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Abstract

The Hartley-Rao-Cochran (RHC) sampling design is an unequal probability sampling de-
sign which can be used to select samples from finite populations. We propose to adjust the
empirical likelihood approach for the RHC sampling design. The approach proposed in-
trinsically incorporates sampling weights, auxiliary information and allows for large sam-
pling fractions. It can be used to construct confidence intervals. In a simulation study, we
show that the coverage may be better for the empirical likelihood confidence interval than
for standard confidence intervals based on variance estimates. The approach proposed is
simple to implement and less computer intensive than bootstrap. The confidence interval
proposed does not rely on re-sampling, linearisation, variance estimation, design-effects or

joint inclusion probabilities.
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Running Headline: Empirical Likelihood Inference for RHC Design

1. Introduction

Complex estimators, such as quantiles, poverty indicators, M-estimators or param-
eters of population models are often computed from survey data. The sampling
distribution of estimators may not be normal when the distributions of the underly-
ing variables are skewed or contain outlying values. Furthermore, asymptotic lin-
earised variances estimators may also be biased for moderate sample sizes. There-

fore, standard confidence intervals based upon normality and variance estimates
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can have poor coverages. The bounds can be also out of the range of the parameter
space. For example, the lower bound can be negative even when the parameter of
interest is positive. Empirical likelihood confidence intervals may have better cov-
erages in this situation, as empirical likelihood confidence intervals are determined
by the distribution of the data (e.g. Owen, 2001) and as the range of the parameters’
space is preserved.

Let U be a finite population of N units; where N denotes the population size.
Consider that the population parameter of interest fy is the non-random quanti-
ties which is defined as the unique solution of the following population estimating

equation (Godambe, 1960).

G(0) =0, with G(6) =) gi(0); (1)

el

where g;(#) is a function of # and of the values of a set of variables for the unit
i. For example, when g,;(f) = y; — 0, the parameter 6y is population mean p =
N1 Zie“ yi; where the y; are the values of a variable of interest. Other examples
are ratios, low income measures, regression coefficients, M-estimators (e.g. Qin &
Lawless, 1994; Binder & Kovacevié, 1995). We consider that g;(#) and 0y are
scalars, although this paper’s approach can be extended when they are vectors.
The approach proposed does not require the g;(#) to be differentiable. This is not
the case for linearisation (Binder, 1983). The aim of this paper is to propose an
estimator for 0 and to derive a confidence interval for 0.

Suppose we have a sample s of size n selected with the uni-stage Hartley-Rao-
Cochran (RHC) sampling design (Rao e al., 1962) defined in § 2. We shall extend
the approach proposed for two-stage sampling in § 5.3. The parameter 6 shall be
estimated from sample data. We adopt a design-based; that is, the sampling dis-
tribution of the estimator is specified by the RHC sampling design and the values
of the variables are fixed (non-random) quantities. Under this approach, the stan-

dard likelihood function is flat and cannot be used for inference (Godambe, 1966).
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Alternatively, empirical likelihood approaches can be used.

Hartley & Rao (1968) introduced the empirical likelihood-based approach. Owen
(1988) developed this approach for mainstream statistics (see also Owen, 2001).
The empirical likelihood-based approach cannot be straightforwardly implemented
under a design-based approach without some adjustments. Chen & Sitter (1999)
proposed a pseudoempirical likelihood approach which can be used to construct
confidence intervals (Wu & Rao, 2006). This approach consists in including the
first-order inclusion probabilities within the empirical likelihood function and ad-
justing the empirical log-likelihood ratio function by a design effect which needs
to be estimated. Berger & De La Riva Torres (2016) proposed a different empirical
likelihood approach which consists in using the design constraints without adjust-
ing the empirical likelihood function. Berger & De La Riva Torres (2016) showed
that this approach can be used for point estimation and to construct confidence in-
tervals under a class of high entropy sampling designs. This approach cannot be
straightforwardly implemented under RHC sampling, because the RHC sampling
design does not belong to the class of high entropy sampling designs. In this paper,
we show how the approach proposed by Berger & De La Riva Torres (2016) can be
adjusted to take into account of the RHC sampling design.

In §§ 5.2 and 5.3, we show that standard confidence interval based on linearised
variance estimators may produce confidence intervals with poor coverages. In §
5.1, we show that the pseudoempirical likelihood approach, which requires de-
sign effects, may give confidence interval with a coverage (and tail error rates)
significantly different than the nominal level. The empirical likelihood approach
proposed gives better coverage and tail error rates and does not rely on design ef-
fects. In other words, even if variance estimates and design effect are available,
they do not guarantee that the standard and pseudoempirical likelihood confidence
intervals have the correct coverage and/or tail error rates (see Tables 1, 2 and 3 in
§ 5). Furthermore, design effects are limited to means and totals. For example,

in the pseudoempirical likelihood literature, there is no clear definition of the de-
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sign effect that should be used for quantiles. Chen & Wu (2002) proposed to use a
Woodruff’s (1952) approach.

