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Abstract

Ordinary least squares (OLS) is well-known to produce an inconsistent

estimator of the spatial parameter in pure spatial autoregression (SAR).

This paper explores the potential of indirect inference to correct the in-

consistency of OLS. Under broad conditions, it is shown that indirect

inference (II) based on OLS produces consistent and asymptotically nor-

mal estimates in pure SAR regression. The II estimator is robust to

departures from normal disturbances and is computationally straightfor-

ward compared with pseudo Gaussian maximum likelihood (PML). Monte

Carlo experiments based on various specifications of the weighting matrix

confirm that the indirect inference estimator displays little bias even in

very small samples and gives overall performance that is comparable to

the Gaussian PML.
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1 Introduction

Cross-section correlation poses a considerable challenge in econometric work

that affects modelling, estimation, and inference. Correlation across spatial

data is typically ubiquitous, arising from multiple sources such as competi-

tion, regulatory practices, spillover and aggregation effects, and the influence of

macroeconomic factors on individual decision making. Spatial correlation can

be transmitted in an econometric model via observed variables or unobserved

disturbances. Parsimonious models such as the spatial autoregression (SAR)

of Cliff and Ord (1981) have become increasingly popular in practical work.

These models offer a useful and easily implemented framework for describing

irregularly-spaced correlated spatial data, where space can be interpreted in

general terms as a network and correlation may depend on various forms of

economic distance, include physical distance as a special case. A central ad-

vantage of SAR models is the fact that exact empirical knowledge of location

is not required. Instead, location effects, wider economic distance effects, and

irregularly-spaced data effects may all be embodied in an n × n weight matrix

(where n is the size of the dataset) that can be constructed by the practitioner

using all available relevant information.

Given an n-vector of spatial observations y we consider the following simple

(pure) SAR model

y = λ0Wy + ε, (1.1)

where λ0 denotes the spatial parameter, and ε is a vector of independent and

identically distributed (iid) disturbances with mean zero and unknown variance

σ2
0 . The weight matrix W carries spatial correlation effects, is exogenously
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specified, and satisfies certain restrictions that facilitate asymptotic analysis.

So elements of W typically depend on n and are likely to change as n increases.

Thus, the components W = Wn, y = yn and ε = εn are, in fact, triangular

arrays, even though the subscript n is often omitted for notational simplicity.

Asymptotic properties of various parametric estimators of λ0 in (1.1) and

more general SAR models that include exogenous regressors have been exten-

sively studied in recent years. In particular, under certain conditions on the

behaviour of W as n increases, Lee (2004) derived asymptotic properties of the

Gaussian maximum likelihood (ML) and pseudo-maximum likelihood (PML)

estimators of λ0. Lee (2002) showed that the OLS estimator of λ0 in (1.1) is

inconsistent, while OLS applied to a more general SAR model with exogenous

regressors can be consistent and asymptotically normal under stronger condi-

tions on W . Estimates of SAR models based of generalized methods of moments

(GMM) have been studied by Lee (2001), Lee (2007) and Liu et al. (2010), and

they have been extended by Lin and Lee (2010) and Kelejian and Prucha (2010)

to accommodate unobserved heterogeneity in the disturbances.

While asymptotic properties are generally favorable, small sample perfor-

mance of SAR parameter estimates can be poor. Poor performance is particu-

larly serious in the pure SAR model (1.1) since rates of convergence to the true

value may be slower than usual
√
n parametric rates depending on the limit

behaviour of W . Correspondingly, statistical tests about the spatial parame-

ter that are based on asymptotic theory can also be unreliable. Much Monte

Carlo work has been conducted to study the finite sample performance of SAR

estimates and tests (e.g. Anselin and Florax (1995), Das et al. (2003) and

Egger et al. (2009)). But finite sample theory and analytic bias corrections

are at a much earlier stage of development, in comparison to related work in

areas such as panel data modeling. Recently, Bao and Ullah (2007) derived
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second-order bias and mean squared error formulae for the ML estimator of λ0

in (1.1) using Nagar moment expansions, and Bao (2013) extended these results

to a more general model that includes exogenous regressors and possibly non-

normal disturbances. The literature about finite sample corrections for tests is

now developing and includes both the derivation of finite sample corrections for

t-type of tests (Robinson and Rossi (2014b)) and refinements for Moran I/LM

statistics (e.g. Cliff and Ord (1981), Robinson (2008), Baltagi and Yang (2013)

and Robinson and Rossi (2014a)).

The present paper uses indirect inference (II) methods to derive a new OLS-

based estimation procedure that shows good performance and involves much

simpler computations than PML estimation of λ0 in (1.1). The II estimator

is consistent, asymptotically normal, and enjoys good finite sample behavior.

II methods were originally introduced by Gouriéroux et al. (1993) and Smith

(1993) to deal with models with intractable objective functions. The methods

have also achieved success in bias correction under various time series settings

(e.g. Gouriéroux et al. (2000)). Applications of II to obtain improved finite

sample inference have been discussed in Phillips and Yu (2009) in a contingent

claims pricing context, where II estimates display virtually no bias and often

smaller variance compared to standard ML. Also, Gouriéroux et al. (2010) use

II to accomplish bias reduction in dynamic panels and Phillips (2012) shows that

II delivers improved estimation, even asymptotically, in a first order autoregres-

sion with potential nonstationarity. But these methods have so far never been

applied to spatial data.

Given the novelty of II methodology in the spatial literature, this paper ex-

plores its use within the pure SAR model (1.1) with homogeneous disturbances.

Our main result demonstrates the power of the indirect inference, showing how

simple OLS estimation can be transformed to produce a consistent and asymp-
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totically normal estimate of the spatial parameter. Extensions of this approach

to ML estimation, to SAR models with heterogeneous disturbances, and to mod-

els in which the spatial lag enters nonlinearly are possible and appear promising,

due to the flexibility of II and more generally of simulation-based techniques.

The new approach is defined and discussed in the next section, together with

the main assumptions used in the asymptotic development. Section 3 provides

the main results relating to the asymptotic distribution of the II estimator,

and Section 4 reports simulation findings concerning finite sample performance

for different forms of the spatial weight matrix W . Some further examples of

weight matrices that are amenable to exact analysis and comparison with the

ML estimate of λ0 in (1.1) are presented in Section 5. Section 6 has concluding

remarks and some discussion of extensions of the II methodology in spatial

models. Proofs are given in the Appendix.

Throughout the paper, λ0 and σ2
0 denote true values of these parameters

while λ and σ2 denote admissible values. We write Sn(x) = S(x) = I − xW ,

where I denotes the n×n identity matrix, and Gn(x) = G(x) = WS−1(x). We

set G = G(λ0) and use Aij to signify the ij’th element of the matrix A. We

use ||.|| and ||.||∞ to indicate the spectral norm and uniform absolute row sum

norm, respectively, and K represents an arbitrary finite, positive constant. The

notation f (i)(.) denotes the i′th derivative of the function f(.).

2 Indirect Inference in the Pure SAR Model

We consider model (1.1) whose reduced form is

y = S−1(λ0)ε, (2.1)
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under assumed invertibility of S(λ0). We use the following assumptions.

Assumption 1 For all n, the elements of ε ∼iid
(
0, σ2

0

)
with unknown variance

σ2
0 and, for some δ > 0

E(εi)
4+δ ≤ K.

Assumption 2 λ0 ∈ Λ, where Λ is a closed subset in (−1, 1).

Assumption 3

(i) For all n, Wii = 0.

(ii) For all n , ||W || ≤ 1.

(iii) For all sufficiently large n, ||W ||∞ + ||W ′||∞ ≤ K.

