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Biological evolution contains a general trend of increasing complexity of the
most complex organisms. But artificial evolution experiments based on the
mechanisms described in the current theory generally fail to reproduce this
trend; instead, they commonly show systematic trends of complexity
minimisation. In this dissertation we seek evolutionary mechanisms that can
explain these apparently conflicting observations. To achieve this we use a
reverse engineering approach by building computational simulations of
evolution. One highlighted problem is that even if complexity is beneficial,
evolutionary simulations struggle with apparent roadblocks that prevent them
from scaling to complexity. Another is that even without roadblocks, it is not
clear what drives evolution to become more complex at all. With respect to the
former, a key roadblock is how to evolve ‘irreducibly complex’ or ‘non-
decomposable’ functions. Evidence from biological evolution suggests a
common way to achieve this is by combining existing functions - termed
‘tinkering’ or ‘building block evolution’. But in simulation this approach
generally fails to scale across multiple levels of organisation in a recursive
manner. We provide a model that identifies the problem hindering recursive
evolution as increasing ‘burden’ in the form of ‘internal selection’ as joined
functions become more complex. We show how having an ontological
development process that occurs by local growth, as present in most complex
biological organisms, resolves this problem, enabling evolution to occur

recursively. Meanwhile, to understand what drives complexity in evolution we



provide a model showing that under certain conditions a well-studied concept
from the computational study of algorithms - complexity lower bounds -
applies in evolution. The model shows how the ‘difference’ between the
conditions required by an organism’s replicator and its external environment
results in a minimum complexity floor that varies as the external environment
changes. We find that selection in such a system produces a system-wide,
overall trend of increasing complexity of the most complex organisms (as
environments are colonised), coupled with local trends of complexity
minimisation in individual environments (as evolution seeks to minimise its
cost of resources) -thereby resolving the tension between biological
observations and theoretical outcomes. Our simulations and analytic results
demonstrate (a) how evolution can, when complexity is beneficial, scale to
complexity over multiple organisational levels, and (b) the conditions in which
complexity is beneficial in evolution. These models describe a set of
phenotypic, ontogenetic and environmental conditions that are generally
present in biological evolution, in which evolution consistently generates an

overall trend of increasing complexity of the most complex organisms.
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Chapter 1: Introduction and Literature Review

Chapter 1: Introduction and literature

review

There is nothing in neo-Darwinsm which enables us to predict a long-
term increase in complexity.
- J. Maynard Smith, 1969

.. macroevolutionary patterns cannot be deduced from
microevolutionary principles.
- G. Ledyard Stebbins and Francisco J. Ayala, 1981

1.1 Motivation

Biological evolution exhibits an increasing trend in complexity of the most
complex organisms. Even though complexity can be difficult to define, it is
hard to deny the earliest prokaryotes are simpler than the single-celled
eukaryotes that evolved from them, which are in turn simpler than multicellular
organisms that evolved from them, and so on (Bedau 2009; McShea 1991;
McShea 1994).

Some researchers argue that the Modern Synthesis (Fisher 1958; Huxley 1942;
Wright 1931; Dobzhansky 1970; Haldane 1990), which is the current theory in
evolution (Pigliucci 2007), already explains this trend (Bedau 2009). A common
argument is that the basic mechanisms of natural selection described in the
current theory (e.g. Godfrey-Smith 2007; henceforth evolution by natural
selection: ENS) are sufficient to provide an infinite space of possibilities to
evolution, and therefore, this system will eventually produce a generic trend of

progressively more complex organisms (Bedau 2009).

However, most laboratory experiments and computational models that embody
those mechanisms have failed to display such long-term, general trends of
increasing complexity as observed in nature (Bedau 2009; Lane 2010;
Spiegelman et al. 1965; Oehlenschldager and Eigen 1997; Bedau et al. 2000;
Watson 2006).

A telling example is provided by the work of Sol Spiegelman in the late 1960s

(Spiegelman et al. 1965). Spiegelman took a simple virus of 4500 nucleotide
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bases that made up only a handful of genes, many of which produced proteins
whose purpose was to subvert the complicated machinery of host cells. He
then added the virus to a test tube with a free supply of the RNA replicase
enzyme necessary for the virus to reproduce, plus some free nucleotides and
salts. Periodically he moved the RNA to a new test tube with fresh solution. The
results were dramatic. The virus reproduced steadily, and then gradually
started to lose genes - specifically, genes that were necessary to survive in the
complicated environment of the host cell, but not necessary in the test tube
(for example, genes that subverted the complicated machinery of the host cell).
Not only that, but the shorter viruses could reproduce faster, allowing the
shorter mutants to prevail. After 74 generations, the original virus with 4,500
nucleotide bases ended up as a dwarf genome with only 218 bases. Over
successive generations, he found that successful RNAs become progressively
simpler, losing all genes that were unnecessary in the test tube environment.
Evolution favoured stripped-down, simple-as-possible organisms because these
were the fastest at reproducing. As Nick Lane eloquently summarises (Lane
2002):

‘Evolution selects for beneficial adaptations to a particular
environment, and the simplest, fastest or most efficient solution will
tend to win out, even if it means excess baggage is jettisoned and

organisms become less complicated.’

With the advent of faster computing in the 1980s and 1990s, researchers
sought to study evolutionary trends using computational simulations, as part

of the field of artificial life.

Many of these simulations actively sought to reproduce what was considered to
be ‘open-ended’ evolution observed in the biosphere. In many cases the hope
was to provide conditions for evolution that produced progressively more
complex and diverse forms over time. Tierra (Ray 1992), Avida (Adami et al.,
2000), Polyworld (Yaeger 1994) and Geb (Channon 2001) are examples of
these types of models; typically, they have no explicit goal other than survival

and reproduction.

Tierra (Ray 1992) is an evolutionary model in which self-replicating digital

programs compete for resources (i.e. processor time) on a virtual computer. In
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several Tierra simulations, interesting cycling behaviours of parasitism and
immunity arose in the system, resulting in a coevolutionary arms race.
However, Tierra-like systems all inevitably struggle to continually produce
novelty (Channon and Damper 2000). Furthermore, the parasites that evolved
did so as a result of a drive towards simplicity: simpler programs could
reproduce with less processor time, and so were more efficient. As a result,
parasites evolved that did not have their own copying code, but instead

hijacked the copying code of other programs.

In Polyworld (Yaeger 1994) and Geb (Channon 2001), digital agents compete
for survival in a two-dimensional world. Again, some interesting behaviours
result from evolution in this system, such as flocking and foraging - but again

evolution in these systems eventually struggles to produce further novelty.

To address this problem of decreasing novelty over time Lehman and Stanley
(2011) adopted a different approach, by defining novelty search - a system in
which evolution is explicitly rewarded for creating novelty, as opposed to
functionality that promotes survival and reproduction alone. They achieved
some interesting results, such as showing that novelty search can outperform
directed evolution in deceptive problems (i.e. those that typically lead evolution
away from the target). However, although novelty search could be useful as an
engineering tool, it is not clear how much explicit selection for novelty can tell
us about complexity trends in natural evolution, as evolution in the natural

world is not know to include such a force.

In @ more recent study Auerbach and Bongard (2014) examined how the
complexity of the environment can affect evolved complexity. They used a 3d
model of organism morphology, similar to Carl Sims’ pioneering work on
blocky creatures (Sims 1994). They found that when the environment was more
complex - in particular, more rugged - organisms selected for a locomotion
task generally evolved more complex locomotion mechanisms. This provides
evidence that in some cases at least, environments that pose more complex
tasks for evolution can consistently result in more complex organisms being

evolved.

However, in sum, many artificial life simulations - in particular those without
an explicit or directed fitness function - showed the same general behaviour

observed by Spiegelman: in many cases organismal complexity generally

3
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decreased over time and settled at some minimum, at which it remained
apparently indefinitely (Langton 1984; Ray 1993; Bedau et al. 1997; Sayama
1999; Bedau et al. 2000; McMullin 2000; Suzuki, Ono, and Yuta 2003). Again,
this was commonly attributed to simpler organisms requiring fewer resources

and being able to reproduce faster.

Another important study on the evolution of complexity is Lenski’s Escherichia
Colilong term evolution experiment. The experiment, which is still on-going,
has tracked genetic changes in 12 initially identical populations of E. Coli since
1988, making up over 60,000 generations (Lenski 2003). The populations are
grown in an incubator in a minimal growth medium, and each day 1% of the

population are transferred to a fresh flask of growth medium.

The general results show similarities to artificial life simulations; initially, the
populations evolved fairly rapidly to their new environment. All populations
produced larger cells in response that were specialised for living on glucose
(which was abundant in the medium), resulting in a 70% faster reproduction
time. However, after approximately 20,000 generations, the initial rapid
changes had dwindled (Lenski 2004). Some novel complex functions were
evolved; in particular, one population evolved the capability to metabolise
citrate, which was very useful in the highly oxic conditions of the growth
medium (Blount et al., 2008). However, despite these changes, the results
predominantly show gradually decreasing optimisation to a given niche, and
the ability to solve specific problems by evolving new functionality, but not an

open ended growth of new forms (Lenski 2004, Blount 2008).

Given these results, we are therefore left with two rather conflicting
observations: a general trend of increasing maximal complexity in the
biosphere, and a common inherent preference for simplicity observed in
artificial evolution experiments. Furthermore, the Modern Synthesis has little to
say about what causes trends in complexity in evolution, and the origins of
complexity trends remain an open question (e.g. Maynard Smith 1969, McShea
1991; Bedau 2009).

Based on these observations, the key, overarching question that motivates this

work is:
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How can evolutionary theory be refined to better explain observations
that natural evolution exhibits a general trend of increasing maximal
complexity, whereas in experiment evolution commonly results in

systematic complexity minimisation?

1.2 Theoretical perspective

Before we look into this question further, we must first address another
important and subtle issue. In this thesis we define ‘evolution’ as the complete
connected set of mechanisms and algorithms that underpins biology, that is
only partly understood, and that mapping and understanding this is one of the
main goals of research into evolutionary biology. In contrast, we define
‘evolution by natural selection’ (ENS) as the specific algorithm that Darwin
(Darwin 1859), and later others (for a thorough review see Godfrey-Smith,
2007) have defined, that is the central component of the Modern Synthesis,
and can be generally summarised as variation, heredity, and fitness differences
(Godfrey-Smith 2007). Importantly ENS does not explicitly include any specific
genotype-phenotype maps, processes of development, niche construction, or

other such higher-level processes.

Evolution is a phenomenon that spans multiple levels of organisation, and so
may require a different type of theoretical framework than is common in
science (Stebbins and Ayala 1981; Watson 2012; Mitchell 2009). For example,
a problem with multi-level science is that it is not clear that having a theory
that entirely explains phenomena on one level can, even in principle, explain
phenomena on levels above (Mitchell 2009; Stebbins and Ayala 1981). Stebbins
and Ayala compared different levels in evolution (e.g. genes, phenotypes,
ecosystems) to the organisational gap between physics, chemistry and biology.
They argued that although the mechanisms of physics and chemistry clearly
operate in biological systems, few scientists would argue that complex
biological phenomena can be predicted using the laws of physics and
chemistry alone. They therefore argue that the same is presumably true in
evolution: although the process of ENS clearly operates in phenotypes and
ecosystems, this does not mean that patterns in those systems can be

predicted or explained by ENS alone.
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For an analogy, Watson (2012) discusses how several different classes of
sorting algorithm all contain some essential algorithmic elements of sorting;
but describing these elements alone does not provide a description of how
these algorithms function. Sorting algorithms are used to sort lists in to some
order (e.g. sorting a list of words alphabetically). The most common class of
sorting algorithms is based on repeated compare-and-swap operations, where
two records are compared, and swapped if necessary. There are many different
compare and swap sorting algorithms (e.g. bubble sort, merge sort, etc.) and
they vary greatly in the patterns they produce while sorting, and their
efficiency. But they are all simply based on repeated compare and swap
operations. What separates them is how those compare and swap operations
are organised (e.g. starting at the top of the list and working down, or
choosing random positions in the list, etc.). Clearly, if we want to explain why
one such sorting algorithm is more efficient than another, or produces
different patterns while sorting, we cannot do so with a theory that only
describes the compare and swap operation. Such a theory cannot differentiate
one compare and swap sorting algorithm from another, because the
differences occur at a hierarchical level above the theory itself. Watson argues
that evolution is similar: ENS is like the ‘compare and swap’ operation of
evolution - it is the bottom level component of the algorithm. As a result,
although ENS can explain phenomena on the level of genes, it simply does not
contain the information to predict phenomena at higher levels. In other words,
ENS is consistent with a very large range of possibilities at the levels of
phenotypes and ecosystems, but it does not contain the necessary information
to differentiate between them. Therefore, ENS alone cannot identify which of
these myriad possibilities actually occurs in nature. This is consistent with the
view that, as Stebbins and Ayala state, ‘macroevolutionary patterns cannot be

deduced from microevolutionary principles [alone]’ (Stebbins and Ayala 1981).

In this dissertation, we build on these ideas. In general, we attempt to search
through this space of higher-level algorithms that contain ENS, in an attempt to
find algorithms that produce the higher-level patterns that are observed in
reality. We do this by using models to reverse-engineer possible solutions. In
doing so, we commonly describe phenomena that require algorithms ‘beyond
ENS alone’. It is in the particular, multi-level sense described here that we mean

‘beyond ENS alone’. To be clear, by this statement we do not mean algorithms
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that are inconsistent with ENS, or in any way disagree with the findings of the
bulk of evolutionary theory. This simply implies that some phenomena can
only be explained by a more complex algorithm that contains ENS organised in
some way at a higher level by some necessary higher-level algorithmic
components (e.g. specific types of development processes, etc.) - similar to
how some higher-level properties of sorting algorithms cannot be reproduced
by compare and swap operations alone, even though they are essential (i.e. no
sorting occurs if the compare and swap operations are removed). Furthermore,
it is important to note that without considering the multi-level approach we
adopt in this dissertation, much of the point of the exercise could be missed.
For example, consider the case where we observe that ENS alone fails to
produce a given biological phenomenon, but that a higher-level algorithm that
contains ENS does produce it. Viewing evolution on a single level, one might
consider ENS to be the algorithm of evolution; in that case, all that such
experiments show is that ENS (plus some proximal details) can cause the
biological phenomenon, which just confirms what we already knew, because
ENS (i.e. evolution, from this perspective) causes all biological phenomena.
Whilst this isn’t strictly speaking ‘wrong’, and moreover ENS is essential to the
result, this point of view can miss the bigger picture in the same sense that, for
example, saying “adaptation is caused by chemistry” would miss the algorithm
of ENS.

1.3 Approach and previous work

Before we discuss the motivating question of this thesis in more detail, we
must first discuss complexity itself. In particular, although biological
complexity is to some degree intuitive, it has proved to be very difficult to
agree on a universally accepted definition for what we mean by complexity
(Mitchell 2009). Obviously, this significantly clouds the issue of the evolution

of complexity.

Many measures of complexity have been proposed. Some simple proposals
suggested complexity could be related to genome size. However, some micro-
organisms have genome sizes hundreds of times larger than humans, which
seems to disagree with intuitive notions of complexity. Complexity has also
been linked to the entropy content of a message (Shannon 1948) such as a

genome (Mitchell 2009). However, by this measure, the highest complexity
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messages are those that are entirely random - which again seems to disagree
with intuitive notions of complexity. Another popular measure of complexity is
the algorithmic information content of an object, which is often termed
Kolmogorov complexity. Kolmogorov complexity is defined as the length of the
shortest computer program that can generate a complete description of an
object (Kolmogorov 1965). However, like entropy, Kolmogorov complexity
assigns the highest complexity to random objects that those we would
intuitively define as complex (Mitchell 2009). A number of complexity
measures have been proposed to solve these issues, including effective
complexity (Gell Mann and Lloyd 1996), logical depth (Bennett 1995),
thermodynamic depth (Lloyd and Pagels 1988) and statistical complexity
(Crutchfield and Young 1989); however, although these proposals each have
their benefits, none has been universally accepted as being equivalent to what

we intuitively mean by biological complexity.

Now let us move on to the motivating question of this work. Two main
possibilities are described in the literature to explain why evolutionary
experiments commonly fail to generate such long-term trends of increasing
maximal complexity as observed in nature. First, there is the possibility that
natural evolution contains some factor, missing from the current theory (and
hence not included in artificial evolution experiments) that in some cases
promotes or necessitates complexity in evolution (complexity drivers; e.g.
McShea 1991; McShea 1996; McShea and Brandon 2010). Second, there is the
possibility that even in conditions when complexity would be favoured by
evolution, there might be some kind of roadblock to complexity that, to
bypass, requires evolutionary mechanisms that are not fully described in the
current theory of evolution (and hence not included in artificial evolution
experiments) but that are present in nature (complexity roadblocks; e.g. Bedau
et al. 2000; Watson 2006).

This unpacking gives rise to two more specific research questions that form
the central issues addressed in this dissertation; they will take a little more
background context to define. The first of these specific questions relates to
complexity roadblocks. To define it, we must briefly discuss non-
decomposable functions, and mechanisms of their evolution - in particular

exaptation and building block processes.
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1.3.1 Complexity roadblocks

In the literature, perhaps the most popular candidate for a potential complexity
roadblock is non-decomposable functions (also sometimes called emergent,
non-additive or irreducibly complex functions; Watson 2006; Schwenk and
Wagner 2004; Behe 2009). Non-decomposable functions are a popular
candidate for complexity roadblocks for a number of reasons. First, they have
a similar structure to biological complexity, in that they contain interactions
between their components vital to their functionality; second, there are
numerous examples of non-decomposable functions in natural evolution, but
they have rarely been evolved in simulations or laboratory experiments; and
third, they are difficult to evolve by ENS alone (Lenski et al. 2003; Watson
2006; Bedau et al. 2000; Watson and Pollack 2005). What in particular makes
them difficult to evolve is that they cannot be broken down into smaller
components without losing their functionality. This makes it difficult to explain
how such functions could have been evolved from simpler systems by small,

successive changes described in the current theory.

A number of different mechanisms capable of evolving non-decomposable
functions have been described in the literature. Exaptation (also termed
preadaptation) is one of the most commonly discussed. Exaptation occurs
when a trait that has one (or no) function is co-opted for a different purpose
(Darwin 1859; Gould and Vrba 1982; Barve and Wagner 2013). This enables
non-decomposable function evolution because, for example, a particular trait
that was initially evolved for a decomposable function could subsequently be
exapted for some other, non-decomposable function, thus explaining how its
simpler forms were selected for. In fact, although it is rarely mentioned,
logically all mechanisms that can evolve non-decomposable functions must
involve exaptation, because by definition a non-decomposable function cannot
be broken down into simpler components without losing its function (and so
therefore evolving a non-decomposable function, however it is done, must at
some point involve a change of function). As a semantic note, the term
exaptation was initially introduced to refer to the result of a co-opted function,
and not the process of co-option itself (Gould and Vrba 1982). But rather like
adaptation, which can refer to both the result of a process and the process
itself (Ridley 2009), the term exaptation is increasingly used to also refer to the

process of co-opting a function to a new use (e.g. Lavialle et al. 2013; Brosius
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1999; Bejerano et al. 2006). We use this meaning in this document, and thus

refer to functions being ‘exapted’, and ‘undergoing exaptation’.

Exaptation has been widely studied in the fields of paleontology and
organismal biology (e.g. True and Carroll 2002; McLennan 2008; Budd 2006).
Exaptation has also been the subject of a number of computational models
that connect it to a range of related phenomena, including speciation (Graham
and Oppacher 2007a), modularity (Mouret and Doncieux 2009), hierarchy
(Miglino, Nolfi, and Parisi 1996), the evolution of novelty (Barve and Wagner
2013; Graham and Oppacher 2007b; Lund and Parisi 1995) and others (e.g.
Gabora, Scott, and Kauffman 2013; de Oliveira 1994). However, such models
tend to be the exception as opposed to the rule; exaptation has received
relatively little attention from the computational modelling community

compared to other processes of non-decomposable function evolution.

In addition to exaptation, a number of evolution mechanisms for evolving non-
decomposable functions have been proposed that create complex functions by
combining simpler, existing functions (Watson and Pollack 2005; Goldberg and
Holland 1988; Lenski et al. 2003; Jacob 1977; Budd 2006; Gregory 2008;
Thornhill and Ussery 2000). These mechanisms have attracted interest in part
because they can create evolutionary ‘transition’ like behaviour, in which new
evolutionary entities are created from simpler components, which is a common
property of biological complexity evolution(Maynard Smith and Szathmary
1997). Furthermore, because they can operate recursively, such mechanisms
seem to provide a potential route to ‘open ended’ complexity (Lenski et al.
2003). In this dissertation we build on this approach, and focus in particular on
mechanisms of evolution by joining functions. We consider two existing

mechanisms in detail: Building block models and tinkering.

We use the term building block models to refer to a well developed collection of
computational and mathematical models stemming largely from the
evolutionary computation literature that carry out evolution by combining
simpler building block functions to make more complex functions (e.g.
Goldberg and Holland 1988; Watson 2006; Lenski et al. 2003; Arthur and Polak
2006; Mouret and Doncieux 2009). Building block models have been used to
study a range of phenomena including the benefit of sex (Watson 2006),

endosymbiosis (Watson 2006), exaptation (Mouret and Doncieux 2009), the
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evolution of technology (Arthur and Polak 2006) and the evolution of
complexity (Watson 2006; Lenski et al. 2003).

Meanwhile, tinkering refers to Francois Jacob’s conceptual framework for
innovation and synthesis in evolution, defined in his now classic 1977 Science
paper ‘Evolution and tinkering’, and based on his experience with the actions
of regulatory systems and the genetics of development (Jacob 1977). Jacob
does not provide a formal definition of tinkering, but describes it conceptually
as evolution producing novel functionality by either repurposing or combining
existing components - rather like a tinkering engineer who can fashion many
different devices from a toolbox of existing components by combining them in
different ways. Jacob’s view has been strongly supported by subsequent
discoveries of evolutionary developmental biology: in particular the strong
conservation of developmental pathways between most complex organismes,
showing that even very dissimilar species are often the result of simply
different combinations of virtually the same underlying ‘toolbox’ of
developmental circuits (Xu et al. 1997; Cohn and Tickle 1999; Abzhanov et al.
2004; Carroll 2005; Miuller 2007).

Together, tinkering and the collection of building block models constitute a
significant body of work on evolution by combining functions. However, there
are a number of remaining issues within these ideas that we will focus on.
These are: (a) the lack of an agreed conceptual framework that integrates
tinkering, building block evolution and exaptation (a particular problem is the
lack of a formal description of tinkering) and (b) recursion (how can building

blocks be combined recursively over multiple levels of hierarchy?)

Tinkering is the predominant conceptual framework for evolution by
combining functions in organismal and developmental biology, (e.g. Alcock et
al. 2010; Flicek 2013; Laubichler 2007). On the other hand, the ideas
contained within building block models provide the most common conceptual
framework for combining functions in the field of artificial life (Watson 2006;
Watson and Pollack 2005; Forrest and Mitchell 1993; Goldberg 1989).
Although tinkering and building block evolution both describe evolution by
combining functions, research in these areas remains largely unconnected to
each other, and there is no unified theory that integrates them. Furthermore,

as we have discussed, because both tinkering and building block evolution are
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mechanisms of non-decomposable function evolution, they must also both
involve some form of exaptation. However, apart from a few notable
exceptions (e.g. Mouret and Doncieux 2009), research into exaptation also
remains largely separate from ideas of building block evolution and tinkering.
Part of the problem is that tinkering remains a conceptual idea, and lacks a
formal analysis (Laubichler 2007; Flicek 2013; Bock and Goode 2007).

In general, the lack of such a unified theoretical framework for evolution by
joining functions makes it difficult to understand the underlying principles of

this process, and to apply findings from one area of the field to others.

The second issue that we will address is that there is no consensus on how to
enable evolution by joining functions to occur recursively across multiple levels
of organisation. In more detail, a particular attraction of evolution by joining
functions is that functions formed by combining simpler components could
potentially then be used as components for functions on the next level of
organisation, and so on (Arthur 1993; Simon 1969). This process would
therefore allow recursive scaling up of units of variation within evolution,
potentially allowing evolution to transcend multiple levels of organisation and
scale to complexity. To explain why this is difficult, we must first understand
that virtually all mechanisms that combine functions to evolve non-
decomposable functions use some extra ‘evolvability’ machinery (e.g. a
specific genotype-phenotype map, or complex genetic change operators)
beyond that of ENS alone (e.g. Lenski et al. 2003; Mouret and Doncieux 2009;
Watson 2006).

Evolvability is commonly defined as the capability of a system for evolving -
that is, not just generating diversity, but for generating adaptive (i.e. fit)
diversity (Altenberg 1994; Wagner and Altenberg 1996; Kirschner and Gerhart
1998; Houle 1992; Wagner 2005). Mechanisms that constrain, or direct the
effects of variation in useful ways increase evolvability. There are a number of
ways in which this can be achieved, such as by having complex genetic
operators (e.g. sexual recombination; Watson 2006; de Visser and Elena 2007),
or a specific genotype-phenotype map (Wagner and Altenberg 1996; Kirschner
and Gerhart 1998; Gerhart and Kirschner 2007; Wagner 2005). Let us consider
how genotype-phenotype maps affect evolvability. Through the action of

developmental gene regulatory networks, genotype-phenotype maps turn
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genetic information into functional phenotypic components (Carroll 2005;
Erwin and Davidson 2009; Davidson and Levin 2005). Genotype-phenotype
maps therefore also control how genetic variation is turned into phenotypic
variation. How a given genotype-phenotype map converts genetic information
into a phenotypic component will affect how likely any given genetic change
will result in a fit (i.e. adaptive) change to the phenotype. As a result, the
makeup of the genotype-phenotype map (such as the particular process of
development, structure of gene regulation networks, etc.) will affect the
resultant evolvability of its organism (Wagner and Altenberg 1996; Kirschner
and Gerhart 1998; Pigliucci 2008). An organism with a genotype-phenotype
map that mostly converts genetic variation into useful phenotypic variation
that is likely to be adaptive, given the prevailing environmental conditions, will
be more evolvable than an organism with a genotype-phenotype map that
mostly converts the same genetic variation into non-functional phenotypic
components, or phenotypic components that are unlikely to be suitable given

the prevailing environmental conditions.

Evolvability has been subject to a great deal of study; there has been particular
focus on the evolution of evolvability (i.e. how the capacity for evolvability itself
can evolve; Pigliucci 2008; Draghi and Wagner 2008; Pavlicev, Cheverud, and
Wagner 2011; Steiner 2012), the relationship between evolvability and
modularity (for example, modular gene regulation networks have been shown
to be better able to cope than non-modular gene regulation networks when the
environment changes in a modular manner; Kashtan and Alon 2005; Kashtan,
Noor, and Alon 2007; Parter, Kashtan, and Alon 2007; Kashtan et al. 2009;
Mouret and Doncieux 2009; Clune, Mouret, and Lipson 2013; Variano, McCoy,
and Lipson 2004), how evolvability promotes functional robustness (Wagner
2005; Aldana et al. 2007; Lenski, Barrick, and Ofria 2006; Palmes and Usui
2005; Whitacre and Bender 2010) and the relationship of evolvability with
algorithmic ‘learning’ processes such as the Baldwin effect and Hebbian
learning (Watson et al. 2014; Badyaev 2009; Crispo 2007; R. Watson, Buckley,
et al. 2010; R. Watson, Mills, et al. 2010).

With respect to evolution by joining functions, the results of a number of
related studies imply that some forms of evolvability machinery (in particular,
specific types of genotype-phenotype map) are helpful when joining functions

because they can provide a mechanism of modular ‘encapsulation’ (Mouret and
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Doncieux 2009; Kashtan, Noor, and Alon 2007). Modular encapsulation
effectively means having some way of redeploying a complex, multi-
component non-decomposable function in the phenotype (such as a complex
section of metabolic pathway) as a single, coherent unit. (This is sometimes
described as the result of processes of parcellation and integration; Giinter P.
Wagner, Mezey, and Cakabretta 2001; Mouret and Doncieux 2009). For
example, modularly organised gene regulatory networks have been used in
this capacity. Given a gene regulatory network that is organised in a modular
manner, so that some small changes in the genotype correspond to large,
organised changes to whole functional modules in the phenotype (Giinter P.
Wagner, Pavlicev, and Cheverud 2007), then small genetic mutations to such
hierarchical genetic ‘switching’ genes can allow whole phenotypic modules to
be redeployed at once. The result is that these complex phenotypic functions
are modularly encapsulated. In short, such gene regulatory networks act as
hierarchical control mechanisms that allow moving of whole functional
modules in the phenotype. This is particularly important for joining functions,
because it allows evolution to sample different interacting arrangements of
these complex functions (i.e. it allows evolution to join them in different ways)

with only small changes in the genotype.

How does this relate to recursive joining of functions? The problem with using
such a genotype-phenotype map to enable recursive joining of functions is that
the genotype-phenotype map must not only facilitate this type of modular
phenotypic change, but the modular level at which the genotype-phenotype
map operates at must also change over time. In detail, as phenotypic functions
are combined, phenotypic functions are created on a new, higher level of
phenotypic hierarchy. Therefore, to continue joining functions recursively on
these new levels of hierarchy, the genotype-phenotype map must itself evolve
new hierarchical levels of modular control to enable redeployment of these

new, higher level functions.

However, evolving the genotype-phenotype map in this manner is particularly
difficult because many models show that selection on genotype-phenotype
maps is often second-order. First order selection occurs on mutations that
affect the phenotype, and hence fitness, of the current organism, and hence is
generally strong. In contrast, second-order selection occurs on mutations that

have no direct effect on the phenotype of the current organism, but instead
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increase the ability of that organism to promote beneficial future mutations
(i.e. improve its evolvability; Glinter P. Wagner, Pavlicev, and Cheverud 2007).
Because it has no direct effect on the fitness of the current organism, second

order selection is generally significantly weaker than first order selection.

Despite the difficulties with second order selection, recent research has shown
that specific regimes of environment change (i.e. that create a strong selection
pressure for evolvability), or a cost for links within gene regulatory networks,
can generate the kind of aligned, modular gene regulatory networks capable of
this type of modular reorganisation (Kashtan and Alon 2005; Kashtan, Noor,
and Alon 2007; Clune, Mouret, and Lipson 2013). However, despite showing
evolution of modular gene regulation networks, these models have generally
not shown the type of multi-level, recursive gene regulatory network evolution
that should facilitate the recursive combination of functions over multiple

hierarchical levels.

In summary, recursive phenotypic evolution seems to require parallel evolution
of the genotype-phenotype map, which has proved to be difficult, and is still
unresolved. A further complication to this issue is that the models that
demonstrate such multi-level, recursive evolution commonly do not
transparently demonstrate the difficulties with this type of evolution very
clearly. For example, many models are based on logic circuits (Kashtan and
Alon 2005; Arthur and Polak 2006; Kashtan, Noor, and Alon 2007; Parter,
Kashtan, and Alon 2008; Mouret and Doncieux 2009; Clune, Mouret, and
Lipson 2013), which, although beneficial in many ways, introduce an opaque,
hierarchical variational capability to the substrate of the model. Given that
recursive evolution is deeply entwined with the ability of evolution to
hierarchically redeploy functional components, including such opaque
functional hierarchy in the substrate itself obfuscates the issue, making it very
difficult to separate the effects of substrate from those of evolution, and in
particular to define a control case in which hierarchical variation is not

possible.

Given these three key problems with understanding evolution by joining

functions, the first, more detailed question that this dissertation addresses is:

What are the evolutionary mechanisms that are necessary and

sufficient to enable or facilitate evolution of non-decomposable
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functions by combining functions, and what enables natural evolution

to do this recursively across multiple scales of organisation?

To address the first component of this question we analyse the existing
theories of exaptation, building block models and tinkering, in an attempt to
produce a unified conceptual framework for evolution by combining functions.
This analysis indicates that tinkering describes two separate processes: one in
which an object undergoes a shift in function (functional shift), that is
equivalent to exaptation, and one in which multiple objects are combined to
make a new function (functional combination), that is equivalent to the core
mechanism behind many building block models. This analysis therefore
simplifies exaptation, building block models and tinkering to these two core
processes (functional shift and functional combination). We then further show
that because both of these processes are known to be able to evolve non-
decomposable functions, then they must both involve exaptation, as we
discussed earlier. To account for this, we show that these two processes in fact
constitute two separate types of exaptation. Functional shift involves what we
term shift exaptation, which is exaptation as it is usually defined, in which the
new functionality occurs on the same organisational level as the component
involved. On the other hand, functional combination involves what we term
combinatorial exaptation, where the new functionality occurs on a higher

hierarchical level than the components involved.

