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Biological evolution contains a general trend of increasing complexity of the 

most complex organisms. But artificial evolution experiments based on the 

mechanisms described in the current theory generally fail to reproduce this 

trend; instead, they commonly show systematic trends of complexity 

minimisation. In this dissertation we seek evolutionary mechanisms that can 

explain these apparently conflicting observations. To achieve this we use a 

reverse engineering approach by building computational simulations of 

evolution. One highlighted problem is that even if complexity is beneficial, 

evolutionary simulations struggle with apparent roadblocks that prevent them 

from scaling to complexity. Another is that even without roadblocks, it is not 

clear what drives evolution to become more complex at all. With respect to the 

former, a key roadblock is how to evolve ‘irreducibly complex’ or ‘non-

decomposable’ functions. Evidence from biological evolution suggests a 

common way to achieve this is by combining existing functions – termed 

‘tinkering’ or ‘building block evolution’. But in simulation this approach 

generally fails to scale across multiple levels of organisation in a recursive 

manner.  We provide a model that identifies the problem hindering recursive 

evolution as increasing ‘burden’ in the form of ‘internal selection’ as joined 

functions become more complex. We show how having an ontological 

development process that occurs by local growth, as present in most complex 

biological organisms, resolves this problem, enabling evolution to occur 

recursively. Meanwhile, to understand what drives complexity in evolution we 



 

 

provide a model showing that under certain conditions a well-studied concept 

from the computational study of algorithms – complexity lower bounds – 

applies in evolution. The model shows how the ‘difference’ between the 

conditions required by an organism’s replicator and its external environment 

results in a minimum complexity floor that varies as the external environment 

changes. We find that selection in such a system produces a system-wide, 

overall trend of increasing complexity of the most complex organisms (as 

environments are colonised), coupled with local trends of complexity 

minimisation in individual environments (as evolution seeks to minimise its 

cost of resources) –thereby resolving the tension between biological 

observations and theoretical outcomes. Our simulations and analytic results 

demonstrate (a) how evolution can, when complexity is beneficial, scale to 

complexity over multiple organisational levels, and (b) the conditions in which 

complexity is beneficial in evolution. These models describe a set of 

phenotypic, ontogenetic and environmental conditions that are generally 

present in biological evolution, in which evolution consistently generates an 

overall trend of increasing complexity of the most complex organisms. 
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Chapter 1:  Introduction and literature 

review 

There is nothing in neo-Darwinsm which enables us to predict a long-

term increase in complexity. 

– J. Maynard Smith, 1969 

… macroevolutionary patterns cannot be deduced from 

microevolutionary principles. 

– G. Ledyard Stebbins and Francisco J. Ayala, 1981 

1.1 Motivation 

Biological evolution exhibits an increasing trend in complexity of the most 

complex organisms. Even though complexity can be difficult to define, it is 

hard to deny the earliest prokaryotes are simpler than the single-celled 

eukaryotes that evolved from them, which are in turn simpler than multicellular 

organisms that evolved from them, and so on (Bedau 2009; McShea 1991; 

McShea 1994). 

Some researchers argue that the Modern Synthesis (Fisher 1958; Huxley 1942; 

Wright 1931; Dobzhansky 1970; Haldane 1990), which is the current theory in 

evolution (Pigliucci 2007), already explains this trend (Bedau 2009). A common 

argument is that the basic mechanisms of natural selection described in the 

current theory (e.g. Godfrey-Smith 2007; henceforth evolution by natural 

selection: ENS) are sufficient to provide an infinite space of possibilities to 

evolution, and therefore, this system will eventually produce a generic trend of 

progressively more complex organisms (Bedau 2009). 

However, most laboratory experiments and computational models that embody 

those mechanisms have failed to display such long-term, general trends of 

increasing complexity as observed in nature (Bedau 2009; Lane 2010; 

Spiegelman et al. 1965; Oehlenschläger and Eigen 1997; Bedau et al. 2000; 

Watson 2006).  

A telling example is provided by the work of Sol Spiegelman in the late 1960s 

(Spiegelman et al. 1965). Spiegelman took a simple virus of 4500 nucleotide 
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bases that made up only a handful of genes, many of which produced proteins 

whose purpose was to subvert the complicated machinery of host cells. He 

then added the virus to a test tube with a free supply of the RNA replicase 

enzyme necessary for the virus to reproduce, plus some free nucleotides and 

salts. Periodically he moved the RNA to a new test tube with fresh solution. The 

results were dramatic. The virus reproduced steadily, and then gradually 

started to lose genes – specifically, genes that were necessary to survive in the 

complicated environment of the host cell, but not necessary in the test tube 

(for example, genes that subverted the complicated machinery of the host cell). 

Not only that, but the shorter viruses could reproduce faster, allowing the 

shorter mutants to prevail. After 74 generations, the original virus with 4,500 

nucleotide bases ended up as a dwarf genome with only 218 bases. Over 

successive generations, he found that successful RNAs become progressively 

simpler, losing all genes that were unnecessary in the test tube environment. 

Evolution favoured stripped-down, simple-as-possible organisms because these 

were the fastest at reproducing. As Nick Lane eloquently summarises (Lane 

2002): 

‘Evolution selects for beneficial adaptations to a particular 

environment, and the simplest, fastest or most efficient solution will 

tend to win out, even if it means excess baggage is jettisoned and 

organisms become less complicated.’ 

 

With the advent of faster computing in the 1980s and 1990s, researchers 

sought to study evolutionary trends using computational simulations, as part 

of the field of artificial life.  

Many of these simulations actively sought to reproduce what was considered to 

be ‘open-ended’ evolution observed in the biosphere. In many cases the hope 

was to provide conditions for evolution that produced progressively more 

complex and diverse forms over time. Tierra (Ray 1992), Avida (Adami et al., 

2000), Polyworld (Yaeger 1994) and Geb (Channon 2001) are examples of 

these types of models; typically, they have no explicit goal other than survival 

and reproduction.  

Tierra (Ray 1992) is an evolutionary model in which self-replicating digital 

programs compete for resources (i.e. processor time) on a virtual computer. In 
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several Tierra simulations, interesting cycling behaviours of parasitism and 

immunity arose in the system, resulting in a coevolutionary arms race. 

However, Tierra-like systems all inevitably struggle to continually produce 

novelty (Channon and Damper 2000). Furthermore, the parasites that evolved 

did so as a result of a drive towards simplicity: simpler programs could 

reproduce with less processor time, and so were more efficient. As a result, 

parasites evolved that did not have their own copying code, but instead 

hijacked the copying code of other programs. 

In Polyworld (Yaeger 1994) and Geb (Channon 2001), digital agents compete 

for survival in a two-dimensional world. Again, some interesting behaviours 

result from evolution in this system, such as flocking and foraging – but again 

evolution in these systems eventually struggles to produce further novelty. 

To address this problem of decreasing novelty over time Lehman and Stanley 

(2011) adopted a different approach, by defining novelty search – a system in 

which evolution is explicitly rewarded for creating novelty, as opposed to 

functionality that promotes survival and reproduction alone. They achieved 

some interesting results, such as showing that novelty search can outperform 

directed evolution in deceptive problems (i.e. those that typically lead evolution 

away from the target). However, although novelty search could be useful as an 

engineering tool, it is not clear how much explicit selection for novelty can tell 

us about complexity trends in natural evolution, as evolution in the natural 

world is not know to include such a force.  

In a more recent study Auerbach and Bongard (2014) examined how the 

complexity of the environment can affect evolved complexity. They used a 3d 

model of organism morphology, similar to Carl Sims’ pioneering work on 

blocky creatures (Sims 1994). They found that when the environment was more 

complex – in particular, more rugged – organisms selected for a locomotion 

task generally evolved more complex locomotion mechanisms. This provides 

evidence that in some cases at least, environments that pose more complex 

tasks for evolution can consistently result in more complex organisms being 

evolved.   

However, in sum, many artificial life simulations – in particular those without 

an explicit or directed fitness function – showed the same general behaviour 

observed by Spiegelman: in many cases organismal complexity generally 
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decreased over time and settled at some minimum, at which it remained 

apparently indefinitely (Langton 1984; Ray 1993; Bedau et al. 1997; Sayama 

1999; Bedau et al. 2000; McMullin 2000; Suzuki, Ono, and Yuta 2003). Again, 

this was commonly attributed to simpler organisms requiring fewer resources 

and being able to reproduce faster.  

Another important study on the evolution of complexity is Lenski’s Escherichia 

Coli long term evolution experiment. The experiment, which is still on-going, 

has tracked genetic changes in 12 initially identical populations of E. Coli since 

1988, making up over 60,000 generations (Lenski 2003). The populations are 

grown in an incubator in a minimal growth medium, and each day 1% of the 

population are transferred to a fresh flask of growth medium.  

The general results show similarities to artificial life simulations; initially, the 

populations evolved fairly rapidly to their new environment. All populations 

produced larger cells in response that were specialised for living on glucose 

(which was abundant in the medium), resulting in a 70% faster reproduction 

time. However, after approximately 20,000 generations, the initial rapid 

changes had dwindled (Lenski 2004). Some novel complex functions were 

evolved; in particular, one population evolved the capability to metabolise 

citrate, which was very useful in the highly oxic conditions of the growth 

medium (Blount et al., 2008). However, despite these changes, the results 

predominantly show gradually decreasing optimisation to a given niche, and 

the ability to solve specific problems by evolving new functionality, but not an 

open ended growth of new forms (Lenski 2004, Blount 2008).  

Given these results, we are therefore left with two rather conflicting 

observations: a general trend of increasing maximal complexity in the 

biosphere, and a common inherent preference for simplicity observed in 

artificial evolution experiments. Furthermore, the Modern Synthesis has little to 

say about what causes trends in complexity in evolution, and the origins of 

complexity trends remain an open question (e.g. Maynard Smith 1969, McShea 

1991; Bedau 2009). 

Based on these observations, the key, overarching question that motivates this 

work is: 
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How can evolutionary theory be refined to better explain observations 

that natural evolution exhibits a general trend of increasing maximal 

complexity, whereas in experiment evolution commonly results in 

systematic complexity minimisation? 

1.2 Theoretical perspective 

Before we look into this question further, we must first address another 

important and subtle issue. In this thesis we define ‘evolution’ as the complete 

connected set of mechanisms and algorithms that underpins biology, that is 

only partly understood, and that mapping and understanding this is one of the 

main goals of research into evolutionary biology. In contrast, we define 

‘evolution by natural selection’ (ENS) as the specific algorithm that Darwin 

(Darwin 1859), and later others (for a thorough review see Godfrey-Smith, 

2007) have defined, that is the central component of the Modern Synthesis, 

and can be generally summarised as variation, heredity, and fitness differences 

(Godfrey-Smith 2007). Importantly ENS does not explicitly include any specific 

genotype-phenotype maps, processes of development, niche construction, or 

other such higher-level processes. 

Evolution is a phenomenon that spans multiple levels of organisation, and so 

may require a different type of theoretical framework than is common in 

science (Stebbins and Ayala 1981; Watson 2012; Mitchell 2009). For example, 

a problem with multi-level science is that it is not clear that having a theory 

that entirely explains phenomena on one level can, even in principle, explain 

phenomena on levels above (Mitchell 2009; Stebbins and Ayala 1981). Stebbins 

and Ayala compared different levels in evolution (e.g. genes, phenotypes, 

ecosystems) to the organisational gap between physics, chemistry and biology. 

They argued that although the mechanisms of physics and chemistry clearly 

operate in biological systems, few scientists would argue that complex 

biological phenomena can be predicted using the laws of physics and 

chemistry alone. They therefore argue that the same is presumably true in 

evolution: although the process of ENS clearly operates in phenotypes and 

ecosystems, this does not mean that patterns in those systems can be 

predicted or explained by ENS alone.  
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For an analogy, Watson (2012) discusses how several different classes of 

sorting algorithm all contain some essential algorithmic elements of sorting; 

but describing these elements alone does not provide a description of how 

these algorithms function. Sorting algorithms are used to sort lists in to some 

order (e.g. sorting a list of words alphabetically). The most common class of 

sorting algorithms is based on repeated compare-and-swap operations, where 

two records are compared, and swapped if necessary. There are many different 

compare and swap sorting algorithms (e.g. bubble sort, merge sort, etc.) and 

they vary greatly in the patterns they produce while sorting, and their 

efficiency. But they are all simply based on repeated compare and swap 

operations. What separates them is how those compare and swap operations 

are organised (e.g. starting at the top of the list and working down, or 

choosing random positions in the list, etc.). Clearly, if we want to explain why 

one such sorting algorithm is more efficient than another, or produces 

different patterns while sorting, we cannot do so with a theory that only 

describes the compare and swap operation. Such a theory cannot differentiate 

one compare and swap sorting algorithm from another, because the 

differences occur at a hierarchical level above the theory itself. Watson argues 

that evolution is similar: ENS is like the ‘compare and swap’ operation of 

evolution – it is the bottom level component of the algorithm. As a result, 

although ENS can explain phenomena on the level of genes, it simply does not 

contain the information to predict phenomena at higher levels. In other words, 

ENS is consistent with a very large range of possibilities at the levels of 

phenotypes and ecosystems, but it does not contain the necessary information 

to differentiate between them. Therefore, ENS alone cannot identify which of 

these myriad possibilities actually occurs in nature. This is consistent with the 

view that, as Stebbins and Ayala state, ‘macroevolutionary patterns cannot be 

deduced from microevolutionary principles [alone]’ (Stebbins and Ayala 1981). 

In this dissertation, we build on these ideas. In general, we attempt to search 

through this space of higher-level algorithms that contain ENS, in an attempt to 

find algorithms that produce the higher-level patterns that are observed in 

reality. We do this by using models to reverse-engineer possible solutions. In 

doing so, we commonly describe phenomena that require algorithms ‘beyond 

ENS alone’. It is in the particular, multi-level sense described here that we mean 

‘beyond ENS alone’. To be clear, by this statement we do not mean algorithms 
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that are inconsistent with ENS, or in any way disagree with the findings of the 

bulk of evolutionary theory. This simply implies that some phenomena can 

only be explained by a more complex algorithm that contains ENS organised in 

some way at a higher level by some necessary higher-level algorithmic 

components (e.g. specific types of development processes, etc.) – similar to 

how some higher-level properties of sorting algorithms cannot be reproduced 

by compare and swap operations alone, even though they are essential (i.e. no 

sorting occurs if the compare and swap operations are removed). Furthermore, 

it is important to note that without considering the multi-level approach we 

adopt in this dissertation, much of the point of the exercise could be missed. 

For example, consider the case where we observe that ENS alone fails to 

produce a given biological phenomenon, but that a higher-level algorithm that 

contains ENS does produce it. Viewing evolution on a single level, one might 

consider ENS to be the algorithm of evolution; in that case, all that such 

experiments show is that ENS (plus some proximal details) can cause the 

biological phenomenon, which just confirms what we already knew, because 

ENS (i.e. evolution, from this perspective) causes all biological phenomena.  

Whilst this isn’t strictly speaking ‘wrong’, and moreover ENS is essential to the 

result, this point of view can miss the bigger picture in the same sense that, for 

example, saying “adaptation is caused by chemistry” would miss the algorithm 

of ENS. 

1.3 Approach and previous work 

Before we discuss the motivating question of this thesis in more detail, we 

must first discuss complexity itself. In particular, although biological 

complexity is to some degree intuitive, it has proved to be very difficult to 

agree on a universally accepted definition for what we mean by complexity 

(Mitchell 2009). Obviously, this significantly clouds the issue of the evolution 

of complexity. 

Many measures of complexity have been proposed. Some simple proposals 

suggested complexity could be related to genome size. However, some micro-

organisms have genome sizes hundreds of times larger than humans, which 

seems to disagree with intuitive notions of complexity. Complexity has also 

been linked to the entropy content of a message (Shannon 1948) such as a 

genome (Mitchell 2009). However, by this measure, the highest complexity 
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messages are those that are entirely random – which again seems to disagree 

with intuitive notions of complexity. Another popular measure of complexity is 

the algorithmic information content of an object, which is often termed 

Kolmogorov complexity. Kolmogorov complexity is defined as the length of the 

shortest computer program that can generate a complete description of an 

object (Kolmogorov 1965). However, like entropy, Kolmogorov complexity 

assigns the highest complexity to random objects that those we would 

intuitively define as complex (Mitchell 2009). A number of complexity 

measures have been proposed to solve these issues, including effective 

complexity (Gell Mann and Lloyd 1996), logical depth (Bennett 1995), 

thermodynamic depth (Lloyd and Pagels 1988) and statistical complexity 

(Crutchfield and Young 1989); however, although these proposals each have 

their benefits, none has been universally accepted as being equivalent to what 

we intuitively mean by biological complexity. 

Now let us move on to the motivating question of this work. Two main 

possibilities are described in the literature to explain why evolutionary 

experiments commonly fail to generate such long-term trends of increasing 

maximal complexity as observed in nature. First, there is the possibility that 

natural evolution contains some factor, missing from the current theory (and 

hence not included in artificial evolution experiments) that in some cases 

promotes or necessitates complexity in evolution (complexity drivers; e.g. 

McShea 1991; McShea 1996; McShea and Brandon 2010). Second, there is the 

possibility that even in conditions when complexity would be favoured by 

evolution, there might be some kind of roadblock to complexity that, to 

bypass, requires evolutionary mechanisms that are not fully described in the 

current theory of evolution (and hence not included in artificial evolution 

experiments) but that are present in nature (complexity roadblocks; e.g. Bedau 

et al. 2000; Watson 2006).  

This unpacking gives rise to two more specific research questions that form 

the central issues addressed in this dissertation; they will take a little more 

background context to define. The first of these specific questions relates to 

complexity roadblocks. To define it, we must briefly discuss non-

decomposable functions, and mechanisms of their evolution – in particular 

exaptation and building block processes.  
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1.3.1 Complexity roadblocks 

In the literature, perhaps the most popular candidate for a potential complexity 

roadblock is non-decomposable functions (also sometimes called emergent, 

non-additive or irreducibly complex functions; Watson 2006; Schwenk and 

Wagner 2004; Behe 2009). Non-decomposable functions are a popular 

candidate for complexity roadblocks for a number of reasons. First, they have 

a similar structure to biological complexity, in that they contain interactions 

between their components vital to their functionality; second, there are 

numerous examples of non-decomposable functions in natural evolution, but 

they have rarely been evolved in simulations or laboratory experiments; and 

third, they are difficult to evolve by ENS alone (Lenski et al. 2003; Watson 

2006; Bedau et al. 2000; Watson and Pollack 2005). What in particular makes 

them difficult to evolve is that they cannot be broken down into smaller 

components without losing their functionality. This makes it difficult to explain 

how such functions could have been evolved from simpler systems by small, 

successive changes described in the current theory.  

A number of different mechanisms capable of evolving non-decomposable 

functions have been described in the literature. Exaptation (also termed 

preadaptation) is one of the most commonly discussed. Exaptation occurs 

when a trait that has one (or no) function is co-opted for a different purpose 

(Darwin 1859; Gould and Vrba 1982; Barve and Wagner 2013). This enables 

non-decomposable function evolution because, for example, a particular trait 

that was initially evolved for a decomposable function could subsequently be 

exapted for some other, non-decomposable function, thus explaining how its 

simpler forms were selected for. In fact, although it is rarely mentioned, 

logically all mechanisms that can evolve non-decomposable functions must 

involve exaptation, because by definition a non-decomposable function cannot 

be broken down into simpler components without losing its function (and so 

therefore evolving a non-decomposable function, however it is done, must at 

some point involve a change of function). As a semantic note, the term 

exaptation was initially introduced to refer to the result of a co-opted function, 

and not the process of co-option itself (Gould and Vrba 1982). But rather like 

adaptation, which can refer to both the result of a process and the process 

itself (Ridley 2009), the term exaptation is increasingly used to also refer to the 

process of co-opting a function to a new use (e.g. Lavialle et al. 2013; Brosius 



Chapter 1: Introduction and Literature Review 

 10 

1999; Bejerano et al. 2006). We use this meaning in this document, and thus 

refer to functions being ‘exapted’, and ‘undergoing exaptation’.  

Exaptation has been widely studied in the fields of paleontology and 

organismal biology (e.g. True and Carroll 2002; McLennan 2008; Budd 2006). 

Exaptation has also been the subject of a number of computational models 

that connect it to a range of related phenomena, including speciation (Graham 

and Oppacher 2007a), modularity (Mouret and Doncieux 2009), hierarchy 

(Miglino, Nolfi, and Parisi 1996), the evolution of novelty (Barve and Wagner 

2013; Graham and Oppacher 2007b; Lund and Parisi 1995) and others (e.g. 

Gabora, Scott, and Kauffman 2013; de Oliveira 1994). However, such models 

tend to be the exception as opposed to the rule; exaptation has received 

relatively little attention from the computational modelling community 

compared to other processes of non-decomposable function evolution. 

In addition to exaptation, a number of evolution mechanisms for evolving non-

decomposable functions have been proposed that create complex functions by 

combining simpler, existing functions (Watson and Pollack 2005; Goldberg and 

Holland 1988; Lenski et al. 2003; Jacob 1977; Budd 2006; Gregory 2008; 

Thornhill and Ussery 2000). These mechanisms have attracted interest in part 

because they can create evolutionary ‘transition’ like behaviour, in which new 

evolutionary entities are created from simpler components, which is a common 

property of biological complexity evolution(Maynard Smith and Szathmary 

1997). Furthermore, because they can operate recursively, such mechanisms 

seem to provide a potential route to ‘open ended’ complexity (Lenski et al. 

2003). In this dissertation we build on this approach, and focus in particular on 

mechanisms of evolution by joining functions. We consider two existing 

mechanisms in detail: Building block models and tinkering.  

We use the term building block models to refer to a well developed collection of 

computational and mathematical models stemming largely from the 

evolutionary computation literature that carry out evolution by combining 

simpler building block functions to make more complex functions (e.g. 

Goldberg and Holland 1988; Watson 2006; Lenski et al. 2003; Arthur and Polak 

2006; Mouret and Doncieux 2009). Building block models have been used to 

study a range of phenomena including the benefit of sex (Watson 2006), 

endosymbiosis (Watson 2006), exaptation (Mouret and Doncieux 2009), the 
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evolution of technology (Arthur and Polak 2006) and the evolution of 

complexity (Watson 2006; Lenski et al. 2003). 

Meanwhile, tinkering refers to François Jacob’s conceptual framework for 

innovation and synthesis in evolution, defined in his now classic 1977 Science 

paper ‘Evolution and tinkering’, and based on his experience with the actions 

of regulatory systems and the genetics of development (Jacob 1977). Jacob 

does not provide a formal definition of tinkering, but describes it conceptually 

as evolution producing novel functionality by either repurposing or combining 

existing components – rather like a tinkering engineer who can fashion many 

different devices from a toolbox of existing components by combining them in 

different ways. Jacob’s view has been strongly supported by subsequent 

discoveries of evolutionary developmental biology: in particular the strong 

conservation of developmental pathways between most complex organisms, 

showing that even very dissimilar species are often the result of simply 

different combinations of virtually the same underlying ‘toolbox’ of 

developmental circuits (Xu et al. 1997; Cohn and Tickle 1999; Abzhanov et al. 

2004; Carroll 2005; Müller 2007). 

Together, tinkering and the collection of building block models constitute a 

significant body of work on evolution by combining functions. However, there 

are a number of remaining issues within these ideas that we will focus on. 

These are: (a) the lack of an agreed conceptual framework that integrates 

tinkering, building block evolution and exaptation (a particular problem is the 

lack of a formal description of tinkering) and (b) recursion (how can building 

blocks be combined recursively over multiple levels of hierarchy?) 

Tinkering is the predominant conceptual framework for evolution by 

combining functions in organismal and developmental biology, (e.g. Alcock et 

al. 2010; Flicek 2013; Laubichler 2007). On the other hand, the ideas 

contained within building block models provide the most common conceptual 

framework for combining functions in the field of artificial life (Watson 2006; 

Watson and Pollack 2005; Forrest and Mitchell 1993; Goldberg 1989). 

Although tinkering and building block evolution both describe evolution by 

combining functions, research in these areas remains largely unconnected to 

each other, and there is no unified theory that integrates them. Furthermore, 

as we have discussed, because both tinkering and building block evolution are 
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mechanisms of non-decomposable function evolution, they must also both 

involve some form of exaptation. However, apart from a few notable 

exceptions (e.g. Mouret and Doncieux 2009), research into exaptation also 

remains largely separate from ideas of building block evolution and tinkering. 

Part of the problem is that tinkering remains a conceptual idea, and lacks a 

formal analysis (Laubichler 2007; Flicek 2013; Bock and Goode 2007).  

In general, the lack of such a unified theoretical framework for evolution by 

joining functions makes it difficult to understand the underlying principles of 

this process, and to apply findings from one area of the field to others. 

The second issue that we will address is that there is no consensus on how to 

enable evolution by joining functions to occur recursively across multiple levels 

of organisation. In more detail, a particular attraction of evolution by joining 

functions is that functions formed by combining simpler components could 

potentially then be used as components for functions on the next level of 

organisation, and so on (Arthur 1993; Simon 1969). This process would 

therefore allow recursive scaling up of units of variation within evolution, 

potentially allowing evolution to transcend multiple levels of organisation and 

scale to complexity. To explain why this is difficult, we must first understand 

that virtually all mechanisms that combine functions to evolve non-

decomposable functions use some extra ‘evolvability’ machinery (e.g. a 

specific genotype-phenotype map, or complex genetic change operators) 

beyond that of ENS alone (e.g. Lenski et al. 2003; Mouret and Doncieux 2009; 

Watson 2006). 

Evolvability is commonly defined as the capability of a system for evolving – 

that is, not just generating diversity, but for generating adaptive (i.e. fit) 

diversity (Altenberg 1994; Wagner and Altenberg 1996; Kirschner and Gerhart 

1998; Houle 1992; Wagner 2005).  Mechanisms that constrain, or direct the 

effects of variation in useful ways increase evolvability. There are a number of 

ways in which this can be achieved, such as by having complex genetic 

operators (e.g. sexual recombination; Watson 2006; de Visser and Elena 2007), 

or a specific genotype-phenotype map (Wagner and Altenberg 1996; Kirschner 

and Gerhart 1998; Gerhart and Kirschner 2007; Wagner 2005). Let us consider 

how genotype-phenotype maps affect evolvability. Through the action of 

developmental gene regulatory networks, genotype-phenotype maps turn 
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genetic information into functional phenotypic components (Carroll 2005; 

Erwin and Davidson 2009; Davidson and Levin 2005). Genotype-phenotype 

maps therefore also control how genetic variation is turned into phenotypic 

variation. How a given genotype-phenotype map converts genetic information 

into a phenotypic component will affect how likely any given genetic change 

will result in a fit (i.e. adaptive) change to the phenotype. As a result, the 

makeup of the genotype-phenotype map (such as the particular process of 

development, structure of gene regulation networks, etc.) will affect the 

resultant evolvability of its organism (Wagner and Altenberg 1996; Kirschner 

and Gerhart 1998; Pigliucci 2008). An organism with a genotype-phenotype 

map that mostly converts genetic variation into useful phenotypic variation 

that is likely to be adaptive, given the prevailing environmental conditions, will 

be more evolvable than an organism with a genotype-phenotype map that 

mostly converts the same genetic variation into non-functional phenotypic 

components, or phenotypic components that are unlikely to be suitable given 

the prevailing environmental conditions. 

Evolvability has been subject to a great deal of study; there has been particular 

focus on the evolution of evolvability (i.e. how the capacity for evolvability itself 

can evolve; Pigliucci 2008; Draghi and Wagner 2008; Pavlicev, Cheverud, and 

Wagner 2011; Steiner 2012), the relationship between evolvability and 

modularity (for example, modular gene regulation networks have been shown 

to be better able to cope than non-modular gene regulation networks when the 

environment changes in a modular manner; Kashtan and Alon 2005; Kashtan, 

Noor, and Alon 2007; Parter, Kashtan, and Alon 2007; Kashtan et al. 2009; 

Mouret and Doncieux 2009; Clune, Mouret, and Lipson 2013; Variano, McCoy, 

and Lipson 2004), how evolvability promotes functional robustness (Wagner 

2005; Aldana et al. 2007; Lenski, Barrick, and Ofria 2006; Palmes and Usui 

2005; Whitacre and Bender 2010) and the relationship of evolvability with 

algorithmic ‘learning’ processes such as the Baldwin effect and Hebbian 

learning (Watson et al. 2014; Badyaev 2009; Crispo 2007; R. Watson, Buckley, 

et al. 2010; R. Watson, Mills, et al. 2010).     

With respect to evolution by joining functions, the results of a number of 

related studies imply that some forms of evolvability machinery (in particular, 

specific types of genotype-phenotype map) are helpful when joining functions 

because they can provide a mechanism of modular ‘encapsulation’ (Mouret and 
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Doncieux 2009; Kashtan, Noor, and Alon 2007). Modular encapsulation 

effectively means having some way of redeploying a complex, multi-

component non-decomposable function in the phenotype (such as a complex 

section of metabolic pathway) as a single, coherent unit. (This is sometimes 

described as the result of processes of parcellation and integration; Günter P. 

Wagner, Mezey, and Cakabretta 2001; Mouret and Doncieux 2009). For 

example, modularly organised gene regulatory networks have been used in 

this capacity. Given a gene regulatory network that is organised in a modular 

manner, so that some small changes in the genotype correspond to large, 

organised changes to whole functional modules in the phenotype (Günter P. 

Wagner, Pavlicev, and Cheverud 2007), then small genetic mutations to such 

hierarchical genetic ‘switching’ genes can allow whole phenotypic modules to 

be redeployed at once. The result is that these complex phenotypic functions 

are modularly encapsulated. In short, such gene regulatory networks act as 

hierarchical control mechanisms that allow moving of whole functional 

modules in the phenotype. This is particularly important for joining functions, 

because it allows evolution to sample different interacting arrangements of 

these complex functions (i.e. it allows evolution to join them in different ways) 

with only small changes in the genotype. 

How does this relate to recursive joining of functions? The problem with using 

such a genotype-phenotype map to enable recursive joining of functions is that 

the genotype-phenotype map must not only facilitate this type of modular 

phenotypic change, but the modular level at which the genotype-phenotype 

map operates at must also change over time. In detail, as phenotypic functions 

are combined, phenotypic functions are created on a new, higher level of 

phenotypic hierarchy. Therefore, to continue joining functions recursively on 

these new levels of hierarchy, the genotype-phenotype map must itself evolve 

new hierarchical levels of modular control to enable redeployment of these 

new, higher level functions. 

However, evolving the genotype-phenotype map in this manner is particularly 

difficult because many models show that selection on genotype-phenotype 

maps is often second-order. First order selection occurs on mutations that 

affect the phenotype, and hence fitness, of the current organism, and hence is 

generally strong. In contrast, second-order selection occurs on mutations that 

have no direct effect on the phenotype of the current organism, but instead 
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increase the ability of that organism to promote beneficial future mutations 

(i.e. improve its evolvability; Günter P. Wagner, Pavlicev, and Cheverud 2007). 

Because it has no direct effect on the fitness of the current organism, second 

order selection is generally significantly weaker than first order selection. 

Despite the difficulties with second order selection, recent research has shown 

that specific regimes of environment change (i.e. that create a strong selection 

pressure for evolvability), or a cost for links within gene regulatory networks, 

can generate the kind of aligned, modular gene regulatory networks capable of 

this type of modular reorganisation (Kashtan and Alon 2005; Kashtan, Noor, 

and Alon 2007; Clune, Mouret, and Lipson 2013). However, despite showing 

evolution of modular gene regulation networks, these models have generally 

not shown the type of multi-level, recursive gene regulatory network evolution 

that should facilitate the recursive combination of functions over multiple 

hierarchical levels.  

In summary, recursive phenotypic evolution seems to require parallel evolution 

of the genotype-phenotype map, which has proved to be difficult, and is still 

unresolved. A further complication to this issue is that the models that 

demonstrate such multi-level, recursive evolution commonly do not 

transparently demonstrate the difficulties with this type of evolution very 

clearly. For example, many models are based on logic circuits (Kashtan and 

Alon 2005; Arthur and Polak 2006; Kashtan, Noor, and Alon 2007; Parter, 

Kashtan, and Alon 2008; Mouret and Doncieux 2009; Clune, Mouret, and 

Lipson 2013), which, although beneficial in many ways, introduce an opaque, 

hierarchical variational capability to the substrate of the model. Given that 

recursive evolution is deeply entwined with the ability of evolution to 

hierarchically redeploy functional components, including such opaque 

functional hierarchy in the substrate itself obfuscates the issue, making it very 

difficult to separate the effects of substrate from those of evolution, and in 

particular to define a control case in which hierarchical variation is not 

possible.  

Given these three key problems with understanding evolution by joining 

functions, the first, more detailed question that this dissertation addresses is:  

What are the evolutionary mechanisms that are necessary and 

sufficient to enable or facilitate evolution of non-decomposable 
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functions by combining functions, and what enables natural evolution 

to do this recursively across multiple scales of organisation? 

 

To address the first component of this question we analyse the existing 

theories of exaptation, building block models and tinkering, in an attempt to 

produce a unified conceptual framework for evolution by combining functions. 

This analysis indicates that tinkering describes two separate processes: one in 

which an object undergoes a shift in function (functional shift), that is 

equivalent to exaptation, and one in which multiple objects are combined to 

make a new function (functional combination), that is equivalent to the core 

mechanism behind many building block models. This analysis therefore 

simplifies exaptation, building block models and tinkering to these two core 

processes (functional shift and functional combination). We then further show 

that because both of these processes are known to be able to evolve non-

decomposable functions, then they must both involve exaptation, as we 

discussed earlier. To account for this, we show that these two processes in fact 

constitute two separate types of exaptation. Functional shift involves what we 

term shift exaptation, which is exaptation as it is usually defined, in which the 

new functionality occurs on the same organisational level as the component 

involved. On the other hand, functional combination involves what we term 

combinatorial exaptation, where the new functionality occurs on a higher 

hierarchical level than the components involved. 