Chen & Kim (2014) proposed a population empirical likelihood approach. They
showed that the population empirical log-likelihood ratio function follows a -
distribution asymptotically under Poisson sampling when the sampling fraction is
negligible. The RHC design is different from the Poisson sampling design. The
empirical log-likelihood ratio function that is proposed in this paper follows a y2-
distribution asymptotically even when the sampling fraction is large.

We suppose that we have a set of auxiliary variables x; attached to unit .. We
suppose that some population characteristics (denoted by the vector ¢ ) of these
variables are known at population level (see § 3.2). For example, these population
characteristics can be known population totals, means, ratios, proportions or quan-
tiles. We will show how these characteristics can be used for point estimation, and
how it can be taken into account when constructing confidence intervals.

In § 2, we define the RHC sampling design. In § 3, we show how the param-
eter of interest can be estimated using empirical likelihood. In § 4, we introduce
a penalised empirical log-likelihood ratio function which can be used under the
RHC sampling design. We show how the penalised empirical log-likelihood ra-
tio function can be used for testing and confidence intervals. In § 5, a simulation
study supports our findings. In § 5.3, we show how the approach proposed can be

extended for two-stage RHC designs.

2. The RHC sampling design

The RHC design can be used to select units without replacement with probabilities
proportional to a size variable. This sampling design has several attractive proper-
ties: (1) it is easy to implement; (ii) it is always more efficient than with replacement
sampling (Rao, 2005); (iii) the RHC point estimator for a total is unbiased; (iv) the

variance can be easily estimated without the need of joint-inclusion probabilities,
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even when the sampling fraction is large; (v) variance estimates are always posi-
tive; (vi) the selection probabilities can be easily updated using the Keyfitz’s (1951)
method (e.g. Laniel & Mohl, 1994; Statistics Canada, 2008).

The Canadian Labour Force Survey (Statistics Canada, 2008) uses the RHC de-
sign to select primary sampling units (e.g. Laniel & Mohl, 1994; Statistics Canada,
2008; Rao, 2005). The RHC design is used in forestry because of its simplicity (Sch-
abenberger & Gregoire, 1994; Rao, 2005). It is also use in audit sampling (Rao,
2005). Chaudhuri et al. (2004) implemented an adaptive RHC design to select small
scale industries in India.

The RHC sampling design does not belong to the class of high entropy sampling
designs. Therefore the empirical likelihood approach proposed by Berger & De La
Riva Torres (2016) cannot be directly implemented without some adjustments.

The RHC sampling design is a probability proportional to size design; that is a
unit 7 is selected with probability proportional to a measure of size M;. We consider
that the M, are standardised such that Zie“ M; = 1. Note that this design allows
for large sampling fractions.

Suppose that the population is divided randomly into n disjoint groups Ay, .. .,

A, ... A, of sizes Ny, ..., N, ..., N,, where Z;:=1 N, = N. The N, are fixed
(non-random) quantities which are chosen before sampling. A sample of size n
is obtained by selecting one unit independently from each group according to the

following probabilities:

b — 11’ wheret, = Y M, andi€ A, 2)

‘g jeA,

Note that > ..., pi = n. The quantities p; play the same role as the first-order
inclusion probabilities, despite the fact that the p; are different from the first-order

inclusion probabilities.
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3. Empirical likelihood point estimator

Consider the following empirical log-likelihood function (Berger & De La Riva Tor-

res, 2016).

((m) = log(m), (3)

=

where ), o denotes the sum over the sampled units. The quantity mn; denotes the
scale load of unit 7 (Hartley & Rao, 1968) and m is the vector of the m; (i € s). As
the units are selected independently, the empirical log-likelihood function is indeed
given by (3). Let {m; : i € s} be the set of values which maximises /(1) subject

to the constraints m; > 0 and

Z mic; = C 4

=

where ¢; is a () x 1 vector associated with the i-th sampled unitand C' =}~ ¢;.
The m; are empirical likelihood weights. The ¢;, defined in §§ 3.1 and 3.2, are
function of the p; and of the auxiliary information.