(iv) For all sufficiently large n, uniformly in i, j = 1, ..., n, Wij = O(1/h),

where h = hn is bounded away from zero for all n and h/n → 0 as

n→∞.

Assumption 4 For all sufficiently large n, sup
λ∈Λ
||S−1(λ)||∞+ ||S−1(λ)′||∞ ≤ K.

Assumption 5 The limits

lim
n→∞

h

n
tr(G

′iGj) with 1 ≤ i+ j ≤ 3, lim
n→∞

h

n
tr((G′G)2), (2.2)

lim
n→∞

h

n

∑
i

G2
ii, lim

n→∞

h

n

∑
i

(G′G)2
ii lim

n→∞

h

n

∑
i

Gii(G
′G)ii (2.3)

all exist and

lim
n→∞

h

n
tr((G+G′)G′G) 6= 0. (2.4)

6



Assumptions 2 and 3(ii), or some other related conditions are common in the

SAR literature to ensure existence of a reduced form and define the likelihood

function (e.g. Lee (2004)). The choice of the parameter space in Assumption 2

together with 3(ii) seems natural in most applications since they are sufficient

to guarantee existence of S−1(λ) and its power series representation, which in

turn implies that ∀λ ∈ Λ

||S−1(λ)|| = ||
∞∑
s=0

λsW s|| ≤
∞∑
s=0

|λ|s||W ||s ≤ (1− |λ|)−1 ≤ K. (2.5)

Assumption 3(ii) is not particularly restrictive, since any W can be rescaled by

its spectral norm so that ||W || ≤ 1 is trivially satisfied. Assumption 3(iii) (Kele-

jian and Prucha (1998)) rules out strong spatial dependence and it is obviously

satisfied when each unit has a finite number of neighbours as n increases. When

Wij = O(1/h), which is common practice when dealing with SAR models (e.g.

Lee (2004)), then we impose h/n → 0 along with Assumption 4 to establish

a central limit theorem for quadratic forms (e.g. Robinson (2008)). From a

practical perspective, Assumptions 3(iii) together with 3(iv) rule out the case in

which a unit is related to all other units as n increases. Assumption 3(iii) and

4 are satisfied, for instance, when W is row normalised so that Wl = l, where l

indicates an n× 1 column of ones, symmetric and with positive entries.

By a standard argument, under Assumption 3,

h

n
tr(W pW

′q) = O(1), ∀p, q s.t. p+ q > 1, (2.6)

as n→∞. Also, under Assumptions 3 and 4 as n→∞,

h

n
tr(G(λ)pG(λ)

′q) = O(1), ∀p, q s.t. p+ q ≥ 1, (2.7)
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since ||S−1(λ)||∞ + ||S−1(λ)′||∞ ≤ K uniformly in λ. Assumption 5 is required

to impose existence and nonsingularity of limits of certain sequences that figure

in the asymptotic development. The sequences in (2.2) are bounded as n→∞

according to (2.7) and converge under Assumption 5. Sequences in (2.3) are

O(1/h) and vanish as n increases when h is a divergent sequence and (2.3)

ensures that limits are well defined also in case h = O(1) as n→∞. Condition

(2.4) ensures nonsingularity of the asymptotic variance in our main theorem,

since by the Cauchy inequality

0 <

(
h

n

)2

(tr((G+G′)G′G)2 <

(
h

n

)2

tr((G+G′)2)tr((G′G)2)

< 2

(
h

n

)2

tr(G′G)tr((G′G)2). (2.8)

The OLS estimator of λ0 is given by the ratio

λ̂ =
y′W ′y

y′W ′Wy
, (2.9)

and by a standard argument as n→∞

λ̂− λ0 →p lim
n→∞

htrG/n

htr(G′G)/n
. (2.10)

As n → ∞ limn→∞ htr(G′G)/n 6= 0 under Assumption 5 and (2.8), and the

limit in (2.10) exists and is bounded. But unless W is restricted to very specific

choices, it is difficult to calculate the right side limit of (2.10) and give an

analytic expression as a function of λ0.

According to the usual indirect inference calculations, for any λ ∈ Λ we can

generate B sets of pseudo-data yb = (yb1, y
b
2, ...., y

b
n)′, b = 1, 2, ...., B from the

true model (under assumed Gaussianity of ε) and for each pseudo-data set the
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OLS estimator of λ is computed as

λ̂b = λ̂b(λ) =
yb(λ)′W ′yb(λ)

yb(λ)′W ′Wyb(λ)
= λ+

yb(λ)′W ′εb

yb(λ)′W ′Wyb(λ)
, b = 1, ...., B. (2.11)

The II estimator of λ0 is then defined by the extremum problem

λ̂II = argmin
λ
|λ̂− 1

B

B∑
b=1

λ̂b(λ)|, (2.12)

that produces an estimator that aligns the sample mean of the simulations to

the observed λ̂. As B →∞, (2.12) becomes

λ̂II = argmin
λ
|λ̂− Eb(λ̂b(λ))|, (2.13)

where the expectation operator Eb is interpreted with respect to the pseudo-

variate εb.

We define the binding function as

bn(λ) = Eb(λ̂b(λ)) = λ+ Eb
(

ε′bG(λ)′εb

ε′bG(λ)′G(λ)εb

)
, (2.14)

and introduce the next condition.

Assumption 6

(i) For all n, the binding function bn(λ) is continuous and strictly increasing

for all λ ∈ Λ .

(ii) lim
n→∞

b
(1)
n (λ0) exists and is positive.

It would be useful to establish primitive conditions on W or, possibly, on the

parameter space Λ and W under which Assumption 6 is satisfied. But such

conditions are likely possible only in special cases. As is usual practice, we rely
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on numerical methods to check the validity of the assumption. Some examples

are described in Section 5.

For each λ ∈ Λ we have the formal moment expansion (Lieberman (1994))

Eb
(

ε′bG(λ)′εb

ε′bG(λ)′G(λ)εb

)
=

Eb(ε′bG(λ)′εb)

Eb(ε′bG(λ)′G(λ)εb)
+ θ1n + θ2n + θ3n + ...., (2.15)

where

θ1n =
Eb(ε′bG(λ)′εb)cum2

(Eb(ε′bG(λ)′G(λ)εb))3
− cum11

(Eb(ε′bG(λ)′G(λ)εb))2
, (2.16)

cump is the p’th cumulant of ε′bG(λ)′G(λ)εb, cum1p is the p’th generalised cu-

mulant of the product of ε′bG(λ)′εb and ε′bG(λ)′G(λ)εb (e.g. McCullagh (1987)),

while θi for i > 1 are functions of cump, cum1p, and moments of ε′bG(λ)′G(λ)εb

and ε′bG(λ)′εb. As n→∞, under Assumptions 3, 4, 6 and by (2.7) the leading

term in (2.15) is O(1), and θ1 = O(h/n).

By observing that higher-order terms in (2.15) are of increasingly smaller

order (the computation is tedious and is not reported here), we write a formal

expansion for bn(λ) as

bn(λ) = λ+
tr(G(λ))

tr(G(λ)′G(λ))
+O

(
h

n

)
. (2.17)

An advantage of Lieberman’s result is the fact that (2.15) and (2.17) do not

rely on the normality of εb, so that procedures based on them should have some

invariance properties with respect to the underlying data distribution.