To contrast these mechanisms, consider a collection of enzymes in a chemical 

system. Each enzyme has a single function, which is to catalyse a specific 

reaction. Shift exaptation would occur when one enzyme was co-opted for use 

at catalysing some other chemical reaction. In this case, the new function 

occurs at the level of the individual enzyme. On the other hand, imagine that 

we randomly rearranged the interactions between enzymes in the system 

(keeping the function of each individual enzyme fixed). Occasionally we might 

stumble across an arrangement of enzyme functions that permits some 

complex sequence of reactions, hence producing a new function of a metabolic 

pathway at a higher organisational level. In this case, no individual enzyme 

changes its function, but given the right arrangement of enzymes in 

interaction with one another, a new functionality springs into existence at a 

higher organisational level. This springing into existence is combinatorial 
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exaptation. To concretise this theoretical framework, we provide a 

computational model that illustrates the key properties of combinatorial 

exaptation, and how they relate to tinkering, building block models and 

exaptation. This model, and associated theoretical framework, builds on a 

range of existing models and conceptual ideas (e.g. Simon 1962; Goldberg 

1989; Forrest and Mitchell 1993; Watson 2006; Lenski et al. 2003; Kashtan and 

Alon 2005; Parter, Kashtan, and Alon 2008; Mouret and Doncieux 2009; Bock 

and Goode 2007). 

To address the second component of the earlier research question – i.e. how 

evolution by combining functions can occur recursively across multiple levels 

of hierarchy – we specifically use the model of computational exaptation to 

identify the key factors in the problem facing recursive mechanisms of 

combinatorial exaptation. Finally, we use the model to present a solution to 

this problem, and hence provide a mechanism of evolution by combining 

functions that can occur recursively and spontaneously over multiple levels of 

organisation.  

In summary, this research provides contributions to the key problems raised 

earlier in well-defined ways. First, it provides a unified framework for evolution 

by combining functions that defines how tinkering is related to exaptation and 

existing building block models, which without such a formal description has 

not been possible. Second, the model identifies key factors that prevent 

evolution by joining functions recursively as the presence of severe constraint 

in the form of ‘burden’ and internal selection (Schwenk and Wagner 2004; 

Riedl and Jefferies 1978). It shows that these factors occur when carrying out 

the kind of configurational reorganisation of complex components required by 

evolution by joining functions given a substrate that does not inherently 

contain some hierarchical reorganisational capability. 

Third, the model shows that these problems limiting recursive evolution can be 

overcome by a specific type of ontogenetic development process that is 

present in most complex organisms. The model shows that this process allows 

evolution to join building blocks recursively over multiple levels of 

organisation, without any a priori information about the way building blocks 

must be organised at higher levels of organisation. 
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In summary, in this part of the dissertation (addressing complexity roadblocks) 

we arrive at the thesis that 

Evolving non-decomposable functions by joining functional 

components can be described as a novel process of exaptation. As 

joined functions become more complex, increasing ‘burden’ in the 

form of ‘internal selection’ places limits on evolution by combining 

functional building blocks, but an ontological development process 

that occurs by local growth, as present in most complex biological 

organisms, resolves this problem allowing building blocks to be 

combined recursively over multiple levels of organisation in a scalable 

fashion. 

 

We will now move on from complexity roadblocks to discuss the second 

detailed research question that motivates this thesis. This question relates not 

to complexity roadblocks, but complexity drivers.  

1.3.2 Complexity drivers 

In this section, we look at the question of what could cause the general trend 

of increasing complexity of the most complex organisms in the evolutionary 

record. Before we begin to discuss this topic, we should clarify that in general, 

we are interested in understanding what causes complexity to occur in 

evolution at all – not only the complexity of the most complex organisms. 

However, biological evolution displays a dizzying array of multifaceted trends 

of complexity increase, decrease and stasis (Gould and Eldredge 1993; Bird 

1995; Uchman 2003; Fedonkin 2003; Newell 1949). Coupled with the difficulty 

associated with defining complexity (Mitchell 2009; Crutchfield and Young 

1989; Kolmogorov 1965; Adami 2002; Edmonds 1995), and hence the 

interpretation of many complexity trends is highly controversial. Thus to avoid 

such controversy, we focus on perhaps the most obvious and widely accepted 

general trend in biological evolution, which is that the complexity of the most 

complexity organisms has generally increased over time.  

It used to be a commonly held belief that evolution inherently implies 

‘progress’ towards increased complexity (Carroll 2001; Lane 2010). But 

evidence does not support this; while there is a general trend of increasing 
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complexity of the most complex organisms, and on the species level some do 

exhibit apparent trends of increasing complexity, many species have remained 

in complexity stasis for periods of many millions of years, or have shown long-

term trends of decreasing complexity (McShea 1996; Carroll 2001).  

Furthermore, as we have discussed, artificial evolution experiments, such as 

Spiegelman’s laboratory experiments and artificial life simulations have 

generally not shown an inherent preference for increased complexity in 

evolution, but instead often show a preference for simplicity. 

Evidence from the fossil record of stasis and trends of complexity decrease, 

coupled with these types of artificial evolution experiments, have lead to the 

idea of evolutionary ‘progress’ towards complexity falling out of favour 

(McShea 1996; McShea 1991; Bedau 2009). But without a bias towards 

complexity in evolution, how do we explain the trend of increasing complexity 

of the most complex organisms? Clearly, on some occasions, evolution does 

generate trends of increasing complexity. But on what occasions is complexity 

favoured?  

There are a number of proposed theories on what might cause evolution to 

generate complexity (see McShea 1991; Bedau 2009; McShea 1994 for 

reviews). They can be separated into three main categories: two categories of 

driven mechanisms (internalist and externalist) and one of undriven 

mechanisms.  

Internalist theories argue that trends of increasing complexity in evolution are 

caused by some inherent property of complex systems, or evolution itself 

(McShea 1991). For example, some argue that as evolution proceeds, the parts 

of a species that were evolved earlier generally end up having more 

dependencies placed on them, and hence become harder to change, and 

therefore harder to remove. The result is that in many cases when simpler 

solutions are possibly available, the build up of constraints on existing 

functions prevents them from being evolved. This type of process has been 

called Generative Entrenchment (Wimsatt 1986; Wimsatt 2001), the Path of 

Least Resistance (Saunders and Ho 1976; Saunders and Ho 1981) and 

increasing ‘burden’ (Riedl and Jefferies 1978); in general such theories can be 

described as complexity resulting from a build up of evolutionary constraints 

within an evolving lineage over time (in this dissertation we term these theories 
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complexity by increasing constraint). But a potential problem with complexity 

by increasing constraint theories is that they struggle to explain why we 

observe complexity stasis or trends of complexity decrease in the evolutionary 

record. If constraints inevitably build up within lineages as evolution proceeds, 

then we should expect all lineages to steadily increase in complexity over time, 

which is not generally observed (Carroll 2001; McShea 1996). 

Rather than invoke some internal property of evolution, externalist 

mechanisms look to the external environment as a source of the increased 

complexity. One example is selection for complexity, where more complex 

organisms are proposed to be more efficient than simple organisms and hence 

are more reproductively successful (Rensch 1966). But again, this struggles to 

explain observed trends of decreasing complexity, and also seems somewhat 

contradicted by Spiegelman’s results. Another externalist theory proposes 

increases in complexity are produced as a side effect of selection of other 

features, such as size, for example (Katz 1987; Rensch 1966; McShea 1991). 

But perhaps the most common mechanism of externalist theories is that 

increase in organismal complexity occurs due to increased complexity of the 

environment (e.g. McShea 1991; Knoll and Bambach 2000). As ecosystems 

become more diverse, new niches become available, prompting new and 

perhaps more complex organisms – sometimes called an expanding ‘ecospace’ 

(Knoll and Bambach 2000). But a problem is that by shifting the cause of 

complexity to the environment, we are left having to explain what caused the 

environment to become more complex in the first place, and what specific part 

of the environmental complexity caused organismal complexity.  

The final category of complexity mechanisms is undriven mechanisms. These 

propose that trends of increasing complexity are not the result of relentless 

driving forces, but occur passively as evolution progresses. Most undriven 

theories propose that complexity changes as a random walk (commonly known 

as ‘passive diffusion’): by chance alone, some evolutionary lineages could 

happen to wander towards higher complexity (Maynard Smith 1972; Fisher 

1986; McShea 1991; McShea 1994). Moreover, if there is a complexity floor 

(some minimum below which no lineage can go) then the mean of all 

complexity lineages is expected to go up. But again, Spiegelman‘s results, and 

the similar subsequent models and experiments that support it, provide at 

least one example of an apparent bias (for simplicity) inherent within evolution, 
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because simpler organisms can reproduce more quickly, and require fewer 

resources to do so. If there were no other force affecting complexity in 

evolution, as undriven mechanisms propose, then we should perhaps expect 

that evolution should, just as Spiegelman observed, reduce lineages to their 

simplest possible incarnations and keep them as such. 

Another commonly cited problem with theories for complexity in general is 

that most remain as verbal arguments, making it hard to verify that an 

evolutionary system that contained them would actually produce the trends 

they attempt to explain (Bedau 2009; McShea 1991). 

1.3.3 Complexity lower bounds 

In this dissertation we argue that there is an important factor that is missing 

from many of these theories of complexity evolution – the notion of complexity 

lower bounds. In computer science, there is considerable interest in finding the 

simplest program, algorithm or circuit that can perform a given function – such 

as sorting a list, or adding two numbers together (Papadimitriou 2003; Ben-Or 

1983; Hastad 1986; Razborov 1990; Smolensky 1987). A known result from 

this field is that when converting between two states (e.g. converting program 

input into program output, such as producing a sorted list from an unsorted 

one), there exist fundamental lower bounds on the complexity of the possible 

functional solutions – and that these lower bounds differ depending on the 

input / output pair that must be converted between (Papadimitriou 2003). 

For example, exhaustive searches have shown that of the many possible logic 

circuits, the simplest possible circuit of elementary not-and (NAND) gates that 

can add 2 binary bits contains 5 logic gates – and adding 3 binary bits takes a 

minimum of 9 NAND gates. Similarly, it has been mathematically proven that 

sorting a list of length n by successive compare-and-swap operations will 

always take more than n log n operations (Papadimitriou 2003).  

This might seem rather removed from evolution, but complexity lower bounds 

also exist in biology. For example, passive diffusion models already include the 

idea that there is a complexity floor – a complexity lower bound for the 

simplest organism capable of reproducing, below which no lineage can go 

(McShea 1991). For another example, consider metabolic networks. 

Fundamental chemistry dictates the minimum number of intermediate 
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chemical reactions necessary to convert from one chemical compound to 

another. Some compounds can be converted directly, without any intermediate 

reactions, and so can be mediated by perhaps only a single catalyst. On the 

other hand, converting between other compounds may require many 

intermediate steps, and so will necessitate a much more complex metabolic 

pathway – that is, a chemical algorithm – containing many different catalysts 

arranged in a specific order. In this way, complexity lower bounds can place 

fundamental theoretical lower limits on the complexity of possible functional 

solutions for chemical or biological problems. 

It is possible that the set of problems faced by evolving lineages – surviving in 

any given biological niche – also have niche complexity lower bounds that vary 

depending on the particular problem at hand. 

Niche complexity lower bounds are interesting in the context of this thesis 

because they have the potential to produce trends in biological complexity, 

when present in an evolutionary system. As new niches were encountered, 

each niche would necessitate some minimum amount of complexity dictated 

by the specific complexity lower bound of that niche, which, spread over 

multiple different niches with different complexity lower bounds, could 

produce a requisite trend of complexity. But is this not simply saying that 

complexity increases due to a more complex environment? There are a few 

reasons, which we will describe in more detail in chapter 4, why citing 

complexity lower bounds as a cause for complexity is different from most 

existing theories that simply invoke a more complex environment. One key 

reason is that the theory behind complexity lower bounds implies that two 

environments of identical complexity can have very different complexity lower 

bounds. Complexity lower bounds are not a property of the environment itself; 

they are a property of the relationship between the organism and the 

environment – just as the complexity lower bound for a given algorithm 

depends on the relationship between input and output, and cannot be defined 

by simply looking at the desired output alone. For example, while initially it 

might seem that an algorithm whose desired output was the entire works of 

Shakespeare translated into Mandarin should have to be complex, we should 

consider that the input might simply be identical to the desired output with, 

say, a single letter missing from the beginning. In that case, a very simple 

algorithm would suffice. In this way, a complexity lower bound does not 
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describe the absolute complexity of the environment, but the complexity of the 

difference between the environment and some other set of conditions – and 

hence citing complexity lower bounds as a cause for complexity is 

fundamentally different from citing an increase in environmental complexity.  

To capture the general question of whether complexity lower bounds exist in 

evolutionary systems, to understand how they might help to explain the 

apparently conflicting observations of a general trend of increasing maximal 

complexity in the evolutionary record (McShea 1994; Bedau 2009) and of 

systematic complexity minimisation in artificial evolution experiments (Bedau 

et al. 2000; Spiegelman et al. 1965; Lane 2010), and to also understand the 

relationship between niche complexity lower bounds and environmental 

complexity, our second more detailed research question is: 

What types of environment change require adaptations that are more 

complex rather than merely different? 

 

If complexity lower bounds are present in biological niches, then when an 

organism encounters a niche with a higher complexity lower bound than its 

current niche, this should cause a requisite complexity increase in the 

organism. We address this problem directly in chapter 4.  

1.3.4 The origins of complexity lower bounds in evolution 

Complexity lower bounds arise in systems where a set of inputs is required to 

be converted into a set of outputs. But where does this occur in evolution? One 

place that this can occur is in the interaction between the chemical needs of an 

organism’s metabolism, and the organism’s external environment. First, let us 

consider this at the level of DNA. Because virtually all life is based on DNA, and 

DNA replication is necessary for such life (Kornberg and Baker 1992; Ridley 

2009) – it follows that producing the conditions (chemical compounds, 

temperature, etc.) that allow DNA replication is also a necessary for life, if 

those conditions are not already present. In other words, in niches where the 

conditions for DNA replication are not met, any species capable of survival and 

reproduction must contain some function that converts the actual, external 

environmental conditions into conditions that can allow DNA to replicate. In 

terms of complexity lower bounds, the conditions that allow DNA replication 
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represent a fixed chemical output state, and the external environment in the 

given niche represents a chemical input state, and the necessary role of 

evolution with regards to this is to generate a functional system (e.g. a 

metabolism) that is capable of converting between the two. In this system, just 

like in a computational algorithm, there will be complexity lower bounds that 

dictate what the minimum possible complexity solution is for any given 

input/output pair. And because the output state is determined by DNA, whose 

chemical requirements for replication represent a very small range of 

environments and hence are effectively fixed (e.g. Reaves et al. 2012; Lindahl 

1993; Grogan 1998; Marmur and Doty 1962) then all that essentially 

determines the complexity lower bound in this system is the external 

environment. 

This framework implies that complexity lower bounds are not inherent to a 

niche, but depend only on how similar or different that niche is to the set of 

conditions that allow DNA replication; we term this difference environmental 

dissociation. An environment that already has the set of conditions that allow 

DNA replication (i.e. zero environmental dissociation) will require no 

metabolism, and hence zero metabolic complexity. On the other hand, an 

environment that is very chemically different from the set of conditions that 

allow DNA replication (i.e. large environmental dissociation) would have a large 

complexity lower bound, because many organised intermediary chemical 

reactions are likely to be required to convert one state to the other, thus 

necessitating complex metabolic machinery.  

But rather than constantly evolve functional machinery to convert the external 

environment to the set of conditions that allow DNA replication, why does 

evolution not simply alter DNA, creating some new replicator that works given 

the current environmental conditions? Perhaps the most simple explanation is 

that DNA is very functionally constrained: there are apparently very few other 

compounds that can be formed by small changes to DNA that work as viable 

replicators (e.g. Reaves et al. 2012), therefore it is easier to keep DNA the 

same and change the environmental conditions to fit it. The complexity lower 

bound model of chapter 4 illustrates that this replicator constraint is a 

necessary component of the complexity lower bound framework; without it, 

complexity lower bounds can potentially be circumvented by changing the core 

replicator. 
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We also use a separate model system (evolution of logic functions in a system 

of NAND gates) that is a standard model of evolutionary function in the 

literature to check for the existence of complexity lower bounds in existing 

models of functional evolution. 

In summary, the complexity lower bound framework, supported by the 

complexity lower bound model, illustrate how complexity lower bounds occur 

due to the interaction of a functionally constrained replicator (such as DNA) 

and a heterogeneous external environment. From these results, we arrive at 

the general thesis that: 

Environmental change motivates evolutionary change, but not 

necessarily any increase in complexity. However, given  

a. an organism with a replicator that can replicate in some small 

subset of environmental conditions, and whose replicator 

cannot feasibly be changed to replicate in conditions outside of 

this subset; 

b. an environment with heterogeneous environmental dissociation 

whose conditions change sufficiently gradually; 

c. an inherent selection pressure against complexity such as a cost 

of resources 

then as competition forces evolution to leave the original environment 

(a), and colonise new environments (b), the magnitude of 

environmental dissociation of a new environment will dictate the 

minimum possible complexity of viable organisms in that environment, 

resulting in a system-wide trend of increasing complexity of the most 

complex organisms, coupled with local trends of complexity 

minimisation in individual environments, caused by (c). 

 

The models in chapter 4 show that complexity lower bounds (in conjunction 

with an inherent selective bias for simplicity in evolution, such as that observed 

in artificial evolution experiments) produce general, system wide trends of 

increasing complexity of the most complex organisms coupled with local 

trends of complexity minimisation within individual niches – therefore helping 

to reduce tension between complexity trend observations in natural evolution 

and evolutionary experiments.  
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1.3.5 Homeogenesis 

The model at the heart of the complexity lower bound framework is a 

particular, boundary case of combinatorial exaptation that we term 

homeogenesis. This boundary version of combinatorial exaptation is interesting 

in its own right, and is studied separately in chapter 3. Although it is studied in 

a separate chapter, importantly, homeogenesis also helps to define some of 

the theoretical framework for complexity lower bounds. As a result, chapter 3 

serves as a bridge, connecting the process of combinatorial exaptation to 

complexity lower bounds.  

Before we can define homeogenesis, we must briefly discuss some relevant 

background context. A widely observed phenomenon in organismal biology is 

that organisms often appear to contain conditions within their metabolic 

networks that seem to be similar to conditions in which their ancestors lived 

(Macallum 1926; Wald 1964; Gross 1998; Mulkidjanian and Galperin 2007; 

Mulkidjanian et al. 2012). For example, the chemistry of fluids in the cell 

interior is thought to be comparable to the early oceans, or geothermal vents, 

in which life began (Wald 1964; Mulkidjanian and Galperin 2007; Mulkidjanian 

et al. 2012). Another example is that the cytoplasm in the eukaryotic cell is in a 

highly reduced state (i.e. low oxidation state) even in organisms that live in 

oxygen rich environments (Mulkidjanian and Galperin 2007; Mulkidjanian et al. 

2012). In 1926, Macallum described this phenomenon as what has been 

termed the ‘chemistry conservation principle’: the chemical traits of organisms 

are more conservative than the changing environment and hence retain 

information about ancient environmental conditions (Macallum 1926; 

Mulkidjanian et al. 2012). So, for example, the early highly reduced 

biochemical pathways that formed before the atmosphere became oxygenated 

around 2.2 billion years ago (Hazen et al. 2011) could not be substantially 

changed after oxygen became common, and so retain information about these 

low-oxygen ancestral conditions. The idea that ancient environmental 

conditions somehow become internalised has thus been used to hypothesize 

about the origins in which life began, (e.g. Mulkidjanian et al. 2012). However, 

there is no consensus on what processes cause Macallum’s conservation 

principle, or why it results in events of ‘environmental internalisation’.  
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In chapter 3 we present a hypothesis that homeogenesis can inherently cause 

environmental internalisation, and hence could be responsible for some of 

Macallum’s observations. 

When environment change occurs, the usually considered mechanism of 

adaptation by evolution is to make changes to the existing functionality of the 

species, such as the classic example of the peppered moth (Grant 1999). A 

second option sometimes considered is that evolution can act to change the 

environment instead by changing behaviours of species in a process termed 

‘niche construction’ (or an adaptive subset of the ‘extended phenotype’; 

Dawkins 1999; Dawkins 2004) – for example, beavers building dams, or birds 

building nests (Odling-Smee, Laland, and Feldman 2013; Laland, Odling-Smee, 

and Feldman 2000). In chapter 3 we illustrate that because of combinatorial 

exaptation there is a third option for adapting to environment change that is 

separate from either of these two traditional mechanisms. When the 

environment changes, instead of changing the existing functionality or the 

environment itself, evolution can undertake homeogenesis: it can combine the 

existing functionality with some new, simple ‘adapter’ function that ‘converts’ 

the new environmental conditions back into their immediately previous 

conditions (that the species’ existing functionality ‘expects’). This adapter 

would sit ‘in between’ the existing functionality and the environment. A simple 

analogy is adding a voltage adapter to an electrical appliance when taking it 

abroad: rather than changing the existing functionality of the appliance, or 

changing the power grid of the foreign country, the easiest solution is to add 

an adapter that  ‘converts’ the new external environment conditions back into 

those expected by the existing functionality. We propose the term 

homeogenesis for this process because, similar to homeostasis, it works to 

preserve the same, or constant (i.e. homeo) conditions in the phenotype – but 

unlike homeostasis, which occurs by changing behaviour, homeogenesis 

achieves this by creating (i.e. genesis) extra phenotypic function. 

We use the evolution of C
4
 photosynthesis as an illustrative example of 

homeogenesis. C
3
 photosynthesis (an earlier mechanism from which C

4
 

photosynthesis evolved) becomes less efficient as CO
2
 concentrations drop 

(Edwards and Walker 1983; Ehleringer et al. 1991). In response to millions of 

years of dropping CO
2
 concentrations, rather than change the function of C

3
 

photosynthesis, evolution simply added an adapter function to C
3
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photosynthesis – a new chemical cycle that increases CO
2
 concentrations 

internally within the leaf – thus counteracting the environment change and 

providing the existing C
3
 functionality with the chemical inputs it ‘expects’. 

The result is a qualitatively new type of photosynthesis (C
4
) that consists of a 

combination of the unchanged existing mechanism plus an environmental 

adapter function that recreates the previous, ancestral high CO
2
 environment 

internally within the metabolism (Ehleringer et al. 1991). 

How does homeogenesis relate to Macallum’s observations of internalised 

ancestral environments? Simply, by creating an adapter function that recreates 

the previous environmental conditions, evolution effectively creates a version 

of that ancestral environment internally within the species phenotype, 

incorporated within its function: the stored environment is the output of the 

adapter. For example, in the evolution of C
4
 photosynthesis, when adding an 

adapter to recreate the high CO
2
 conditions preferred by C

3
 photosynthesis, 

evolution effectively recreated a version of the ancestral, high CO
2
 external 

environment internally within the leaf. 
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Figure 1. A figure illustration of the range of biological combinatorial 

exaptation mechanisms that can occur within an organism (as 

opposed to across multiple organisms, such as endosymbiosis). 

Combining an existing complex component with a simple 

component (blue area) will often act to maintain the existing 

component’s functionality by using the new component as an 

environmental adapter (i.e. homeogenesis). This process internalises 

the previous external environment conditions, storing a record in 

the phenotype itself. In contrast, mechanisms of combinatorial 

exaptation that involve multiple (i.e. >2) components, or similarly 

complex components less obviously preserve past environments, 

and are commonly described as ‘tinkering’, or combining building 

blocks. In this dissertation we argue that all of these processes are 

variants of a single process, that we term combinatorial exaptation, 

in which complex non-decomposable functions are evolved by 

combining functional components. 
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How does homeogenesis relate to combinatorial exaptation? Homeogenesis is 

a type of combinatorial exaptation because it involves the combination of two 

separate functions (the existing function and the adapter) to create a new 

function capable of functionality that neither of the components themselves 

can carry out. But it is a boundary condition of combinatorial exaptation, as it 

likely involves only adding a very small adapter to a likely large existing 

function. Thus we can propose a scale on which we can compare combinatorial 

exaptation and homeogenesis (Figure 1). 

In short, homeogenesis is combinatorial exaptation in which a new component 

is combined with some existing component (i.e. the existing organism) to sit in 

between the external environment and the existing function. In most examples 

the adapter function is simple, relative to the existing functionality. One such 

example is the evolution of C
4
 photosynthesis, as previously discussed, where 

a small metabolic adapter function is added to the existing C
3
 photosynthetic 

pathway (Ehleringer et al. 1991; Edwards and Walker 1983). Another example 

is the evolution of a novel metabolic pathway for degradation of 

pentachlorophenol (PCP), a xenobiotic pesticide, in the bacterium 

Sphingomonas chlorophenolica. This novel pathway evolved since the pesticide 

was introduced in the 1950s; again, this was achieved by the addition of a 

small metabolic adapter function added to the perimeter of the existing 

metabolic network (Copley 2000), which effectively recreated the ancestral, PCP 

free environment within the bacterium’s metabolic network. Another potential 

example of homeogenesis in which the adapter is slightly more complex is the 

evolution of the hard, body-encasing gastropod shell in response to predation 

(Haszprunar 1988; Palmer 1979; Vermeij, Schindel, and Zipser 1981), which 

would have effectively recreated the ancestral predator-free environment within 

the confines of the shell.  

In contrast, with combinatorial exaptation that involves more than two 

components, or where the components are both of similar complexity, there is 

often no clear ‘existing function’ or ‘adapter’, and is more commonly termed 

tinkering, or building block evolution. Possible examples include the evolution 

of the lingual prehension lizard feeding apparatus, in which a number of 

previously separate musculoskeletal components were brought together to 

provide a novel function (Günter P. Wagner and Schwenk 2000; Schwenk and 

Wagner 2001), and the evolution of sustained avian flight due to the 
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combination of set of complex features including forelimbs, feathers and a 

novel, highly efficient breathing system (Berner, VandenBrooks, and Ward 

2007; Claessens, O’Connor, and Unwin 2009). The diagram above is far from 

perfect; the relationship is more complex than it is possible to describe in this 

simple phase space. For example, it does not easily take into account the 

possibility of combining more than two components. However, its purpose is 

to illustrate some examples of the relationship between homeogenesis and 

other types of combinatorial exaptation. 

1.4 Summary of major topics of this dissertation 

In this dissertation we first describe a theoretical framework that unites the 

theories of exaptation, building block models and tinkering. This framework 

describes a new type of exaptation (combinatorial exaptation) that occurs on a 

higher hierarchical level than the objects themselves. We provide a 

computational model to concretely illustrate the properties of combinatorial 

exaptation, and to identify key outstanding problems with evolution by 

combining functions – in particular with recursively combining functions across 

multiple levels of organisation. We then present a potential solution to this 

problem within the model, hence providing a mechanism of combinatorial 

exaptation that can evolve complex non-decomposable functions recursively 

across multiple levels of organisation (chapter 2). 

We then describe homeogenesis: a boundary case of combinatorial exaptation 

that enables adaptation without changing the existing function or the external 

environment by instead adding an environmental ‘adapter’ to the existing 

functionality. We use our theory of homeogenesis to tackle the common but 

poorly understood phenomenon that many organisms appear to contain 

conditions in their phenotypes similar to the ancient environments in which 

their ancestors lived. We discuss how a well-studied biological example system 

(the evolution of C
4
 photosynthesis, which resulted in the internalisation of an 

ancestral environment in the phenotype) can be described as an example of 

homeogenesis. We then use this example, in conjunction with an abstract 

computational model, to show how homeogenesis internalises environments, 

and show that it can store whole ordered sequences of ancestral environments 

(chapter 3). 
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Finally, using chapter 3 and its model of homeogenesis as a bridge, we 

describe a further theoretical framework that illustrates how evolution in a 

system of complexity lower bounds generally results in an overall, system-wide 

trend of increasing complexity of the most complex organisms over time, 

coupled with local trends of complexity minimisation within individual niches. 

We then demonstrate that the complexity lower bound framework robustly 

produces such trends in an evolutionary context by using a concrete 

computational model. Finally we show that complexity lower bounds are 

present in a standard NAND gate model of evolutionary function (chapter 4). 

1.5 Implications 

The models and framework we provide illustrate the following points. 

1. Combining functions is a form of exaptation. 

Existing theory views exaptation as a ‘non-adaptive’ process in the 

sense that it is entirely reliant on chance (hence exaptations are placed 

in contrast with adaptations). But because exaptation is thought to be a 

major cause of innovation in evolution, this leaves an uncomfortable 

amount of explanation of evolutionary complexity down to chance 

events. By recognising that exaptation can occur not only by shifting the 

function of an existing trait (i.e. shift exaptation, as the existing theory 

describes, which is entirely reliant on chance), but also by joining the 

functionality of multiple traits to create a new, higher level function 

(combinatorial exaptation), we show that there are two distinct types of 

exaptation – and crucially that the latter is not entirely down to chance: 

we show that evolvability mechanisms, such as specific genotype-

phenotype maps greatly enhance the probability of finding useful novel 

functionality by combinatorial exaptation. As a result, this resolves an 

uncomfortable issue in evolutionary theory by providing a mechanism of 

evolutionary innovation that is directed and systematic, in place of an 

explanation that relies entirely on pure chance alone. 

 

2. Including a local, ontogenetic development process in evolutionary 

models can enable them to scale to complexity across multiple 

levels of organisation.  
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We have illustrated how constraints that link the logical structure of 

gene regulatory networks and the physical structure of the phenotype 

provide a mechanism of combinatorial exaptation that can evolve 

complex non-decomposable functions recursively across multiple levels 

of organisation. This observation could help to explain the benefits of 

development in natural organisms, and help evolutionary algorithms 

scale to complexity. 

 

3. Organisms can adapt to environment change without altering their 

existing function or the external environment. 

We illustrate that changing an organism’s existing functionality (e.g. 

classically defined adaptation) and altering its external environment 

(e.g. niche construction) are not the only routes by which organisms can 

evolve to better fit their environments. Pointing out the logical 

possibility that organisms can undertake homeogenesis instead 

provides new possibilities for evolutionary adaptation in situations (e.g. 

of severe constraint) that might have previously been considered 

unviable for evolution. 

 

4. Some mechanisms of adaptation systematically store external 

environments internally within organisms. 

By showing that homeogenesis systematically stores previously 

experienced environments internally within the phenotype, the models 

in this dissertation provide one of the first mechanistic explanations for 

the common observation that many biological organisms contain 

conditions in their phenotypes that appear to represent ancient 

environmental conditions in which their ancestors lived (e.g. 

Mulkidjanian et al. 2012; Mulkidjanian and Galperin 2007).   

 

5. Trends of complexity observed in evolution can potentially be 

explained by complexity lower bounds. 

We demonstrate that complexity lower bounds can cause robust trends 

in complexity in evolutionary systems, including an overall trend of 

increasing complexity of the most complex organisms, similar to natural 

evolution. We also provide a framework that shows how complexity 



Chapter 1: Introduction and Literature Review 

 34 

lower bounds can occur in evolutionary systems, and demonstrate their 

existence in a standard model of evolutionary function. 

1.6 Models and approach 

To investigate these research questions and support the associated claims we 

develop conceptual arguments and formal analyses supported by 

computational illustrations and mathematical proofs. 

1.6.1 Modelling approach 

Evolution is often impractical to empirically observe, due to its long timescales 

and significant complexity, among other factors. Modelling is a pragmatic 

alternative to observing and experimenting with natural biological evolutionary 

systems.  

The approach to modelling followed in this dissertation is to produce 

transparent computational models that reproduce specific behaviours of 

biological evolutionary systems.  

We choose computational over mathematical models in many cases because 

they generally require less prior human interpretation about the dynamics of 

the system, and hence reduce the chance of accidently oversimplifying or 

incorrectly modelling its behaviour. We choose transparent models over 

opaque models because, like for like, transparent models provide more 

mechanistic understanding than opaque models. A common criticism is that 

transparent models can seem contrived, and lack the surprising behaviour of 

opaque models – but that is only because transparent models are simply 

opaque models with the black box removed. We also choose to keep the 

models as simple and generic as possible, removing any unnecessary 

assumptions to make the important dynamics clear. Finally, in some cases we 

make computational models of verbal arguments. We do this because 

mechanisms left as verbal models can easily conceal logical contradictions or 

fallacies that are not possible in a concrete computational model, and so 

producing a model provides better support for the validity of the argument.  

The claims of this dissertation are supported by four models, described below.  
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1.6.2 Model 1: Combinatorial Exaptation – exaptation by joining 

functions 

1.6.2.1 Aims 

The key aims of this model were to: 

1. Provide a transparent illustration of the mechanism of combinatorial 

exaptation; 

2. Identify the factor, or set of factors that hinder existing models from 

recursively combining functions across multiple levels of organisation; 

3. To illustrate a potential solution to existing problems of recursively 

combining functions, thus providing a mechanism of combinatorial 

exaptation capable of recursive evolution over multiple levels of 

organisation. 

1.6.2.2 Methods 

We defined a fitness landscape that contained a set of complex functions that 

were all non-decomposable. Thus there were no smooth gradients in this 

landscape, making evolution difficult. Within this landscape, a subset of these 

non-decomposable functions had structurally related positions. This enabled 

the in-principle possibility of systematic, guided exaptation within this subset. 

The specific relationship between non-decomposable functions in this subset 

was hierarchical: complex non-decomposable functions were composed of 

specific configurations of more simple non-decomposable functions (after 

Lenski et al. 2003; Watson 2006). The model also included specific biologically 

motivated constraints missing from many such systems: 

1. Reorganisation of building block non-decomposable functions in the 

phenotype was not trivial, as all components of a given non-

decomposable function had to be reorganised individually, unless some 

hierarchical control mechanism (such as a development process) had 

been evolved separately (which was not provided).  