To contrast these mechanisms, consider a collection of enzymes in a chemical
system. Each enzyme has a single function, which is to catalyse a specific
reaction. Shift exaptation would occur when one enzyme was co-opted for use
at catalysing some other chemical reaction. In this case, the new function
occurs at the level of the individual enzyme. On the other hand, imagine that
we randomly rearranged the interactions between enzymes in the system
(keeping the function of each individual enzyme fixed). Occasionally we might
stumble across an arrangement of enzyme functions that permits some
complex sequence of reactions, hence producing a new function of a metabolic
pathway at a higher organisational level. In this case, no individual enzyme
changes its function, but given the right arrangement of enzymes in
interaction with one another, a new functionality springs into existence at a

higher organisational level. This springing into existence is combinatorial

16



Chapter 1: Introduction and Literature Review

exaptation. To concretise this theoretical framework, we provide a
computational model that illustrates the key properties of combinatorial
exaptation, and how they relate to tinkering, building block models and
exaptation. This model, and associated theoretical framework, builds on a
range of existing models and conceptual ideas (e.g. Simon 1962; Goldberg
1989; Forrest and Mitchell 1993; Watson 2006; Lenski et al. 2003; Kashtan and
Alon 2005; Parter, Kashtan, and Alon 2008; Mouret and Doncieux 2009; Bock
and Goode 2007).

To address the second component of the earlier research question - i.e. how
evolution by combining functions can occur recursively across multiple levels
of hierarchy - we specifically use the model of computational exaptation to
identify the key factors in the problem facing recursive mechanisms of
combinatorial exaptation. Finally, we use the model to present a solution to
this problem, and hence provide a mechanism of evolution by combining
functions that can occur recursively and spontaneously over multiple levels of

organisation.

In summary, this research provides contributions to the key problems raised
earlier in well-defined ways. First, it provides a unified framework for evolution
by combining functions that defines how tinkering is related to exaptation and
existing building block models, which without such a formal description has
not been possible. Second, the model identifies key factors that prevent
evolution by joining functions recursively as the presence of severe constraint
in the form of ‘burden’ and internal selection (Schwenk and Wagner 2004;
Riedl and Jefferies 1978). It shows that these factors occur when carrying out
the kind of configurational reorganisation of complex components required by
evolution by joining functions given a substrate that does not inherently

contain some hierarchical reorganisational capability.

Third, the model shows that these problems limiting recursive evolution can be
overcome by a specific type of ontogenetic development process that is
present in most complex organisms. The model shows that this process allows
evolution to join building blocks recursively over multiple levels of
organisation, without any a priori information about the way building blocks

must be organised at higher levels of organisation.
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In summary, in this part of the dissertation (addressing complexity roadblocks)

we arrive at the thesis that

Evolving non-decomposable functions by joining functional
components can be described as a novel process of exaptation. As
joined functions become more complex, increasing ‘burden’ in the
form of ‘internal selection’ places limits on evolution by combining
functional building blocks, but an ontological development process
that occurs by local growth, as present in most complex biological
organisms, resolves this problem allowing building blocks to be
combined recursively over multiple levels of organisation in a scalable

fashion.

We will now move on from complexity roadblocks to discuss the second
detailed research question that motivates this thesis. This question relates not

to complexity roadblocks, but complexity drivers.

1.3.2 Complexity drivers

In this section, we look at the question of what could cause the general trend
of increasing complexity of the most complex organisms in the evolutionary
record. Before we begin to discuss this topic, we should clarify that in general,
we are interested in understanding what causes complexity to occur in
evolution at all - not only the complexity of the most complex organisms.
However, biological evolution displays a dizzying array of multifaceted trends
of complexity increase, decrease and stasis (Gould and Eldredge 1993; Bird
1995; Uchman 2003; Fedonkin 2003; Newell 1949). Coupled with the difficulty
associated with defining complexity (Mitchell 2009; Crutchfield and Young
1989; Kolmogorov 1965; Adami 2002; Edmonds 1995), and hence the
interpretation of many complexity trends is highly controversial. Thus to avoid
such controversy, we focus on perhaps the most obvious and widely accepted
general trend in biological evolution, which is that the complexity of the most

complexity organisms has generally increased over time.

It used to be a commonly held belief that evolution inherently implies
‘progress’ towards increased complexity (Carroll 2001; Lane 2010). But

evidence does not support this; while there is a general trend of increasing

18



Chapter 1: Introduction and Literature Review

complexity of the most complex organisms, and on the species level some do
exhibit apparent trends of increasing complexity, many species have remained
in complexity stasis for periods of many millions of years, or have shown long-
term trends of decreasing complexity (McShea 1996; Carroll 2001).
Furthermore, as we have discussed, artificial evolution experiments, such as
Spiegelman’s laboratory experiments and artificial life simulations have
generally not shown an inherent preference for increased complexity in

evolution, but instead often show a preference for simplicity.

Evidence from the fossil record of stasis and trends of complexity decrease,
coupled with these types of artificial evolution experiments, have lead to the
idea of evolutionary ‘progress’ towards complexity falling out of favour
(McShea 1996; McShea 1991; Bedau 2009). But without a bias towards
complexity in evolution, how do we explain the trend of increasing complexity
of the most complex organisms? Clearly, on some occasions, evolution does
generate trends of increasing complexity. But on what occasions is complexity

favoured?

There are a number of proposed theories on what might cause evolution to
generate complexity (see McShea 1991; Bedau 2009; McShea 1994 for
reviews). They can be separated into three main categories: two categories of
driven mechanisms (internalist and externalist) and one of undriven

mechanisms.

Internalist theories argue that trends of increasing complexity in evolution are
caused by some inherent property of complex systems, or evolution itself
(McShea 1991). For example, some argue that as evolution proceeds, the parts
of a species that were evolved earlier generally end up having more
dependencies placed on them, and hence become harder to change, and
therefore harder to remove. The result is that in many cases when simpler
solutions are possibly available, the build up of constraints on existing
functions prevents them from being evolved. This type of process has been
called Generative Entrenchment (Wimsatt 1986; Wimsatt 2001), the Path of
Least Resistance (Saunders and Ho 1976; Saunders and Ho 1981) and
increasing ‘burden’ (Riedl and Jefferies 1978); in general such theories can be
described as complexity resulting from a build up of evolutionary constraints

within an evolving lineage over time (in this dissertation we term these theories
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complexity by increasing constraint). But a potential problem with complexity
by increasing constraint theories is that they struggle to explain why we
observe complexity stasis or trends of complexity decrease in the evolutionary
record. If constraints inevitably build up within lineages as evolution proceeds,
then we should expect all lineages to steadily increase in complexity over time,

which is not generally observed (Carroll 2001; McShea 1996).

Rather than invoke some internal property of evolution, externalist
mechanisms look to the external environment as a source of the increased
complexity. One example is selection for complexity, where more complex
organisms are proposed to be more efficient than simple organisms and hence
are more reproductively successful (Rensch 1966). But again, this struggles to
explain observed trends of decreasing complexity, and also seems somewhat
contradicted by Spiegelman’s results. Another externalist theory proposes
increases in complexity are produced as a side effect of selection of other
features, such as size, for example (Katz 1987; Rensch 1966; McShea 1991).
But perhaps the most common mechanism of externalist theories is that
increase in organismal complexity occurs due to increased complexity of the
environment (e.g. McShea 1991; Knoll and Bambach 2000). As ecosystems
become more diverse, new niches become available, prompting new and
perhaps more complex organisms - sometimes called an expanding ‘ecospace’
(Knoll and Bambach 2000). But a problem is that by shifting the cause of
complexity to the environment, we are left having to explain what caused the
environment to become more complex in the first place, and what specific part

of the environmental complexity caused organismal complexity.

The final category of complexity mechanisms is undriven mechanisms. These
propose that trends of increasing complexity are not the result of relentless
driving forces, but occur passively as evolution progresses. Most undriven
theories propose that complexity changes as a random walk (commonly known
as ‘passive diffusion’): by chance alone, some evolutionary lineages could
happen to wander towards higher complexity (Maynard Smith 1972; Fisher
1986; McShea 1991; McShea 1994). Moreover, if there is a complexity floor
(some minimum below which no lineage can go) then the mean of all
complexity lineages is expected to go up. But again, Spiegelman‘s results, and
the similar subsequent models and experiments that support it, provide at

least one example of an apparent bias (for simplicity) inherent within evolution,
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because simpler organisms can reproduce more quickly, and require fewer
resources to do so. If there were no other force affecting complexity in
evolution, as undriven mechanisms propose, then we should perhaps expect
that evolution should, just as Spiegelman observed, reduce lineages to their

simplest possible incarnations and keep them as such.

Another commonly cited problem with theories for complexity in general is
that most remain as verbal arguments, making it hard to verify that an
evolutionary system that contained them would actually produce the trends

they attempt to explain (Bedau 2009; McShea 1991).

1.3.3 Complexity lower bounds

In this dissertation we argue that there is an important factor that is missing
from many of these theories of complexity evolution - the notion of complexity
lower bounds. In computer science, there is considerable interest in finding the
simplest program, algorithm or circuit that can perform a given function - such
as sorting a list, or adding two numbers together (Papadimitriou 2003; Ben-Or
1983; Hastad 1986; Razborov 1990; Smolensky 1987). A known result from
this field is that when converting between two states (e.g. converting program
input into program output, such as producing a sorted list from an unsorted
one), there exist fundamental lower bounds on the complexity of the possible
functional solutions - and that these lower bounds differ depending on the

input / output pair that must be converted between (Papadimitriou 2003).

For example, exhaustive searches have shown that of the many possible logic
circuits, the simplest possible circuit of elementary not-and (NAND) gates that
can add 2 binary bits contains 5 logic gates - and adding 3 binary bits takes a
minimum of 9 NAND gates. Similarly, it has been mathematically proven that
sorting a list of length n by successive compare-and-swap operations will

always take more than n log n operations (Papadimitriou 2003).

This might seem rather removed from evolution, but complexity lower bounds
also exist in biology. For example, passive diffusion models already include the
idea that there is a complexity floor - a complexity lower bound for the
simplest organism capable of reproducing, below which no lineage can go
(McShea 1991). For another example, consider metabolic networks.

Fundamental chemistry dictates the minimum number of intermediate

21



Chapter 1: Introduction and Literature Review

chemical reactions necessary to convert from one chemical compound to
another. Some compounds can be converted directly, without any intermediate
reactions, and so can be mediated by perhaps only a single catalyst. On the
other hand, converting between other compounds may require many
intermediate steps, and so will necessitate a much more complex metabolic
pathway - that is, a chemical algorithm - containing many different catalysts
arranged in a specific order. In this way, complexity lower bounds can place
fundamental theoretical lower limits on the complexity of possible functional

solutions for chemical or biological problems.

It is possible that the set of problems faced by evolving lineages - surviving in
any given biological niche - also have niche complexity lower bounds that vary

depending on the particular problem at hand.

Niche complexity lower bounds are interesting in the context of this thesis
because they have the potential to produce trends in biological complexity,
when present in an evolutionary system. As new niches were encountered,
each niche would necessitate some minimum amount of complexity dictated
by the specific complexity lower bound of that niche, which, spread over
multiple different niches with different complexity lower bounds, could
produce a requisite trend of complexity. But is this not simply saying that
complexity increases due to a more complex environment? There are a few
reasons, which we will describe in more detail in chapter 4, why citing
complexity lower bounds as a cause for complexity is different from most
existing theories that simply invoke a more complex environment. One key
reason is that the theory behind complexity lower bounds implies that two
environments of identical complexity can have very different complexity lower
bounds. Complexity lower bounds are not a property of the environment itself;
they are a property of the relationship between the organism and the
environment - just as the complexity lower bound for a given algorithm
depends on the relationship between input and output, and cannot be defined
by simply looking at the desired output alone. For example, while initially it
might seem that an algorithm whose desired output was the entire works of
Shakespeare translated into Mandarin should have to be complex, we should
consider that the input might simply be identical to the desired output with,
say, a single letter missing from the beginning. In that case, a very simple

algorithm would suffice. In this way, a complexity lower bound does not
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describe the absolute complexity of the environment, but the complexity of the
difference between the environment and some other set of conditions - and
hence citing complexity lower bounds as a cause for complexity is

fundamentally different from citing an increase in environmental complexity.

To capture the general question of whether complexity lower bounds exist in
evolutionary systems, to understand how they might help to explain the
apparently conflicting observations of a general trend of increasing maximal
complexity in the evolutionary record (McShea 1994; Bedau 2009) and of
systematic complexity minimisation in artificial evolution experiments (Bedau
et al. 2000; Spiegelman et al. 1965; Lane 2010), and to also understand the
relationship between niche complexity lower bounds and environmental

complexity, our second more detailed research question is:

What types of environment change require adaptations that are more

complex rather than merely different?

If complexity lower bounds are present in biological niches, then when an
organism encounters a niche with a higher complexity lower bound than its
current niche, this should cause a requisite complexity increase in the

organism. We address this problem directly in chapter 4.

1.3.4 The origins of complexity lower bounds in evolution

Complexity lower bounds arise in systems where a set of inputs is required to
be converted into a set of outputs. But where does this occur in evolution? One
place that this can occur is in the interaction between the chemical needs of an
organism’s metabolism, and the organism’s external environment. First, let us
consider this at the level of DNA. Because virtually all life is based on DNA, and
DNA replication is necessary for such life (Kornberg and Baker 1992; Ridley
2009) - it follows that producing the conditions (chemical compounds,
temperature, etc.) that allow DNA replication is also a necessary for life, if
those conditions are not already present. In other words, in niches where the
conditions for DNA replication are not met, any species capable of survival and
reproduction must contain some function that converts the actual, external
environmental conditions into conditions that can allow DNA to replicate. In

terms of complexity lower bounds, the conditions that allow DNA replication
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represent a fixed chemical output state, and the external environment in the
given niche represents a chemical input state, and the necessary role of
evolution with regards to this is to generate a functional system (e.g. a
metabolism) that is capable of converting between the two. In this system, just
like in a computational algorithm, there will be complexity lower bounds that
dictate what the minimum possible complexity solution is for any given
input/output pair. And because the output state is determined by DNA, whose
chemical requirements for replication represent a very small range of
environments and hence are effectively fixed (e.g. Reaves et al. 2012; Lindahl
1993; Grogan 1998; Marmur and Doty 1962) then all that essentially
determines the complexity lower bound in this system is the external

environment.

This framework implies that complexity lower bounds are not inherent to a
niche, but depend only on how similar or different that niche is to the set of
conditions that allow DNA replication; we term this difference environmental
dissociation. An environment that already has the set of conditions that allow
DNA replication (i.e. zero environmental dissociation) will require no
metabolism, and hence zero metabolic complexity. On the other hand, an
environment that is very chemically different from the set of conditions that
allow DNA replication (i.e. large environmental dissociation) would have a large
complexity lower bound, because many organised intermediary chemical
reactions are likely to be required to convert one state to the other, thus

necessitating complex metabolic machinery.

But rather than constantly evolve functional machinery to convert the external
environment to the set of conditions that allow DNA replication, why does
evolution not simply alter DNA, creating some new replicator that works given
the current environmental conditions? Perhaps the most simple explanation is
that DNA is very functionally constrained: there are apparently very few other
compounds that can be formed by small changes to DNA that work as viable
replicators (e.g. Reaves et al. 2012), therefore it is easier to keep DNA the
same and change the environmental conditions to fit it. The complexity lower
bound model of chapter 4 illustrates that this replicator constraint is a
necessary component of the complexity lower bound framework; without it,
complexity lower bounds can potentially be circumvented by changing the core

replicator.
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We also use a separate model system (evolution of logic functions in a system
of NAND gates) that is a standard model of evolutionary function in the
literature to check for the existence of complexity lower bounds in existing

models of functional evolution.

In summary, the complexity lower bound framework, supported by the
complexity lower bound model, illustrate how complexity lower bounds occur
due to the interaction of a functionally constrained replicator (such as DNA)
and a heterogeneous external environment. From these results, we arrive at

the general thesis that:

Environmental change motivates evolutionary change, but not
necessarily any increase in complexity. However, given
a. an organism with a replicator that can replicate in some small
subset of environmental conditions, and whose replicator
cannot feasibly be changed to replicate in conditions outside of
this subset;
b. an environment with heterogeneous environmental dissociation
whose conditions change sufficiently gradually;
C. an inherent selection pressure against complexity such as a cost
of resources
then as competition forces evolution to leave the original environment
(a), and colonise new environments (b), the magnitude of
environmental dissociation of a new environment will dictate the
minimum possible complexity of viable organisms in that environment,
resulting in a system-wide trend of increasing complexity of the most
complex organisms, coupled with local trends of complexity

minimisation in individual environments, caused by (c).

The models in chapter 4 show that complexity lower bounds (in conjunction
with an inherent selective bias for simplicity in evolution, such as that observed
in artificial evolution experiments) produce general, system wide trends of
increasing complexity of the most complex organisms coupled with local
trends of complexity minimisation within individual niches - therefore helping
to reduce tension between complexity trend observations in natural evolution

and evolutionary experiments.
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1.3.5 Homeogenesis

The model at the heart of the complexity lower bound framework is a
particular, boundary case of combinatorial exaptation that we term
homeogenesis. This boundary version of combinatorial exaptation is interesting
in its own right, and is studied separately in chapter 3. Although it is studied in
a separate chapter, importantly, homeogenesis also helps to define some of
the theoretical framework for complexity lower bounds. As a result, chapter 3
serves as a bridge, connecting the process of combinatorial exaptation to

complexity lower bounds.

Before we can define homeogenesis, we must briefly discuss some relevant
background context. A widely observed phenomenon in organismal biology is
that organisms often appear to contain conditions within their metabolic
networks that seem to be similar to conditions in which their ancestors lived
(Macallum 1926; Wald 1964; Gross 1998; Mulkidjanian and Galperin 2007,
Mulkidjanian et al. 2012). For example, the chemistry of fluids in the cell
interior is thought to be comparable to the early oceans, or geothermal vents,
in which life began (Wald 1964; Mulkidjanian and Galperin 2007; Mulkidjanian
et al. 2012). Another example is that the cytoplasm in the eukaryotic cell is in a
highly reduced state (i.e. low oxidation state) even in organisms that live in
oxygen rich environments (Mulkidjanian and Galperin 2007; Mulkidjanian et al.
2012). In 1926, Macallum described this phenomenon as what has been
termed the ‘chemistry conservation principle’: the chemical traits of organisms
are more conservative than the changing environment and hence retain
information about ancient environmental conditions (Macallum 1926;
Mulkidjanian et al. 2012). So, for example, the early highly reduced
biochemical pathways that formed before the atmosphere became oxygenated
around 2.2 billion years ago (Hazen et al. 2011) could not be substantially
changed after oxygen became common, and so retain information about these
low-oxygen ancestral conditions. The idea that ancient environmental
conditions somehow become internalised has thus been used to hypothesize
about the origins in which life began, (e.g. Mulkidjanian et al. 2012). However,
there is no consensus on what processes cause Macallum’s conservation

principle, or why it results in events of ‘environmental internalisation’.
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In chapter 3 we present a hypothesis that homeogenesis can inherently cause
environmental internalisation, and hence could be responsible for some of

Macallum’s observations.

When environment change occurs, the usually considered mechanism of
adaptation by evolution is to make changes to the existing functionality of the
species, such as the classic example of the peppered moth (Grant 1999). A
second option sometimes considered is that evolution can act to change the
environment instead by changing behaviours of species in a process termed
‘niche construction’ (or an adaptive subset of the ‘extended phenotype’;
Dawkins 1999; Dawkins 2004) - for example, beavers building dams, or birds
building nests (Odling-Smee, Laland, and Feldman 201 3; Laland, Odling-Smee,
and Feldman 2000). In chapter 3 we illustrate that because of combinatorial
exaptation there is a third option for adapting to environment change that is
separate from either of these two traditional mechanisms. When the
environment changes, instead of changing the existing functionality or the
environment itself, evolution can undertake homeogenesis: it can combine the
existing functionality with some new, simple ‘adapter’ function that ‘converts’
the new environmental conditions back into their immediately previous
conditions (that the species’ existing functionality ‘expects’). This adapter
would sit ‘in between’ the existing functionality and the environment. A simple
analogy is adding a voltage adapter to an electrical appliance when taking it
abroad: rather than changing the existing functionality of the appliance, or
changing the power grid of the foreign country, the easiest solution is to add
an adapter that ‘converts’ the new external environment conditions back into
those expected by the existing functionality. We propose the term
homeogenesis for this process because, similar to homeostasis, it works to
preserve the same, or constant (i.e. homeo) conditions in the phenotype - but
unlike homeostasis, which occurs by changing behaviour, homeogenesis

achieves this by creating (i.e. genesis) extra phenotypic function.

We use the evolution of C, photosynthesis as an illustrative example of
homeogenesis. C, photosynthesis (an earlier mechanism from which C,
photosynthesis evolved) becomes less efficient as CO, concentrations drop
(Edwards and Walker 1983; Ehleringer et al. 1991). In response to millions of
years of dropping CO, concentrations, rather than change the function of C,

photosynthesis, evolution simply added an adapter function to C,
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photosynthesis - a new chemical cycle that increases CO, concentrations
internally within the leaf - thus counteracting the environment change and
providing the existing C, functionality with the chemical inputs it ‘expects’.
The result is a qualitatively new type of photosynthesis (C)) that consists of a
combination of the unchanged existing mechanism plus an environmental
adapter function that recreates the previous, ancestral high CO, environment

internally within the metabolism (Ehleringer et al. 1991).

How does homeogenesis relate to Macallum’s observations of internalised
ancestral environments? Simply, by creating an adapter function that recreates
the previous environmental conditions, evolution effectively creates a version
of that ancestral environment internally within the species phenotype,
incorporated within its function: the stored environment is the output of the
adapter. For example, in the evolution of C, photosynthesis, when adding an
adapter to recreate the high CO, conditions preferred by C, photosynthesis,
evolution effectively recreated a version of the ancestral, high CO, external

environment internally within the leaf.
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Figure 1. A figure illustration of the range of biological combinatorial
exaptation mechanisms that can occur within an organism (as
opposed to across multiple organisms, such as endosymbiosis).
Combining an existing complex component with a simple
component (blue area) will often act to maintain the existing
component’s functionality by using the new component as an
environmental adapter (i.e. homeogenesis). This process internalises
the previous external environment conditions, storing a record in
the phenotype itself. In contrast, mechanisms of combinatorial
exaptation that involve multiple (i.e. >2) components, or similarly
complex components less obviously preserve past environments,
and are commonly described as ‘tinkering’, or combining building
blocks. In this dissertation we argue that all of these processes are
variants of a single process, that we term combinatorial exaptation,
in which complex non-decomposable functions are evolved by

combining functional components.
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How does homeogenesis relate to combinatorial exaptation? Homeogenesis is
a type of combinatorial exaptation because it involves the combination of two
separate functions (the existing function and the adapter) to create a new
function capable of functionality that neither of the components themselves
can carry out. But it is a boundary condition of combinatorial exaptation, as it
likely involves only adding a very small adapter to a likely large existing
function. Thus we can propose a scale on which we can compare combinatorial

exaptation and homeogenesis (Figure 1).

In short, homeogenesis is combinatorial exaptation in which a new component
is combined with some existing component (i.e. the existing organism) to sit in
between the external environment and the existing function. In most examples
the adapter function is simple, relative to the existing functionality. One such
example is the evolution of C, photosynthesis, as previously discussed, where
a small metabolic adapter function is added to the existing C, photosynthetic
pathway (Ehleringer et al. 1991; Edwards and Walker 1983). Another example
is the evolution of a novel metabolic pathway for degradation of
pentachlorophenol (PCP), a xenobiotic pesticide, in the bacterium
Sphingomonas chlorophenolica. This novel pathway evolved since the pesticide
was introduced in the 1950s; again, this was achieved by the addition of a
small metabolic adapter function added to the perimeter of the existing
metabolic network (Copley 2000), which effectively recreated the ancestral, PCP
free environment within the bacterium’s metabolic network. Another potential
example of homeogenesis in which the adapter is slightly more complex is the
evolution of the hard, body-encasing gastropod shell in response to predation
(Haszprunar 1988; Palmer 1979; Vermeij, Schindel, and Zipser 1981), which
would have effectively recreated the ancestral predator-free environment within

the confines of the shell.

In contrast, with combinatorial exaptation that involves more than two
components, or where the components are both of similar complexity, there is
often no clear ‘existing function’ or ‘adapter’, and is more commonly termed
tinkering, or building block evolution. Possible examples include the evolution
of the lingual prehension lizard feeding apparatus, in which a number of
previously separate musculoskeletal components were brought together to
provide a novel function (Giinter P. Wagner and Schwenk 2000; Schwenk and

Wagner 2001), and the evolution of sustained avian flight due to the
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combination of set of complex features including forelimbs, feathers and a
novel, highly efficient breathing system (Berner, VandenBrooks, and Ward
2007; Claessens, O’Connor, and Unwin 2009). The diagram above is far from
perfect; the relationship is more complex than it is possible to describe in this
simple phase space. For example, it does not easily take into account the
possibility of combining more than two components. However, its purpose is
to illustrate some examples of the relationship between homeogenesis and

other types of combinatorial exaptation.

1.4 Summary of major topics of this dissertation

In this dissertation we first describe a theoretical framework that unites the
theories of exaptation, building block models and tinkering. This framework
describes a new type of exaptation (combinatorial exaptation) that occurs on a
higher hierarchical level than the objects themselves. We provide a
computational model to concretely illustrate the properties of combinatorial
exaptation, and to identify key outstanding problems with evolution by
combining functions - in particular with recursively combining functions across
multiple levels of organisation. We then present a potential solution to this
problem within the model, hence providing a mechanism of combinatorial
exaptation that can evolve complex non-decomposable functions recursively

across multiple levels of organisation (chapter 2).

We then describe homeogenesis: a boundary case of combinatorial exaptation
that enables adaptation without changing the existing function or the external
environment by instead adding an environmental ‘adapter’ to the existing
functionality. We use our theory of homeogenesis to tackle the common but
poorly understood phenomenon that many organisms appear to contain
conditions in their phenotypes similar to the ancient environments in which
their ancestors lived. We discuss how a well-studied biological example system
(the evolution of C, photosynthesis, which resulted in the internalisation of an
ancestral environment in the phenotype) can be described as an example of
homeogenesis. We then use this example, in conjunction with an abstract
computational model, to show how homeogenesis internalises environments,
and show that it can store whole ordered sequences of ancestral environments

(chapter 3).
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Finally, using chapter 3 and its model of homeogenesis as a bridge, we
describe a further theoretical framework that illustrates how evolution in a
system of complexity lower bounds generally results in an overall, system-wide
trend of increasing complexity of the most complex organisms over time,
coupled with local trends of complexity minimisation within individual niches.
We then demonstrate that the complexity lower bound framework robustly
produces such trends in an evolutionary context by using a concrete
computational model. Finally we show that complexity lower bounds are

present in a standard NAND gate model of evolutionary function (chapter 4).

1.5 Implications

The models and framework we provide illustrate the following points.

1. Combining functions is a form of exaptation.
Existing theory views exaptation as a ‘non-adaptive’ process in the
sense that it is entirely reliant on chance (hence exaptations are placed
in contrast with adaptations). But because exaptation is thought to be a
major cause of innovation in evolution, this leaves an uncomfortable
amount of explanation of evolutionary complexity down to chance
events. By recognising that exaptation can occur not only by shifting the
function of an existing trait (i.e. shift exaptation, as the existing theory
describes, which is entirely reliant on chance), but also by joining the
functionality of multiple traits to create a new, higher level function
(combinatorial exaptation), we show that there are two distinct types of
exaptation - and crucially that the latter is not entirely down to chance:
we show that evolvability mechanisms, such as specific genotype-
phenotype maps greatly enhance the probability of finding useful novel
functionality by combinatorial exaptation. As a result, this resolves an
uncomfortable issue in evolutionary theory by providing a mechanism of
evolutionary innovation that is directed and systematic, in place of an

explanation that relies entirely on pure chance alone.
2. Including a local, ontogenetic development process in evolutionary

models can enable them to scale to complexity across multiple

levels of organisation.
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We have illustrated how constraints that link the logical structure of
gene regulatory networks and the physical structure of the phenotype
provide a mechanism of combinatorial exaptation that can evolve
complex non-decomposable functions recursively across multiple levels
of organisation. This observation could help to explain the benefits of
development in natural organisms, and help evolutionary algorithms

scale to complexity.

Organisms can adapt to environment change without altering their
existing function or the external environment.

We illustrate that changing an organism’s existing functionality (e.g.
classically defined adaptation) and altering its external environment
(e.g. niche construction) are not the only routes by which organisms can
evolve to better fit their environments. Pointing out the logical
possibility that organisms can undertake homeogenesis instead
provides new possibilities for evolutionary adaptation in situations (e.qg.
of severe constraint) that might have previously been considered

unviable for evolution.

Some mechanisms of adaptation systematically store external
environments internally within organisms.

By showing that homeogenesis systematically stores previously
experienced environments internally within the phenotype, the models
in this dissertation provide one of the first mechanistic explanations for
the common observation that many biological organisms contain
conditions in their phenotypes that appear to represent ancient
environmental conditions in which their ancestors lived (e.g.
Mulkidjanian et al. 2012; Mulkidjanian and Galperin 2007).

. Trends of complexity observed in evolution can potentially be
explained by complexity lower bounds.

We demonstrate that complexity lower bounds can cause robust trends
in complexity in evolutionary systems, including an overall trend of
increasing complexity of the most complex organisms, similar to natural

evolution. We also provide a framework that shows how complexity

33



Chapter 1: Introduction and Literature Review

lower bounds can occur in evolutionary systems, and demonstrate their

existence in a standard model of evolutionary function.

1.6 Models and approach

To investigate these research questions and support the associated claims we
develop conceptual arguments and formal analyses supported by

computational illustrations and mathematical proofs.

1.6.1 Modelling approach

Evolution is often impractical to empirically observe, due to its long timescales
and significant complexity, among other factors. Modelling is a pragmatic
alternative to observing and experimenting with natural biological evolutionary

systems.

The approach to modelling followed in this dissertation is to produce
transparent computational models that reproduce specific behaviours of

biological evolutionary systems.

We choose computational over mathematical models in many cases because
they generally require less prior human interpretation about the dynamics of
the system, and hence reduce the chance of accidently oversimplifying or
incorrectly modelling its behaviour. We choose transparent models over
opaque models because, like for like, transparent models provide more
mechanistic understanding than opaque models. A common criticism is that
transparent models can seem contrived, and lack the surprising behaviour of
opaque models - but that is only because transparent models are simply
opaque models with the black box removed. We also choose to keep the
models as simple and generic as possible, removing any unnecessary
assumptions to make the important dynamics clear. Finally, in some cases we
make computational models of verbal arguments. We do this because
mechanisms left as verbal models can easily conceal logical contradictions or
fallacies that are not possible in a concrete computational model, and so

producing a model provides better support for the validity of the argument.

The claims of this dissertation are supported by four models, described below.
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1.6.2 Model 1: Combinatorial Exaptation - exaptation by joining

functions
1.6.2.1 Aims

The key aims of this model were to:

1. Provide a transparent illustration of the mechanism of combinatorial
exaptation;

2. lIdentify the factor, or set of factors that hinder existing models from
recursively combining functions across multiple levels of organisation;

3. Toillustrate a potential solution to existing problems of recursively
combining functions, thus providing a mechanism of combinatorial
exaptation capable of recursive evolution over multiple levels of

organisation.

1.6.2.2 Methods

We defined a fitness landscape that contained a set of complex functions that
were all non-decomposable. Thus there were no smooth gradients in this
landscape, making evolution difficult. Within this landscape, a subset of these
non-decomposable functions had structurally related positions. This enabled
the in-principle possibility of systematic, guided exaptation within this subset.
The specific relationship between non-decomposable functions in this subset
was hierarchical: complex non-decomposable functions were composed of
specific configurations of more simple non-decomposable functions (after
Lenski et al. 2003; Watson 2006). The model also included specific biologically

motivated constraints missing from many such systems:

1. Reorganisation of building block non-decomposable functions in the
phenotype was not trivial, as all components of a given non-
decomposable function had to be reorganised individually, unless some
hierarchical control mechanism (such as a development process) had
been evolved separately (which was not provided).

2. The most complex non-decomposable functions required combining
building blocks across three scales of organisation. At each hierarchical
level, the scale of blocks that had to be reorganised was different, thus

necessitating the need for a mechanism capable of discovering and
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evolving new block sizes and their control mechanisms, as evolution
progressed.
We also mapped the entire fitness landscape to understand how these
evolvability mechanisms help combinatorial exaptation access potential

novelties.

