

δ = 0.85 13.0 6.7 3.6 14.2 8.1 4.6 12.5 6.5 3.5 14.4 7.9 4.7

T=1000, c=1

δ = 0.70 10.2 5.0 2.6 14.8 8.3 4.5 10.5 5.5 2.6 14.4 7.9 4.7

δ = 0.75 10.6 5.2 2.6 14.8 8.3 4.5 11.2 5.5 2.7 14.4 7.9 4.7

δ = 0.80 11.1 5.4 2.7 14.8 8.3 4.5 11.3 5.9 2.8 14.4 7.9 4.7

δ = 0.85 11.4 5.9 2.8 14.8 8.3 4.5 12.0 6.3 3.2 14.4 7.9 4.7

T=200, c=10

δ = 0.70 11.1 6.2 3.2 12.1 6.7 3.7 11.6 6.1 3.2 12.7 6.9 3.7

δ = 0.75 11.4 6.5 3.2 12.1 6.7 3.7 11.6 6.1 3.3 12.7 6.9 3.7

δ = 0.80 11.6 6.6 3.4 12.1 6.7 3.7 11.5 6.4 3.4 12.7 6.9 3.7

δ = 0.85 11.6 6.6 3.5 12.1 6.7 3.7 11.6 6.5 3.4 12.7 6.9 3.7

T=400, c=10

δ = 0.70 10.0 5.4 2.7 11.3 6.1 3.3 10.4 5.4 2.9 11.6 6.1 3.4

δ = 0.75 10.7 5.5 2.9 11.3 6.1 3.3 10.2 5.2 2.2 11.6 6.1 3.4

δ = 0.80 10.6 5.3 3.0 11.3 6.1 3.3 10.5 5.4 2.7 11.6 6.1 3.4

δ = 0.85 10.2 4.9 2.6 11.3 6.1 3.3 10.6 5.7 2.7 11.6 6.1 3.4

T=1000, c=10

δ = 0.70 10.3 4.7 2.2 10.5 5.2 2.5 10.5 5.5 2.6 11.2 5.7 2.8

δ = 0.75 9.90 4.8 2.2 10.5 5.2 2.5 10.3 5.2 2.6 11.2 5.7 2.8

δ = 0.80 9.70 5.0 2.3 10.5 5.2 2.5 11.3 5.9 2.8 11.2 5.7 2.8

δ = 0.85 9.60 4.8 2.4 10.5 5.2 2.5 10.1 5.0 2.8 11.2 5.7 2.8

Comparing the performance of W IV
T (λ̂) and WT (λ̂) (using χ2(2) critical values) it is again clear

that our IV based statistic significantly improves upon the standard Wald by bringing the implied

empirical sizes significantly closer to their nominal counterparts. It is also the case however that

across some scenarios W IV
T (λ̂) may also be subject to mild to moderate size distortions. This

happens as the persistence parameter δ approaches 1 leading to W IV
T (λ̂) being mildly oversized in

small to moderate sample sizes. This is perhaps not surprising since our IV variable approaches

the original regressor as δ → 1. Under δ = 0.7 however we note an overall good match of empirical

and nominal sizes regardless of whether α1 = α2 or α1 6= α2. Although the magnitude of the

noncentrality parameter c is also of no influence asymptotically, our results in Table 3 suggest a

mild improvement of size properties under c = 10 versus c = 1. In the former case and given the

9



sample sizes the predictor variable is significantly further from the nonstationarity region suggesting

that standard inferences should apply.

Finally in our last experiment we document the ability of our test statistic to detect fixed

departures from the null hypothesis across a wide range of paramaterisations. Results are presented

in Table 4 below.