2. The most complex non-decomposable functions required combining 

building blocks across three scales of organisation. At each hierarchical 

level, the scale of blocks that had to be reorganised was different, thus 

necessitating the need for a mechanism capable of discovering and 
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evolving new block sizes and their control mechanisms, as evolution 

progressed. 

We also mapped the entire fitness landscape to understand how these 

evolvability mechanisms help combinatorial exaptation access potential 

novelties.  

1.6.2.3 Results 

The main results of this model are as follows. The model: 

1. Provides a novel mechanism of evolution that is capable of evolving 

novel functionality by combining building blocks recursively over 

multiple levels of organisation (without being given information about 

the hierarchical structure of blocks in advance). 

2. Identifies that increasing ‘burden’, in the form of ‘internal selection’ 

(Riedl and Jefferies 1978; Schwenk and Wagner 2004) is a key factor 

responsible for hindering evolution by combining functions occurring 

recursively across multiple organisational levels, and in turn explains 

why a mechanism of progressive encapsulation facilitates this form of 

evolution. (In particular, burden is created by the functional constraints 

that exist between components of higher-level functions – i.e. internal 

selection; the number of these constraints increase with the number of 

components, and the hence complexity of the higher level function, and 

breaking them causes dramatic loss of functionality). 

3. Graphically illustrates how having an aligned, modular gene regulatory 

network uses existing structure in the search space to enrich the local 

variational neighbourhood with fit phenotypes (building on existing 

work in this area; e.g.Parter, Kashtan, and Alon 2008). 

1.6.3 Model 2: Metabolic evolution by homeogenesis 

1.6.3.1 Aims 

The key aims of this model were to: 

1. Provide a concrete illustration of homeogenesis; 

2. Test the hypothesis that homeogenesis commonly internalises and 

preserves past environment conditions, and hence can potentially 
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explain Macallum’s chemistry conservation principle and observations of 

apparently conserved ancestral environments in biological organisms; 

3. Identify how the type of environment change affects the likelihood that 

environments, or sequences of environments will be internalised by 

homeogenesis. 

1.6.3.2 Methods 

We hypothesized that the evolution of C
4
 photosynthesis evolved by 

homeogenesis, and using that example as a starting point, defined an abstract 

chemical representation of this general class of mechanism. 

The model was of metabolic evolution in response to a changing environment. 

It was based on a simplified chemistry; we defined a chemical network of 

possible reactions, in which all organism function and environment change in 

the model takes place. Populations underwent evolution across a gradually 

spatially heterogeneous environment. Traditional mechanisms of adaptation 

were not available: the organisms’ existing replication functionality could not 

be changed, and neither could the external environment. But organisms were 

able to evolve sets of metabolic reactions (i.e. successive ‘environment 

adapters’) to convert between the external environment and the fixed chemical 

needs of their replicator.  

Variants of the model explored how different types of environment sequences 

affected both the structure of the evolved metabolic networks (and hence how 

previous environments are ‘stored’), and the progress of evolution. A variant of 

this model was also used as the primary tool in chapter 4 to illustrate the 

capability of complexity lower bounds for generating requisite trends in 

complexity.  

1.6.3.3 Results 

The main results of this model are as follows. The model: 

1. Illustrates that homeogenesis is a viable mechanism of environment 

change, and demonstrates a general set of conditions under which it will 

occur; 
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2. Shows that homeogenesis causes ancestral environment conditions to 

become internalised and maintained within the phenotype significantly 

more often than would be expected by chance; 

3. Illustrates how the properties of environment change and the underlying 

system (e.g. the chemical reaction network that governs environment 

change and organismal function) affect (a) the likelihood of 

environmental internalisation occurring, and (b) the nature of 

environment information that is preserved; 

4. Shows that homeogenesis can adapt organisms to environment change 

without altering either the existing functionality or the external 

environment. 

1.6.4 Model 3: Complexity trends of evolution in a system of 

complexity lower bounds 

1.6.4.1 Aims 

The key aims of this model were to: 

1. Test the hypothesis that evolution in a system that contains complexity 

lower bounds in evolutionary niches robustly results in requisite trends 

in complexity. 

2. To identify the characteristic complexity trends produced by evolution in 

a system of complexity lower bounds, specifically to test if the trends 

resemble experimental observations of local complexity minimisation, 

and observations from the biosphere of a system-wide general increase 

in the most complex organisms.  

3. To identify the relative extent to which (a) complexity lower bounds and 

(b) constraint caused by existing, contingent adaptations affect the 

resultant complexity of evolved organisms. 

1.6.4.2 Methods 

The model was based on the model of metabolic evolution described in 

chapter 2. As with the model in chapter 2 we included a cost of resources that 

created a continual selection pressure in favour of simplicity throughout the 

model.  
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There were two versions of the model used in this chapter. The first version 

was a simple model that is very similar to the model in chapter 2. It has a 

simple heterogeneous environment containing a few niches that does not 

change over time. This model was used to examine the basic properties of 

evolution in a system of complexity lower bounds. The second version of this 

model was larger, containing 50 niches, and in some cases included periodic 

temporal environment perturbations. This model was used to test the 

environmental dissociation hypothesis (see claim 3 in section 1.7, below). 

1.6.4.3 Results 

The main results of this model are as follows. The model: 

1. Shows that complexity lower bounds cause requisite trends of 

organismal complexity in evolutionary systems, and provides an 

evolutionary context that explains how complexity lower bounds apply 

in evolution 

2. Provides a novel mechanism and explanatory framework that enables a 

principled distinction between environmental change that requires 

evolution to make organisms different from how they used to be and 

environmental change that requires evolution to make organisms more 

complex than they used be. 

3. Shows that evolution in systems of complexity lower bounds commonly 

produces two characteristic trends simultaneously: (a) a system wide 

trend of generally increasing complexity of the most complex 

organisms, and (b) local trends of complexity minimisation within 

individual niches – and hence can help to explain observations of these 

types of trends in biological evolution and experiments. 

1.6.5 Model 4: Complexity lower bounds in NAND circuit calculations 

1.6.5.1 Aims 

The key aim of this model was to test whether complexity lower bounds are 

present in a system commonly used as an analogy for evolutionary function 

(i.e. a system of NAND logic gates). 
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1.6.5.2 Methods 

The model consisted of a network of NAND logic gates set up to calculate (i.e. 

logically transform) a set of fixed size Boolean inputs to a given set of Boolean 

outputs. The space of possible solutions for each input/output pair was 

sampled by repeatedly evolving populations of solutions with a selection 

pressure for simplicity, to observe whether different sized lower bounds (i.e. 

complexity lower bounds) exist for different (but equal size) calculations. 

Finally, exhaustive searches were performed on some simple calculations, to 

concretely identify the presence of complexity lower bounds.  

1.6.5.3 Results 

The main results of this model are as follows. The model: 

1. Proves that complexity lower bounds exist in a commonly used existing 

model of functional evolution (NAND gate logic functions); 

2. Shows that transformations between identically complex environment 

pairs can have very different complexity lower bounds (hence showing 

that complexity lower bounds are not related to the complexity of the 

input or output in this system). 

1.7 Claims 

1. As joined functions become more complex, increasing ‘burden’ in the 

form of ‘internal selection’ places limits on evolution by combining 

functional building blocks, but an ontological development process that 

occurs by local growth, as present in most complex biological 

organisms, resolves this problem allowing building blocks to be 

combined recursively over multiple levels of organisation in a scalable 

fashion. 

 

2. When both the external environment and an organism’s existing 

functionality are too difficult to change, a third possibility exists for 

evolution - adapting to environment change by adding an internal 

environmental ‘adapter’ that converts the new external conditions into 

those necessitated by the organisms existing functionality – and in 
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doing so, inherently creates an internal replica of the previous 

environment within the organism’s phenotype. 

 

3. Environmental change motivates evolutionary change, but not 

necessarily any increase in complexity. However, given  

a. an organism with a replicator that can replicate in some small 

subset of environmental conditions, and whose replicator 

cannot feasibly be changed to replicate in conditions outside of 

this subset; 

b. an environment with heterogeneous environmental dissociation 

whose conditions change sufficiently gradually; 

c. an inherent selection pressure against complexity such as a cost 

of resources 

then as competition forces evolution to leave the original 

environment (a), and colonise new environments (b), the magnitude 

of environmental dissociation of a new environment will dictate the 

minimum possible complexity of viable organisms in that 

environment, resulting in a system-wide trend of increasing 

complexity of the most complex organisms, coupled with local 

trends of complexity minimisation in individual environments, 

caused by (c). 

1.8 Contributions 

This dissertation has made the following contributions both for understanding 

complexity roadblocks and how they can be alleviated, and for understanding 

complexity drivers: 

Understanding complexity roadblocks: 

1. Providing a conceptual framework that unites exaptation, tinkering and 

building block mechanisms of evolution; 

2. Identifying ‘burden’, in the form of internal selection, as a key factor 

that hinders evolution by combining building blocks occurring 

recursively across multiple levels of organisation, explaining its context, 

and showing how this causes mechanisms of functional encapsulation to 

be beneficial in this mode of evolution; 
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3. Graphically illustrating how aligned, modular genotype-phenotype maps 

use existing structure in the fitness landscape to enrich the local 

variational neighbourhood with fit phenotypes; 

4. Providing a mechanism of evolution by joining functions capable of 

dynamically and recursively rescaling its units of variation, thus allowing 

evolution to spontaneously cross progressive levels of organisation. 

 

Understanding complexity drivers: 

1. Demonstrating the existence of a novel mechanism of adaptation that 

involves neither changing existing function nor the external 

environment; 

2. Providing a conceptual description and functional model of an 

evolutionary process of adaptation that can systematically store 

previously experienced environment conditions in the phenotype; 

3. Demonstrating that inherent lower bounds on the complexity of 

algorithmic problems can cause evolution to generate robust trends of 

increasing complexity in evolution. 

4. Taken together these contributions combine to alleviate the mismatch 

between the complexity increases observed in natural evolution and the 

complexity minimisation behaviour observed in evolutionary 

experiments. 

1.9 Scope 

The work described here is theoretical, and as such addresses issues of 

general principle, and not empirical observations about natural biological 

processes. The work describes the behaviour of abstract representations of 

biological systems. Conclusions drawn from the behaviours of these systems 

should be applied to real biological systems with the appropriate amount of 

consideration and qualification. 

However, the results of these models and conceptual frameworks are not 

‘arbitrary explorations of possible biologies’ (Watson 2006). None of the 

models are in any sense ‘unevolutionary’; they only illustrate the capabilities of 

non-teleological adaptive processes. To the greatest of our ability we include 

the relevant constraints present in real biological systems. These constraints 
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limit what mechanisms can possibly produce a given phenomenon – both in 

real biological systems and models that contain them. Moreover, many of the 

mechanisms that we illustrate beyond that of ENS alone – such as involving a 

hierarchical development processes and evolvable gene regulation networks – 

are biological fact. We simply illustrate their potential capabilities. The other 

concepts we include all have substantial, if in some cases controversial, history 

in the biological literature. 

In short, the aim of these models is to identify the theoretical capabilities of 

the evolutionary mechanisms, and clarify the properties of the evolutionary 

systems that we address – with the hope of guiding the direction of future 

empirical work to ascertain whether or not these conditions are met in natural 

systems. Meanwhile the conceptual and theoretic principles behind this work 

stand independently.  

1.10 Structure of this dissertation 

Chapter 1 – Introduction and literature review 

Describes the central problems, concepts, relevant existing literature and 

scope of the thesis. 

Chapter 2 – Combinatorial exaptation 

Describes the conceptual relationship between exaptation, tinkering and 

combining building blocks, illustrates a transparent working model of this 

mode of evolution across multiple scales of organisation, and clarifies various 

intricacies and problems inherent with such mechanisms and how they can be 

resolved using some known ontogenetic properties of complex organisms. 

Chapter 3 – Homeogenesis 

Illustrates, by means of a simple computational model and discussing well-

studied biological examples, a mechanism of evolution capable of a) adapting 

to environment change without altering existing functionality or the external 

environment, and b) systematically storing previously experienced environment 

conditions in the phenotype. 

Chapter 4 – Complexity lower bounds 
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Describes an evolutionary framework in which fundamental limits on the lower 

bound of solutions to algorithmic problems can effect evolution, producing 

robust and multifaceted trends of organismal complexity – in particular a 

general trend of increasing complexity of the most complex organisms. 

Chapter 5 – Summary and conclusions 

Provides a summary of arguments, illustrations, experiments and contributions 

of the dissertation, draws conclusions and discusses possible further work. 
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Chapter 2:  Combinatorial Exaptation 

2.1 Introduction 

In this chapter, we are interested in understanding how the current theory of 

evolution can be refined to better explain how evolution is capable of scaling 

to complexity. A central aspect of this problem is expressed in the state of 

artificial evolution techniques, such as evolutionary algorithms, and artificial 

biological evolution: Despite their success as optimization methods, evolution 

in these formats generally struggles to scale to complexity (Bedau et al. 2000; 

Mouret and Doncieux 2009; Bedau 2009; Bedau et al. 1997; Spiegelman et al. 

1965; Oehlenschläger and Eigen 1997; Lane 2010). In natural evolution, 

scaling to increasing complexity is often associated with evolutionary 

transitions, in which new levels of hierarchical organisation are created by 

joining small, previously separate entities into some new, larger functional 

entity (Maynard Smith and Szathmary 1997; Watson 2006). This behaviour is 

commonly missing from artificial evolution (Watson 2006; Goldberg 1989; 

Bedau et al. 2000). Here we consider the possibility that an evolutionary 

mechanism capable of crossing such transitional thresholds is an important 

component to enable the evolution of complexity. 

In particular, we consider the possibility that these thresholds are precipitated 

by the existence of complex non-decomposable functions (i.e. functions that 

cannot be broken down beyond some threshold without losing their 

functionality, such as the mouse-trap example we discussed in chapter 1; 

Watson 2006; Thornhill and Ussery 2000; Behe 2009; Günter P. Wagner and 

Schwenk 2000). There are a number of proposed mechanisms capable of 

evolving non-decomposable functions (e.g. Thornhill and Ussery 2000; Watson 

2006) – and importantly, some of these mechanisms operate by joining smaller 

components to make new functions, and hence imply such transitional 

behaviour (e.g. Jacob 1977; Gregory 2008; Watson 2006; Mouret and Doncieux 

2009). We therefore focus on this type of non-decomposable function evolution 

by joining functions. We will focus on three mechanisms of non-decomposable 

function evolution in particular: building block mechanisms and tinkering, both 

of which describe processes of joining functions, and exaptation, that generally 
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does not, but is one of the most commonly proposed mechanism of non-

decomposable function evolution.  

The literature on evolution by joining functions is fairly well developed. 

However, there are two significant issues in the field that we focus on here. 

The first issue is that there is no consensus on an underlying theoretical 

framework that describes how tinkering, building block models and exaptation 

are linked. Part of the problem is that tinkering lacks a formal theoretical 

analysis, and remains as a conceptual framework (Alcock et al. 2010). As a 

whole, the lack of such a framework makes it more difficult to understand the 

underlying principles of evolution by joining functions, and apply findings from 

one area of the field to others.  

The second issue is that there is no consensus on how biological evolution 

joins functions recursively over multiple levels of organisation. In more detail, 

one of the features of evolution by joining functions that makes it an attractive 

prospect for evolving complexity is that functions formed by combining 

components could then potentially be used as components at the next level of 

organisation, and so on. This would therefore provide a recursive, potentially 

open-ended mechanism of complexity evolution whose units inherently scale 

as complexity increases. However most models of joining functions fail to 

achieve this type of open-ended recursive evolution (e.g. Watson and Pollack 

2005; Watson 2006; Arthur and Polak 2006). Furthermore, what exactly causes 

the problem has been hard to identify. A particular issue is that such recursive 

evolution is thought to be deeply intertwined with the availability of 

hierarchical variation mechanisms; however, many of the models that achieve 

such multi-level evolution are systems of logic circuits that due to their 

intrinsic properties inherently and opaquely introduce hierarchy within the 

substrate itself (e.g. Lenski et al. 2003; Mouret and Doncieux 2009). This 

makes it very difficult to separate the effects of the evolutionary processes 

being studied from the opaque internal properties of the substrate.   

The rest of this chapter is structured as follows. We first describe relevant 

previous work: we give a brief historical background for exaptation, tinkering 

and building block models, and then link this work to the problem of recursive 

evolution, which we describe in greater detail. This initial section recaps much 

of the discussion of the history and problems with evolution by joining 
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functions from chapter 1, but in more detail. We then analyse the three 

mechanisms together, and propose a theoretical framework that describes 

their interrelationships, and characterises what we believe is the central 

process of evolution by joining functions. Next, we provide a computational 

model that contains the key principles of joining functions to evolve non-

decomposable functions, but that is built on a transparent substrate that 

avoids many of the problems of logic gate systems. This system enables us to 

clearly isolate the causal factors that inhibit evolution by natural selection (ENS) 

from joining functions recursively over multiple organisational levels, and links 

a number of related but previously unconnected biological phenomena to this 

process. Using this model system we are also able to map the entire fitness 

landscape to illustrate the problem graphically. Finally, we then provide a novel 

solution to the problem of recursive evolution. We show that by using a 

common and simple type of developmental mechanism that operates by the 

action of local rules, evolution is capable of evolving new variation operators 

aligned to new modules as they are evolved, thus enabling spontaneous 

recursive evolution over multiple organisational levels. 

2.2 Previous work 

2.2.1 Exaptation 

Exaptation, or preadaptation, as it was referred to at the time, arose in 

response to early criticisms of Darwin (Gould and Vrba 1982; Budd 2006; True 

and Carroll 2002). Critics argued that some complex traits would be 

functionally useless if they were broken down beyond some point (such as 2% 

of a wing, for example), and so could not have evolved gradually for their 

current purpose as Darwin suggested. Darwin responded by suggesting that 

traits could change their functions during evolution, and so such a complex 

trait could have initially been evolved for some other function that was useful 

even when broken down further (Darwin 1859; Budd 2006; Thornhill and 

Ussery 2000). Exaptation has subsequently been widely used to explain the 

origin of complex organismal traits, and is popular in organismal biology 

(where it originated) and paleontology (e.g. Budd 2006; Gould and Vrba 1982; 

Gould and Eldredge 1993; True and Carroll 2002). It is commonly defined as 

the process by which traits are ‘co-opted’ to serve new functions in evolution; 
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well-documented examples include heat-shock proteins being co-opted to form 

part of the eye lens, and lungs of basal fish being co-opted to become the gas 

bladder (True and Carroll 2002). The ‘complex traits’ that Darwin’s critics 

described are non-decomposable functions: they are functions that cannot be 

broken down beyond some point without losing their function. Furthermore, 

exaptation is usually considered to be a non-adaptive process (i.e. non-

adaptive in the sense that it only occurs as a chance by-product of ENS, similar 

to genetic drift; Barve and Wagner 2013). As such, exaptation requires no extra 

machinery of evolution beyond ENS. 

2.2.2 Tinkering 

The term tinkering was coined by François Jacob in his now famous 1977 

Science paper ‘Evolution and Tinkering’ (Jacob 1977), although it has roots in 

earlier theories (Laubichler 2007). Based on his observations with regulatory 

genes, Jacob developed a conceptual framework describing innovation and 

synthesis in evolution. He argued that novelty in evolution comes from 

repurposing or reorganisation of existing parts: 

‘Evolution… works on what already exists, either transforming a 

system to give it new functions or combining several systems to 

produce a more complex one.’ (Jacob 1977) 

 

Since Jacob’s description, tinkering has been shown to be responsible for 

evolving numerous existing biological functions (Alcock et al. 2010; Flicek 

2013). However, despite these successes, tinkering remains a conceptual 

heuristic; Jacob did not provide a strict formal or theoretical analysis (Alcock et 

al. 2010), and as far as we are aware, no such analysis has been subsequently 

published. Many of the types of evolvability adaptations associated with 

tinkering (e.g. hierarchical gene regulation networks) have been well 

researched (e.g. E. H. Davidson 2010; E. H. Davidson and Erwin 2006; Erwin 

and Davidson 2009; Carroll 2005). 

2.2.3 Building Block Mechanisms 

Rather than refer to a formal evolutionary mechanism, we use the term 

building block mechanisms to refer to a collection of computational and 
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mathematical models, mostly stemming from the fields of evolutionary 

computation and artificial life, that, for example, attempted to explain the 

benefit of sex, or the evolution of complexity (e.g. Watson 2006; Mouret and 

Doncieux 2009; Goldberg and Holland 1988; Arthur and Polak 2006; Simon 

1962; Simon 1969; Lenski et al. 2003). As a result, there are numerous 

computational models of building block mechanisms, and their processes are 

logically defined within these models. Building block models generally evolve 

non-decomposable functions by assembling smaller, building block functions 

into a non-decomposable function, of which they become components. 

Building block mechanism research has also significantly contributed to 

understanding the evolution of complexity by combining functions. Early work 

was provided by Simon’s theory of ‘Nearly Decomposable’ functions, that 

included his famous ‘watch maker’ parable, and later by Goldberg and 

Holland’s genetic algorithm based ‘building block hypothesis’ (Simon 1969; 

Goldberg and Holland 1988). However, a significant problem for some of these 

early models was that they reasoned that to benefit evolution, building blocks 

within the final hierarchical function being evolved must be effectively 

separable – i.e. have no significant dependencies on each other (hence Simon’s 

term ‘nearly decomposable’). This meant that the hierarchical functions being 

evolved by these theories were not actually non-decomposable functions 

Watson and Pollack 2005), which resulted in two problems. First, it was later 

shown that ENS alone could evolve such functions equally well, and so building 

block evolution provided no benefit in this case (Forrest and Mitchell 1993; 

Watson and Pollack 2005; Watson 2006); and second, without dependencies 

between components in the complex function being evolved, there was 

nothing to hold the hierarchical structure together, rendering them 

indistinguishable from an unordered collection of components, lacking the 

organised hierarchy observed in natural organisms (Watson and Pollack 2005). 

Later models resolved this issue of separability by showing that building block 

models can evolve genuine non-decomposable functions (e.g. Lenski et al. 

2003; Mouret and Doncieux 2009; Watson 2006). In these models, phenotypic 

building block components need to be found and organised to have the right 

set of interactions between them to evolve the complex functions. (For an 

analogy, simply evolving the components of a watch is not sufficient to keep 

time; they must then be organised into the right arrangement). Unlike with 
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separable problems, when the problem posed was a genuine non-

decomposable function (specifically, one that was modularly hierarchical), 

combining building blocks was shown to have significant benefits over ENS 

alone.  

In the abstract, models of genuine non-decomposable functions differed from 

earlier models containing mere collections of components by adding ‘extra 

combinatorial work’ – that is, some extra step of organisation that must be 

done to organise the components of a higher-level function once those 

components have been evolved. There were two main approaches to this 

problem, and understanding them will help to explain the current state of 

research on recursive evolution. In more abstract models, such as Watson’s 

Hierarchical If And Only If model (HIFF; Watson 2006), extra combinatorial 

work was often introduced by having many different low level components that 

were each individually useful, but only a subset of which could be successfully 

combined into higher-level functions. In this case, evolution must find the right 

blocks to combine to evolve the higher-level function. (For example, given a 

selection of watch parts, to build a working watch we must first find a set of 

watch parts that are theoretically compatible with each other – e.g., are from 

the same watch). HIFF used an entirely transparent fitness function, and hence 

it has a great deal of explanatory power.  

The second main approach to improving early building block models so that 

they contained genuine non-decomposable functions was to use real functional 

entities in the models – in particular, logic circuit systems (e.g. Lenski et al. 

2003; Arthur and Polak 2006; Mouret and Doncieux 2009). This had the 

benefit of forcing the model to contain aspects of reality such as extra 

combinatorial work because they were built in to the substrate itself. In the 

logic circuit models, logic gates could be combined into circuits that perform 

given computational tasks. The fitness functions were built to be hierarchical, 

where complex tasks could be achieved by combining simpler functional 

circuits that were also rewarded. However, one downside of such logic gate 

systems is that they generally have a highly opaque fitness functions, 

sometimes making it more difficult to understand the results they produce.  
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2.2.4 Recursive evolution and encapsulation 

One aspect common to both HIFF and logic gate models is that to evolve non-

decomposable functions by joining functions requires extra evolvability 

machinery beyond ENS alone, such as complicated genetic operators; e.g. as 

used by HIFF (Watson 2006), complicated genotype-phenotype maps (Lenski et 

al. 2003) and community detection algorithms (Mouret and Doncieux 2009). 

The reason for this is that to combine already complex components, evolution 

requires some way of redeploying those components as whole, integrated 

units. Effectively, it requires some mechanism of modular ‘encapsulation’ 

(sometimes called parcellation and integration; Günter P. Wagner, Pavlicev, and 

Cheverud 2007).  

As we discussed in chapter 1, one approach to encapsulation is to use a 

modular genotype-phenotype map (Mouret and Doncieux 2009), in which small 

modules in the genotype are ‘aligned’ to large modules in the phenotype. This 

allows small genetic changes (to regulatory ‘switch’ genes) to reorganise whole 

organised groups of phenotypic traits (Günter P. Wagner, Pavlicev, and 

Cheverud 2007; Wagner and Altenberg 1996). However, there is no consensus 

on how such correctly aligned, modular genotype-phenotype maps themselves 

can be evolved; a particular problem is that selection on genotype-phenotype 

maps is commonly second order, and hence weak (Günter P. Wagner, Pavlicev, 

and Cheverud 2007). This problem becomes very important when evolving 

functions recursively across multiple hierarchical levels. Here, new functions 

evolved must be used recursively as components at the next level up, and so 

on – which therefore requires a mechanism of genotype-phenotype map 

evolution that identifies and encapsulates new phenotypic modules on the fly, 

as they are evolved in the phenotype. 

How this can occur is an open question. Some building block models simply 

provide the system with a correctly aligned genotype-phenotype map a priori 

and illustrate the capability of evolution from there (e.g. Arthur and Polak 

2006). Elsewhere, in the literature on the evolution of modularity, modular 

genotype-phenotype maps have been evolved under specific environmental 

pressures for evolvability (Draghi and Wagner 2008; Kashtan and Alon 2005; 

Kashtan, Noor, and Alon 2007; Parter, Kashtan, and Alon 2008) and cost of 

connections in the genotype-phenotype map (Clune, Mouret, and Lipson 2013). 
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But these methods are not linked to evolution by joining functions, and also do 

not show modular genotype-phenotype maps evolving open-endedly across 

multiple hierarchical levels, and so may be limited when enabling recursive 

evolution. 

Solving the problem of how evolution can occur recursively is made more 

difficult by the details of the models used to illustrate it. In particular, certain 

aspects of the existing models obfuscate the problem and make it difficult to 

identify. One particular problem is that because systems of logic gates (e.g. 

Lenski et al. 2003; Arthur and Polak 2006; Mouret and Doncieux 2009) are 

directed networks, they are inherently hierarchical, and hence introduce the 

possibility of small changes to their structure causing large changes to their 

behaviour. For example, a complex circuit of logic gates could have its output 

dramatically changed by simply adding or rewiring a single gate. The key point 

is that this ability to hierarchically change the behaviour of many nodes in the 

system from only a small structural change is present within the substrate 

itself. Moreover, this capability of logic gate systems is often highly opaque 

(e.g. changing a rewiring a single gate in a complex circuit will often result in 

changes in behaviour that are very difficult to predict without careful analysis). 

Because the problem of recursive evolution is deeply intertwined with the 

ability to hierarchically redeploy modules, having a substrate that inherently 

has this capability can hide (and cause us to underestimate) the problems 

faced by evolution if such ability is not present in the substrate.  

For example, the hierarchical nature of logic circuits is used in this way by 

Kashtan and Alon’s model of spontaneous modularity, and some of its 

derivatives (Kashtan and Alon 2005). Modularity in the model is reliant on the 

ability of logic circuits to have large changes in function from only few changes 

to their structure. However, there is no discussion about the likelihood that the 

substrate will contain this ability; it is simply built into each example system’s 

substrate. What would perhaps benefit this work, and what is particularly 

difficult using such a system of logic gates, is a control case in which the 

model system does not intrinsically contain this hierarchical ability. Without 

such a control case, it is difficult to separate any positive effects of having a 

hierarchical variation operator within the algorithm of evolution from the 

effects of hierarchical variation present within the substrate itself. Moreover, it 

hides that significant problem of how evolution could evolve such a 
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hierarchical capability (for example, in the form of a hierarchical gene 

regulation network, or complex genetic operator) if it were not already 

available within the substrate itself. Here we aim to examine the problems that 

hinder recursive evolution when such an inherent hierarchical reorganisational 

ability is lacking. This is similar to the issues addressed by HIFF, although here 

we focus on using a hierarchical genotype-phenotype map to solve the 

problem, as opposed to genetic operators (e.g. sexual recombination) as used 

by HIFF. 

In summary, there are two main bodies of literature that describe evolution by 

combining functions: tinkering and building block models. They remain largely 

separate; there is no theoretical framework that describes their relationship or 

relationship with other processes of non-decomposable function evolution 

such as exaptation. Furthermore, how evolution can recursively join functions 

across multiple levels of organisation is poorly understood – in particular, how 

this process relates to encapsulation. 

In the next section we develop a framework that incorporates tinkering and 

building block models with exaptation, and describes a core process of 

evolution by combining functions. We then address the question of recursive 

evolution. To do so we define a computational model of evolution by joining 

functions that requires both finding and organising interactions between 

modules (similar to logic gate models), but that is transparent, and specifically 

avoids introducing hierarchical capability within the substrate itself, allowing 

us to better isolate the problem faced by evolution when recursively joining 

functions over multiple levels of organisation. Finally, we present a novel 

solution to the problem of recursive evolution in this system. 

2.3 Theoretical analysis 

We will start with theoretical analysis to examine the relationship between 

exaptation, building block models and tinkering. We begin by examining 

tinkering.  

In his definition of tinkering quoted above, it is clear that Jacob actually 

describes two distinct processes. The first of these – ‘transforming a system to 

give it new functions’ is logically indistinguishable from the process of 

exaptation: ENS evolves a function until it takes on a new function. On the 
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other hand, the second process that Jacob describes ‘combining several 

systems to produce a more complex one’ shares the same logic as building 

block models: evolution produces novel, complex functions by combining 

existing functions. 

So on initial inspection is seems that we can condense the three processes of 

non-decomposable function evolution – exaptation, building block models and 

tinkering – into two distinct processes: 

1. ‘Functional shift’ (described by exaptation) 

2. ‘Functional combination’ (described by building block models) 

 

This reasoning shows that the second process – ‘functional combination’, 

although described in building block models and in part by tinkering, lacks a 

specific name, making it difficult to discuss. The lack of a name for such a 

process has recently been highlighted by Gregory (2008). Before suggesting a 

name for this process, we can make further deductions. Specifically, both 

functional shift and functional combination have been shown to be capable of 

evolving non-decomposable functions. And non-decomposable functions by 

definition cannot be broken down beyond some point without losing their 

function. Therefore, by definition, any process that is capable of producing 

non-decomposable functions from components below this threshold must 

involve a change in function – i.e., exaptation. This implies that both processes 

in the above list must involve exaptation. As we have described, functional 

shift obviously involves exaptation, because it is practically the definition of 

exaptation. But where does exaptation occur in functional combination? 

To address this problem, let us consider the evolution of a complex metabolic 

pathway by the process of functional combination. Initially, many individual 

enzymes are already present within the organism and are used for their own, 

separate functions. They do not interact with one another. By mutation, a 

subset are then brought together and combined into a specific configuration 

that has a new function as a metabolic pathway: in this new arrangement, the 

enzymes interact with one another in such a way that produces a 

fundamentally new function on a higher organisational level. Before this 

process, the organism did not have the function of the pathway, and 

afterwards it did. But no individual enzyme changed its function during this 
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process; only the arrangement of the enzymes changed – but that change in 

arrangement was enough to result in the creation of an entirely new function.  

The result is that while functional combination does involve functional change, 

unlike in ‘traditional’ exaptation (i.e. functional shift), the functional change 

occurs on a higher hierarchical level. This implies that functional shift and 

functional combination actually refer to two distinct types of exaptation: 

exaptation as it is traditionally described, which here we term shift-exaptation, 

in which change in function occurs on the same hierarchical level as the 

physical component, and exaptation that occurs in functional combination, in 

which change in function occurs on a higher hierarchical level than physical 

components being combined. We suggest the term ‘combinatorial exaptation1’ 

for this process (Table 1). 

 

Type of exaptation Location of functional shift Other names 

Shift exaptation Same level as object Exaptation 

Preadaptation 

Tinkering 

Combinatorial exaptation Hierarchical level above 

objects  

Tinkering 

Building-blocks 

Collage 

Table 1. Description of two separate types of exaptation 

Another example of combinatorial exaptation is provided by logic gate 

systems, which are commonly used as the basis for building block models 

(Lenski et al. 2003; Arthur and Polak 2006). NAND gates are universal, 

meaning that every possible logical function can be made out of combinations 

                                            

1 This particular name was suggested to us by Eörs Szathmary. 
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of NAND gates. Consider, for example, a set of five NAND gates. There are 

many different ways to combine them, most of which do not represent any 

particular function. However, two of those possible arrangements produce the 

XOR function (exclusive-or). If we were to rearrange our NAND gates randomly, 

eventually we would reach a combination that produces the XOR function. 

Again, no individual component (i.e. NAND gate) changes its function in this 

process – but when the components are combined in just the right way, a new 

function springs into existence at a hierarchical level above the components 

themselves. This ‘springing into existence’ of a new function at a higher 

hierarchical level is what we term combinatorial exaptation. An example of 

combinatorial exaptation occurring recursively across two separate scales of 

organisation is described in Figure 2.  

(As an aside, we should state that the particular ‘high-level’ function that is 

produced by combinatorial exaptation, such as the XOR function in our NAND 

gate example, is not necessarily ‘special’, compared to other possible high-

level functions of the system. It is only that some such high level functions may 

satisfy corresponding complex selection pressures in the environment, and in 

that case are likely to be retained by natural selection. The concept of function 

itself, and how different rearrangements of components can create different 

functions is discussed further in chapter 4.) 