1.6.2.3 Results

The main results of this model are as follows. The model:

1. Provides a novel mechanism of evolution that is capable of evolving
novel functionality by combining building blocks recursively over
multiple levels of organisation (without being given information about
the hierarchical structure of blocks in advance).

2. ldentifies that increasing ‘burden’, in the form of ‘internal selection’
(Riedl and Jefferies 1978; Schwenk and Wagner 2004) is a key factor
responsible for hindering evolution by combining functions occurring
recursively across multiple organisational levels, and in turn explains
why a mechanism of progressive encapsulation facilitates this form of
evolution. (In particular, burden is created by the functional constraints
that exist between components of higher-level functions - i.e. internal
selection; the number of these constraints increase with the number of
components, and the hence complexity of the higher level function, and
breaking them causes dramatic loss of functionality).

3. Graphically illustrates how having an aligned, modular gene regulatory
network uses existing structure in the search space to enrich the local
variational neighbourhood with fit phenotypes (building on existing

work in this area; e.g.Parter, Kashtan, and Alon 2008).

1.6.3 Model 2: Metabolic evolution by homeogenesis
1.6.3.1 Aims

The key aims of this model were to:

1. Provide a concrete illustration of homeogenesis;
2. Test the hypothesis that homeogenesis commonly internalises and

preserves past environment conditions, and hence can potentially
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explain Macallum’s chemistry conservation principle and observations of
apparently conserved ancestral environments in biological organisms;

3. lIdentify how the type of environment change affects the likelihood that
environments, or sequences of environments will be internalised by

homeogenesis.

1.6.3.2 Methods

We hypothesized that the evolution of C, photosynthesis evolved by
homeogenesis, and using that example as a starting point, defined an abstract

chemical representation of this general class of mechanism.

The model was of metabolic evolution in response to a changing environment.
It was based on a simplified chemistry; we defined a chemical network of
possible reactions, in which all organism function and environment change in
the model takes place. Populations underwent evolution across a gradually
spatially heterogeneous environment. Traditional mechanisms of adaptation
were not available: the organisms’ existing replication functionality could not
be changed, and neither could the external environment. But organisms were
able to evolve sets of metabolic reactions (i.e. successive ‘environment
adapters’) to convert between the external environment and the fixed chemical

needs of their replicator.

Variants of the model explored how different types of environment sequences
affected both the structure of the evolved metabolic networks (and hence how
previous environments are ‘stored’), and the progress of evolution. A variant of
this model was also used as the primary tool in chapter 4 to illustrate the
capability of complexity lower bounds for generating requisite trends in

complexity.
1.6.3.3 Results
The main results of this model are as follows. The model:

1. llustrates that homeogenesis is a viable mechanism of environment
change, and demonstrates a general set of conditions under which it will

occur;

37



Chapter 1: Introduction and Literature Review

2.

1.6.4

1.6.4.1

Shows that homeogenesis causes ancestral environment conditions to
become internalised and maintained within the phenotype significantly
more often than would be expected by chance;

Illustrates how the properties of environment change and the underlying
system (e.g. the chemical reaction network that governs environment
change and organismal function) affect (a) the likelihood of
environmental internalisation occurring, and (b) the nature of
environment information that is preserved;

Shows that homeogenesis can adapt organisms to environment change
without altering either the existing functionality or the external

environment.

Model 3: Complexity trends of evolution in a system of

complexity lower bounds

Aims

The key aims of this model were to:

1.6.4.2

. Test the hypothesis that evolution in a system that contains complexity

lower bounds in evolutionary niches robustly results in requisite trends

in complexity.

. To identify the characteristic complexity trends produced by evolution in

a system of complexity lower bounds, specifically to test if the trends
resemble experimental observations of local complexity minimisation,
and observations from the biosphere of a system-wide general increase
in the most complex organisms.

To identify the relative extent to which (a) complexity lower bounds and
(b) constraint caused by existing, contingent adaptations affect the

resultant complexity of evolved organisms.

Methods

The model was based on the model of metabolic evolution described in

chapter 2. As with the model in chapter 2 we included a cost of resources that

created a continual selection pressure in favour of simplicity throughout the

model.
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There were two versions of the model used in this chapter. The first version
was a simple model that is very similar to the model in chapter 2. It has a
simple heterogeneous environment containing a few niches that does not
change over time. This model was used to examine the basic properties of
evolution in a system of complexity lower bounds. The second version of this
model was larger, containing 50 niches, and in some cases included periodic
temporal environment perturbations. This model was used to test the

environmental dissociation hypothesis (see claim 3 in section 1.7, below).

1.6.4.3 Results

The main results of this model are as follows. The model:

1. Shows that complexity lower bounds cause requisite trends of
organismal complexity in evolutionary systems, and provides an
evolutionary context that explains how complexity lower bounds apply
in evolution

2. Provides a novel mechanism and explanatory framework that enables a
principled distinction between environmental change that requires
evolution to make organisms different from how they used to be and
environmental change that requires evolution to make organisms more
complex than they used be.

3. Shows that evolution in systems of complexity lower bounds commonly
produces two characteristic trends simultaneously: (a) a system wide
trend of generally increasing complexity of the most complex
organisms, and (b) local trends of complexity minimisation within
individual niches - and hence can help to explain observations of these

types of trends in biological evolution and experiments.

1.6.5 Model 4: Complexity lower bounds in NAND circuit calculations
1.6.5.1 Aims

The key aim of this model was to test whether complexity lower bounds are
present in a system commonly used as an analogy for evolutionary function

(i.e. a system of NAND logic gates).
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1.6.5.2 Methods

The model consisted of a network of NAND logic gates set up to calculate (i.e.
logically transform) a set of fixed size Boolean inputs to a given set of Boolean
outputs. The space of possible solutions for each input/output pair was
sampled by repeatedly evolving populations of solutions with a selection
pressure for simplicity, to observe whether different sized lower bounds (i.e.
complexity lower bounds) exist for different (but equal size) calculations.
Finally, exhaustive searches were performed on some simple calculations, to

concretely identify the presence of complexity lower bounds.

1.6.5.3 Results

The main results of this model are as follows. The model:

1. Proves that complexity lower bounds exist in a commonly used existing
model of functional evolution (NAND gate logic functions);

2. Shows that transformations between identically complex environment
pairs can have very different complexity lower bounds (hence showing
that complexity lower bounds are not related to the complexity of the

input or output in this system).

1.7 Claims

1. As joined functions become more complex, increasing ‘burden’ in the
form of ‘internal selection’ places limits on evolution by combining
functional building blocks, but an ontological development process that
occurs by local growth, as present in most complex biological
organisms, resolves this problem allowing building blocks to be
combined recursively over multiple levels of organisation in a scalable

fashion.

2. When both the external environment and an organism’s existing
functionality are too difficult to change, a third possibility exists for
evolution - adapting to environment change by adding an internal
environmental ‘adapter’ that converts the new external conditions into

those necessitated by the organisms existing functionality - and in
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doing so, inherently creates an internal replica of the previous

environment within the organism’s phenotype.

Environmental change motivates evolutionary change, but not

necessarily any increase in complexity. However, given

a. an organism with a replicator that can replicate in some small
subset of environmental conditions, and whose replicator
cannot feasibly be changed to replicate in conditions outside of
this subset;

b. an environment with heterogeneous environmental dissociation
whose conditions change sufficiently gradually;

C. an inherent selection pressure against complexity such as a cost
of resources

then as competition forces evolution to leave the original

environment (a), and colonise new environments (b), the magnitude

of environmental dissociation of a new environment will dictate the

minimum possible complexity of viable organisms in that

environment, resulting in a system-wide trend of increasing

complexity of the most complex organisms, coupled with local

trends of complexity minimisation in individual environments,

caused by (c).

Contributions

This dissertation has made the following contributions both for understanding

complexity roadblocks and how they can be alleviated, and for understanding

complexity drivers:

Understanding complexity roadblocks:

Providing a conceptual framework that unites exaptation, tinkering and
building block mechanisms of evolution;

Identifying ‘burden’, in the form of internal selection, as a key factor
that hinders evolution by combining building blocks occurring
recursively across multiple levels of organisation, explaining its context,
and showing how this causes mechanisms of functional encapsulation to

be beneficial in this mode of evolution;
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3. Graphically illustrating how aligned, modular genotype-phenotype maps
use existing structure in the fitness landscape to enrich the local
variational neighbourhood with fit phenotypes;

4. Providing a mechanism of evolution by joining functions capable of
dynamically and recursively rescaling its units of variation, thus allowing

evolution to spontaneously cross progressive levels of organisation.

Understanding complexity drivers:

1. Demonstrating the existence of a novel mechanism of adaptation that
involves neither changing existing function nor the external
environment;

2. Providing a conceptual description and functional model of an
evolutionary process of adaptation that can systematically store
previously experienced environment conditions in the phenotype;

3. Demonstrating that inherent lower bounds on the complexity of
algorithmic problems can cause evolution to generate robust trends of
increasing complexity in evolution.

4. Taken together these contributions combine to alleviate the mismatch
between the complexity increases observed in natural evolution and the
complexity minimisation behaviour observed in evolutionary

experiments.

1.9 Scope

The work described here is theoretical, and as such addresses issues of
general principle, and not empirical observations about natural biological
processes. The work describes the behaviour of abstract representations of
biological systems. Conclusions drawn from the behaviours of these systems
should be applied to real biological systems with the appropriate amount of

consideration and qualification.

However, the results of these models and conceptual frameworks are not
‘arbitrary explorations of possible biologies’ (Watson 2006). None of the
models are in any sense ‘unevolutionary’; they only illustrate the capabilities of
non-teleological adaptive processes. To the greatest of our ability we include

the relevant constraints present in real biological systems. These constraints
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limit what mechanisms can possibly produce a given phenomenon - both in
real biological systems and models that contain them. Moreover, many of the
mechanisms that we illustrate beyond that of ENS alone - such as involving a
hierarchical development processes and evolvable gene regulation networks -
are biological fact. We simply illustrate their potential capabilities. The other
concepts we include all have substantial, if in some cases controversial, history

in the biological literature.

In short, the aim of these models is to identify the theoretical capabilities of
the evolutionary mechanisms, and clarify the properties of the evolutionary
systems that we address - with the hope of guiding the direction of future
empirical work to ascertain whether or not these conditions are met in natural
systems. Meanwhile the conceptual and theoretic principles behind this work

stand independently.

1.10 Structure of this dissertation

Chapter 1 - Introduction and literature review

Describes the central problems, concepts, relevant existing literature and

scope of the thesis.
Chapter 2 - Combinatorial exaptation

Describes the conceptual relationship between exaptation, tinkering and
combining building blocks, illustrates a transparent working model of this
mode of evolution across multiple scales of organisation, and clarifies various
intricacies and problems inherent with such mechanisms and how they can be

resolved using some known ontogenetic properties of complex organismes.
Chapter 3 - Homeogenesis

Illustrates, by means of a simple computational model and discussing well-
studied biological examples, a mechanism of evolution capable of a) adapting
to environment change without altering existing functionality or the external
environment, and b) systematically storing previously experienced environment

conditions in the phenotype.

Chapter 4 - Complexity lower bounds
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Describes an evolutionary framework in which fundamental limits on the lower
bound of solutions to algorithmic problems can effect evolution, producing
robust and multifaceted trends of organismal complexity - in particular a

general trend of increasing complexity of the most complex organismes.
Chapter 5 - Summary and conclusions

Provides a summary of arguments, illustrations, experiments and contributions

of the dissertation, draws conclusions and discusses possible further work.
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Chapter 2: Combinatorial Exaptation

2.1 Introduction

In this chapter, we are interested in understanding how the current theory of
evolution can be refined to better explain how evolution is capable of scaling
to complexity. A central aspect of this problem is expressed in the state of
artificial evolution techniques, such as evolutionary algorithms, and artificial
biological evolution: Despite their success as optimization methods, evolution
in these formats generally struggles to scale to complexity (Bedau et al. 2000;
Mouret and Doncieux 2009; Bedau 2009; Bedau et al. 1997; Spiegelman et al.
1965; Oehlenschlager and Eigen 1997; Lane 2010). In natural evolution,
scaling to increasing complexity is often associated with evolutionary
transitions, in which new levels of hierarchical organisation are created by
joining small, previously separate entities into some new, larger functional
entity (Maynard Smith and Szathmary 1997; Watson 2006). This behaviour is
commonly missing from artificial evolution (Watson 2006; Goldberg 1989;
Bedau et al. 2000). Here we consider the possibility that an evolutionary
mechanism capable of crossing such transitional thresholds is an important

component to enable the evolution of complexity.

In particular, we consider the possibility that these thresholds are precipitated
by the existence of complex non-decomposable functions (i.e. functions that
cannot be broken down beyond some threshold without losing their
functionality, such as the mouse-trap example we discussed in chapter 1;
Watson 2006; Thornhill and Ussery 2000; Behe 2009; Giinter P. Wagner and
Schwenk 2000). There are a number of proposed mechanisms capable of
evolving non-decomposable functions (e.g. Thornhill and Ussery 2000; Watson
2006) - and importantly, some of these mechanisms operate by joining smaller
components to make new functions, and hence imply such transitional
behaviour (e.g. Jacob 1977; Gregory 2008; Watson 2006; Mouret and Doncieux
2009). We therefore focus on this type of non-decomposable function evolution
by joining functions. We will focus on three mechanisms of non-decomposable
function evolution in particular: building block mechanisms and tinkering, both

of which describe processes of joining functions, and exaptation, that generally
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does not, but is one of the most commonly proposed mechanism of non-

decomposable function evolution.

The literature on evolution by joining functions is fairly well developed.
However, there are two significant issues in the field that we focus on here.
The first issue is that there is no consensus on an underlying theoretical
framework that describes how tinkering, building block models and exaptation
are linked. Part of the problem is that tinkering lacks a formal theoretical
analysis, and remains as a conceptual framework (Alcock et al. 2010). As a
whole, the lack of such a framework makes it more difficult to understand the
underlying principles of evolution by joining functions, and apply findings from

one area of the field to others.

The second issue is that there is no consensus on how biological evolution
joins functions recursively over multiple levels of organisation. In more detail,
one of the features of evolution by joining functions that makes it an attractive
prospect for evolving complexity is that functions formed by combining
components could then potentially be used as components at the next level of
organisation, and so on. This would therefore provide a recursive, potentially
open-ended mechanism of complexity evolution whose units inherently scale
as complexity increases. However most models of joining functions fail to
achieve this type of open-ended recursive evolution (e.g. Watson and Pollack
2005; Watson 2006; Arthur and Polak 2006). Furthermore, what exactly causes
the problem has been hard to identify. A particular issue is that such recursive
evolution is thought to be deeply intertwined with the availability of
hierarchical variation mechanisms; however, many of the models that achieve
such multi-level evolution are systems of logic circuits that due to their
intrinsic properties inherently and opaquely introduce hierarchy within the
substrate itself (e.g. Lenski et al. 2003; Mouret and Doncieux 2009). This
makes it very difficult to separate the effects of the evolutionary processes

being studied from the opaque internal properties of the substrate.

The rest of this chapter is structured as follows. We first describe relevant
previous work: we give a brief historical background for exaptation, tinkering
and building block models, and then link this work to the problem of recursive
evolution, which we describe in greater detail. This initial section recaps much

of the discussion of the history and problems with evolution by joining
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functions from chapter 1, but in more detail. We then analyse the three
mechanisms together, and propose a theoretical framework that describes
their interrelationships, and characterises what we believe is the central
process of evolution by joining functions. Next, we provide a computational
model that contains the key principles of joining functions to evolve non-
decomposable functions, but that is built on a transparent substrate that
avoids many of the problems of logic gate systems. This system enables us to
clearly isolate the causal factors that inhibit evolution by natural selection (ENS)
from joining functions recursively over multiple organisational levels, and links
a number of related but previously unconnected biological phenomena to this
process. Using this model system we are also able to map the entire fitness
landscape to illustrate the problem graphically. Finally, we then provide a novel
solution to the problem of recursive evolution. We show that by using a
common and simple type of developmental mechanism that operates by the
action of local rules, evolution is capable of evolving new variation operators
aligned to new modules as they are evolved, thus enabling spontaneous

recursive evolution over multiple organisational levels.

2.2 Previous work

2.2.1 Exaptation

Exaptation, or preadaptation, as it was referred to at the time, arose in
response to early criticisms of Darwin (Gould and Vrba 1982; Budd 2006; True
and Carroll 2002). Critics argued that some complex traits would be
functionally useless if they were broken down beyond some point (such as 2%
of a wing, for example), and so could not have evolved gradually for their
current purpose as Darwin suggested. Darwin responded by suggesting that
traits could change their functions during evolution, and so such a complex
trait could have initially been evolved for some other function that was useful
even when broken down further (Darwin 1859; Budd 2006; Thornhill and
Ussery 2000). Exaptation has subsequently been widely used to explain the
origin of complex organismal traits, and is popular in organismal biology
(where it originated) and paleontology (e.g. Budd 2006; Gould and Vrba 1982;
Gould and Eldredge 1993; True and Carroll 2002). It is commonly defined as

the process by which traits are ‘co-opted’ to serve new functions in evolution;

47



Chapter 2: Combinatorial Exaptation

well-documented examples include heat-shock proteins being co-opted to form
part of the eye lens, and lungs of basal fish being co-opted to become the gas
bladder (True and Carroll 2002). The ‘complex traits’ that Darwin’s critics
described are non-decomposable functions: they are functions that cannot be
broken down beyond some point without losing their function. Furthermore,
exaptation is usually considered to be a non-adaptive process (i.e. non-
adaptive in the sense that it only occurs as a chance by-product of ENS, similar
to genetic drift; Barve and Wagner 2013). As such, exaptation requires no extra

machinery of evolution beyond ENS.

2.2.2 Tinkering

The term tinkering was coined by Francois Jacob in his now famous 1977
Science paper ‘Evolution and Tinkering’ (Jacob 1977), although it has roots in
earlier theories (Laubichler 2007). Based on his observations with regulatory
genes, Jacob developed a conceptual framework describing innovation and
synthesis in evolution. He argued that novelty in evolution comes from

repurposing or reorganisation of existing parts:

‘Evolution... works on what already exists, either transforming a
system to give it new functions or combining several systems to

produce a more complex one.’ (Jacob 1977)

Since Jacob’s description, tinkering has been shown to be responsible for
evolving numerous existing biological functions (Alcock et al. 2010; Flicek
2013). However, despite these successes, tinkering remains a conceptual
heuristic; Jacob did not provide a strict formal or theoretical analysis (Alcock et
al. 2010), and as far as we are aware, no such analysis has been subsequently
published. Many of the types of evolvability adaptations associated with
tinkering (e.g. hierarchical gene regulation networks) have been well
researched (e.g. E. H. Davidson 2010; E. H. Davidson and Erwin 2006; Erwin
and Davidson 2009; Carroll 2005).

2.2.3 Building Block Mechanisms

Rather than refer to a formal evolutionary mechanism, we use the term

building block mechanisms to refer to a collection of computational and
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mathematical models, mostly stemming from the fields of evolutionary
computation and artificial life, that, for example, attempted to explain the
benefit of sex, or the evolution of complexity (e.g. Watson 2006; Mouret and
Doncieux 2009; Goldberg and Holland 1988; Arthur and Polak 2006; Simon
1962; Simon 1969; Lenski et al. 2003). As a result, there are numerous
computational models of building block mechanisms, and their processes are
logically defined within these models. Building block models generally evolve
non-decomposable functions by assembling smaller, building block functions

into a non-decomposable function, of which they become components.

Building block mechanism research has also significantly contributed to
understanding the evolution of complexity by combining functions. Early work
was provided by Simon’s theory of ‘Nearly Decomposable’ functions, that
included his famous ‘watch maker’ parable, and later by Goldberg and
Holland’s genetic algorithm based ‘building block hypothesis’ (Simon 1969;
Goldberg and Holland 1988). However, a significant problem for some of these
early models was that they reasoned that to benefit evolution, building blocks
within the final hierarchical function being evolved must be effectively
separable - i.e. have no significant dependencies on each other (hence Simon’s
term ‘nearly decomposable’). This meant that the hierarchical functions being
evolved by these theories were not actually non-decomposable functions
Watson and Pollack 2005), which resulted in two problems. First, it was later
shown that ENS alone could evolve such functions equally well, and so building
block evolution provided no benefit in this case (Forrest and Mitchell 1993;
Watson and Pollack 2005; Watson 2006); and second, without dependencies
between components in the complex function being evolved, there was
nothing to hold the hierarchical structure together, rendering them
indistinguishable from an unordered collection of components, lacking the

organised hierarchy observed in natural organisms (Watson and Pollack 2005).

Later models resolved this issue of separability by showing that building block
models can evolve genuine non-decomposable functions (e.g. Lenski et al.
2003; Mouret and Doncieux 2009; Watson 2006). In these models, phenotypic
building block components need to be found and organised to have the right
set of interactions between them to evolve the complex functions. (For an
analogy, simply evolving the components of a watch is not sufficient to keep

time; they must then be organised into the right arrangement). Unlike with
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separable problems, when the problem posed was a genuine non-
decomposable function (specifically, one that was modularly hierarchical),
combining building blocks was shown to have significant benefits over ENS

alone.

In the abstract, models of genuine non-decomposable functions differed from
earlier models containing mere collections of components by adding ‘extra
combinatorial work’ - that is, some extra step of organisation that must be
done to organise the components of a higher-level function once those
components have been evolved. There were two main approaches to this
problem, and understanding them will help to explain the current state of
research on recursive evolution. In more abstract models, such as Watson’s
Hierarchical If And Only If model (HIFF; Watson 2006), extra combinatorial
work was often introduced by having many different low level components that
were each individually useful, but only a subset of which could be successfully
combined into higher-level functions. In this case, evolution must find the right
blocks to combine to evolve the higher-level function. (For example, given a
selection of watch parts, to build a working watch we must first find a set of
watch parts that are theoretically compatible with each other - e.g., are from
the same watch). HIFF used an entirely transparent fitness function, and hence

it has a great deal of explanatory power.

The second main approach to improving early building block models so that
they contained genuine non-decomposable functions was to use real functional
entities in the models - in particular, logic circuit systems (e.g. Lenski et al.
2003; Arthur and Polak 2006; Mouret and Doncieux 2009). This had the
benefit of forcing the model to contain aspects of reality such as extra
combinatorial work because they were built in to the substrate itself. In the
logic circuit models, logic gates could be combined into circuits that perform
given computational tasks. The fitness functions were built to be hierarchical,
where complex tasks could be achieved by combining simpler functional
circuits that were also rewarded. However, one downside of such logic gate
systems is that they generally have a highly opaque fitness functions,

sometimes making it more difficult to understand the results they produce.
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2.2.4 Recursive evolution and encapsulation

One aspect common to both HIFF and logic gate models is that to evolve non-
decomposable functions by joining functions requires extra evolvability
machinery beyond ENS alone, such as complicated genetic operators; e.g. as
used by HIFF (Watson 2006), complicated genotype-phenotype maps (Lenski et
al. 2003) and community detection algorithms (Mouret and Doncieux 2009).
The reason for this is that to combine already complex components, evolution
requires some way of redeploying those components as whole, integrated
units. Effectively, it requires some mechanism of modular ‘encapsulation’
(sometimes called parcellation and integration; Ginter P. Wagner, Pavlicev, and
Cheverud 2007).

As we discussed in chapter 1, one approach to encapsulation is to use a
modular genotype-phenotype map (Mouret and Doncieux 2009), in which small
modules in the genotype are ‘aligned’ to large modules in the phenotype. This
allows small genetic changes (to regulatory ‘switch’ genes) to reorganise whole
organised groups of phenotypic traits (Gunter P. Wagner, Pavlicev, and
Cheverud 2007; Wagner and Altenberg 1996). However, there is no consensus
on how such correctly aligned, modular genotype-phenotype maps themselves
can be evolved; a particular problem is that selection on genotype-phenotype
maps is commonly second order, and hence weak (Glinter P. Wagner, Pavlicev,
and Cheverud 2007). This problem becomes very important when evolving
functions recursively across multiple hierarchical levels. Here, new functions
evolved must be used recursively as components at the next level up, and so
on - which therefore requires a mechanism of genotype-phenotype map
evolution that identifies and encapsulates new phenotypic modules on the fly,

as they are evolved in the phenotype.

How this can occur is an open question. Some building block models simply
provide the system with a correctly aligned genotype-phenotype map a priori
and illustrate the capability of evolution from there (e.g. Arthur and Polak
2006). Elsewhere, in the literature on the evolution of modularity, modular
genotype-phenotype maps have been evolved under specific environmental
pressures for evolvability (Draghi and Wagner 2008; Kashtan and Alon 2005;
Kashtan, Noor, and Alon 2007; Parter, Kashtan, and Alon 2008) and cost of

connections in the genotype-phenotype map (Clune, Mouret, and Lipson 201 3).
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But these methods are not linked to evolution by joining functions, and also do
not show modular genotype-phenotype maps evolving open-endedly across
multiple hierarchical levels, and so may be limited when enabling recursive

evolution.

Solving the problem of how evolution can occur recursively is made more
difficult by the details of the models used to illustrate it. In particular, certain
aspects of the existing models obfuscate the problem and make it difficult to
identify. One particular problem is that because systems of logic gates (e.g.
Lenski et al. 2003; Arthur and Polak 2006; Mouret and Doncieux 2009) are
directed networks, they are inherently hierarchical, and hence introduce the
possibility of small changes to their structure causing large changes to their
behaviour. For example, a complex circuit of logic gates could have its output
dramatically changed by simply adding or rewiring a single gate. The key point
is that this ability to hierarchically change the behaviour of many nodes in the
system from only a small structural change is present within the substrate
itself. Moreover, this capability of logic gate systems is often highly opaque
(e.g. changing a rewiring a single gate in a complex circuit will often result in
changes in behaviour that are very difficult to predict without careful analysis).
Because the problem of recursive evolution is deeply intertwined with the
ability to hierarchically redeploy modules, having a substrate that inherently
has this capability can hide (and cause us to underestimate) the problems

faced by evolution if such ability is not present in the substrate.

For example, the hierarchical nature of logic circuits is used in this way by
Kashtan and Alon’s model of spontaneous modularity, and some of its
derivatives (Kashtan and Alon 2005). Modularity in the model is reliant on the
ability of logic circuits to have large changes in function from only few changes
to their structure. However, there is no discussion about the likelihood that the
substrate will contain this ability; it is simply built into each example system’s
substrate. What would perhaps benefit this work, and what is particularly
difficult using such a system of logic gates, is a control case in which the
model system does not intrinsically contain this hierarchical ability. Without
such a control case, it is difficult to separate any positive effects of having a
hierarchical variation operator within the algorithm of evolution from the
effects of hierarchical variation present within the substrate itself. Moreover, it

hides that significant problem of how evolution could evolve such a
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hierarchical capability (for example, in the form of a hierarchical gene
regulation network, or complex genetic operator) if it were not already
available within the substrate itself. Here we aim to examine the problems that
hinder recursive evolution when such an inherent hierarchical reorganisational
ability is lacking. This is similar to the issues addressed by HIFF, although here
we focus on using a hierarchical genotype-phenotype map to solve the
problem, as opposed to genetic operators (e.g. sexual recombination) as used
by HIFF.

In summary, there are two main bodies of literature that describe evolution by
combining functions: tinkering and building block models. They remain largely
separate; there is no theoretical framework that describes their relationship or
relationship with other processes of non-decomposable function evolution
such as exaptation. Furthermore, how evolution can recursively join functions
across multiple levels of organisation is poorly understood - in particular, how

this process relates to encapsulation.

In the next section we develop a framework that incorporates tinkering and
building block models with exaptation, and describes a core process of
evolution by combining functions. We then address the question of recursive
evolution. To do so we define a computational model of evolution by joining
functions that requires both finding and organising interactions between
modules (similar to logic gate models), but that is transparent, and specifically
avoids introducing hierarchical capability within the substrate itself, allowing
us to better isolate the problem faced by evolution when recursively joining
functions over multiple levels of organisation. Finally, we present a novel

solution to the problem of recursive evolution in this system.

2.3 Theoretical analysis

We will start with theoretical analysis to examine the relationship between
exaptation, building block models and tinkering. We begin by examining

tinkering.

In his definition of tinkering quoted above, it is clear that Jacob actually
describes two distinct processes. The first of these - ‘transforming a system to
give it new functions’ is logically indistinguishable from the process of

exaptation: ENS evolves a function until it takes on a new function. On the
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other hand, the second process that Jacob describes ‘combining several
systems to produce a more complex one’ shares the same logic as building
block models: evolution produces novel, complex functions by combining

existing functions.

So on initial inspection is seems that we can condense the three processes of
non-decomposable function evolution - exaptation, building block models and

tinkering - into two distinct processes:

1. ‘Functional shift’ (described by exaptation)

2. ‘Functional combination’ (described by building block models)

This reasoning shows that the second process - ‘functional combination’,
although described in building block models and in part by tinkering, lacks a
specific name, making it difficult to discuss. The lack of a name for such a
process has recently been highlighted by Gregory (2008). Before suggesting a
name for this process, we can make further deductions. Specifically, both
functional shift and functional combination have been shown to be capable of
evolving non-decomposable functions. And non-decomposable functions by
definition cannot be broken down beyond some point without losing their
function. Therefore, by definition, any process that is capable of producing
non-decomposable functions from components below this threshold must
involve a change in function - i.e., exaptation. This implies that both processes
in the above list must involve exaptation. As we have described, functional
shift obviously involves exaptation, because it is practically the definition of

exaptation. But where does exaptation occur in functional combination?

To address this problem, let us consider the evolution of a complex metabolic
pathway by the process of functional combination. Initially, many individual
enzymes are already present within the organism and are used for their own,
separate functions. They do not interact with one another. By mutation, a
subset are then brought together and combined into a specific configuration
that has a new function as a metabolic pathway: in this new arrangement, the
enzymes interact with one another in such a way that produces a
fundamentally new function on a higher organisational level. Before this
process, the organism did not have the function of the pathway, and

afterwards it did. But no individual enzyme changed its function during this
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process; only the arrangement of the enzymes changed - but that change in

arrangement was enough to result in the creation of an entirely new function.

The result is that while functional combination does involve functional change,
unlike in ‘traditional’ exaptation (i.e. functional shift), the functional change
occurs on a higher hierarchical level. This implies that functional shift and
functional combination actually refer to two distinct types of exaptation:
exaptation as it is traditionally described, which here we term shift-exaptation,
in which change in function occurs on the same hierarchical level as the
physical component, and exaptation that occurs in functional combination, in
which change in function occurs on a higher hierarchical level than physical
components being combined. We suggest the term ‘combinatorial exaptation”

for this process (Table 1).

Type of exaptation Location of functional shift|Other names

Shift exaptation Same level as object Exaptation
Preadaptation

Tinkering

Combinatorial exaptation |Hierarchical level above Tinkering

objects
Building-blocks

Collage

Table 1. Description of two separate types of exaptation

Another example of combinatorial exaptation is provided by logic gate
systems, which are commonly used as the basis for building block models
(Lenski et al. 2003; Arthur and Polak 2006). NAND gates are universal,

meaning that every possible logical function can be made out of combinations

' This particular name was suggested to us by Edrs Szathmary.

55




Chapter 2: Combinatorial Exaptation

of NAND gates. Consider, for example, a set of five NAND gates. There are
many different ways to combine them, most of which do not represent any
particular function. However, two of those possible arrangements produce the
XOR function (exclusive-or). If we were to rearrange our NAND gates randomly,
eventually we would reach a combination that produces the XOR function.
Again, no individual component (i.e. NAND gate) changes its function in this
process - but when the components are combined in just the right way, a new
function springs into existence at a hierarchical level above the components
themselves. This ‘springing into existence’ of a new function at a higher
hierarchical level is what we term combinatorial exaptation. An example of
combinatorial exaptation occurring recursively across two separate scales of

organisation is described in Figure 2.

(As an aside, we should state that the particular ‘high-level’ function that is
produced by combinatorial exaptation, such as the XOR function in our NAND
gate example, is not necessarily ‘special’, compared to other possible high-
level functions of the system. It is only that some such high level functions may
satisfy corresponding complex selection pressures in the environment, and in
that case are likely to be retained by natural selection. The concept of function
itself, and how different rearrangements of components can create different

functions is discussed further in chapter 4.)

