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Abstract 24 

An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary 25 

production (PP) using a combination of irradiance and fluorescence vertical profiles.  This 26 

method provides estimates for depth-resolved and temporally evolving PP on fine spatial 27 

scales in the absence of ship-based calibrations. We describe techniques to correct for known 28 

issues associated with long autonomous deployments such as sensor calibration drift and 29 

fluorescence quenching.  Comparisons were made between the Seaglider, stable isotope (
13

C) 30 

and satellite estimates of PP.  The Seaglider-based PP estimates were comparable to both  31 

satellite estimates and stable isotope measurements.   32 

 33 
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Introduction 35 

Primary production (PP) is the carbon fixed by plants through photosynthesis, the basis of 36 

almost all terrestrial and marine food webs.  Marine phytoplankton fix 45-50 Gt C yr
-1

, 37 

approximately half of global PP.
1,2 

PP is critical for regulating the drawdown of atmospheric 38 

carbon dioxide
3
 and the air-sea exchange of radiatively important trace gases.

4-6
 In situ 39 

measurements of PP in the open ocean are sparse and avoid winter, making it difficult to 40 

resolve and separate spatial and temporal variability.
1 

Regular fixed-point sampling is 41 

difficult to extrapolate due to spatial variability. Satellites provide global estimates of oceanic 42 

PP over a range of spatial and temporal scales
7-11

 but, while satellite-derived surface 43 

chlorophyll captures the variability in PP better than any other remotely sensed parameter,
12

 it 44 

relies on cloud free skies and only observes the top few metres, thereby omitting features 45 

such as subsurface chlorophyll maxima (SCM).
13

 As a result, PP estimates derived 46 

exclusively from satellite data typically underestimate spatial and temporal variability.
1 47 

Methods have been developed to accommodate SCM,
14

 but are based on broad statistical 48 

relationships.
15

  49 

 50 

Significant improvements in PP estimates from satellite surface chlorophyll fields are 51 

possible with simultaneous in situ chlorophyll and PAR profiles.
12

 Underwater gliders 52 

provide such data, improving the vertical and temporal resolution of observations.
16,17 

 53 

However, gliders use fluorescence as proxy for chlorophyll 
19

 and long-duration missions 54 

may lack sufficient in situ calibration.
18,20

 55 

 56 

We describe a method for estimating PP at high vertical and temporal resolution, using glider 57 

chlorophyll fluorescence and irradiance profiles.  Significantly, it uses irradiance to calibrate 58 
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fluorescence, and therefore needs no in situ samples for calibration. This method makes 59 

possible depth-resolved continuous estimates of PP over a full seasonal cycle, in all weather. 60 

 61 

 62 

2. Datasets 63 

2.1 Area of Study 64 

Data were collected in the northeast Atlantic Ocean (48
o
 41’ N, 16

o
 11’ W) as part of the 65 

OSMOSIS (Ocean Surface Mixing, Ocean Submesoscale Interaction Study).  This site is 66 

approximately 40 km southeast of the Porcupine Abyssal Plain sustained observatory (Figure 67 

1).
21,22 

  68 

 69 

Currents in this area are generally weak,
23,24

 with mean dive averaged currents of 11 cm s
-1

.
 70 

Patchy phytoplankton distributions with fine spatial scales (<10 km) have been observed in 71 

this region.
25

   Diatoms dominate the spring bloom, succeeded by prymnesiophytes and 72 

dinoflagellates.
26, 27

 In summer, diatoms form an SCM at the base of the mixed layer.
28, 29

 73 

Due to the patchy nature of the phytoplankton distribution, advection of spatial variability can 74 

result in apparent variations in the phytoplankton community structure on daily timescales.
30

 75 

 76 

2.2 Seaglider data 77 

A Seaglider is an autonomous, buoyancy driven vehicle that profiles to a depth of 1000 m 78 

with a 0.5-1 m vertical sampling resolution along a saw-tooth trajectory.
31-33 

Seaglider SG566 79 

was deployed from April to September 2013 sampling a 15km x 15km area, following a 80 

figure-of-eight path with an average 1000 m profiling time of 2.6 hours for an up/down cast 81 

(Figure 1).  82 

 83 
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SG566 was equipped with an unpumped Seabird SBE13 CT sail (conductivity-temperature; 84 

Seabird Electronics, Bellevue, USA), a Paine pressure sensor (Paine Electronics, East 85 

Wenatchee, USA), a Triplet Ecopuck (Wetlabs, Philomath, USA) measuring chlorophyll 86 

fluorescence and optical back scatter, and a broadband 4π cosine Photosynthetically Active 87 