Table 4. Empirical Power of IV Corrected Wald Statistic (2.5% level)

α1 = α2 c = 1, δ = 0.70 c = 1, δ = 0.75 c = 1, δ = 0.80

β1 = 0 β2 = 0.025 β2 = 0.05 β2 = 0.025 β2 = 0.05 β2 = 0.025 β2 = 0.05

T = 200 0.195 0.610 0.206 0.657 0.248 0.704

T = 400 0.570 0.942 0.656 0.964 0.697 0.977

T = 1000 0.998 1.000 1.000 1.000 1.000 1.000

c = 10, δ = 0.70 c = 10, δ = 0.75 c = 10, δ = 0.80

T = 200 0.079 0.266 0.074 0.275 0.083 0.305

T = 400 0.262 0.852 0.275 0.882 0.311 0.893

T = 1000 0.961 1.000 0.977 1.000 0.980 1.000

α1 6= α2 c = 1, δ = 0.70 c = 1, δ = 0.75 c = 1, δ = 0.80

β1 = 0 β2 = 0.025 β2 = 0.05 β2 = 0.025 β2 = 0.05 β2 = 0.025 β2 = 0.05

T = 200 0.252 0.686 0.269 0.730 0.309 0.773

T = 400 0.656 0.947 0.732 0.966 0.777 0.979

T = 1000 0.964 1.000 0.981 1.000 0.992 1.000

c = 10, δ = 0.70 c = 10, δ = 0.75 c = 10, δ = 0.80

T = 200 0.111 0.397 0.098 0.395 0.111 0.425

T = 400 0.383 0.944 0.417 0.966 0.455 0.966

T = 1000 0.964 1.000 0.992 1.000 0.998 1.000

As expected from our earlier size experiments, in finite samples power is increasing in δ high-

lighting an obvious size/power tradeoff when it comes to selecting a suitable δ in practice. Power

is clearly increasing with the sample size reaching a probability of correct decision close to 100%

under T=1000. For mild deviations from the null hypothesis (e.g. β1 = 0 to β2 = 0.025) empirical

power is at about 20% under T=200 climbing up to 57% with T = 400. It is also interesting to

highlight the distinct finite sample behaviour of the test statistic when c = 1 versus c = 10. In the

latter case, empirical power is significantly lower unless T is very large which is consistent with our

earlier size based results.
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5 Valuation Ratio Based Return Predictability

Due to its ability to let the data determine the presence or absence of regime specific behaviour

in predictive regressions, our threshold setting is particularly suited for exploring the presence

of time varying return predictability when time variation is driven by economic episodes such as

recessions and expansions rather than calendar time per se. The new inference theory developed in

this paper is an important complement to the two test statistics proposed in Gonzalo and Pitarakis

(2012) allowing us to distinguish between regime specific predictability truly induced by a particular

predictor such as the Dividend Yield and regime specific behaviour that may arise solely due to

the variable used for generating the regimes (e.g. a business cycle proxy).

Despite a huge literature geared towards testing for the linear predictability of stock returns with

valuation ratios such as the Dividend Yield, it is only recently that empirical work has recognised the

possibility that predictability may be kicking in occasionally depending on the state of the economy.

In Gonzalo and Pitarakis (2012) for instance, using aggregate US data over the 1950-2007 period

we established a strong countercyclical property to Dividend Yield based predictability of stock

returns with an R2 as high as 17% in the weak or negative growth regime dropping to 0% during

expansions (see also Henkel, Martin and Nardari (2011) who reached similar conclusions using a

different statistical framework). More recently Gargano (2013) also reached similar conclusions

using the Dividend to Price ratio as a predictor while also proposing a theoretical framework that

embeds this recessionary period based predictability of stock returns within a consumption based

asset pricing model. Earlier research that highlighted the importance of a changing environment on

predictability include Pesaran and Timmermann (1995), Paye and Timmermann (2006) amongst

numerous others.

We here consider the question of episodic predictability of aggregate US market returns using

the four most commonly considered valuation ratios, namely the Dividend Yield (DY), Book-to-

Market ratio (BM), the Dividend to Price ratio (DP) and the Earnings Yield (EP) all expressed

in natural logs. Our predictability episodes are driven by the monthly growth rate in the US

industrial production index used as a proxy for the state of the economy. Compared to our analysis

in Gonzalo and Pitarakis (2012) where we had focused solely on DY we also extend our sample to

cover the 1927-2013 period using the recently extended Goyal and Welch data set (see Goyal and

Welch (2014) and Welch and Goyal (2008)). The specific return series we are considering is the

recently revised excess returns series referred to as Mkt − RF in Kenneth French’s data library

with Mkt referring to the value weighted returns of all CRSP firms listed on the NYSE, AMEX or

NASDAQ and RF the one month T-Bill return.