We assume that the C' is an inner point of the conical hull formed by {¢; : i € s}
so that the solution {m; : i € s} is unique. We assume that ¢; and C are such
that the regularity conditions (A.1)-(A.6) proposed by Berger & De La Riva Torres
(2016) hold. These conditions are given in the Appendix. The p; are assumed to
be incorporated within the ¢;; that is, we assume that the vectors ¢; are such that
there exists a non random (Q x 1 vector t such that t" ¢; = p;. This implies that the

constraint

Zmﬂﬂi:n (5)

=y

always holds.
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The constraint

Z m; =N (6)
ieS

is the leading constraint for the classical empirical likelihood approach based on
simple random sampling (Chen & Qin, 1993). The constraint (5) is a generalised
leading constraint under unequal probability sampling. Note that the constraint
(5) reduces to the constraint (6), under equal probabilities, as p; = n/N in this
case. Note that we do not impose that the constraint (6) always holds (except when
pi = n/N). In other words, the constraint (6) may or may not hold. If we wish to
use the constraint (6), we need to consider the additional constraint ZieS m(x; —
p;iNn~1) = 0 with z; = 1, and treat x; as an auxiliary variable (see (10) in §§ 3.2).
This last constraint is equivalent to the constraint (6), because of the constraint (5).

The minimisation of (3) under (4) has a unique solution given by
~ -1
m; = (pi + TITCJ (N

(see Berger & De La Riva Torres, 2016). The quantity 77 is such that the constraint
(4) holds. This quantity can be computed using an iterative modified Newton-
Raphson procedure (Polyak, 1987) as in Chen et al. (2002).

The maximum empirical likelihood estimate 0 of Oy is defined by the unique

solution of

G(0) = Z m; gi(0) = 0 )]

=y

where m; is defined by (7). Berger & De La Riva Torres (2016) showed that 0 also

minimises an empirical log-likelihood ratio function.
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3.1 Without auxiliary information

Suppose that we ignore the auxiliary information. In this case, we use ¢; = Nn!p,

and C = N. It can be shown that m; = pl-_l and (8) reduces to

~ (0
GO e = 3 0. ©)

= Pi

which is the unbiased Rao et al. (1962) estimator of G(#) for a given 6. The solution
0 of é(())mc = 0 is the maximum empirical likelihood point estimate for 6.
When g;(#) = y; — n~'p;0, the solution of (9) is the Rao et al. (1962) estimate of a

total. When g;(#) = y; — 6, the solution is the ratio estimate of a mean.

3.2 With auxiliary information

Let x; be a vector of values of auxiliary variables attached to unit 7. Let ¢ be
some known vector of population characteristics, of the auxiliary variables, which

are considered to be the solution of the following estimating equation:

Z filzi, ) = 0,

el

where f;(x;, @) denotes a vector of known function of x; and ¢ (e.g. Owen, 1991;
Chaudhuri et al., 2008; Lesage, 2011). We suppose that the parameter ¢, 1s a
vector of population quantities known without sampling errors. For example, ¢
is a vector of known population means when fi(x;, ) = x; — ¢. The vector ¢y
may also contain a combination of means, ratios, total and/or quantiles.

The point estimator is the solution of (8) with ¢; = (Nn~'p;, fi(zi.on) )"

and C = (N,0")". The resulting 7, are such that

> i filwi, oy) =0 (10)

=y

This implies that the maximum empirical likelihood estimator @ of ¢, is such that
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@ = . In other words, the m; are weights calibrated with respect to .

4. Penalised empirical log-likelihood ratio function

In § 4.3, we show how confidence intervals can be computed using a penalised
empirical log-likelihood ratio function proposed by Berger & De La Riva Torres
(2016) and defined by (15). This function is based upon the following penalised

empirical log-likelihood function.

?(m) = log (H m; exp(1 —pimi)) . (11)

1€s

Let {m; : i € s} be the set of values which maximises (11) subject to the

constraints m; > 0 and
> mie = C; (12)
for some ¢; and C defined in §§ 4.1 and 4.2. It can be shown that
~ T~ -1
m; = (PH’TI Ci) )

where 77 is such that (12) holds. The ¢; and C have to be chosen to accommodate
the RHC sampling design (see §§ 4.1 and 4.2). Note that ¢; and C are different
from ¢; and C. However, we shall see in §§ 4.1 and 4.2 that the choice of ¢; and C

depends on ¢; and C.

4.1 Without auxiliary information

In § 3.1, we use ¢; = Nn 'p; and C = N for point estimation. In this case, we
use ¢; = Nn'¢/p; and C = Nn! Y ics @i » Where ¢ = ti’fz, where t;, defined

in expression (2), contained some information about the RHC sampling design. Let
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{m; : i € s} be the set of values which maximises (11). It can be shown that
m; = p; . Note that C is not the population sum of the ¢;.
Let {m}(f) : i € s} be the set of values which maximises the function (11) (for

a given ) subject to the constraints m; > 0 and

S me = € (13)

=

with

e @, at9:(0)"

1 T
o (c S - 9*(9) (14)

=y

and ¢* = C'/2 ¢7'%. Here, T = (D ics NP — N)(N? = 37, N7) 7! is the finite
population correction proposed by Rao et al. (1962, p. 485) and ¢; is defined in
expression (2). Note that ¢; and ¢ contained some information about the RHC

*T~*) -1

sampling design. It can be shown that m}(0) = (p; + " ¢,

*) *, where 7" is such
that constraint (13) holds.
The penalised empirical log-likelihood ratio function is the following function

of 4.