Radiation (PAR) sensor (400-700 nm; Biospherical Instruments, San Diego, USA). Raw 88 

measurements from the CT sail were initially calibrated using manufacturer-supplied 89 

coefficients, with further corrections to account for thermal lag.
34

 Glider salinities were 90 

calibrated against cruise data.
35 

Pressure measurements were corrected to remove long term 91 

drift and to account for pressure hysteresis within each dive. 92 

 93 

Manufacturer calibrations were initially applied to data from the Wetlabs Triplet and 4π PAR 94 

by subtracting the instrument blank and applying a scaling factor. The manufacturer’s 95 

calibration for chlorophyll fluorescence is based on the sensor’s response to a culture of the 96 

phytoplankton species Thalassiosira weissflogiiat at a known chlorophyll-a concentration 97 

(Figure S3).
36

 Our secondary calibration is outlined below. Other empirical methods have 98 

been developed to calibrate fluorescence profiles including ones that take into account the 99 

presence of an SCM
20

 but by using in situ PAR data a scale factor can be derived which can 100 

change dynamically and hence reflect changes in community composition (see Section 4.2). 101 

The manufacturer’s PAR sensor calibration uses a traceable 1000 watt type FEL Spectral 102 

Irradiance Standard. All data were aggregated into 2 m depth intervals.    103 

 104 

To obtain estimates of PP we used calibrated chlorophyll fluorescence, temperature and PAR 105 

(Sections 2.5-2.7, Figure S1). Optical backscatter measurements were used to correct for 106 

fluorescence quenching,
37

 and temperature, salinity and density were used to estimate mixed 107 

layer depths. 108 
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 109 

2.3 In situ samples 110 

Three cruises to the survey region were conducted by the RRS James Cook: glider 111 

deployment (JC085; April 14-29), mid-mission (JC087; June 1- 18) and glider recovery 112 

(JC090; September 1-16).  Water samples for chlorophyll-a  were collected on all cruises 113 

from up to six depths across the euphotic zone using a Seabird 911 plus CTD-Niskin rosette 114 

system. Chlorophyll-a concentrations were measured using 250 ml water samples filtered 115 

onto 25 mm Whatman glass fibre filters (GF/F; nominal pore size 0.7 m). Chlorophyll-a 116 

pigment was extracted in 6 ml of 90% acetone at 4
o
C in the dark for ~20 hours before 117 

measurement on a Turner Designs Trilogy fluorometer calibrated against a pure chlorophyll 118 

standard (spinach extract, Sigma Aldritch).
38

 Two ship-fitted cosine collectors (Skye 119 

Instruments, UK) measured incident PAR. 120 

 121 

Measurements of PP using the 
13

C method
39 

were made between 30
th

 May and 18
th

 June on 122 

JC087 only.  Water samples were collected from pre-dawn CTD casts at five depths: 55%, 123 

20%, 7%, 5% and 1% of surface irradiance based on profiles obtained from previous midday 124 

CTD casts. Each 1 litre water sample was added to an acid-rinsed Nalgene polycarbonate 125 

bottle, which was wrapped with optical filters (Lee Filters, Hampshire, UK) to replicate the 126 

appropriate irradiance levels. Each bottle was spiked with 200 μL of 
13

C labelled sodium 127 

bicarbonate (0.65g in 50 ml of pH adjusted milli-Q water), corresponding to an addition of 128 

255mol L
-1

 (or ~1% of ambient (~2084 mol L
-1

) dissolved inorganic carbon 129 

concentrations). Sealed sample bottles were placed in on-deck incubators, which were 130 

flushed with surface seawater for 24 hours. Afterwards, each sample was filtered onto an 131 

ashed (450
o
C, 6 hours) 25mm GF/F (Whatman) filter and rinsed with a weak HCl solution (1-132 

2%) to remove inorganic carbon before being stored frozen at -20
o
C. Filters were oven dried 133 
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and encapsulated in tin capsules. Samples were analysed for 
13

C isotopic enrichment at the 134 

Scottish Association for Marine Science using an ANCA NT preparation system coupled to a 135 

PDZ 20-20 Stable Isotope Analyser (PDZ Europa Scientific Instruments, UK). PP was 136 

calculated from the stable isotope results using standard equations.
40

 137 

 138 

2.4 Satellite ocean colour data and primary production estimates 139 

We obtained 1 km resolution daily chlorophyll composites of MODIS Aqua data from the 140 

NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS). For each 141 

Seaglider surfacing the satellite data pixel that matched the position and date was extracted. 142 

Cloud cover resulted in data gaps in satellite coverage and surface match ups; these time 143 

periods were omitted from the analysis.  144 

 145 

Full depth profiles of chlorophyll were calculated for satellite data using statistical 146 

relationships relating satellite chlorophyll to the shape of the chlorophyll profile at depth 147 