Below we provide a transparent computational model of combinatorial 

exaptation. We use the model to clarify the problems associated with recursive 

combinatorial exaptation – in particular the need for an encapsulation 

mechanism that can evolve to identify and reorganise new phenotypic modules 

as they are evolved in the phenotype.  
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Figure 2. An example of evolving a non-decomposable metabolic pathway by 

multiple, recursive events of combinatorial exaptation. At t=1, 

enzyme A has been evolved, satisfying selection pressure S
a
 (circles 

represent enzymes, and arrows are their functional outputs). By t=3, 

more enzymes have been evolved, satisfying corresponding 

selection pressures S
a
-S

g
. At t=4 a mutation by chance organises 

functions B, C and E into an arrangement in which they interact to 

produce the new metabolic pathway function H, satisfying selection 

pressure S
h
. H is a new function formed on a higher level of 

organisation than its components. It springs into existence when B, 

C and E are in the right arrangement. This is combinatorial 

exaptation. The same occurs to A, F and G at t=5, producing the 

new metabolic pathways function I, satisfying selection pressure S
I
. 

Finally at t6 D, H and I are reorganised into an arrangement that 

produces J, which is a further event of combinatorial exaptation. H, I 

and J are all non-decomposable functions, because the require all of 

their components to be present and interacting in the right manner 

to function. They would therefore be difficult to evolve by ENS alone; 

however, combinatorial exaptation can easily evolve them. In this 

example, combinatorial exaptation occurs recursively, using 

functions H and I evolved by combinatorial exaptation as 

components on the next hierarchical level.  
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2.4 Results and discussion 

The model system was a population of organisms evolving enzymes and 

interactions between those enzymes to evolve metabolic pathways. There were 

16 available enzymes that could be evolved. Those enzymes could be 

combined into 4 medium complexity metabolic pathways, each containing 4-

component enzymes. In turn, those 4-enzyme pathways could be combined 

into a single 16 enzyme metabolic pathway. In all simulations, this 16-enzyme 

pathway was the target of evolution. Because this target pathway had 3 levels 

of internal hierarchy, practically evolving it by joining functions required a 

mechanism of recursive, multi-level combinatorial exaptation. 

We conducted three main simulations: S1, C1, S2. These simulations were 

identical except for having slightly different genotype-phenotype maps. In all 

cases, organisms began with a genotype phenotype map (in the form of a gene 

regulation network) that did not contain any hierarchical structure 

corresponding to the 4-enzyme or 16-enzyme pathways. The three key 

simulations in this chapter can be summarised as follows: 

1. S1 was a negative control experiment that sought to test the hypothesis 

that without such a hierarchical gene regulation network, organisms 

would be unable to carry out recursive joining of functions across three 

levels, and hence not be able evolve the target 16-enzyme metabolic 

pathway. Therefore in S1, organisms had a gene regulation network 

without this hierarchical structure, and their gene regulation network 

could not evolve hierarchical interactions between regulatory genes, 

thus preventing the evolution of such a structure.  

2. C1 sought to test whether allowing the gene regulation network in S1 to 

freely evolve hierarchical interactions between regulatory genes would 

enable the evolution of a hierarchical gene regulation network capable 

of evolving the target 16-enzyme metabolic pathway. Thus C1 was 

identical to S1 except that the gene regulation network was allowed to 

evolve. 

3. S2 sought to test whether having a development process that occurred 

by local growth, as opposed to in a top-down manner as in S1 and C1, 

enabled organisms to evolve the target 16-enzyme metabolic pathway. 

Thus S2 was identical to C1 (i.e. with a gene regulation network that was 
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allowed to evolve hierarchical interactions between regulatory genes) 

but in S2 organisms had a development process that occurred by local 

growth. 

 

To give a more detailed picture of the workings of the model, here we will 

briefly describe the S1 simulation. More detailed technical description of the 

model is defined in the methods (section 2.6) 

 

Figure 3. genotype-phenotype map for simulation S1 

Enzymes that were neighbouring in functional interaction space were 

considered to be interacting. In this way, regulatory genes controlled 

interactions between enzyme functions in a given phenotype. 

In S1, each organism had 32 genes; 16 structural genes (each containing 10 

binary loci) that encoded 16 possible enzymes (one per structural gene), and 

16 regulatory genes (R
p
), one corresponding to each structural gene (each R

p
 

gene was defined by two integers 0<p
x
£9, 0<p

y
£9). R

p
 regulatory genes encoded 

interactions between enzyme functions in the phenotype, permitting the 

possibility of evolving metabolic pathways. Each organism's phenotype was 

represented by a 9×9 grid, termed its functional interaction space, which 

represented the interactions between enzymes within the organism. Once a 

given enzyme had been evolved (by correctly setting all 10 binary loci in its 

corresponding structural gene), it was plotted in functional interaction space 

by a coloured dot, with its position defined by its corresponding R
p
 regulatory 
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gene (p
x
, p

y
 defining the x and y coordinates of the function respectively). The 

genotype-phenotype map is depicted in Figure 3.  

 

 

Figure 4. Enzymes interacting in functional interaction space. 

The fitness function was hierarchical. Fitness was obtained by evolving any of 

21 possible metabolic functions C
a
, C

b
, … C

u
. Evolving any of these functions 

resulted in the organism being awarded a fixed fitness bonus of +1 for each 

function evolved. These bonuses represented there being individual selection 

pressures (S
a
,…S

u
) for each of the functions. All functions were non-

decomposable functions: fitness bonuses were only awarded when functions 

were found exactly. Some of the functions were more complex than others. 

The 16 simplest functions were enzymes (C
a
, C

b
, …C

p
). Each enzyme was 

considered evolved when all loci in its corresponding structural gene matched 

a predefined fixed 10-bit target. The four next most complex functions were 4-

enzyme metabolic pathways (C
q
, C

r
, C

s
, C

t
). To be evolved, each of these 

pathways required four specific enzymes to be organised into a specific 

arrangement of interactions in functional interaction space. For example, 

pathway C
q
 required enzymes C

a
, C

b
, C

c
, and C

d
 to be arranged in a square 

formation in functional interaction space (Figure 4, right). The final function, 

C
u
, was the 16-enzyme metabolic pathway that was the target of evolution. It 

consisted of C
q
, C

r
, C

s
, and C

t
 organised into a particular arrangement of 

interactions (a square of neighbouring pathways in functional interaction 

space; Figure 5).  
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Figure 5. Diagram of the 3 types of available functions in the fitness function. 

There were 21 available functions; 16 of the single enzyme type, 4 

of the 4 enzyme type, and 1 of the 16 enzyme type. To evolve a 

function, its respective pattern of interacting enzymes must be 

formed in functional interaction space. Each 4-enzyme pathway 

required a specific set of 4 enzymes, but those enzymes could be in 

any order as long as it satisfied the square arrangement depicted 

above.  

Evolution proceeded as follows: The population size was fixed at M=50, and 

evolution occurred in a generational manner. In each generation, the fittest 

L=10 organisms in the population were allowed to reproduce (i.e. truncation 

selection); they were copied uniformly at random and placed into a new empty 

population until it was full (i.e. M=50). The population was then mutated. There 

was a fixed per-locus probability of point mutation (see methods), which 

caused a bit-flip for binary loci, and selection of a random integer value for 

integer loci. No crossover or complex mutation operators were allowed. This 

continued for 106 generations or until a maximum fitness phenotype was 

found.  

2.4.1 S1 Simulation results 

In simulation S1, organisms had only the simple, direct genotype-phenotype 

mapping described in Figure 3 (see methods for further detail), and this 

genotype-phenotype map was not permitted to evolve hierarchical interactions 

between regulatory genes. 
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Figure 6. Case study populations show snapshots of the fittest organism in the 

population at various generations. Top row, (S1 simulation): Top-

down development process and the gene regulatory network is not 

permitted to evolve hierarchical interactions between regulatory 

genes. Similar results were observed with a top down development 

process when gene regulatory networks could freely evolve 

hierarchical interactions between regulatory genes, and hence 

potentially evolve a hierarchical structure capable of redeploying 4-

enzyme pathways (C1 simulation, not shown); in neither S1 nor C1 

was the target 16-enzyme metabolic pathway ever evolved. But in S2 

(bottom row) organisms had a local development process, physically 

embedding the gene regulation network in the phenotype, and gene 

regulation networks were allowed to evolve. In this case, the target 

16 enzyme metabolic pathway was always evolved (e.g. bottom row, 

80,000 generations). CE=Combinatorial exaptation; GP 

map=Genotype-phenotype map. 
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We carried out 100 independent repetitions of S1. In all simulations, the fitness 

of the population increased over time, and all 16 enzymes (C
a
, C

b
 … C

p
) and all 

four 4-enzyme metabolic pathways (C
q
, C

r
, C

s
, C

t
) were evolved within 106 

generations (mean 57722; standard error 6449). However, the target 16-

enzyme metabolic pathway C
u
 was not evolved in any of the repetitions. The 

progress of case study population 1 illustrates the typical behaviour of 

evolution in this system (Figure 6). First, individual enzymes are evolved (e.g. 

see snapshot at generation 50; here 6 enzymes have been evolved). Once 

evolved, enzymes remain persistent in the population. However, their positions 

in functional interaction space change randomly over time, as they are buffeted 

by genetic drift caused by regulatory mutations: unless they happen to form 

part of a metabolic pathway, for a given enzyme, any position in functional 

interaction space is as fit as any other. 

By generation 20,000 two simple metabolic pathways (C
q
 and C

r
) have been 

evolved by combinatorial exaptation. Each event of combinatorial exaptation 

occurred by random regulatory mutations organising the component enzymes 

(for example, C
a
, C

b
, C

c
, and C

d
 for pathway C

q
) into a specific square 

arrangement in functional interaction space. Once its component enzymes 

were in this correct arrangement, the functionality of pathway C
q
 sprang into 

existence, providing a fitness bonus for satisfying selection pressure S
q
. In this 

way, the evolution of pathway C
q
 is an evolutionary transition: previously 

separate entities (enzymes) were brought together to form a new, emergent 

entity (pathway C
q
) with a novel function that was not present before the 

transition. 

By generation 40,000, all four of the 4-enzyme metabolic pathways (C
q
, C

r
, C

s
, 

C
t
) have been evolved. There are two particular behaviours of the system to 

note at this point. First, once found, higher-level functions (i.e. metabolic 

pathways) are persistent. By generation 40,000, pathways C
q
 and C

r
 have 

remained structurally intact (and hence functioning) for over 20,000 

generations. Their particular internal arrangement of interactions (here 

represented by a square configuration in functional interaction space) is not 

broken up by regulatory mutations. What keeps these emergent structures 

together? Simply, because the function of a given pathway is dependent upon 

the arrangement of interactions between its components, then breaking those 

interactions (e.g. by regulatory mutation) would result in breaking the function 
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of the pathway, and hence a loss in fitness. Therefore, breaking up pathways is 

strongly selected against, and hence their specific emergent structures are 

preserved. In short, internal functional dependencies (sometimes termed 

‘burden’ (Riedl and Jefferies 1978) or ‘internal selection’ (Schwenk and Wagner 

2004)) hold the emergent pathways together. This behaviour is intuitive: in 

natural organisms, it is also possible that regulatory mutations could 

reorganise components of important metabolic pathways (e.g. respiration) or 

physical systems (e.g. the heart) causing them to be broken up, and their 

functionality lost. In this case, such mutations would also be strongly 

deleterious, and hence be selected against, thus preserving the structure and 

function of the multi-component complex trait.  

The second behaviour we observe is that once pathways are evolved, they 

remain stationary in functional interaction space for many thousands of 

generations: In snapshots at 40000, 60000 and 80000 generations, all four 4-

enzyme metabolic pathways C
q
, C

r
, C

s
, C

t
 have been evolved (each appearing as 

a square of enzymes), but remain fixed in position in functional interaction 

space. In contrast, before they are incorporated into metabolic pathways, 

individual enzymes undergo rapid genetic drift, changing their positions in 

functional interaction space randomly through time. It is this genetic drift that 

allows the system to sample many different arrangements of enzyme 

interactions – and ultimately to find those arrangements that produce fit 

metabolic pathways C
q
, C

r
, C

s
, C

t
 and hence evolve them by combinatorial 

exaptation. Because the system is apparently incapable of performing the type 

of interaction rearrangement with metabolic pathways as it could with 

enzymes, this prevents the system from exploring different arrangements of 

interactions between those pathways, and hence ultimately prevents the 

system from evolving C
u
. 

The problem is that the system lacks a mechanism that can ‘encapsulate’ the 

newly evolved 4-enzyme pathways, and redeploy them as coherent units. Given 

the structure of the genotype-phenotype map, a single regulatory mutation will 

only move the position of one component of that pathway (i.e. one enzyme). 

Because the pathways are non-decomposable functions, doing so will break the 

required interaction arrangement of the pathway, thus break the functionality 

of the pathway, and therefore be strongly selected against. Such constraints 

that work to preserve specific, fit arrangements of functional interactions 
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within organisms are termed ‘burden’ in the form of ‘internal selection’ 

(Schwenk and Wagner 2001; Schwenk and Wagner 2004; Günter P. Wagner and 

Laubichler 2004). The result is that metabolic pathways cannot be moved in 

functional interaction space one component at a time, but instead require a set 

of simultaneous regulatory mutations that move each of their component 

enzymes simultaneously in a consistent direction. Obviously, this will become 

exponentially less likely as the number of components in a given function 

increases (and is already extremely unlikely with only 4 components). This 

behaviour shows why extra evolvability machinery (i.e. a method of 

encapsulation) is important in enabling recursive combinatorial exaptation 

across multiple levels. In summary, S1 illustrates that without a method of 

encapsulation, internal selection causes constraint (i.e. burden) to increase 

dramatically as the number of components in a non-decomposable function 

increases, thus preventing joining functions to occur recursively over multiple 

hierarchical levels.   

2.4.2 C1 simulation results 

We next sought to test whether allowing the gene regulatory network to evolve 

its own hierarchical structure could solve the problems posed by internal 

selection that prevent multi-level recursive evolution. 

Simulation C1 was identical to S1, except that the gene regulatory network 

could evolve hierarchical interactions between regulatory genes (see methods). 

In short, we found that aligned modular gene regulatory networks sufficient to 

enable recursive combinatorial exaptation did not evolve. Instead, complicated 

gene regulatory networks formed rapidly that typically created many 

interactions between structural genes that could not be combined to form 4 

enzyme pathways. As such, these pathways were ‘mis-aligned’ to the modular 

selection pressures in the environment, hindering further evolution (the 

difficulty associated with such misaligned genotype-phenotype maps is 

explored further in section 2.4.5). The results were similar to S1 simulations: in 

100 repetitions, all 4-enzyme metabolic pathways were evolved (mean 76463, 

standard error 6872) but the target 16-enzyme metabolic pathway was never 

evolved within 106 generations. This supports previous similar work outlining 

the difficulty of gene regulatory network evolution with second order selection 

(Günter P. Wagner, Pavlicev, and Cheverud 2007).  
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2.4.3 A recursive mechanism of combinatorial exaptation 

Based on the results of S1, we can describe two types of transition by 

combinatorial exaptation (Figure 7):  

• Type 1, in which an associated regulatory change has not occurred – i.e. 

where phenotypic components have been combined into a new 

functional module, but the regulatory circuits that control those 

components have not been, thus preventing encapsulation and 

redeployment of the new phenotypic module as a coherent whole. This 

prevents recursive evolution by combinatorial exaptation, as occurred in 

the simulation S1 and C1. (Type 1 transitions are also similar to 

‘egalitarian transitions’ in social evolution; some new functional 

symbiosis has been generated, but the system lacks a shared 

mechanism of genesis). 

• Type 2, in which an associated regulatory change has occurred – i.e. 

where phenotypic components have been combined into a new 

functional module, and the regulatory circuits that control those 

components have also been combined into a new regulatory module, 

thus allowing encapsulation and redeployment of the new phenotypic 

module as a coherent whole. This would theoretically allow multi-level 

recursive combinatorial exaptation, but we have yet to observe it in 

simulation here. (Type 2 transitions are also similar to ‘fraternal 

transitions’ in social evolution, where new functional symbiosis is 

generated and the system has a shared mechanism of genesis). 

 

So far, we have only observed type 1 transitions, thus prohibiting recursive 

evolution by combinatorial exaptation. To achieve a type 2 transition (and 

hence allow recursive combinatorial exaptation), one option is to simply 

provide the system with a correctly aligned genotype-phenotype map a priori, 

so that the necessary regulatory switches were already in place before new 

modules are formed, as some earlier models have done (e.g. Arthur and Polak 

2006). However, this cannot happen in natural evolution, and so fails to 

properly explain the phenomenon of recursive evolution. 
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Figure 7. Two types of transition possible by combinatorial exaptation. With 

Type-2, associated change in the gene regulatory network 

accompanies the emergence of a new functional unit in the 

phenotype by combinatorial exaptation, and therefore the new 

emergent phenotypic function can be encapsulated, allowing 

combinatorial exaptation to occur recursively and hence scale to 

complexity. 

Rather than further develop the approach used in C1 of using second order 

selection to attempt to evolve modular, hierarchical gene regulation networks, 

for example by using strict regimes of environment change, or a cost of 

connections (Kashtan and Alon 2005; Clune, Mouret, and Lipson 2013; Parter, 

Kashtan, and Alon 2008), we propose a different method. We suggest that a 

fundamentally different way to achieve the desired genotype-phenotype map 
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structure is if the structural evolution of the genotype-phenotype map and the 

phenotype were somehow causally tied together, so that structural changes in 

one were automatically reflected in the other. A similar approach was used by 

Karl Sims to force virtual creature bodyplans and accompanying neuro-control 

systems to be aligned in his landmark study of 3-D virtual creature evolution 

(Sims 1994a; Sims 1994b). As with genetic regulatory systems, it is generally 

useful for neuro-control architecture to mirror the modular structure of the 

phenotype. In Sims’ system, the phenotypic development occurred via a 

directed graph. New phenotypic components already had neuro-control 

systems ‘built in’, and so blocks of neural control circuitry were replicated 

along with each instanced part. The result was that the structure of the neuro-

control system mirrored the structure of the modular bodyplan as it changed. 

We apply this idea to genotype-phenotype map evolution, and in particular the 

evolution of gene regulation networks that define the genotype-phenotype 

map. Theoretically, a system with such linkage between phenotype and gene 

regulatory network structure should enable type 2 transitions and hence 

recursive combinatorial exaptation, because any new phenotypic module 

created by combinatorial exaptation would be reflected in the hierarchical 

modular structure of the gene regulatory network, allowing the new module to 

be immediately controlled as a single unit (i.e. encapsulated).  

But rather than simply enforce this link, we aim to understand how such a link 

could exist in biological evolution. One possibility is the role of gene 

regulatory networks in ontological development. The fact that gene regulatory 

networks are responsible for encoding a process that builds a physical 

organism is often ignored in models, because the physical process of 

development is commonly abstracted away or simplified. But in nature, this 

necessary requirement of gene regulatory networks places strict constraints on 

the space of possible genotype-phenotype maps (and associated gene 

regulatory networks) available to evolution. Moreover, it is possible that the 

constraints the development place on the space of available genotype-

phenotype maps occurs in a way that biases the remaining genotype-

phenotype maps to be more likely to have inherent links between the structure 

of their gene regulatory network and the structure of their phenotype.   
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For example, if development is allowed to occur in a centralised, top-down 

manner (e.g. where individual phenotypic components are placed in the 

phenotype by a series of independent development events, such as in S1), then 

this potentially permits genotype-phenotype maps where the internal structural 

arrangement of gene regulatory network circuits (that determine the order in 

which events occur during development) does not affect the resultant 

phenotype structure, because phenotype construction is a series of 

independent events. In contrast, in real organisms, development occurs by a 

sequence of local interactions, and hence is inherently a process of many 

contingent steps. As a result, the physical position of components in the 

phenotype is determined to some extent by the order in which they occur, 

which is determined by the position of their triggering circuits in the logical 

structure of gene regulatory networks. The result is that gene regulatory 

network structure directly affects phenotypic structure in natural organisms 

(Erwin and Davidson 2009; E. H. Davidson 2010). Genotype-phenotype maps 

that operate by unrealistic development methods (as in S1) are simply not 

allowed in natural evolution, thus constraining the search space of gene 

regulatory networks in potentially useful ways.  

To test this hypothesis, we restrict the model so that ontological development 

has to occur by a decentralised process commonly observed in natural 

organisms, and then allow the gene regulatory network to evolve hierarchical 

interactions between regulatory genes within the constraints that this 

development process implies. The particular development process we adopt is 

similar to Sims’ directed graph mechanism: phenotypic components contain 

embedded gene regulatory network circuitry that triggers the local growth of 

further phenotypic components, that also have embedded gene regulatory 

network circuitry, and hence trigger further local growth, etc. For example, in 

human limb development, local expression of hox genes at the end of the 

zeugopod (i.e. the forearm) triggers the development of the autopod (i.e. hand 

and wrist; Tamura et al. 2008). In this process, every component is built by 

some other neighbouring phenotypic component (with which they also 

therefore interact), according to the hierarchical sequence defined in the gene 

regulatory network.  
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Figure 8. Comparison of two approaches to evolving a Type 2 transition. With 

the traditional approach, the first step is to evolve an emergent, 

higher unit in the phenotype by combinatorial exaptation. Here it is 

hard to redeploy the unit as a single unit, because the gene 

regulatory network (GRN) does not contain a hierarchical structure 

mirroring that of the new phenotypic unit. The next step is to evolve 

the necessary structure in the GRN; however, this is difficult because 

selection on the gene regulatory network is only second order. In 

contrast in S2, the new emergent unit is evolved in the GRN first. If 

development occurs by local interaction of GRN and phenotype, then 

structure in the GRN will often be automatically mirrored in the 

phenotype, because regulatory circuits that trigger each other will 

often produce physically neighbouring (and thus interacting) 

phenotypic components. The result is that often the corresponding 

unit will be automatically created in the phenotype due to this 

development process, thus avoiding the need for a difficult step of 

second order evolution. 



  Chapter 2: Combinatorial Exaptation 

 71   

In the example of human limb development, because the gene regulatory 

network circuitry that triggers the hand to develop exists within the forearm, 

the hand is formed adjacent to (and hence functionally interacting with) the 

forearm. In contrast, if the gene regulatory network structure was changed so 

that the circuit causing hand development was now triggered by the circuit that 

caused leg growth, then the hand would form adjacent to (and hence 

functionally interacting with) the leg, instead. In short, in this type of 

development process, phenotypic components that are hierarchically related in 

development are commonly hierarchically related in their phenotypic 

interactions. (However, we must also note that with this type of development 

complications can occur that mean that gene regulatory network structure will 

not always be exactly mirrored by phenotype structure. Even in a system where 

most phenotypic interaction comes about as a result of hierarchical 

interactions between their respective triggering circuits in the gene regulatory 

network, there is still the possibility that phenotypic components that were not 

triggered by directly related gene regulatory network circuits still come to 

interact.) 

2.4.4 S2 Simulation results 

To include this type of decentralised development process in the model, we 

introduce the requirement that every enzyme have some local parent structure 

in the phenotype that contained the regulatory circuit that triggered its 

development (a development trigger module). To encode this, we added two 

extra types of regulatory genes, R
dtm

 and R
r
. R

dtm
 (an integer value 0≤ R

dtm
<32, 

one corresponding to each structural gene) encoded the developmental trigger 

module of the given structural gene. Developmental trigger modules could 

either be one of the other 15 enzymes (R
dtm

<16; the specific value denoted 

which enzyme; enzymes could not be their own parent and feedbacks were not 

allowed), or some other structure in the genotype (16≤ R
dtm

<32). In accordance 

with the development system, enzymes were placed in functional interaction 

space neighbouring their developmental trigger module (and hence were 

interacting with it), in a direction defined by the enzyme’s R
r
 gene (see 

methods). If an enzyme’s developmental trigger module was not another 

enzyme (16≤ R
dtm

<32), then it was assumed that the enzyme’s development 

was triggered by some other structure in the phenotype that was effectively 
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developmentally unrelated to other enzymes or structures in the model. In this 

case enzymes were placed in functional interaction space according to their 

regulatory genes p
x
 and p

y
, as in S1. 

Development of an organism therefore occurs by the following process (Figure 

9): 

• Plot each enzyme that has been correctly evolved and has a 

developmental trigger module that is not another enzyme (i.e. 16≤ 

R
dtm

<32) in functional interaction space according to its corresponding p
x
 

and p
y
 regulatory genes (i.e. as in S1). 

• Plot each correctly evolved enzyme with a developmental trigger module 

that is another enzyme next to its developmental trigger module 

enzyme, with a direction defined by its corresponding R
r
. 

In all simulations, the gene regulatory network began with the same setup as 

S1 and C1 (i.e. no enzymes having another enzyme as a developmental trigger 

module).  

 

 

Figure 9. Genotype-phenotype map of organisms in S2. R
dtm

 of enzyme 1 is 

>15, hence its developmental trigger module is not another enzyme. 

Its position in functional interaction space is therefore determined 

by R
p
. In contrast, R

dtm
 of enzyme 2 is 1, indicating that its 

development was triggered by enzyme 1. It is therefore placed 

adjacent to enzyme 1 in a direction defined by its R
r
 (in this case 

R
r
=2, signifying a direction of -1,0).  

We carried out 100 independent repetitions of the simulation. In all simulations 

the complex target C
u
 was evolved within 106 generations (mean 118252, 
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standard error 7215) by a process of multi-level combinatorial exaptation. This 

is statistically significant when compared to either S1 or C1 simulations in 

which C
u
 was never evolved within 106 generations (P< 0.001, one sample 

Student's t-test). The progress of case study population 2 illustrates the typical 

behaviour of this system (Figure 6). In contrast to the previous simulation, in 

this case when 4-enzyme metabolic pathways are evolved they are not always 

fixed in place in functional interaction space. This therefore allows evolution to 

use these metabolic pathways recursively as new units of variation, changing 

their arrangement of interactions with each other until the complex pathway C
u
 

is evolved. Given the constraint to the genotype-phenotype map that this 

development system implies, evolution can evolve a gene regulatory network 

that allows combinatorial exaptation to occur recursively and carry out type 2 

transitions, crossing multiple levels of organisation. Let us be clear: Buy this 

mechanism, in each simulation the resulting gene regulatory network is 

hierarchically modular. That is, when the 16 enzyme pathway is formed, the 

system already contains a hierarchical regulatory module that corresponds to 

the 16-enzyme pathway, allowing the 16 enzyme pathway to be encapsulated 

immediately upon it being formed. This would thus allow the system to 

continue to further levels of hierarchy (by combining this 16-enzyem pathway 

with other pathways) without any increasing impediment. As such, this 

hierarchically modular regulatory module also contains hierarchical 

subcomponents that allow it to also encapsulate the smaller, 4 enzyme 

subcomponent metabolic pathways too, and would continue to do so as the 

regulatory and structural modules evolved, in concert, over progressively 

further levels of hierarchy. Again, this is due to the constraints in the system 

that the gene regulatory network must carry out development, which has the 

effect of ‘locking’ the evolution of the regulatory network and the phenotype 

together. Interestingly, this system generates both type 1 and type 2 

transitions. As in S1, phenotypic interaction can be caused without any 

associated linking of developmental regulatory circuits, resulting in a type 1 

transition. In this case the resultant emergent function cannot be encapsulated 

and used as a search unit at the next hierarchical level. But phenotypic 

interaction can also be caused by regulatory interactions that then result in 

phenotypic interactions. It is this possibility that a system of decentralised, 

local development introduces, and ultimately that allows combinatorial 

exaptation to scale to complexity in this system. 
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In summary, we have suggested that a mechanism that links the logical 

structure of the gene regulatory network with the physical arrangement of 

phenotypic structures can provide an alternative solution to producing an 

aligned, modular gene regulatory network that does not rely on second order 

selection of the gene regulatory network. We have further shown that this 

process could enable evolution by joining functions to occur recursively over 

multiple organisational levels by providing a recursive mechanism of modular 

encapsulation. Furthermore, we have suggested a possible way in which 

constraints of natural systems, in the form of an ontogenetic development 

process that occurs by local growth, can provide such a link between gene 

regulatory network and phenotype structures.  

2.4.5 The effect of genotype-phenotype map evolution on the fitness 

landscape 

The differences between simulations S1, C1 and S2 show how having an 

aligned, modular genotype-phenotype map can enhance evolvability, and 

enable combinatorial exaptation by enabling encapsulation of complex 

phenotypic functions. Previous work shows that such a genotype-phenotype 

map enriches the local genetic neighbourhood with fit phenotypes that are 

modular reorganisations (e.g. Parter, Kashtan, and Alon 2008).  

To study this further, we use our model to directly observe how different 

genotype-phenotype maps (modular aligned, non-modular and modular 

misaligned) reorganise the resulting fitness landscape (simulation GP1). To 

achieve this, we carried out evolution in the conditions of simulation S1 (i.e. 

with a non-modular genotype-phenotype map). We allowed evolution to 

continue until an organism in the population (O
test

) had evolved all four 4-

enzyme metabolic pathways. At this point, as in S1 simulations, the lack of an 

encapsulation mechanism prevented evolution from redeploying any of those 

pathways in functional interaction space, thus preventing combinatorial 

exaptation to continue recursively. To understand what, in terms of the fitness 

landscape, was preventing O
test

 from continuing combinatorial exaptation 

recursively, at this point we froze the simulation and then took a snapshot of 

the distribution of phenotypes in the local genetic neighbourhood (centred on 

O
test

 ) that were equal or greater than the fitness of O
test

 (Figure 10).  
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Figure 10. Main chart: Frequency distribution of neutral or fitter genotypes in 

the fitness landscape from a starting genotype that had evolved all 4 

enzyme metabolic pathways (C
q
, C

r
, C

s
, C

t
) given three different 

genotype-phenotype maps. Given a ‘direct mapping’ genotype-

phenotype map that does not alter the existing landscape (Non 

modular, blue columns), the fitness landscape is highly rugged, but 

with a clear structure: all fit or neutral genotypes are 4 mutations 

apart, because each 4-enzyme pathway requires 4 simultaneous 

mutations to redeploy. Given a hierarchically modular, aligned 

genotype-phenotype map (red columns), single mutations can have 

hierarchical effects on the phenotype, moving whole integrated 4-

enzyme pathways as single units. This removes the need for four 

simultaneous mutations to redeploy 4-enzyme pathways. As a result, 

the landscape is transformed, condensing the distributed pattern of 

fit phenotypes into the local neighbourhood, and removing its 

ruggedness. This illustrates that a modular aligned genotype-

phenotype map uses a heuristic to exploit existing structure in the 

fitness landscape to remove ruggedness and enrich the local 

neighbourhood with fit, modular reorganisations. Finally, given a 

modular genotype-phenotype map in which genotypic changes are 

not hierarchically aligned to phenotypic modules, the fitness 

landscape is transformed to be even less hospitable than having no 

map at all (green columns). Top right: Zoomed in section of the 

same chart for the local mutational neighbourhood. 
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The blue columns in Figure 10 show the distribution of phenotypes that are as 

fit or fitter than the current phenotype, O
test

, as we move away from O
test

 in 

genotype space. It is clear that there is a distinct pattern to this distribution: 

neutral or fitter phenotypes only occur at multiples of 4 mutations away. This 

is because at this stage of evolution, the only fitter or neutral forms are those 

that involve modular redeployment of whole 4-enzyme pathways, which with a 

non-modular gene regulatory network, requires 4 simultaneous mutations. To 

understand how a modular, aligned genotype-phenotype map resolves this 

problem, we then replaced the genotype-phenotype map of O
test 

with a modular, 

aligned genotype-phenotype map that enabled redeploying 4-enzyme pathways 

with single mutations (see methods), and then took a new snapshot of the 

distribution of phenotypes in the genetic neighbourhood (red columns, Figure 

10). The results graphically illustrate how a modular, aligned genotype-

phenotype map reorganises genotype space: It uses inherent structure in the 

fitness landscape to systematically remove its ruggedness, enriching the local 

neighbourhood with fit modular reorganisations. Finally, to observe the effect 

of genotype-phenotype map alignment on the fitness landscape, we replaced 

the genotype-phenotype map of O
test

 with a modular genotype-phenotype map, 

but where the modules were purposefully misaligned with phenotypic modules 

(green columns, Figure 10). The results show that having a misaligned modular 

genotype-phenotype map actually decreases evolvability in the fitness 

landscape, shifting the distribution of fitter phenotypes to a greater distance 

away.  

2.4.6 Supplementary results 

Experiments were conducted to test the sensitivity of the results to simulation 

parameters, keeping all other parameters fixed (Figure 11). Parameter values 

were set to those described in all other experiments (population size S=50, 

truncation point L=10, and mutation rate Pm=0.006) unless described 

otherwise, and with a fitness function, selection pressures and genotype-

phenotype map as described in S2 experiments. Each data point represents the 

mean of 10 simulations, and error bars represent standard deviation. 

Simulations were also carried out using a hill-climber algorithm rather than a 

population for all experiments. This had no qualitative effect on the results 

when compared to the results with a population. 
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Figure 11. Charts showing the sensitivity of S2 results to simulation 

parameters. 
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2.5 Conclusions 

In summary, by analysing existing theories of evolution of complex functions, 

and in particular, evolution by combining functions, we defined a new 

theoretical framework for evolution by combining functions. This framework 

builds numerous bridges between the largely separate theories of exaptation, 

building-block evolutionary algorithm models, and tinkering. It identifies a new 

type of exaptation (for which we suggest the term ‘combinatorial exaptation’) 

that we propose is the central mechanism behind processes of evolution by 

combining functions. 