Since we restrict our analysis to the class of W matrices such that Assump-

tion 6 holds, we have the simple inverse function formulation

λ̂II = b−1
n (λ̂). (2.18)

In practice we can construct λ̂II by generating a large number B of pseudo-data
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to approximate the binding function by

1

B

B∑
b=1

λ̂b(λ). (2.19)

However, distributional assumptions are required to generate the pseudo-data

and, since we will show that the asymptotic variance of λ̂ depends on the fourth

cumulant of the εi, this mechanism is not fully robust to distributional misspec-

ification. Instead, we construct λ̂II by using the approximate version of the

binding function, b∗n(λ)

b∗n(λ) = λ+
tr(G(λ))

tr(G(λ)′G(λ))
, (2.20)

which holds more generally under Assumption 1. We will show that λ̂II ob-

tained by (2.20) is consistent and asymptotically normal without any additional

distributional assumption, unlike λ̂ which is not only biased in small samples,

but also inconsistent (Lee (2002)). The generality offered by an implementation

based on (2.20) offsets the potential gain of an estimator with an even smaller

bias, which might be achieved by using the simulation based binding function

(2.19) for B sufficiently large.

3 Limit Distribution of λ̂II

In the notation that follows some quantities are given an affix (subscript) n to

emphasize their n-dependence. Let gij = htr(GiGj
′
)/n, and g = htr((G′G)2)/n.

Define the centering quantity

λ̄n = λ0 +
g10

g11
, (3.1)
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and by a standard delta argument,

λ̂− λ̄n =
h

n
f ′nUn + op

((
h

n

)1/2
)
, (3.2)

where

Un =
(
y′Wε− tr(G)σ2

0 ; y′W ′Wy − tr(G′G)σ2
0

)′
(3.3)

and

fn =

((
h

n
y′W ′Wy

)−1

; −
(
h

n
y′W ′Wy

)−2(
h

n
y′Wε

))′
. (3.4)

Theorem 1

(a) Under (1.1) and Assumptions 1-5

(n
h

)1/2

(λ̂− λ̄n)→
d
N (0, ω), (3.5)

where

ω = lim
n→∞

(
g20 + g11

g2
11

− 4g10g21

g3
11

+
2g2

10g

g4
11

+
h

n

κ4

σ4
0g

2
11

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2

)
(3.6)

and κ4 = E(ε4i )− 3σ4
0 .

(b) Under (1.1) and Assumptions 1-6

(n
h

)1/2

(λ̂II − λ0)→d N(0, ω∗), (3.7)
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where

ω∗ = lim
n→∞

(g11 + g20)
−1

(
1− 2g10g21

g11(g20 + g11)

)−2(
1− 4g21g10

g11(g11 + g20)
+

2gg2
10

g2
11(g11 + g20)

(3.8)

+
h

n

κ4

σ4
0(g11 + g20)

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2

)
.

The proof is given in the Appendix. The limits on the right sides of (3.6) and

(3.8) exist and are strictly positive under Assumptions 5 and 6.

Theorem 1 enables a comparison between λ̂II and the Gaussian maximum

likelihood estimator λ̂MLE . When εi ∼iid N (0, σ2), we have κ4 = 0 and then,

from Lee (2004),

(n
h

)1/2

(λ̂MLE − λ0)→
d
N(0, VMLE), (3.9)

where

VMLE = lim
n→∞

(
g20 + g11 −

2

h
g2

10

)−1

. (3.10)

For λ0 = 0, a case that is especially relevant in testing, tr(G) = 0 and ω∗ =

VMLE . Instead, from Robinson and Rossi (2014b), when λ0 = 0

(n
h

)1/2

λ̂→
d
N(0, VOLS), (3.11)

where VOLS = (g2
11/(g11 + g20))−1. Furthermore, since λ̂ is inconsistent when

λ0 6= 0, a Wald test based on λ̂ may be inconsistent. By contrast, a Wald test

based on λ̂II is equivalent to one based on the MLE and is consistent against

any alternative value for λ0.

A result similar to Theorem 1 holds for the SAR model with unknown in-
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tercept µ0

y = µ0l + λ0Wy + ε, (3.12)

where l in an n-vector of ones and W is row normalized, so that Wl = l. The

OLS estimator of λ0 in (3.12) is

λ̃ =
y′W ′Py

y′W ′PWy
, (3.13)

where P = I − ll′/n. When W is row normalized, it is easy to verify by a series

expansion of S−1(λ0) that the reduced form of (3.12) is

y = S−1(λ0)(µ0l + ε) =
µ0

1− λ0
l + S−1(λ0)ε. (3.14)

Thus, by standard algebra and observing that l′Gl/n = O(1) under Assump-

tions 3 and 4, we conclude that (2.10) holds with λ̂ replaced by λ̃ and the

formal expansion for bn in (2.17) is still appropriate so that we can define the

II estimator of λ0 in (3.12) as λ̃II = b−1
n (λ̃). Thus, Theorem 1 holds with λ̂

replaced by λ̃ and λ̂II replaced by λ̃II . When W is not row normalized, the

asymptotic theory for the OLS of λ0 in (3.12) would be different, as λ̃ may

be consistent and asymptotically normal with a standard
√
n rate under some

additional conditions on the behaviour of W in the limit (see Lee (2002)). Since

the present paper focuses on using II to convert an inconsistent OLS estimator

into a consistent estimator, we do not further pursue the case of model (3.12)

with non-row normalized W .

Theorem 1 is robust to mild forms of unobserved heterogeneity, such as the

following.

Assumption 1’ For all n, the elements of ε are independent with mean zero
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and

E(εε′) = D > 0, with D = σ2
0I + C,

where C is an n × n diagonal matrix with rank c = cn, where cn is a positive

sequence satisfying cn = o(n), and uniformly in i and n |Cii| ≤ K. For some

δ > 0

max
1≤i≤n,n≥1

E(εi)
4+δ ≤ K.

If either 1/h + c/h → 0 or h = O(1) and c = O(1) as n → ∞ the probability

limit in (2.10), the formal expansion for bn(λ) in (2.17) and the asymptotic

distribution in Theorem 1 still holds. The case of general heteroskedasticity

may also be considered and is under investigation in other work.

4 Simulations

Simulations were conducted to assess the finite sample performance of λ̂II in re-

lation to λ̂ and λ̂MLE . Three weight matrix specifications were used: a circulant

matrix, an asymmetric Toeplitz matrix, and an ‘empirical-based’ matrix. Bias

and mean square error (MSE) were computed for values of λ ∈ {−0.5, 0, 0.5, 0.8}

using 104 replications.

Case (i): Circulant weights

We take the case of a weight matrix W with a circulant structure similar to

the one used by Kelejian and Prucha (1999) defined as

WC =
1

||AC ||
AC , (4.1)
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where AC is a circulant matrix with leading row (0, 1, 1, 0, ...., 0, 1, 1), i.e.

AC =



0 1 1 0 . . . 0 0 1 1

1 0 1 1 0 0 0 0 1

1 1 0 1 1 0 0 0 0

...
...

...
...

...
...

...
...

...

1 1 0 0 0 0 1 1 0


. (4.2)

In (4.1) WC is normalised with respect to its spectral norm so that ||WC || = 1.

Assumptions 3 − 5 are readily verified with h = ||AC ||, which in this case

remains fixed as n→∞. The disturbances εi ∼iid N (0, 1) and sample sizes are

n ∈ {30, 50, 100, 200}.

We implement indirect inference using the approximate binding function

b∗n(.) in (2.20) to obtain λ̂II . Simulation results suggest that b∗n(.) closely ap-

proximates the true value E(λ̂), which can be computed for some simple choices

of W . Figure 1 graphs the binding function and shows that b∗n(.) is invertible

for −1 < λ < 0.85 but becomes flat as λ approaches unity and b∗n(.) does not

vary with n.