(Supporting Information).
14

  148 

 149 

For an alternative estimate of PP, for comparison to the glider-based estimates, these profiles 150 

and surface PAR were inputs to a PP algorithm
41 

that couples the glider photosynthesis 151 

model
42

 (Section 3.3) to the HYDROLIGHT radiative transfer code
43

 which uses sea surface 152 

temperature, PAR and day length to more accurately estimate irradiance with depth.   153 

 154 
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2.5. Irradiance corrections, calibrations and calculation 155 

PP is best parameterised using spectral irradiance, as shorter wavelengths are absorbed much 156 

faster than long wavelengths, therefore blue light penetrates much deeper into the water 157 

column.
44 

Non-spectral methods can overestimate PP by as much as 50% if only broadband 158 

PAR is used.
10 

A number of calculations are necessary to spectrally resolve the glider 159 

broadband PAR observations. 160 

  161 

The glider only records subsurface PAR, so we first estimate surface irradiance for 162 

comparison with a surface irradiance model.  We then decompose the surface irradiance into 163 

spectral components. Irradiance at depth was calculated using spectrally-weighted 164 

algorithms.
46 

Details are described below.  165 

 166 

SG566 returned 1325 profiles of chlorophyll and PAR (downcast and upcast counted 167 

separately). Profiles where PAR intensity increased with depth (due to passing cloud cover 168 

and/or glider rolls)
46

 were excluded from the analysis (319). We also excluded night-time 169 

profiles (417) leaving a total of 589 simultaneous profiles for analysis. 170 

 171 

2.5.1 Estimating surface irradiance from subsurface glider measurements 172 

The fraction of solar irradiance entering the water column depends on the amount of sunlight 173 

reflected by the sea surface. This is calculated by separating the diffuse and direct 174 

components of irradiance using determinations of the Fresnel reflectance and the amount of 175 

foam (see Supporting Information). The total reflectance (𝑟𝑡𝑜𝑡) is the sum of direct (𝑟𝑑) 176 

reflectance and diffusive reflectance (𝑟𝑑𝑖𝑓𝑓). 177 

𝑟𝑡𝑜𝑡 = 𝑟𝑑 +  𝑟𝑑𝑖𝑓𝑓  [1] 178 

 179 
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Glider PAR was extrapolated to just below the surface by assuming exponential attenuation. 180 

The following equation was then applied to calculate PAR just above the surface, 𝐸(0+) 181 

𝐸(0+) =  
𝐸(0−)(1−𝑅�̅�)

( 1− 𝑟𝑡𝑜𝑡 )
    [2] 182 

where 𝐸(0−) is the irradiance just below the surface and 𝑅 the irradiance reflectance (usually 183 

< 0.1 in ocean waters). The water-air Fresnel reflection for the whole diffuse upwelling 184 

radiation (𝑟̅)  has a value of 0.48.
44 𝑅 and 𝑟̅ are needed to obtain the upwelling irradiance 185 

flux, which is subsequently reflected back down upon reaching the water surface.
44

 186 

 187 

2.5.2. Calculating spectral irradiance 188 

Surface PAR from the Seaglider (Eq. 2) was spectrally decomposed into 5 nm wavelengths, 189 

𝐸0(𝜆), using a look-up table
41

 created by generating a clear sky run of a radiative transfer 190 

model,
47

 which is specific for oceanographic applications and adapted to include the effects 191 

of cloud cover.
48

 For a given day, this model is run for noon using the glider surfacing 192 

position and relevant meteorological parameters to attenuate irradiance through the 193 

atmosphere (British Atmospheric Data Centre, BADC). The model outputs a spectrally 194 

resolved, full day irradiance time series just above the surface of the ocean for the location of 195 

interest. The integrated irradiance over all wavelengths for the time of the glider 196 

measurements was calculated in μmol quanta m
-2

 s
-1

. The ratio between 𝐸(0+) from Eq. 2 197 

and the integrated clear sky run is used to scale the spectral values for the day in question 198 

using each profile in that day to get spectral irradiance over the whole day at half hour 199 

intervals.  200 

 201 

2.5.3. Spectral irradiance through the water column 202 

To calculate spectral irradiance (E(z,))  at a given depth in the water column we used the 203 

equation,
49

 204 
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𝐸(𝑧, 𝜆) =  𝐸0(𝜆) ∫ exp
0

𝑧
( [−𝐾𝑤(𝜆) + 𝐾𝑐 ( 𝜆)] 𝑧 ), [3] 205 

where 𝐾𝑤(𝜆) is the attenuation coefficient associated with water and 𝐾𝑐 (𝜆) is the attenuation 206 

coefficient associated with chlorophyll and other dissolved material at specific wavelengths, 207 