We developed a transparent computational model of combinatorial exaptation 

to complement our theoretical framework. This model supports previous work 

showing that joining functions requires some extra evolvability machinery 

beyond that of ENS alone. Specifically, we showed that evolution requires some 

mechanism of encapsulation that allows new emergent modules to be 

reorganised in the phenotype as a single, coherent unit – and that this need is 

caused by the actions of burden/internal selection. The model shows that an 

aligned, modular genotype-phenotype map can enable this by removing 

systematic ruggedness in the fitness landscape, thus creating a local genetic 

neighbourhood of fit, modular phenotypic reorganisations – importantly, some 

of which may produce emergent higher level functionality, and hence allow 

combinatorial exaptation.  

The model also shows that combinatorial exaptation can occur recursively, 

scaling across multiple levels of organisation, if genotype-phenotype map 

evolves in parallel with combinatorial exaptation in the phenotype, enabling 

continual, recursive reorganisation of the fitness landscape. We then showed 

that this problem can be resolved if there is some factor that causes the 

evolution of gene regulatory network structure and phenotype structure to be 

(to some extent) causally linked, because in this case new regulatory modules 

can potentially be formed in concert with new phenotypic modules. We then 

illustrated that this can occur if development is constrained to occur in a 

simple, decentralised manner of local growth, as commonly occurs in natural 

organisms. As an aside, this therefore also provides a new mechanism to 

explain the modular nature of biological gene regulatory networks that does 

not rely on a modularly varying environment. 
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In general, this work implies that a sufficient mechanism of encapsulation 

could be an important and under-represented component from the current 

theory of evolution that helps enable the evolution of complexity in nature – 

and in particular, that a decentralised process of ontological development may 

be sufficient to provide such a mechanism.  

Although we have presented a possible mechanism by which combinatorial 

exaptation can occur recursively, and given some brief argument as to how this 

might come about in nature, it would be useful to model this in more detail, 

where development occurs more explicitly, thus allowing comparison of how 

different types of development affect the evolvability of the resulting gene 

regulatory networks. It would also be interesting to explore the effects of 

combinatorial exaptation when selection pressures are not all present in a 

single environment, but are spread over a heterogeneous spatial environment. 

2.5.1 Key Results 

The key claim of this chapter is that  

As joined functions become more complex, increasing ‘burden’ in the 

form of ‘internal selection’ places limits on evolution by combining 

functional building blocks, but an ontological development process 

that occurs by local growth, as present in most complex biological 

organisms, can resolve this problem allowing building blocks to be 

combined recursively over multiple levels of organisation in a scalable 

fashion. 

 

This claim is supported by the following results: 

• Evidence that ‘burden’ in the form of ‘internal selection’ places 

limits on evolution by combining building blocks is provided by S1 

simulation results, in which the 4-enzyme metabolic pathways were 

evolved, but were never able to be combined to find the complex 

target function, and illustrated in Figure 6.  

• Evidence that an ontological development process that occurs by 

local growth can resolve this problem is provided by S2 simulation 

results, in which evolution with such a development process was 
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consistently able to evolve the target 16-enzyme metabolic pathway 

by combining level 2 components, and illustrated in Figure 6. 

• Control experiments showing that such an ontological development 

process is the key factor that enables evolution of the target 16-

enzyme metabolic pathway, (and that simply allowing the gene 

regulation network to evolve its own hierarchical structure given a 

top-down development process is not sufficient) is provided by 

simulation C1. 

2.6 Methods 

Genome structure. (S1, GP1): Organisms had 16 structural genes, each 

encoding one enzyme, and 16 regulatory genes (R
p
) that encoded the 

interactions between those enzymes. Each structural gene had 10 binary loci; 

an enzyme was evolved when the 10 loci in its structural gene matched a 

predefined bit string. Each structural gene had a corresponding R
p
 regulatory 

gene that determined the position its respective enzyme in functional 

interaction space. Each R
p
 gene consisted of two integers, 0<p

x
, p

y
£9. The 

values of p
x
 and p

y
 corresponded to the x and y position respectively of the 

function of their structural gene in functional interaction space. 

(C1): Genome structure in C1 was identical to that in S1 except that each 

structural gene had one extra corresponding regulatory gene (R
dtm

). Hence in 

C1 each structural gene had two regulatory genes (R
p
 and R

dtm
), resulting in a 

total of 32 regulatory genes per organism. R
dtm

 encoded which structure in the 

phenotype triggered the local developmental circuitry to build the given 

enzyme during development. It was represented by an integer 0≤ R
dtm 

<32. 

(S2): Genome structure in S2 was identical to that in S1 except that each 

structural gene had two extra corresponding regulatory genes (R
dtm

 and R
r
). 

Hence in S2 each structural gene had three regulatory genes (R
p
, R

dtm
 and R

r
), 

resulting in a total of 48 regulatory genes per organism. R
dtm

 encoded which 

structure in the phenotype triggered the local developmental circuitry to build 

the given enzyme during development. It was represented by an integer 

0≤R
dtm

<32. R
r 
was an integer (0< R

r 
<5) that encoded the direction in functional 

interaction space in which the given enzyme was placed adjacent to its 

developmental trigger module (see below).   
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Phenotype and genotype-phenotype map: (S1) The phenotype of each 

organism was represented by a 9x9 grid (i.e. functional interaction space) that 

displayed the interaction of its evolved enzymes. Enzymes plotted as a 

coloured dot in functional interaction space once they were evolved. Enzymes 

that had been evolved and were neighbouring in functional interaction space 

were interacting, and hence could possibly form metabolic pathways (Figure 3). 

Multiple enzymes could not occupy the same position in functional interaction 

space (mutations that caused this were disallowed). The genotype-phenotype 

map for S1 simulations is described in Figure 3. 

(S2): Phenotype and genotype-phenotype map structure in simulation S2 was 

identical to that in S1 except for the action of the extra regulatory genes, R
dtm

 

and R
r
. These genes were included to account for a development process that 

occurred by local growth, and hence locally triggered developmental circuits. In 

S2 every enzyme had a developmental trigger module, defined by R
dtm

. 

Enzymes were placed adjacent to (i.e. interacting with) their developmental 

trigger module in functional interaction space. This represented the notion that 

because development was triggered and then occurred locally, enzymes would 

be built next to, and hence interacting with, the phenotypic structure that 

triggered their development (i.e. their developmental trigger module). The 

direction in which the enzyme was placed with respect to its developmental 

trigger module was determined by the enzyme’s corresponding R
r 
regulatory 

gene. The value of R
r 
(1, 2, 3, or 4) corresponded to a shift in functional 

interaction space of  (+1,0), (-1,0), (+0,1), (-0,1) respectively with respect to the 

enzymes developmental trigger module. If an enzyme had a corresponding R
dtm

 

> 15, the developmental trigger module was not another enzyme, and hence 

functional interaction space position of the enzyme was determined by R
p
 in an 

identical manner to S1. 

C1: Phenotype and genotype-phenotype map structure in the simulation C1 

was identical to that in S1 except that hierarchical regulatory interactions were 

allowed to evolve in the gene regulatory network. This was achieved by 

allowing regulatory genes to evolve regulatory interactions with other 

regulatory genes, in a similar manner to S2: Each enzyme was allowed a single 

hierarchical parent enzyme to be linked to in the gene regulatory network, not 

allowing feedbacks. The enzyme then calculated its position in functional 

interaction space (using its own P
x
 and P

y
) genes relative to its parent’s position 
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in functional interaction space, instead of the origin. (Mutations that caused 

enzymes to have positions outside of functional interaction space were not 

allowed). The result was that hierarchical gene regulatory networks could 

evolve, in that changing the P
x
 or P

y
 regulatory genes of a given enzyme could 

affect multiple other enzymes in a coordinated manner, similar to S2. However, 

the key difference between S2 and C1 is that in C1 there was no enforcing of 

local growth, and so, for example, enzyme A that was linked in the gene 

regulatory network to enzyme B was not forced to develop in the phenotype 

adjacent to that enzyme, and hence was not placed adjacent to it in functional 

interaction space. As a result, C1 lacks the inherent link between gene 

regulatory network structure and phenotypic interaction present in S2. 

GP1: The non-modular genotype-phenotype map used in this simulation was 

identical to that in S1 simulations. For the aligned modular genotype-

phenotype map, we began with the non-modular genotype-phenotype map 

used in S1 simulations, and then for each group of 4 enzymes in a given 4-

enzyme metabolic pathway, we assigned one as a ‘master’ enzyme that the 

others in the group took their positions in functional interaction space relative 

to. The result was that regulatory mutation of any of these four master 

enzymes caused systematic redeployment of the other three enzymes in the 

respective metabolic pathway of the master enzyme. For the misaligned 

modular genotype-phenotype map, we began with an aligned modular 

genotype-phenotype map, but then ensured that each of the three enzymes 

that took their locations from a given master enzyme were not in the same 

metabolic pathway as the master enzyme. 

Mutation and selection: Mutation and selection occurred in same manner in 

all simulations. Mutation occurred by point mutation, according to the per 

locus mutation rate P
m
=0.006. Mutation occurred caused a bit flip for binary 

loci, and random reassignment to a new value (within the valid bounds) for 

integer loci.  Selection occurred via truncation selection, the population size 

was fixed at M=50 and evolution occurred in a generation manner. Specifically, 

for each generation, the fitness of each organism was calculated, and the 

fittest L=10 organisms were selected for reproduction, and the remaining 

organisms were discarded. (If all organisms in the population had equal fitness 

then organisms were chosen at random from the population for reproduction.) 

An empty population was then created. Reproduction occurred by randomly 
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choosing an individual from the L fit organisms and placing a copy in the new 

population, after which the new organism underwent mutation. This was 

repeated until the new population reached size M=50. In each simulation, 

evolution continued for 106 generations, or until C
u
 was evolved.  

Fitness function: 

In all cases, the total fitness, F, of an individual takes the general form: 

 

F = f$%
$&'  

 

Equation 1 

 

fi =
1, if|C$| = 0

A$ fC$,/ , otherwise
/&|78|
/&'

 

 

Equation 2 

 

where N is the total number of selection pressures present in the environment, 

f
i
 is the fitness contribution for the ith function (i.e. that satisfies the ith 

selection pressure), C
i
 is the set of components that make up the ith function, 

fC
i,j
 is the fitness contribution of the jth component of the ith function, and A

i
 

is a Boolean function that specifies the interaction arrangement that the set of 

components in C
i
 must satisfy in functional interaction space to operate 

correctly; A
i
=1 if satisfied and A

i
=0 otherwise.  Details of the specific selection 

pressures are detailed in table 2, below. 
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Selection pressures 𝑠:, 𝑠; … 𝑠=  

16-enzyme 

metabolic pathway 

𝐶= = 𝐶?, 𝐶@, 𝐶A, 𝐶B ; 	𝐴= =  

 

4-enzyme metabolic 

pathways 

𝐶? = 𝐶:, 𝐶;, 𝐶F, 𝐶G ; 	𝐴? =

𝐶@ = 𝐶H, 𝐶I, 𝐶J, 𝐶K ; 	𝐴@ =

𝐶A = 𝐶L, 𝐶M, 𝐶N, 𝐶O ; 	𝐴A =

𝐶B = 𝐶P, 𝐶Q, 𝐶R, 𝐶S ; 	𝐴B =

 

 

Enzymes 

 

𝐶: = 𝑥:,', 𝑥:,U … 𝑥:,'V ; 	𝐴: = 1111111111
𝐶; = 𝑥;,', 𝑥;,U … 𝑥;,'V ; 	𝐴; = 1111111111

…
𝐶S = 𝑥S,', 𝑥S,U … 𝑥S,'V ; 	𝐴S = 1111111111

 

 

Structural gene loci 𝐶WX,Y = 	 ; 

Table 2. Description of selection pressures in all simulations. 

The fitness function was the same in all simulations. It contained 21, 

hierarchically organised selection pressures (S
a
-S

u
) that corresponded to 21 

possible fit functions. For each of these functions that a given organism was 

able to perform, the organism received a (+1) fitness bonus. All functions were 

non-decomposable; i.e., fitness bonuses were only awarded if the conditions 

necessary to carry out the given function were met exactly. 

The first 16 of these functions (C
a
-C

p
) were the simplest. They corresponded to 

evolving individual enzymes. To receive the fitness bonus for evolving any of 

these 16 functions, all loci in the structural gene corresponding to that 

particular enzyme had to exactly match a predefined target 10-bit string.  

The four next most complex functions (C
q
-C

t
) were four-enzyme metabolic 

pathways. To receive the fitness bonus for any of these given pathways, an 

organism must have correctly evolved all four of its component enzymes and 
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have them organised into a particular arrangement of interactions in functional 

interaction space (specifically, a square formation – Figure 5). The final 

function, C
u
, was the target of evolution. To receive the fitness bonus for C

u
, 

organisms were required to have all 16 enzymes evolved and arranged into a 

particular arrangement of interactions in functional interaction space 

(specifically, a hierarchical 16 enzyme square composed of four neighbouring 

smaller squares of 4 enzymes each – Figure 5). This interaction arrangement 

represented having each of the 4-enzyme metabolic pathways (C
q
-C

t
) arranged 

in a particular neighbouring arrangement.  
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Chapter 3:  Homeogenesis 

3.1 Introduction 

In this chapter we temporarily change our focus from the general question of 

how evolution evolves complexity to instead focus on exploring the properties 

and behaviours of a particular boundary case of combinatorial exaptation. 

Although this is a sidestep from the general question of complexity, it 

addresses some other deeply related open questions, and will help to provide a 

foundation for further theoretical work on the origins of complexity in chapter 

4.  

The particular phenomenon that we focus on this chapter is that many 

biological organisms contain conserved internal conditions within their 

metabolisms that appear to correspond to ancient environments in which their 

ancestors lived. For example, the chemistry of the cell interior is thought to be 

comparable to the early oceans, or geothermal vents, in which life began 

(Macallum 1926; Mulkidjanian et al. 2012). So far, however, there has been 

little discussion about how such internalised ancestral environments are 

incorporated during evolution, or why they are preserved. Here we attempt to 

address this problem. We present a hypothesis that a form of combinatorial 

exaptation can cause internalised ancestral environments, and hence could 

help to explain this phenomenon. We support this hypothesis with biological 

examples and a computational model of metabolic network evolution. 

3.2 Background 

In 1926, Archibald Macallum noted that although many organismal fluids, such 

as blood and lymph, have similarities with seawater, indicating that the first 

animals emerged in the sea (Mulkidjanian et al. 2012; Macallum 1926), the 

inorganic composition of the cell cytosol dramatically differs from that of 

modern sea water. Macallum thus insightfully reasoned that “the cell... has 

endowments transmitted from a past almost as remote as the origin of life on 

earth” (Macallum 1926). Macallum’s insight has been summarised as a 

‘chemistry conservation principle’: the chemical traits of organisms are more 

conservative than the changing environment and hence retain information 
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about ancient environmental conditions (Mulkidjanian et al. 2012; Mulkidjanian 

and Galperin 2007). For example, the highly reduced state of the cytoplasm, 

even in organisms that dwell in oxygenated habitats, indicates that the major 

biochemical pathways were fixed before the atmosphere was oxygenated as a 

result of the activity of cyanobacteria approximately 2.4 billion years ago, so 

that substantial modification of these pathways in response to the oxygenation 

of the atmosphere was impossible (Mulkidjanian et al. 2012). Instead, cellular 

life forms have evolved numerous energy-requiring membrane transport 

systems to sustain redox and electrochemical gradients between their interior 

and the environment (Mulkidjanian et al. 2012). Thus Macallum’s work has 

resulted in a view that a major trend in evolution is the development of 

increasingly sophisticated mechanisms whereby the internal environment is 

protected from the external world (Gross 1998). This idea of a conserved 

internal environment over evolutionary timescales has echoes of homeostasis – 

indeed, Macallum was strongly influenced by the work of Claude Bernard, who 

first described the concept (Bernard 1865; Gross 1998). However, unlike 

homeostasis, which is controlled by behaviours and small functional changes, 

and occurs in the lifetime of a single organism, Macallum’s chemistry 

conservation principle occurs over multiple generations, and is controlled by 

largely unknown factors within evolution. What causes Macallum’s chemistry 

conservation principle, or how it results in the incorporation of internalised 

ancestral environments during evolution is poorly understood. 

The main objective of this chapter is to present and investigate a hypothesis 

that a particular type of functional adaptation based on combinatorial 

exaptation – that we term homeogenesis – could be responsible for internalised 

ancestral environments in some biological organisms. In short, homeogenesis 

is similar in concept to homeostasis, in that it is a biological process that 

maintains a constant environment within the organism – but unlike 

homeostasis, it occurs over evolutionary time, and operates by evolving extra 

functionality for the phenotype to maintain its conditions, as opposed to 

maintaining conditions by functional changes that occur within a single 

phenotype (e.g. temperature regulation, pH regulation etc.; Cannon 1935; 

Cannon 1929; Bhagavan 2002). 
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The remainder of this chapter has been divided into 4 parts. In part 3.3 we give 

a verbal description of the mechanism of homeogenesis, and describe how it 

can systematically cause environmental internalisation. In part 3.4 we present 

the evolution of C
4
 photosynthesis as a case study for evidence that 

homeogenesis has caused internalised ancestral environments in biological 

evolution. In part 3.5, we concretise the verbal model of homeogenesis by 

providing a transparent, abstract computational model that illustrates some 

conditions in which internalised ancestral environments are incorporated in 

evolution. Finally, in part 3.6, we draw conclusions and discuss possible further 

work. 

3.3 An extreme and simple example of homeogenesis 

To address the question of how internalised ancestral environments could be 

generated in evolution, in this section we will describe the process of 

adaptation by homeogenesis and examine its capability for generating 

internalised ancestral environments.  

Homeogenesis is best understood by considering an extreme and unrealistic 

case in which the dynamics are very clear. Imagine a simple organism whose 

metabolism requires a certain set of chemical inputs. An example could be a 

bacteria living in a hydrothermal vent. Suppose that its metabolism has so 

many internal dependencies that it is very difficult to change without breaking 

it. Now suppose that the makeup of the environment changes slightly, but 

enough that the organism’s metabolism will no longer function given the new 

inputs. In this worst case, there is no reasonable evolutionary path to change 

the existing metabolism to make it work with the new inputs, because any 

small change breaks dependencies causing the metabolism to break. A better 

option is to leave the existing metabolic functionality alone and instead change 

the metabolic inputs – i.e. the environment – back to a state in which the 

existing metabolism can use them (e.g. change them back to their previous 

state). 

One way to achieve this is by altering the external environment – that is, by 

‘niche construction’ (Odling-Smee, Laland, and Feldman 2013). However, in 

many cases this will not be possible. For example, given the constant flux of 

materials in our hydrothermal vent example, any changes to the external 
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chemical environment caused by the organism would be quickly swept away. 

However, there is another way to change the external environment. The 

organism could evolve a new, internal metabolic function that acts as an 

internal environmental ‘adapter’ between the external environment and the 

organism’s existing metabolic network (which is left alone). The new adapter 

function (for example, a new enzyme) ‘converts’ the new, inhospitable 

environmental conditions back into the old, hospitable conditions within the 

organism immediately before they are then used as inputs for the organism’s 

existing metabolic network. After all, the existing metabolic network already 

works with this old input, and so providing an adapter will ensure its continued 

functionality. The principle is similar to taking an electrical appliance abroad, 

where the electricity voltage is different: rather than changing the fundamental 

internal workings of the appliance, it is much easier to simply add a voltage 

adapter to the end of the power cable, providing the existing functionality with 

the input environment that it ‘expects’. In our biological example, the bacterial 

organism could evolve a simple catalysis step that internally converts the new, 

offending chemical constituents back to their previous state so that they can 

be used with the existing metabolic network. By doing this, the negative effect 

of the environment change has been nullified, but the existing metabolic 

network left alone, and the external environment has not been changed. 

How does homeogenesis imply internalised ancestral environments? 

Importantly, for successful adaptation by homeogenesis, the output of the new 

‘adapter’ function must match the relevant conditions of the previous external 

environment, because these are the conditions required by the unchanged, 

existing metabolic network.  The result is that adding an adapter function to 

‘undo’ a recent environment change has the effect of making an internal re-

creation of the organism’s previous external environment within the 

organism’s metabolism. In other words, homeogenesis systematically creates 

internalised ancestral environments.  

To flesh out the details of homeogenesis, we can ask a number of further 

questions. First: How does homeogenesis compare to existing mechanisms of 

adaptation? Homeogenesis is subtly different form of adaptation than 

‘traditional’ adaptation (in which the existing functionality is changed (Ridley 

2009; Orr 2005) – e.g. as described in the classic example of evolutionary 

adaptation, the peppered moth (Grant 1999), because during homeogenesis 
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the organism’s existing functionality remains unchanged. Nor is homeogenesis 

niche construction, because during homeogenesis the external environment 

(external to the organism) remains unchanged. Accordingly, we can estimate 

when homeogenesis is likely to occur: because it offers an alternative route to 

evolution when neither the environment nor the existing functionality can 

reasonably be changed, it stands to reason that homeogenesis is more likely to 

occur in situations of high environmental and functional constraint.  

Finally, how does homeogenesis relate to combinatorial exaptation? In our 

example of homeogenesis, an adapter function is joined to the existing 

metabolic network. Although the adapter function is small, and the metabolic 

network large, this still represents a case of combinatorial exaptation: we 

combine two functional components in a specific manner of interaction, and 

they produce a new, emergent functional entity capable of functionality that 

neither of the individual components were capable of. 

In summary, homeogenesis is a mechanism of adaptation that occurs by 

adding internal adapter functions at the interface between the existing 

metabolism and external environment. In doing so, it generates internal re-

creations of environmental conditions within the metabolism. These 

internalised ancestral environments are then preserved within the organism 

because they perform necessary metabolic functions, given the new external 

environment. 

The verbal description of homeogenesis provides a conceptual framework that 

describes how such a mechanism could theoretically occur in biological 

evolution. To strengthen this case, in section 3.5 we formalise this verbal 

argument into a computational model that we use to test the hypothesis that 

evolution under certain types of constraint will result in the incorporation of 

internalised ancestral environments. A more substantial case for homeogenesis 

would require examples of the process occurring in biological evolution. In the 

next section, we will describe evidence that the evolution of C
4
 photosynthesis 

occurred by a process of homeogenesis2. 

                                            

2 (We thank Ros Rickaby for the suggestion that C
4
 photosynthesis evolution 

could be an example of homeogenesis). 
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3.4 A biological example of homeogenesis 

Plants assimilate carbon by one of three photosynthetic pathways, commonly 

called the C
3
, C

4
 and CAM pathways (Edwards and Walker 1983). The C

4
 

photosynthetic pathway represents a modification of C
3
 metabolism that is 

most effective at low concentrations of CO
2
. C

4
 plants are thought to have 

evolved in response to a reduction in atmospheric CO
2
 that began during the 

Cretaceous (~100 million years ago) and continued until the Miocene (~20 

million years ago; Ehleringer et al. 1991). Carbon fixation in C
3
 plants occurs 

via a cycle of chemical reactions called the Calvin cycle. At low CO
2
 

concentrations the Calvin cycle becomes increasingly inefficient due to 

increased photorespiration – an unwanted alternative reaction pathway that 

apparently has no useful function (Edwards and Walker 1983). Thus the long-

term reduction in atmospheric CO
2
 represented a serious problem for C

3
 plants 

(Ehleringer et al. 1991). 

Here niche construction is not possible; a single plant cannot hope to change 

the global CO
2
 concentration. Another potential solution to this problem is 

traditional adaptation – i.e. changing the existing photosynthesis metabolism. 

If it were possible to fundamentally alter the Calvin cycle to somehow be more 

efficient at low CO
2
 concentrations, this would solve the problem of 

photosynthesis with decreasing CO
2
. But the Calvin cycle is a complex cyclical 

chain of contingent chemical reactions; it is deeply constrained by what 

alternative reactions are available by mutation, or even possible according to 

chemistry. Furthermore, it is a process of carbon fixation, and CO
2
 is the 

source of this carbon. It is in this sense highly dependent on the concentration 

of CO
2 
(Ehleringer et al. 1991; Edwards and Walker 1983). 

Irrespective of whether it is possible to change the Calvin cycle in this way, this 

was not the solution adopted by evolution. Rather than alter the Calvin cycle, 

the C
4
 pathway instead added a new cycle of reactions that sit ‘in between’ the 

external low CO
2
 environment and the Calvin cycle. These new reactions have 

the effect of dramatically increasing the CO
2
 concentration internally within the 

leaf, thus providing a new, high CO
2
 internal ‘input’ environment for the 

normal C
3
 photosynthetic cycle (Edwards and Walker 1983; Ehleringer et al. 

1991; Figure 12). 



  Chapter 3: Homeogenesis 

 93   

 

 

Figure 12. The C
3 
and C

4
 photosynthetic cycles. The C

3
 cycle evolved first. It is a 

simpler process, but is less efficient at times of low atmospheric CO
2
 

concentrations. The C
4
 cycle evolved in response to a long-term 

reduction in atmospheric CO
2
 concentrations. It introduces a new 

cycle of chemical reactions that change the input to the existing C
3
 

cycle, while the C
3
 cycle itself is left unchanged. The new cycle of 

reactions have the effect of dramatically increasing the input CO
2
 

concentration to the C
3
 cycle, making C

4
 plants more efficient at low 

atmospheric CO
2
 concentrations.  

Effectively, C
4
 plants responded to environment change by evolving a new 

environmental ‘adapter’ that recreated their previous environment internally - 

and then used this internalised environment as an input to their existing 

functionality. C
4
 plants undertook homeogenesis. As a result, they contain an 

internal record of a previously inhabited environment, stored within their 

metabolism (Figure 13). 
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Figure 13. C
4
 photosynthesis evolution as a process of homeogenesis causing 

environmental internalisation. The new chemical cycle evolved in C
4
 

photosynthesis (green box) increases the CO
2
 concentration 

internally within the leaf, providing new, high CO
2
 input environment 

(blue box) for the existing C
3
 cycle. This occurred in response to 

decreasing atmospheric CO
2
 concentrations. C

4
 plants evolved 

machinery to recreate a past fit external environment (i.e. with a 

higher concentration of CO
2
) internally within the leaf. This is 

therefore an example of environmental internalisation. 

3.5 A model of metabolic evolution 

3.5.1 Aim 

We have simulated a simple and extreme example of this kind of interaction 

between environment change and evolution. The aim of this model is to 

provide a concrete illustration of homeogenesis, and to explore its properties.  
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3.5.2 Methods 

The model is of simple organisms (e.g. bacteria) evolving their metabolic 

networks to cope with environment change in a spatially heterogeneous 

environment (e.g. a hydrothermal vent). Chemistry in the system is based on a 

simplified chemical reaction network of possible reactions that contains 36 

chemical compounds (S
1
–S

36
) and 120 (one-way) reactions that convert between 

those compounds. The network is laid out in a grid formation. (Figure 14). 

 

 

Figure 14. Figure illustration of the chemical reaction network abstraction in 

the model. Chemical reaction networks define which chemical 

reactions are possible according to reaction chemistry. (1) An 

example section of an organic chemistry reaction network. (2) Such 

networks are commonly abstracted to a network of states (e.g. 

compounds, s
1
, s

2
… s

n
) and reactions (i

1
, i

2
…i

n
) that determine 

transformations between states. (3) In the model we use a simplified 

chemical reaction network that can be described as a matrix of 

compounds and reactions. 

All organisms were based on the same, fixed replicator (analogous to how all 

known life has DNA as a central replicator) that requires a specific set of 18 
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chemical compounds to reproduce. This represents a fixed output requirement 

for all organisms’ metabolisms that remains the same regardless of the 

chemical makeup of the organisms’ external environment. Organisms evolved 

across a heterogeneous spatial environment, consisting of 7 neighbouring 

niches (N
1
–N

7
) arranged in a line. Each niche contained a different set of 18 

chemical compounds from the 36 available. Most niches (all but the initial 

niche, N
1
) did not contain the specific 18 compounds required by the 

organisms’ replicator. As a result, to survive in each niche, organisms had to 

evolve a suitable metabolic network that could produce the chemical 

requirements of its replicator from the compounds in the external 

environment.  

Each organism had a linear genotype containing a variable number of genes. 

Those genes specify a metabolic network in the following manner. Each gene 

codes for one of 120 possible catalysts (one per possible chemical reaction). 

The genome is transcribed in order, one gene at a time, proceeding along its 

length. The set of chemical compounds in the organism’s niche is used as the 

input to its metabolic network. As each catalyst is transcribed, the specific 

chemical reaction that it enables is carried out on this set of compounds, if the 

input molecule is present. Thus the organism’s metabolic input is therefore 

changed, sequentially, by the sequence of catalysts that the organism’s 

genotype produces. The result is a metabolic network of sequential chemical 

reactions.  

If the output of the organism’s metabolic network was the specific fixed target 

set of 18 compounds required by the organisms’ replicator, then the organism 

could survive and reproduce in that niche. Fitness was calculated according to: 

F=max (0, Fs – Fn) 

Where F is the fitness of the organism, Fs=40 if the organism’s metabolic 

network produces the target set of compounds and 0 otherwise, and Fn is the 

number of genes expressed in the phenotype, representing the energetic cost 

of producing each catalyst. Each gene also contained a binary switch that 

determined whether or not it was transcribed. Genes that were not transcribed 

did not incur this energetic cost. 
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Figure 15. Mapping of genotype to phenotype in the model. Each gene encodes 

a different catalyst, and each catalyst catalyses a single 

(unidirectional) chemical reaction from the chemical reaction 

network. 

Each niche had a maximum carrying capacity of 200 organisms. Each 

simulation began with a single organism in niche N
1
, situated at the end of the 

chain of 7 niches. N
1 
always contained the 18 chemical compounds required by 

the replication machinery. Accordingly, no metabolic network was required to 

survive and reproduce in N
1
. The initial organism began with an empty 

genome. New niches were occupied by there being a fixed probability of 0.2 

that any given organism’s offspring would be placed in a randomly chosen 

(with uniform probability) neighbouring environment.  

Each gene i was represented by an integer (0<X
i
<120) that corresponded to a 

specific chemical reaction in the network of possible reactions (defining which 

reaction the gene catalyses) and a binary genetic switch B
i
, whose value 

determined whether or not the gene was transcribed (0=not transcribed, 

1=transcribed). 
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Figure 16. In the model an environment was defined by a particular set of 

chemical compounds (green circles are present compounds; in the 

environment 1, compounds s
1
, s

4
, s

6
 and s

11
 are present). During 

development, genes are read in sequence from the genome. If the 

chemical reaction that the catalyst made by the current gene is 

possible, given the current environment (i.e. if the relevant 

compound is present), then the reaction will occur and environment 

change will have occurred. For example, given environment 1 in the 

presence of a catalyst that catalyses the reaction S1⇒S2, compound 

s
1
 is present in the environment 1, and so this reaction occurs, 

resulting in environment change, the result of which will be 

environment 2.  

There was a fixed per-genome mutation rate of R
m
=0.01. With equal 

probability, mutation either (a) added a new gene in a random position in the 

genome, (b) removed a random existing gene, or (c) randomly altered an 

existing gene. Gene alteration involved, with equal probability, either randomly 

selecting a new value for X
i
 with uniform probability, or performing a bit flip on 

B
i
. During each generation, for each niche, if there were any organisms in that 

niche with non-zero fitness, then those organisms were selected for 

reproduction according to (linear) fitness proportional selection, until n=200 
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offspring had been produced. All non-offspring organisms were then 

discarded.  

Simulations were conducted using two extreme types of environment change: 

Serial, where sequential environment changes are a series of interdependent 

events, such as a chain of reactions (e.g. A⇒B, B⇒C, etc.), thus making the 

difference between adjacent niches interdependent, and parallel, where 

sequential environment changes are not dependent on each other (e.g. A⇒B, 

X⇒Y), making the difference between adjacent niches independent of each 

other. 

3.5.3 Results and discussion 

3.5.3.1 Simulation 1: Metabolic pathways evolved via a sequence of 

environments contain more ancestral environments than 

random pathways 

We used the simulation to explore homeogenesis in two main ways. First, we 

looked to test the extent to which homeogenesis caused and preserved 

internal ancestral environments. To achieve this, we defined a sequence of 

gradual, serial environment change between niches 1-7 (Figure 17).  The 

shortest possible metabolic pathway that could convert the set of chemical 

compounds in niche 7 into those in niche 1 (i.e. the target set of compounds) 

and hence allow survival and reproduction had 6 reaction steps. There were 20 

possible 6-step pathways. We began the simulation with a single organism in 

niche 1. After all niches were populated, we then sought to measure the mean 

number of internalised ancestral environments – that is, steps in those 

organisms’ metabolic pathways that corresponded to the precise chemical 

makeup of niches they had previously visited (i.e. niches 2-6). We did not 

include niche 1 or 7 as internalised ancestral environments because all viable 

organisms would by definition contain the chemical makeup of niche 1 in their 

metabolisms (because it was the target) and niche 7 was the external 

environment. As a control, we analytically calculated the expected number of 

internalised ancestral environments contained by a randomly selected 

metabolic pathway form the 20 possible pathways. To obtain a value for 

evolved pathways, we carried out evolution from a single organism in niche 1; 

in all runs, we waited until 1000 generations after niche 7 had been populated, 
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and then measured the mean number of internalised ancestral environments of 

all organisms with 6-step metabolic pathways in that niche. We carried out 100 

repetitions of this simulation and averaged the result across these repetitions. 

Results are displayed in Figure 18. We found that evolved organisms generally 

had a much greater number of internalised ancestral environments than found 

in random viable pathways of the same length (evolved pathways = 4.47, 

standard error 0.064; analytical expectation from random pathways = 1.4; 

P<0.001 one sample Student’s t-test).  

 

Figure 17. Diagrams showing the two spatial environment sequences used in 

the model. Each grid represents the chemical reaction network of 

available reactions, and the green circles are chemical compounds 

that are present. As such, each grid represents a specific set of 

chemicals present in a given environment. With serial environment 

change, only one chemical compound is changed as the 

environment is traversed, but that compound becomes progressively 

further away from its original location on the chemical reaction 

network. The blue box illustrates 3 of the 20 possible 6 step 

pathways that can convert the environment of niche 7 back into 

niche 1 (and hence allow survival and reproduction). In the far right 

example, three of the intermediary steps correspond to the chemical 
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makeup of environmental niches previously visited (niches 2, 3 and 

6), which are therefore counted as internalised ancestral 

environments. The effects of parallel environment change was 

compared to the effects of serial change in simulation 2.   