Before proceeding with the above analysis it is important to reconsider our findings in Gonzalo

and Pitarakis (2012) where we had explored the predictive power of DY over the 1950-2007 period

11



using a slightly different definition of aggregate market returns. There, we had documented a very

strong ability of the DY to predict returns during bad times or recessions. The null hypotheses

HA
0 : α1 = α2, β1 = β2 and HB

0 : α1 = α2, β1 = β2 = 0 were rejected on the basis of computed test

statistics given by SupA = 20.75 [0.001] and SupBivx(δ = 0.7) = 26.75 [0.000]. Using the same data

as in Gonzalo and Pitarakis (2012), inferences based on test statistic introduced in this paper lead to

WT (λ̂, δ = 0.7) = 6.795 [0.033], WT (λ̂, δ = 0.8) = 8.619 [0.013] and WT (λ̂, δ = 0.9) = 9.453 [0.009]

further corroborating our claim of regime specific predictability induced by the Dividend Yield

itself.

Next, focusing on the new set of predictors our key results are displayed in Table 5 where we

present the magnitude of our test statistics across alternative choices of the persistence parameter δ

used in the construction of the IVX variable. Figures in square brackets are pvalues. We recall that

the SupA and SupBivx test statistics are associated with the null hypotheses given by HA
0 : α1 =

α2, β1 = β2 and HA
0 : α1 = α2, β1 = β2 = 0 while WT (λ̂, δ) is designed to test H0 : β1 = β2 = 0.

The symbol *** indicates rejection at 2.5% or below, ** at 5% and * at 10%.

Table 5. Regime Specific Predictability of Valuation Ratios

SupA SupB WT (λ̂, δ)

δ = 0.7 δ = 0.8 δ = 0.9 δ = 0.7 δ = 0.8 δ = 0.9

1927-2013

DY 27.543 [0.000] 33.974*** 35.182*** 35.076*** 7.555 [0.023] 8.158 [0.017] 7.392 [0.025]

BM 34.721 [0.000] 41.187*** 41.764*** 41.862*** 6.227 [0.044] 6.292 [0.043] 6.220 [0.045]

DP 19.193 [0.002] 22.726*** 24.019*** 24.262*** 5.110 [0.078] 5.940 [0.054] 5.544 [0.063]

EP 11.428 [0.065] 14.562* 15.21** 15.528** 3.185 [0.203] 3.776 [0.151] 3.977 [0.137]

1940-2013

DY 20.017 [0.002] 24.661*** 26.406*** 26.945*** 4.772 [0.092] 7.174 [0.028] 8.251 [0.016]

BM 11.456 [0.065] 12.617* 13.154* 13.388* 0.961 [0.619] 1.640 [0.440] 2.047 [0.359]

DP 19.366 [0.002] 22.772*** 24.513*** 25.225*** 3.395 [0.183] 5.718 [0.057] 6.983 [0.030]

EP 2.594 [0.974] 3.684 4.458 4.946 1.272 [0.529] 1.944 [0.378] 2.405 [0.300]

1950-2013

DY 21.532 [0.001] 24.139*** 26.015*** 27.795*** 3.185 [0.203] 4.817 [0.090] 6.120 [0.047]

BM 12.102 [0.050] 12.256* 12.488* 12.761* 2.542 [0.281] 1.811 [0.404] 1.603 [0.449]

DP 20.227 [0.001] 21.971*** 23.654*** 25.278*** 2.177 [0.337] 3.697 [0.157] 4.908 [0.086]

EP 3.211 [0.911] 3.352 3.717 4.335 0.568 [0.753] 0.790 [0.674] 1.299 [0.522]

1960-2013

DY 19.604 [0.002] 21.813*** 21.725*** 21.594*** 2.115 [0.347] 2.348 [0.309] 2.476 [0.290]

BM 10.877 [0.082] 10.92 10.919 10.933 0.043 [0.979] 0.020 [0.990] 0.095 [0.953]

DP 18.233 [0.003] 19.658*** 19.808*** 19.789*** 1.233 [0.540] 1.627 [0.443] 1.846 [0.397]