Below we provide a transparent computational model of combinatorial
exaptation. We use the model to clarify the problems associated with recursive
combinatorial exaptation - in particular the need for an encapsulation
mechanism that can evolve to identify and reorganise new phenotypic modules

as they are evolved in the phenotype.
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Figure 2. An example of evolving a non-decomposable metabolic pathway by
multiple, recursive events of combinatorial exaptation. At t=1,
enzyme A has been evolved, satisfying selection pressure S_(circles
represent enzymes, and arrows are their functional outputs). By t=3,
more enzymes have been evolved, satisfying corresponding
selection pressures 5,-S,- At t=4 a mutation by chance organises
functions B, C and E into an arrangement in which they interact to
produce the new metabolic pathway function H, satisfying selection
pressure S . H is a new function formed on a higher level of
organisation than its components. It springs into existence when B,
C and E are in the right arrangement. This is combinatorial
exaptation. The same occurs to A, F and G at t=5, producing the
new metabolic pathways function I, satisfying selection pressure S.
Finally at t6 D, H and | are reorganised into an arrangement that
produces J, which is a further event of combinatorial exaptation. H, |
and J are all non-decomposable functions, because the require all of
their components to be present and interacting in the right manner
to function. They would therefore be difficult to evolve by ENS alone;
however, combinatorial exaptation can easily evolve them. In this
example, combinatorial exaptation occurs recursively, using
functions H and | evolved by combinatorial exaptation as

components on the next hierarchical level.
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2.4 Results and discussion

The model system was a population of organisms evolving enzymes and
interactions between those enzymes to evolve metabolic pathways. There were
16 available enzymes that could be evolved. Those enzymes could be
combined into 4 medium complexity metabolic pathways, each containing 4-
component enzymes. In turn, those 4-enzyme pathways could be combined
into a single 16 enzyme metabolic pathway. In all simulations, this 16-enzyme
pathway was the target of evolution. Because this target pathway had 3 levels
of internal hierarchy, practically evolving it by joining functions required a

mechanism of recursive, multi-level combinatorial exaptation.

We conducted three main simulations: S1, C1, S2. These simulations were
identical except for having slightly different genotype-phenotype maps. In all
cases, organisms began with a genotype phenotype map (in the form of a gene
regulation network) that did not contain any hierarchical structure
corresponding to the 4-enzyme or 16-enzyme pathways. The three key

simulations in this chapter can be summarised as follows:

1. S1 was a negative control experiment that sought to test the hypothesis
that without such a hierarchical gene regulation network, organisms
would be unable to carry out recursive joining of functions across three
levels, and hence not be able evolve the target 16-enzyme metabolic
pathway. Therefore in S1, organisms had a gene regulation network
without this hierarchical structure, and their gene regulation network
could not evolve hierarchical interactions between regulatory genes,
thus preventing the evolution of such a structure.

2. C1 sought to test whether allowing the gene regulation network in S1 to
freely evolve hierarchical interactions between regulatory genes would
enable the evolution of a hierarchical gene regulation network capable
of evolving the target 16-enzyme metabolic pathway. Thus C1 was
identical to S1 except that the gene regulation network was allowed to
evolve.

3. S2 sought to test whether having a development process that occurred
by local growth, as opposed to in a top-down manner as in S1 and C1,
enabled organisms to evolve the target 16-enzyme metabolic pathway.

Thus S2 was identical to C1 (i.e. with a gene regulation network that was
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allowed to evolve hierarchical interactions between regulatory genes)
but in S2 organisms had a development process that occurred by local

growth.

To give a more detailed picture of the workings of the model, here we will
briefly describe the S1 simulation. More detailed technical description of the

model is defined in the methods (section 2.6)

Genotype Phenotype

Regulatory Functional Interaction Space

Structural Genes .
Genes

Px Py
Enzyme 1 1111111111 26/ 8
Target 1 1111111111

Enzyme 2 1110010 1d1g (|11 5
Target 2 1111111111 <
y3 °
Enzyme 16 11131111 52\ . LA
Target 16 1111111111 00 1 3 374
X

Figure 3. genotype-phenotype map for simulation S1

6 7 8
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Enzymes that were neighbouring in functional interaction space were
considered to be interacting. In this way, regulatory genes controlled

interactions between enzyme functions in a given phenotype.

In S1, each organism had 32 genes; 16 structural genes (each containing 10
binary loci) that encoded 16 possible enzymes (one per structural gene), and
16 regulatory genes (R), one corresponding to each structural gene (each R,
gene was defined by two integers O<p <9, 0<py§9). R, regulatory genes encoded
interactions between enzyme functions in the phenotype, permitting the
possibility of evolving metabolic pathways. Each organism's phenotype was
represented by a 9x9 grid, termed its functional interaction space, which
represented the interactions between enzymes within the organism. Once a
given enzyme had been evolved (by correctly setting all 10 binary loci in its
corresponding structural gene), it was plotted in functional interaction space

by a coloured dot, with its position defined by its corresponding R, regulatory
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gene (p, p, defining the x and y coordinates of the function respectively). The

genotype-phenotype map is depicted in Figure 3.

Functional interactions in Higher-level functions (metabolic
functional interaction space pathways) in functional interaction space
Enzymes
interacting
8 T : 4-Enzyme 8
7 4 e T metabolic A e e . I e A 4-enzyme
6 ® le pathway 6 ; ; : (\“\\ metabolic
; J : ! interaction i i pathway not
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Y o4 \ \ SN S by 4, 4
. Al H | PP .
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2 JRUIR L s ® - &8 2 cedeeand i LR N
\ A
e / | | o I 20 O
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001'V345678 %1 3 4 s 6 7 s
X X
Enzymes not 4-enzyme
interacting metabolic pathway
found

Figure 4. Enzymes interacting in functional interaction space.

The fitness function was hierarchical. Fitness was obtained by evolving any of
21 possible metabolic functions c,C,..C. Evolving any of these functions
resulted in the organism being awarded a fixed fitness bonus of +1 for each
function evolved. These bonuses represented there being individual selection
pressures (S ,...5) for each of the functions. All functions were non-
decomposable functions: fitness bonuses were only awarded when functions
were found exactly. Some of the functions were more complex than others.
The 16 simplest functions were enzymes (Ca, C, ...Cp). Each enzyme was
considered evolved when all loci in its corresponding structural gene matched
a predefined fixed 10-bit target. The four next most complex functions were 4-
enzyme metabolic pathways (Cq, C,C,C).To be evolved, each of these
pathways required four specific enzymes to be organised into a specific
arrangement of interactions in functional interaction space. For example,
pathway C, required enzymes C, C, C, and C, to be arranged in a square
formation in functional interaction space (Figure 4, right). The final function,
C, was the 16-enzyme metabolic pathway that was the target of evolution. It
consisted of c,C, C, and C organised into a particular arrangement of
interactions (a square of neighbouring pathways in functional interaction

space; Figure 5).
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Single 4-Enzyme 16-Enzyme
enzyme metabolic metabolic
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Figure 5. Diagram of the 3 types of available functions in the fitness function.
There were 21 available functions; 16 of the single enzyme type, 4
of the 4 enzyme type, and 1 of the 16 enzyme type. To evolve a
function, its respective pattern of interacting enzymes must be
formed in functional interaction space. Each 4-enzyme pathway
required a specific set of 4 enzymes, but those enzymes could be in
any order as long as it satisfied the square arrangement depicted

above.

Evolution proceeded as follows: The population size was fixed at M=50, and
evolution occurred in a generational manner. In each generation, the fittest
L=10 organisms in the population were allowed to reproduce (i.e. truncation
selection); they were copied uniformly at random and placed into a new empty
population until it was full (i.e. M=50). The population was then mutated. There
was a fixed per-locus probability of point mutation (see methods), which
caused a bit-flip for binary loci, and selection of a random integer value for
integer loci. No crossover or complex mutation operators were allowed. This
continued for 10° generations or until a maximum fitness phenotype was

found.

2.4.1 S1 Simulation results

In simulation S1, organisms had only the simple, direct genotype-phenotype
mapping described in Figure 3 (see methods for further detail), and this
genotype-phenotype map was not permitted to evolve hierarchical interactions

between regulatory genes.
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-
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enzyme pathways cannot be redeployed;
positions locked in place in functional
interaction space. Prevents CE from spanning
multiple levels of organisation and scaling to
complexity
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Organisms have local development process, meaning GRN is
physically embedded in phenotype, triggering new phenotypic
growth locally as organisms develop. Thus structural changes
in GRN are directly reflected in phenotype structure, meaning
GRN and phenotype structures mostly evolve together in
lockstep. Once formed, new 4-component phenotypic modules
therefore often already have necessary GRN structure to
control them hierarchically, allowing them to be redeployed
with single mutations. Evolution can therefore sample the
space of modular rearrangements of 4-enzyme pathways.

Eventually, correct modular
reorganisation of 4-enzyme
pathways is found, produces
complex, 16-enzyme target
pathway C, by recursive event
of CE. Because of local
development, evolution can
now combine functions
recursively and scale multiple
levels of organisation

Figure 6. Case study populations show snapshots of the fittest organism in the
population at various generations. Top row, (S1 simulation): Top-
down development process and the gene regulatory network is not
permitted to evolve hierarchical interactions between regulatory
genes. Similar results were observed with a top down development
process when gene regulatory networks could freely evolve
hierarchical interactions between regulatory genes, and hence
potentially evolve a hierarchical structure capable of redeploying 4-
enzyme pathways (C1 simulation, not shown); in neither S1 nor C1
was the target 16-enzyme metabolic pathway ever evolved. But in S2
(bottom row) organisms had a local development process, physically
embedding the gene regulation network in the phenotype, and gene
regulation networks were allowed to evolve. In this case, the target
16 enzyme metabolic pathway was always evolved (e.g. bottom row,
80,000 generations). CE=Combinatorial exaptation; GP
map=Genotype-phenotype map.
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We carried out 100 independent repetitions of S1. In all simulations, the fitness
of the population increased over time, and all 16 enzymes (C, C, ... Cp) and all
four 4-enzyme metabolic pathways (Cq, C, C, C)were evolved within 10°¢
generations (mean 57722; standard error 6449). However, the target 16-
enzyme metabolic pathway C was not evolved in any of the repetitions. The
progress of case study population 1 illustrates the typical behaviour of
evolution in this system (Figure 6). First, individual enzymes are evolved (e.g.
see shapshot at generation 50; here 6 enzymes have been evolved). Once
evolved, enzymes remain persistent in the population. However, their positions
in functional interaction space change randomly over time, as they are buffeted
by genetic drift caused by regulatory mutations: unless they happen to form
part of a metabolic pathway, for a given enzyme, any position in functional

interaction space is as fit as any other.

By generation 20,000 two simple metabolic pathways (Cq and C) have been
evolved by combinatorial exaptation. Each event of combinatorial exaptation
occurred by random regulatory mutations organising the component enzymes
(for example, C, C,, C, and C, for pathway Cq) into a specific square
arrangement in functional interaction space. Once its component enzymes
were in this correct arrangement, the functionality of pathway C, sprang into
existence, providing a fitness bonus for satisfying selection pressure S, In this
way, the evolution of pathway C isan evolutionary transition: previously
separate entities (enzymes) were brought together to form a new, emergent
entity (pathway c) with a novel function that was not present before the

transition.

By generation 40,000, all four of the 4-enzyme metabolic pathways (Cq, C,C,
C) have been evolved. There are two particular behaviours of the system to
note at this point. First, once found, higher-level functions (i.e. metabolic
pathways) are persistent. By generation 40,000, pathways C, and C have
remained structurally intact (and hence functioning) for over 20,000
generations. Their particular internal arrangement of interactions (here
represented by a square configuration in functional interaction space) is not
broken up by regulatory mutations. What keeps these emergent structures
together? Simply, because the function of a given pathway is dependent upon
the arrangement of interactions between its components, then breaking those

interactions (e.g. by regulatory mutation) would result in breaking the function
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of the pathway, and hence a loss in fitness. Therefore, breaking up pathways is
strongly selected against, and hence their specific emergent structures are
preserved. In short, internal functional dependencies (sometimes termed
‘burden’ (Riedl and Jefferies 1978) or ‘internal selection’ (Schwenk and Wagner
2004)) hold the emergent pathways together. This behaviour is intuitive: in
natural organisms, it is also possible that regulatory mutations could
reorganise components of important metabolic pathways (e.g. respiration) or
physical systems (e.g. the heart) causing them to be broken up, and their
functionality lost. In this case, such mutations would also be strongly
deleterious, and hence be selected against, thus preserving the structure and

function of the multi-component complex trait.

The second behaviour we observe is that once pathways are evolved, they
remain stationary in functional interaction space for many thousands of
generations: In snapshots at 40000, 60000 and 80000 generations, all four 4-
enzyme metabolic pathways c,C, C, C have been evolved (each appearing as
a square of enzymes), but remain fixed in position in functional interaction
space. In contrast, before they are incorporated into metabolic pathways,
individual enzymes undergo rapid genetic drift, changing their positions in
functional interaction space randomly through time. It is this genetic drift that
allows the system to sample many different arrangements of enzyme
interactions - and ultimately to find those arrangements that produce fit
metabolic pathways Cq, C,C,C and hence evolve them by combinatorial
exaptation. Because the system is apparently incapable of performing the type
of interaction rearrangement with metabolic pathways as it could with
enzymes, this prevents the system from exploring different arrangements of
interactions between those pathways, and hence ultimately prevents the

system from evolving C.

The problem is that the system lacks a mechanism that can ‘encapsulate’ the
newly evolved 4-enzyme pathways, and redeploy them as coherent units. Given
the structure of the genotype-phenotype map, a single regulatory mutation will
only move the position of one component of that pathway (i.e. one enzyme).
Because the pathways are non-decomposable functions, doing so will break the
required interaction arrangement of the pathway, thus break the functionality
of the pathway, and therefore be strongly selected against. Such constraints

that work to preserve specific, fit arrangements of functional interactions
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within organisms are termed ‘burden’ in the form of ‘internal selection’
(Schwenk and Wagner 2001; Schwenk and Wagner 2004; Giinter P. Wagner and
Laubichler 2004). The result is that metabolic pathways cannot be moved in
functional interaction space one component at a time, but instead require a set
of simultaneous regulatory mutations that move each of their component
enzymes simultaneously in a consistent direction. Obviously, this will become
exponentially less likely as the number of components in a given function
increases (and is already extremely unlikely with only 4 components). This
behaviour shows why extra evolvability machinery (i.e. a method of
encapsulation) is important in enabling recursive combinatorial exaptation
across multiple levels. In summary, S1 illustrates that without a method of
encapsulation, internal selection causes constraint (i.e. burden) to increase
dramatically as the number of components in a non-decomposable function
increases, thus preventing joining functions to occur recursively over multiple

hierarchical levels.

2.4.2 C1 simulation results

We next sought to test whether allowing the gene regulatory network to evolve
its own hierarchical structure could solve the problems posed by internal

selection that prevent multi-level recursive evolution.

Simulation C1 was identical to S1, except that the gene regulatory network
could evolve hierarchical interactions between regulatory genes (see methods).
In short, we found that aligned modular gene regulatory networks sufficient to
enable recursive combinatorial exaptation did not evolve. Instead, complicated
gene regulatory networks formed rapidly that typically created many
interactions between structural genes that could not be combined to form 4
enzyme pathways. As such, these pathways were ‘mis-aligned’ to the modular
selection pressures in the environment, hindering further evolution (the
difficulty associated with such misaligned genotype-phenotype maps is
explored further in section 2.4.5). The results were similar to S1 simulations: in
100 repetitions, all 4-enzyme metabolic pathways were evolved (mean 76463,
standard error 6872) but the target 16-enzyme metabolic pathway was never
evolved within 10° generations. This supports previous similar work outlining
the difficulty of gene regulatory network evolution with second order selection
(Glinter P. Wagner, Pavlicev, and Cheverud 2007).
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2.4.3 A recursive mechanism of combinatorial exaptation

Based on the results of ST, we can describe two types of transition by

combinatorial exaptation (Figure 7):

e Type 1, in which an associated regulatory change has not occurred - i.e.
where phenotypic components have been combined into a new
functional module, but the regulatory circuits that control those
components have not been, thus preventing encapsulation and
redeployment of the new phenotypic module as a coherent whole. This
prevents recursive evolution by combinatorial exaptation, as occurred in
the simulation ST and C1. (Type 1 transitions are also similar to
‘egalitarian transitions’ in social evolution; some new functional
symbiosis has been generated, but the system lacks a shared
mechanism of genesis).

e Type 2, in which an associated regulatory change has occurred - i.e.
where phenotypic components have been combined into a new
functional module, and the regulatory circuits that control those
components have also been combined into a new regulatory module,
thus allowing encapsulation and redeployment of the new phenotypic
module as a coherent whole. This would theoretically allow multi-level
recursive combinatorial exaptation, but we have yet to observe it in
simulation here. (Type 2 transitions are also similar to ‘fraternal
transitions’ in social evolution, where new functional symbiosis is

generated and the system has a shared mechanism of genesis).

So far, we have only observed type 1 transitions, thus prohibiting recursive
evolution by combinatorial exaptation. To achieve a type 2 transition (and
hence allow recursive combinatorial exaptation), one option is to simply
provide the system with a correctly aligned genotype-phenotype map a priori,
so that the necessary regulatory switches were already in place before new
modules are formed, as some earlier models have done (e.g. Arthur and Polak
2006). However, this cannot happen in natural evolution, and so fails to

properly explain the phenomenon of recursive evolution.

66



Chapter 2: Combinatorial Exaptation
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Figure 7. Two types of transition possible by combinatorial exaptation. With
Type-2, associated change in the gene regulatory network
accompanies the emergence of a new functional unit in the
phenotype by combinatorial exaptation, and therefore the new
emergent phenotypic function can be encapsulated, allowing
combinatorial exaptation to occur recursively and hence scale to

complexity.

Rather than further develop the approach used in C1 of using second order
selection to attempt to evolve modular, hierarchical gene regulation networks,
for example by using strict regimes of environment change, or a cost of
connections (Kashtan and Alon 2005; Clune, Mouret, and Lipson 201 3; Parter,
Kashtan, and Alon 2008), we propose a different method. We suggest that a

fundamentally different way to achieve the desired genotype-phenotype map
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structure is if the structural evolution of the genotype-phenotype map and the
phenotype were somehow causally tied together, so that structural changes in
one were automatically reflected in the other. A similar approach was used by
Karl Sims to force virtual creature bodyplans and accompanying neuro-control
systems to be aligned in his landmark study of 3-D virtual creature evolution
(Sims 1994a; Sims 1994b). As with genetic regulatory systems, it is generally
useful for neuro-control architecture to mirror the modular structure of the
phenotype. In Sims’ system, the phenotypic development occurred via a
directed graph. New phenotypic components already had neuro-control
systems ‘built in’, and so blocks of neural control circuitry were replicated
along with each instanced part. The result was that the structure of the neuro-

control system mirrored the structure of the modular bodyplan as it changed.

We apply this idea to genotype-phenotype map evolution, and in particular the
evolution of gene regulation networks that define the genotype-phenotype
map. Theoretically, a system with such linkage between phenotype and gene
regulatory network structure should enable type 2 transitions and hence
recursive combinatorial exaptation, because any new phenotypic module
created by combinatorial exaptation would be reflected in the hierarchical
modular structure of the gene regulatory network, allowing the new module to

be immediately controlled as a single unit (i.e. encapsulated).

But rather than simply enforce this link, we aim to understand how such a link
could exist in biological evolution. One possibility is the role of gene
regulatory networks in ontological development. The fact that gene regulatory
networks are responsible for encoding a process that builds a physical
organism is often ignored in models, because the physical process of
development is commonly abstracted away or simplified. But in nature, this
necessary requirement of gene regulatory networks places strict constraints on
the space of possible genotype-phenotype maps (and associated gene
regulatory networks) available to evolution. Moreover, it is possible that the
constraints the development place on the space of available genotype-
phenotype maps occurs in a way that biases the remaining genotype-
phenotype maps to be more likely to have inherent links between the structure

of their gene regulatory network and the structure of their phenotype.

68



Chapter 2: Combinatorial Exaptation

For example, if development is allowed to occur in a centralised, top-down
manner (e.g. where individual phenotypic components are placed in the
phenotype by a series of independent development events, such as in S1), then
this potentially permits genotype-phenotype maps where the internal structural
arrangement of gene regulatory network circuits (that determine the order in
which events occur during development) does not affect the resultant
phenotype structure, because phenotype construction is a series of
independent events. In contrast, in real organisms, development occurs by a
sequence of local interactions, and hence is inherently a process of many
contingent steps. As a result, the physical position of components in the
phenotype is determined to some extent by the order in which they occur,
which is determined by the position of their triggering circuits in the logical
structure of gene regulatory networks. The result is that gene regulatory
network structure directly affects phenotypic structure in natural organisms
(Erwin and Davidson 2009; E. H. Davidson 2010). Genotype-phenotype maps
that operate by unrealistic development methods (as in S1) are simply not
allowed in natural evolution, thus constraining the search space of gene

regulatory networks in potentially useful ways.

To test this hypothesis, we restrict the model so that ontological development
has to occur by a decentralised process commonly observed in natural
organisms, and then allow the gene regulatory network to evolve hierarchical
interactions between regulatory genes within the constraints that this
development process implies. The particular development process we adopt is
similar to Sims’ directed graph mechanism: phenotypic components contain
embedded gene regulatory network circuitry that triggers the local growth of
further phenotypic components, that also have embedded gene regulatory
network circuitry, and hence trigger further local growth, etc. For example, in
human limb development, local expression of hox genes at the end of the
zeugopod (i.e. the forearm) triggers the development of the autopod (i.e. hand
and wrist; Tamura et al. 2008). In this process, every component is built by
some other neighbouring phenotypic component (with which they also
therefore interact), according to the hierarchical sequence defined in the gene

regulatory network.
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Evolving a Type 2 transition

* 1. Traditional approach:

Time=0 Time=1

Phenotype structure Phenotype structure

(t% G f_;.ﬂg

. ‘ First: evolve -
PhenOtype [ f/ A emergent unit in Phenotype Hierarchy matching
- structure in
Phenotype Hierarchy Phenotype (type AN
3 i J phenotype. Very
\A‘ Bl c| 1 transition) '{C
Gene Structure of gene Structure of gene  order selection
regulation regulatory network regulatory network |
network (o (%o [~ N
* 2. Approach in S2: (Single step)
Time=0 Time=1
Phenotype structure First: Evolve emergent  Phenotype structure
L& unit in gene regulatory ( - %
(% network. Because LA e

. ,  development occurs via
Phenotype & = local interaction in the
Phenotype Hierarchy phenotype, mirrored
ﬂ '8 E structure automatically
4 present in phenotype.
G No need for difficult
ene Structure of gene  econd step.
regulation regulatory network v

network

difficult because
relies on second

Phenotype Hierarchy

Bog

Structure of gene
regulatory network

N
s

Second: evolve

Time=2

Phenotype structure

- !E——&%

Phenotype Hierarchy

85

Structure of gene
regulatory network

R,

RB

KEY

Evolutionary
process

Developmental
process

Figure 8. Comparison of two approaches to evolving a Type 2 transition. With

the traditional approach, the first step is to evolve an emergent,

higher unit in the phenotype by combinatorial exaptation. Here it is

hard to redeploy the unit as a single unit, because the gene

regulatory network (GRN) does not contain a hierarchical structure

mirroring that of the new phenotypic unit. The next step is to evolve

the necessary structure in the GRN; however, this is difficult because

selection on the gene regulatory network is only second order. In

contrast in S2, the new emergent unit is evolved in the GRN first. If

development occurs by local interaction of GRN and phenotype, then

structure in the GRN will often be automatically mirrored in the

phenotype, because regulatory circuits that trigger each other will

often produce physically neighbouring (and thus interacting)

phenotypic components. The result is that often the corresponding

unit will be automatically created in the phenotype due to this

development process, thus avoiding the need for a difficult step of

second order evolution.
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In the example of human limb development, because the gene regulatory
network circuitry that triggers the hand to develop exists within the forearm,
the hand is formed adjacent to (and hence functionally interacting with) the
forearm. In contrast, if the gene regulatory network structure was changed so
that the circuit causing hand development was now triggered by the circuit that
caused leg growth, then the hand would form adjacent to (and hence
functionally interacting with) the leg, instead. In short, in this type of
development process, phenotypic components that are hierarchically related in
development are commonly hierarchically related in their phenotypic
interactions. (However, we must also note that with this type of development
complications can occur that mean that gene regulatory network structure will
not always be exactly mirrored by phenotype structure. Even in a system where
most phenotypic interaction comes about as a result of hierarchical
interactions between their respective triggering circuits in the gene regulatory
network, there is still the possibility that phenotypic components that were not
triggered by directly related gene regulatory network circuits still come to

interact.)

2.4.4 S2 Simulation results

To include this type of decentralised development process in the model, we
introduce the requirement that every enzyme have some local parent structure
in the phenotype that contained the regulatory circuit that triggered its
development (a development trigger module). To encode this, we added two
extra types of regulatory genes, R, and R. R, (an integer value 0< R, <32,
one corresponding to each structural gene) encoded the developmental trigger
module of the given structural gene. Developmental trigger modules could
either be one of the other 15 enzymes (R, <16; the specific value denoted
which enzyme; enzymes could not be their own parent and feedbacks were not
allowed), or some other structure in the genotype (16< R, <32). In accordance
with the development system, enzymes were placed in functional interaction
space neighbouring their developmental trigger module (and hence were
interacting with it), in a direction defined by the enzyme’s R gene (see
methods). If an enzyme’s developmental trigger module was not another
enzyme (16< R, <32), then it was assumed that the enzyme’s development

was triggered by some other structure in the phenotype that was effectively
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developmentally unrelated to other enzymes or structures in the model. In this
case enzymes were placed in functional interaction space according to their

regulatory genes p_and p, asinSl.

Development of an organism therefore occurs by the following process (Figure
9):

e Plot each enzyme that has been correctly evolved and has a
developmental trigger module that is not another enzyme (i.e. 16<
Rdtm<32) in functional interaction space according to its corresponding p,
and p, regulatory genes (i.e. as in S1).

e Plot each correctly evolved enzyme with a developmental trigger module
that is another enzyme next to its developmental trigger module
enzyme, with a direction defined by its corresponding R.

In all simulations, the gene regulatory network began with the same setup as
S1 and C1 (i.e. no enzymes having another enzyme as a developmental trigger

module).
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Figure 9. Genotype-phenotype map of organisms in S2. R, of enzyme 1 is
>15, hence its developmental trigger module is not another enzyme.
Its position in functional interaction space is therefore determined
by R..In contrast, R, of enzyme 2 is 1, indicating that its
development was triggered by enzyme 1. It is therefore placed
adjacent to enzyme 1 in a direction defined by its R (in this case

R =2, signifying a direction of -1,0).

We carried out 100 independent repetitions of the simulation. In all simulations

the complex target C was evolved within 10° generations (mean 118252,
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standard error 7215) by a process of multi-level combinatorial exaptation. This
is statistically significant when compared to either S1 or C1 simulations in
which C, was never evolved within 10° generations (P< 0.001, one sample
Student's t-test). The progress of case study population 2 illustrates the typical
behaviour of this system (Figure 6). In contrast to the previous simulation, in
this case when 4-enzyme metabolic pathways are evolved they are not always
fixed in place in functional interaction space. This therefore allows evolution to
use these metabolic pathways recursively as new units of variation, changing
their arrangement of interactions with each other until the complex pathway C,
is evolved. Given the constraint to the genotype-phenotype map that this
development system implies, evolution can evolve a gene regulatory network
that allows combinatorial exaptation to occur recursively and carry out type 2
transitions, crossing multiple levels of organisation. Let us be clear: Buy this
mechanism, in each simulation the resulting gene regulatory network is
hierarchically modular. That is, when the 16 enzyme pathway is formed, the
system already contains a hierarchical regulatory module that corresponds to
the 16-enzyme pathway, allowing the 16 enzyme pathway to be encapsulated
immediately upon it being formed. This would thus allow the system to
continue to further levels of hierarchy (by combining this 16-enzyem pathway
with other pathways) without any increasing impediment. As such, this
hierarchically modular regulatory module also contains hierarchical
subcomponents that allow it to also encapsulate the smaller, 4 enzyme
subcomponent metabolic pathways too, and would continue to do so as the
regulatory and structural modules evolved, in concert, over progressively
further levels of hierarchy. Again, this is due to the constraints in the system
that the gene regulatory network must carry out development, which has the
effect of ‘locking’ the evolution of the regulatory network and the phenotype
together. Interestingly, this system generates both type 1 and type 2
transitions. As in S1, phenotypic interaction can be caused without any
associated linking of developmental regulatory circuits, resulting in a type 1
transition. In this case the resultant emergent function cannot be encapsulated
and used as a search unit at the next hierarchical level. But phenotypic
interaction can also be caused by regulatory interactions that then result in
phenotypic interactions. It is this possibility that a system of decentralised,
local development introduces, and ultimately that allows combinatorial

exaptation to scale to complexity in this system.
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In summary, we have suggested that a mechanism that links the logical
structure of the gene regulatory network with the physical arrangement of
phenotypic structures can provide an alternative solution to producing an
aligned, modular gene regulatory network that does not rely on second order
selection of the gene regulatory network. We have further shown that this
process could enable evolution by joining functions to occur recursively over
multiple organisational levels by providing a recursive mechanism of modular
encapsulation. Furthermore, we have suggested a possible way in which
constraints of natural systems, in the form of an ontogenetic development
process that occurs by local growth, can provide such a link between gene

regulatory network and phenotype structures.

2.4.5 The effect of genotype-phenotype map evolution on the fitness

landscape

The differences between simulations S1, C1 and S2 show how having an
aligned, modular genotype-phenotype map can enhance evolvability, and
enable combinatorial exaptation by enabling encapsulation of complex
phenotypic functions. Previous work shows that such a genotype-phenotype
map enriches the local genetic neighbourhood with fit phenotypes that are

modular reorganisations (e.g. Parter, Kashtan, and Alon 2008).

To study this further, we use our model to directly observe how different
genotype-phenotype maps (modular aligned, non-modular and modular
misaligned) reorganise the resulting fitness landscape (simulation GP1). To
achieve this, we carried out evolution in the conditions of simulation S1 (i.e.
with a non-modular genotype-phenotype map). We allowed evolution to
continue until an organism in the population (O, ) had evolved all four 4-
enzyme metabolic pathways. At this point, as in S1 simulations, the lack of an
encapsulation mechanism prevented evolution from redeploying any of those
pathways in functional interaction space, thus preventing combinatorial
exaptation to continue recursively. To understand what, in terms of the fitness
landscape, was preventing O__ from continuing combinatorial exaptation
recursively, at this point we froze the simulation and then took a snapshot of
the distribution of phenotypes in the local genetic neighbourhood (centred on

O__) that were equal or greater than the fitness of O __ (Figure 10).
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Figure 10. Main chart: Frequency distribution of neutral or fitter genotypes in

the fitness landscape from a starting genotype that had evolved all 4
enzyme metabolic pathways (Cq, C, C, C) given three different
genotype-phenotype maps. Given a ‘direct mapping’ genotype-
phenotype map that does not alter the existing landscape (Non
modular, blue columns), the fitness landscape is highly rugged, but
with a clear structure: all fit or neutral genotypes are 4 mutations
apart, because each 4-enzyme pathway requires 4 simultaneous
mutations to redeploy. Given a hierarchically modular, aligned
genotype-phenotype map (red columns), single mutations can have
hierarchical effects on the phenotype, moving whole integrated 4-
enzyme pathways as single units. This removes the need for four
simultaneous mutations to redeploy 4-enzyme pathways. As a result,
the landscape is transformed, condensing the distributed pattern of
fit phenotypes into the local neighbourhood, and removing its
ruggedness. This illustrates that a modular aligned genotype-
phenotype map uses a heuristic to exploit existing structure in the
fitness landscape to remove ruggedness and enrich the local
neighbourhood with fit, modular reorganisations. Finally, given a
modular genotype-phenotype map in which genotypic changes are
not hierarchically aligned to phenotypic modules, the fitness
landscape is transformed to be even less hospitable than having no
map at all (green columns). Top right: Zoomed in section of the

same chart for the local mutational neighbourhood.
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The blue columns in Figure 10 show the distribution of phenotypes that are as
fit or fitter than the current phenotype, O_, as we move away from O__in
genotype space. It is clear that there is a distinct pattern to this distribution:
neutral or fitter phenotypes only occur at multiples of 4 mutations away. This
is because at this stage of evolution, the only fitter or neutral forms are those
that involve modular redeployment of whole 4-enzyme pathways, which with a
non-modular gene regulatory network, requires 4 simultaneous mutations. To
understand how a modular, aligned genotype-phenotype map resolves this
problem, we then replaced the genotype-phenotype map of O_ with a modular,
aligned genotype-phenotype map that enabled redeploying 4-enzyme pathways
with single mutations (see methods), and then took a new snapshot of the
distribution of phenotypes in the genetic neighbourhood (red columns, Figure
10). The results graphically illustrate how a modular, aligned genotype-
phenotype map reorganises genotype space: It uses inherent structure in the
fitness landscape to systematically remove its ruggedness, enriching the local
neighbourhood with fit modular reorganisations. Finally, to observe the effect
of genotype-phenotype map alignment on the fitness landscape, we replaced
the genotype-phenotype map of O__ with a modular genotype-phenotype map,
but where the modules were purposefully misaligned with phenotypic modules
(green columns, Figure 10). The results show that having a misaligned modular
genotype-phenotype map actually decreases evolvability in the fitness
landscape, shifting the distribution of fitter phenotypes to a greater distance

away.

