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ABSTRACT
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Doctor of Philosophy

by An Nguyen

Gene expression regulatory networks are molecular networks which describe interactions

among gene products in terms of biochemical reactions. This helps us understand the

molecular mechanisms underlying important biological processes as well as cell func-

tioning as a whole. For instance, the phenomenon of bacterial competence, whereby a

bacterium enters a transiently differentiated state, incorporating DNA fragments from

its environment into its genome, has been studied with the help of such gene regulatory

circuits (Süel et al., 2006; Maamar and Dubnau, 2005). As a result, a genetic circuit

has been taken into account in order to describe the transition from a vegetative state

to a transient state of competence and vice versa. In this work, we are going to study

a genetic circuit presented by Süel et al. (2007) to describe this dynamical behaviour.

The authors introduce model reduction techniques to study the behaviour of stochastic

chemical system of X species by means of an adiabatic two dimensional model. While

the adiabatic model helps us understand about the dynamics near the steady state, it

gives an incorrect description of the time-scales of the competent state. For this reason,

it is necessary to build up a model which better describes the system realistically. In

the thesis, I propose an approximate two-dimensional model of the full high-dimensional

system and from that, the dynamics of the system can be simulated more accurately

compared to that of Süel et al. (2007). I then show how to put the noise back into

the approximate model to be able come up with a stochastic model which can mathe-

matically describe the dynamical behaviour of the original high dimensional system. I

also found out that the evolution of the system is not well approximated by a Langevin

process. This leads to a gap between the real behaviour which is described by Gillespie’s

stochastic simulation and the Langevin approximation. To overcome this, I have fixed

the stochastic Langevin model by incorporating empirically tunable noise into the model

so as to obtain a similar behaviour as observed in the original system. I also introduce

the chemical Fokker-Planck equation aimed to estimate the probability density function

of species concentrations which are involved in the biochemical system.
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Chapter 1

Introduction

In this chapter, I will be presenting some basic background on the methods used in sys-

tems biology to understand the dynamical behaviour of gene regulation networks within

biological systems. I introduce mathematical tools which are necessary for understanding

the system of concern, these include the Chemical Master Equation (CME), Gillespie’s

algorithm, the Chemical Langevin Equation (CLE), the Reaction Rate Equation (RRE),

and the Fokker-Planck equation. I will then be talking about the motivations of thesis

in which I will point out the critical reasons why we need to conduct the research as

well as the main contributions of the thesis. The structure of the thesis is then outlined

in more details.

1.1 Background

In order to understand the problem we are going to discuss in the thesis, it is necessary

to understand some basics of systems biology which will be detailed in the following

section, as a large picture of the research area. We will then focus on a particular simple

system which has been widely studied to describe a phenomenon called competence in

bacteria Bacillus subtilis. I also introduce a series of mathematical tools which have

been used to describe the behaviour of the system.

1.1.1 Systems Biology

Systems biology is the study of systems of biological components such as molecules,

cells, organisms or species, focused on the complex interactions within the biological

system. This means the aim of this study is to examine the structure and complex

interaction among those biological components as a system, rather than the activity of

independent parts of a cell or organism (Kitano, 2002). Over the last couple of decades,

many researches in systems biology have also been conducted to better understand the

1
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behaviour of complicated biological systems at cellular level. The most challenging

problem to understanding this is to deal with a huge number of species as well as

chemical reactions involved. Consequently, this has led to an increasing attempt to

describe the complex biological processes using techniques such as metabolic pathways,

gene regulation networks and cell signaling pathways. However, in this thesis, we will

focus on gene regulation networks (GRNs) to study the regulation mechanism in gene

expression, which basically includes transcription and translation processes.

In living cells, regulation of gene expression is a fundamental mechanism of development

of adaptation to a variable environment. On the other hand, control of expression is

vital for cells to produce gene products when needed so that this gives cells the flexibility

to respond to external signals or damage to the cells (López-Maury et al., 2008). This

process includes changes of all structure and function of cells ranging from transcription

of DNA into RNA to translation of mRNA into protein, and, finally, post-translational

modification of protein into its mature, functional form (Phillips, 2008).