EP 1.188 [1.000] 1.432 1.458 1.502 0.655 [0.721] 0.475 [0.789] 0.399 [0.819]

Focusing first on the Dividend Yield series we note a consistent and strong rejection of the

SupA and SupBivx based null hypotheses throughout the full sample and the three subperiods.
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This further corroborates and strengthens our findings in Gonzalo and Pitarakis (2012) where

we had documented the countercyclical predictability of DY over the 1950-2007 period. More

importantly we here note that our new test statistic also leads to strong rejections of the null

hypothesis H0 : β1 = β2 = 0, indicating that predictability is truly driven by the DY predictor

rather than unequal intercepts arising from our business cycle proxy. However, it is interesting

to note that the new inferences developed in this paper attribute a more ambiguous role to the

Dividend Yield as a predictor when considering post 60s samples. Although SupA and SupBivx

based inferences continue to point towards threshold predictability H0 : β1 = β2 = 0 can no longer

be rejected on the basis of our WT (λ̂) test statistic when considering the 1960-2013 period. This

suggests that over this subperiod, SupA and SupBivx may in fact be rejecting their respective null

hypothesis HA
0 : α1 = α2, β1 = β2 and HB

0 : α1 = α2, β1 = β2 = 0 mainly due to unequal intercepts

i.e. the regime specific nature of return predictability may in fact be driven by our business cycle

proxy rather than the DY predictor playing a distinct role across expansions versus recessions. This

finding also highlights the crucial importance that needs to be given to the time varying nature

of predictability when evaluating the predictive power of any variable for future stock returns.

Our results are also in line with a recent branch of the predictability literature which argues that

DY based predictability has declined due to greater dividend smoothing. Finally, one may also

conjecture that results for the later subperiods may be less reliable due to the significant drop

in degrees of freedom. Having estimated a DY based threshold specification for each subsample

however we obtained very similar magnitudes for γ̂ and regime proportions that varied little across

the four scenarios of Table 5 i.e. {(25%, 75%), (22%, 78%), (20%, 80%), (18%, 82%)}, ensuring a

reasonably large number of observations in each regime.

Regarding the Book-to-Market predictor, it is here interesting to note that at a 4% level or

below our new test statistic is unable to reject the null H0 : β1 = β2 = 0 across all scenarios while

both SupA and SupBivx strongly reject their respective null hypotheses when the full sample is

considered. This again suggests that any indication of predictability induced by BM may in fact

be driven by unequal intercepts rather than the predictive power of BM per se.

For the Dividend-to-Price series and regardless of the sample period considered we note a

consistent and strong rejection of the null hypotheses on the basis of our SupA and SupBivx

statistics, indicating strong regime specific effects in the behaviour of stock returns. However in

this instance and unlike the DY series our WT (λ̂, δ) test statistic mostly fails to reject the null

hypothesis H0 : β1 = β2 = 0. Although there is some lack of robustness to this result when it

comes to experimenting across alternative magnitudes of the IV parameter δ it is quite clear that

over the post war period the evidence of any predictive role for DP is weak at best. Finally, across

virtually all scenarios it is clear that EP does not contain any predictive power for future excess

returns whether linear or regime specific.
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6 Conclusions

We developed a toolkit for assessing the predictability induced by a single persistent predictor

in an environment that allows predictability to kick in during particular economic episodes and

affect all parameters of the model. Our threshold based framework and testing methodology can

be used to explore the possibility that the predictive power of highly persistent predictors such as

interest rates, valuation ratios and numerous other economic and financial variables may be varying

across time in an economically meaningful way with alternating periods of strong versus weak or no

predictability. More importantly the core contribution of this paper was to provide a setting that

allows us to distinguish predictability induced by a specific predictor from predictability that may

be solely driven by economic episodes (e.g. stock returns differing across recessions and expansions).