[Figure 1 about here]

Table 1 gives the bias and MSE of the OLS, ML and II estimators of λ. The

entries in the top panel reveal that the OLS estimator λ̂ suffers from substantial

bias for all values of λ0. Consistent with asymptotic theory (Lee (2002)), the

bias does not vanish as n increases. In fact, for a given λ 6= 0, the bias seems

to increase with n and becomes particularly severe when λ0 is negative. The

entries in the last two panels of Table 1 indicate that λ̂II outperforms λ̂MLE in

terms of bias reduction in many cases, but at the cost of a slight increase in the

variance (and hence MSE). While the MSE increase of λ̂II is often negligible,

it becomes stronger when λ is close to unity as expected from the shape of the
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binding function b∗n(.) which becomes flat as λ approaches unity.

To shed light on their distributional characteristics, Figure 2 plots the sim-

ulated density functions of λ̂, λ̂MLE and λ̂II for n = 100 when λ0 = 0.5. The

distribution of the OLS estimator λ̂ is seen to be severely upward biased (cen-

tred around 0.85 rather than 0.5), whereas both λ̂MLE and λ̂II appear almost

unbiased. All three estimators seem to have similar dispersion.

[Figure 2 about here]

Direct analytic comparison of the variances is difficult since (3.8) and (3.10)

are complicated non-linear functions of the weight matrix. Figure 3 shows how

the finite sample variances (ω∗, VMLE) of λ̂II and λ̂MLE vary with λ0 for n =

100. The variances are close for small-moderate spatial autocorrelation, but as

|λ0| increases ω∗ becomes larger than VMLE and increases rapidly as λ0 tends to

unity. The rise in variance is associated with the non-invertibility of the binding

function bn(λ)∗ as λ approaches the boundaries of the support.

[Figure 3 about here]

Case (ii): Asymmetric Toeplitz weights

We next consider the case of an asymmetric Toeplitz weight matrix WAT .

Working from the circulant matrix AC , we introduce asymmetry by removing

the neighbourhood effect of the (n − 1)’th unit on the first unit in (4.1). This

produces a three element neighbourhood effect in each row rather than four.

Specifically, we define

WAT =
1

‖AAT ‖
AAT
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where

AAT =



0 1 1 0 . . . 0 0 0 1

1 0 1 1 0 0 0 0 0

0 1 0 1 1 0 0 0 0

...
...

...
...

...
...

...
...

...

1 0 0 0 0 0 1 1 0


(4.3)

The weight matrix is again normalised so that Assumption 3 is satisfied. Fig-

ure 4 depicts the approximate binding function for n = 100, showing that b∗(.)

is monotonic. For λ > 0.8 the binding function tends to flatten out although

not as markedly as in the symmetric case.

[Figure 4 about here]

The simulation results reported in Table 2 confirm that both the ML and

the II estimators provide substantial reductions in both the bias and MSE of

OLS. For most configurations, ML and II display similar performance. The

II estimator generally outperforms ML in terms of bias reduction when λ >

0, without increasing MSE by much, and for n = 200 largely reproduces the

performance characteristics of ML. Similar conclusions follow from the proximity

of the empirical densities of II and ML shown for n = 100 and λ = 0.5 in Figure

5 .

[Figure 5 about here]

Figure 6 plots values of ω∗ and VMLE under (4.3) over λ0 ∈ (−1, 1), showing

the variances are close for most admissible values of λ, with discrepancies emerg-

ing as |λ0| increases, but again not as severe as in the circulant weight matrix

case. These results indicate that indirect inference delivers broader performance

gains for asymmetric weight matrix structures.

[Figure 6 about here]
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Case (iii): Empirical-based weights

The final simulation exercise uses an ‘empirical-based’ weight matrix W to il-

lustrate how indirect inference performs in a setting that is relevant to practical

work. We consider a sample of 43 European countries and construct W accord-

ing to a contiguity criterion – see, for example, Chapter 2 of Arbia (2006) for

various definitions of spatial contiguity that are used in empirical work. Coun-

tries i and j are said to be neighbours if they share a border, which leads to the

specification

Wij =


1 if i and j share a border (where i 6= j)

0 otherwise

. (4.4)

As usual, Wii = 0. The resulting matrix is then re-scaled by its spectral norm,

so that Assumption 3(ii) is satisfied. Figure 7 shows the binding function b∗n(.)

in this case, which is monotonic over λ ∈ (−1, 1), so the II estimator appears

well-defined for all admissible values of λ.

[Figure 7 about here]

Table 3 summarises the results for the bias and MSE of λ̂, λ̂MLE and λ̂II

for different values of λ0. Again, λ̂ is severely biased, while both λ̂MLE and λ̂II

provide major improvements. More specifically, λ̂II outperforms λ̂MLE in terms

of bias reduction at λ0 = 0.5, 0.8, with only a slight increase in its MSE. Figure

8 plots the simulated densities of λ̂, λ̂MLE and λ̂II for λ0 = 0.5. These graphs

reveal that the finite sample densities of λ̂II and λ̂MLE are almost identical and

are well centred at the true parameter value, whereas the OLS density appears

mislocated with a larger spread. Overall, these results suggest that λ̂II performs

well even when W has a less-restrictive and more practical structure than that

of the formal structures in (4.1) or (4.3).
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[Figure 8 about here]

Finally, in Figure 9 we report a plot of the finite sample versions of ω∗ and

VMLE in (3.8) and (3.10), respectively. In line with Figures 3 and 6, the finite

sample versions of ω∗ and VMLE appear to be very close for small/moderate

values of |λ|. As |λ| approaches unity, ω∗ tends to increase, but not as much

as in case of the circulant W . This behaviour is, therefore, consistent with the

plot of b∗n(.) in Figure 7.

[Figure 9 about here]

These simulations provide information about the finite sample performance

of indirect inference under several different specifications of the weight matrix.

The results collectively suggest that the II estimator substantially reduces the

bias and MSE of the OLS estimator and can outperform the ML estimator.

While the results in Tables 1-3 were obtained under normally distributed er-

rors, we have verified that the reported performance of the II estimator is ro-

bust to nonnormal errors, specifically under mixed-normal distributions and a

t distribution with 5 degrees of freedom. Those results are available on request.

5 Examples

In this section we consider a few examples for which we may assess analytically

whether the binding function bn(λ) in (2.17) is invertible, at least as n → ∞,

rather than relying on numerical work, as in the plots of Figures 1, 4 and 7.

Occasionally, an analytic comparison between the performance of λ̂II and λ̂MLE

is also possible.

Example (i): The Districts Model
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The simplest choice of W that is amenable to analysis and facilitates a com-

parison between (3.8) and (3.10) is the block diagonal ‘districts model’ weight

matrix W (Case (1991)) which is defined as

Wn = Ir ⊗Bm, Bm =
1

m− 1
(lml

′
m − Im), (5.1)

where Is is the s × s identity matrix, lm is an m-vector of 1’s, and ⊗ is the

Kronecker product. It is easy to verify that W in (5.1) satisfies Assumptions 3

and 4 with n = mr and h = m−1. The specification (5.1) indicates that within

a particular district (block) the spatial dependence has the same form, whereas

it is zero between blocks.

[Figure 10 about here]

The approximate binding function b∗n(.) in (2.20) appears invertible for λ ∈

(−1, 1) and for all sample sizes, as shown in Figure 10. We derive the following.

Theorem 2 Let W defined as in (5.1).

(a) As n → ∞ the binding function bn in (2.17) is strictly increasing for all

λ ∈ Λ.

(b) If 1/m+ 1/r → 0, ω∗ = VMLE , where VMLE is defined in (3.10).

The proof of Theorem 2 is in the Appendix. The condition in part (b) of

Theorem 2 corresponds to a case of divergent h and εi ∼ N (0, σ2).

Example (ii): Circulant Weight Matrix Model

As another example we can consider the simple circulant matrix C with lead-
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ing row (0, 1, 0, ...0, 1), i.e.