 

Figure 18. The mean number of internalised ancestral environments in evolved 

viable pathways is much greater than the analytically calculated 

expected value of a randomly selected viable pathway of the same 

length (P<0.001, one sample Student’s t-test). This chart compares 

6-step pathways viable in niche 7; the value for evolved pathways is 

the mean in the population 1000 generations after niche 7 was 

populated, averaged over 100 simulations. The random pathway 

value is the expectation (i.e. mean) internalised ancestral 

environments of all 20 viable 6 step pathways in that niche. Error 

bars show standard error. There are no error bars for the 

expectation from random variable pathways because this is an 

analytical result. 
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Figure 19. Changes in population size over time in the case study population. 

Population size (of organisms with >0 fitness) increases in a 

stepwise manner as successive niches are colonised in events of 

adaptive radiation. 

This simple illustration shows that non-decomposable functions that are 

evolved by homeogenesis are likely to preserve the environmental conditions 

over which they evolved, thus potentially forming a record of past 

environmental conditions. 

A case study population of this simulation is described in Figure 19 and Figure 

20. In the case study, organisms with an empty genome filled the initial 

environment (niche 1) to its carrying capacity (200) within one generation. Of 

this total population in each niche, only a subsection (60-70 organisms, on 

average) had >0 fitness, and hence were capable of reproduction. At all times, 

competition makes empty niches potentially attractive. Initially niche 2 is 

empty, and organisms that are placed into that niche by migration are very 

unlikely to be able to replicate given the different chemical environment of this 

niche, and so it remains uncolonised. Eventually (at generation 442) a new 

mutant is produced that can survive in niche 2, and there is a rapid radiation 

as the offspring of this new mutant colonise niche 2. The successful mutant 

organism achieves this by evolving a catalysis step that converts the single 

chemical compound in niche 2, not present in niche 1, back into the compound 

that was present in niche 1, but not present in niche 2. In other words, the 

mutant evolves a mediated chemical reaction that ‘undoes’ the environment 

change that has occurred between niche 1 and niche 2. This new catalysis step 
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in the organism’s metabolism thus acts as an ‘adapter’, converting the external 

environment into one in which the organism’s replicator can reproduce. By 

doing so, the organism therefore recreates its previous environment (niche 1) 

internally within its metabolism. A similar process occurs sequentially across 

all environments, with successive events of adaptive radiation and evolution of 

new genes. This builds up a metabolic pathway of previously internalised 

environments. This pathway sits ‘in front’ of the replication machinery.  

 

Figure 20. Total number of intermediary steps in metabolic pathways in all 

organisms in the case study population (red line), and the number of 

these steps that correspond to previously visited environments (i.e. 

other niches; blue line). As new niches are colonised, organisms 

require metabolic pathways with more steps. This increases the 

number of viable pathways available, hence increasing the likelihood 

that pathways different from that defined by the previously visited 

sequence of niches will be evolved, and hence decreasing the 

proportion of internalised ancestral environments.   

At each event of homeogenesis, the new adapter is effectively functionally 

combined with the existing functionality (including any existing adapters) by 

combinatorial exaptation, resulting in a single, novel composite function. As 

the environment becomes increasingly different from the initial environment, 

this forces evolution to add progressively more steps to its adapter pathway to 
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cope with the larger transformation required, thus becoming progressively 

more complex. 

3.5.3.2 Simulation 2: Serial environment changes are much more likely 

to be preserved in sequence than parallel environment changes 

We next looked at whether homeogenesis can store sequences of ordered 

environment change within phenotypes, and under what conditions this is 

likely to happen. Specifically, We aimed to test the hypothesis that serial 

sequences of environment change, because they are a sequence of dependent 

events, would more likely be conserved as ordered sequences of internalised 

ancestral environments in the metabolic network than parallel sequences of 

environment change.  

To achieve this, we conducted simulations using two different sequences of 

environment change: one serial, and one parallel (the environments used are 

displayed in Figure 17; similar results were found for many different arbitrary 

sequences of serial and parallel change). In both cases, we measured the 

frequency in the population of organisms that contained the precise sequence 

of internalised chemical environments corresponding to the sequence of 

environments visited encoded into their phenotypes (i.e. a sequence of ordered 

catalytic steps in the phenotype that correspond to niche7⇒niche6, niche 

6⇒niche5, niche5⇒niche4, niche4⇒niche3, niche3⇒niche2, niche2⇒niche1). 

We carried out 100 simulations each for serial and parallel environment 

change, and measured the frequency with which such a phenotype occurred in 

the population. Mean results are displayed in Figure 21. 

We found that the specific sequence of environment change is much more 

likely to be preserved when environment change is serial as opposed to parallel 

(comparing frequency of preserved sequence in populations at 2500 

generations, P<0.001, Student’s t-test). The simple explanation is that serial 

chemical changes are contingent on previous reactions, and hence are 

dependent. Therefore, reordering of sequences in the phenotype by genetic 

drift is strongly selected against, because reordering of a contingent chemical 

reaction chain will very likely cause it to cease functioning. In contrast, parallel 

sequences of environment change are not sensitive to the order in which they 

occur, and hence are readily reorganised in the phenotype by genetic drift with 

no effect on fitness.  
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Figure 21. This chart shows the frequency of metabolic networks that contain 

the specific sequence of internalised environments that represent 

the sequence of previous environments visited (i.e. 

7⇒6⇒5⇒4⇒3⇒2⇒1) for sequences of serial environment change 

(blue line) and parallel change (red line) in the whole population. 

Results are the mean frequency in the population averaged over 100 

simulation runs for each type of environment change. The chart 

shows that the sequence of environment change is much more likely 

to be preserved within phenotypes with serial environment change 

than with parallel change (comparison at 2500 generations, 

P<0.001, Student’s t-test). 

For example, if environment change happens in the sequence (A⇒B, X⇒Y) then 

because neither of these reactions are dependent upon each other, then a 

metabolic pathway that ‘undoes’ this change such as (B⇒A, Y⇒X) can be 

reorganised in the phenotype to occur in a different order (i.e. Y⇒X, B⇒A) 

without affecting the overall chemical transformation. In contrast, an 

environment sequence that occurs as A⇒B⇒C (i.e. serial change) would require 

a metabolic pathway of C⇒B, B⇒A to ‘undo’ the change. This pathway cannot 

easily be reorganised in the phenotype: If the reactions are reordered to B⇒A, 

C⇒B, then this reaction chain will not work, as B⇒A cannot occur until C⇒B has 

happened, because C⇒B provides the input material for B⇒A. As a result, the 

sequence information of serial environment change is much more likely to be 

preserved in the phenotype than the sequence information of parallel change.  
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The point of this particular simulation is to (a) illustrate that homeogenesis 

can, in some cases, generate metabolic networks that represent whole 

sequences of pas environmental conditions, and to illustrate the conditions 

that affect the likelihood of this occurring.  

3.5.4 Wider implications of homeogenesis 

The generic nature of models in this chapter implies that homeogenesis could 

occur in other areas of evolution beyond that of metabolism and chemical 

reaction networks. For example, one phenotypic character that could be 

interpreted as homeogenesis is the evolution of a hard, body-encasing shell in 

response to the introduction of predators (e.g. in shelled gastropods and 

chelonians). This would represent a physical example of environmental 

internalisation (as opposed to chemical) in which the previous, predator-free 

environment has been recreated internally within the confines of the shell. 

Another example that could be interpreted as homeogenesis is the circulatory 

system of a large multicellular organism, which internally recreates the oxygen-

rich environment of smaller organisms with diffusion based respiration. 

Accordingly, the mechanism of environmental internalisation could potentially 

be applied to explaining the more general organisation of adaptations in the 

phenotype. 

Furthermore, many of the features of homeogenesis are similar to the concept 

of ‘counteractive’ niche construction, in which organisms change their external 

environments to recreate previous environments in which they were fit (Odling-

Smee, Laland, and Feldman 2013), but homeogenesis occurs within the 

organism itself, and counteractive niche construction occurs in the external 

environment.  For example, earthworms go to great lengths to recreate an 

aquatic environment, to which their phenotype is suited, in the soil in which 

they live (Laland, Odling-Smee, and Gilbert 2008). Some research on 

counteractive niche construction does suggest that a similar process could 

potentially occur within organisms, in a manner similar to homeogenesis 

(Laland, Odling-Smee, and Gilbert 2008). On a wider level, we can speculate 

that a similar process might be at work in the evolution of technology: clothes, 

central heating and farming could all be seen as examples of technologies that 

attempt to recreate ancestral environments (warm, food-rich) to which the 

human phenotype has spent a long time adapting to, and hence expects. Such 
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behaviour could again be seen as long timescale counteractive niche 

construction. Taken together, we can speculate on a range of similar processes 

that all act to conserve environmental conditions, but that occur on different 

timescales and in different situations: 

1. Homeostasis occurs on short timescales, acts within the organism, and 

conserves internal conditions by organism behaviours, or short-

timescale functional changes;  

2. Counteractive niche construction occurs on potentially longer timescales 

(potentially multiple generations if the environment modifications are 

preserved), acts on the external environment, and conserves external 

conditions by organism behaviours; 

3. Homeogenesis occurs on long timescales (i.e. evolutionary time), acts 

within the organism, and conserves internal conditions by evolutionary 

adaptations. 

 

Figure 22. Chart showing the relationships between homeogenesis and other 

known biological processes in which organism’s seek to maintain 

the environmental status quo.  

3.6 Conclusions 

In this chapter we have put forward a hypothesis to explain the observation 

that many organisms appear to contain internal conditions that are similar to 

the environments in which their ancestors lived. This observation has been 

summarised as Macallum’s chemistry conservation principle – that organism’s 
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internal chemistry is more constrained than the external environment – but few 

mechanistic explanations have been put forward (Macallum 1926; Mulkidjanian 

et al. 2012).  

We have shown how a boundary case of combinatorial exaptation, that we term 

homeogenesis, inherently internalises and preserves ancestral environments 

within the phenotype, and therefore could explain this phenomenon. In brief, 

homeogenesis occurs when organisms have highly constrained existing 

functions, and then undergo environment change that is very difficult to 

counteract by niche construction. Instead, organisms can add some simple, 

internal ‘adapter’ function to their existing functionality that ‘undoes’ the 

environment change, thus providing the existing function with the input it 

expects. In doing so, evolution creates a preserved, internal version of the 

previous environment. We have supported this hypothesis with a well-studied 

biological example (the evolution of C
4
 photosynthesis, which we show is an 

example of homeogenesis), and a transparent computational model.  

The model uses the domain of metabolic network evolution as an example 

system. In addition to illustrating the viability of homeogenesis as possible 

evolutionary mechanism, it provides two main results: 

1. First, it shows that metabolic networks that evolve by repeated events of 

environmental internalisation are much more likely to contain 

internalised ancestral environments than random viable networks, 

illustrating the capability of environmental internalisation for 

internalising and preserving previously experienced environments.  

2. Second, the model shows that environmental internalisation can not 

only preserve individual environments, but can also preserve whole 

ordered sequences of past environments within metabolic networks, and 

that this is much more likely to occur if the environment change in 

question was a sequence of inter-dependent events (i.e. serial change).  

 

This work therefore has significant potential for impact in understanding 

metabolic evolution. First, it can potentially explain the common but poorly 

understood phenomenon of organisms apparently containing internalised 

versions of ancestral environments caused by Maccallum’s chemistry 

conservation principle. Furthermore, by providing mechanistic support for the 
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idea that these observed internalised conditions stored within natural 

organisms really do represent ancient ancestral environments, the results in 

this chapter also provide much needed support for research that uses these 

internalised conditions to infer ancient environment conditions (e.g. 

Mulkidjanian et al. 2012). 

Environmental internalisation also has wider implications for evolutionary 

theory. Although we chose to introduce the model in terms of metabolic 

network evolution, there is nothing specific to metabolic networks in the model 

itself. Taken generally, environmental internalisation and the results in this 

chapter simply describe a mechanism by which complex non-decomposable 

functions can be evolved by breaking them down into sub components, where 

(unlike in the previous chapter and model of combinatorial exaptation) the 

selection pressures necessary to evolve each subcomponent are distributed 

across a sequence of neighbouring physical environments, as opposed to 

being in a single environment. 

In future work it would be interesting to map out how different levels and 

types of evolutionary constraints determine under what environmental change 

conditions evolution is more likely to opt for environmental internalisation over 

functional change or niche construction. Finally, it would be interesting to 

explore the implications of environmental internalisation, and in particular, the 

metabolic model in this chapter, for creating a complexity driver that could 

perhaps explain some complexity trends. This possibility will be explored in 

detail in chapter 4. 

3.6.1 Key Results 

The key claim of this chapter is that  

When both the external environment and an organism’s existing 

functionality are too difficult to change, a third possibility exists for 

evolution: adapting to environment change by adding an internal 

environmental ‘adapter’ that converts the new external conditions into 

those necessitated by the organisms existing functionality – and in 

doing so, inherently creates an internal replica of the previous 

environment within the organism’s phenotype. 

 



Chapter 3: Homeogenesis 

 110 

This claim is supported by the following results: 

• Evidence that a third possibility for adaptation exists for evolution 

when both the external environment and the organism’s existing 

functionality cannot be changed is provided by Simulation 1 results 

(section 3.5.3.1) that show organisms that have a replicator that 

cannot be changed, in an external environment that cannot be 

changed, are capable of adapting to novel environments by adding 

functional adapters to their existing functionality. This is further 

supported by existing evidence from C
4
 photosynthesis (section 

3.4).  

• Evidence that this process of adaptation (i.e. homeogenesis) creates 

an internal replica of the previous environment within the 

organism’s phenotype is provided by Figure 18, which shows that 

organisms evolved via homeogenesis contain significantly more 

internalised ancestral environments than would be expected by an 

unbiased process of adaptation. 
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Chapter 4:  Complexity lower bounds 

4.1 Introduction 

As discussed in chapter 1, it is widely accepted that the biosphere contains a 

general, long-term trend of increasing complexity of the most complex 

organisms (Bedau et al. 2000; Bedau 2009; McShea and Brandon 2010). 

However, most evolutionary experiments have generally failed to reproduce 

this trend, and instead commonly show robust trends of complexity 

minimisation (Bedau et al. 1997; Spiegelman et al. 1965; Bedau et al. 2000). In 

this chapter, we return to address the problem of these conflicting 

observations. Specifically, the key question we ask is how evolutionary theory 

can be refined to better explain these conflicting trends. In chapter 2 we 

addressed this issue by discussing the notion of complexity roadblocks that 

prohibit access to complexity without some particular mechanism that can 

work around them. However, here we focus instead on complexity drivers – 

understanding what, in the absence of any roadblocks, causes trends of 

increasing complexity in the first place.  

There are two components to this question that we address here. The first 

component, which has received considerable attention in the literature (e.g. 

McShea 1991; McShea and Brandon 2010), is what mechanism or process has 

causes the biosphere’s general trend of increasing complexity of the most 

complex organisms. The second component, that has received less attention, 

is how such a mechanism can also explain (or how it can be compatible with) 

common observations of complexity minimisation in evolutionary experiments. 

In this chapter we attempt to deal with both components of the question: We 

seek a mechanism capable of generating robust, general trends of increasing 

complexity of the most complex organisms that is also compatible with the 

observations of consistent trends of complexity minimisation in evolutionary 

experiments. 

Many potential mechanisms have been proposed to explain the biosphere’s 

general trend of increasing complexity of the most complex organisms (e.g. 

McShea 1991a; Carroll 2001; Bedau 2009). These include (a) driven 

mechanisms, such as the notion that constraints within organisms inherently 
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increase over time, thus causing build up of historic information and increased 

complexity – i.e. complexity by increasing constraint theories – (Wimsatt 1986; 

Wimsatt 2001; Saunders and Ho 1976; Saunders and Ho 1981); (b) increased 

environmental complexity necessitating increased organismal complexity 

(George Ledyard Stebbins 1969; Adami, Ofria, and Collier 2000); and (c) 

undriven mechanisms, such as passive diffusion, where complexity of lineages 

changes as a random walk (McShea 1996). However, there is no consensus on 

whether these mechanisms are sufficient to explain this trend (McShea 1991; 

Bedau 2009). Furthermore, an outstanding problem is that most of the 

mechanisms proposed to explain the biosphere’s increase in complexity of the 

most complex organisms lack strict formal analyses, and remain as verbal 

arguments (McShea 1991; Bedau 2009). This makes it difficult to verify their 

proposed behaviours, and to understand whether any of those mechanisms are 

compatible with experimental observations of complexity minimisation. 

In this chapter we describe a novel mechanism that we propose could be 

responsible for the combined observations of a general trend of increasing 

complexity of the most complex organisms in the biosphere and apparent 

complexity minimisation in evolutionary experiments. Specifically, we consider 

the implications of the model system in chapter 3 (i.e. metabolic evolution by 

homeogenesis) for complexity generation. Here we consider how over a series 

of environment changes, repeated events of homoeogenesis could result in the 

necessary addition of multiple environment adapters to the organism’s 

phenotype, resulting in a build up of functional complexity, and hence cause a 

trend of increasing organismal complexity as new environments are colonised. 

4.2 Structure of this chapter 

The hypothesis that we propose in this chapter requires a reasonable amount 

of logical unpacking before it can be described in detail. In particular, the 

mechanism we propose is a number of logical steps removed from 

homeogenesis. Therefore, to provide the necessary context, in the first section 

of this chapter (section 4.3) we describe the origin of this hypothesis; 

specifically, we provide a summary of results from exploratory testing using 

the model in chapter 3 and relevant associated theory that informed the 

generation of the hypothesis. Next, in section 4.4 we describe the proposed 

hypothesis. Following this, section 4.5 contains the key results of this chapter: 
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we carry out simulations to test if, and under what conditions, the 

hypothesised mechanism generates both types of trends (i.e. a general trend of 

increasing complexity of the most complex organisms coupled with robust 

trends of complexity minimisation). Then in section 4.6 we discuss the model 

results, limitations and caveats in relation to natural evolution. To assess the 

scope of the proposed mechanism, in section 4.7 we then carry out further 

experiments to test if the key factors responsible for generating complexity in 

our proposed hypothesis are present and affect evolution in a system of NAND 

gate circuit evolution, which is a common model of functional evolution in the 

literature. Finally in section 4.8 we summarise the work in this chapter and 

present our conclusions. 

4.3 Creating a hypothesis for a complexity trend 

generation mechanism 

The results from chapter 3 imply that in a system of homeogenesis, as 

environment change occurs, in some cases functional adapters must be added 

to the metabolism to enable survival in that given niche. It therefore follows 

that given a sequence of environment change such a process could result in a 

trend of increasing metabolic complexity. However, from the results in chapter 

3 alone it is not clear what type or sequence of environment change is 

sufficient to generate such a trend.  Specifically, before we can define a 

hypothesis for a complexity generation mechanism, we must first isolate which 

factors in the system are responsible for controlling the build-up and removal 

of metabolic complexity. To achieve this we have carried out some exploratory 

testing in which we observed the behaviour of the model of metabolic 

complexity from chapter 3 given a number of different types and sequences of 

environment change. We describe the key results from this exploratory work 

below. 

4.3.1 Exploratory modelling 

4.3.1.1 Methods 

The primary tool that we will use to address the capability of homeogenesis for 

generating complexity trends is the metabolic evolution model described in 

chapter 3 (see section 3.5.2 for a detailed description of the model). 
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Parameters used here are the same as those described in chapter 3 unless 

described otherwise. Briefly, the model describes the evolution of a population 

of organisms as they spread across a number of different, neighbouring 

chemical environments. All organisms have the same core replicator that 

requires a fixed set of chemical compounds to function. We assume that the 

replicator is too constrained to change. Therefore, as organisms encounter 

new environments, to enable survival they must evolve new metabolic 

machinery capable of converting the external chemical environment in to that 

required by their existing replication functionality. Given that here we are 

interested in the complexity behaviours of the model, it is also worth 

reiterating that the model contains an inherent pressure against complexity. 

Based on the observation from natural systems, the model includes a cost of 

resources – a fitness penalty proportional to the number of expressed genes 

(see section 3.5.2 for details). This is expressed as a constant pressure against 

complexity, similar to that observed in Spiegelman’s experiments and others 

(Spiegelman et al. 1965; Oehlenschläger and Eigen 1997; Bedau et al. 1997). 

Furthermore, as introduced in chapter 3, here we again distinguish between 

serial and parallel types of environment change (see section 3.5.2). 

A key further aspect of the model that we must also define is how we measure 

complexity. A common problem with models of complexity evolution is 

knowing what to measure, because there is no agreed definition or measure of 

complexity (Mitchell 2009). However, qualitative examples are common. For 

example, C
4
 plants are regarded to have a more complex mechanism of 

photosynthesis than C
3
 plants (Ehleringer et al. 1991), because the C

4
 

mechanism contains all of the C
3
 pathway plus some extra functional 

sophistication. But this increase in functional sophistication is not expressed 

as extra physical components; C
4
 photosynthesis came about by a 

reorganisation of existing components already present in C
3
 plants (Ehleringer 

et al. 1991). This highlights some of the problems of measuring complexity – 

in particular the difference between structural and functional complexity. 

Following this example from C
4
 photosynthesis, in which complexity is defined 

by the size of the metabolic network, in the below models we will use 

metabolic pathway size (i.e. number of reactions in the network) as a proxy for 

functional complexity. 
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Results in the following section describe the behaviour of case study 

populations that represent the typical behaviour of evolving populations in 

their respective conditions. 

4.3.1.2 Results and discussion 

4.3.1.2.1 Exploratory test 1: Increase in complexity from parallel 

environment change 

This system simulated the evolution of a species whose existing replication 

functionality is too difficult to change via evolution and that is then subject to 

a sequence of environments in which environment change occurs by an 

increasing number of parallel changes.  

The environment had six niches laid out in a line. Each niche had an n=200 

carrying capacity. The initial niche had exactly the right set of chemical 

compounds to allow the existing replication machinery to carry out 

reproduction. Each subsequent niche along the line varied by one more type of 

chemical compound. So for example, niche 2 differed from niche 1 by a single 

compound; niche 3 differed from niche 1 by two compounds, and so on. The 

result was a sequence of environments that required an increasing number of 

parallel functions. 

Organisms evolved by a series of adaptive radiations, sequentially filling 

subsequent niches 1-6. The simplest viable organisms in each successive niche 

had progressively more complex metabolic networks. The evolved metabolic 

networks contained internalised environments from each of the previously 

inhabited niches (Figure 23). These results are straightforward. Competition in 

the form of density dependent selection makes neighbouring empty niches 

potentially attractive for successful mutants. This provides a pressure for 

evolution of new genes allowing expansion into empty niches that necessitate 

increased complexity, despite there being a constant selection for simplicity 

within any given niche.  
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Figure 23. Exploratory test 1. All plots show results of organisms with non zero 

fitness. Top left: Total population size increases in a stepwise 

manner as each new niche is filled by an adaptive radiation. Bottom 

left: Mean metabolic network size increases with each progressively 

different niche; organisms in niche 6 have a more complex 

metabolic network, with more reaction steps, than those in niche 1. 

This therefore illustrates a simple environmentally mediated 

increase in metabolic complexity. Top right, bottom right: Mean 

genome size and number of genes expressed increases over time. 

This increase tails off after ~400 generations, limited by the fitness 

cost against expressed genes. Although the complexity of the 

chemical transformation necessary in each niche is different, this is 

difficult to discern from genome size or number of expressed 

genes, because many genes are non-coding or have no function in 

the phenotype. 
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This illustration demonstrates how certain sequences of environments can 

cause trends of functional complexity increase in the resulting organisms. In 

this case, it is environments that differ by progressively more distinct chemical 

compounds from the set of compounds required by the organism’s replicator. 

In other words, a trend of increasing complexity is caused by an increasing 

number of parallel environment changes compared to the conditions required 

by the organism’s replicator. 

The system illustrates the intuitive notion that ‘doing more things’ requires 

more functional complexity than doing fewer things. As Heylingen describes:  

‘All other things being equal, a system that can survive situations A, B 

and C, is absolutely fitter than a system that can only survive A and B. 

Such an increase in absolute fitness is necessarily accompanied by an 

increase in functional complexity.’ (Heylighen 1999) 

 

Given this system, the increase in complexity is not surprising. As more 

chemical components of the environment become different from the 

conditions required by the organism’s replicator, the number of chemical 

reactions required to convert one to the other increases, thus so does the 

minimum number of reactions in any possible viable organism’s metabolic 

network. Selection for simplicity tends to keep the metabolic networks as 

simple as possible, but this cannot drive the metabolic network to be any 

smaller than the simplest possible network capable of transforming the 

environment back into the conditions required by the organism’s replicator. 

The result is an environmentally mediated trend of increasing complexity. 

Importantly, these simple results contain both a local trend of complexity 

minimisation (that occurs within any given single niche) and simultaneously, on 

a system level (i.e. across multiple niches) a trend of increasing maximal 

complexity, as new niches are occupied. 

4.3.1.2.2 Exploratory test 2: Increase in complexity from serial 

environment change 

Some models for the evolution of complexity argue that organisms become 

more complex not only to cope with parallel environment change, but also to 

‘break through functional boundaries’ (Arthur 1993) – i.e., to achieve more 

complicated individual tasks. Chemical reaction pathways provide many 
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concrete examples of this principle: Some chemical transformations require 

more steps and intermediaries than others, and in that sense are more 

complex. For example, consider two different chemical reactions in the EMP 

glycolysis metabolic pathway. Glycolysis occurs, with some variations, in nearly 

all organisms, as a key part of cellular respiration (Horton et al. 1996). The 

overall reaction pathway converts glucose (C
6
H

12
O

6
) into pyruvate 

CH
3
COCOO- +H+ by a 10-step process (i.e. with 10 intermediary molecules). In 

contrast, glucose (C
6
H

12
O

6
) can be converted into glucose 6 phosphate 

(C
6
H

13
O

9
P) in a single step (which is the first step in the glycolysis pathway; 

Figure 24). 

Let us consider the 10-step glucose ⇒ pyruvate reaction pathway and the one 

step glucose ⇒ glucose-6-phosphate reaction as separate chemical functions. 

Why does changing glucose to pyruvate take 10 steps, whereas changing 

glucose to glucose-6-phosphate only take a single step? One possibility is that 

one task is inherently more complex than the other: Converting glucose into 

pyruvate is a more complicated task than converting glucose into glucose-6-

phosphate, and therefore requires a more complex functional solution.  

The network of possible chemical reactions that dictates how these 

conversions can possibly occur is determined by physics, which apparently 

does not allow a direct, single step change from glucose to pyruvate. This 

agrees with intuition; pyruvate is much more different from glucose than is 

glucose 6 phosphate, and so intuitively requires more changes to transform 

between one and the other. This implies that glucose ⇒ pyruvate is a 

fundamentally more complex task than converting glucose ⇒ glucose-6-

phosphate. According to known chemical reaction networks, converting 

glucose to pyruvate necessitates more serial functional steps, and hence more 

functional machinery (to both carry out and organise these steps) than the task 

of converting glucose ⇒ glucose-6-phosphate.  
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Figure 24. Schematic illustration of the differences in number of chemical steps 

required to convert glucose ⇒ pyruvate and glucose ⇒ glucose 6 

phosphate. Both are components of the EMP glycolysis pathway. 

Presumably, because pyruvate is more organisationally different 

from glucose than is glucose 6 phosphate, the shortest path 

available in the underlying chemical reaction network to convert 

between glucose and pyruvate has many more steps than the path 

converting between glucose and glucose 6 phosphate.  The result is 

that the minimum functional complexity of a metabolism capable of 

converting glucose to pyruvate must be larger than that converting 

glucose to glucose 6 phosphate. 

In this system we simulate the evolution of a species whose existing replication 

functionality is under high constraint and that is then subject to environment 

change that (given this constraint) forces organisms to break functional 

barriers in this manner, evolving novel function to cope with progressively 

more different environments.  

The environment had six niches laid out in a line. Each niche had an n=200 

carrying capacity. The initial niche had the right set of chemical compounds so 

that the existing replication machinery could carry out reproduction. In terms 
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of the number of compounds different from the first niche, each of the other 

five niches were the same, having only one chemical compound different. 

However, in each subsequent niche along the line, the compound that was 

different was progressively more different (in terms of the chemical reaction 

network) than the first niche. In each subsequent niche it was one chemical 

reaction step further away (on the chemical reaction network) from its 

respective compound in the first niche.  

Organisms evolved by a series of adaptive radiations, sequentially filling 

subsequent niches 1-6. The simplest viable organisms in each successive niche 

had progressively more complex metabolic networks. The evolved metabolic 

networks contained internalised environments from each of the previously 

inhabited environments (Figure 25). 

The simplest viable organism in niche 6 evolved a 5-step metabolic reaction 

pathway that converted the different compounds in niche 6 back into their 

state in niche 1. This pathway sometimes contained a sequence of reaction 

steps that recreated the sequence of previous environments inhabited (Figure 

25). But because the reaction network dictates that there are many possible 

viable reaction pathways to complete such a large transformation, occasionally, 

different pathways were evolved that did not contain all of the previous 

environments. 

Again, these results show how certain sequences of environments cause trends 

of functional complexity increase in the resulting organisms. In this case, the 

environments were progressively more different from the conditions required 

by the organism’s replicator by a single component (a chemical compound) 

becoming more different. Again, given the system, the general result of 

increased complexity is not surprising. As before, chemistry dictates that as an 

environment becomes more chemically different from the conditions required 

by the organism’s replicator (this time in terms of a single component), then 

the minimum number of chemical reactions in a pathway capable of converting 

between the two increases, thereby increasing the minimum size of a viable 

metabolic network in that niche.  
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Figure 25. Exploratory test 2. All plots show results of organisms with non zero 

fitness. Top left: Total population size increases in a stepwise 

manner as each new niche is filled by an adaptive radiation, similar 

to system 1. Bottom left: Mean metabolic network size increases 

with each progressively different niche. This demonstrates an 

environmentally mediated increase in metabolic complexity, similar 

to system 1. Top right, bottom right: Mean genome size and number 

of genes expressed increases over time, eventually limited by the 

fitness cost against expressed genes. As with system 1, it is difficult 

to discern which organisms are more complex by genome size or 

number of expressed genes, as many genes are non-coding or have 

no function in the phenotype. 

4.3.1.2.3 Exploratory test 3: Decrease in complexity by parallel 

environment change 

Given the right sequence of environments, the model system described can 

also result in decreases in complexity. Again, this is straightforward. We have 

provided transparent illustrations to concretise the verbal argument, which can 
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be summarised as follows: Some sequences of environments provide 

organisms with chemistry that is closer to the requirements of their replicator 

than their current environment. This provides the possibility of a shorter 

metabolic pathway capable of converting these new environments to the 

conditions required by the organism’s replicator, potentially making some of 

the existing functional steps, and their associated internalised environments, 

redundant. If this shorter pathway can be reasonably evolved, in some cases it 

likely will be, especially in the presence of selection for simplicity. The result 

will therefore be a decrease in complexity. 

For simplicity, and to enable separation of the two ways in which this system 

can bring about loss of complexity, both models are extreme and unrealistic 

examples that extend the previous two simulations, as before. Both 

simulations have an extra niche added (niche 7) that neighbours niche 6.  

The first simulation extended exploratory test 1 (parallel environment change). 

Here niche 7 contained an environment that differed from niche 1 by two 

parallel chemical reactions. As a result, the chemistry of niche 7 was much 

closer to the set of compounds required by the organisms’ replicator than its 

neighbouring niche (niche 6, which was different by five reactions). 

Organisms evolved by a series of adaptive radiations, sequentially filling 

subsequent niches 1-7. The simplest viable organisms in each successive niche 

1-6 had progressively more complex metabolic networks (in terms of number 

of reaction steps) formed by homeogenesis. The simplest organisms in niche 7 

had two reaction steps in its metabolic network, less than half the number of 

reaction steps than those in niche 6 (which had five), representing a decrease 

in complexity (Figure 26). 

In an environment where a simpler set of metabolic reactions is potentially 

capable of reproducing the conditions required by the organism’s replicator 

than the metabolic network currently evolved, then because of selection for 

simplicity this simpler metabolic network will, if possible, be preferentially 

evolved. Vestigial genes that represent now redundant reactions will likely 

deteriorate by genetic drift. The result is a potential decrease in complexity. 

 



  Chapter 4: Complexity Lower Bounds 

 123   

 

 

Figure 26. Exploratory test 3. All plots show results of organisms with non zero 

fitness. Top left: Total population size increases in a stepwise 

manner as each new niche is filled by an adaptive radiation, similar 

to systems 1 and 2. Bottom left: Mean metabolic network size 

increases with each progressively different niche, but dramatically 

decreases when niche 7 is colonised. This demonstrates an 

environmentally mediated increase in metabolic complexity, 

followed by an environmentally mediated decrease in metabolic 

complexity. This shows one way that environment change can bring 

about both increases and decreases in phenotypic complexity, given 

sufficient functional constraint. Top right, bottom right: Mean 

genome size and number of genes expressed follows a similar 

pattern to previous systems; phenotypic complexity trends are hard 

to observe in this data. 
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4.3.1.2.4 Exploratory test 4: Decrease in complexity by serial 

environment change 

This system extended exploratory test 2 (serial environment change). Here 

niche 7 contained a new molecule type, not present in niches 1-6. This 

molecule was a neighbouring molecule of the altered molecule in niche 3. It 

differed from niche 1 by a minimum sequence of 2 chemical reactions.  