Our empirical results have highlighted the misleading or at best incomplete conclusions one may

reach if such regime specific effects are ignored when assessing predictability.
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APPENDIX

PROOF OF PROPOSITION 1: Since under H0 : β1 = β2 = 0 the threshold model is given by yt = α1I1t−1 + α2I2t−1 + ut,

all assumptions of Gonzalo and Pitarakis (2002) are satisfied implying the statement in (i). The result in Part (ii) follows

by first noting that the minimiser of ST (λ) is numerically identical to the maximiser of the Wald statistic WT (λ) for testing

H0 : α1 = α2 in the above restricted specification. This Wald statistic is given by

WT (λ) =

(∑
utI1t−1∑
I1t−1

−
∑
utI2t−1∑
I2t−1

)2 ∑ I1t−1
∑
I2t−1

T σ̂2
u(λ)

(10)

with σ̂2
u(λ) denoting the residual variance obtained from the above mean shift specification. Under H0 : α1 = α2 and A1-A3

a suitable Law of Large Numbers (see White (2000, p.58)) ensures that σ̂2
u(λ)

p→ σ2
u. From Caner and Hansen (2001) we

have
∑T
t=1 utI1t−1/

√
T ⇒ Bu(λ). The strict stationarity and ergodicity of the I′its further ensures that

∑
I1t−1/T

p→ λ and∑
I2t−1/T

p→ (1− λ). It now follows from the Continuous Mapping Theorem that

WT (λ) ⇒
[Bu(λ)− λBu(1)]2

σ2
uλ(1− λ)

. (11)

The desired result then follows from the continuity of the argmax functional and the fact that the limit process has a unique

maximum in Λ with probability 1 (see Theorem 2.7 in Kim and Pollard (1990)). �

Before proceeding with the limiting properties of W IV
T (λ̂) it is useful to recall that in the context of our DGP in (1) standard

algebra leads to

T R θ̂(λ) =



∑
I1t−1

T

∑
xt−1ytI1t−1

T
−

∑
ytI1t−1√
T

∑
xt−1I1t−1

T
√
T∑

I1t−1

T

∑
x2t−1I1t−1

T2 −
(∑

xt−1I1t−1

T
√
T

)2

∑
I2t−1

T

∑
xt−1ytI2t−1

T
−

∑
ytI2t−1√
T

∑
xt−1I2t−1

T
√
T∑

I2t−1

T

∑
x2t−1I2t−1

T2 −
(∑

xt−1I2t−1

T
√
T

)2


≡


g1t(λ)
∆1t(λ)

g2t(λ)
∆2t(λ)

 (12)

and

T 2 R(Z(λ)′Z(λ))−1R′ =

 ∑
I1t−1/T

∆1t(λ)
0

0
∑
I2t−1/T

∆2t(λ)

 . (13)

Given our null hypothesis of interest H0 : β1 = β2 = 0, it is also useful to specialise (12) across the two scenarios on the α′s,

namely yt = α+ ut if α1 = α2 and yt = α1I0
1t−1 + α2I0

2t−1 + ut if α1 6= α2. In this latter case the quantities I0
1t−1 and I0

2t−1

refer to the indicator functions evaluated at the true threshold parameter λ0. We write

[T R θ̂(λ)]α1=α2 =


g1t(λ)|α1=α2

∆1t(λ)

g2t(λ)|α1=α2
∆2t(λ)

 (14)

where

git(λ)|α1=α2 =

∑
Iit−1

T

∑
xt−1utIit−1

T
−
∑
utIit−1√
T

∑
xt−1Iit−1

T
√
T

(15)

for i = 1, 2. Similarly,

[T R θ̂(λ)]α1 6=α2
=


g1t(λ)|α1 6=α2

∆1t(λ)

g2t(λ)|α1 6=α2

∆2t(λ)

 (16)
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with

git(λ)|α1 6=α2
=

∑
Iit−1

T

(
α1

∑
xt−1Iit−1I

0
1t−1

T
+ α2

∑
xt−1Iit−1I

0
2t−1

T
+

∑
xt−1utIit−1

T

)
−(

α1

∑
Iit−1I

0
1t−1√

T
+ α2

∑
Iit−1I

0
2t−1√

T
+

∑
utIit−1√
T

) ∑
xt−1Iit−1

T
√
T

. (17)

Before proceeding with the proof of Proposition 2 we introduce the following auxiliary Lemma that is used for establishing the

asymptotic properties of the sample moments in (17).