C =



0 1 0 0 . . . 0 0 0 1

1 0 1 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0

...
...

...
...

...
...

...
...

...

1 0 0 0 0 0 0 1 0


. (5.2)

and

W =
1

2
C, (5.3)

so that ||W || = 1 and h = 2 for all n.

[Figure 11 about here]

From Figure 11, the approximate binding function b∗n(λ) in (2.20) seems to

be strictly monotonic for λ ∈ (−0.7, 0.7) but becomes almost flat (and even

decreases slightly) as λ→ 1, with related behavior as λ→ −1. Similar behavior

was found in simulations for the case where W was chosen as in (4.1). We have

the following analytic result.

Theorem 3 Define W as in (5.3). As n → ∞, bn(λ) in (2.17) is strictly

increasing for all λ ∈ Λ, where Λ is any closed subset of (−
√

3/2,
√

3/2).

The proof of Theorem 3 is in the Appendix. In principle we can extend the

argument below to any choice of W with a Toeplitz structure, and thus to

circulants with more than “one behind and one ahead” neighbors. However,

this would require numerical solutions of integrals and is beyond the scope of

the present example.
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From (3.8) and the results reported in Appendix (viz., (A.49), (A.53) and

(A.57)) we also conclude that ω∗ →∞ as λ0 → ±
√

3
2 , since

1− 2g10g21

g11(g20 + g11)
→ 0 as λ→ ±

√
3

2
. (5.4)

This result, even though it is derived under the simpler circulant weight matrix

(5.3), is consistent with the Monte Carlo results based on the weight matrix

W defined in (4.1). Hence both analytic and simulation findings reveal that for

circulant weight matrices W the indirect inference estimator λ̂II can be obtained

by inversion of the binding function and performs well as an estimator for small

through moderate values of λ0.

6 Conclusions

Our main result shows how indirect inference methodology can be used in pure

spatial autoregession to convert the inconsistent OLS estimator of the spatial

parameter into a consistent and asymptotically normal estimator. The method

is simple to implement and its performance characteristics are broadly com-

parable to the MLE and can be superior in terms of bias reduction, although

variance typically increases when the binding function flattens out towards the

boundary of the domain of definition of λ. The results of the present paper,

although novel for spatial regression, are limited by the restrictive assumptions

implied by the pure SAR model (1.1), viz., a single spatial lag (and thus a single

weight matrix W ), a linear functional form for the spatial lag, and homoskedas-

tic disturbances.

The present approach complements earlier work on analytic bias corrections

of ML or PML estimators (Bao and Ullah (2007); Bao (2013)) and offers an

alternative mechanism of improving finite sample performance. While our focus

23



has been on OLS, the II methodology can equally well be applied to other

estimators, like the MLE, which are consistent but suffer from finite sample

bias. The methodology can also be extended to more complex settings, due to

the flexibility of simulation based methods, in comparison to analytic expansions

for bias functions and densities.

Allowance for heterogeneity is of particular importance in practical work. It

is well known (Lin and Lee (2010)) that ML or PML fail to be consistent when

the disturbances are heterogeneously distributed. Extensions of the indirect

inference methodology to SAR models with unknown heteroskedasticity seems

promising and is currently under investigation.

Appendix

Proof of Theorem 1

The proof of part (a) is carried out in a similar way to Robinson (2008). Let ψij

be the vector ψij = ( ψ1ij ψ2ij )′ = ( (G+G′)ij/2 (G′G)ij )′ , and define

ui = ( u1i u2i )′ = (ε2i − σ2)ψii + 2εi
∑
j<i

ψijεj , (A.1)

so that Un =
∑n
i=1 ui. We note that {ui, 1 ≤ i ≤ n, n = 1, 2, .....} is a triangular

array of martingale differences with respect to the filtration formed by the σ-field

generated by {εj ; j < i}. Define

A = V ar

(
n∑
i=1

ui

)
= (µ(4) − σ4)

n∑
i=1

ψiiψ
′
ii + 4σ4

n∑
i=1

∑
j<i

ψijψ
′
ij , (A.2)

and let zin = η′A−1/2ui, where η is a 2 × 1 vector satisfying η′η = 1. By
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Theorem 2 of Scott (1973)
∑n
i zin →d N (0, 1) if

n∑
i=1

E(z2
in|εj ; j < i)

p→ 1 (A.3)

and
n∑
i=1

E(z2
in1(|zin > ξ|))→ 0 ∀ξ > 0. (A.4)

Now, (A.3) is equivalent to

n∑
i=1

E(z2
in|εj ; j < i)− η′A−1/2AA−1/2η

p→ 0, (A.5)

which is

η′A−1/2

4σ2
n∑
i=1

∑
j<i

ψijεj

∑
j<i

ψijεj

′ − 4σ4
n∑
i=1

∑
j<i

ψijψ
′
ij

A−1/2η

+ 4η′A−1/2µ(3)
n∑
i=1

ψii

∑
j<i

ψijεj

′A−1/2η
p→ 0, (A.6)

where µ(3) = E(εi)
3. From standard matrix algebra, A is positive definite for

all n and satisfies (hA/n)→ V > 0 as n→∞, where

V = lim
n→∞


 σ4(g20 + g11) 2σ4g21

2σ4g21 2σ4g

+


h
nκ4

∑
i

G2
ii

h
nκ4

∑
i

Gii(G
′G)ii

h
nκ4

∑
i

Gii(G
′G)ii

h
nκ4

∑
i

(G′G)2
ii




=Σ + Ω. (A.7)

Positiveness of the smallest eigenvalue of Σ and existence of V is guaranteed by

the Cauchy inequality and Assumption 5 since

(
h

n

)2

(tr((G+G′)G′G))2 <

(
h

n

)2

tr((G+G′)2)tr((G′G)2). (A.8)
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Under Assumptions 3 and 4 the elements of Σ are bounded, while Ω has elements

of order O(1/h) that vanish in case h is a divergent sequence. Ω = 0 when

εi ∼ N (0, σ2).

Rather than (A.6), we can equivalently show

h

n

4σ2
n∑
i=1

∑
j<i

ψijεj

∑
j<i

ψijεj

′ − 4σ4
n∑
i=1

∑
j<i

ψijψ
′
ij

 p→ 0, (A.9)

and

h

n
µ(3)

n∑
i=1

ψii

∑
j<i

ψijεj

′ p→ 0. (A.10)

Consider the following typical elements of the left side of (A.9)

4σ2 h

n

 n∑
i=1

∑
j<i

ψ2
sij(ε

2
j − σ2) +

n∑
i=1

∑
j,k<i
j 6=k

ψsijψsikεjεk

 s = 1, 2, (A.11)

and

4σ2 h

n

 n∑
i=1

∑
j<i

ψsijψtij(ε
2
j − σ2) +

n∑
i=1

∑
j,k<i
j 6=k

ψsijψtikεjεk

 s, t = 1, 2, s 6= t.