. Morel et al.
45

 calculate 𝐾𝑐(𝜆) as 208 

𝐾𝑐(𝜆) = 𝜒𝑐(𝜆)𝐶ℎ𝑙𝑒(𝜆).  [4] 209 

The coefficient 𝜒𝑐  and the exponent e() are both functions of wavelength and Chl is 210 

chlorophyll concentration (mg m
-3

). Wavelengths within the PAR broadband range are used 211 

at 5 nm intervals. 212 

 213 

 214 

2.6. Chlorophyll Corrections and calibrations 215 

As the manufacturer’s calibration is often insufficient
20,50  

a number of steps are carried out to 216 

calibrate the chlorophyll estimates.  First, the fluorescence data is corrected for quenching. 217 

Second, a scale factor for chlorophyll-fluoresence is estimated by comparing modelled to 218 

observed irradiance attenuation. Details are given below (Figure 1). 219 

 220 

2.6.1 Quenching Corrections 221 

Daytime chlorophyll fluorescence exhibited fluorescence quenching in the top 20 m with low 222 

fluorescence during high irradiance. To correct for quenching we have used the night-time 223 

relationship between fluorescence and optical backscatter (see Supporting Information for 224 

details).
38,51 

 We call the result the uncorrected-chlorophyll. 225 

 226 

2.6.2 PAR-based chlorophyll calibrated 227 

We calibrated the chlorophyll fluorescence sensor using the PAR measurements and Eq. (3)
49 228 

to model the irradiance attenuation due to chlorophyll.
46

 The uncorrected-chlorophyll profile 229 
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(with dives and climb treated separately) was divided by a scaling factor ranging from 0.2-25 230 

in intervals of 0.2 and the spectral irradiance profile recalculated for each value based on the 231 

resulting scaled chlorophyll concentration profile and surface irradiance (Eq. 3 and 4). 232 

Modelled values of spectral irradiance were then integrated over all wavelengths (400-700 233 

nm) to compare to glider PAR measurements. A root mean squared error (RMSE) was 234 

calculated between the modelled and measured PAR values, over all depths (typically 50 235 

points), for each scale factor.  236 

 237 

For each profile the scale factor with the lowest RMSE was then used to scale the 238 

uncorrected-chlorophyll concentration. This approach produces an independent scaling factor 239 

for each dive/climb, allowing for drift in the fluorometer to be corrected.  The method 240 

assumes Case I water characteristics where CDOM and particulates co-vary with 241 

phytoplankton.
51,52 

This method can be used if the glider PAR sensor is uncalibrated provided 242 

the fluorescence-chlorophyll relationship is linear as we are only calculating attenuation 243 

rather than absolute PAR. 244 

 245 

Variation in the scaling factor over a deployment period may result from poorly resolved 246 

PAR profiles (e.g. significant glider rolls or cloud cover). Profile-to-profile variability was 247 

reduced by using the median scaling factor calculated for a 10-day moving window. A 10-248 

day window was picked arbitrarily, but no significant difference was seen using 6, 8 or 10 249 

days. Longer time intervals resulted in over-smoothing of the scaling factor.  250 

 251 

Final PAR-corrected chlorophyll concentrations for each profile were obtained using the 252 

appropriate 10-day median scale factor (Figure 2). These calibrated chlorophyll profiles 253 
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(Figure 3) were used as input into the PP model, along with the spectral downwelling PAR 254 

(Section 3.1). 255 

 256 

2.7. Calculating Primary Production 257 

PP was calculated with the glider profiles of irradiance and PAR-corrected chlorophyll using 258 

depth, time and wavelength-resolved irradiance.
42

  PP is represented by a triple integral, 259 

integrating over day length (L), depth (D) and wavelength  from 1=400nm to2=700 nm, 260 

 261 

𝑃𝑃 = 12 ∫ ∫ ∫ 𝐶ℎ𝑙(𝑍)𝑃𝐴𝑅(𝜆, 𝑍, 𝑡)𝑎∗(𝜆)𝜙𝜇(𝜆, 𝑍, 𝑡)𝑑𝜆𝑑𝑍𝑑𝑡
𝜆1

𝜆2

𝐷

0

𝐿

0
  [5] 262 

where 𝑎∗ is the absorption cross section per unit of chlorophyll (m
-1

), 𝜙𝜇 is the net growth 263 

rate (mol C (mol quanta)
-1

). These values are parameterised as in Morel et al. (1996, see 264 

Supporting Information for details).
54

 Each separate dive and climb were assigned an average 265 

time and position (latitude and longitude) for the profile. The model requires surface 266 

downwelling spectral irradiance (Wm
-2

 nm
-1

), which is provided by the glider PAR sensor 267 

(Section 3.1.3.).
 