LEMMA A1. Under Assumptions A1-A3, T |λ̂− λ0| = Op(1) and letting Ut ≡ F (qt), as T →∞ we have

1
√
T

∑
I(Ut−1 ≤ λ̂)I(Ut−1 ≤ λ0)−

1
√
T

∑
I(Ut−1 ≤ λ0)

p→ 0 (18)

PROOF of LEMMA A1: We need to establish that for every ε > 0 and δ > 0

lim
T→∞

P

[∣∣∣∣∣ 1
√
T

T∑
t=1

[
I
(
qt < λ̂

)
− I (qt < λ)

]
I (qt < λ)

∣∣∣∣∣ > ε

]
< δ.

Given that ∣∣∣∣∣ 1
√
T

T∑
t=1

[
I
(
qt < λ̂

)
− I (qt < λ)

]
I (qt < λ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
√
T

T∑
t=1

[
I
(
λ−

∣∣∣λ̂− λ∣∣∣ < qt < λ+
∣∣∣λ̂− λ∣∣∣)]∣∣∣∣∣

≤
1
√
T

T∑
t=1

At
(
λ, λ̂− λ

)

with At (λ, d) = I (λ− |d| < qt < λ+ |d|) , it will be enough to prove that

lim
T→∞

P

[
1
√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

]
< δ

for every ε > 0 y δ > 0. Since λ̂ is such that T |λ̂− λ0| = Op(1), therefore for every δ > 0, ∃∆δ <∞ and an integer Tδ ≥ 1 such

that

P

[∣∣∣λ̂− λ∣∣∣ > ∆δ

T

]
< δ for ∀T > Tδ,

and also

P

[
1
√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

]
= P

[{
1
√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

}
∩
{∣∣∣λ̂− λ∣∣∣ ≤ ∆δ

T

}]
+

+ P

[{
1
√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

}
∩
{∣∣∣λ̂− λ∣∣∣ > ∆δ

T

}]

≤ P
[

1
√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
+ P

[∣∣∣λ̂− λ∣∣∣ > ∆δ

T

]
.

Using Markov’s inequality

P

[
1
√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
≤

∥∥∥ 1√
T

∑T
t=1 At

(
λ, ∆δ

T

)∥∥∥
1

ε
≤

1√
T

∑T
t=1

∥∥∥At (λ, ∆δ
T

)∥∥∥
1

ε

and under our assumption on the boundedness of the pdf of qt away from 0 and ∞ over each bounded set∥∥∥∥At (λ, ∆δ

T

)∥∥∥∥
1

=

∥∥∥∥I (λ− ∆δ

T
< qt < λ+

∆δ

T

)∥∥∥∥
1

≤M
∆δ

T
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therefore

P

[
1
√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
≤

1√
T

∑T
t=1

∥∥∥At (λ, ∆δ
T

)∥∥∥
1

ε

≤
√
TM ∆δ

T

ε
≤
M∆δ

ε
√
T
.

Putting together these results we have that for every ε > 0 and δ > 0 ∃Tεδ <∞ such that for every T > Tεδ

P

[∣∣∣λ̂− λ∣∣∣ > ∆δ

T

]
< δ

P

[
1
√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
< δ

and then

lim
T→∞

P

[
1
√
T

T∑
t=1

At
(
λ, λ̂− λ

)
> ε

]
≤ lim
T→∞

P

[
1
√
T

T∑
t=1

At

(
λ,

∆δ

T

)
> ε

]
+ lim
T→∞

P

[∣∣∣λ̂− λ∣∣∣ > ∆δ

T

]
< 2δ.

leading to the desired result. �

PROOF OF PROPOSITION 2. We initially consider the case α1 6= α2. Given the T-consistency of λ̂ for λ0, T |λ̂−λ0| = Op(1),

and our result in Lemma A1 we have

git(λ̂)|α1 6=α2
=

∑
I0
it−1

T

∑
xt−1utI0

it−1

T
−
∑
utI0

it−1√
T

∑
xt−1I0

it−1

T
√
T

+ op(1), (19)

∆it(λ̂) =

∑
I0
it−1

T

∑
x2
t−1I

0
it−1

T 2
−
(∑

xt−1I0
it−1

T
√
T

)2

+ op(1). (20)