(A.12)

The first term in (A.11) has mean zero and variance bounded by

(
h

n

)2

K
∑
i

∑
k

∑
j<i,k

ψ2
sijψ

2
skj ≤

(
h

n

)2

K
∑
i

∑
k

∑
j

ψ2
sijψ

2
skj

≤
(
h

n

)2

K

(
max
j

∑
i

ψ2
sij

)∑
k,j

ψ2
skj = O

(
h

n

)
. (A.13)

The last equality in (A.13) follows because
∑
h,k

ψ2
shk equals either tr((G′G)2) =

O(n/h) or tr(((G+G′)/2)2) = O(n/h), and, denoting by Ψs the matrix whose

ij−th element is ψsij and ej the n × 1 vector with 1 in the j−th position and
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zero otherwise, ∑
i

ψ2
sij = e′jΨ

2
sej ≤ ||Ψs||2 ≤ K, (A.14)

where the last inequality follows from Assumption 3(ii) and (2.5) after observing

that Ψs equals either (G+G′)/2 or G′G for s = 1 and s = 2, respectively. The

second term of (A.11) has mean zero and variance bounded by

(
h

n

)2

K|
∑
i

∑
h

∑
j<i,h

∑
k<i,h

ψsijψsikψshjψshk|

≤
(
h

n

)2

K

∑
i

∑
h

∑
j

∑
k

|ψsijψsikψshjψshk|

 ≤ (h
n

)2

K
∑
i

∑
h

∑
j

∑
k

|ψsijψsik|(ψ2
shj + ψ2

shk)

≤
(
h

n

)2

K

(max
j

∑
i

|ψsij |

)(
max
i

∑
k

|ψsik|

)∑
h,j

ψ2
shj +

max
i

∑
j

|ψsij |

(max
k

∑
i

|ψsik|

)∑
h,k

ψ2
shk


= O

(
h

n

)
, (A.15)

where the last equality follows from the argument above and Assumptions 3(iii)

and 4. Similarly, the first and second terms on the left hand side (LHS) of

(A.12) have mean zero and variance bounded by

(
h

n

)2

K
∑
i

∑
k

∑
j<i,k

|ψsijψtijψskjψtkj | ≤
(
h

n

)2

K
∑
i

∑
k

∑
j

|ψsijψtij |(ψ2
skj + ψ2

tkj)

≤
(
h

n

)2

Kmax
j

∑
i

|ψsij |max
i

∑
j

|ψtij |max
j

∑
k

(ψ2
skj + ψ2

tkj) = o(1), (A.16)
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and

(
h

n

)2

K|
∑
i

∑
h

∑
j<i,h

∑
k<i,h

ψsijψtikψshjψthk|

≤
(
h

n

)2

K

∑
i

∑
h

∑
j

∑
k

|ψsijψtikψshjψthk|

 ≤ (h
n

)2

K
∑
i

∑
h

∑
j

∑
k

|ψsijψtik|(ψ2
shj + ψ2

thk)

≤
(
h

n

)2

K

(max
j

∑
i

|ψsij |

)(
max
i

∑
k

|ψtik|

)∑
h,j

ψ2
shj +

max
i

∑
j

|ψsij |

(max
k

∑
i

|ψtik|

)∑
h,k

ψ2
thk


= o (1) , (A.17)

The typical element on the LHS of (A.10) is

h

n
µ(3)

∑
i

ψsii
∑
j<i

ψtijεj , s, t = 1, 2, (A.18)

and has mean zero and variance bounded by

K

(
h

n

)2∑
i

∑
k

∑
j<i,k

|ψsiiψskkψtijψtkj | ≤ K
(
h

n

)2∑
i

∑
k

∑
j

|ψtij ||ψtkj |(ψ2
sii + ψ2

skk)

≤ K
(
h

n

)2
max

i

∑
j

|ψtij |max
j

∑
k

|ψtkj |
∑
i

ψ2
sii + max

j

∑
i

|ψtij |max
k

∑
j

|ψtkj |
∑
k

ψ2
skk

 = o(1)

(A.19)

under Assumptions 3(iii) and 4 and since

∑
i

ψ2
sii ≤

∑
i,j

ψ2
sij = O

(n
h

)
. (A.20)

We prove (A.4) by verifying the sufficient Lyapunov condition

n∑
i=1

E|zin|2+δ → 0, (A.21)
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and we proceed by considering a typical standardized element of ui, i.e.
∑
i E|(h/n)1/2usi|2+δ

for s = 1, 2. Under Assumption 1, using
∑
i E|usi|2+δ =

∑
i E(E|usi|2+δ|εj , j <

i)) and the cr inequality,

(
h

n

)1+δ/2∑
i

E|usi|2+δ ≤
(
h

n

)1+δ/2

K
∑
i

|ψsii|2+δ+

(
h

n

)1+δ/2

K
∑
i

E|
∑
j<i

ψsijεj |2+δ.

(A.22)

The first term in the latter expression is

(
h

n

)1+δ/2

K
(

max
i
|ψsii|δ

)∑
i

ψ2
sii = o(1), (A.23)

by (A.20) and since for all i

|ψsii| ≤ ||Ψs||∞ ≤ K (A.24)

under Assumptions 3(iii) and 4. The second term in (A.22) by the Burkholder

and von Bahr/Esseen inequalities is bounded by

(
h

n

)1+δ/2

K
∑
i

E|
∑
j<i

ψ2
sijε

2
j |1+δ/2

≤
(
h

n

)1+δ/2

K
∑
i

∑
j<i

|ψsij |2+δ ≤
(
h

n

)1+δ/2

K
∑
i

∑
j<i

ψ2
sij

1+δ/2

≤ K
(
h

n

)1+δ/2
max

i

∑
j

ψ2
sij

δ/2∑
i

∑
j

ψ2
sij

≤ K
(
h

n

)δ/2max
i

∑
j

ψ2
sij

δ/2

, (A.25)

which is O((h/n)δ/2) by (A.14).
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Thus, A−1/2
∑
i ui →

d
N (0, I), or equivalently

(
h

n

)1/2∑
i

ui →
d
N (0, V ), (A.26)

where V is defined in (A.7). (3.5) follows trivially since

f ′n

(
h

n

)1/2

Un = f̄ ′
(
h

n

)1/2

Un + op(1), (A.27)

where

f̄ = lim
n→∞

(
g−1

11 σ
−2
0 − g−2

11 g10σ
−2
0

)′
, (A.28)

which is non-zero and finite under Assumption 5 and Cauchy inequality.

In order to prove part (b), let q = b−1
n (x) and, for any function v(x)

dvr(x)/dxr = v(r)(x). By standard algebra

b(1)
n (x) = 1 +

tr(G(x)2)tr(G′(x)G(x))− 2trG(x)tr(G′(x)G(x)2)

(tr(G′(x)G(x)))2
+O

(
h

n

)
,

(A.29)

which is non-zero under Assumption 6 and O(1) under Assumptions 3 and 4.

Also,

b−1(1)
n (x)|x=bn(λ0) = (b(1)

n (q))−1|q=b−1
n (bn(λ0))=λ0

. (A.30)

Since λ̄n = bn(λ0) +O(h/n), by Taylor expansion,

b−1
n (λ̄n) = b−1

n

(
bn(λ0) +O

(
h

n

))
= b−1

n (bn(λ0)) + (b(1)
n (x))−1|x=λ0

O

(
h

n

)
+ .... = λ0 +O

(
h

n

)
(A.31)

and thus

(n
h

)1/2

(λ̂II − λ0) =
(n
h

)1/2

(b−1
n (λ̂)− b−1

n (λ̄n)) + o(1). (A.32)
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We can derive the asymptotic distribution of the latter by Delta method (Phillips

(2012)) if the sequence {b−1(1)
n (x)} is asymptotically locally relatively equicon-

tinuous, which in this case is equivalent to showing

∣∣∣∣∣b(1)
n (λ0)− b(1)

n (r)

b
(1)
n (r)

∣∣∣∣∣→ 0 (A.33)

as n → ∞, uniformly in Nδ = {r ∈ < : |s(r − λ0)| < δ, δ > 0}, s = sn → ∞

and s(h/n)1/2 → 0. Under Assumptions 3, 4 and 6,

∣∣∣∣∣b(1)
n (λ0)− b(1)

n (r)

b
(1)
n (r)

∣∣∣∣∣ ≤ K|b(1)
n (λ0)− b(1)

n (r)|

≤ K
(∣∣∣∣g20

g11
− htr(G(r)2)/n

htr(G′(r)G(r))/n

∣∣∣∣+

∣∣∣∣g10g21

g2
11

− h2tr(G(r))tr(G(r)2G′(r))/n2

(htr(G′(r)G(r))/n)2

∣∣∣∣) .
(A.34)

The first term of the latter expression is bounded by

K

(∣∣∣∣g20 −
h

n
tr(G(r)2)

∣∣∣∣+

∣∣∣∣g11 −
h

n
tr(G(r)′G(r))

∣∣∣∣)
= K

(∣∣∣∣hn tr(G(λ∗)2)(λ0 − r)
∣∣∣∣+

∣∣∣∣hn tr(G(λ∗)′G(λ∗))(λ0 − r)
∣∣∣∣)

≤ K|λ0 − r| ≤ s−1δ (A.35)

as n → ∞, where the first equality follows by the mean value theorem, λ∗

indicating an intermediate point between λ0 and r. The second term in (A.34)

can be dealt with in a similar fashion.