 

Figure 27. Exploratory test 4. All plots show results of organisms with non zero 

fitness. Top left: Total population size increases in a stepwise 

manner as each new niche is filled by an adaptive radiation, similar 

to systems 1, 2 and 3. Bottom left: Mean metabolic network size 

increases with each progressively different niche, but dramatically 

decreases when niche 7 is colonised, as with system 3. This again 

demonstrates an environmentally mediated increase in metabolic 

complexity, followed by an environmentally mediated decrease in 

metabolic complexity. Top right, bottom right: Trends in mean 

genome size and number of genes. 



  Chapter 4: Complexity Lower Bounds 

 125   

The results were qualitatively similar to system 3. The simplest viable 

organisms in niche 7 had metabolic networks with fewer reaction steps (i.e. 2) 

than those in niche 6 (i.e. 5), thus demonstrating and environmentally 

mediated trend in decreasing complexity. 

These two systems illustrate the two separate ways in which complexity can be 

lost in this system, and that this can be predominantly controlled by the type 

and sequence of environments inhabited. They are simply the reverse of the 

ways in which complexity can be added: by doing fewer things (due to a 

reduction in parallel environment change), or by doing a less complex thing 

(being able to substitute a shorter/fewer-step function for a longer/more-step 

function due to a reduction in serial environment change). 

Taken as a whole, the four systems described provide a picture of the two 

extreme types of environment change (serial and parallel), showing in each 

case how they can cause increases and decreases in complexity by 

homeogenesis, given a replicator that is too difficult to change. They 

demonstrate how sequences of environments can be internalised to cope with 

environment change, and how this adds functional complexity in terms of 

parallel change, resulting in parallel functions, or by serial change, resulting in 

serial functions – even in the face of a constant pressure for simplicity. They 

also show how this function can be lost, should the environment change to a 

state where the added function becomes redundant. 

4.3.2 Summary of exploratory modelling 

The results of exploratory testing have documented how homeogenesis can 

cause complexity trends in evolution. In this section we will attempt to isolate 

what key factors cause build-up of complexity by homeogenesis. 

First, it is clear that homeogenesis generates robust, repeatable trends in 

complexity; it is not the result of an undriven random walk: This mechanism is 

not passive diffusion. Second, the above simulations demonstrate that 

homeogenesis can cause such trends of increasing complexity without the 

need for a corresponding increase in environmental complexity: In simulations 

showing trends of increasing complexity (i.e. exploratory tests 1 and 2), each 

environment contained the same number of chemical compounds, but 

evolution across these environments still resulted in systematic increases in 
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organismal complexity. This stands in contrast to many proposed 

environmental mechanisms of complexity increase in evolution. Third, the 

simulations also show that homeogenesis produces robust trends of increasing 

complexity without the need for a corresponding increase in constraint within 

the organism. Although some fixed amount of constraint was present 

(specifically that organisms have a replicator that is assumed to be too 

constrained to change), no further constraint was artificially introduced from 

one niche to the next, and yet evolution across these niches nonetheless 

resulted in robust trends of increasing complexity. 

If complexity does not result from passive diffusion, increasing environmental 

complexity or increasing constraint, what causes it to increase in these 

systems? In short, the above results imply that the build up of metabolic 

complexity in this system is controlled not by absolute environment change, 

but by the number of chemical changes (i.e. shortest path of reaction steps in 

the chemical reaction network) that separate the given external niche from the 

environment required by the organism’s replicator. As we will explain in the 

next section, this observation helps us connect the complexity generating 

behaviour of this system to ‘complexity lower bounds’, which are a well-known 

property of algorithm problems in computer science – thus better enabling us 

to describe a mechanism of complexity generation in this system. 

4.4 A hypothesis for a novel complexity generation 

mechanism in evolution: Environmental dissociation 

complexity 

As discussed in chapter 1, In computer science, it is an established result that 

for any algorithm that converts a set of inputs to a set of outputs, a specific 

lower bound will exist on the complexity of any possible solution, and the 

magnitude of this complexity lower bound will depend on which inputs and 

outputs are being converted between (Papadimitriou 2003). For example, 

exhaustive searches have shown that of the many possible logic circuits, the 

simplest possible NAND logic circuit that can add 2 binary bits contains 5 logic 

gates – and adding 3 binary bits takes a minimum of 9 NAND gates. Similarly, 

it has been proven mathematically that sorting a list of length n by successive 

compare-and-swap operations will require an algorithm that defines a 
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minimum of n log n operations (Papadimitriou 2003). (However, no general 

proof exists for an arbitrary problem, and for many problems / 

transformations – e.g. sorting, the travelling salesman problem, matrix 

multiplication, etc. – the simplest known solution is an empirical estimate, 

based on the best solution available at the time; Papadimitriou 2003). 

Similar concepts have also been discussed in biology. For example, recent 

research has suggested that there is a minimum gene set capable of sustaining 

cellular life of around 250-300 genes (Koonin 2011); elsewhere, passive 

diffusion models often include a ‘left wall’, which describes some minimum 

complexity below which evolution cannot go (McShea 1996). However, despite 

these examples, complexity lower bounds are not widely discussed in the 

evolutionary literature.  

To explain how this concept relates to the complexity generation behaviour of 

our model system, it is helpful to consider a simple analogous system that also 

contains complexity lower bounds. A Rubik’s cube is popular 3-D combination 

puzzle that was invented in 1974 by Erno Rubik. The puzzle consists of a cube, 

each side having 9 coloured faces. In its solved state, the cube has all 9 faces 

on a given side of the cube the same colour. The cube allows users to rotate its 

sections, allowing each of the faces to be moved individually. Doing this, the 

cube is reorganised into a random state; the aim of the puzzle is to return the 

cube back to its original, ‘solved’ state (Figure 28). 

 

Figure 28. Solving a Rubik’s cube. The cube begins in a random, disorganised 

state (left). The puzzle can rotate in various ways, allowing the faces 

to be rearranged. The aim of the puzzle is to return the cube back 

to its solved configuration (right), in which all of the faces on each 

side of the cube are the same colour. 
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In mathematical terms, the goal of the Rubik’s cube puzzle is to find a 

sequence of moves that will transform the cube from its current state into its 

solved state. Obviously from any given state, there are many possible 

sequences of moves that can reach the solved state. However, finding these 

sequences is difficult: despite its simplicity, the Rubik’s cube has over 4.3x1019 

possible configuration states. A key area of mathematical research on the 

Rubik’s cube has been focused on attempting to find the shortest possible 

sequence of moves (i.e. lower bound) needed to solve the cube from a given 

state. To address this problem, we can imagine the set of all possible moves 

from any given state as an expanding network, where the nodes are 

configuration states of the cube, and the links are individual moves (Figure 29).  

 

Figure 29. The state space of a Rubik’s cube can be described as a network of 

cube states (nodes) and moves (links).  

By mapping out this network, we can know exactly, from any position, the 

minimum number of moves we are away from the solved state. This network is 

termed the ‘state space’ or ‘state space search tree’ of a system (Russell et al. 

1995; Lilius 1998; McMillan and Probst 1995): a network that contains the 

complete set of possible configurations of the system connected by links that 

represent available change operators that connect those states. For a Rubik’s 

cube, the nodes of the state space are configurations of the cube, and each 

link is an individual rotation of one face. Only in the last few years has the 

state space for a Rubik’s cube been fully mapped (Figure 30). 
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Figure 30. The number of positions that are  a given number of moves from 

the solved state of a Rubik’s cube. For example, there are 18 states 

that are 1 move away from the solved state, 243 states 2 moves 

away, and so on. This imparts fundamental lower bounds on the 

complexity (i.e. number of moves) of possible solving algorithms 

from a given state.  

In state space, a sequence of moves that can solve the cube from a given 

position corresponds to a path through state space that connects the given 

current configuration to the solved configuration. The important points to note 

from Figure 30 are that every possible state has a fixed lower bound on the 

number of moves in which the solved state can be reached (i.e. shortest path 

to the solved state), and this is different for different states depending on 

where they are in the network. In other words, there are inherent lower bounds 

on the complexity of possible solving sequences from any given state, and 

those lower bounds vary depending on the state we start from. 

In this chapter, we are arguing that complexity in evolution (and specifically, 

our model system of metabolic evolution) is controlled in a similar manner. 

One can imagine the set of available chemical environments as being like an 
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extremely complicated Rubik’s cube. The variation of the environment in time 

and space represents different states of the Rubik’s cube. The solved state of 

the cube represents the very special environment in which DNA, the base 

replicator of life, can replicate, which is necessary for life and evolution to 

continue. In this system, the task of evolution is the same as the task of the 

puzzle solver with a Rubik’s cube: given any environment, it must create a 

sequence of moves that can transform the current state of the system into the 

solved state, and to do so can only use the available transformation operators 

defined over the state space (but instead of sequences of moves, we call these 

sequences metabolic networks or organisms). 

Most importantly, this system provides us with a new perspective on what 

factors control complexity in evolution. The key point is that in such a system, 

just as in a Rubik’s cube, there will be inherent lower bounds on the 

complexity of possible solving algorithms (organisms) from any particular state 

(niche), and these are defined by the shortest path in state space from the 

current state (current external niche) back to the solved state (the environment 

required by the organism’s replicator). Moreover, different states (niches) will 

have different lower bounds. 

Importantly, this is different from saying that complexity comes about in 

evolution because one niche is fundamentally more complex than another. In 

the Rubik’s cube, and in our chemical model, all states of the system are 

identically complex. Rather than absolute complexity, the difference in 

complexity lower bounds in different niches comes from their different 

distances in the state space network from the ‘solved’ state, not from any 

inherent properties of the niches themselves.  

4.4.1 The Environmental Dissociation Hypothesis 

We can now describe the main hypothesis of this chapter. Let us term the 

distance in state space of the current environment from the environment 

required by the organism’s replicator the amount of ‘environmental 

dissociation’. Because this factor effectively controls complexity in the system, 

we term the mechanism of complexity generation by this process 

environmental dissociation complexity. This mechanism is defined as follows: 

Given: 
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a. an organism with a replicator that can replicate in some small subset of 

environmental conditions, and whose replicator cannot feasibly be 

changed to replicate in conditions outside of this subset; 

b. an environment with heterogeneous environmental dissociation whose 

conditions change sufficiently gradually; 

c. an inherent selection pressure against complexity such as a cost of 

resources 

then as competition forces evolution to leave the original environment (a), 

and colonise new environments (b), the magnitude of environmental 

dissociation of a new environment will dictate the minimum possible 

complexity of viable organisms in that environment, resulting in a system-

wide trend of increasing complexity of the most complex organisms, 

coupled with local trends of complexity minimisation in individual 

environments, caused by (c). 

4.5 Testing the environmental dissociation complexity 

hypothesis by computational modelling 

4.5.1 Methods 

To test this hypothesis, we carried out simulations in an expanded version of 

the metabolic model described earlier in this chapter and in chapter 3. The 

model differed from that described in chapter 3 in the following manner. 

Instead of 7 niches, there were 50 niches, again laid out in a line. Furthermore, 

rather than having contrived environment configurations in each niche, unless 

described otherwise we began with a chemical environment generated in the 

following manner (as before, containing 18 of the set of 36 possible chemical 

compounds). Each successive neighbouring niche was created by performing 

one, random chemical reaction from its neighbour (each reaction could be 

serial or parallel change, there were no restrictions). The result was that the 

simulation contained 50 neighbouring niches distributed in a line, each varying 

by one chemical reaction from the previous niche. The chemical makeup of 

niche 1 was then taken to be the fixed target input required by the initial 

organism’s replication machinery, hence allowing the initial organism to 

reproduce in niche 1 without any associated metabolism. 
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In all cases, unless stated otherwise, the system was set up with all of the 

conditions required by the hypothesized mechanism, i.e.: 

1. Organisms with a replicator assumed to be too difficult to change by 

natural selection; 

2. A heterogeneous environment with gradually varying environmental 

dissociation; 

3. A pressure against complexity in the form of a cost of resources; 

 

We carried out 4 control experiments to test the hypothesis. 

1. Positive control;  

2. Negative control 1: No change in environmental dissociation; 

3. Negative control 2: Punctuated environment change; 

4. Negative control 3: No pressure against complexity. 

4.5.2 Results 

4.5.2.1 Positive control experiment 

First we carried out a positive control experiment in which we tested whether 

the mechanism robustly created the complexity trends claimed (i.e. a system-

wide general trend of increasing complexity of the most complex organisms, 

coupled with local trends of complexity minimisation within individual niches) 

given all of the conditions stated in the mechanism. Case study results that 

show typical behaviour of the system are illustrated in Figure 31. In all positive 

control experiments, the system generated a system-wide trend of increasing 

complexity of the most complex organisms that corresponded to the 

colonisation of new niches, coupled with local trends of complexity 

minimisation in individual niches (e.g. Figure 31), supporting the hypothesis. 

We carried out 100 repetitions of the positive control, each running for 5000 

generations. Results showed a marked increase in mean complexity of all 

organisms in the population by generation 5000 (mean=10.94, standard 

error=0.21), and a marked increase in complexity of organisms in the most 

complex occupied niche (mean=19.89, standard error=0.39); these results are 

plotted in comparison to a negative control in Figure 35 (left columns).  
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Figure 31. Case study example of the positive control experiment illustrating 

the typical behaviour of evolution in this system. Each data line 

shows the mean metabolic complexity of viable organisms in a given 

niche. Niches are only plotted once they are colonised. At generation 

0, a single organism begins in niche 1 with no metabolism. As 

neighbouring niches are colonised, the mean complexity of 

organisms in that niche is plotted on the chart. (E.g. at generation 

223 niche 2 is populated: red line) New niches very often have 

greater environmental dissociation, and hence require a more 

complex metabolism. The result is that as new niches are colonised, 

the system generates a trend of increasing complexity of the most 

complex organisms in the system (red arrow). However, within any 

individual niche, complexity displays a trend of minimisation to the 

complexity lower bound in that niche. Blue arrows show example 

characteristic events of local complexity minimisation in individual 

niches. This result helps to explain conflicting observations of 

increase of maximal organismal complexity in the biosphere and 

trends of complexity minimisation in experiments.  
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Figure 32. Case study example of the positive control experiment (with 

perturbation) illustrating the typical behaviour of evolution in this 

system. This system is identical to the positive control experiment 

but also underwent environmental perturbation at generation 2500 

that lasted for 100 generations. In this instance, only a few species 

survived the extinction, the rest going extinct. The species that 

survived were moderately complex, leaving niches 1-6 empty. These 

niches were subsequently recolonised during an adaptive radiation 

around generation 2950 by these more complex organisms. The 

recolonising organisms quickly lost much of their complexity after 

colonising these niches (~generation 2950-3400), as they were 

pushed by the inherent pressure against complexity in the system 

towards the complexity lower bound in their given niche. The results 

again show a general, system wide trend of increasing complexity of 

the most complex organisms corresponding to the colonisation of 

new niches with higher environmental dissociation (red arrow), 

coupled with local trends of complexity minimisation in individual 

niches. Blue arrows show characteristic events of local complexity 

minimisation in individual niches. These are particularly common 

after the perturbation, when more complex organisms come to 

recolonise niches with smaller environmental dissociation, thus 

allowing genes redundant in that niche to be jettisoned and 

complexity decreased.  
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4.5.2.2 Negative control experiment 1: No change in environmental 

dissociation. 

We next asked whether increasing environmental dissociation is necessary to 

produce a general trend of increasing complexity, or if environment change 

alone is sufficient. To test this we set up two separate simulation cases: a 

positive control experiment, in which environmental dissociation varied across 

niches, and negative control experiment that was identical expect that 

environmental dissociation did not vary across niches. In both cases, niches 

were generated in order 1 to 50 by carrying out two random chemical reactions 

different from the previous neighbouring niche, but in the negative control 

experiment environmental dissociation was kept constant. We then measured 

the resultant increase in metabolic complexity after 5000 generations (Figure 

33).  

To allow environment dissociation to be kept constant across different niches, 

each niche was separated by two reactions as opposed to one; a single reaction 

will always increase or decrease the environmental dissociation in this system, 

because it will always either step nearer to or further away from the niche 

required by the replicator. Hence enforcing there to be two reactions between 

niches allowed the possibility of zero net gain of environmental dissociation.  

To ensure that environment change occurred even when change in 

environmental dissociation did not, in both experiments no two niches were 

permitted to have the same set of compounds as any other niche in that 

experiment. An additional necessity to allow environmental dissociation to be 

fixed across different niches was that unlike in other experiments, here niche 1 

was not the same as the environment required by the organisms’ replicator. 

Instead, it was 10 reactions dissociated from this environment: The result was 

that to survive in niche 1, organisms required a minimum 10-step metabolic 

pathway that converted the initial niche into the niche required by the 

organisms’ replicator. This requirement was necessary because it is not 

possible to change the environment from that required by the organism’s 

replicator to any other environment without increasing the environmental 

dissociation. (For example, it is possible to change a Rubik’s cube that is 10 

steps away from its solved state and leave it in a new configuration that is still 

10 steps from its solved state, thus keeping its environmental dissociation 
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fixed; however, it is not possible to do this if the Rubik’s cube begins in its 

solved state, as any change to a new configuration will increase the distance 

from this state.) In each simulation, the initial organism was provided with 

such a 10-step pathway, enabling it to survive and reproduce in niche 1. 

Accordingly, the results measured the change in complexity evolved from this 

starting point of 10. 

We carried out 100 repetitions of each case, each time using different 

randomly generated sequences of niches according to the above method. 

Results are shown in Figure 33. In the positive control experiment, the mean 

increase in complexity across all organisms in the system was very significantly 

higher than observed in the negative control experiment (positive control: 

mean=7.38, standard error=0.40; negative control: mean=0.22, standard 

error=0.02; P<0.001 Student’s t-test). The mean increase in complexity of 

organisms in the most complex occupied niche was also very significantly 

higher in the positive control experiment than in the negative control 

experiment (positive control: mean=12.49, standard error=0.46; negative 

control mean=0.86, standard error=0.08; P<0.001 Student’s t-test). The results 

support the hypothesis that the increase in complexity observed in the positive 

control experiment was caused by the increase in environmental dissociation 

across niches (positive control experiment: mean change in environmental 

dissociation from niche 1 to niche 50= +11.88, standard error 0.28; negative 

control experiment: change in environmental dissociation from niche 1 to 

niche 50=0). In the negative control experiment, there was no increase in 

environmental dissociation across niches, and complexity remained very low. 

Case study examples illustrating typical behaviour in each experiment show 

that there was a clear, system-wide general trend towards increasing 

complexity of the most complex organisms in the positive control experiment 

(Figure 34, bottom). Such trends were observed in every repetition of the 

positive control experiment. In contrast, in all of the negative control 

experiments (e.g. Figure 34, top), no such general trend of increasing 

complexity was ever observed. 
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Figure 33. Plot illustrating that environment change alone is not sufficient to 

generate significant increases in organismal complexity in this 

model, but that instead environmental dissociation is a key factor 

controlling complexity. The left columns show statistical results 

from 100 repetitions of experiments in which environmental 

dissociation was free to increase (the mean increase was +11.88 

over all niches in these repetitions), resulting in a significant 

increase in mean complexity and the mean complexity of organisms 

in the most complex occupied niche (p<0.001). In contrast, the right 

columns show results from 100 identical repetitions where there 

was no increase in environmental dissociation across any niches, 

resulting in very little change in complexity.   
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Figure 34. Case study example of the negative control experiment (top) and 

positive control experiment (bottom) for environmental dissociation. 

Top: even though environment change occurred between niches 

(and hence viable organisms were different in each niche), no 

increase in complexity was necessitated as new niches were 

colonised because all niches had the same complexity lower bound. 

Bottom: In contrast, when environmental dissociation was free to 

vary between niches, trends of increasing and decreasing complexity 

are observed that correspond to changes in complexity lower bound 

from one niche to the next. 



  Chapter 4: Complexity Lower Bounds 

 139   

4.5.2.3 Negative control experiment 2: Punctuated environment change 

We next asked how the gradual nature of environment change affected 

complexity trends in the system. To achieve this we compared a positive 

control experiment in which the environment changed gradually between 

niches with a negative control experiment in which environment change was 

less gradual. Specifically, in the positive control experiment, the difference 

between neighbouring niches, x, was a single chemical reaction, representing 

one step on the chemical reaction network (x=1). In contrast, for the negative 

control experiment x=3, representing a more punctuated environment. Mean 

results for 100 repetitions of this experiment are shown in Figure 35, and a 

case study showing the typical behaviour of a single repetition is shown in 

Figure 36. The punctuated environment severely limited the capability of 

evolution for colonising new niches in the negative control experiment, which 

in turn limited the extent to which complexity could evolve. In the positive 

control experiment, the mean increase in complexity across all organisms in 

the system was very significantly higher than observed in the negative control 

experiment (positive control: mean=10.94, standard error=0.21; negative 

control: mean=0.31, standard error=0.11; P<0.001 Student’s t-test). The mean 

increase in complexity of organisms in the most complex occupied niche was 

also very significantly higher in the positive control experiment than in the 

negative control experiment (positive control: mean=19.89, standard 

error=0.39; negative control mean=0.59, standard error=0.20; P<0.001 

Student’s t-test). 

The behaviour of this control experiment can be described by a simple 

mathematical argument that implies the time taken to colonise a new niche will 

increase exponentially with x. In a niche with one compound different from the 

set of compounds required by the organisms’ replicator, the probability of 

producing a viable mutant for that niche = (m/nR)L, where m=per locus 

mutation rate, nR=number of reactions possible in the artificial chemistry 

(assuming no evolvability / directed variation, and that all possible mutants 

catalyse some reaction), and L= number of loci. In the case of an environment 

with two compounds different, the probability is approximately (m/nR)2L, as 

two separate but correct mutations are required at once. The details are 

slightly more complex, as both mutations could occur at different generations. 

However, given the cost of keeping redundant genes, it is unlikely that a single 
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one of these mutations (which alone are redundant) would be kept for more 

than a few generations. The general probability is therefore p~(m/nR)nCL, where 

nC is the number of compounds different. Thus the probability of evolving a 

viable mutant decreases exponentially with the rate of environment change 

(i.e. the number of compounds different in the new environment). The time to 

evolve such a mutant increases with the inverse of p – i.e., exponentially.  

 

 

Figure 35. Plot illustrating the effect of gradual environment change on 

generating complexity in this model. In the positive control 

experiment (left columns) the amount of environment change, x, 

was a single chemical reaction between neighbouring niches (x=1). 

In the negative control experiment (right columns) environment 

change was less gradual (x=3). Given an environment that changed 

in a less gradual manner, evolution was significantly less capable of 

generating complexity (p<0.001). 
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Figure 36. Case study example of the negative control experiment for gradual 

environment change showing typical behaviour of evolution in this 

system. Each data line shows the mean metabolic complexity of 

viable organisms in a given niche. Niches are only plotted once they 

are colonised. In this experiment, the environment changed in a 

more punctuated manner, having 3 chemical reactions between each 

neighbouring niche (x=3), compared to only one in the positive 

control experiment (x=1). The results illustrate that given a more 

punctuated environment, evolution struggles to colonise new 

niches, which in turn limits the evolution of complexity. Each data 

series shows the mean metabolic complexity for organisms in a 

given niche. In this example, only one new niche is colonised (niche 

2, colonised at ~1200 generations). Here, niche 2 is 3 chemical 

reactions from niche 1, resulting in an environmental dissociation of 

3. Accordingly, the complexity lower bound for organisms in niche 2 

is 3, and the complexity of viable organisms in niche 2 never passes 

below this value.  

4.5.2.4 Negative control experiment 3: No cost of resources 

Finally, we sought to test the effect of having a cost of resources in the model 

to act as an inherent selection pressure against complexity in the model.  

 



Chapter 4: Complexity Lower Bounds 

 142 

 

Figure 37. Case study examples of evolution in a system with an explicit 

pressure against complexity in the form of a cost of resources (top 

chart) and without a cost of resources (bottom chart). The cost of 

resources is expressed as a fitness penalty proportional to the 

number of genes expressed in the phenotype. The case studies 

shown here represent typical behaviour of the two systems. 

Although complexity data series for individual niches typically 

appear to be slightly more variable without a cost of resources, the 

system does not show the random walk in complexity that might be 

expected: mean complexity of individual niches appear to generally 

remain close to their respective complexity lower bound, implying 

that there is another implicit pressure against complexity in this 

system. 
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To achieve this we compared a positive control experiment in which the model 

contained a cost of resources (specifically, as described in section 3.5.2, a 

fitness value of 1 was subtracted for the organism’s total fitness for each gene 

expressed in its phenotype), with a negative control experiment in which there 

was no cost of resources (i.e. no fitness was subtracted regardless of the 

number of expressed genes). Case study results are shown in Figure 37. It was 

expected that without a cost of resources, there would be nothing to restrict 

the metabolic complexity from following a random walk, and potentially 

increasing significantly. However, although complexity data series for 

individual niches typically appear to be slightly more variable in the negative 

control experiment, complexity within individual niches remained close to the 

complexity lower bound over the course of the simulation. This behaviour was 

observed in all repetitions of the negative control experiment. This implies that 

even without a cost of resources in the model, the implicit dynamics of the 

system still generate an inherent pressure towards complexity minimisation in 

individual niches.  

We suggest two possibilities for this phenomenon: 

1. First, longer pathways require more genes, and because mutation 

occurs with a per-locus probability, longer pathways have a greater 

chance of undergoing mutation. Because any random mutation to a 

working metabolic pathway is much more likely to break that pathway 

than not, then longer pathways are more likely to undergo mutation, 

and hence be broken, than shorter pathways. Shorter pathways are 

therefore more robust to the probability of deleterious mutations than 

longer pathways. 

2. Second, even ignoring the increased probability of mutation associated 

with longer pathways, for any individual mutation, there is still a strong 

bias towards complexity minimisation inherent within the system. 

Specifically, imagine we have a 5-step pathway, and that there is one 

available 4-step pathway, and one available 6-step pathway, both 

accessible by a single mutation from the current 5-step pathway. Even 

with an equal number of simpler and more complex pathways as in this 

thought experiment (and with an equal probability of mutation adding 

or removing genes, as present in the system), the simpler pathway is 

much more likely to be evolved. The reason is that a mutation to find 
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the 6-step pathway must correspond to the right enzyme (from the 120 

available) to add to the pathway in the right position. In contrast, the 

mutation to shorten the pathway only has 5 possible enzymes to choose 

from (i.e. those already in the pathway), one of which by definition must 

be able to be removed to find the shorter pathway. The result is that 

even though in this process, both the more complex and less complex 

pathways are selectively neutral, due to the inherent dynamics of the 

system, there is an inherent bias towards shortening any given pathway 

than lengthening it. 

 

The results of this control experiment suggest that even without a cost of 

resources, other implicit properties of this type of system cause simplicity to 

be favoured, resulting in trends of complexity minimisation in individual 

niches. This implies that it is possible to further generalise the hypothesised 

mechanism by removing the condition that there must be a cost of resources 

to generate local trends of complexity minimisation, as other factors within 

such systems also inherently act to minimise complexity. 

In summary, the results of the control experiments described above generally 

support the environmental dissociation complexity hypothesis, and further 

suggest that it may be generalised by removing the condition that a cost of 

resources is necessary to generate trends of complexity minimisation.  

4.6 Discussion 

The above control experiments provide significant support for the claims of 

environmental dissociation complexity. The positive control experiment 

robustly produces simultaneous complexity trends of a system-wide, general 

trend of increasing complexity of the most complex organisms and local 

trends of complexity minimisation in individual niches. Meanwhile, the 

negative control experiment without change in environmental dissociation and 

the negative control experiment without a sufficiently gradually varying 

environment both failed to generate similar increases in complexity, 

supporting the hypothesis that these are necessary components of the 

complexity generation mechanism. On the other hand, the negative control 

experiment without a cost of resources still showed an inherent preference for 
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simplicity in the model, suggesting that such a pressure will generally be 

present in this type of system even if resources are highly abundant, widening 

the scope of conditions in which the mechanism applies. 

Given the gradually heterogeneous nature of the biosphere (Manahan 2004; 

McBride 1994; Solomon 2007), and the prevalence and constrained nature of 

DNA (Reaves et al. 2012; Kornberg and Baker 1992; Lindahl 1993; Grogan 

1998; Marmur and Doty 1962), it seems highly likely that the biosphere 

commonly provides the conditions required in the mechanism necessary to 

produce a trend of increasing complexity of the most complex organisms. 

Indeed, in the biosphere such a trend is widely documented (Bedau 2009; 

McShea 1991). On the other hand, many evolutionary experiments that do not 

observe such a trend of increasing complexity (e.g. Spiegelman’s experiments; 

Spiegelman et al. 1965) do not provide the conditions stated in the 

mechanism. As such, these results help to explain these observations. 

Moreover, they also help to explain how evolution in the biosphere is able to 

create a trend of increasing complexity in spite of the apparently ubiquitous 

pressure towards simplicity in evolution created by the cost of resources (and 

potentially other factors). 

Although these results provide support for the hypothesis in this chapter, there 

are still a number of issues that remain outstanding that we will attempt to 

address in the rest of this section. We will first discuss in more detail how to 

link the theoretical description of complexity lower bounds with the chemical 

model used in this chapter – in particular, we will describe the state space of 

the model. Next, we will discuss a potential further control experiment that 

due to model limitations was not feasible to simulate: the effect on complexity 

trends of having a replicator that is not too constrained to change to adapt to 

environment change. We will then discuss the effect on the mechanism of 

having an environment that is possible for evolution to change by niche 

construction. Finally, following this, we will delve into what causes complexity 

lower bounds in the first place by examining the particular topological 

property of state space that causes them, and discuss how this relates to 

biological evolution. We will now discuss the nature of the state space in the 

metabolic model of this chapter, which will help to provide conceptual support 

for other topics described in this discussion. 
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Although the chemical reaction network defined in the model describes the 

available state-change operators and their effects on environment state, this 

chemical reaction network is not the state space of the model. The reason is 

that a single environment state is defined by the position of multiple 

compounds in the chemical reaction network. If the environment only 

contained a single compound, then the reaction network would be identical to 

the state space. Because the environments in the model contain multiple 

compounds, then the state space is more complicated. The key difference 

between the state space of the model and the chemical reaction network is that 

each node in state space represents an environment – that is, a particular 

collection of chemical compounds. In the model, each environment contains 18 

chemical compounds. To define the state space, we would simply create a 

node for every possible set of 18 compounds, and connect those sets to 

neighbouring sets by the individual chemical reactions that are required to 

change from one to another, just as in the Rubik’s cube analogy. As with the 

Rubik’s cube, we can visualise this state space (Figure 38), and in it define the 

‘solved state’ – the small subset of environments in which the organisms’ 

replicator can reproduce (green bounded region, Figure 38). 

How does the system behave in this conceptual model of state space? Given a 

replicator that is too constrained to change, as in the above simulations, then 

the set of compounds required by the replicator is fixed over time and cannot 

change via evolution. The result is that this bounded region in state space 

cannot move (in state space) over time. Meanwhile, at any time, the current 

external environment is a given set of chemical compounds, which is simply 

represented by a single node in state space (Figure 38, blue circle). Here, 

following environment change, evolution is forced to generate a metabolic 

pathway that recreates the niche required by the replicator (Figure 38 b) – and 

the minimum complexity of this pathway is defined by the shortest available 

path length in state space (i.e. the complexity lower bound). 
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Figure 38. Hypothetical comparison of complexity evolution from a starting 

state (a) given a core replicator with fixed constraint (b) (similar to 

DNA) and no constraint (c). (a) The network represents the state 

space of the model. Nodes are chemical environments and links are 

chemical reactions. The blue node is the current environment, and 

the green area is the set of chemical compounds required by the 

organism’s replicator for reproduction. When the environment 

changes, it does so on the network. (c) If the organism’s replicator 

can be easily changed to cope with new environmental conditions, 

then the green area simply moves to the new environment. This 

poses no transformational problem evolution, and hence no increase 

in complexity is necessary. This would result in a new base 

replicator of evolution (i.e. other than DNA). (b) If the replicator has 

fixed constraint, then the replicator will always require the same 

input environment (the green area is fixed). In this case, 

environment change necessitates that evolution evolve machinery 

capable of transforming the new environment into that required by 

by the organism’s replicator. State space dictates how this can be 

achieved; some routes are short (e.g. 1) and hence less complex; 

others are longer and more complex (e.g. 2). 
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Obviously, the complexity lower bound that this shortest path defines by no 

means dictates what pathway will actually evolve in any given environment, but 

does provide rigid constraints on what is possible.  

With this conceptual model in mind, let us consider what might happen in the 

case of a control experiment in which organisms’ have a replicator that, unlike 

DNA, can be easily change to be able to replicate given many different sets of 

environmental conditions; for example, by swapping key molecules within its 

structure for other molecules, as suggested by Wolfe-Simon et al. (2011), which 

was subsequently discredited by Reaves et al. (2012). Modelling such a system 

was beyond the scope of our investigation, and given that there is no evidence 

of such a capability in nature, was less of a priority than other control 

experiment simulations. However, given our conceptual description of state 

space in the metabolic model, we can at least logically analyse what the effect 

of having such a replicator might be.  

In our Rubik’s cube analogy of environmental dissociation complexity, having 

an replicator that, unlike DNA, can easily be changed to reproduce with a 

different set of environmental inputs effectively allows evolution to move the 

‘solved state’. Considering this ability in terms of the state space of the 

metabolic model, the result is that the green bounded region can be moved by 

evolution, thus removing the requirement to create a complex transformation 

(Figure 38 c). Changing the replicator in this way causes the environmental 

dissociation to be zero: no new function is (ever) required, and organismal 

complexity is not required to increase. The result would be that rather than 

bother to produce costly metabolic pathways, evolution could just substitute 

DNA for a similarly capable molecule that could simply operate with whatever 

chemical inputs the current environment happened to contain. 