Transcription regulation is the way a cell controls the speed and quantity of production of

functional proteins to respond to the needs of an organism. This mechanism is regulated

by transcription factor proteins that modulate the efficiency of mRNA transcription

generation from which the proteins are transcribed. The transcription factor proteins

can either facilitate (activator) the expression of a specific gene in order to stimulate

producing its own proteins or inactivate (repressor) other genes to prevent them from

overproducing products which may not be necessary for the process (White, 2001).

In this thesis, we are interested in the regulation mechanism for a biological phenomenon

called competence in bacteria. Competence is a physiological state which enables cells

to bind and internalize DNA from its environment (Dubnau, 1991; Turgay et al., 1998).

On the other hand, competence may occur either under natural conditions such as heat,

nutrition limitation, etc., or in the laboratory where cells are made transiently permeable

to DNA (Hatami et al., 2004). In bacteria, the DNA uptake may help them respond to

environmental stresses as well as be able to survive under adverse conditions. One of

bacterial species which has been considered to have a high level of competence is Bacillus

subtilis. In this bacteria, competence usually occurs at a specific stage of growth where

the number of cells and the rates of population increase doubles with each consecutive

time period just before cells enter the stationary phase. At this state, the number of

cells remains at a constant value. As a result, a cell may make a transition from a static

or vegetative state to the state of competence in which the surrounding DNA could

be absorbed. In experiment, by using fluorescent markers in cell-sorting (Shimomura

et al., 1962; Herzenberg et al., 2002; Lippincott-Schwartz and Patterson, 2003) and time-

lapse recording technologies (Hinchcliffe, 2005), researchers have found that single cell

fluorescent images reveal bimodal cell populations of a key transcription factor protein

that is used to track the competent state, ComK. As a result, cells can express ComK at

low (vegetative state) or high (competent state) level. An example of this switching-like
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behaviour can be described as bistability in mathematical models (Dubnau and Losick,

2006; Veening et al., 2008), which have been applied in synthetic systems with positive

feedback switches (Gardner et al., 2000; Cheemeng et al., 2009).

The critical role of noise in making the transition between low and high expression

levels was also reported in two studies. Elowitz and co-workers (Elowitz et al., 2002)

constructed strains of Escherichia coli for detecting noise and showed that intrinsic noise

increases as the transcription rate decreases. Based on this approach, Maamar and co-

workers (Maamar et al., 2007) showed that intrinsic noise in ComK expression selects

cells for competence. In particular, reducing the noise by increasing the transcription

rate and decreasing the translation rate while keeping the protein concentration constant,

results in fewer transition to the competent state. Their findings are also observed in

another report that demonstrated the significant variation in basal expression rate of

ComK (Leisner et al., 2007a). As a result, noise is a competence trigger and should be

incorporated into genetic circuits for describing gene regulation. Recently, some noise-

induced genetic circuits have been constructed to model the bimodal cells population of

ComK in competence (Süel et al., 2006; Maamar et al., 2007; Dandach and Khammash,

2010). Bimodal probability distributions can be generated by an underlying stochastic

dynamical system whose deterministic state is bistable. It is also demonstrated that the

positive feedback provided by ComK proteins activating its own transcription can gen-

erate switching behaviour, whose noise-induced activation yields bimodal distributions

(Maamar and Dubnau, 2005; Leisner et al., 2007b, 2009). An alternative model has been

proposed by Süel et al. (2006, 2007) which includes a slower, negative influence on ComK

levels via the expression of the comK gene. This leads to an excitable system, whose

high expression (competent) state is not stable, but undergoes slow decay back to the

low-expression (vegetative) state. The accumulation of ComK at this slowly decaying

high expression accounts for the second mode of the bimodal distribution in the model.

In order to mathematically describe the relationships of chemical variables in genetic cir-

cuits, we use mathematical models including deterministic and stochastic models. The

deterministic models are based on a set of differential equations describing the time-

evolution of system state given an initial state, whereas the stochastic models include

random factors in the underlying processes. The stochastic descriptions are necessary

for the modelling the true dynamical behaviour of the system as the occurrence of small

number of species makes the deterministic model inaccurate. To the system perspective,

the stochastic models are needed when biologically observed phenomena are driven by

stochastic fluctuations (for example, switching between the vegetative state and com-

petent state). The stochastic models can be described by using stochastic simulation

algorithm (SSA) which is set of numerical techniques for numerically simulating the time

evolution of the given chemical system. Since Gillespie (Gillespie, 1977) first introduced

the numerical stochastic formulation of chemical kinetics, this method has been applied

to several well-known model chemical systems such as the Michaelis-Menten model, the
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Schlögl model, the Lotka-Volterra model (Facoltá et al., 2007). Since all the results men-

tioned in the thesis are collected and computed from the simulation data, the starting

point for all simulations is based on the Gillespie’s algorithm. A description of Gillespie’s

stochastic algorithm will be detailed in the following section.