Therefore, since b
−1(1)
n (λ̄n) = (b

(1)
n (λ0))−1 +O(h/n),

(n
h

)1/2

(λ̂II − λ0)→d N(0, ω∗), (A.36)
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where

ω∗ = lim
n→∞

(g11 + g20)
−1

(
1− 2g10g21

g11(g20 + g11)

)−2(
1− 4g21g10

g11(g11 + g20)
+

2gg2
10

g2
11(g11 + g20)

+
h

n

κ4

σ4
0(g11 + g20)

n∑
i=1

(Gii − g10g
−1
11 (G′G)ii)

2

)
. (A.37)

Proof of Theorem 2

We have

tr(G) = tr

( ∞∑
i=0

λi0W
i+1

)
= r

∞∑
i=0

λi0tr(Bi+1
m ), (A.38)

where Bm has one eigenvalue equal to 1 and the other (m−1) equal to −1/(m−

1), so that

tr(Bi+1
m ) = 1 + (m− 1)

(
−1

m− 1

)i+1

. (A.39)

Thus

h

n
tr(G) =

(
m− 1

mr

)(
r

∞∑
i=0

λi0

(
1−

(
−1

m− 1

)i))
=

(
m− 1

mr

)(
r

1− λ0
− r

1 + λ0

m−1

)

=
λ0

1− λ0

(m− 1)

m− 1 + λ0
(A.40)

and, for s ≥ 2,

h

n
tr(Gs) =

m− 1

m

1

(1− λ0)s
+ (−1)s

(m− 1)2

m(m− 1 + λ0)s
. (A.41)

To show part (a), from (2.17)

dbn(λ)

dλ
= 2− 2h2tr(G(λ))tr(G(λ)3)/n2

h2(tr(G(λ)2))2/n2
+O

(
h

n

)
. (A.42)

As n → ∞, the sign of the right hand side (RHS) of (A.42) depends on
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h2((tr(G(λ)2))2 − tr(G(λ))tr(G(λ)3))/n2. The condition h/n→ 0 as n→∞ is

satisfied when r →∞, whether m→∞ or m = O(1) as n→∞.

When m = O(1) as n → ∞, collecting (A.42), (A.40), (A.41) and by some

straightforward algebra,

(
h

n

)2

((tr(G(λ)2))2 − tr(G(λ))tr(G(λ)3))

=
(m− 1)2

m

(
(m− 1)(1− λ)

(1− λ)4(m− 1 + λ)m
+

2(m− 1)

m(1− λ)2(m− 1 + λ)2
+

(m− 1)

m(m− 1 + λ)3(1− λ)

)
=

(m− 1)3

m2(m− 1 + λ)(1− λ)

(
1

1− λ
+

1

m− 1 + λ

)2

, (A.43)

which is stricly positive for λ < 1 and m ≥ 2. As m→∞,

(
h

n

)2

((tr(G(λ)2))2 − tr(G(λ))tr(G(λ)3))→ 1

(1− λ)2
, (A.44)

which, again, is strictly positive for λ < 1. As λ → 1, for both m = O(1) and

m → ∞ as n → ∞, it is easy to see that dbn(λ)/dλ → 0, consistently with

Figure 11.

To show part (b) we notice that as m→∞ and r →∞,

lim
n→∞

h

n
tr(G) =

λ0

(1− λ0)
lim
n→∞

h

n
tr(Gs) =

1

(1− λ0)s
(A.45)

Hence, from (3.8), (A.45) and standard algebra

lim
n→∞

(
2trGtr(G2G′)

tr(G′G)tr(G2 +G′G)

)2

= lim
n→∞

2tr((G′G)2)(trG)2

(tr(G′G))2tr(G2 +G′G)
= λ2

0, (A.46)

so that

ω∗ = VMLE =
(1− λ0)2

2
. (A.47)

Proof of Theorem 3
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As n→∞,

1

n
tr(G(λ)) =

1

n

∞∑
s=0

λstr(W s+1)→
∞∑
s=0

λs
1

2s+1

1

2π

∫ 2π

0

(2cosx)s+1dx

=
1

λ

∞∑
s=1

λs
1

2π

∫ 2π

0

(cosx)sdx. (A.48)

Since
∫ 2π

0
(cosx)sdx = 0 for odd s, the last expression in (A.48) can be written

as

1

λ

∞∑
p=1

λ2p 1

2π

∫ 2π

0

(cosx)2pdx =
1

λ

∞∑
p=1

λ2p (2p− 1)!!

(2p)!!
=

1

λ

∞∑
p=1

λ2p (2p)!

22p(p!)2

=
1

λ

∞∑
p=0

(
λ2

4

)p(
2p

p

)
− 1

λ
=

1

λ
((1− λ2)−1/2 − 1). (A.49)

Similarly,

1

n
tr(G(λ)2) =

1

n

∞∑
s,t=0

λs+ttr(W s+t+2)→ 1

2π

∞∑
s,t=0

λs+t
∫ 2π

0

(cosx)s+t+2dx.

(A.50)

Since
∫ 2π

0
(cosx)s+t+2dx 6= 0 only when s + t + 2 = 2p, for s, t = 0, ....∞ and

p = 1, ....∞,

1

2π

∞∑
s,t=0

λs+t
∫ 2π

0

(cosx)s+t+2dx =
1

λ2

∞∑
p=1

λ2p(2p− 1)
(2p− 1)!!

(2p)!!
, (A.51)

where the factor (2p − 1) takes into account all the combinations of s, t =

0, .....,∞ s.t. s+ t = 2p− 2, for p = 1, ....∞. Since

∞∑
p=1

pxp
(

2p

p

)
= 2x(1− 4x)−3/2 |x| < 1

4
, (A.52)
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1

n
tr(G(λ)2)→ 1

λ2

(
2

∞∑
p=1

p

(
λ2

4

)p(
2p

p

)
−
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p=1

(
λ2

4

)p(
2p

p

))

=
1

λ2

(
λ2(1− λ2)−3/2 − ((1− λ2)−1/2 − 1)

)
. (A.53)

Along the same lines,

1

n
tr(G(λ)3) =

1

n

∞∑
s,t,q=0

λs+t+qtr(W s+t+q+3)→ 1

2π

∞∑
s,t,q=0

λs+t+q
∫ 2π

0

(cosx)s+t+q+3dx.