2.4.6 Supplementary results

Experiments were conducted to test the sensitivity of the results to simulation
parameters, keeping all other parameters fixed (Figure 11). Parameter values
were set to those described in all other experiments (population size S=50,
truncation point L=10, and mutation rate Pm=0.006) unless described
otherwise, and with a fitness function, selection pressures and genotype-
phenotype map as described in S2 experiments. Each data point represents the
mean of 10 simulations, and error bars represent standard deviation.
Simulations were also carried out using a hill-climber algorithm rather than a
population for all experiments. This had no qualitative effect on the results

when compared to the results with a population.
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Figure 11. Charts showing the sensitivity of S2 results to simulation

parameters.
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2.5 Conclusions

In summary, by analysing existing theories of evolution of complex functions,
and in particular, evolution by combining functions, we defined a new
theoretical framework for evolution by combining functions. This framework
builds numerous bridges between the largely separate theories of exaptation,
building-block evolutionary algorithm models, and tinkering. It identifies a new
type of exaptation (for which we suggest the term ‘combinatorial exaptation’)
that we propose is the central mechanism behind processes of evolution by

combining functions.

We developed a transparent computational model of combinatorial exaptation
to complement our theoretical framework. This model supports previous work
showing that joining functions requires some extra evolvability machinery
beyond that of ENS alone. Specifically, we showed that evolution requires some
mechanism of encapsulation that allows new emergent modules to be
reorganised in the phenotype as a single, coherent unit - and that this need is
caused by the actions of burden/internal selection. The model shows that an
aligned, modular genotype-phenotype map can enable this by removing
systematic ruggedness in the fitness landscape, thus creating a local genetic
neighbourhood of fit, modular phenotypic reorganisations - importantly, some
of which may produce emergent higher level functionality, and hence allow

combinatorial exaptation.

The model also shows that combinatorial exaptation can occur recursively,
scaling across multiple levels of organisation, if genotype-phenotype map
evolves in parallel with combinatorial exaptation in the phenotype, enabling
continual, recursive reorganisation of the fitness landscape. We then showed
that this problem can be resolved if there is some factor that causes the
evolution of gene regulatory network structure and phenotype structure to be
(to some extent) causally linked, because in this case new regulatory modules
can potentially be formed in concert with new phenotypic modules. We then
illustrated that this can occur if development is constrained to occur in a
simple, decentralised manner of local growth, as commonly occurs in natural
organisms. As an aside, this therefore also provides a new mechanism to
explain the modular nature of biological gene regulatory networks that does

not rely on a modularly varying environment.
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In general, this work implies that a sufficient mechanism of encapsulation
could be an important and under-represented component from the current
theory of evolution that helps enable the evolution of complexity in nature -
and in particular, that a decentralised process of ontological development may

be sufficient to provide such a mechanism.

Although we have presented a possible mechanism by which combinatorial
exaptation can occur recursively, and given some brief argument as to how this
might come about in nature, it would be useful to model this in more detail,
where development occurs more explicitly, thus allowing comparison of how
different types of development affect the evolvability of the resulting gene
regulatory networks. It would also be interesting to explore the effects of
combinatorial exaptation when selection pressures are not all present in a

single environment, but are spread over a heterogeneous spatial environment.

2.5.1 Key Results

The key claim of this chapter is that

As joined functions become more complex, increasing ‘burden’ in the
form of ‘internal selection’ places limits on evolution by combining
functional building blocks, but an ontological development process
that occurs by local growth, as present in most complex biological
organisms, can resolve this problem allowing building blocks to be
combined recursively over multiple levels of organisation in a scalable

fashion.

This claim is supported by the following results:

e Evidence that ‘burden’ in the form of ‘internal selection’ places
limits on evolution by combining building blocks is provided by S1
simulation results, in which the 4-enzyme metabolic pathways were
evolved, but were never able to be combined to find the complex
target function, and illustrated in Figure 6.

e Evidence that an ontological development process that occurs by
local growth can resolve this problem is provided by S2 simulation

results, in which evolution with such a development process was
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consistently able to evolve the target 16-enzyme metabolic pathway
by combining level 2 components, and illustrated in Figure 6.

e Control experiments showing that such an ontological development
process is the key factor that enables evolution of the target 16-
enzyme metabolic pathway, (and that simply allowing the gene
regulation network to evolve its own hierarchical structure given a
top-down development process is not sufficient) is provided by

simulation C1.

2.6 Methods

Genome structure. (S1, GP1): Organisms had 16 structural genes, each
encoding one enzyme, and 16 regulatory genes (Rp) that encoded the
interactions between those enzymes. Each structural gene had 10 binary loci;
an enzyme was evolved when the 10 loci in its structural gene matched a
predefined bit string. Each structural gene had a corresponding R, regulatory
gene that determined the position its respective enzyme in functional
interaction space. Each R gene consisted of two integers, O<p, p<9. The
values of p_and p, corresponded to the x and y position respectively of the

function of their structural gene in functional interaction space.

(C1): Genome structure in C1 was identical to that in ST except that each
structural gene had one extra corresponding regulatory gene (R, ). Hence in
C1 each structural gene had two regulatory genes (R, and R, ), resulting in a
total of 32 regulatory genes per organism. R encoded which structure in the
phenotype triggered the local developmental circuitry to build the given

enzyme during development. It was represented by an integer 0< R, <32.

(S2): Genome structure in S2 was identical to that in S1 except that each
structural gene had two extra corresponding regulatory genes (R, and R).
Hence in S2 each structural gene had three regulatory genes (Rp, R, and R),
resulting in a total of 48 regulatory genes per organism. R, encoded which
structure in the phenotype triggered the local developmental circuitry to build
the given enzyme during development. It was represented by an integer

O0<R, <32. R was an integer (0< R <5) that encoded the direction in functional
interaction space in which the given enzyme was placed adjacent to its

developmental trigger module (see below).
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Phenotype and genotype-phenotype map: (S1) The phenotype of each
organism was represented by a 9x9 grid (i.e. functional interaction space) that
displayed the interaction of its evolved enzymes. Enzymes plotted as a
coloured dot in functional interaction space once they were evolved. Enzymes
that had been evolved and were neighbouring in functional interaction space
were interacting, and hence could possibly form metabolic pathways (Figure 3).
Multiple enzymes could not occupy the same position in functional interaction
space (mutations that caused this were disallowed). The genotype-phenotype

map for S1 simulations is described in Figure 3.

(S2): Phenotype and genotype-phenotype map structure in simulation S2 was
identical to that in ST except for the action of the extra regulatory genes, R
and R. These genes were included to account for a development process that
occurred by local growth, and hence locally triggered developmental circuits. In
S2 every enzyme had a developmental trigger module, defined by R, .
Enzymes were placed adjacent to (i.e. interacting with) their developmental
trigger module in functional interaction space. This represented the notion that
because development was triggered and then occurred locally, enzymes would
be built next to, and hence interacting with, the phenotypic structure that
triggered their development (i.e. their developmental trigger module). The
direction in which the enzyme was placed with respect to its developmental
trigger module was determined by the enzyme’s corresponding R regulatory
gene. The value of R (1, 2, 3, or 4) corresponded to a shift in functional
interaction space of (+1,0), (-1,0), (+0,1), (-0,1) respectively with respect to the
enzymes developmental trigger module. If an enzyme had a corresponding R,
> 15, the developmental trigger module was not another enzyme, and hence
functional interaction space position of the enzyme was determined by R inan

identical manner to S1.

C1: Phenotype and genotype-phenotype map structure in the simulation C1
was identical to that in S1 except that hierarchical regulatory interactions were
allowed to evolve in the gene regulatory network. This was achieved by
allowing regulatory genes to evolve regulatory interactions with other
regulatory genes, in a similar manner to S2: Each enzyme was allowed a single
hierarchical parent enzyme to be linked to in the gene regulatory network, not
allowing feedbacks. The enzyme then calculated its position in functional

interaction space (using its own P and Py) genes relative to its parent’s position
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in functional interaction space, instead of the origin. (Mutations that caused
enzymes to have positions outside of functional interaction space were not
allowed). The result was that hierarchical gene regulatory networks could
evolve, in that changing the P or P regulatory genes of a given enzyme could
affect multiple other enzymes in a coordinated manner, similar to S2. However,
the key difference between S2 and C1 is that in C1 there was no enforcing of
local growth, and so, for example, enzyme A that was linked in the gene
regulatory network to enzyme B was not forced to develop in the phenotype
adjacent to that enzyme, and hence was not placed adjacent to it in functional
interaction space. As a result, C1 lacks the inherent link between gene

regulatory network structure and phenotypic interaction present in S2.

GP1: The non-modular genotype-phenotype map used in this simulation was
identical to that in S1 simulations. For the aligned modular genotype-
phenotype map, we began with the non-modular genotype-phenotype map
used in S1 simulations, and then for each group of 4 enzymes in a given 4-
enzyme metabolic pathway, we assigned one as a ‘master’ enzyme that the
others in the group took their positions in functional interaction space relative
to. The result was that regulatory mutation of any of these four master
enzymes caused systematic redeployment of the other three enzymes in the
respective metabolic pathway of the master enzyme. For the misaligned
modular genotype-phenotype map, we began with an aligned modular
genotype-phenotype map, but then ensured that each of the three enzymes
that took their locations from a given master enzyme were not in the same

metabolic pathway as the master enzyme.

Mutation and selection: Mutation and selection occurred in same manner in
all simulations. Mutation occurred by point mutation, according to the per
locus mutation rate P =0.006. Mutation occurred caused a bit flip for binary
loci, and random reassignment to a new value (within the valid bounds) for
integer loci. Selection occurred via truncation selection, the population size
was fixed at M=50 and evolution occurred in a generation manner. Specifically,
for each generation, the fitness of each organism was calculated, and the
fittest L=10 organisms were selected for reproduction, and the remaining
organisms were discarded. (If all organisms in the population had equal fitness
then organisms were chosen at random from the population for reproduction.)

An empty population was then created. Reproduction occurred by randomly
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choosing an individual from the L fit organisms and placing a copy in the new
population, after which the new organism underwent mutation. This was
repeated until the new population reached size M=50. In each simulation,

evolution continued for 10° generations, or until C was evolved.
Fitness function:

In all cases, the total fitness, F, of an individual takes the general form:

F= Z{\I:lfi Equation 1
fi = _ Lif|Ci| =0 Equation 2
1 l_[;:llcil(fci,j), otherwise

where N is the total number of selection pressures present in the environment,
f is the fitness contribution for the ith function (i.e. that satisfies the ith
selection pressure), C is the set of components that make up the ith function,
fCM is the fitness contribution of the jth component of the ith function, and A
is a Boolean function that specifies the interaction arrangement that the set of
components in C must satisfy in functional interaction space to operate
correctly; A=1 if satisfied and A=0 otherwise. Details of the specific selection

pressures are detailed in table 2, below.
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Selection pressures | {s,, sp ... Sy}

16-enzyme Cu ={Cq.Cr Cs, C}; A, =D
metabolic pathway

4-enzyme metabolic Cq = {Ca Cp, Cer Ca); Ag =D
pathways Cr ={Co, G, Cy, Cr); A, =D
Cs ={Ci,Cj, C, 1} Ag =
Ce = {Cn Cn, G, C}; A, =13
Enzymes Ca = {Xa1, %02 - Xa10}; Ag = 1111111111

Cp = {Xp1, Xp2 - Xp10}; Ap = 1111111111

Cp = {xp1,%p2 - Xp1o}; Ap = 1111111111

Structural gene loci | Cy,, ={}

Table 2. Description of selection pressures in all simulations.

The fitness function was the same in all simulations. It contained 21,
hierarchically organised selection pressures (S -S ) that corresponded to 21
possible fit functions. For each of these functions that a given organism was
able to perform, the organism received a (+1) fitness bonus. All functions were
non-decomposable; i.e., fitness bonuses were only awarded if the conditions

necessary to carry out the given function were met exactly.

The first 16 of these functions (Ca-Cp) were the simplest. They corresponded to
evolving individual enzymes. To receive the fitness bonus for evolving any of
these 16 functions, all loci in the structural gene corresponding to that

particular enzyme had to exactly match a predefined target 10-bit string.

The four next most complex functions (C,-C) were four-enzyme metabolic
pathways. To receive the fitness bonus for any of these given pathways, an

organism must have correctly evolved all four of its component enzymes and
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have them organised into a particular arrangement of interactions in functional
interaction space (specifically, a square formation - Figure 5). The final
function, C, was the target of evolution. To receive the fitness bonus for C,
organisms were required to have all 16 enzymes evolved and arranged into a
particular arrangement of interactions in functional interaction space
(specifically, a hierarchical 16 enzyme square composed of four neighbouring
smaller squares of 4 enzymes each - Figure 5). This interaction arrangement
represented having each of the 4-enzyme metabolic pathways (Cq-Ct) arranged

in a particular neighbouring arrangement.
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Chapter 3: Homeogenesis

3.1 Introduction

In this chapter we temporarily change our focus from the general question of
how evolution evolves complexity to instead focus on exploring the properties
and behaviours of a particular boundary case of combinatorial exaptation.
Although this is a sidestep from the general question of complexity, it
addresses some other deeply related open questions, and will help to provide a
foundation for further theoretical work on the origins of complexity in chapter
4.

The particular phenomenon that we focus on this chapter is that many
biological organisms contain conserved internal conditions within their
metabolisms that appear to correspond to ancient environments in which their
ancestors lived. For example, the chemistry of the cell interior is thought to be
comparable to the early oceans, or geothermal vents, in which life began
(Macallum 1926; Mulkidjanian et al. 2012). So far, however, there has been
little discussion about how such internalised ancestral environments are
incorporated during evolution, or why they are preserved. Here we attempt to
address this problem. We present a hypothesis that a form of combinatorial
exaptation can cause internalised ancestral environments, and hence could
help to explain this phenomenon. We support this hypothesis with biological

examples and a computational model of metabolic network evolution.

3.2 Background

In 1926, Archibald Macallum noted that although many organismal fluids, such
as blood and lymph, have similarities with seawater, indicating that the first
animals emerged in the sea (Mulkidjanian et al. 2012; Macallum 1926), the
inorganic composition of the cell cytosol dramatically differs from that of
modern sea water. Macallum thus insightfully reasoned that “the cell... has
endowments transmitted from a past almost as remote as the origin of life on
earth” (Macallum 1926). Macallum’s insight has been summarised as a
‘chemistry conservation principle’: the chemical traits of organisms are more

conservative than the changing environment and hence retain information
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about ancient environmental conditions (Mulkidjanian et al. 2012; Mulkidjanian
and Galperin 2007). For example, the highly reduced state of the cytoplasm,
even in organisms that dwell in oxygenated habitats, indicates that the major
biochemical pathways were fixed before the atmosphere was oxygenated as a
result of the activity of cyanobacteria approximately 2.4 billion years ago, so
that substantial modification of these pathways in response to the oxygenation
of the atmosphere was impossible (Mulkidjanian et al. 2012). Instead, cellular
life forms have evolved numerous energy-requiring membrane transport
systems to sustain redox and electrochemical gradients between their interior
and the environment (Mulkidjanian et al. 2012). Thus Macallum’s work has
resulted in a view that a major trend in evolution is the development of
increasingly sophisticated mechanisms whereby the internal environment is
protected from the external world (Gross 1998). This idea of a conserved
internal environment over evolutionary timescales has echoes of homeostasis -
indeed, Macallum was strongly influenced by the work of Claude Bernard, who
first described the concept (Bernard 1865; Gross 1998). However, unlike
homeostasis, which is controlled by behaviours and small functional changes,
and occurs in the lifetime of a single organism, Macallum’s chemistry
conservation principle occurs over multiple generations, and is controlled by
largely unknown factors within evolution. What causes Macallum’s chemistry
conservation principle, or how it results in the incorporation of internalised

ancestral environments during evolution is poorly understood.

The main objective of this chapter is to present and investigate a hypothesis
that a particular type of functional adaptation based on combinatorial
exaptation - that we term homeogenesis - could be responsible for internalised
ancestral environments in some biological organisms. In short, homeogenesis
is similar in concept to homeostasis, in that it is a biological process that
maintains a constant environment within the organism - but unlike
homeostasis, it occurs over evolutionary time, and operates by evolving extra
functionality for the phenotype to maintain its conditions, as opposed to
maintaining conditions by functional changes that occur within a single
phenotype (e.g. temperature regulation, pH regulation etc.; Cannon 1935;
Cannon 1929; Bhagavan 2002).
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The remainder of this chapter has been divided into 4 parts. In part 3.3 we give
a verbal description of the mechanism of homeogenesis, and describe how it
can systematically cause environmental internalisation. In part 3.4 we present
the evolution of C, photosynthesis as a case study for evidence that
homeogenesis has caused internalised ancestral environments in biological
evolution. In part 3.5, we concretise the verbal model of homeogenesis by
providing a transparent, abstract computational model that illustrates some
conditions in which internalised ancestral environments are incorporated in
evolution. Finally, in part 3.6, we draw conclusions and discuss possible further

work.

3.3 An extreme and simple example of homeogenesis

To address the question of how internalised ancestral environments could be
generated in evolution, in this section we will describe the process of
adaptation by homeogenesis and examine its capability for generating

internalised ancestral environments.

Homeogenesis is best understood by considering an extreme and unrealistic
case in which the dynamics are very clear. Imagine a simple organism whose
metabolism requires a certain set of chemical inputs. An example could be a
bacteria living in a hydrothermal vent. Suppose that its metabolism has so
many internal dependencies that it is very difficult to change without breaking
it. Now suppose that the makeup of the environment changes slightly, but
enough that the organism’s metabolism will no longer function given the new
inputs. In this worst case, there is no reasonable evolutionary path to change
the existing metabolism to make it work with the new inputs, because any
small change breaks dependencies causing the metabolism to break. A better
option is to leave the existing metabolic functionality alone and instead change
the metabolic inputs - i.e. the environment - back to a state in which the
existing metabolism can use them (e.g. change them back to their previous

state).

One way to achieve this is by altering the external environment - that is, by
‘niche construction’ (Odling-Smee, Laland, and Feldman 2013). However, in
many cases this will not be possible. For example, given the constant flux of

materials in our hydrothermal vent example, any changes to the external
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chemical environment caused by the organism would be quickly swept away.
However, there is another way to change the external environment. The
organism could evolve a new, internal metabolic function that acts as an
internal environmental ‘adapter’ between the external environment and the
organism’s existing metabolic network (which is left alone). The new adapter
function (for example, a new enzyme) ‘converts’ the new, inhospitable
environmental conditions back into the old, hospitable conditions within the
organism immediately before they are then used as inputs for the organism’s
existing metabolic network. After all, the existing metabolic network already
works with this old input, and so providing an adapter will ensure its continued
functionality. The principle is similar to taking an electrical appliance abroad,
where the electricity voltage is different: rather than changing the fundamental
internal workings of the appliance, it is much easier to simply add a voltage
adapter to the end of the power cable, providing the existing functionality with
the input environment that it ‘expects’. In our biological example, the bacterial
organism could evolve a simple catalysis step that internally converts the new,
offending chemical constituents back to their previous state so that they can
be used with the existing metabolic network. By doing this, the negative effect
of the environment change has been nullified, but the existing metabolic

network left alone, and the external environment has not been changed.

How does homeogenesis imply internalised ancestral environments?
Importantly, for successful adaptation by homeogenesis, the output of the new
‘adapter’ function must match the relevant conditions of the previous external
environment, because these are the conditions required by the unchanged,
existing metabolic network. The result is that adding an adapter function to
‘undo’ a recent environment change has the effect of making an internal re-
creation of the organism’s previous external environment within the
organism’s metabolism. In other words, homeogenesis systematically creates

internalised ancestral environments.

To flesh out the details of homeogenesis, we can ask a number of further
guestions. First: How does homeogenesis compare to existing mechanisms of
adaptation? Homeogenesis is subtly different form of adaptation than
‘traditional’ adaptation (in which the existing functionality is changed (Ridley
2009; Orr 2005) - e.g. as described in the classic example of evolutionary

adaptation, the peppered moth (Grant 1999), because during homeogenesis
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the organism’s existing functionality remains unchanged. Nor is homeogenesis
niche construction, because during homeogenesis the external environment
(external to the organism) remains unchanged. Accordingly, we can estimate
when homeogenesis is likely to occur: because it offers an alternative route to
evolution when neither the environment nor the existing functionality can
reasonably be changed, it stands to reason that homeogenesis is more likely to

occur in situations of high environmental and functional constraint.

Finally, how does homeogenesis relate to combinatorial exaptation? In our
example of homeogenesis, an adapter function is joined to the existing
metabolic network. Although the adapter function is small, and the metabolic
network large, this still represents a case of combinatorial exaptation: we
combine two functional components in a specific manner of interaction, and
they produce a new, emergent functional entity capable of functionality that

neither of the individual components were capable of.

In summary, homeogenesis is a mechanism of adaptation that occurs by
adding internal adapter functions at the interface between the existing
metabolism and external environment. In doing so, it generates internal re-
creations of environmental conditions within the metabolism. These
internalised ancestral environments are then preserved within the organism
because they perform necessary metabolic functions, given the new external

environment.

The verbal description of homeogenesis provides a conceptual framework that
describes how such a mechanism could theoretically occur in biological
evolution. To strengthen this case, in section 3.5 we formalise this verbal
argument into a computational model that we use to test the hypothesis that
evolution under certain types of constraint will result in the incorporation of
internalised ancestral environments. A more substantial case for homeogenesis
would require examples of the process occurring in biological evolution. In the
next section, we will describe evidence that the evolution of C, photosynthesis

occurred by a process of homeogenesis?.

? (We thank Ros Rickaby for the suggestion that C, photosynthesis evolution

could be an example of homeogenesis).
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3.4 A biological example of homeogenesis

Plants assimilate carbon by one of three photosynthetic pathways, commonly
called the C,, C, and CAM pathways (Edwards and Walker 1983). The C,
photosynthetic pathway represents a modification of C. metabolism that is
most effective at low concentrations of CO,. C, plants are thought to have
evolved in response to a reduction in atmospheric CO, that began during the
Cretaceous (~100 million years ago) and continued until the Miocene (~20
million years ago; Ehleringer et al. 1991). Carbon fixation in C, plants occurs
via a cycle of chemical reactions called the Calvin cycle. At low CO,
concentrations the Calvin cycle becomes increasingly inefficient due to
increased photorespiration - an unwanted alternative reaction pathway that
apparently has no useful function (Edwards and Walker 1983). Thus the long-
term reduction in atmospheric CO, represented a serious problem for C, plants
(Ehleringer et al. 1991).

Here niche construction is not possible; a single plant cannot hope to change
the global CO, concentration. Another potential solution to this problem is
traditional adaptation - i.e. changing the existing photosynthesis metabolism.
If it were possible to fundamentally alter the Calvin cycle to somehow be more
efficient at low CO, concentrations, this would solve the problem of
photosynthesis with decreasing CO,. But the Calvin cycle is a complex cyclical
chain of contingent chemical reactions; it is deeply constrained by what
alternative reactions are available by mutation, or even possible according to
chemistry. Furthermore, it is a process of carbon fixation, and CO, is the
source of this carbon. It is in this sense highly dependent on the concentration
of CO, (Ehleringer et al. 1991; Edwards and Walker 1983).

Irrespective of whether it is possible to change the Calvin cycle in this way, this
was not the solution adopted by evolution. Rather than alter the Calvin cycle,
the C, pathway instead added a new cycle of reactions that sit ‘in between’ the
external low CO, environment and the Calvin cycle. These new reactions have
the effect of dramatically increasing the CO, concentration internally within the
leaf, thus providing a new, high CO, internal ‘input’ environment for the
normal C, photosynthetic cycle (Edwards and Walker 1983; Ehleringer et al.
1991; Figure 12).
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Figure 12. The C,and C, photosynthetic cycles. The C, cycle evolved first. It is a
simpler process, but is less efficient at times of low atmospheric CO,
concentrations. The C, cycle evolved in response to a long-term
reduction in atmospheric CO, concentrations. It introduces a new
cycle of chemical reactions that change the input to the existing C,
cycle, while the C, cycle itself is left unchanged. The new cycle of
reactions have the effect of dramatically increasing the input CO,
concentration to the C, cycle, making C, plants more efficient at low

atmospheric CO, concentrations.

Effectively, C, plants responded to environment change by evolving a new
environmental ‘adapter’ that recreated their previous environment internally -
and then used this internalised environment as an input to their existing
functionality. C, plants undertook homeogenesis. As a result, they contain an
internal record of a previously inhabited environment, stored within their

metabolism (Figure 13).
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Figure 13. C, photosynthesis evolution as a process of homeogenesis causing
environmental internalisation. The new chemical cycle evolved in C,
photosynthesis (green box) increases the CO, concentration
internally within the leaf, providing new, high CO, input environment
(blue box) for the existing C, cycle. This occurred in response to
decreasing atmospheric CO, concentrations. C, plants evolved
machinery to recreate a past fit external environment (i.e. with a
higher concentration of CO,) internally within the leaf. This is

therefore an example of environmental internalisation.

3.5 A model of metabolic evolution

3.5.1 Aim

We have simulated a simple and extreme example of this kind of interaction
between environment change and evolution. The aim of this model is to

provide a concrete illustration of homeogenesis, and to explore its properties.
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3.5.2 Methods

The model is of simple organisms (e.g. bacteria) evolving their metabolic
networks to cope with environment change in a spatially heterogeneous
environment (e.g. a hydrothermal vent). Chemistry in the system is based on a
simplified chemical reaction network of possible reactions that contains 36
chemical compounds (S,-S,) and 120 (one-way) reactions that convert between

those compounds. The network is laid out in a grid formation. (Figure 14).

Figure 14. Figure illustration of the chemical reaction network abstraction in
the model. Chemical reaction networks define which chemical
reactions are possible according to reaction chemistry. (1) An
example section of an organic chemistry reaction network. (2) Such
networks are commonly abstracted to a network of states (e.g.
compounds, s, s,... s ) and reactions (i, i,...i ) that determine
transformations between states. (3) In the model we use a simplified
chemical reaction network that can be described as a matrix of

compounds and reactions.

All organisms were based on the same, fixed replicator (analogous to how all

known life has DNA as a central replicator) that requires a specific set of 18
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chemical compounds to reproduce. This represents a fixed output requirement
for all organisms’ metabolisms that remains the same regardless of the
chemical makeup of the organisms’ external environment. Organisms evolved
across a heterogeneous spatial environment, consisting of 7 neighbouring
niches (N -N) arranged in a line. Each niche contained a different set of 18
chemical compounds from the 36 available. Most niches (all but the initial
niche, N) did not contain the specific 18 compounds required by the
organisms’ replicator. As a result, to survive in each niche, organisms had to
evolve a suitable metabolic network that could produce the chemical
requirements of its replicator from the compounds in the external

environment.

Each organism had a linear genotype containing a variable number of genes.
Those genes specify a metabolic network in the following manner. Each gene
codes for one of 120 possible catalysts (one per possible chemical reaction).
The genome is transcribed in order, one gene at a time, proceeding along its
length. The set of chemical compounds in the organism’s niche is used as the
input to its metabolic network. As each catalyst is transcribed, the specific
chemical reaction that it enables is carried out on this set of compounds, if the
input molecule is present. Thus the organism’s metabolic input is therefore
changed, sequentially, by the sequence of catalysts that the organism’s
genotype produces. The result is a metabolic network of sequential chemical

reactions.

If the output of the organism’s metabolic network was the specific fixed target
set of 18 compounds required by the organisms’ replicator, then the organism

could survive and reproduce in that niche. Fitness was calculated according to:
F=max (0, Fs - Fn)

Where Fis the fitness of the organism, Fs=40 if the organism’s metabolic
network produces the target set of compounds and 0 otherwise, and Fn is the
number of genes expressed in the phenotype, representing the energetic cost
of producing each catalyst. Each gene also contained a binary switch that
determined whether or not it was transcribed. Genes that were not transcribed

did not incur this energetic cost.
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Figure 15. Mapping of genotype to phenotype in the model. Each gene encodes
a different catalyst, and each catalyst catalyses a single
(unidirectional) chemical reaction from the chemical reaction

network.

Each niche had a maximum carrying capacity of 200 organisms. Each
simulation began with a single organism in niche N, situated at the end of the
chain of 7 niches. N always contained the 18 chemical compounds required by
the replication machinery. Accordingly, no metabolic network was required to
survive and reproduce in N. The initial organism began with an empty
genome. New niches were occupied by there being a fixed probability of 0.2
that any given organism’s offspring would be placed in a randomly chosen

(with uniform probability) neighbouring environment.

Each gene iwas represented by an integer (0<X<120) that corresponded to a
specific chemical reaction in the network of possible reactions (defining which
reaction the gene catalyses) and a binary genetic switch B, whose value
determined whether or not the gene was transcribed (0=not transcribed,

1=transcribed).

97



Chapter 3: Homeogenesis

Environment 1: O : S S ) O

f P
1515 84, 8¢ Sy1 5

Chemical reaction: s,=»s,

{ S !
1525 845 865 S115

Environment 2: S O S, < O

Figure 16. In the model an environment was defined by a particular set of
chemical compounds (green circles are present compounds; in the
environment 1, compounds S,» S, S, and s, are present). During
development, genes are read in sequence from the genome. If the
chemical reaction that the catalyst made by the current gene is
possible, given the current environment (i.e. if the relevant
compound is present), then the reaction will occur and environment
change will have occurred. For example, given environment 1 in the
presence of a catalyst that catalyses the reaction S1=S2, compound
s, is present in the environment 1, and so this reaction occurs,
resulting in environment change, the result of which will be

environment 2.

There was a fixed per-genome mutation rate of R =0.01. With equal
probability, mutation either (a) added a new gene in a random position in the
genome, (b) removed a random existing gene, or (c) randomly altered an
existing gene. Gene alteration involved, with equal probability, either randomly
selecting a new value for X with uniform probability, or performing a bit flip on
B. During each generation, for each niche, if there were any organisms in that
niche with non-zero fitness, then those organisms were selected for

reproduction according to (linear) fitness proportional selection, until =200
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offspring had been produced. All non-offspring organisms were then

discarded.

Simulations were conducted using two extreme types of environment change:
Serial, where sequential environment changes are a series of interdependent
events, such as a chain of reactions (e.g. A=B, B=C, etc.), thus making the
difference between adjacent niches interdependent, and parallel, where
sequential environment changes are not dependent on each other (e.g. A=B,
X=Y), making the difference between adjacent niches independent of each

other.

3.5.3 Results and discussion

3.5.3.1 Simulation 1: Metabolic pathways evolved via a sequence of
environments contain more ancestral environments than

random pathways

We used the simulation to explore homeogenesis in two main ways. First, we
looked to test the extent to which homeogenesis caused and preserved
internal ancestral environments. To achieve this, we defined a sequence of
gradual, serial environment change between niches 1-7 (Figure 17). The
shortest possible metabolic pathway that could convert the set of chemical
compounds in niche 7 into those in niche 1 (i.e. the target set of compounds)
and hence allow survival and reproduction had 6 reaction steps. There were 20
possible 6-step pathways. We began the simulation with a single organism in
niche 1. After all niches were populated, we then sought to measure the mean
number of internalised ancestral environments - that is, steps in those
organisms’ metabolic pathways that corresponded to the precise chemical
makeup of niches they had previously visited (i.e. niches 2-6). We did not
include niche 1 or 7 as internalised ancestral environments because all viable
organisms would by definition contain the chemical makeup of niche 1 in their
metabolisms (because it was the target) and niche 7 was the external
environment. As a control, we analytically calculated the expected number of
internalised ancestral environments contained by a randomly selected
metabolic pathway form the 20 possible pathways. To obtain a value for
evolved pathways, we carried out evolution from a single organism in niche 1;

in all runs, we waited until 1000 generations after niche 7 had been populated,
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and then measured the mean number of internalised ancestral environments of
all organisms with 6-step metabolic pathways in that niche. We carried out 100
repetitions of this simulation and averaged the result across these repetitions.
Results are displayed in Figure 18. We found that evolved organisms generally
had a much greater number of internalised ancestral environments than found
in random viable pathways of the same length (evolved pathways = 4.47,
standard error 0.064; analytical expectation from random pathways = 1.4;

P<0.001 one sample Student’s t-test).