F6) = 2{lm) - {me)}, (15)

where

?(?ﬁ) = log (H m; exp(1 —pifﬁ.i)) ,

1€8

(') = log (H i (6) exp(L —pﬁ:(e)))

1€8

are the maximum values of the function (11) respectively under the two different

sets of constraints: (12) and (13). Here, m and m'(f) denote respectively the
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vectors of m} and of m}(6)

In the Appendix, we show that

é(GN )?{Hc

a7 |G(ON) rac]

F(Oy) = +Op(n7); (16)

where é(GN)RHC is defined by (9) and

var(G(n) nnc) = a{ > () - 5‘(9)}
€S t

is the Rao et al. (1962) variance estimator of é(GN)RHc. The stochastic order O,(-)

denotes a random variable which a convergence in probability with respect to the

RHC sampling design, as n — oc and N — oo (e.g. Isaki & Fuller, 1982).

Ohlsson (1986) proposed regularity conditions under which the Rao er al. (1962)
estimator é(GN)RHc is asymptotically normal. Assuming that these conditions
holds for é(GN)RHc, the expression (16) implies that (6 ) follows asymptotically
a x2-distribution with one degree of freedom, by the Slutsky’s lemma.

Note that the & and C incorporate the adjustment factors ¢; and ¢ which takes
into account of the RHC design. The inclusion of these factors in the constraints
(12) and (13) implies that the empirical log-likelihood ratio function (11) needs to
be adjusted by penalties exp(1 — p;m;) in order for the property (16) to hold (see

Appendix A for more details).

4.2 With auxiliary information

For point estimation, we use ¢; = (Nn~'p;, fi(xz;,, o))" and C = (N,0")",

where f;(x;, ) is defined in § 3.2). For {m; : i € s}, we use

& = (Nin gt h@oen))

.
C = (Nn‘lzquw Z(QI—l)ﬁ(amoN)Tpfl) 1

= =
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For {m?(f) :i € s}, we use

@ = (e.qa0) .

]
¢ - (E?T,Z(q:—l)@(e)) -

=y

Using (16) and the Theorem 2 in Berger & De La Riva Torres (2016), it can be
shown that 7(f ) defined by (15) still follows asymptotically a y?-distribution with

one degree of freedom.

4.3 Confidence intervals and hypotheses testing

Empirical likelihood confidence intervals rely on the asymptotic distribution of the
pivotal statistics 7(6y ). In the previous §, we show that 7(#y) follows asymptoti-
cally a y%-distribution. Thus, the o level consistent empirical likelihood confidence
interval (e.g. Wilks, 1938; Hudson, 1971) for the population parameter 6y is given

by

{0 :700) <xi(0)}; (17)

where y? () is the upper a-quantile of the y?-distribution with one degree of free-
dom. Note that 7(f) is a convex non-symmetric function with a minimum at the
maximum empirical likelihood estimate f. This interval can be found using any
root search method. In the simulation study, we used the Brent (1973, Ch. 4) and
Dekker (1969) method. This involves calculating 7(#) for several values of 6.

The p-value of the test Hy, : 6 = 0, is given by p-value = f;;“) f(x)dz, where
f(z) is the density of the y?-distribution with one degrees of freedom. This p-value

is obtained from the statistical table of a y?-distribution.
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5. Simulation study

In this §, the Monte-Carlo performance of the empirical likelihood 95% confidence
interval proposed is compared with linearisation (e.g. Deville, 1999), pseudoem-
pirical likelihood (Wu & Rao, 2006), rescaled bootstrap (Rao et al., 1992) and
Woodruff’s (1952) confidence intervals (in § 5.2). The bootstrap confidence inter-
vals are based upon the quantiles of the set of 1000 bootstrap values (the histogram
approach). The parameters of interest considered are population means (in § 5.1)
and population quantiles (in §§ 5.2 and 5.3). The Rao et al. (1962) variance estima-
tor is used for standard confidence intervals (linearisation) and for the pseudoem-
pirical likelihood approaches. Wu & Rao (2006) proposed two pseudoempirical
likelihood approaches denoted PEL1 and PEL2. Both approaches incorporate the
constraint on the auxiliary variable. The PEL2 incorporates an additional constraint
based on the p;. The pseudoempirical likelihood approaches are not considered for
quantiles (in §§ 5.2 and 5.3), because there is no pseudoempirical likelihood confi-
dence intervals for quantiles in the literature. Chen & Wu (2002) proposed to use a
Woodruff’s (1952) approach for confidence intervals of pseudoempirical likelihood
estimators of quantiles.