Using Lemma 1 in Gonzalo and Pitarakis (2012), Theorem 1 in Caner and Hansen (2001) together with the continuous mapping

theorem we have

g1t(λ̂)|α1 6=α2
⇒ λ0

(∫
Jc(r)dBu(r, λ0)−Bu(λ0)

∫
Jc(r)

)
,

g2t(λ̂)|α1 6=α2
⇒ (1− λ0)

(∫
Jc(r)(dBu(r)− dBu(r, λ0))− (Bu(1)−Bu(λ0))

∫
Jc(r)

)
,

∆1t(λ̂) ⇒ λ2
0

∫
J∗c (r)2,

∆2t(λ̂) ⇒ (1− λ0)2

∫
J∗c (r)2. (21)

Next, using (20) in (12)-(13) and rearranging gives

[T 2R(Z(λ̂)′Z(λ̂))R′]−1 ⇒
∫
J∗c (r)2

(
λ0 0

0 (1− λ0)

)
(22)

and

[TRθ̂(λ̂)]α1 6=α2
⇒



∫
Jc(r)dBu(r, λ0)−Bu(λ0)

∫
Jc(r)

λ0

∫
J∗c (r)2dr∫

Jc(r)(dBu(r)− dBu(r, λ0))− (Bu(1)−Bu(λ0))
∫
Jc(r)

(1− λ0)
∫
J∗c (r)2dr

 . (23)

Combining (21)-(22) into (5) and using σ̂2(λ̂)
p→ σ2

u leads to

WT (λ̂) ⇒
[
∫
JcdBu(r, λ0)−Bu(λ0)

∫
Jc(r)]2

σ2
uλ0

∫
J∗c (r)2

+

[
∫
Jc(dBu(r)− dBu(r, λ0))− (Bu(1)−Bu(λ0))

∫
Jc(r)]2

σ2
u(1− λ0)

∫
J∗c (r)2

≡
[
∫
J∗c (r)dGu(r, λ0)]2

σ2
uλ0(1− λ0)

∫
J∗c (r)2

+
[
∫
J∗c (r)dBu(r)]2

σ2
u

∫
J∗c (r)2

≡
[Bu(λ0)− λ0Bu(1)]2

σ2
uλ0(1− λ0)

+
[
∫
J∗c (r)dBu(r)]2

σ2
u

∫
J∗c (r)2

(24)
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with Gu(r, λ0) = Bu(r, λ0) − λ0Bu(r, 1) denoting a Kiefer Process with covariance function σ2
u(r1 ∧ r2)λ0(1 − λ0). The

result in Proposition 2 then follows by noting that Jc(r) and Gu(r, λ0) are uncorrelated and hence independent due to their

Gaussianity so that
∫
J∗c (r)dGu(r, λ) ≡ N(0, σ2

uλ0(1−λ0)
∫
J∗c (r)2) conditionally on the realisation of Jc(r). Thus normalising

by σ2
uλ0(1−λ0)

∫
J∗c (r)2 gives the χ2(1) limit which is also the unconditional distribution since not dependent on the realisation

of Jc(r). The case α1 = α2 can be treated in a similar fashion with λ0 replaced by the random variable λ∗. Indeed, we know

that the squared normalised brownian bridge, say X2, is such that X = Xλ = N(0, 1) for all given λ weights and the distribution

of X is invariant to λ. Therefore this distribution will be maintained when we use λ = λ∗, in spite of the endogeneity between

λ∗ and the primitive Brownian Motion. �

PROOF OF PROPOSITION 3. The result follows directly from the independence of Bu(r, λ) and Bv(r) under σuv = 0 also

implying the independence of J∗c (r) and Bu(r, λ) and from which mixed normality follows. �

Before proceeding with the proof of Proposition 4 it will be convenient to reformulate the components of (9) in an explicit and

suitably normalised form. We write

T 1+δR(H̃(λ)′Z(λ))−1H̃(λ)′H̃(λ)(H̃(λ)′Z(λ))−1R′ =


m1t(λ)

π1t(λ)
0

0
m2t(λ)

π2t(λ)