Serial environment change
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Figure 17. Diagrams showing the two spatial environment sequences used in
the model. Each grid represents the chemical reaction network of
available reactions, and the green circles are chemical compounds
that are present. As such, each grid represents a specific set of
chemicals present in a given environment. With serial environment
change, only one chemical compound is changed as the
environment is traversed, but that compound becomes progressively
further away from its original location on the chemical reaction
network. The blue box illustrates 3 of the 20 possible 6 step
pathways that can convert the environment of niche 7 back into
niche 1 (and hence allow survival and reproduction). In the far right

example, three of the intermediary steps correspond to the chemical
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makeup of environmental niches previously visited (niches 2, 3 and
6), which are therefore counted as internalised ancestral
environments. The effects of parallel environment change was

compared to the effects of serial change in simulation 2.

Mean IAEs
o = N w =
(V2] - (9] N (9] w (V2] N (U]
1 1 1 l 1 | | 1 1

Evolved viable Random viable
pathways pathways

Figure 18. The mean number of internalised ancestral environments in evolved
viable pathways is much greater than the analytically calculated
expected value of a randomly selected viable pathway of the same
length (P<0.001, one sample Student’s t-test). This chart compares
6-step pathways viable in niche 7; the value for evolved pathways is
the mean in the population 1000 generations after niche 7 was
populated, averaged over 100 simulations. The random pathway
value is the expectation (i.e. mean) internalised ancestral
environments of all 20 viable 6 step pathways in that niche. Error
bars show standard error. There are no error bars for the
expectation from random variable pathways because this is an

analytical result.
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Figure 19. Changes in population size over time in the case study population.
Population size (of organisms with >0 fitness) increases in a
stepwise manner as successive niches are colonised in events of

adaptive radiation.

This simple illustration shows that non-decomposable functions that are
evolved by homeogenesis are likely to preserve the environmental conditions
over which they evolved, thus potentially forming a record of past

environmental conditions.

A case study population of this simulation is described in Figure 19 and Figure
20. In the case study, organisms with an empty genome filled the initial
environment (niche 1) to its carrying capacity (200) within one generation. Of
this total population in each niche, only a subsection (60-70 organisms, on
average) had >0 fitness, and hence were capable of reproduction. At all times,
competition makes empty niches potentially attractive. Initially niche 2 is
empty, and organisms that are placed into that niche by migration are very
unlikely to be able to replicate given the different chemical environment of this
niche, and so it remains uncolonised. Eventually (at generation 442) a new
mutant is produced that can survive in niche 2, and there is a rapid radiation
as the offspring of this new mutant colonise niche 2. The successful mutant
organism achieves this by evolving a catalysis step that converts the single
chemical compound in niche 2, not present in niche 1, back into the compound
that was present in niche 1, but not present in niche 2. In other words, the
mutant evolves a mediated chemical reaction that ‘undoes’ the environment

change that has occurred between niche 1 and niche 2. This new catalysis step
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in the organism’s metabolism thus acts as an ‘adapter’, converting the external
environment into one in which the organism’s replicator can reproduce. By
doing so, the organism therefore recreates its previous environment (niche 1)
internally within its metabolism. A similar process occurs sequentially across
all environments, with successive events of adaptive radiation and evolution of
new genes. This builds up a metabolic pathway of previously internalised

environments. This pathway sits ‘in front’ of the replication machinery.
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Figure 20. Total number of intermediary steps in metabolic pathways in all
organisms in the case study population (red line), and the number of
these steps that correspond to previously visited environments (i.e.
other niches; blue line). As new niches are colonised, organisms
require metabolic pathways with more steps. This increases the
number of viable pathways available, hence increasing the likelihood
that pathways different from that defined by the previously visited
sequence of niches will be evolved, and hence decreasing the

proportion of internalised ancestral environments.

At each event of homeogenesis, the new adapter is effectively functionally

combined with the existing functionality (including any existing adapters) by
combinatorial exaptation, resulting in a single, novel composite function. As
the environment becomes increasingly different from the initial environment,

this forces evolution to add progressively more steps to its adapter pathway to
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cope with the larger transformation required, thus becoming progressively

more complex.

3.5.3.2 Simulation 2: Serial environment changes are much more likely

to be preserved in sequence than parallel environment changes

We next looked at whether homeogenesis can store sequences of ordered
environment change within phenotypes, and under what conditions this is
likely to happen. Specifically, We aimed to test the hypothesis that serial
sequences of environment change, because they are a sequence of dependent
events, would more likely be conserved as ordered sequences of internalised
ancestral environments in the metabolic network than parallel sequences of

environment change.

To achieve this, we conducted simulations using two different sequences of
environment change: one serial, and one parallel (the environments used are
displayed in Figure 17; similar results were found for many different arbitrary
sequences of serial and parallel change). In both cases, we measured the
frequency in the population of organisms that contained the precise sequence
of internalised chemical environments corresponding to the sequence of
environments visited encoded into their phenotypes (i.e. a sequence of ordered
catalytic steps in the phenotype that correspond to niche7=niche6, niche
6=niche5, niche5=niche4, niche4=niche3, niche3=niche2, niche2=nichel).
We carried out 100 simulations each for serial and parallel environment
change, and measured the frequency with which such a phenotype occurred in

the population. Mean results are displayed in Figure 21.

We found that the specific sequence of environment change is much more
likely to be preserved when environment change is serial as opposed to parallel
(comparing frequency of preserved sequence in populations at 2500
generations, P<0.001, Student’s t-test). The simple explanation is that serial
chemical changes are contingent on previous reactions, and hence are
dependent. Therefore, reordering of sequences in the phenotype by genetic
drift is strongly selected against, because reordering of a contingent chemical
reaction chain will very likely cause it to cease functioning. In contrast, parallel
sequences of environment change are not sensitive to the order in which they
occur, and hence are readily reorganised in the phenotype by genetic drift with

no effect on fitness.
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Figure 21. This chart shows the frequency of metabolic networks that contain
the specific sequence of internalised environments that represent
the sequence of previous environments visited (i.e.
7>6=>5=>4=3=2=1) for sequences of serial environment change
(blue line) and parallel change (red line) in the whole population.
Results are the mean frequency in the population averaged over 100
simulation runs for each type of environment change. The chart
shows that the sequence of environment change is much more likely
to be preserved within phenotypes with serial environment change
than with parallel change (comparison at 2500 generations,
P<0.001, Student’s t-test).

For example, if environment change happens in the sequence (A=B, X=Y) then
because neither of these reactions are dependent upon each other, then a
metabolic pathway that ‘undoes’ this change such as (B=A, Y=X) can be
reorganised in the phenotype to occur in a different order (i.e. Y=X, B=A)
without affecting the overall chemical transformation. In contrast, an
environment sequence that occurs as A=B=C (i.e. serial change) would require
a metabolic pathway of C=B, B=A to ‘undo’ the change. This pathway cannot
easily be reorganised in the phenotype: If the reactions are reordered to B=A,
C=B, then this reaction chain will not work, as B=A cannot occur until C=B has
happened, because C=B provides the input material for B=A. As a result, the
sequence information of serial environment change is much more likely to be

preserved in the phenotype than the sequence information of parallel change.
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The point of this particular simulation is to (a) illustrate that homeogenesis
can, in some cases, generate metabolic networks that represent whole
sequences of pas environmental conditions, and to illustrate the conditions

that affect the likelihood of this occurring.

3.54 Wider implications of homeogenesis

The generic nature of models in this chapter implies that homeogenesis could
occur in other areas of evolution beyond that of metabolism and chemical
reaction networks. For example, one phenotypic character that could be
interpreted as homeogenesis is the evolution of a hard, body-encasing shell in
response to the introduction of predators (e.g. in shelled gastropods and
chelonians). This would represent a physical example of environmental
internalisation (as opposed to chemical) in which the previous, predator-free
environment has been recreated internally within the confines of the shell.
Another example that could be interpreted as homeogenesis is the circulatory
system of a large multicellular organism, which internally recreates the oxygen-
rich environment of smaller organisms with diffusion based respiration.
Accordingly, the mechanism of environmental internalisation could potentially
be applied to explaining the more general organisation of adaptations in the

phenotype.

Furthermore, many of the features of homeogenesis are similar to the concept
of ‘counteractive’ niche construction, in which organisms change their external
environments to recreate previous environments in which they were fit (Odling-
Smee, Laland, and Feldman 2013), but homeogenesis occurs within the
organism itself, and counteractive niche construction occurs in the external
environment. For example, earthworms go to great lengths to recreate an
aquatic environment, to which their phenotype is suited, in the soil in which
they live (Laland, Odling-Smee, and Gilbert 2008). Some research on
counteractive niche construction does suggest that a similar process could
potentially occur within organisms, in a manner similar to homeogenesis
(Laland, Odling-Smee, and Gilbert 2008). On a wider level, we can speculate
that a similar process might be at work in the evolution of technology: clothes,
central heating and farming could all be seen as examples of technologies that
attempt to recreate ancestral environments (warm, food-rich) to which the

human phenotype has spent a long time adapting to, and hence expects. Such
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behaviour could again be seen as long timescale counteractive niche
construction. Taken together, we can speculate on a range of similar processes
that all act to conserve environmental conditions, but that occur on different

timescales and in different situations:

1. Homeostasis occurs on short timescales, acts within the organism, and
conserves internal conditions by organism behaviours, or short-
timescale functional changes;

2. Counteractive niche construction occurs on potentially longer timescales
(potentially multiple generations if the environment modifications are
preserved), acts on the external environment, and conserves external
conditions by organism behaviours;

3. Homeogenesis occurs on long timescales (i.e. evolutionary time), acts
within the organism, and conserves internal conditions by evolutionary

adaptations.
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Figure 22. Chart showing the relationships between homeogenesis and other
known biological processes in which organism’s seek to maintain

the environmental status quo.

3.6 Conclusions

In this chapter we have put forward a hypothesis to explain the observation
that many organisms appear to contain internal conditions that are similar to
the environments in which their ancestors lived. This observation has been

summarised as Macallum’s chemistry conservation principle - that organism’s
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internal chemistry is more constrained than the external environment - but few
mechanistic explanations have been put forward (Macallum 1926; Mulkidjanian
et al. 2012).

We have shown how a boundary case of combinatorial exaptation, that we term
homeogenesis, inherently internalises and preserves ancestral environments
within the phenotype, and therefore could explain this phenomenon. In brief,
homeogenesis occurs when organisms have highly constrained existing
functions, and then undergo environment change that is very difficult to
counteract by niche construction. Instead, organisms can add some simple,
internal ‘adapter’ function to their existing functionality that ‘undoes’ the
environment change, thus providing the existing function with the input it
expects. In doing so, evolution creates a preserved, internal version of the
previous environment. We have supported this hypothesis with a well-studied
biological example (the evolution of C, photosynthesis, which we show is an

example of homeogenesis), and a transparent computational model.

The model uses the domain of metabolic network evolution as an example
system. In addition to illustrating the viability of homeogenesis as possible

evolutionary mechanism, it provides two main results:

1. First, it shows that metabolic networks that evolve by repeated events of
environmental internalisation are much more likely to contain
internalised ancestral environments than random viable networks,
illustrating the capability of environmental internalisation for
internalising and preserving previously experienced environments.

2. Second, the model shows that environmental internalisation can not
only preserve individual environments, but can also preserve whole
ordered sequences of past environments within metabolic networks, and
that this is much more likely to occur if the environment change in

guestion was a sequence of inter-dependent events (i.e. serial change).

This work therefore has significant potential for impact in understanding
metabolic evolution. First, it can potentially explain the common but poorly
understood phenomenon of organisms apparently containing internalised
versions of ancestral environments caused by Maccallum’s chemistry

conservation principle. Furthermore, by providing mechanistic support for the
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idea that these observed internalised conditions stored within natural
organisms really do represent ancient ancestral environments, the results in
this chapter also provide much needed support for research that uses these
internalised conditions to infer ancient environment conditions (e.g.
Mulkidjanian et al. 2012).

Environmental internalisation also has wider implications for evolutionary
theory. Although we chose to introduce the model in terms of metabolic
network evolution, there is nothing specific to metabolic networks in the model
itself. Taken generally, environmental internalisation and the results in this
chapter simply describe a mechanism by which complex non-decomposable
functions can be evolved by breaking them down into sub components, where
(unlike in the previous chapter and model of combinatorial exaptation) the
selection pressures necessary to evolve each subcomponent are distributed
across a sequence of neighbouring physical environments, as opposed to

being in a single environment.

In future work it would be interesting to map out how different levels and
types of evolutionary constraints determine under what environmental change
conditions evolution is more likely to opt for environmental internalisation over
functional change or niche construction. Finally, it would be interesting to
explore the implications of environmental internalisation, and in particular, the
metabolic model in this chapter, for creating a complexity driver that could
perhaps explain some complexity trends. This possibility will be explored in

detail in chapter 4.

3.6.1 Key Results

The key claim of this chapter is that

When both the external environment and an organism’s existing
functionality are too difficult to change, a third possibility exists for
evolution: adapting to environment change by adding an internal
environmental ‘adapter’ that converts the new external conditions into
those necessitated by the organisms existing functionality - and in
doing so, inherently creates an internal replica of the previous

environment within the organism’s phenotype.
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This claim is supported by the following results:

e Evidence that a third possibility for adaptation exists for evolution
when both the external environment and the organism’s existing
functionality cannot be changed is provided by Simulation 1 results
(section 3.5.3.1) that show organisms that have a replicator that
cannot be changed, in an external environment that cannot be
changed, are capable of adapting to novel environments by adding
functional adapters to their existing functionality. This is further
supported by existing evidence from C, photosynthesis (section
3.4).

e Evidence that this process of adaptation (i.e. homeogenesis) creates
an internal replica of the previous environment within the
organism’s phenotype is provided by Figure 18, which shows that
organisms evolved via homeogenesis contain significantly more
internalised ancestral environments than would be expected by an

unbiased process of adaptation.
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Chapter 4: Complexity lower bounds

4.1 Introduction

As discussed in chapter 1, it is widely accepted that the biosphere contains a
general, long-term trend of increasing complexity of the most complex
organisms (Bedau et al. 2000; Bedau 2009; McShea and Brandon 2010).
However, most evolutionary experiments have generally failed to reproduce
this trend, and instead commonly show robust trends of complexity
minimisation (Bedau et al. 1997, Spiegelman et al. 1965; Bedau et al. 2000). In
this chapter, we return to address the problem of these conflicting
observations. Specifically, the key question we ask is how evolutionary theory
can be refined to better explain these conflicting trends. In chapter 2 we
addressed this issue by discussing the notion of complexity roadblocks that
prohibit access to complexity without some particular mechanism that can
work around them. However, here we focus instead on complexity drivers -
understanding what, in the absence of any roadblocks, causes trends of

increasing complexity in the first place.

There are two components to this question that we address here. The first
component, which has received considerable attention in the literature (e.g.
McShea 1991; McShea and Brandon 2010), is what mechanism or process has
causes the biosphere’s general trend of increasing complexity of the most
complex organisms. The second component, that has received less attention,
is how such a mechanism can also explain (or how it can be compatible with)
common observations of complexity minimisation in evolutionary experiments.
In this chapter we attempt to deal with both components of the question: We
seek a mechanism capable of generating robust, general trends of increasing
complexity of the most complex organisms that is also compatible with the
observations of consistent trends of complexity minimisation in evolutionary

experiments.

Many potential mechanisms have been proposed to explain the biosphere’s
general trend of increasing complexity of the most complex organisms (e.g.
McShea 1991a; Carroll 2001; Bedau 2009). These include (a) driven

mechanisms, such as the notion that constraints within organisms inherently
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increase over time, thus causing build up of historic information and increased
complexity - i.e. complexity by increasing constraint theories - (Wimsatt 1986;
Wimsatt 2001; Saunders and Ho 1976; Saunders and Ho 1981); (b) increased
environmental complexity necessitating increased organismal complexity
(George Ledyard Stebbins 1969; Adami, Ofria, and Collier 2000); and (c)
undriven mechanisms, such as passive diffusion, where complexity of lineages
changes as a random walk (McShea 1996). However, there is no consensus on
whether these mechanisms are sufficient to explain this trend (McShea 1991;
Bedau 2009). Furthermore, an outstanding problem is that most of the
mechanisms proposed to explain the biosphere’s increase in complexity of the
most complex organisms lack strict formal analyses, and remain as verbal
arguments (McShea 1991; Bedau 2009). This makes it difficult to verify their
proposed behaviours, and to understand whether any of those mechanisms are

compatible with experimental observations of complexity minimisation.

In this chapter we describe a novel mechanism that we propose could be
responsible for the combined observations of a general trend of increasing
complexity of the most complex organisms in the biosphere and apparent
complexity minimisation in evolutionary experiments. Specifically, we consider
the implications of the model system in chapter 3 (i.e. metabolic evolution by
homeogenesis) for complexity generation. Here we consider how over a series
of environment changes, repeated events of homoeogenesis could result in the
necessary addition of multiple environment adapters to the organism’s
phenotype, resulting in a build up of functional complexity, and hence cause a

trend of increasing organismal complexity as new environments are colonised.

4.2 Structure of this chapter

The hypothesis that we propose in this chapter requires a reasonable amount
of logical unpacking before it can be described in detail. In particular, the
mechanism we propose is a number of logical steps removed from
homeogenesis. Therefore, to provide the necessary context, in the first section
of this chapter (section 4.3) we describe the origin of this hypothesis;
specifically, we provide a summary of results from exploratory testing using
the model in chapter 3 and relevant associated theory that informed the
generation of the hypothesis. Next, in section 4.4 we describe the proposed

hypothesis. Following this, section 4.5 contains the key results of this chapter:
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we carry out simulations to test if, and under what conditions, the
hypothesised mechanism generates both types of trends (i.e. a general trend of
increasing complexity of the most complex organisms coupled with robust
trends of complexity minimisation). Then in section 4.6 we discuss the model
results, limitations and caveats in relation to natural evolution. To assess the
scope of the proposed mechanism, in section 4.7 we then carry out further
experiments to test if the key factors responsible for generating complexity in
our proposed hypothesis are present and affect evolution in a system of NAND
gate circuit evolution, which is a common model of functional evolution in the
literature. Finally in section 4.8 we summarise the work in this chapter and

present our conclusions.

4.3 Creating a hypothesis for a complexity trend

generation mechanism

The results from chapter 3 imply that in a system of homeogenesis, as
environment change occurs, in some cases functional adapters must be added
to the metabolism to enable survival in that given niche. It therefore follows
that given a sequence of environment change such a process could result in a
trend of increasing metabolic complexity. However, from the results in chapter
3 alone it is not clear what type or sequence of environment change is
sufficient to generate such a trend. Specifically, before we can define a
hypothesis for a complexity generation mechanism, we must first isolate which
factors in the system are responsible for controlling the build-up and removal
of metabolic complexity. To achieve this we have carried out some exploratory
testing in which we observed the behaviour of the model of metabolic
complexity from chapter 3 given a number of different types and sequences of
environment change. We describe the key results from this exploratory work

below.

4.3.1 Exploratory modelling
4.3.1.1 Methods

The primary tool that we will use to address the capability of homeogenesis for
generating complexity trends is the metabolic evolution model described in

chapter 3 (see section 3.5.2 for a detailed description of the model).
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Parameters used here are the same as those described in chapter 3 unless
described otherwise. Briefly, the model describes the evolution of a population
of organisms as they spread across a number of different, neighbouring
chemical environments. All organisms have the same core replicator that
requires a fixed set of chemical compounds to function. We assume that the
replicator is too constrained to change. Therefore, as organisms encounter
new environments, to enable survival they must evolve new metabolic
machinery capable of converting the external chemical environment in to that
required by their existing replication functionality. Given that here we are
interested in the complexity behaviours of the model, it is also worth
reiterating that the model contains an inherent pressure against complexity.
Based on the observation from natural systems, the model includes a cost of
resources - a fitness penalty proportional to the number of expressed genes
(see section 3.5.2 for details). This is expressed as a constant pressure against
complexity, similar to that observed in Spiegelman’s experiments and others
(Spiegelman et al. 1965; Oehlenschldager and Eigen 1997; Bedau et al. 1997).
Furthermore, as introduced in chapter 3, here we again distinguish between

serial and parallel types of environment change (see section 3.5.2).

A key further aspect of the model that we must also define is how we measure
complexity. A common problem with models of complexity evolution is
knowing what to measure, because there is no agreed definition or measure of
complexity (Mitchell 2009). However, qualitative examples are common. For
example, C, plants are regarded to have a more complex mechanism of
photosynthesis than C, plants (Ehleringer et al. 1991), because the C,
mechanism contains all of the C, pathway plus some extra functional
sophistication. But this increase in functional sophistication is not expressed
as extra physical components; C, photosynthesis came about by a
reorganisation of existing components already present in C, plants (Ehleringer
et al. 1991). This highlights some of the problems of measuring complexity -
in particular the difference between structural and functional complexity.
Following this example from C, photosynthesis, in which complexity is defined
by the size of the metabolic network, in the below models we will use
metabolic pathway size (i.e. number of reactions in the network) as a proxy for

functional complexity.
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Results in the following section describe the behaviour of case study
populations that represent the typical behaviour of evolving populations in

their respective conditions.

4.3.1.2 Results and discussion

4.3.1.2.1 Exploratory test 1: Increase in complexity from parallel

environment change

This system simulated the evolution of a species whose existing replication
functionality is too difficult to change via evolution and that is then subject to
a sequence of environments in which environment change occurs by an

increasing number of parallel changes.

The environment had six niches laid out in a line. Each niche had an n=200
carrying capacity. The initial niche had exactly the right set of chemical
compounds to allow the existing replication machinery to carry out
reproduction. Each subsequent niche along the line varied by one more type of
chemical compound. So for example, niche 2 differed from niche 1 by a single
compound; niche 3 differed from niche 1 by two compounds, and so on. The
result was a sequence of environments that required an increasing number of

parallel functions.

Organisms evolved by a series of adaptive radiations, sequentially filling
subsequent niches 1-6. The simplest viable organisms in each successive niche
had progressively more complex metabolic networks. The evolved metabolic
networks contained internalised environments from each of the previously
inhabited niches (Figure 23). These results are straightforward. Competition in
the form of density dependent selection makes neighbouring empty niches
potentially attractive for successful mutants. This provides a pressure for
evolution of new genes allowing expansion into empty niches that necessitate
increased complexity, despite there being a constant selection for simplicity

within any given niche.
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Exploratory test 1. All plots show results of organisms with non zero
fitness. Top left: Total population size increases in a stepwise
manner as each new niche is filled by an adaptive radiation. Bottom
left: Mean metabolic network size increases with each progressively
different niche; organisms in niche 6 have a more complex
metabolic network, with more reaction steps, than those in niche 1.
This therefore illustrates a simple environmentally mediated
increase in metabolic complexity. Top right, bottom right. Mean
genome size and number of genes expressed increases over time.
This increase tails off after ~400 generations, limited by the fitness
cost against expressed genes. Although the complexity of the
chemical transformation necessary in each niche is different, this is
difficult to discern from genome size or number of expressed
genes, because many genes are non-coding or have no function in

the phenotype.
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This illustration demonstrates how certain sequences of environments can
cause trends of functional complexity increase in the resulting organisms. In
this case, it is environments that differ by progressively more distinct chemical
compounds from the set of compounds required by the organism’s replicator.
In other words, a trend of increasing complexity is caused by an increasing
number of parallel environment changes compared to the conditions required

by the organism’s replicator.

The system illustrates the intuitive notion that ‘doing more things’ requires

more functional complexity than doing fewer things. As Heylingen describes:

‘All other things being equal, a system that can survive situations A, B
and C, is absolutely fitter than a system that can only survive A and B.
Such an increase in absolute fitness is necessarily accompanied by an

increase in functional complexity.” (Heylighen 1999)

Given this system, the increase in complexity is not surprising. As more
chemical components of the environment become different from the
conditions required by the organism’s replicator, the number of chemical
reactions required to convert one to the other increases, thus so does the
minimum number of reactions in any possible viable organism’s metabolic
network. Selection for simplicity tends to keep the metabolic networks as
simple as possible, but this cannot drive the metabolic network to be any
smaller than the simplest possible network capable of transforming the
environment back into the conditions required by the organism’s replicator.
The result is an environmentally mediated trend of increasing complexity.
Importantly, these simple results contain both a local trend of complexity
minimisation (that occurs within any given single niche) and simultaneously, on
a system level (i.e. across multiple niches) a trend of increasing maximal

complexity, as new niches are occupied.

4.3.1.2.2 Exploratory test 2: Increase in complexity from serial

environment change

Some models for the evolution of complexity argue that organisms become
more complex not only to cope with parallel environment change, but also to
‘break through functional boundaries’ (Arthur 1993) - i.e., to achieve more

complicated individual tasks. Chemical reaction pathways provide many
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concrete examples of this principle: Some chemical transformations require
more steps and intermediaries than others, and in that sense are more
complex. For example, consider two different chemical reactions in the EMP
glycolysis metabolic pathway. Glycolysis occurs, with some variations, in nearly
all organisms, as a key part of cellular respiration (Horton et al. 1996). The
overall reaction pathway converts glucose (C_H O, into pyruvate

CH,COCOO" +H" by a 10-step process (i.e. with 10 intermediary molecules). In
contrast, glucose (C_.H ,0)) can be converted into glucose 6 phosphate
(C.H,,0P) in a single step (which is the first step in the glycolysis pathway;
Figure 24).

Let us consider the 10-step glucose = pyruvate reaction pathway and the one
step glucose = glucose-6-phosphate reaction as separate chemical functions.
Why does changing glucose to pyruvate take 10 steps, whereas changing
glucose to glucose-6-phosphate only take a single step? One possibility is that
one task is inherently more complex than the other: Converting glucose into
pyruvate is a more complicated task than converting glucose into glucose-6-

phosphate, and therefore requires a more complex functional solution.

The network of possible chemical reactions that dictates how these
conversions can possibly occur is determined by physics, which apparently
does not allow a direct, single step change from glucose to pyruvate. This
agrees with intuition; pyruvate is much more different from glucose than is
glucose 6 phosphate, and so intuitively requires more changes to transform
between one and the other. This implies that glucose = pyruvate is a
fundamentally more complex task than converting glucose = glucose-6-
phosphate. According to known chemical reaction networks, converting
glucose to pyruvate necessitates more serial functional steps, and hence more
functional machinery (to both carry out and organise these steps) than the task

of converting glucose = glucose-6-phosphate.
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Figure 24. Schematic illustration of the differences in number of chemical steps
required to convert glucose = pyruvate and glucose = glucose 6
phosphate. Both are components of the EMP glycolysis pathway.
Presumably, because pyruvate is more organisationally different
from glucose than is glucose 6 phosphate, the shortest path
available in the underlying chemical reaction network to convert
between glucose and pyruvate has many more steps than the path
converting between glucose and glucose 6 phosphate. The result is
that the minimum functional complexity of a metabolism capable of
converting glucose to pyruvate must be larger than that converting

glucose to glucose 6 phosphate.

In this system we simulate the evolution of a species whose existing replication
functionality is under high constraint and that is then subject to environment
change that (given this constraint) forces organisms to break functional
barriers in this manner, evolving novel function to cope with progressively

more different environments.

The environment had six niches laid out in a line. Each niche had an n=200
carrying capacity. The initial niche had the right set of chemical compounds so

that the existing replication machinery could carry out reproduction. In terms
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of the number of compounds different from the first niche, each of the other
five niches were the same, having only one chemical compound different.
However, in each subsequent niche along the line, the compound that was
different was progressively more different (in terms of the chemical reaction
network) than the first niche. In each subsequent niche it was one chemical
reaction step further away (on the chemical reaction network) from its

respective compound in the first niche.

Organisms evolved by a series of adaptive radiations, sequentially filling
subsequent niches 1-6. The simplest viable organisms in each successive niche
had progressively more complex metabolic networks. The evolved metabolic
networks contained internalised environments from each of the previously

inhabited environments (Figure 25).

The simplest viable organism in niche 6 evolved a 5-step metabolic reaction
pathway that converted the different compounds in niche 6 back into their
state in niche 1. This pathway sometimes contained a sequence of reaction
steps that recreated the sequence of previous environments inhabited (Figure
25). But because the reaction network dictates that there are many possible
viable reaction pathways to complete such a large transformation, occasionally,
different pathways were evolved that did not contain all of the previous

environments.

Again, these results show how certain sequences of environments cause trends
of functional complexity increase in the resulting organisms. In this case, the
environments were progressively more different from the conditions required
by the organism’s replicator by a single component (a chemical compound)
becoming more different. Again, given the system, the general result of
increased complexity is not surprising. As before, chemistry dictates that as an
environment becomes more chemically different from the conditions required
by the organism’s replicator (this time in terms of a single component), then
the minimum number of chemical reactions in a pathway capable of converting
between the two increases, thereby increasing the minimum size of a viable

metabolic network in that niche.
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Figure 25. Exploratory test 2. All plots show results of organisms with non zero
fitness. Top left: Total population size increases in a stepwise
manner as each new niche is filled by an adaptive radiation, similar
to system 1. Bottom left: Mean metabolic network size increases
with each progressively different niche. This demonstrates an
environmentally mediated increase in metabolic complexity, similar
to system 1. Top right, bottom right. Mean genome size and number
of genes expressed increases over time, eventually limited by the
fitness cost against expressed genes. As with system 1, it is difficult
to discern which organisms are more complex by genome size or
number of expressed genes, as many genes are non-coding or have

no function in the phenotype.

4.3.1.2.3 Exploratory test 3: Decrease in complexity by parallel

environment change

Given the right sequence of environments, the model system described can
also result in decreases in complexity. Again, this is straightforward. We have

provided transparent illustrations to concretise the verbal argument, which can
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be summarised as follows: Some sequences of environments provide
organisms with chemistry that is closer to the requirements of their replicator
than their current environment. This provides the possibility of a shorter
metabolic pathway capable of converting these new environments to the
conditions required by the organism’s replicator, potentially making some of
the existing functional steps, and their associated internalised environments,
redundant. If this shorter pathway can be reasonably evolved, in some cases it
likely will be, especially in the presence of selection for simplicity. The result

will therefore be a decrease in complexity.

For simplicity, and to enable separation of the two ways in which this system
can bring about loss of complexity, both models are extreme and unrealistic
examples that extend the previous two simulations, as before. Both

simulations have an extra niche added (niche 7) that neighbours niche 6.

The first simulation extended exploratory test 1 (parallel environment change).
Here niche 7 contained an environment that differed from niche 1 by two
parallel chemical reactions. As a result, the chemistry of niche 7 was much
closer to the set of compounds required by the organisms’ replicator than its

neighbouring niche (niche 6, which was different by five reactions).

Organisms evolved by a series of adaptive radiations, sequentially filling
subsequent niches 1-7. The simplest viable organisms in each successive niche
1-6 had progressively more complex metabolic networks (in terms of number
of reaction steps) formed by homeogenesis. The simplest organisms in niche 7
had two reaction steps in its metabolic network, less than half the number of
reaction steps than those in niche 6 (which had five), representing a decrease

in complexity (Figure 26).

In an environment where a simpler set of metabolic reactions is potentially
capable of reproducing the conditions required by the organism’s replicator
than the metabolic network currently evolved, then because of selection for
simplicity this simpler metabolic network will, if possible, be preferentially
evolved. Vestigial genes that represent now redundant reactions will likely

deteriorate by genetic drift. The result is a potential decrease in complexity.
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Figure 26. Exploratory test 3. All plots show results of organisms with non zero

fitness. Top left: Total population size increases in a stepwise
manner as each new niche is filled by an adaptive radiation, similar
to systems 1 and 2. Bottom left: Mean metabolic network size
increases with each progressively different niche, but dramatically
decreases when niche 7 is colonised. This demonstrates an
environmentally mediated increase in metabolic complexity,
followed by an environmentally mediated decrease in metabolic
complexity. This shows one way that environment change can bring
about both increases and decreases in phenotypic complexity, given
sufficient functional constraint. Top right, bottom right. Mean
genome size and number of genes expressed follows a similar
pattern to previous systems; phenotypic complexity trends are hard

to observe in this data.
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4.3.1.2.4 Exploratory test 4: Decrease in complexity by serial

environment change

This system extended exploratory test 2 (serial environment change). Here
niche 7 contained a new molecule type, not present in niches 1-6. This
molecule was a neighbouring molecule of the altered molecule in niche 3. It

differed from niche 1 by a minimum sequence of 2 chemical reactions.
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Figure 27. Exploratory test 4. All plots show results of organisms with non zero
fitness. Top left: Total population size increases in a stepwise
manner as each new niche is filled by an adaptive radiation, similar
to systems 1, 2 and 3. Bottom left. Mean metabolic network size
increases with each progressively different niche, but dramatically
decreases when niche 7 is colonised, as with system 3. This again
demonstrates an environmentally mediated increase in metabolic
complexity, followed by an environmentally mediated decrease in
metabolic complexity. Top right, bottom right: Trends in mean

genome size and number of genes.
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The results were qualitatively similar to system 3. The simplest viable
organisms in niche 7 had metabolic networks with fewer reaction steps (i.e. 2)
than those in niche 6 (i.e. 5), thus demonstrating and environmentally

mediated trend in decreasing complexity.