In §§ 5.1 and 5.2, the simulation studies are based on 10,000 RHC samples of
size n = 500 and the quantities N, are given by N, = N /n. We used the statistical

software R (R Development Core Team, 2014). The algorithms were coded in C.

5.1 Estimation of means with auxiliary variables

Consider that the parameter of interest #y is the population mean; that is, g;(#) =
y; — 0. Suppose that we have a vector z; = (1,z;)" of auxiliary variables for each
unit i. We suppose that the population means ¢, of the x; is known. In this case,
fi(x;, o) = @; — . The standard confidence interval is based on the standard
regression estimator defined by (6.4.2) in Sarndal et al. (1992), with the p; play-

ing the role of first-order inclusion probabilities. The linearisation variance is used
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for the regression estimator. Note that the regression estimator, the pseudoempir-
ical likelihood point estimators (PEL1 & PEL2) and the empirical likelihood point
estimator are different, because we used auxiliary information.

We generate 80% of the values of y; from a normal distribution with mean
8 and variance 1. The remaining 20% are outlying values generated from y; =
3+ a; + fx; + ¢ e;, where ¢ = 1.5. The variable a; and z; (i € U) are generated
from independent exponential distributions with rate parameters equal to 0.5. The
M are proportional to a; + 2. The values y;, r; and a; generated are treated as fixed.
Populations of size N = 2000 and N = 25,000 are generated.

The simulation results are given in Table 1. The values not within brackets are
for the populations of size N = 2000 (large sampling fractions). The values within
brackets are for the populations of size N = 25,000 (small sampling fractions). The
ratio of average length (Ratio Av. Length) is the average length of the confidence
intervals divided by the average length of the confidence intervals based on lin-
earisation. We measure the stability of the confidence intervals using the standard
deviation of the lengths (SD Length). The ‘Ratio SD Lengths’ are the ‘SD Lengths’
divided by the ‘SD Lengths’ of the linearisation confidence intervals. The column
‘Ratio MSE’ gives the relative efficiency (Rel. Eff.) given by the ratio between the
mean squared error (MSE) of the point estimator and the regression point estimator.

[Table 1 should be here]

The empirical likelihood approach proposed gives coverages which are not sig-
nificantly different from the nominal level 95%. Linearisation has also good cover-
ages, but the empirical likelihood approach proposed gives shorter and more stable
confidence intervals. From the last column, we notice that the MSE of the em-
pirical likelihood point estimator is about 50% lower than the MSE of the regres-
sion estimator. The pseudoempirical likelihood estimators have similar MSE. With
small sampling fraction (N = 25,000), the empirical likelihood approach proposed
and the pseudo-EL1 approach give similar coverages, but the empirical likelihood

confidence intervals are slightly shorter and more stable. The bootstrap and the
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pseudo-EL2 approaches give coverages and tail error rates which may be signifi-

cantly different from 95% and 2.5%.

5.2 Estimation of quantiles

We consider the 5% and 25% quantiles: Y o5 and Yj 25. We use the g;(6) proposed
by Berger & De La Riva Torres (2016) for quantiles. The standard confidence
interval is based on the linearised variable proposed by Deville (1999).

We generated several skewed population data using y; = 3 +a; + ¢ ¢; (Wu &
Rao, 2006); where the a; follows an exponential distribution with rate parameters
equal to 1 and e; ~ x? — 1. The M; are proportional to a; + 2. Populations of size
N = 2000 and N = 25000 are generated. The parameter ¢ is used to specify the
correlation p(y, M) between the values y; and M;: p(y, M) = 0.8 with ¢ = 0.5;
p(y, M) = 0.3 with ¢ = 2.3. Note that all the approaches give the same point
estimate, because auxiliary information is not considered.

[Table 2 should be here]

The results are given in Table 2. The coverages and tail error rates of the lin-
earised confidence intervals are significantly different from 95% and 2.5% respec-
tively, except with Yj 25, N = 25,000 and a correlation of 0.8. The rescaled boot-
strap gives acceptable coverages for small sampling fractions. However, for large
sampling fraction rescaled bootstrap is known to give poor coverages. Indeed, the
coverages and tail error rates are significantly different from 95% and 2.5% respec-
tively. The bootstrap confidence intervals have more unstable confidence intervals
(see the column ‘Ratio SD Length’) because of re-sampling. Linearisation gives the
most stable confidence intervals, but with coverages significantly higher than 95%.