 (25)

with

mit(λ) =

∑
Iit−1

T

(∑ Iit−1

T

∑
h̃2
t−1Iit−1

T 1+δ

)
−

1

T 1−δ

(∑
h̃t−1Iit−1

T
1
2

+δ

)2


πit(λ) =

(∑
Iit−1

T

∑
h̃t−1xt−1Iit−1

T 1+δ
−
∑
h̃t−1Iit−1

T
1
2

+δ

∑
xt−1Iit−1

T
√
T

)2

(26)

for i = 1, 2 and

Rθ̂IV (λ) =



∑
I1t−1

∑
yth̃t−1I1t−1 −

∑
h̃t−1I1t−1

∑
ytI1t−1∑

I1t−1
∑
h̃t−1xt−1I1t−1 −

∑
h̃t−1I1t−1

∑
xt−1I1t−1∑

I2t−1
∑
yth̃t−1I2t−1 −

∑
h̃t−1I2t−1

∑
ytI2t−1∑

I2t−1
∑
h̃t−1xt−1I2t−1 −

∑
h̃t−1I2t−1

∑
xt−1I2t−1

 . (27)

It will also be useful to rearrange and normalise (27) as follows

T
δ+1
2 Rθ̂IV (λ) =


n1t(λ)√
π1t(λ)

n2t(λ)√
π2t(λ)

 (28)

with

nit(λ) =

∑
Iit−1

T

∑
yth̃t−1Iit−1

T
1
2

+ δ
2

−
1

T
1
2

+ δ
2

(∑
h̃t−1Iit−1

T
1
2

+δ

∑
ytIit−1√
T

)
(29)

for i = 1, 2.

PROOF OF PROPOSITION 4. We concentrate on the case α1 6= α2 with the underlying T-consistency of λ̂ for λ0. We also

recall that h̃t =
∑t
j=1 φ

t−j
T ∆xj and let ht =

∑t
j=1 φ

t−j
T vj . It now follows directly from (26) and Lemma 3.1 in Phillips and

Magdalinos (2009) that

mit(λ̂) =

(∑
I0
it−1

T

)2 ∑
h2
t−1I

0
it−1

T 1+δ
+ op(1)

πit(λ̂) =

(∑
ht−1I0

it−1

T
1
2

+δ

∑
xt−1I0

it−1

T
√
T

−
∑
I0
it−1

T

∑
ht−1xt−1I0

it−1

T 1+δ

)2

+ op(1). (30)

18



Under our assumptions A1-A3 the following deduce directly from Phillips and Magdalinos (2009, eq. (14))

m1t(λ̂) ⇒ λ3
0

ω2
v

2

m2t(λ̂) ⇒ (1− λ0)3 ω
2
v

2
(31)

since
∑
h2
t−1(I0

1t−1 − λ0)/T 1+δ p→ 0. It also follows that

π1t(λ̂) ⇒ λ4
0

[
ω2
v +

∫
J∗c (r)dJc(r)

]2

π2t(λ̂) ⇒ (1− λ0)4

[
ω2
v +

∫
J∗c (r)dJc(r)

]2

(32)

so that

T 1+δR(H̃(λ̂)′Z(λ̂)−1H̃(λ̂)′H̃(λ̂)(H̃(λ̂)′Z(λ̂))−1R′ ⇒

 ω2
v

2λ0[ω2
v+

∫
J∗
c (r)dJc(r)]

2 0

0
ω2
v

2(1−λ0)[ω2
v+

∫
J∗
c (r)dJc(r)]

2

 . (33)

Next, we also have

nit(λ̂) =

∑
I0
it−1

T

∑
utht−1I0

it−1

T
1
2

+ δ
2

+ op(1) (34)

and Lemma 3.2 in Phillips and Magdalinos (2009) together with (31) ensure the following holds

1

T
1
2

+ δ
2

∑
ht−1utI

0
1t−1 ⇒ N(0, λ2

0σ
2
u

ω2
v

2
)

1

T
1
2

+ δ
2

∑
ht−1utI

0
2t−1 ⇒ N(0, (1− λ0)2σ2

u

ω2
v

2
) (35)

which when rearranged with (33) and using the continuous mapping theorem within W IV
T (λ̂) leads to the desired result. The

case α1 = α2 can be treated in a similar fashion with λ0 replaced by the random variable λ∗ as formulated in Proposition 1. �
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