These two systems illustrate the two separate ways in which complexity can be
lost in this system, and that this can be predominantly controlled by the type
and sequence of environments inhabited. They are simply the reverse of the
ways in which complexity can be added: by doing fewer things (due to a
reduction in parallel environment change), or by doing a less complex thing
(being able to substitute a shorter/fewer-step function for a longer/more-step

function due to a reduction in serial environment change).

Taken as a whole, the four systems described provide a picture of the two
extreme types of environment change (serial and parallel), showing in each
case how they can cause increases and decreases in complexity by
homeogenesis, given a replicator that is too difficult to change. They
demonstrate how sequences of environments can be internalised to cope with
environment change, and how this adds functional complexity in terms of
parallel change, resulting in parallel functions, or by serial change, resulting in
serial functions - even in the face of a constant pressure for simplicity. They
also show how this function can be lost, should the environment change to a

state where the added function becomes redundant.

4.3.2 Summary of exploratory modelling

The results of exploratory testing have documented how homeogenesis can
cause complexity trends in evolution. In this section we will attempt to isolate

what key factors cause build-up of complexity by homeogenesis.

First, it is clear that homeogenesis generates robust, repeatable trends in
complexity; it is not the result of an undriven random walk: This mechanism is
not passive diffusion. Second, the above simulations demonstrate that
homeogenesis can cause such trends of increasing complexity without the
need for a corresponding increase in environmental complexity: In simulations
showing trends of increasing complexity (i.e. exploratory tests 1 and 2), each
environment contained the same number of chemical compounds, but

evolution across these environments still resulted in systematic increases in
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organismal complexity. This stands in contrast to many proposed
environmental mechanisms of complexity increase in evolution. Third, the
simulations also show that homeogenesis produces robust trends of increasing
complexity without the need for a corresponding increase in constraint within
the organism. Although some fixed amount of constraint was present
(specifically that organisms have a replicator that is assumed to be too
constrained to change), no further constraint was artificially introduced from
one niche to the next, and yet evolution across these niches nonetheless

resulted in robust trends of increasing complexity.

If complexity does not result from passive diffusion, increasing environmental
complexity or increasing constraint, what causes it to increase in these
systems? In short, the above results imply that the build up of metabolic
complexity in this system is controlled not by absolute environment change,
but by the number of chemical changes (i.e. shortest path of reaction steps in
the chemical reaction network) that separate the given external niche from the
environment required by the organism’s replicator. As we will explain in the
next section, this observation helps us connect the complexity generating
behaviour of this system to ‘complexity lower bounds’, which are a well-known
property of algorithm problems in computer science - thus better enabling us

to describe a mechanism of complexity generation in this system.

4.4 A hypothesis for a novel complexity generation
mechanism in evolution: Environmental dissociation

complexity

As discussed in chapter 1, In computer science, it is an established result that
for any algorithm that converts a set of inputs to a set of outputs, a specific
lower bound will exist on the complexity of any possible solution, and the
magnitude of this complexity lower bound will depend on which inputs and
outputs are being converted between (Papadimitriou 2003). For example,
exhaustive searches have shown that of the many possible logic circuits, the
simplest possible NAND logic circuit that can add 2 binary bits contains 5 logic
gates - and adding 3 binary bits takes a minimum of 9 NAND gates. Similarly,
it has been proven mathematically that sorting a list of length n by successive

compare-and-swap operations will require an algorithm that defines a
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minimum of n log n operations (Papadimitriou 2003). (However, no general
proof exists for an arbitrary problem, and for many problems /
transformations - e.g. sorting, the travelling salesman problem, matrix
multiplication, etc. - the simplest known solution is an empirical estimate,

based on the best solution available at the time; Papadimitriou 2003).

Similar concepts have also been discussed in biology. For example, recent
research has suggested that there is a minimum gene set capable of sustaining
cellular life of around 250-300 genes (Koonin 2011); elsewhere, passive
diffusion models often include a ‘left wall’, which describes some minimum
complexity below which evolution cannot go (McShea 1996). However, despite
these examples, complexity lower bounds are not widely discussed in the

evolutionary literature.

To explain how this concept relates to the complexity generation behaviour of
our model system, it is helpful to consider a simple analogous system that also
contains complexity lower bounds. A Rubik’s cube is popular 3-D combination
puzzle that was invented in 1974 by Erno Rubik. The puzzle consists of a cube,
each side having 9 coloured faces. In its solved state, the cube has all 9 faces
on a given side of the cube the same colour. The cube allows users to rotate its
sections, allowing each of the faces to be moved individually. Doing this, the
cube is reorganised into a random state; the aim of the puzzle is to return the

cube back to its original, ‘solved’ state (Figure 28).

-g-ﬁ

Figure 28. Solving a Rubik’s cube. The cube begins in a random, disorganised

state (left). The puzzle can rotate in various ways, allowing the faces
to be rearranged. The aim of the puzzle is to return the cube back
to its solved configuration (right), in which all of the faces on each

side of the cube are the same colour.
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In mathematical terms, the goal of the Rubik’s cube puzzle is to find a
sequence of moves that will transform the cube from its current state into its
solved state. Obviously from any given state, there are many possible
sequences of moves that can reach the solved state. However, finding these
sequences is difficult: despite its simplicity, the Rubik’s cube has over 4.3x10"
possible configuration states. A key area of mathematical research on the
Rubik’s cube has been focused on attempting to find the shortest possible
sequence of moves (i.e. lower bound) needed to solve the cube from a given
state. To address this problem, we can imagine the set of all possible moves
from any given state as an expanding network, where the nodes are

configuration states of the cube, and the links are individual moves (Figure 29).

one move away: Etc.

18 states two moves away:
243 states

Initial
state

Figure 29. The state space of a Rubik’s cube can be described as a network of

cube states (nodes) and moves (links).

By mapping out this network, we can know exactly, from any position, the
minimum number of moves we are away from the solved state. This network is
termed the ‘state space’ or ‘state space search tree’ of a system (Russell et al.
1995; Lilius 1998; McMillan and Probst 1995): a network that contains the
complete set of possible configurations of the system connected by links that
represent available change operators that connect those states. For a Rubik’s
cube, the nodes of the state space are configurations of the cube, and each
link is an individual rotation of one face. Only in the last few years has the

state space for a Rubik’s cube been fully mapped (Figure 30).
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Distance Count of Positions

0 1
1 18
2 243
3 3,240
4 43,239
5 574,908
6 7,618,438
7 100,803,036
8 1,332,343,288
9 17,596,479,795
10 232,248,063,316
11 3,063,288,809,012
12 40,374,425,656,248
13 531,653,418,284,628
14 6,989,320,578,825,350
15 91,365,146,187,124,300

16 ~1,100,000,000,000,000,000
17 ~12,000,000,000,000,000,000
18 ~29,000,000,000,000,000,000
19 ~1,500,000,000,000,000,000
20 ~300,000,000
21 None

Figure 30. The number of positions that are a given number of moves from
the solved state of a Rubik’s cube. For example, there are 18 states
that are 1 move away from the solved state, 243 states 2 moves
away, and so on. This imparts fundamental lower bounds on the
complexity (i.e. number of moves) of possible solving algorithms

from a given state.

In state space, a sequence of moves that can solve the cube from a given
position corresponds to a path through state space that connects the given
current configuration to the solved configuration. The important points to note
from Figure 30 are that every possible state has a fixed lower bound on the
number of moves in which the solved state can be reached (i.e. shortest path
to the solved state), and this is different for different states depending on
where they are in the network. In other words, there are inherent lower bounds
on the complexity of possible solving sequences from any given state, and

those lower bounds vary depending on the state we start from.

In this chapter, we are arguing that complexity in evolution (and specifically,
our model system of metabolic evolution) is controlled in a similar manner.

One can imagine the set of available chemical environments as being like an
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extremely complicated Rubik’s cube. The variation of the environment in time
and space represents different states of the Rubik’s cube. The solved state of
the cube represents the very special environment in which DNA, the base
replicator of life, can replicate, which is necessary for life and evolution to
continue. In this system, the task of evolution is the same as the task of the
puzzle solver with a Rubik’s cube: given any environment, it must create a
sequence of moves that can transform the current state of the system into the
solved state, and to do so can only use the available transformation operators
defined over the state space (but instead of sequences of moves, we call these

sequences metabolic networks or organisms).

Most importantly, this system provides us with a new perspective on what
factors control complexity in evolution. The key point is that in such a system,
just as in a Rubik’s cube, there will be inherent lower bounds on the
complexity of possible solving algorithms (organisms) from any particular state
(niche), and these are defined by the shortest path in state space from the
current state (current external niche) back to the solved state (the environment
required by the organism’s replicator). Moreover, different states (niches) will

have different lower bounds.

Importantly, this is different from saying that complexity comes about in
evolution because one niche is fundamentally more complex than another. In
the Rubik’s cube, and in our chemical model, all states of the system are
identically complex. Rather than absolute complexity, the difference in
complexity lower bounds in different niches comes from their different
distances in the state space network from the ‘solved’ state, not from any

inherent properties of the niches themselves.

4.4.1 The Environmental Dissociation Hypothesis

We can now describe the main hypothesis of this chapter. Let us term the
distance in state space of the current environment from the environment
required by the organism’s replicator the amount of ‘environmental
dissociation’. Because this factor effectively controls complexity in the system,
we term the mechanism of complexity generation by this process

environmental dissociation complexity. This mechanism is defined as follows:

Given:
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a. an organism with a replicator that can replicate in some small subset of
environmental conditions, and whose replicator cannot feasibly be
changed to replicate in conditions outside of this subset;

b. an environment with heterogeneous environmental dissociation whose
conditions change sufficiently gradually;

c. an inherent selection pressure against complexity such as a cost of
resources

then as competition forces evolution to leave the original environment (a),
and colonise new environments (b), the magnitude of environmental
dissociation of a new environment will dictate the minimum possible
complexity of viable organisms in that environment, resulting in a system-
wide trend of increasing complexity of the most complex organisms,
coupled with local trends of complexity minimisation in individual

environments, caused by (c).

4.5 Testing the environmental dissociation complexity

hypothesis by computational modelling

4.5.1 Methods

To test this hypothesis, we carried out simulations in an expanded version of
the metabolic model described earlier in this chapter and in chapter 3. The
model differed from that described in chapter 3 in the following manner.
Instead of 7 niches, there were 50 niches, again laid out in a line. Furthermore,
rather than having contrived environment configurations in each niche, unless
described otherwise we began with a chemical environment generated in the
following manner (as before, containing 18 of the set of 36 possible chemical
compounds). Each successive neighbouring niche was created by performing
one, random chemical reaction from its neighbour (each reaction could be
serial or parallel change, there were no restrictions). The result was that the
simulation contained 50 neighbouring niches distributed in a line, each varying
by one chemical reaction from the previous niche. The chemical makeup of
niche 1 was then taken to be the fixed target input required by the initial
organism’s replication machinery, hence allowing the initial organism to

reproduce in niche 1 without any associated metabolism.
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In all cases, unless stated otherwise, the system was set up with all of the

conditions required by the hypothesized mechanism, i.e.:

1. Organisms with a replicator assumed to be too difficult to change by
natural selection;

2. A heterogeneous environment with gradually varying environmental
dissociation;

3. A pressure against complexity in the form of a cost of resources;

We carried out 4 control experiments to test the hypothesis.

1. Positive control;
Negative control 1: No change in environmental dissociation;

Negative control 2: Punctuated environment change,;

N owWwoN

Negative control 3: No pressure against complexity.

4.5.2 Results
4.5.2.1 Positive control experiment

First we carried out a positive control experiment in which we tested whether
the mechanism robustly created the complexity trends claimed (i.e. a system-
wide general trend of increasing complexity of the most complex organismes,
coupled with local trends of complexity minimisation within individual niches)
given all of the conditions stated in the mechanism. Case study results that
show typical behaviour of the system are illustrated in Figure 31. In all positive
control experiments, the system generated a system-wide trend of increasing
complexity of the most complex organisms that corresponded to the
colonisation of new niches, coupled with local trends of complexity
minimisation in individual niches (e.g. Figure 31), supporting the hypothesis.
We carried out 100 repetitions of the positive control, each running for 5000
generations. Results showed a marked increase in mean complexity of all
organisms in the population by generation 5000 (mean=10.94, standard
error=0.21), and a marked increase in complexity of organisms in the most
complex occupied niche (mean=19.89, standard error=0.39); these results are

plotted in comparison to a negative control in Figure 35 (left columns).
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Figure 31. Case study example of the positive control experiment illustrating
the typical behaviour of evolution in this system. Each data line
shows the mean metabolic complexity of viable organisms in a given
niche. Niches are only plotted once they are colonised. At generation
0, a single organism begins in niche 1 with no metabolism. As
neighbouring niches are colonised, the mean complexity of
organisms in that niche is plotted on the chart. (E.g. at generation
223 niche 2 is populated: red line) New niches very often have
greater environmental dissociation, and hence require a more
complex metabolism. The result is that as new niches are colonised,
the system generates a trend of increasing complexity of the most
complex organisms in the system (red arrow). However, within any
individual niche, complexity displays a trend of minimisation to the
complexity lower bound in that niche. Blue arrows show example
characteristic events of local complexity minimisation in individual
niches. This result helps to explain conflicting observations of
increase of maximal organismal complexity in the biosphere and

trends of complexity minimisation in experiments.
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25

20

15

10

Metabolic Complexity

Figure 32. Case study example of the positive control experiment (with

perturbation) illustrating the typical behaviour of evolution in this
system. This system is identical to the positive control experiment
but also underwent environmental perturbation at generation 2500
that lasted for 100 generations. In this instance, only a few species
survived the extinction, the rest going extinct. The species that
survived were moderately complex, leaving niches 1-6 empty. These
niches were subsequently recolonised during an adaptive radiation
around generation 2950 by these more complex organisms. The
recolonising organisms quickly lost much of their complexity after
colonising these niches (~generation 2950-3400), as they were
pushed by the inherent pressure against complexity in the system
towards the complexity lower bound in their given niche. The results
again show a general, system wide trend of increasing complexity of
the most complex organisms corresponding to the colonisation of
new niches with higher environmental dissociation (red arrow),
coupled with local trends of complexity minimisation in individual
niches. Blue arrows show characteristic events of local complexity
minimisation in individual niches. These are particularly common
after the perturbation, when more complex organisms come to
recolonise niches with smaller environmental dissociation, thus
allowing genes redundant in that niche to be jettisoned and

complexity decreased.
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4.5.2.2 Negative control experiment 1: No change in environmental

dissociation.

We next asked whether increasing environmental dissociation is necessary to
produce a general trend of increasing complexity, or if environment change
alone is sufficient. To test this we set up two separate simulation cases: a
positive control experiment, in which environmental dissociation varied across
niches, and negative control experiment that was identical expect that
environmental dissociation did not vary across niches. In both cases, niches
were generated in order 1 to 50 by carrying out two random chemical reactions
different from the previous neighbouring niche, but in the negative control
experiment environmental dissociation was kept constant. We then measured
the resultant increase in metabolic complexity after 5000 generations (Figure
33).

To allow environment dissociation to be kept constant across different niches,
each niche was separated by two reactions as opposed to one; a single reaction
will always increase or decrease the environmental dissociation in this system,
because it will always either step nearer to or further away from the niche
required by the replicator. Hence enforcing there to be two reactions between

niches allowed the possibility of zero net gain of environmental dissociation.

To ensure that environment change occurred even when change in
environmental dissociation did not, in both experiments no two niches were
permitted to have the same set of compounds as any other niche in that
experiment. An additional necessity to allow environmental dissociation to be
fixed across different niches was that unlike in other experiments, here niche 1
was not the same as the environment required by the organisms’ replicator.
Instead, it was 10 reactions dissociated from this environment: The result was
that to survive in niche 1, organisms required a minimum 10-step metabolic
pathway that converted the initial niche into the niche required by the
organisms’ replicator. This requirement was necessary because it is not
possible to change the environment from that required by the organism’s
replicator to any other environment without increasing the environmental
dissociation. (For example, it is possible to change a Rubik’s cube that is 10
steps away from its solved state and leave it in a new configuration that is still

10 steps from its solved state, thus keeping its environmental dissociation

135



Chapter 4: Complexity Lower Bounds

fixed; however, it is not possible to do this if the Rubik’s cube begins in its
solved state, as any change to a new configuration will increase the distance
from this state.) In each simulation, the initial organism was provided with
such a 10-step pathway, enabling it to survive and reproduce in niche 1.
Accordingly, the results measured the change in complexity evolved from this

starting point of 10.

We carried out 100 repetitions of each case, each time using different
randomly generated sequences of niches according to the above method.
Results are shown in Figure 33. In the positive control experiment, the mean
increase in complexity across all organisms in the system was very significantly
higher than observed in the negative control experiment (positive control:
mean=7.38, standard error=0.40; negative control: mean=0.22, standard
error=0.02; P<0.001 Student’s t-test). The mean increase in complexity of
organisms in the most complex occupied niche was also very significantly
higher in the positive control experiment than in the negative control
experiment (positive control: mean=12.49, standard error=0.46; negative
control mean=0.86, standard error=0.08; P<0.001 Student’s t-test). The results
support the hypothesis that the increase in complexity observed in the positive
control experiment was caused by the increase in environmental dissociation
across niches (positive control experiment: mean change in environmental
dissociation from niche 1 to niche 50= +11.88, standard error 0.28; negative
control experiment: change in environmental dissociation from niche 1 to
niche 50=0). In the negative control experiment, there was no increase in
environmental dissociation across niches, and complexity remained very low.
Case study examples illustrating typical behaviour in each experiment show
that there was a clear, system-wide general trend towards increasing
complexity of the most complex organisms in the positive control experiment
(Figure 34, bottom). Such trends were observed in every repetition of the
positive control experiment. In contrast, in all of the negative control
experiments (e.g. Figure 34, top), no such general trend of increasing

complexity was ever observed.
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Figure 33. Plot illustrating that environment change alone is not sufficient to
generate significant increases in organismal complexity in this
model, but that instead environmental dissociation is a key factor
controlling complexity. The left columns show statistical results
from 100 repetitions of experiments in which environmental
dissociation was free to increase (the mean increase was +11.88
over all niches in these repetitions), resulting in a significant
increase in mean complexity and the mean complexity of organisms
in the most complex occupied niche (p<0.001). In contrast, the right
columns show results from 100 identical repetitions where there
was no increase in environmental dissociation across any niches,

resulting in very little change in complexity.
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Figure 34. Case study example of the negative control experiment (top) and

positive control experiment (bottom) for environmental dissociation.
Top: even though environment change occurred between niches
(and hence viable organisms were different in each niche), no
increase in complexity was necessitated as new niches were
colonised because all niches had the same complexity lower bound.
Bottom: In contrast, when environmental dissociation was free to
vary between niches, trends of increasing and decreasing complexity
are observed that correspond to changes in complexity lower bound

from one niche to the next.
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4.5.2.3 Negative control experiment 2: Punctuated environment change

We next asked how the gradual nature of environment change affected
complexity trends in the system. To achieve this we compared a positive
control experiment in which the environment changed gradually between
niches with a negative control experiment in which environment change was
less gradual. Specifically, in the positive control experiment, the difference
between neighbouring niches, x, was a single chemical reaction, representing
one step on the chemical reaction network (x=1). In contrast, for the negative
control experiment x=3, representing a more punctuated environment. Mean
results for 100 repetitions of this experiment are shown in Figure 35, and a
case study showing the typical behaviour of a single repetition is shown in
Figure 36. The punctuated environment severely limited the capability of
evolution for colonising new niches in the negative control experiment, which
in turn limited the extent to which complexity could evolve. In the positive
control experiment, the mean increase in complexity across all organisms in
the system was very significantly higher than observed in the negative control
experiment (positive control: mean=10.94, standard error=0.21; negative
control: mean=0.31, standard error=0.11; P<0.001 Student’s t-test). The mean
increase in complexity of organisms in the most complex occupied niche was
also very significantly higher in the positive control experiment than in the
negative control experiment (positive control: mean=19.89, standard
error=0.39; negative control mean=0.59, standard error=0.20; P<0.001
Student’s t-test).

The behaviour of this control experiment can be described by a simple
mathematical argument that implies the time taken to colonise a new niche will
increase exponentially with x. In a niche with one compound different from the
set of compounds required by the organisms’ replicator, the probability of
producing a viable mutant for that niche = (m/nR)L, where m=per locus
mutation rate, nR=number of reactions possible in the artificial chemistry
(assuming no evolvability / directed variation, and that all possible mutants
catalyse some reaction), and L= number of loci. In the case of an environment
with two compounds different, the probability is approximately (m/nR)?L, as
two separate but correct mutations are required at once. The details are
slightly more complex, as both mutations could occur at different generations.

However, given the cost of keeping redundant genes, it is unlikely that a single
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one of these mutations (which alone are redundant) would be kept for more
than a few generations. The general probability is therefore p~(m/nR)L, where
nCis the number of compounds different. Thus the probability of evolving a
viable mutant decreases exponentially with the rate of environment change
(i.e. the number of compounds different in the new environment). The time to

evolve such a mutant increases with the inverse of p - i.e., exponentially.
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Figure 35. Plot illustrating the effect of gradual environment change on
generating complexity in this model. In the positive control
experiment (left columns) the amount of environment change, x,
was a single chemical reaction between neighbouring niches (x=1).
In the negative control experiment (right columns) environment
change was less gradual (x=3). Given an environment that changed
in a less gradual manner, evolution was significantly less capable of

generating complexity (p<0.001).
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Case study example of the negative control experiment for gradual
environment change showing typical behaviour of evolution in this
system. Each data line shows the mean metabolic complexity of
viable organisms in a given niche. Niches are only plotted once they
are colonised. In this experiment, the environment changed in a
more punctuated manner, having 3 chemical reactions between each
neighbouring niche (x=3), compared to only one in the positive
control experiment (x=1). The results illustrate that given a more
punctuated environment, evolution struggles to colonise new
niches, which in turn limits the evolution of complexity. Each data
series shows the mean metabolic complexity for organisms in a
given niche. In this example, only one new niche is colonised (niche
2, colonised at ~1200 generations). Here, niche 2 is 3 chemical
reactions from niche 1, resulting in an environmental dissociation of
3. Accordingly, the complexity lower bound for organisms in niche 2
is 3, and the complexity of viable organisms in niche 2 never passes

below this value.

Negative control experiment 3: No cost of resources

Finally, we sought to test the effect of having a cost of resources in the model

to act as an inherent selection pressure against complexity in the model.
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Figure 37. Case study examples of evolution in a system with an explicit
pressure against complexity in the form of a cost of resources (top
chart) and without a cost of resources (bottom chart). The cost of
resources is expressed as a fitness penalty proportional to the
number of genes expressed in the phenotype. The case studies
shown here represent typical behaviour of the two systems.
Although complexity data series for individual niches typically
appear to be slightly more variable without a cost of resources, the
system does not show the random walk in complexity that might be
expected: mean complexity of individual niches appear to generally
remain close to their respective complexity lower bound, implying
that there is another implicit pressure against complexity in this

system.
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To achieve this we compared a positive control experiment in which the model
contained a cost of resources (specifically, as described in section 3.5.2, a
fitness value of 1 was subtracted for the organism’s total fitness for each gene
expressed in its phenotype), with a negative control experiment in which there
was no cost of resources (i.e. no fitness was subtracted regardless of the
number of expressed genes). Case study results are shown in Figure 37. It was
expected that without a cost of resources, there would be nothing to restrict
the metabolic complexity from following a random walk, and potentially
increasing significantly. However, although complexity data series for
individual niches typically appear to be slightly more variable in the negative
control experiment, complexity within individual niches remained close to the
complexity lower bound over the course of the simulation. This behaviour was
observed in all repetitions of the negative control experiment. This implies that
even without a cost of resources in the model, the implicit dynamics of the
system still generate an inherent pressure towards complexity minimisation in

individual niches.
We suggest two possibilities for this phenomenon:

1. First, longer pathways require more genes, and because mutation
occurs with a per-locus probability, longer pathways have a greater
chance of undergoing mutation. Because any random mutation to a
working metabolic pathway is much more likely to break that pathway
than not, then longer pathways are more likely to undergo mutation,
and hence be broken, than shorter pathways. Shorter pathways are
therefore more robust to the probability of deleterious mutations than
longer pathways.

2. Second, even ignoring the increased probability of mutation associated
with longer pathways, for any individual mutation, there is still a strong
bias towards complexity minimisation inherent within the system.
Specifically, imagine we have a 5-step pathway, and that there is one
available 4-step pathway, and one available 6-step pathway, both
accessible by a single mutation from the current 5-step pathway. Even
with an equal number of simpler and more complex pathways as in this
thought experiment (and with an equal probability of mutation adding
or removing genes, as present in the system), the simpler pathway is

much more likely to be evolved. The reason is that a mutation to find
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the 6-step pathway must correspond to the right enzyme (from the 120
available) to add to the pathway in the right position. In contrast, the
mutation to shorten the pathway only has 5 possible enzymes to choose
from (i.e. those already in the pathway), one of which by definition must
be able to be removed to find the shorter pathway. The result is that
even though in this process, both the more complex and less complex
pathways are selectively neutral, due to the inherent dynamics of the
system, there is an inherent bias towards shortening any given pathway

than lengthening it.

The results of this control experiment suggest that even without a cost of
resources, other implicit properties of this type of system cause simplicity to
be favoured, resulting in trends of complexity minimisation in individual
niches. This implies that it is possible to further generalise the hypothesised
mechanism by removing the condition that there must be a cost of resources
to generate local trends of complexity minimisation, as other factors within

such systems also inherently act to minimise complexity.

In summary, the results of the control experiments described above generally
support the environmental dissociation complexity hypothesis, and further
suggest that it may be generalised by removing the condition that a cost of

resources is necessary to generate trends of complexity minimisation.

4.6 Discussion

The above control experiments provide significant support for the claims of
environmental dissociation complexity. The positive control experiment
robustly produces simultaneous complexity trends of a system-wide, general
trend of increasing complexity of the most complex organisms and local
trends of complexity minimisation in individual niches. Meanwhile, the
negative control experiment without change in environmental dissociation and
the negative control experiment without a sufficiently gradually varying
environment both failed to generate similar increases in complexity,
supporting the hypothesis that these are necessary components of the
complexity generation mechanism. On the other hand, the negative control

experiment without a cost of resources still showed an inherent preference for

144



Chapter 4: Complexity Lower Bounds

simplicity in the model, suggesting that such a pressure will generally be
present in this type of system even if resources are highly abundant, widening

the scope of conditions in which the mechanism applies.

Given the gradually heterogeneous nature of the biosphere (Manahan 2004;
McBride 1994; Solomon 2007), and the prevalence and constrained nature of
DNA (Reaves et al. 2012; Kornberg and Baker 1992; Lindahl 1993; Grogan
1998; Marmur and Doty 1962), it seems highly likely that the biosphere
commonly provides the conditions required in the mechanism necessary to
produce a trend of increasing complexity of the most complex organisms.
Indeed, in the biosphere such a trend is widely documented (Bedau 2009;
McShea 1991). On the other hand, many evolutionary experiments that do not
observe such a trend of increasing complexity (e.g. Spiegelman’s experiments;
Spiegelman et al. 1965) do not provide the conditions stated in the
mechanism. As such, these results help to explain these observations.
Moreover, they also help to explain how evolution in the biosphere is able to
create a trend of increasing complexity in spite of the apparently ubiquitous
pressure towards simplicity in evolution created by the cost of resources (and

potentially other factors).

Although these results provide support for the hypothesis in this chapter, there
are still a number of issues that remain outstanding that we will attempt to
address in the rest of this section. We will first discuss in more detail how to
link the theoretical description of complexity lower bounds with the chemical
model used in this chapter - in particular, we will describe the state space of
the model. Next, we will discuss a potential further control experiment that
due to model limitations was not feasible to simulate: the effect on complexity
trends of having a replicator that is not too constrained to change to adapt to
environment change. We will then discuss the effect on the mechanism of
having an environment that is possible for evolution to change by niche
construction. Finally, following this, we will delve into what causes complexity
lower bounds in the first place by examining the particular topological
property of state space that causes them, and discuss how this relates to
biological evolution. We will now discuss the nature of the state space in the
metabolic model of this chapter, which will help to provide conceptual support

for other topics described in this discussion.
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Although the chemical reaction network defined in the model describes the
available state-change operators and their effects on environment state, this
chemical reaction network is not the state space of the model. The reason is
that a single environment state is defined by the position of multiple
compounds in the chemical reaction network. If the environment only
contained a single compound, then the reaction network would be identical to
the state space. Because the environments in the model contain multiple
compounds, then the state space is more complicated. The key difference
between the state space of the model and the chemical reaction network is that
each node in state space represents an environment - that is, a particular
collection of chemical compounds. In the model, each environment contains 18
chemical compounds. To define the state space, we would simply create a
node for every possible set of 18 compounds, and connect those sets to
neighbouring sets by the individual chemical reactions that are required to
change from one to another, just as in the Rubik’s cube analogy. As with the
Rubik’s cube, we can visualise this state space (Figure 38), and in it define the
‘solved state’ - the small subset of environments in which the organisms’

replicator can reproduce (green bounded region, Figure 38).

How does the system behave in this conceptual model of state space? Given a
replicator that is too constrained to change, as in the above simulations, then
the set of compounds required by the replicator is fixed over time and cannot
change via evolution. The result is that this bounded region in state space
cannot move (in state space) over time. Meanwhile, at any time, the current
external environment is a given set of chemical compounds, which is simply
represented by a single node in state space (Figure 38, blue circle). Here,
following environment change, evolution is forced to generate a metabolic
pathway that recreates the niche required by the replicator (Figure 38 b) - and
the minimum complexity of this pathway is defined by the shortest available

path length in state space (i.e. the complexity lower bound).
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a. A \

Figure 38. Hypothetical comparison of complexity evolution from a starting
state (a) given a core replicator with fixed constraint (b) (similar to
DNA) and no constraint (c). (a) The network represents the state
space of the model. Nodes are chemical environments and links are
chemical reactions. The blue node is the current environment, and
the green area is the set of chemical compounds required by the
organism’s replicator for reproduction. When the environment
changes, it does so on the network. (c) If the organism’s replicator
can be easily changed to cope with new environmental conditions,
then the green area simply moves to the new environment. This
poses no transformational problem evolution, and hence no increase
in complexity is necessary. This would result in a new base
replicator of evolution (i.e. other than DNA). (b) If the replicator has
fixed constraint, then the replicator will always require the same
input environment (the green area is fixed). In this case,
environment change necessitates that evolution evolve machinery
capable of transforming the new environment into that required by
by the organism’s replicator. State space dictates how this can be
achieved; some routes are short (e.g. 1) and hence less complex;

others are longer and more complex (e.g. 2).
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Obviously, the complexity lower bound that this shortest path defines by no
means dictates what pathway will actually evolve in any given environment, but

does provide rigid constraints on what is possible.

With this conceptual model in mind, let us consider what might happen in the
case of a control experiment in which organisms’ have a replicator that, unlike
DNA, can be easily change to be able to replicate given many different sets of
environmental conditions; for example, by swapping key molecules within its
structure for other molecules, as suggested by Wolfe-Simon et al. (2011), which
was subsequently discredited by Reaves et al. (2012). Modelling such a system
was beyond the scope of our investigation, and given that there is no evidence
of such a capability in nature, was less of a priority than other control
experiment simulations. However, given our conceptual description of state
space in the metabolic model, we can at least logically analyse what the effect

of having such a replicator might be.

In our Rubik’s cube analogy of environmental dissociation complexity, having
an replicator that, unlike DNA, can easily be changed to reproduce with a
different set of environmental inputs effectively allows evolution to move the
‘solved state’. Considering this ability in terms of the state space of the
metabolic model, the result is that the green bounded region can be moved by
evolution, thus removing the requirement to create a complex transformation
(Figure 38 ¢). Changing the replicator in this way causes the environmental
dissociation to be zero: no new function is (ever) required, and organismal
complexity is not required to increase. The result would be that rather than
bother to produce costly metabolic pathways, evolution could just substitute
DNA for a similarly capable molecule that could simply operate with whatever

chemical inputs the current environment happened to contain.