Chen & Wu (2002) proposed to use a Woodruff’s (1952) approach for confi-
dence intervals of pseudoempirical likelihood estimators of quantiles. The Woodruff’s
(1952) confidence intervals gives good coverages and tail error rates in most situ-

ations. We notice that the tail error rates of Yj o5 are significantly different from
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2.5%. We observe similar coverages and average lengths with the empirical likeli-

hood approach proposed and the Woodruff’s (1952) approach.

5.3 Two-stage design: synthetic EU-SILC data

The European Union Statistics on Income and Living Conditions (EU-SILC) survey
is an European survey which collects information on income and living conditions
(Eurostat, 2012). This surveys is used for measuring poverty within the European
Union. Alfons et al. (2011) created a synthetic dataset, called AMELIA, based
on EU-SILC. AMELIA maintains the association between key variables. A full
description of the AMELIA data can be found in Alfons ef al. (2011). AMELIA
is replicated five times to create a population of 18,903, 620 households split into
M = 7,860 regions, denoted R; (i = 1,..., M). The regions containing less than
60 households are removed from the population.

We consider a two-stage design. For the first stage, n = 100 regions are selected
using the RHC design with a measure of size M; proportional to the number of
households within the regions. We used N, = M /n. For the second stage, simple
random samples of 20 households are selected within each selected regions. This
gives a sample of 2000 households. The target variable is the equalized disposable
household income. The Canadian Labour Force Survey is based on a similar design,
where the first stage is a RHC design.

Let g;;(¢) be the estimating function for the household j in the region R;. Let

0 be the solution of

> g(6) =0, (18)
i€l
where U denote the population of M regions and

9:(0) =) 9;5(0)- (19)

JER;
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Let g;.(€) be the unbiased estimator of g;.(#) for a given value of 0; that is, g;.(#) =
20M; > ics; 9ij(0), where s; is the sample of households selected from R;. We
propose to use an ultimate cluster approach which is described in Oguz-Alper &
Berger (2015). That is, g;(#) is substituted by g;.(¢). The p; are the region level
probabilities given by expression (2). The random variable 7(fy ) follows asymp-
totically a y?-distribution, as long as the first-stage sampling fraction n/M is small
(e.g. Oguz-Alper & Berger, 2015), because the variance in the quadratic form (16)
is now the first-stage Rao et al. (1962) variance estimator.

The target parameters are the quantiles of the population distribution of the
equalized disposable household income. Thus, the function g;;(#) is the same as
the estimating function used in § 5.2. The simulation studies are based on 2000
two-stage RHC samples. The standard confidence interval is based on linearisation
(Deville, 1999) and on a two-stage RHC variance estimator. The results are given
in the Table 3. Note that all the approaches give the same point estimate, because
auxiliary information is not considered.

[Table 3 should be here]

For the median Y5, all the approaches give similar coverages and tail error
rates. The differences are more pronounced for the quantiles of the tail of the
distribution. With Y{ 10 and Y95, the standard approach based on linearisation
give poor coverages. This is due to the bias of the linearised variance and lack
of normality (see column ‘Shapiro-Wilk p-value’). For Y{ 55 and Yj 75, the lineari-
sation approach gives tail error rates significantly different from 2.5%. For Y} 1,
Y0.25, Yo.50 and Yy 75, the Bootstrap, Woodruff’s (1952) and empirical likelihood ap-
proaches give coverages which are not significantly different from 95%. For Y{ g5,
the coverage of Woodruff’s (1952) and empirical likelihood confidence intervals
give better coverages, but they are significantly different from 95%. The bootstrap
gives a lower coverage.

To summarise, linearisation may be problematic for the quantiles of the tail of

the distribution. The Woodruff’s (1952) and empirical likelihood confidence inter-
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vals seem to perform equally. The bootstrap may give tail error rate significantly
different from 2.5%. This was also observed in Table 2 for Y} ;5. Woodruff‘s (1952)
approach is limited to quantiles. Empirical likelihood can be used for a wider class
of parameters. Empirical likelihood is easier to implement than bootstrap. For two-
stage sampling, the consistency of the bootstrap confidence intervals has only been
shown for smooth functions of means with small sampling fraction (Rao & Wu,
1988; Rao et al., 1992). The empirical likelihood confidence interval is consistent

for a wider class of parameters.

6. Conclusion and discussion

The main contribution of this article is to propose a new set of constraints (see
(12) and (13)) for the empirical likelihood approach proposed by Berger & De La
Riva Torres (2016). This set of constraints contains information about the RHC sam-
pling design. We show that the resulting empirical log-likelihood ratio function can
be used for testing and constructing confidence intervals. The confidence interval
proposed does not rely directly on the normality of the point estimator, variance
estimates, linearisation and re-sampling, even when the parameter of interest is not
linear. The approach proposed is simpler to implement and less computationally in-
tensive than bootstrap, especially with calibration weights. Our simulations study
also shows that bootstrap confidence intervals may not have the right coverage and
may be more unstable.