  268 

 269 

3. Results 270 

3.1 Glider chlorophyll  271 

3.1.1. PAR-Corrected Chlorophyll data 272 

The scale factor used to calibrate the chlorophyll data (Figure 2) has a mean of 3 (range 0.6 – 273 

11). In May there is a peak of 5 but only 4 profiles were used to calculate this scale factor 274 

(range 1.2-8.8), as the sensors were turned off for a time to save battery, so it is not as well 275 

constrained as in other months when more profiles were available. Starting in July the scale 276 

factor was less variable (range 1.2 - 1.8) for the remainder of the deployment.  277 

 278 
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The chlorophyll profiles are shown in Figure 3 for the whole deployment period. 279 

Concentrations were <1.5 mg Chl-a m
-3 

from May until July, when they increased to >2 mg 280 

Chl-a m
-3

. Before July the chlorophyll concentration varied little within the top 30 m. A SCM 281 

started to form towards the end of July, with maximum chlorophyll concentrations >4 mg 282 

Chl-a m
-3

 at a depth of 30 m. Surface concentrations during August were very low, <0.6 mg 283 

Chl-a m
-3

. By the end of August the SCM deepened to 40 m and maximum concentrations in 284 

the SCM decreased to <2.5 mg Chl-a m
-3

, with surface concentrations <0.4 mg Chl-a m
-3

.  285 

 286 

3.1.2 Comparison of glider and bottle-sample estimates of chlorophyll 287 

Figure 4 compares discrete bottle-sample chlorophyll and PAR-corrected glider chlorophyll 288 

for the 3 cruises. In late April (JC085) and prior to the spring bloom, the discrete chlorophyll 289 

concentrations were comparable to the PAR-corrected chlorophyll concentrations. Surface 290 

concentrations ranged from 0.25 – 0.7 mg Chl-a m
-3

 and 0.15 – 0.8 mg Chl-a m
-3

 for the 291 

discrete samples and glider estimates, respectively. The range in glider-based chlorophyll 292 

concentrations was slightly larger; likely due to the greater number of glider profiles 293 

detecting a wider range of concentrations. At depths between 75 - 150 m, bottle samples were 294 

approximately 0.1 – 0.2 mg Chl-a m
-3

 higher than the glider, which effectively measured 295 

close to zero at these depths, which is below the euphotic depth (60 m). 296 

 297 

In June the majority of discrete chlorophyll measurements were elevated compared to the 298 

glider estimates, particularly throughout the upper 50 m. Surface concentrations ranged from 299 

0.05 - 1.2 mg Chl-a m
-3 

for the glider compared with 0.08 - 1.8 mg Chl-a m
-3 

from bottle 300 

samples (Figure 4). There was no offset between the glider and discrete measurements below 301 

75-150 m, suggesting no systematic error. Chlorophyll values below 100 m were <0.4 mg 302 

Chl-a m
-3

, with the majority of the glider and discrete measurements <0.2 mg Chl-a m
-3

. 303 
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 304 

For the final cruise in September (JC90) discrete and glider chlorophyll estimates were 305 

comparable (Figure 4). Surface values ranged between 0.4 and 1 mg Chl-a m
-3

 in the discrete 306 

water samples, whereas the glider chlorophyll ranged from <0.1 to 0.75 mg Chl-a m
-3

. A 307 

SCM around 40 m was measured by both data sets, with similar maximum values (3.3 mg 308 

Chl-a m
-3

). 309 

 310 

The lateral distances between CTD and glider profiles were compared with the differences in 311 

surface chlorophyll concentrations (Figure S4, Supporting Information, Spearman
55

 R
2
 = 312 

0.53, p <0.001, n = 19). Surface chlorophyll differences decrease with distance, suggesting 313 

that spatial differences remain an important consideration in the comparison of glider and in 314 

situ data. Many of the CTD profiles were located >30 km away from the glider making it 315 

possible that spatial variability associated with the onset of the spring bloom at this time 316 

affects the comparison. This is also consistent with the glider data, which can show 317 

significant variations in water mass properties and chlorophyll concentrations along a single 318 

15-km transect.  Cloud cover hinders examining this from satellite images in more detail. 319 

 320 

 321 

3.2 Depth Integrated Primary Production 322 

3.2.1 Depth integrated glider estimates of primary production 323 

Glider based estimates of PP ranged from 0.38 to 30 g C m
-2

 d
-1

 over the 5 months, displaying 324 

strong temporal variability. These estimates have been compared to ship-based 
13