If this were possible in biological evolution, life could presumably expand into 

a vast array of niches without having to become more complex. In this case, we 

would presumably observe a large array of different base replicator molecules, 

each suited to the particular chemical makeup of its environment. This stands 

in contrast to reality, in which we observe a near uniform reliance on DNA as 

the base replicator of life across all niches (Reaves et al. 2012; Ridley 2009; 

Kornberg and Baker 1992) – and moreover, is commonly surrounded by an 

array of environmental transformation machinery (i.e. metabolisms) of varying 
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complexity across the different occupied niches in the biosphere (McShea 

1994; Ridley 2009; Horton et al. 1996), similar to the behaviour predicted by 

the earlier simulations. Of course, this conceptual analysis can only take us so 

far; it would be useful to carry out further control experiments to test this 

predicted effect on the resultant complexity trends in the model. 

4.6.1 Environmental dissociation and niche construction 

We will now move on to briefly discuss how the results of this chapter, which 

have so far been described in terms of homeogenesis – organisms creating 

environmental adapters that sit between existing functionality and the external 

environment – can be integrated with niche construction, which is effectively a 

similar process but in which environment change occurs in the external 

environment as a product of behaviours. In short, here we suggest that 

changing the environment by niche construction will also be subject to 

complexity lower bounds, in a similar manner to homeogenesis – and 

therefore, that the results and predictions of this chapter can be similarly 

applied to systems that allow niche construction. 

Because environmental dissociation and complexity lower bounds are inherent 

to the problem of environment change itself (Papadimitriou 2003) as opposed 

to being a property of homeogenesis, it follows that the same requisite trends 

of complexity should be generated by evolution regardless of the location of 

the environment change solution (e.g. internally within the organism, such as 

with homeogenesis and the models in this chapter, or externally such as with 

niche construction). It stands to reason that complexity lower bounds would 

limit minimum complexity solutions of both homeogenesis and niche 

construction in a similar manner. If evolution opts to undertake niche 

construction to adapt to environment change, then the greater the 

environmental dissociation between the current external environment 

conditions and the conditions required by the organisms’ metabolism, the 

greater the number of environmental change steps that will be required by any 

process of niche construction – and in turn, the more complex the niche 

construction mechanism that will be required. Another way to illustrate the 

same point is to consider the metabolic model in this chapter. Although the 

model is described in terms of a evolving metabolism, it is sufficiently abstract 

that it could be directly interpreted instead as a problem of niche construction, 
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in which organisms must evolve their phenotype to generate niche 

construction behaviours to adapt to changes in the external environment. This 

interpretation does not affect any of the assumptions in the model, and hence 

will not change the results. 

This generalisation of the mechanism potentially increases the explanatory 

power of environmental dissociation. In this more general interpretation of the 

mechanism, as described earlier, trends of increasing complexity of the most 

complex organisms are generated when evolution is required to perform 

environment transformations that have inherent complexity lower bounds – 

only given this generalisation the resulting environment transformation 

algorithm can either be expressed as a set of internal adapters in the 

phenotype (e.g. a metabolic network), or as a set of behaviours and 

behavioural machinery used to transform the external environment (such as 

limbs, eyes, brains, innate behaviours, etc.). 

4.6.2 Average path length 

Finally, given that we have identified the magnitude of environmental 

dissociation, which is a property of two given points in a state space network, 

as the primary cause of complexity trends in this mechanism, we can ask: what 

network property of state spaces causes high environmental dissociation? 

Environmental dissociation is a property describing the shortest path distance 

between two given nodes in a state network. There are many possible network 

topologies of state network (e.g. fully connected, small world, ring network, 

etc.) that a given system could have – and some of these preclude high 

environmental dissociation and hence preclude high complexity lower bounds, 

and others may affect their magnitude. For example, given a state space 

network that was fully connected, then any environment state could be 

transformed into any other in a single step, precluding the possibility of 

complexity lower bounds higher than 1 – and hence carrying out evolution in 

such a system would be unlikely to generate any significant complexity by this 

mechanism. A key property that describes this network property is average 

path length. Average path length is defined as the average number of steps 

along the shortest paths for all possible pairs of network nodes (Newman 

2009). For example the average path length in a fully connected network is 1, 

because all nodes are connected directly to all other nodes.  In contrast, 
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chemical reaction networks generally have a much higher average path length 

(Papachristodoulou and Recht 2007): to get from one compound to another on 

a chemical reaction network in many cases requires multiple steps (Vogel 

1974; Hammett 1970).  In short, this reasoning implies that a state space with 

a high average path length (such as that provided in chemical systems, or 

spatially distributed systems) may be a further necessary condition to allow 

such trends of increasing complexity to evolve. 

4.7 Evidence for complexity lower bounds in other 

models 

We now move on from discussing the conceptual details of environmental 

dissociation complexity, and instead search for further evidence for it. To do 

this, we have carried out modelling to test whether significant environmental 

dissociation (and hence complexity lower bounds) are present in other 

evolutionary systems – in particular, a standard NAND gate model of functional 

evolution. The model system evolves circuits of logic gates to perform 

predefined calculations, building on the significant body of work in this area 

(Kashtan and Alon 2005; Kashtan, Noor, and Alon 2007; Milo et al. 2002).  The 

model evolved solutions to the same, large set of arbitrary environment 

transformations, many times over from many different starting genotypes. We 

then observed the number of gates in the simplest circuits evolved that 

successfully completed each given transformation. We sought to test two 

hypotheses: That complexity lower bounds existed, and that transformations 

between environments of the same complexity (in this case, size of binary 

input) could result in complexity lower bounds of different magnitudes.  

4.7.1 Methods 

The model builds on the NAND logic gate model of Kashtan and Alon (Kashtan, 

Noor, and Alon 2007; Kashtan and Alon 2005). NAND gates were used because 

they are computationally universal, meaning that they can be combined to 

make any other type of logic gate. Circuits consisted of four layers of (8,4,2,1) 

NAND logic gates, making a total of 15 gates per circuit. There were 8 circuit 

inputs. Circuits evolved connections between gates, not allowing feedbacks. 

The goal of each circuit was to logically transform an input environment into 
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an output environment using as few gates as possible. This could represent, 

for example, transforming the external environment into the conditions 

required by the organism’s replicator. There were 32 niches. Each niche had a 

different external environment (but the same target output environment), 

representing a different necessary transformation for each niche. Each input 

environment consisted of 8 binary bit strings of length L=8. To be able to 

reproduce in that environment, the circuit had to convert all 8 of those bit 

strings, in order, to a specific 8-bit binary output sequence, defined by the 

target output environment. Because the output of each circuit was a single 

gate, all 8 of the L=8 bit strings per input environment were transformed to a 

single binary bit. Thus the target output environment was a single L=8 bit 

string. The size of the input environments was the same for every niche (8 L=8 

bit strings). Circuits had a genotype of length L=15. Each gene corresponded 

to a specific gate. Each gene consisted of two integers 0<v<23, each defining 

one of the two input locations for that gate. There were 15 gates and 8 circuit 

inputs, making a total of 23 possible input locations for each gate. (However, 

feedbacks were not allowed, so depending on the level of the gate, the number 

of available input locations was reduced.) The output of the single final gate 

was assumed to be the circuit output. 

Although each genotype coded for 15 possible gates, circuits were measured 

on how many gates were actually used in the transformation (‘effective gates’; 

after Kashtan and Alon, 2005). Gates that were not part of a connected route 

from circuit input to output were not included in the effective gate count. 

Fitness (F) was calculated according to 

F=max (0, fs-fe) 

where fs=40 was fitness awarded if the circuit successfully completed the 

required transformation in its niche, and fe was the number of effective gates 

used by the given circuit, thus providing a pressure against complexity. 

Each of the 32 niches had a different, randomly chosen input environment that 

had to be converted into the target output environment - each representing a 

different but equal size (in terms of input and output bits) transformation. 

Niches were connected in space on a fully connected network. This represented 

organisms evolving across a series of spatially connected niches. Circuits could 

access new niches by migration, which occurred to offspring with a probability 
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Pm=0.2. Each niche was equally likely to be the migration location. Each niche 

had an n=200 carrying capacity. During each generation, reproduction 

occurred by (linear) fitness proportional selection until 200 offspring were 

produced, unless all circuits in that niche had zero fitness. Only circuits with 

F>0 fitness could reproduce (i.e. those that successfully performed the 

necessary transformation). Each simulation started with a single organism the 

first niche. Because this organism had to be able to reproduce (otherwise the 

initial population would simply go extinct), the first organism’s genotype was 

selected by random search that continued until an organism was found that 

could successfully perform the transformation in its given niche. Using random 

search ensured that in each repetition, evolution began in different random 

starting position. 

4.7.2 Results 

Results are displayed in Figure 39. The aggregate results are a combination of 

1000 repetitions, where each repetition was 10,000 generations. Each 

repetition used the same 32 niches, and thus necessitated the same 32 

transformations. In all of the 1000 repetitions, one-gate solutions (i.e. circuits 

that achieved the necessary transformation with only one effective gate) were 

only found in 5 of the 32 niches. Solutions were found to all niches, but the 

number of gates in the simplest solutions found for each niche varied from 1 

to 4. 

The point of this exercise was to examine, to as great an extent as possible, 

the set of solutions available for 32 randomly chosen, equal size 

transformations in NAND circuit space. The results suggest that 

transformations of the same size can have a different minimum number of 

gates with which they can possibly be solved. This supports the existence of 

complexity lower bounds in logical systems, and also that complexity lower 

bounds can be different even from transformations that have equally complex 

inputs and equally complex outputs.  

 



Chapter 4: Complexity Lower Bounds 

 154 

 

Figure 39. The frequency of simplest circuit sizes (in terms of number of gates) 

found after each repetition of the NAND gate model. Only 5 of the 

32 transformations evolved solutions with a single gate. This 

suggests that complexity lower bounds exist in this common model 

of evolutionary function, and that transformations of different sizes 

can have different sized complexity lower bounds. 
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In this system, the search space of possible circuits is too large to search 

exhaustively. Although we carried out many repetitions of evolution for each 

transformation, we only sampled the space of available solutions. Therefore 

there remains a possibility that for the transformations for which no one gate 

solutions were found, such solutions do actually exist, but were not found by 

evolutionary search: Although this simulation gives us some idea of the likely 

distribution of complexity lower bounds in this system, it cannot provide us 

with absolute evidence that complexity lower bounds exist in this system. To 

rule out this possibility, for each of the 32 transformations in the experiment 

we exhaustively tried every possible one-gate circuit.  

We found that many transformations did not have one-gate solutions – 

providing support for the results of the simulation. This definitively illustrates 

that some transformations of equal size inputs and outputs have minimum 

solutions with different numbers of gates, proving that complexity lower 

bounds are generally present in this system of NAND logic gates, and also that 

transformations of the same size can have different size complexity lower 

bounds. 

Evidence from computer science (Papadimitriou 2003), electrical engineering 

(Hambley 2008) and chemical reaction networks (Vogel 1974; 

Papachristodoulou and Recht 2007; Hammett 1970) support the conclusions 

from the above model, and suggests that complexity lower bounds are a 

widespread phenomenon. 

4.8 Conclusions 

In this chapter we have introduced a novel complexity-driving mechanism in 

evolution. This framework shows how, given a difficult to change replicator 

such as DNA, the amount of environmental dissociation in a given niche 

dictates the minimum possible complexity of viable organisms in that niche – 

which given an environment with heterogeneous environmental dissociation, 

will generally result in a system-wide trend of increasing complexity of the 

most complex organisms (as new niches with higher environmental 

dissociation are colonised), coupled with local trends of complexity 

minimisation in individual niches.  This work therefore links computational 

complexity theory (e.g. Papadimitriou 2003) to biological evolution. We have 
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also identified the minimum necessary conditions for this complexity driving 

process to be expressed in evolution, which are simply a) a replicator whose 

replication functionality is too difficult to change, and b) a gradually varying 

environment with heterogeneous environmental dissociation. (We also include 

c) a selection pressure against complexity, although experiments suggest that 

this is may be an inescapable inherent part of the dynamics of the system and 

so may not need to be included in the list of necessary conditions.) Evidence 

that a) DNA has a very small range of conditions in which it can replicate 

(Lindahl 1993; Grogan 1998; Reaves et al. 2012; Marmur and Doty 1962), is 

the base replicator of all known life (Kornberg and Baker 1992; Reaves et al. 

2012; Ridley 2009); b) DNA has functionality that is extremely preserved 

across all life (Kornberg and Baker 1992); c) the biosphere is widely 

heterogeneous and often changes gradually in time and space (Manahan 2004; 

McBride 1994; Chester 2009; Solomon 2007), implies that these conditions are 

routinely met in natural biological systems. 

 

Why does natural evolution display a characteristic trend of increasing 

complexity of the most complex organisms? The chain of causation that brings 

about such trends that is suggested by this framework is: 

1. evolution is constantly pushed by population pressure and temporal 

environment change into new environment conditions  

2. which, because life on earth is based on a highly constrained replicator, 

often results in evolution favouring converting the environment back to 

conditions favoured by its replicator, as opposed to the replicator itself 

3. and such environment conversion problems have inherent lower bounds 

on the complexity of minimum possible solutions, whose magnitude 

depends on the environmental dissociation of the two environments 

being converted between 

4. which in turn results in requisite minimum organismal complexity for 

any given niche 

5. and combines with the inherent favouring of simplicity within evolution 

(for example, due to cost of resources, etc.) to produce a general, 

system-wide trend of increasing complexity of the most complex 
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organisms, coupled with local trends of complexity minimisation within 

individual niches. 

 

We suggest the name environmental dissociation complexity for this 

framework of complexity evolution. Environmental dissociation complexity also 

enables us to make some general, speculative predictions about complexity 

trends in general evolutionary systems, such as in life on other planets, or in 

artificial evolution: 

1. There is nothing inherent within ENS, or evolution as a whole to force 

complexity to occur; however, given a constrained replicator, complexity 

change will be controlled by environmental dissociation as evolution 

spreads to different environments.  

2. Therefore, life based on DNA (or another similarly constrained 

replicator), given a gradually varying environment with heterogeneous 

environmental dissociation will generally cause the characteristic types 

of multifaceted, environmentally mediated complexity trends observed 

in these simulations, including a system-wide general trend of 

increasing complexity of the most complex organisms and local trends 

of complexity minimisation. 

3. Therefore, if we were to ‘replay the tape of life (Gould 2000)’ on earth or 

on another planet (starting with DNA, or another similarly constrained 

replicator), we should generally expect to observe a similar overall 

pattern of complexity trends as we observe in the evolutionary record 

and in these simulations. 

4. However on other planets significant complexity could still be hampered 

even if life begins with DNA (or a similarly constrained replicator) if the 

environment is not sufficiently heterogeneous, or if the environment 

does not provide some path of gradual environmental change to allow 

gradual increase of environmental dissociation, and hence gradual 

increase of evolved complexity. 

 

It is important to stress that although the presence of complexity lower bounds 

imply that in many cases complexity increases may be driven by the particular 

environment transformation required in that niche, it is clear that other factors 
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not included here can affect and control complexity evolution. The existence of 

other such factors means that we should not necessarily expect to see a clear 

pattern of repeated homeogenesis as observed in the simple models in this 

chapter. For example, Lane argues that genome size can also act as a limiting 

factor on organismal complexity (Lane 2002). Lane argues that genome size 

was a key limitation that held back the evolution of eukaryotes from 

prokaryotes. In short, prokaryotes had energy limitations that in turn limited 

their genome size – and so eukaryotes (necessitating greater complexity and 

hence longer genomes) could only be evolved once this energy barrier was 

transcended (Lane 2002). Interestingly though, although this view focuses on 

genome length as a control on complexity, it may implicitly assume the 

existence of complexity lower bounds. If there were no complexity lower 

bounds on the eukaryotic niche, then presumably there should be arbitrarily 

simple viable solutions to the eukaryotic niche that would, therefore, not be 

affected by the genome size limitation. It is only if the eukaryotic niche has 

some lower bound of complexity that a limited genome size would deny 

evolution access to this niche. Interpreting this example from a general 

complexity lower bound perspective, in some cases it may be that the 

transformation required by a neighbouring, unoccupied niche (such as the 

eukaryote niche) requires an increase in complexity (due to its complexity 

lower bound) that is simply not possible given the genome size limitations. In 

this case, evolution would be halted, caught between two limitations: the need 

for extra complexity to carry out the new environment transformation (i.e. 

satisfy the complexity lower bound), and the limit on extra complexity due to 

genome size limitations. 

The point of this illustration is to demonstrate that many other physical factors 

no doubt limit organismal complexity in different ways (i.e. as complexity 

roadblocks) in combination with complexity lower bounds, resulting in more 

complicated trends in complexity than produced by the mechanisms described 

this chapter. In short, although we have described here a mechanism for 

complexity generation in evolution whose causal factors seem to be 

significantly widespread, this theory by no means discounts all other existing 

theories for complexity generation, which may well act alongside, or in concert 

with the mechanism we describe here. 
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4.8.1 Key Results 

The key claim of this chapter is that  

Environmental change motivates evolutionary change, but not 

necessarily any increase in complexity. However, given  

a. an organism with a replicator that can replicate in some small 

subset of environmental conditions, and whose replicator 

cannot feasibly be changed to replicate in conditions outside of 

this subset; 

b. an environment with heterogeneous environmental dissociation 

whose conditions change sufficiently gradually; 

c. an inherent selection pressure against complexity such as a cost 

of resources 

then as competition forces evolution to leave the original environment 

(a), and colonise new environments (b), the magnitude of 

environmental dissociation of a new environment will dictate the 

minimum possible complexity of viable organisms in that environment, 

resulting in a system-wide trend of increasing complexity of the most 

complex organisms, coupled with local trends of complexity 

minimisation in individual environments, caused by (c). 

 

This claim is supported by the following results.  

• Evidence that an evolutionary system that satisfies (a), (b) and (c) 

results in a general, system-wide trend of increasing complexity of 

the most complex organisms coupled with local trends of 

complexity minimisation in individual niches is provided by:  

o the positive control experiment results (section 4.5.2.1), that 

show a extremely significant increase in system-wide, mean 

organismal complexity, and 

o Figure 31 and Figure 32, that illustrate case studies of this 

general result, and show robust trends of local complexity 

minimisation in individual niches.  

• Evidence that environmental dissociation dictates the minimum 

amount of complexity in a given niche (and hence that 

heterogeneous environmental dissociation is a necessary condition 

to generate the observed complexity trends, and that environmental 



Chapter 4: Complexity Lower Bounds 

 160 

change alone is not necessarily sufficient to generate increases in 

complexity) is provided by results from negative control experiment 

1 (section 4.5.2.2 - Figure 33 and Figure 34). 

• Evidence that a sufficiently gradually changing environment is a 

necessary condition to generate the observed complexity trends is 

provided by results from negative control experiment 2 (section 

4.5.2.3 - Figure 35). 

• Evidence that the relative amount of selection pressure against 

complexity controls the complexity minimisation trends is provided 

by negative control experiment 3 (section 4.5.2.4). The results of 

this section suggest that a selection pressure towards complexity 

minimisation may be an inherent consequence of the internal 

dynamics of this system, and so could potentially be removed from 

the necessary conditions. 
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Chapter 5:  Summary and Conclusions 

5.1 Research aims 

Biology displays a general trend of increasing complexity of the most complex 

organisms (McShea 1994; McShea 1991; Bedau 2009). However, experimental 

attempts have generally failed to reproduce this type of open-ended 

complexity in biological systems or in simulations. As a result, how evolution 

generates this type of complexity is an open question (Bedau 2009; McShea 

2009).  

This study set out to determine:  

how evolutionary theory can be refined to better explain the apparently 

conflicting trends of generally increasing maximal complexity observed 

in nature, and complexity minimisation commonly observed in 

experiments.  

 

The research was focused in two areas in particular that resulted in two 

specific research questions. The first of these questions related to evolution by 

combining functions. Combining functions is a common theme in a range of 

evolutionary mechanisms and models capable of evolving non-decomposable 

functions (and non-decomposable functions are potential roadblocks to the 

evolution of complexity); furthermore, many of these mechanisms also 

produce transition like behaviour (Watson 2006; Lenski et al. 2003; Maynard 

Smith and Szathmary 1997). However, despite significant research in this area, 

there are two important outstanding problems. First, there is no agreed 

theoretical framework for evolution by combining functions that identifies its 

central mechanism and connects it with other related theories. Second, 

existing mechanisms involving combining functions have struggled to carry 

out evolution open-endedly over multiple levels of organisation. Accordingly, 

the first more detailed question addressed in this thesis was  

what is the underlying evolutionary mechanism of evolution by 

combining functions, and what enables natural evolution to perform it 

recursively across multiple scales of organisation? 
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The second more specific research question in this dissertation was related to 

what, in the absence of any roadblocks, drives evolution to complexity. Many 

theories have been proposed to account for large-scale trends in biological 

complexity, but most are not supported by computational or mathematical 

models and hence lack rigorously defined predictions, and there is no 

agreement that any sufficiently explain the trends observed (McShea 1991; 

Bedau et al. 2000; McShea 2009). In particular, there is no consensus on what 

explains the trend of increasing maximal complexity in evolution. To get to the 

root of this problem, the second more detailed research question in this 

dissertation was therefore  

what type of environmental changes, and under what evolutionary 

conditions, necessarily produce adaptations that are more complex 

rather than merely different? 

5.2 Summary of research findings 

This study has identified two new contributions to evolutionary theory that can 

provide potentially important progress in understanding trends of complexity 

in evolution:  

1. A theoretical framework for evolution by combining functions that 

includes a mechanism capable of recursively transitioning to 

progressively higher scales of organisation, and 

2. A new mechanism for the generation of complexity in evolution that can 

necessitate changes in complexity, and as a result causes characteristic 

trends of complexity that resemble the system-wide general trend of 

increasing maximal complexity observed in the biosphere, and local 

trends of complexity minimisation observed in many evolutionary 

experiments. 

 

These two contributions relate to the two more detailed research questions 

respectively. We will briefly describe the findings of each below. First, the 

theoretical framework for combining functions unites three major existing 

theories of non-decomposable function evolution (exaptation, building block 

mechanisms and tinkering) and shows that they essentially describe two core 

processes that constitute two separate types of exaptation:  
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1. shift exaptation, where the shift in function occurs at the level of the 

trait itself (as in the current description of exaptation), and  

2. combinatorial exaptation, where the shift in function occurs at a 

organisational level above the individual traits being combined (i.e. at 

the level of the combination of traits) 

 

Using this understanding, the framework illustrates that combinatorial 

exaptation is the central mechanism of evolution by combining functions. We 

also provided a model of combinatorial exaptation, building on previous work 

and building block models, to explore its properties. First, the model shows 

that for combinatorial exaptation to feasibly occur, some mechanism of 

‘encapsulation’ is required within the genotype-phenotype map that practically 

allows whole phenotypic traits to be redeployed as integrated units in the 

phenotype – and in particular, describes how this problem is caused by 

increasing ‘burden’ in the form of ‘internal selection’. Moreover, the model 

shows that to allow combinatorial exaptation to occur potentially open-endedly 

across multiple scales of organisation, the encapsulation mechanism must also 

evolve in a similarly open-ended manner. Finally, the model provides a solution 

to this problem. It shows that if the modular hierarchical structure of the 

genotype and that of the phenotype are somehow linked, this is sufficient to 

act as an open-ended system of encapsulation, and hence allow combinatorial 

exaptation to occur recursively and potentially open-endedly. Moreover, the 

model shows that physical constraints placed on the genotype-phenotype map 

by the type of development that occurs in biological organisms can introduce 

such a link. 

The second main contribution of this dissertation is in the form of a theoretical 

framework and set of models based on a particular type of combinatorial 

exaptation, that we term homeogenesis. The framework illustrates that 

homeogenesis is a potentially novel mechanism of adaptation to environment 

change because, unlike most existing mechanisms, does not change an 

organism’s existing function or its external environment, but instead occurs by 

organisms evolving an internal environmental ‘adapter’ that converts the new 

external environment into conditions expected by its existing functionality. 
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The evolution of C
4
 photosynthesis represents a well-studied biological 

example of this evolutionary mechanism. The computational model in chapter 

3 shows that in adapting organisms to environment change, homeogenesis 

commonly creates internal representations of previously experienced external 

environment conditions.  Thus, we show that homeogenesis can potentially 

explain the poorly-understood observation that biological organisms 

commonly contain conditions within their metabolisms that appear to 

represent the ancient environments in which their ancestors lived (Mulkidjanian 

et al. 2012) in a more detailed and mechanistic manner than Macallum’s 

‘chemistry conservation principle’ (which is commonly referred to and simply 

states that this occurs because the chemical traits of organisms are more 

conservative than the changing environment; Macallum 1926; Mulkidjanian et 

al. 2012). 

Most importantly, our simulation results show that in evolution by 

homeogenesis, some types of environment change essentially necessitate 

increases in organismal complexity, thus acting as a mechanism that can 

create robust complexity trends in evolution. Our simulations show that 

different types of environment change cause characteristic complexity change 

that resemble some common characteristic patterns in nature, including a 

system-wide general trend of increasing maximal complexity, and local trends 

of complexity minimisation. We carried out further analysis to explain these 

results. The resulting theoretical framework identifies that the key factor that 

dictates complexity trends in this system is the presence of environmental 

dissociation, which creates inherent complexity lower bounds on the 

complexity of possible solutions for survival in any given niche. The framework 

connects this property to similar lower bounds known in algorithmic 

complexity theory.  

Bringing these results together, we defined the mechanism of environmental 

dissociation complexity, a theoretical framework surrounding complexity lower 

bounds that describes how these lower bounds affect evolution. We used this 

theory to address one of the key motivating observations in this thesis: 

conflicting observations of a general trend of increasing complexity of the 

most complex organisms in nature and common trends of complexity 

minimisation in experiments. Our results show that having a replicator with 

difficult to change functionality (such as DNA), will often result in it being 
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easier for evolution to convert the external environment into the conditions 

required by this replicator, rather than change the functionality of the 

replicator itself (i.e. undertake homeogenesis or counteractive niche 

construction). The result is that in any given niche, evolution is required to 

generate a chemical or physical algorithm that is capable of converting 

between these two environments. Our simulation models to show that, in 

agreement with algorithmic complexity theory, each niche therefore introduces 

complexity lower bounds on the complexity of possible algorithms available, 

and hence enforces a niche-specific floor on the minimum complexity of viable 

organisms in that niche.  

Crucially, we showed that given a set of conditions that routinely occur in 

natural evolution, the mechanism of environmental dissociation complexity 

robustly produces a general, system-wide trend of increasing complexity of the 

most complex organisms, coupled with local trends of complexity 

minimisation within individual niches. We identified the set of conditions that 

produce these trends as (a) organisms’ have a replicator that can reproduce in 

a small subset of environmental conditions and cannot be feasibly changed to 

reproduce outside of those conditions; (b) evolution occurs in an environment 

with heterogeneous environment dissociation that varies sufficiently gradually, 

and (c) the system contains an inherent selection pressure against complexity 

such as a cost of resources. Given the weight of evidence that DNA satisfies (a) 

(Reaves et al. 2012; Lindahl 1993; Grogan 1998; Marmur and Doty 1962; 

Kornberg and Baker 1992), and that natural environments satisfy (b), and that 

evolution inherently contains selection pressures against complexity (e.g. Lane 

2010), we propose that these conditions are routinely met in natural biological 

systems. This work thereby helps to ease tensions between conflicting 

observations of general trends of increasing complexity of the most complex 

organisms in the biosphere and complexity minimisation in experiments. 

5.3 Contributions and Implications 

Taken together, the results of this study illustrate how the current theory of 

evolutionary could be refined to better explain the origin and nature of 

complexity trends observed in natural biological systems and in evolutionary 

experiments. 
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This work helps to clarify existing knowledge of complexity evolution by 

providing a new general theoretical framework for combining functions that 

unites tinkering, building block mechanisms and exaptation, and includes a 

mechanism capable of joining functions recursively across multiple levels of 

organisation. This supports existing work showing that evolution by combining 

functions may be an important biological process, and shows how it can occur 

in a potentially open-ended manner across multiple organisational levels. 

The research presented here also contributes to the understanding of 

complexity evolution by providing a new mechanism for complexity 

generation, termed environmental dissociation complexity.  This mechanism 

links evolutionary biology to known causes of complexity in mathematics and 

computer science. Furthermore, under specific conditions that are likely 

present in nature, the mechanism produces a general, system-wide trend of 

increasing complexity of the most complex organisms, coupled with local 

trends of complexity minimisation within individual niches. This helps to ease 

the tension between apparently conflicting observations of a general trend of 

increasing complexity of the most complex organisms in the biosphere, and 

common observations of apparent complexity minimisation in evolutionary 

experiments. Environmental dissociation complexity has broad implications. 

For example, one implication is that the difficulty associated with changing the 

function of DNA might have played a vital role in generating complexity in 

evolution on earth (with a more evolvable replicator, functional change might 

have been more available, potentially allowing adaptation without complexity 

increase). Environmental dissociation complexity also implies that it may be 

possible, in theory at least, to predict the complexity lower bound for viable 

organisms in a given niche, given knowledge of its core replicator and the state 

space of the surrounding environment. 

This dissertation also contributes to organismal biology. First, it provides an 

expanded theory of exaptation that contains two distinct types of exaptation. 

This could have important implications for understanding the mechanism of 

evolution in a range of evolutionary events attributed to exaptation, and 

provide deeper understanding of the place of exaptation in evolution. This 

research also contributes to organismal biology by providing, through 

homeogenesis, a mechanism of adaptation that can potentially explain the 

observation that organisms often contain internalised versions of previously 
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experienced environments. This could have a significant impact on current 

research that uses this observation to deduce environmental conditions of 

early life, in addition to wider related research (Mulkidjanian et al. 2012; 

Mulkidjanian and Galperin 2007). 

5.4 Limitations 

Finally, a number important limitations to this work need to be considered. 

First, in cases where clear examples from evolutionary biology are not 

provided, much of this work relies on evidence from models that are abstract 

representations of biological systems. These models build on biological fact, 

and illustrate the capabilities of non-teleological adaptive processes. However, 

in many cases there is much work to be done before their conclusions can be 

empirically supported in biological systems. Accordingly, such results should 

only be applied to real biological systems with the appropriate amount of 

consideration and qualification.  

Second, there are numerous limitations of the models used. In both 

combinatorial exaptation and homeogenesis models, function was not 

explicitly included. As a result, further assumptions were necessary about the 

nature of function that could have been avoided if function was included 

explicitly. In a similar manner, development was not explicitly included in 

either model; this again requires assumptions about development to be added 

(especially in the combinatorial exaptation model where developmental 

constraints cause linkage between genotype-phenotype map and phenotype 

structure). Again, including development explicitly would have increased the 

confidence in the simulation results. In a similar manner, in the model of 

homeogenesis, because the intention was to study its process, neither 

adaptation by changing the existing function nor niche construction were 

allowed. This restricts understanding of what conditions cause homeogenesis 

over other mechanisms of adaptation, and hence how likely it is to occur in 

natural evolution. Furthermore, both combinatorial exaptation and 

homeogenesis models had intentionally contrived environments that were 

chosen to illustrate particular properties of those respective processes. 

Although this was intentional, this prescribed nature limits understanding of 

how combinatorial exaptation and homeogenesis would occur in larger, less 

restricted and more realistic environments.  
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The theoretical frameworks described here also have significant limitations. For 

example, there are many other mechanisms capable of non-decomposable 

function evolution described in the literature that could potentially be, but 

were not incorporated into the analysis that resulted in the combinatorial 

exaptation framework. In a similar manner, environmental dissociation 

complexity describes how complexity lower bounds potentially affect 

evolution, but it is not particularly well connected with other theories of 

complexity evolution. In particular, environmental dissociation complexity has 

an obvious omission, which is that it does not take into account energy: 

Complexity evolution is described as the result of building machinery to 

convert one environment into another; however, in reality that machinery must 

also be powered, thus requiring other transformation pathways that glean 

energy from some environmental source, and transport it to sites within the 

metabolism as it is needed. 

5.5 Further work 

Considerably more work will be needed to determine the extent to which the 

mechanisms described in this dissertation apply in natural evolution. In more 

detail, these findings provide the following insights for future research: 

1. It would be interesting to test whether functions in biological organisms 

known to have been produced by combining functions (e.g. Alcock et al. 

2010; Flicek 2013) were facilitated by gene regulatory networks in the 

manner predicted in the combinatorial exaptation model, and also the 

extent to which gene regulatory network hierarchical structure imitates 

phenotypic structure as the model predicts.  

2. It would also be interesting to carry out further modelling of 

combinatorial exaptation in a less restricted environment, where the 

selection pressures necessary to evolve a given complex function were 

not necessarily present in a single niche, but were distributed across a 

heterogeneous spatiotemporal environment. The resulting 

spatiotemporal patterns could then be compared with those observed in 

biological adaptive radiations; moreover, the model could be used to 

explore links between evolutionary and ecological models and theory. 

3. Further research is also warranted on understanding the extent of 

homeogenesis in nature. The evolution of C
4
 photosynthesis is a well-



  Chapter 5: Summary and Conclusions 

 169   

studied example of evolutionary innovation, and that it apparently 

occurred by homeogenesis implies that homeogenesis may be a 

common process in biological evolution. Moreover, the complexity trend 

results of environmental dissociation complexity theory imply that 

homeogenesis may be common in the evolutionary record. A 

comprehensive review would help to elucidate this possibility. 

4. Finally, it would be interesting to test the environmental dissociation 

complexity hypothesis in a real biological system, where simple bacteria 

were evolved across a range of environments with varying 

environmental dissociation, while measuring their capability for 

homeogenesis, the resultant effects on their evolving metabolism, and 

the resulting trends in metabolic complexity. 

 

5.6 Concluding remarks 

In summary, the theory, simulations and analytic results in this dissertation 

demonstrate (a) how evolution can, when complexity is beneficial, scale to 

complexity over multiple organisational levels, and (b) the conditions in which 

complexity is beneficial in evolution. These models describe a set of 

phenotypic, ontogenetic and environmental conditions that are generally 

present in biological evolution, in which evolution consistently generates an 

overall trend of increasing complexity of the most complex organisms. 
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