There is an analogy between the empirical likelihood approach proposed and
the calibration developed by Deville & Sirndal (1992), as the constraints (4) can
be viewed as a calibration constraint. Calibration is based on distance functions
between survey weights and calibration weights. These distance functions are dis-
connected from the mainstream likelihood statistical theory. The empirical likeli-
hood objective function (3) is not a distance function and is related to the concept

of likelihood. The advantage of the empirical likelihood approach proposed over
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standard calibration is the fact that (11) can be used to compute point estimates,
construct confidence intervals and test hypotheses. Furthermore, empirical likeli-
hood weights are always calibrated and positive.

Linearisation (Binder, 1983) is restricted to the situation when the g;(f) are
differentiable with respect to 6. The empirical likelihood confidence interval pro-
posed can be used even when the g;(#) are not differentiable. The coverage of the

confidence interval based on linearisation may have a poor coverage (see Table 3).
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Appendix

Consider that the RHC sampling design is such that the following regularity condi-

tions hold, when 6 = 0.

nN—1 max {p;l} = 0,(1), (A.1)
NYC, - C'|| = Opn3), (A.2)
max|[E] = o (n?), (A3
18*1 = o), (Ad)
181 = ), (A5)
n;l\r ; “‘;I“T = On") (r=2,3,4), (A.6)
with
§ - —%;}%E &’ and C = ;;_
where || - || denotes the Euclidean (Frobenius) norm.

Note that theses conditions only need to hold for # = . They do not need to
hold for @ or for any 6. The condition (A.1) is the key condition. It ensures that the
p; are not disproportionately small compared to the sampling fraction (Krewski &
Rao, 1981, p. 1014). The condition (A.2) assumes that the law of large numbers
holds for 6; (Isaki & Fuller, 1982; Krewski & Rao, 1981). The condition (A.3)
ensures that the maximum of ||¢/|| does not converge to infinity with a rate larger

than n2 (e.g. Chen & Sitter, 1999, Appendix 2). It can be shown that the conditions
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(A.4) and (A.5) hold when —S*is positive definite and when there exists a positive
definite matrix —S' such that ||S* — S| = 0,(1) and ||S|| = O(1). The condition
(A.6) is a Lyapunov-type condition for the existence of moments (e.g. Krewski &

Rao, 1981, p. 1014, Deville & Sirndal, 1992, p. 381).

Proof of expression (16)

As f; = p; ', we have that ?’iﬁ) = —{(p), where {(p) = > _,.qlog(pi). Using
Lemma 3 in Berger & De La Riva Torres (2016), we have that under the conditions

(A.1)-(A.6)
{0, 0x) + Up)} = (C) — C*) 'S (€, — C) + O(n5),  (AT)

where C™ is defined by (14) and

~ C.
c, =S =
=y pi
~* 1 T Ypp g
= = _ZC!;CJ, = T N
ics Pi 3 s Ougg
where
2 2 2
5, - qu:N_Zt,:N_
pp ng i 'ﬂ,2 i 'RZ 1
= =
—~ . N )
Ypg = _Z‘L%Qe = n (’(9 ) ruc
ies
—~ .2Q¢(9 ~ gt(e
Gog = D] =)=
=) =) *p*

We also have that

6’; - C" = (U, é(GJ’\')RHC)T
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Using ((m) = —((p), (15) and (A.7), we have

-1

o~ o~

~ =~ E}”}” E}”g 0 1
FOy) = (o, (,(GN)RHC) " ~ +0,(n 1),
Epg 6:99 (;(GN )RHC
G(Oy)? |
= — GOV me | (-}, (A.8)
UQQ - Epg Epp EPQ
AT ~=1~ ~
It can be shown that 7, — EPQEWI ¥, = var|G(0y)guc). Thus, (A.8) implies

(16).
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Table 1: Coverages of the 95% confidence intervals for the mean. n = 500. The values
not within brackets for N' = 2000 (large sampling fractions). The values within brackets
for N = 25,000 (small sampling fractions). The symbol * indicates that the coverages (or
tail error rates) significantly different from 95% (or 2.5%): p-value < 0.05.