C 325 

measurements and 1 km satellite estimates (Figure 5).  326 

 327 
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The 
13

C PP estimates from June are compared to glider estimates in Figure 5a. Glider profiles 328 

on the same day were averaged together for comparison. 
13

C PP increased from 6
th

 to 14
th

 329 

June, with values ranging from 0.5 – 1.9 g C m
-2

 d
-1

, whereas the glider estimates of PP were 330 

relatively consistent, varying from 1.1 to 1.6 g C m
-2

 d
-1

 over the same time period. Glider PP 331 

measurements were higher on average by 0.17 g C m
-2

 d
-1

 (or 39%) but offsets were also 332 

highly variable (Figure 5a).  333 

 334 

PP estimates obtained using the uncorrected-chlorophyll profiles are also presented in Figure 335 

5a. On average this resulted in productivity estimates over two fold higher than the 
13

C 336 

observations.  337 

 338 

In Figure 5b we present a time series of water column integrated PP over the five month 339 

glider deployment, in conjunction with 
13

C measurements already shown in Figure 5a. The 340 

glider estimates were higher than the 
13

C measurements but not unreasonably so. Integrated 341 

PP rates from late April to May were ~1 g C m
-2

 d
-1 

increasing to a maximum of 3 g C m
-2

 d
-1

 342 

in July. Towards the end of July and through August rates decreased to 1.5 g C m
-2

 d
-1 

but 343 

remained highly variable, fluctuating by ±0.6 g C m
-2

 d
-1

. Due to the high level of cloud 344 

cover there were no satellite pixel matches during the time period when the in situ 345 

measurements were taken and therefore a comparison with satellite and ship-based 346 

measurements was not possible. 347 

 348 

Integrated PP estimates from the glider and satellite were also compared (section 2.3, Figure 349 

5c). The correlation between the satellite and glider estimates of surface PP was modest but 350 

nevertheless statistically significant (Figure S5, Supporting Information; Spearman
55

, R
2
 = 351 

0.322, P < 0.0001, n=122). In general the glider shows higher integrated estimates of PP than 352 
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the satellite. Dissimilarity between estimates is likely due to differences in the PAR values 353 

and between the modelled and observed SCM. The mean root mean squared error between 354 

the modelled and observed chlorophyll profiles was 0.9 mg Chl-a m
-3

 (range 0.58–1.36 mg 355 

Chl-a m
-3

). 356 

 357 

Figure 5c shows that the satellite and glider have reasonably good agreement during the 358 

deployment with similar variability, trends and magnitude in PP. Both datasets show an 359 

increase in production from May to June (spring bloom) and a production maximum in July, 360 

with maximum rates of 3 and 2 g C m
-2

 d
-1 

decreasing again in late July; for the glider and 361 

satellite respectively. Although glider estimates of PP are on average 16% higher than 362 

satellite estimates.  363 

 364 

3.2.2 Glider estimates of seasonal primary production vs literature estimates 365 

Due to the limited number of 
13

C in situ measurements we also present a comparison with 366 

productivity estimates from the literature for the same region (Table 1).
25,56-59 

The literature 367 

values span 0.3 – 2 g C m
-2

 d
-1

, comparable with our 
13

C measurements. However, towards 368 

the end of June and July the literature observations are lower than those estimated from the 369 

glider and our 
13

C measurements. This may be inter-annual variability. Overall our 
13

C values 370 

are within the range of literature values supporting the use of this data to compare to the 371 

glider estimates. 372 

 373 

3.3 Depth resolved primary production 374 

Depth resolved PP over the deployment (Figure 6) shows that throughout May and June PP 375 

was highest at the surface and decreased with depth due to irradiance attenuation. In July, as 376 



 17 

chlorophyll and irradiance concentrations increased PP also increased with maximum surface 377 

rates of 0.45 g C m
-3

 d
-1

. In late July a subsurface production maximum formed with PP rates 378 

of 0.2 – 0.3 g C m
-3

 d
-1

. The production maximum deepened throughout August from 15 to 30 379 

m. The productivity maximum was located just beneath the mixed layer but also below the 380 

optical sampling depth for remote sensing. 381 

 382 

The euphotic depth was 60-80 m throughout May and June, with variable mixed layer depths 383 