(A.54)

Again,
∫ 2π

0
(cosx)s+t+q+3dx 6= 0 only when s+ t+ q + 3 = 2p, s, t, q = 0, ....,∞

and p = 2, ....,∞. Thus,

1

2π

∞∑
s,t,q=0

λs+t+q
∫ 2π

0

(cosx)s+t+q+3dx =
1

2πλ3
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p=2

λ2p(p−1)(2p−1)

∫ 2π

0

(cosx)2pdx,

(A.55)

where the factor (p− 1)(2p− 1) takes into account the number of combinations

of s, t, q s.t. s+ t+ q = 2p− 3, for s, t, q = 0, ....,∞ and p = 1, ....,∞. By

∞∑
p=1

p2xp
(

2p

p

)
=

2x(2x+ 1)

(1− 4x)5/2
|x| < 1

4
, (A.56)

we deduce

1

n
tr(G(λ)3)→ 1

λ3
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p=1

λ2p(p− 1)(2p− 1)
(2p− 1)!!

(2p)!!

=
1

λ3

(
2
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p=1
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(
λ2

4

)p(
2p

p

)
− 3
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p=1

p

(
λ2

4

)p(
2p

p

)
+

∞∑
p=1

(
λ2

4

)p(
2p

p
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=
1

λ3

(
λ2

(
λ2

2
+ 1

)
(1− λ2)−5/2 − 3

2
λ2(1− λ2)−3/2 + (1− λ2)−1/2 − 1

)
.

(A.57)

Collecting (A.49), (A.53) and (A.57), we can show that (A.42) is strictly

35



positive for any λ ∈ (−
√

3/2,
√

3/2) (and λ 6= 0) as n→∞, since

1

n2
((tr(G(λ)2))2 − tr(G(λ))tr(G(λ)3))→ 1

λ4
(
λ4

2
(1− λ2)−3(1 + (1− λ2)1/2)

−λ
2

2
(1− λ2)−2(1− (1− λ2)1/2)− λ2(1− λ2)−3(1− (1− λ2)1/2)) (A.58)

as n→∞. By setting z = (1− λ2)1/2 and by some algebraic manipulation, for

λ ∈ (−1, 1) and λ 6= 0 the RHS of (A.58) is strictly positive when

2z2 − 3z + 1 < 0, (A.59)

which is satisfied for z ∈ (1/2, 1). Solving for λ, we obtain that the RHS of

(A.58) is strictly positive for λ ∈ (−
√

3/2,
√

3/2), somehow consistently with

the plot in Figure 12. From (A.42), (A.49), (A.53) and (A.57) it is easy to see

that as n→∞, for λ→ ±1, dbn(λ)/dλ→ −1.
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n 30 50 100 200

OLS λ BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.5 −0.485 0.469 −0.481 0.376 −0.488 0.312 −0.500 0.276
0.0 −0.075 0.265 −0.061 0.162 −0.035 0.082 −0.016 0.040
0.5 0.229 0.136 0.268 0.111 0.291 0.100 0.302 0.098
0.8 0.207 0.052 0.216 0.050 0.221 0.050 0.223 0.005

ML λ BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.5 −0.004 0.071 −0.001 0.044 −0.001 0.022 −0.001 0.001
0.0 −0.028 0.066 −0.024 0.040 −0.014 0.020 −0.006 0.010
0.5 −0.052 0.041 −0.029 0.022 −0.015 0.010 −0.007 0.005
0.8 −0.041 0.016 −0.025 0.008 −0.011 0.003 −0.006 0.001

II λ BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.5 −0.038 0.103 −0.017 0.054 −0.009 0.025 −0.004 0.012
0.0 −0.030 0.076 −0.025 0.043 −0.015 0.021 −0.006 0.010
0.5 −0.020 0.058 −0.010 0.029 0.007 0.012 −0.004 0.006
0.8 0.004 0.035 0.001 0.017 0.005 0.008 0.006 0.004

Table 1: Bias and Mean Square Error (MSE) of the OLS, MLE and II estimators
at n = 30, 50, 100, 200 for λ = 0.5, 0, 0.5, 0.8 when W is given by (4.1) (104 repl.
and ε ∼ N(0, 1)).
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n 30 50 100 200

OLS λ BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.5 −0.279 0.220 −0.283 0.165 −0.288 0.126 −0.286 0.103
0.0 −0.061 0.170 −0.038 0.100 −0.016 0.049 −0.010 0.025
0.5 0.153 0.082 0.182 0.064 0.205 0.055 0.215 0.052
0.8 0.128 0.026 0.142 0.024 0.152 0.024 0.156 0.025

ML λ BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.5 −0.024 0.087 −0.015 0.049 −0.001 0.024 −0.003 0.012
0.0 −0.037 0.068 −0.022 0.038 −0.009 0.018 −0.006 0.009
0.5 −0.045 0.038 −0.027 0.021 −0.013 0.010 −0.007 0.005
0.8 −0.042 0.019 −0.027 0.010 −0.013 0.004 −0.007 0.002

II λ BIAS MSE BIAS MSE BIAS MSE BIAS MSE

−0.5 −0.031 0.092 −0.019 0.051 −0.011 0.025 −0.004 0.012
0.0 −0.037 0.071 −0.022 0.039 −0.009 0.018 −0.006 0.009
0.5 −0.035 0.041 −0.022 0.022 −0.010 0.010 −0.005 0.005
0.8 −0.011 0.027 −0.007 0.014 −0.004 0.006 −0.003 0.002

Table 2: Bias and Mean Square Error (MSE) of the OLS, MLE and II estimators
at n = 30, 50, 100, 200 for λ = 0.5, 0, 0.5, 0.8 when W is given by (4.3) (104 repl.
and ε ∼ N(0, 1)).
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λ = −0.5 BIAS MSE
OLS −0.377 0.305
ML 0.007 0.055
II −0.014 0.069

λ = 0 BIAS MSE
OLS −0.038 0.187
ML −0.016 0.056
II −0.016 0.062

λ = 0.5 BIAS MSE
OLS 0.258 0.150
ML −0.030 0.039
II 0.019 0.076

λ = 0.8 BIAS MSE
OLS 0.290 0.111
ML −0.037 0.023
II 0.097 0.074

Table 3: Bias and Mean Square Error (MSE) of the OLS, MLE and II estimators
at n = 43 for λ = 0.5, 0, 0.5, 0.8 when W has an Empirical-based structure (104

repl. and ε ∼ N(0, 1)).
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Figure 1: Approximate binding function, b∗n(.), for λ ∈ (−1, 1) when W is chosen
as in (4.1). n = 100
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Figure 2: Empirical densities of λ̂, λ̂MLE and λ̂II for λ0 = 0.5 when W is chosen
as in (4.1). n = 100.
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Figure 3: Finite sample (3.8) and (3.10) for λ ∈ (−1, 1) when W is chosen as in
(4.1). n = 100
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Figure 4: Approximate binding function, b∗n(.), for λ ∈ (−1, 1) when W is chosen
as in (4.3). n = 100
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Figure 5: Empirical densities of λ̂, λ̂MLE and λ̂II for λ0 = 0.5 when W is chosen
as in (4.3) at n = 100.
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Figure 6: FInite sample (3.8) and (3.10) for λ ∈ (−1, 1) when W is chosen as in
(4.3). n = 100
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Figure 7: Approximate binding function, b∗n(.), for λ ∈ (−1, 1) when W is chosen
as in (4.4) and rescaled by its spectral norm. n = 43 .
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Figure 8: Empirical densities of λ̂, λ̂MLE and λ̂II for λ0 = 0.5 when W is chosen
as in (4.4) and re-scaled by its spectral norm. n = 43.
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Figure 9: Finite sample (3.8) and (3.10) for λ ∈ (−1, 1) when W is chosen as in
(4.4) and re-scaled by its spectral norm. n = 43
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Figure 10: Approximate binding functions, b∗n(.), at various sample sizes when
W is chosen as in (5.1).
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Figure 11: Approximate binding function, b∗n(.), for λ ∈ (−1, 1) when W is
chosen as in (5.3). n = 100
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