If this were possible in biological evolution, life could presumably expand into
a vast array of niches without having to become more complex. In this case, we
would presumably observe a large array of different base replicator molecules,
each suited to the particular chemical makeup of its environment. This stands
in contrast to reality, in which we observe a near uniform reliance on DNA as
the base replicator of life across all niches (Reaves et al. 2012; Ridley 2009;
Kornberg and Baker 1992) - and moreover, is commonly surrounded by an

array of environmental transformation machinery (i.e. metabolisms) of varying
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complexity across the different occupied niches in the biosphere (McShea
1994; Ridley 2009; Horton et al. 1996), similar to the behaviour predicted by
the earlier simulations. Of course, this conceptual analysis can only take us so
far; it would be useful to carry out further control experiments to test this

predicted effect on the resultant complexity trends in the model.

4.6.1 Environmental dissociation and niche construction

We will now move on to briefly discuss how the results of this chapter, which
have so far been described in terms of homeogenesis - organisms creating
environmental adapters that sit between existing functionality and the external
environment - can be integrated with niche construction, which is effectively a
similar process but in which environment change occurs in the external
environment as a product of behaviours. In short, here we suggest that
changing the environment by niche construction will also be subject to
complexity lower bounds, in a similar manner to homeogenesis - and
therefore, that the results and predictions of this chapter can be similarly

applied to systems that allow niche construction.

Because environmental dissociation and complexity lower bounds are inherent
to the problem of environment change itself (Papadimitriou 2003) as opposed
to being a property of homeogenesis, it follows that the same requisite trends
of complexity should be generated by evolution regardless of the location of
the environment change solution (e.g. internally within the organism, such as
with homeogenesis and the models in this chapter, or externally such as with
niche construction). It stands to reason that complexity lower bounds would
limit minimum complexity solutions of both homeogenesis and niche
construction in a similar manner. If evolution opts to undertake niche
construction to adapt to environment change, then the greater the
environmental dissociation between the current external environment
conditions and the conditions required by the organisms’ metabolism, the
greater the number of environmental change steps that will be required by any
process of niche construction - and in turn, the more complex the niche
construction mechanism that will be required. Another way to illustrate the
same point is to consider the metabolic model in this chapter. Although the
model is described in terms of a evolving metabolism, it is sufficiently abstract

that it could be directly interpreted instead as a problem of niche construction,
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in which organisms must evolve their phenotype to generate niche
construction behaviours to adapt to changes in the external environment. This
interpretation does not affect any of the assumptions in the model, and hence

will not change the results.

This generalisation of the mechanism potentially increases the explanatory
power of environmental dissociation. In this more general interpretation of the
mechanism, as described earlier, trends of increasing complexity of the most
complex organisms are generated when evolution is required to perform
environment transformations that have inherent complexity lower bounds -
only given this generalisation the resulting environment transformation
algorithm can either be expressed as a set of internal adapters in the
phenotype (e.g. a metabolic network), or as a set of behaviours and
behavioural machinery used to transform the external environment (such as

limbs, eyes, brains, innate behaviours, etc.).

4.6.2 Average path length

Finally, given that we have identified the magnitude of environmental
dissociation, which is a property of two given points in a state space network,
as the primary cause of complexity trends in this mechanism, we can ask: what
network property of state spaces causes high environmental dissociation?
Environmental dissociation is a property describing the shortest path distance
between two given nodes in a state network. There are many possible network
topologies of state network (e.g. fully connected, small world, ring network,
etc.) that a given system could have - and some of these preclude high
environmental dissociation and hence preclude high complexity lower bounds,
and others may affect their magnitude. For example, given a state space
network that was fully connected, then any environment state could be
transformed into any other in a single step, precluding the possibility of
complexity lower bounds higher than 1 - and hence carrying out evolution in
such a system would be unlikely to generate any significant complexity by this
mechanism. A key property that describes this network property is average
path length. Average path length is defined as the average number of steps
along the shortest paths for all possible pairs of network nodes (Newman
2009). For example the average path length in a fully connected network is 1,

because all nodes are connected directly to all other nodes. In contrast,
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chemical reaction networks generally have a much higher average path length
(Papachristodoulou and Recht 2007): to get from one compound to another on
a chemical reaction network in many cases requires multiple steps (Vogel
1974; Hammett 1970). In short, this reasoning implies that a state space with
a high average path length (such as that provided in chemical systems, or
spatially distributed systems) may be a further necessary condition to allow

such trends of increasing complexity to evolve.

4.7 Evidence for complexity lower bounds in other

models

We now move on from discussing the conceptual details of environmental
dissociation complexity, and instead search for further evidence for it. To do
this, we have carried out modelling to test whether significant environmental
dissociation (and hence complexity lower bounds) are present in other
evolutionary systems - in particular, a standard NAND gate model of functional
evolution. The model system evolves circuits of logic gates to perform
predefined calculations, building on the significant body of work in this area
(Kashtan and Alon 2005; Kashtan, Noor, and Alon 2007; Milo et al. 2002). The
model evolved solutions to the same, large set of arbitrary environment
transformations, many times over from many different starting genotypes. We
then observed the number of gates in the simplest circuits evolved that
successfully completed each given transformation. We sought to test two
hypotheses: That complexity lower bounds existed, and that transformations
between environments of the same complexity (in this case, size of binary

input) could result in complexity lower bounds of different magnitudes.

4.7.1 Methods

The model builds on the NAND logic gate model of Kashtan and Alon (Kashtan,
Noor, and Alon 2007; Kashtan and Alon 2005). NAND gates were used because
they are computationally universal, meaning that they can be combined to
make any other type of logic gate. Circuits consisted of four layers of (8,4,2,1)
NAND logic gates, making a total of 15 gates per circuit. There were 8 circuit
inputs. Circuits evolved connections between gates, not allowing feedbacks.

The goal of each circuit was to logically transform an input environment into
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an output environment using as few gates as possible. This could represent,
for example, transforming the external environment into the conditions
required by the organism’s replicator. There were 32 niches. Each niche had a
different external environment (but the same target output environment),
representing a different necessary transformation for each niche. Each input
environment consisted of 8 binary bit strings of length [=8. To be able to
reproduce in that environment, the circuit had to convert all 8 of those bit
strings, in order, to a specific 8-bit binary output sequence, defined by the
target output environment. Because the output of each circuit was a single
gate, all 8 of the L=8 bit strings per input environment were transformed to a
single binary bit. Thus the target output environment was a single =8 bit
string. The size of the input environments was the same for every niche (8 L=8
bit strings). Circuits had a genotype of length L=15. Each gene corresponded
to a specific gate. Each gene consisted of two integers 0<v<23, each defining
one of the two input locations for that gate. There were 15 gates and 8 circuit
inputs, making a total of 23 possible input locations for each gate. (However,
feedbacks were not allowed, so depending on the level of the gate, the number
of available input locations was reduced.) The output of the single final gate

was assumed to be the circuit output.

Although each genotype coded for 15 possible gates, circuits were measured
on how many gates were actually used in the transformation (‘effective gates’;
after Kashtan and Alon, 2005). Gates that were not part of a connected route
from circuit input to output were not included in the effective gate count.

Fitness (F) was calculated according to

F=max (0, fs-fe)

where fs=40 was fitness awarded if the circuit successfully completed the
required transformation in its niche, and fe was the number of effective gates

used by the given circuit, thus providing a pressure against complexity.

Each of the 32 niches had a different, randomly chosen input environment that
had to be converted into the target output environment - each representing a
different but equal size (in terms of input and output bits) transformation.
Niches were connected in space on a fully connected network. This represented
organisms evolving across a series of spatially connected niches. Circuits could

access hew niches by migration, which occurred to offspring with a probability
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Pm=0.2. Each niche was equally likely to be the migration location. Each niche
had an n=200 carrying capacity. During each generation, reproduction
occurred by (linear) fitness proportional selection until 200 offspring were
produced, unless all circuits in that niche had zero fitness. Only circuits with
F>0 fitness could reproduce (i.e. those that successfully performed the
necessary transformation). Each simulation started with a single organism the
first niche. Because this organism had to be able to reproduce (otherwise the
initial population would simply go extinct), the first organism’s genotype was
selected by random search that continued until an organism was found that
could successfully perform the transformation in its given niche. Using random
search ensured that in each repetition, evolution began in different random

starting position.

4.7.2 Results

Results are displayed in Figure 39. The aggregate results are a combination of
1000 repetitions, where each repetition was 10,000 generations. Each
repetition used the same 32 niches, and thus necessitated the same 32
transformations. In all of the 1000 repetitions, one-gate solutions (i.e. circuits
that achieved the necessary transformation with only one effective gate) were
only found in 5 of the 32 niches. Solutions were found to all niches, but the
number of gates in the simplest solutions found for each niche varied from 1

to 4.

The point of this exercise was to examine, to as great an extent as possible,
the set of solutions available for 32 randomly chosen, equal size
transformations in NAND circuit space. The results suggest that
transformations of the same size can have a different minimum number of
gates with which they can possibly be solved. This supports the existence of
complexity lower bounds in logical systems, and also that complexity lower
bounds can be different even from transformations that have equally complex

inputs and equally complex outputs.
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Figure 39. The frequency of simplest circuit sizes (in terms of number of gates)
found after each repetition of the NAND gate model. Only 5 of the
32 transformations evolved solutions with a single gate. This
suggests that complexity lower bounds exist in this common model
of evolutionary function, and that transformations of different sizes

can have different sized complexity lower bounds.
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In this system, the search space of possible circuits is too large to search
exhaustively. Although we carried out many repetitions of evolution for each
transformation, we only sampled the space of available solutions. Therefore
there remains a possibility that for the transformations for which no one gate
solutions were found, such solutions do actually exist, but were not found by
evolutionary search: Although this simulation gives us some idea of the likely
distribution of complexity lower bounds in this system, it cannot provide us
with absolute evidence that complexity lower bounds exist in this system. To
rule out this possibility, for each of the 32 transformations in the experiment

we exhaustively tried every possible one-gate circuit.

We found that many transformations did not have one-gate solutions -
providing support for the results of the simulation. This definitively illustrates
that some transformations of equal size inputs and outputs have minimum
solutions with different numbers of gates, proving that complexity lower
bounds are generally present in this system of NAND logic gates, and also that
transformations of the same size can have different size complexity lower

bounds.

Evidence from computer science (Papadimitriou 2003), electrical engineering
(Hambley 2008) and chemical reaction networks (Vogel 1974;
Papachristodoulou and Recht 2007; Hammett 1970) support the conclusions
from the above model, and suggests that complexity lower bounds are a

widespread phenomenon.

4.8 Conclusions

In this chapter we have introduced a novel complexity-driving mechanism in
evolution. This framework shows how, given a difficult to change replicator
such as DNA, the amount of environmental dissociation in a given niche
dictates the minimum possible complexity of viable organisms in that niche -
which given an environment with heterogeneous environmental dissociation,
will generally result in a system-wide trend of increasing complexity of the
most complex organisms (as new niches with higher environmental
dissociation are colonised), coupled with local trends of complexity
minimisation in individual niches. This work therefore links computational

complexity theory (e.g. Papadimitriou 2003) to biological evolution. We have
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also identified the minimum necessary conditions for this complexity driving
process to be expressed in evolution, which are simply a) a replicator whose
replication functionality is too difficult to change, and b) a gradually varying
environment with heterogeneous environmental dissociation. (We also include
C) a selection pressure against complexity, although experiments suggest that
this is may be an inescapable inherent part of the dynamics of the system and
so may not need to be included in the list of necessary conditions.) Evidence
that a) DNA has a very small range of conditions in which it can replicate
(Lindahl 1993; Grogan 1998; Reaves et al. 2012; Marmur and Doty 1962), is
the base replicator of all known life (Kornberg and Baker 1992; Reaves et al.
2012; Ridley 2009); b) DNA has functionality that is extremely preserved
across all life (Kornberg and Baker 1992); c¢) the biosphere is widely
heterogeneous and often changes gradually in time and space (Manahan 2004;
McBride 1994; Chester 2009; Solomon 2007), implies that these conditions are

routinely met in natural biological systems.

Why does natural evolution display a characteristic trend of increasing
complexity of the most complex organisms? The chain of causation that brings

about such trends that is suggested by this framework is:

1. evolution is constantly pushed by population pressure and temporal
environment change into new environment conditions

2. which, because life on earth is based on a highly constrained replicator,
often results in evolution favouring converting the environment back to
conditions favoured by its replicator, as opposed to the replicator itself

3. and such environment conversion problems have inherent lower bounds
on the complexity of minimum possible solutions, whose magnitude
depends on the environmental dissociation of the two environments
being converted between

4. which in turn results in requisite minimum organismal complexity for
any given niche

5. and combines with the inherent favouring of simplicity within evolution
(for example, due to cost of resources, etc.) to produce a general,

system-wide trend of increasing complexity of the most complex
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organisms, coupled with local trends of complexity minimisation within

individual niches.

We suggest the name environmental dissociation complexity for this
framework of complexity evolution. Environmental dissociation complexity also
enables us to make some general, speculative predictions about complexity
trends in general evolutionary systems, such as in life on other planets, or in

artificial evolution:

1. There is nothing inherent within ENS, or evolution as a whole to force
complexity to occur; however, given a constrained replicator, complexity
change will be controlled by environmental dissociation as evolution
spreads to different environments.

2. Therefore, life based on DNA (or another similarly constrained
replicator), given a gradually varying environment with heterogeneous
environmental dissociation will generally cause the characteristic types
of multifaceted, environmentally mediated complexity trends observed
in these simulations, including a system-wide general trend of
increasing complexity of the most complex organisms and local trends
of complexity minimisation.

3. Therefore, if we were to ‘replay the tape of life (Gould 2000)’ on earth or
on another planet (starting with DNA, or another similarly constrained
replicator), we should generally expect to observe a similar overall
pattern of complexity trends as we observe in the evolutionary record
and in these simulations.

4. However on other planets significant complexity could still be hampered
even if life begins with DNA (or a similarly constrained replicator) if the
environment is not sufficiently heterogeneous, or if the environment
does not provide some path of gradual environmental change to allow
gradual increase of environmental dissociation, and hence gradual

increase of evolved complexity.

It is important to stress that although the presence of complexity lower bounds
imply that in many cases complexity increases may be driven by the particular

environment transformation required in that niche, it is clear that other factors
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not included here can affect and control complexity evolution. The existence of
other such factors means that we should not necessarily expect to see a clear
pattern of repeated homeogenesis as observed in the simple models in this
chapter. For example, Lane argues that genome size can also act as a limiting
factor on organismal complexity (Lane 2002). Lane argues that genome size
was a key limitation that held back the evolution of eukaryotes from
prokaryotes. In short, prokaryotes had energy limitations that in turn limited
their genome size - and so eukaryotes (necessitating greater complexity and
hence longer genomes) could only be evolved once this energy barrier was
transcended (Lane 2002). Interestingly though, although this view focuses on
genome length as a control on complexity, it may implicitly assume the
existence of complexity lower bounds. If there were no complexity lower
bounds on the eukaryotic niche, then presumably there should be arbitrarily
simple viable solutions to the eukaryotic niche that would, therefore, not be
affected by the genome size limitation. It is only if the eukaryotic niche has
some lower bound of complexity that a limited genome size would deny
evolution access to this niche. Interpreting this example from a general
complexity lower bound perspective, in some cases it may be that the
transformation required by a neighbouring, unoccupied niche (such as the
eukaryote niche) requires an increase in complexity (due to its complexity
lower bound) that is simply not possible given the genome size limitations. In
this case, evolution would be halted, caught between two limitations: the need
for extra complexity to carry out the new environment transformation (i.e.
satisfy the complexity lower bound), and the limit on extra complexity due to

genome size limitations.

The point of this illustration is to demonstrate that many other physical factors
no doubt limit organismal complexity in different ways (i.e. as complexity
roadblocks) in combination with complexity lower bounds, resulting in more
complicated trends in complexity than produced by the mechanisms described
this chapter. In short, although we have described here a mechanism for
complexity generation in evolution whose causal factors seem to be
significantly widespread, this theory by no means discounts all other existing
theories for complexity generation, which may well act alongside, or in concert

with the mechanism we describe here.
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4.8.1 Key Results
The key claim of this chapter is that

Environmental change motivates evolutionary change, but not
necessarily any increase in complexity. However, given
a. an organism with a replicator that can replicate in some small
subset of environmental conditions, and whose replicator
cannot feasibly be changed to replicate in conditions outside of
this subset;
b. an environment with heterogeneous environmental dissociation
whose conditions change sufficiently gradually;
C. an inherent selection pressure against complexity such as a cost
of resources
then as competition forces evolution to leave the original environment
(a), and colonise new environments (b), the magnitude of
environmental dissociation of a new environment will dictate the
minimum possible complexity of viable organisms in that environment,
resulting in a system-wide trend of increasing complexity of the most
complex organisms, coupled with local trends of complexity

minimisation in individual environments, caused by (c).

This claim is supported by the following results.

e Evidence that an evolutionary system that satisfies (a), (b) and (c)
results in a general, system-wide trend of increasing complexity of
the most complex organisms coupled with local trends of
complexity minimisation in individual niches is provided by:

o the positive control experiment results (section 4.5.2.1), that
show a extremely significant increase in system-wide, mean
organismal complexity, and

o Figure 31 and Figure 32, that illustrate case studies of this
general result, and show robust trends of local complexity
minimisation in individual niches.

e Evidence that environmental dissociation dictates the minimum
amount of complexity in a given niche (and hence that
heterogeneous environmental dissociation is a necessary condition

to generate the observed complexity trends, and that environmental
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change alone is not necessarily sufficient to generate increases in
complexity) is provided by results from negative control experiment
1 (section 4.5.2.2 - Figure 33 and Figure 34).

e Evidence that a sufficiently gradually changing environment is a
necessary condition to generate the observed complexity trends is
provided by results from negative control experiment 2 (section
4.5.2.3 - Figure 35).

e Evidence that the relative amount of selection pressure against
complexity controls the complexity minimisation trends is provided
by negative control experiment 3 (section 4.5.2.4). The results of
this section suggest that a selection pressure towards complexity
minimisation may be an inherent consequence of the internal
dynamics of this system, and so could potentially be removed from

the necessary conditions.
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Chapter 5: Summary and Conclusions

5.1 Research aims

Biology displays a general trend of increasing complexity of the most complex
organisms (McShea 1994; McShea 1991; Bedau 2009). However, experimental
attempts have generally failed to reproduce this type of open-ended
complexity in biological systems or in simulations. As a result, how evolution
generates this type of complexity is an open question (Bedau 2009; McShea
2009).

This study set out to determine:

how evolutionary theory can be refined to better explain the apparently
conflicting trends of generally increasing maximal complexity observed
in nature, and complexity minimisation commonly observed in

experiments.

The research was focused in two areas in particular that resulted in two
specific research questions. The first of these questions related to evolution by
combining functions. Combining functions is a common theme in a range of
evolutionary mechanisms and models capable of evolving non-decomposable
functions (and non-decomposable functions are potential roadblocks to the
evolution of complexity); furthermore, many of these mechanisms also
produce transition like behaviour (Watson 2006; Lenski et al. 2003; Maynard
Smith and Szathmary 1997). However, despite significant research in this area,
there are two important outstanding problems. First, there is no agreed
theoretical framework for evolution by combining functions that identifies its
central mechanism and connects it with other related theories. Second,
existing mechanisms involving combining functions have struggled to carry
out evolution open-endedly over multiple levels of organisation. Accordingly,

the first more detailed question addressed in this thesis was

what is the underlying evolutionary mechanism of evolution by
combining functions, and what enables natural evolution to perform it

recursively across multiple scales of organisation?
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The second more specific research question in this dissertation was related to
what, in the absence of any roadblocks, drives evolution to complexity. Many
theories have been proposed to account for large-scale trends in biological
complexity, but most are not supported by computational or mathematical
models and hence lack rigorously defined predictions, and there is no
agreement that any sufficiently explain the trends observed (McShea 1991;
Bedau et al. 2000; McShea 2009). In particular, there is no consensus on what
explains the trend of increasing maximal complexity in evolution. To get to the
root of this problem, the second more detailed research question in this

dissertation was therefore

what type of environmental changes, and under what evolutionary
conditions, necessarily produce adaptations that are more complex

rather than merely different?

5.2 Summary of research findings

This study has identified two new contributions to evolutionary theory that can
provide potentially important progress in understanding trends of complexity

in evolution:

1. A theoretical framework for evolution by combining functions that
includes a mechanism capable of recursively transitioning to
progressively higher scales of organisation, and

2. A new mechanism for the generation of complexity in evolution that can
necessitate changes in complexity, and as a result causes characteristic
trends of complexity that resemble the system-wide general trend of
increasing maximal complexity observed in the biosphere, and local
trends of complexity minimisation observed in many evolutionary

experiments.

These two contributions relate to the two more detailed research questions
respectively. We will briefly describe the findings of each below. First, the
theoretical framework for combining functions unites three major existing
theories of non-decomposable function evolution (exaptation, building block
mechanisms and tinkering) and shows that they essentially describe two core

processes that constitute two separate types of exaptation:
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1. shift exaptation, where the shift in function occurs at the level of the
trait itself (as in the current description of exaptation), and

2. combinatorial exaptation, where the shift in function occurs at a
organisational level above the individual traits being combined (i.e. at

the level of the combination of traits)

Using this understanding, the framework illustrates that combinatorial
exaptation is the central mechanism of evolution by combining functions. We
also provided a model of combinatorial exaptation, building on previous work
and building block models, to explore its properties. First, the model shows
that for combinatorial exaptation to feasibly occur, some mechanism of
‘encapsulation’ is required within the genotype-phenotype map that practically
allows whole phenotypic traits to be redeployed as integrated units in the
phenotype - and in particular, describes how this problem is caused by
increasing ‘burden’ in the form of ‘internal selection’. Moreover, the model
shows that to allow combinatorial exaptation to occur potentially open-endedly
across multiple scales of organisation, the encapsulation mechanism must also
evolve in a similarly open-ended manner. Finally, the model provides a solution
to this problem. It shows that if the modular hierarchical structure of the
genotype and that of the phenotype are somehow linked, this is sufficient to
act as an open-ended system of encapsulation, and hence allow combinatorial
exaptation to occur recursively and potentially open-endedly. Moreover, the
model shows that physical constraints placed on the genotype-phenotype map
by the type of development that occurs in biological organisms can introduce

such a link.

The second main contribution of this dissertation is in the form of a theoretical
framework and set of models based on a particular type of combinatorial
exaptation, that we term homeogenesis. The framework illustrates that
homeogenesis is a potentially novel mechanism of adaptation to environment
change because, unlike most existing mechanisms, does not change an
organism’s existing function or its external environment, but instead occurs by
organisms evolving an internal environmental ‘adapter’ that converts the new

external environment into conditions expected by its existing functionality.

163



Chapter 5: Summary and Conclusions

The evolution of C, photosynthesis represents a well-studied biological
example of this evolutionary mechanism. The computational model in chapter
3 shows that in adapting organisms to environment change, homeogenesis
commonly creates internal representations of previously experienced external
environment conditions. Thus, we show that homeogenesis can potentially
explain the poorly-understood observation that biological organisms
commonly contain conditions within their metabolisms that appear to
represent the ancient environments in which their ancestors lived (Mulkidjanian
et al. 2012) in a more detailed and mechanistic manner than Macallum’s
‘chemistry conservation principle’ (which is commonly referred to and simply
states that this occurs because the chemical traits of organisms are more
conservative than the changing environment; Macallum 1926; Mulkidjanian et
al. 2012).

Most importantly, our simulation results show that in evolution by
homeogenesis, some types of environment change essentially necessitate
increases in organismal complexity, thus acting as a mechanism that can
create robust complexity trends in evolution. Our simulations show that
different types of environment change cause characteristic complexity change
that resemble some common characteristic patterns in nature, including a
system-wide general trend of increasing maximal complexity, and local trends
of complexity minimisation. We carried out further analysis to explain these
results. The resulting theoretical framework identifies that the key factor that
dictates complexity trends in this system is the presence of environmental
dissociation, which creates inherent complexity lower bounds on the
complexity of possible solutions for survival in any given niche. The framework
connects this property to similar lower bounds known in algorithmic

complexity theory.

Bringing these results together, we defined the mechanism of environmental
dissociation complexity, a theoretical framework surrounding complexity lower
bounds that describes how these lower bounds affect evolution. We used this
theory to address one of the key motivating observations in this thesis:
conflicting observations of a general trend of increasing complexity of the
most complex organisms in nature and common trends of complexity
minimisation in experiments. Our results show that having a replicator with

difficult to change functionality (such as DNA), will often result in it being
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easier for evolution to convert the external environment into the conditions
required by this replicator, rather than change the functionality of the
replicator itself (i.e. undertake homeogenesis or counteractive niche
construction). The result is that in any given niche, evolution is required to
generate a chemical or physical algorithm that is capable of converting
between these two environments. Our simulation models to show that, in
agreement with algorithmic complexity theory, each niche therefore introduces
complexity lower bounds on the complexity of possible algorithms available,
and hence enforces a niche-specific floor on the minimum complexity of viable

organisms in that niche.

Crucially, we showed that given a set of conditions that routinely occur in
natural evolution, the mechanism of environmental dissociation complexity
robustly produces a general, system-wide trend of increasing complexity of the
most complex organisms, coupled with local trends of complexity
minimisation within individual niches. We identified the set of conditions that
produce these trends as (a) organisms’ have a replicator that can reproduce in
a small subset of environmental conditions and cannot be feasibly changed to
reproduce outside of those conditions; (b) evolution occurs in an environment
with heterogeneous environment dissociation that varies sufficiently gradually,
and (c) the system contains an inherent selection pressure against complexity
such as a cost of resources. Given the weight of evidence that DNA satisfies (a)
(Reaves et al. 2012; Lindahl 1993; Grogan 1998; Marmur and Doty 1962;
Kornberg and Baker 1992), and that natural environments satisfy (b), and that
evolution inherently contains selection pressures against complexity (e.g. Lane
2010), we propose that these conditions are routinely met in natural biological
systems. This work thereby helps to ease tensions between conflicting
observations of general trends of increasing complexity of the most complex

organisms in the biosphere and complexity minimisation in experiments.

5.3 Contributions and Implications

Taken together, the results of this study illustrate how the current theory of
evolutionary could be refined to better explain the origin and nature of
complexity trends observed in natural biological systems and in evolutionary

experiments.
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This work helps to clarify existing knowledge of complexity evolution by
providing a new general theoretical framework for combining functions that
unites tinkering, building block mechanisms and exaptation, and includes a
mechanism capable of joining functions recursively across multiple levels of
organisation. This supports existing work showing that evolution by combining
functions may be an important biological process, and shows how it can occur

in a potentially open-ended manner across multiple organisational levels.

The research presented here also contributes to the understanding of
complexity evolution by providing a new mechanism for complexity
generation, termed environmental dissociation complexity. This mechanism
links evolutionary biology to known causes of complexity in mathematics and
computer science. Furthermore, under specific conditions that are likely
present in nature, the mechanism produces a general, system-wide trend of
increasing complexity of the most complex organisms, coupled with local
trends of complexity minimisation within individual niches. This helps to ease
the tension between apparently conflicting observations of a general trend of
increasing complexity of the most complex organisms in the biosphere, and
common observations of apparent complexity minimisation in evolutionary
experiments. Environmental dissociation complexity has broad implications.
For example, one implication is that the difficulty associated with changing the
function of DNA might have played a vital role in generating complexity in
evolution on earth (with a more evolvable replicator, functional change might
have been more available, potentially allowing adaptation without complexity
increase). Environmental dissociation complexity also implies that it may be
possible, in theory at least, to predict the complexity lower bound for viable
organisms in a given niche, given knowledge of its core replicator and the state

space of the surrounding environment.

This dissertation also contributes to organismal biology. First, it provides an
expanded theory of exaptation that contains two distinct types of exaptation.
This could have important implications for understanding the mechanism of
evolution in a range of evolutionary events attributed to exaptation, and
provide deeper understanding of the place of exaptation in evolution. This
research also contributes to organismal biology by providing, through
homeogenesis, a mechanism of adaptation that can potentially explain the

observation that organisms often contain internalised versions of previously
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experienced environments. This could have a significant impact on current
research that uses this observation to deduce environmental conditions of
early life, in addition to wider related research (Mulkidjanian et al. 2012;
Mulkidjanian and Galperin 2007).

5.4 Limitations

Finally, a number important limitations to this work need to be considered.
First, in cases where clear examples from evolutionary biology are not
provided, much of this work relies on evidence from models that are abstract
representations of biological systems. These models build on biological fact,
and illustrate the capabilities of non-teleological adaptive processes. However,
in many cases there is much work to be done before their conclusions can be
empirically supported in biological systems. Accordingly, such results should
only be applied to real biological systems with the appropriate amount of

consideration and qualification.

Second, there are numerous limitations of the models used. In both
combinatorial exaptation and homeogenesis models, function was not
explicitly included. As a result, further assumptions were necessary about the
nature of function that could have been avoided if function was included
explicitly. In a similar manner, development was not explicitly included in
either model; this again requires assumptions about development to be added
(especially in the combinatorial exaptation model where developmental
constraints cause linkage between genotype-phenotype map and phenotype
structure). Again, including development explicitly would have increased the
confidence in the simulation results. In a similar manner, in the model of
homeogenesis, because the intention was to study its process, neither
adaptation by changing the existing function nor niche construction were
allowed. This restricts understanding of what conditions cause homeogenesis
over other mechanisms of adaptation, and hence how likely it is to occur in
natural evolution. Furthermore, both combinatorial exaptation and
homeogenesis models had intentionally contrived environments that were
chosen to illustrate particular properties of those respective processes.
Although this was intentional, this prescribed nature limits understanding of
how combinatorial exaptation and homeogenesis would occur in larger, less

restricted and more realistic environments.
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The theoretical frameworks described here also have significant limitations. For
example, there are many other mechanisms capable of non-decomposable
function evolution described in the literature that could potentially be, but
were not incorporated into the analysis that resulted in the combinatorial
exaptation framework. In a similar manner, environmental dissociation
complexity describes how complexity lower bounds potentially affect
evolution, but it is not particularly well connected with other theories of
complexity evolution. In particular, environmental dissociation complexity has
an obvious omission, which is that it does not take into account energy:
Complexity evolution is described as the result of building machinery to
convert one environment into another; however, in reality that machinery must
also be powered, thus requiring other transformation pathways that glean
energy from some environmental source, and transport it to sites within the

metabolism as it is needed.

5.5 Further work

Considerably more work will be needed to determine the extent to which the
mechanisms described in this dissertation apply in natural evolution. In more

detail, these findings provide the following insights for future research:

1. It would be interesting to test whether functions in biological organisms
known to have been produced by combining functions (e.g. Alcock et al.
2010; Flicek 2013) were facilitated by gene regulatory networks in the
manner predicted in the combinatorial exaptation model, and also the
extent to which gene regulatory network hierarchical structure imitates
phenotypic structure as the model predicts.

2. It would also be interesting to carry out further modelling of
combinatorial exaptation in a less restricted environment, where the
selection pressures necessary to evolve a given complex function were
not necessarily present in a single niche, but were distributed across a
heterogeneous spatiotemporal environment. The resulting
spatiotemporal patterns could then be compared with those observed in
biological adaptive radiations; moreover, the model could be used to
explore links between evolutionary and ecological models and theory.

3. Further research is also warranted on understanding the extent of

homeogenesis in nature. The evolution of C, photosynthesis is a well-
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studied example of evolutionary innovation, and that it apparently
occurred by homeogenesis implies that homeogenesis may be a
common process in biological evolution. Moreover, the complexity trend
results of environmental dissociation complexity theory imply that
homeogenesis may be common in the evolutionary record. A
comprehensive review would help to elucidate this possibility.

4. Finally, it would be interesting to test the environmental dissociation
complexity hypothesis in a real biological system, where simple bacteria
were evolved across a range of environments with varying
environmental dissociation, while measuring their capability for
homeogenesis, the resultant effects on their evolving metabolism, and

the resulting trends in metabolic complexity.

5.6 Concluding remarks

In summary, the theory, simulations and analytic results in this dissertation
demonstrate (a) how evolution can, when complexity is beneficial, scale to
complexity over multiple organisational levels, and (b) the conditions in which
complexity is beneficial in evolution. These models describe a set of
phenotypic, ontogenetic and environmental conditions that are generally
present in biological evolution, in which evolution consistently generates an

overall trend of increasing complexity of the most complex organisms.
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