(MLD) of between 40 and 130 m. The euphotic depth shoaled to 35 m in July coincident with 384 

increasing chlorophyll concentrations and greater irradiance attenuation
53

 and a shoaling of 385 

the MLD due to either surface forcing (heating) or a re-stratification through physical 386 

processes such as Ekman transport, mixed layer instabilities and lateral advection. The 387 

subsurface production maximum in late July and August was around the same depth as the 388 

mixed layer. However the SCM was deeper by 10 m than the production maximum, and 389 

below the mixed layer, suggesting that the SCM was preferentially located where nutrient 390 

concentrations were higher. In August the SCM was located between the MLD and the 391 

euphotic depth (Figure 3).  392 

 393 

Depth profiles of the 
13

C productivity measurements are shown in Figure S6 (Supporting 394 

Information) alongside the range and mean of the coincident glider profiles. Although the 
13

C 395 

productivity rates were lower than the mean glider profile, they lie mostly within the range of 396 

glider data. Some of the 
13

C profiles show a production maximum around 30 m whereas the 397 

glider estimated profiles do not. Two profiles also show higher production at depth than 398 

estimated from the glider. 399 

 400 

4. Discussion 401 
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4.1 Advantages of calculating Primary Production using gliders 402 

Fine scale measurements are important since submesoscale features are often present, such as 403 

highly productive filaments.
25

 Furthermore, PP may change over daily time scales due to 404 

changes in irradiance and mixed layer depth. Such short timescales (hours) are not resolved 405 

by remote sensing, but with several profiles a day a glider can observe these changes.
 
Early 406 

June showed differences in integrated production rates between sequential dives of between 407 

0.3 and 1 g C m
-2

 d
-1

. The average daily production was <2 g C m
-2

 d
-1

, so this difference was 408 

significant. Small scale temporal variations in PP may be important in determining the carbon 409 

budget,
25

 especially in areas of high variability of phytoplankton.  410 

 411 

A key advantage of using gliders is the ability to resolve subsurface features, previously only 412 

possible using ship-based measurements. Satellite production estimates are only resolved to 413 

the first optical depth and it has been shown that including fluorescence profiles significantly 414 

improves estimates.
12

 Knowing the distribution of chlorophyll at depth is considered vital for 415 

ecological studies.
60

 Glider production rates were 16% higher than satellite estimates during 416 

the deployment suggesting that satellite-based estimates of production may be slightly 417 

underestimating PP during summer months in this region. Subsurface chlorophyll maxima 418 

contribute significantly to integrated PP in temperate latitudes so implementation of 419 

subsurface glider profiles will improve regional estimates.
61

 Subsurface production maxima 420 

are common globally and this contribution is often modelled incorrectly for specific regions 421 

when using satellite colour to estimate PP.
15,62,63

 Therefore gliders have considerable 422 

potential to improve satellite estimates of PP.
12

 423 

 424 

Gliders also have the benefit of being able to continuously sample in all weather conditions. 425 

Ship-based measurements are weather and time dependent. Satellite coverage is restricted by 426 
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cloud cover, which can introduce sampling bias.
64,65

 During this deployment 467 profiles out 427 

of 589 (79 %) had no direct satellite matchup due to high levels of cloud cover, equating to a 428 

loss of 105 days of satellite coverage over the whole deployment of 141 days. Using 1 km 429 

pixel match ups is a strong constraint impacting the number of match-ups.  430 

 431 

 432 

4.2 Limitations of glider estimated primary production 433 

The spectral constants for chlorophyll used in the irradiance attenuation calculations (Eq. 4), 434 

differ compared to other literature values due to regional differences in community 435 

composition and/or temperature.
66,67

 Additional uncertainty is introduced when broadband 436 

PAR is split spectrally. The method assumes that clouds, changes in atmospheric absorption 437 

and season, influence spectral values of PAR linearly.
41

 The photosynthetic rate per unit of 438 

biomass (Eq. 5) remains the largest unknown in the PP algorithm because of its high 439 

variability in the ocean.
68

 440 

 441 

Fluorescence measurements, which are only a proxy for chlorophyll-a, can be difficult to 442 

interpret. The fluorescence yield per unit of chlorophyll is known to change in response to 443 

changes in community structure.
69 

The changing scale factor used to calibrate glider 444 

chlorophyll and the rapid decrease in the scale factor seen in July (Figure 2) may therefore be 445 

indicative of post bloom changes to the community composition. We cannot verify this with 446 

the data available.  However, using a time-dependent scale factor to probe community 447 

structure would be interesting topic to explore. 448 

 449 

Measurements from autonomous platforms present their own challenges. Sensor calibrations 450 

may drift with time or with biofouling.
18

 Additional calibration measurements collected at 451 
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deployment and recovery could indicate this. For this deployment no biofouling was noted at 452 

recovery and there was no drift in dark counts at depth, so fouling is unlikely. Discrepancies 453 

were seen between bottle data and the PAR-corrected glider chlorophyll. As few CTD casts 454 

were made near the glider and this area is known to display patchy chlorophyll 455 

distributions,
25 

comparisons can be complicated. However the data are broadly consistent 456 

suggesting that glider productivity rates are generally appropriate for the region.  457 