Approaches Overall Lower tail  Upper tail Ratio Ratio SD  Ratio MSE
Cov.% err. rates% err. rates% Av. Length  Length (Rel. Eff.)
Lin. Reg. 95.1 (94.6) 26 (28) 23 (26) 1.00(1.00) 1.00(1.00) 1.00 (1.00)
Bootstrap 94.8 (93.9%) 0.8*% (1.1¥) 4.4*(5.0%) 1.05(1.01) 0.93(1.01) 1.00(1.00)
PEL] 946 (954) 24 (27) 3.0%(1.9% 0.51(0.52) 045(0.41) 0.500.47)
PEL2 93.1% (93.2%) 3.3*%(4.0%) 3.5%(2.8%) 0.49(0.47) 0.40(0.37) 0.49(047)
Emp. Lik. 94.8 (94.7) 24 (2.8%) 28 (25) 0.50(0.49) 0.37(0.37) 0.49(0.47)

Table 2: Coverages for quantiles Y; (¢ = 0.5 and 0.25). n = 500. The values not
within brackets for N = 2000 (large sampling fractions). The values within brackets for
N = 25,000 (small sampling fractions). The symbol * indicate that the coverages (or tail

error rates) significantly different from 95% (or 2.5%): p-value < 0.05.

p(y, p) Approaches Overall Lower tail Upper tail Ratio Av. Ratio SD
Cov. % err. rates %  err. rates % Length  Length

¥0.05 0.8 Linear. 99.3*% (98.0%) 0.7* (1.8%)  0.0* (0.2%) 1.0 (1.0) 1.0(1.0)

Bootstrap 97.0% (95.1) 1.5%(2.3) 1.5%(2.6) 0.8(0.8) 3.0(2.2)

woodruff 95.1 (95.0) 2.1* (2.0%) 28 (3.0%) 0.7(0.8) 2.8(2.2)

Emp. Lik. 94.5% (94.7) 2.0*%(2.1%*) 3.6*%(3.2%) 0.7(0.8) 2.8(2.2)

0.3 Linear 08.9% (98.8%) 1.1*(1.1*)  0.0* (0.0%) 1.0 (1.0) 1.0(1.0)

Bootstrap 97.1% (95.3)  1.5%(2.2%) 1.5%(2.5) 0.7(0.7) 2.6(2.2)

woodruff 953 (954) 2.0%(1L.7%) 2.8 (29% 0.6(0.7) 2.62.2)

Emp. Lik. 949 (94.8) 1.8%(2.0%) 32*3.1%) 0.6(0.7) 25(2.2)

Y0.25 0.8 Linear. 94.2*%(95.1) 24 (2.1%) 3.5%(2.7) 1.0 (1.0) 1.0(1.0)

Bootstrap 97.1% (95.0) 1.4*%(2.2) 1.4%(2.7) 1.1 (1.0) 3.6(2.3)

woodruff 95.1 (94.9) 2.6 (2.5) 23 (2.6) 1.0(1.0) 3.4(2.2)

Emp. Lik. 95.1 (95.0) 23 (2.2) 26 (2.8) 1.0(1.0) 3.4(2.2)

0.3 Linear 97.4% (97.2%) 1.8%(1.4%) 0.8*%(1.4%) 1.0 (1.0) 1.0(1.0)

Bootstrap 97.2% (95.4) 1.2*%(2.3) 1.5%(2.4) 1.0(0.9) 3.3 (2.5

woodruff 95.1 (95.3) 23 (2.5) 26 (22%) 0909 3.12.5

Emp. Lik. 949 (95.3) 2.0*%(2.3) 3.1%(2.5) 0.90.9 3124
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Table 3: Coverages for quantiles Y. Two-stage design. Synthetic EU-SILCdata: AMELIA.
The symbol * indicate that the coverages (or tail error rates) significantly different from
95% (or 2.5%): p-value < 0.05. The p-values of the Shapiro-Wilk normality test are
reported in the last column.

Quantile Approaches Overall Lowertail Uppertail Ratio Av. Shapiro-Wilk
Cov. % err. rates% err. rates % Length p-value

Yo.10 Linear. 89.0%  5.0% 6.0* 1.00 < 0.001
Bootstrap 94.3 3.4% 23 1.18
woodruff ~ 94.8 2.9 24 1.18
Emp. Lik.  94.3 2.9 2.8 1.17

Yo.25 Linear. 94.5 3.5% 20 1.00 0.00043
Bootstrap 04.2 3.3% 25 0.99
woodruff ~ 94.4 3.1 25 1.00
Emp. Lik.  94.3 3.1 2.6 0.99

Yo.50 Linear. 94.6 2.6 2.8 1.00 0.1057
Bootstrap 04.8 2.5 2.6 1.00
woodruff  94.6 2.7 27 1.00
Emp. Lik.  94.6 2.7 27 1.00

Yo.75 Linear. 94.8 2.1 3.6% 1.00 0.2543
Bootstrap 94.5 2.6 2.8 1.00
woodruff 947 3.0 24 1.01
Emp. Lik.  94.7 2.7 27 1.00

Yo.05 Linear. 86.3% 29 10.8* 1.00 < 2.2e-16
Bootstrap 02.5% 25 5.1% 1.10
woodruff  93.6% 3.0 3.4%* 1.15

Emp. Lik.  93.5% 24 4.2% 1.12