 458 

4.3 Future applications 459 

While we have used gliders to quantify PP in a region of the North Atlantic, this approach 460 

will allow improved estimates of PP more widely in the future, particularly in regions with 461 

SCMs and/or considerable cloud cover. We have demonstrated the suitability of gliders for 462 

capturing fine-scale temporal changes in production at daily timescales over a single season. 463 

Gliders allow coincident and simultaneous measurements of physical parameters, including 464 

density, temperature, oxygen and vertical water velocity.
70,71

 The coincident analysis of the 465 

physical environment allows an improved understanding of influences on phytoplankton 466 

growth. Small-scale physical processes may account for a significant amount of new 467 

production.
50,72-73 

Several recent studies have used high resolution data from gliders to 468 

analyse biological and physical connections.
74-76 

Simultaneous estimates of PP will further 469 

resolve biological and physical connections. 470 

 471 

  472 

 473 

 474 

 475 

 476 

 477 
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Tables 753 

Table 1 754 

Reference Sampling 

Period 

Position Integration 

depth (m) 

N Mean (±Standard 

deviation) 

(g C m
-2

 d
-1

) 

This Study June 2013 48
o
N 

16
o
W 

Euphotic Zone 6 1.16 (0.5) 

Chipman et al., 

(1993)
56

 

May 1989 47
o
N 

20
o
W 

Euphotic Zone 11 0.84 (0.19) 

Marra et al., 

(1995)
57

 

June 1991 59.5
o
N 

21
o
W 

Euphotic Zone 4 1 (0.46) 

Savidge et al., 

(1995)
58

 

May/June 

1990 

47-60
o
N 

20
o
W 

Euphotic Zone 25 0.70 (0.32) 

Bury et al., 

(2001)
59

 

May 1990 47
o
N 

20
o
W 

Euphotic Zone 8 0.84 (0.50) 

Painter et al.,  

(2010)
25

 

July 2006 49
o
N 

16
o
W 

Euphotic Zone 3 0.55 (0.22) 

 755 

Table 1: Mean productivity rates from the NE Atlantic as reported in the literature. All 756 

estimates were made using the 
13

C stable isotope method. 757 

 758 

 759 

 760 

 761 
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Figures 762 

 763 

Figure 1: Modis aqua chlorophyll map showing location of study site and track of glider (black line) 764 

and CTD position (blue dots). The black box in (a) indicates the location of the expanded map (b). 765 

 766 

Figure 2: The scale factors calculated by optimisation of modelled attenuation of  irradiance 767 

against measured attenuation of irradiance (black X) with the 10 day moving window (black 768 

line) and the standard deviation for each moving window (grey dashed line). The tick marks 769 

on the x-axis represent the beginning of each month. 770 

 771 

Figure 3: Time series of PAR corrected chlorophyll profiles, solid white line shows the mixed 772 

layer depth (m) and the dashed white line shows the euphotic depth (m), calculated from the 773 

glider PAR profiles.  774 

 775 

Figure 4: Glider profiles of chlorophyll, uncorrected and PAR-corrected, compared to ship 776 

based bottle samples of chlorophyll from acetone extracts. Mean profiles are shown as soild 777 

lines. For cruises a. JC85, b. JC87 and c. JC90 778 

 779 

Figure 5:  780 

a) Daily mean PP from Seaglider dives compared with in situ 
13

C estimates of 781 

production. Error bars are the standard deviation of the PP calculated from all the 782 

dives in one day. Water samples for the incubations were taken at dawn, a 12 hour 783 

day for production is assumed. 784 
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b) Differences between integrated PAR-corrected glider primary production and the 785 

uncorrected glider primary production compared with 
13

C primary production 786 

measurements. 787 

c) Primary production estimates for the duration of glider deployments for SG566 and 788 

NEODAAS 1 km daily product. 789 

 790 

Figure 6: time series of PAR-corrected primary production profiles for SG566 for the entire 791 

deployment, the solid white line is the mixed layer depth (m) and dashed white line as the 792 

euphotic depth (1% of surface irradiance levels).  793 

  794 
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Figure 1 795 

(a) 796 

 797 

(b) 798 

 799 

Figure 1: Modis aqua chlorophyll map showing location of study site and track of glider (black line) 800 

and CTD position (blue dots). The black box in (a) indicates the location of the expanded map (b). 801 
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Figure 2 808 
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Figure 3 811 
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Figure 4 833 
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Figure 5 841 
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Figure 6 845 
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