1.1.2 Gillespie’s Stochastic Algorithm

Firstly, let’s assume that the dynamcial state of our system is denoted as X(t) ≡
(X1(t), X2(t), . . . XN (t))ᵀ, where Xi(t) is the number of molecules of each species Si(i =

1, ..., N) which interact to each other inside volume Ω of the system at time t. For each

reaction Rj(j = 1, ...,M), we define vector νj ≡ (ν1j , ..., νNj) called the stoichiometry

with element νij being the change in the amount of molecular number Si. The proba-

bility given X(t), that a reaction Rj will occur in the time interval [t, t+ dt) causing a

jump to state X + νj is given by aj(X)dt, where aj(X) is the propensity function. For

example, given the simple reaction below :

S1 + S2
c1−→ 2S1

2S1
c2−→ S1 + S2

(1.1)

where c1, c2 are stochastic rate constants. The probability that a pair of S1 and S2

is randomly chosen will react in the next infinitesimal time dt is given by c1dt. Thus,

the probability that X1 of the S1 molecules will react with X2 of the S2 molecules in

the next dt is c1X1X2dt, that implies that the propensity function for this reaction is

a1(X) = c1X1X2. For the reverse reaction, there are X1(X1−1)
2 possibilities of pairs

S1 − S1 to react; therefore, the propensity function is a2(X) = c2X1(X1−1)
2 .

In fact, X(t) is a discrete variable with probability P (X, t|X0, t0) that the chemical

system will be in state X at time t given X(t0) = X0. We are now interested in the

probability P (X, t+ dt|X0, t0) of the system being in state X(t) during time interval dt

given X(t0) = X0. This is modelled by a continuous time Markov process. In order to

compute this probability, we base on the following observations:

1. For a particular reaction Rj , the probability of the system reaching state X(t) during

time interval dt in which Rj occurs is aj(X − νj)P (X − νj , t|X0, t0)dt. By summing

over all reactions,
∑M

j=1 aj(X− νj)P (X− νj , t|X0, t0)dt accounts for the probability of

reaching X(t) by any one reaction in time dt.

2. The probability of the system being in state X(t) where no reaction occurs during

time interval dt is
(

1−
∑M

j=1 aj(X)dt
)
P (X, t|X0, t0)
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As a result, we have the following expression for P (X, t+ dt|X0, t0):

P (X, t+dt|X0, t0) =
M∑
j=1

aj(X−νj)P (X−νj , t|X0, t0)dt+

1−
M∑
j=1

aj(X)dt

P (X, t|X0, t0)

(1.2)

hence,

P (X, t+ dt|X0, t0)− P (X, t|X0, t0)

dt
=

M∑
j=1

[aj(X− νj)P (X− νj , t|X0, t0)− aj(X)P (X, t|X0, t0)]

(1.3)

By taking the limit of the left term as dt→ 0, we obtain:

∂

∂t
P (X, t|X0, t0) =

M∑
j=1

[aj(X− νj)P (X− νj , t|X0, t0)− aj(X)P (X, t|X0, t0)] (1.4)

The last equation is known as the Chemical Master Equation (CME) which describes

the transition probability P (X, t|X0, t0). In general, this differential equation is too

difficult to solve since the state space is very large; therefore, a method called Gillespie

algorithm (Gillespie, 1977, 2007) is used to generate trajectories X(t) whose probabilities

P (X, t) satisfy the Chemical Master Equation. In order to simulate X(t), the basic idea

of Gillespie’s approach is to determine when the next reaction will occur and what

reaction is going to take place. The time for the next reaction to occur is sampled

from an exponential distribution and based on the reaction constants. In particular,

Gillespie’s algorithm is performed in two steps:

1. The time τ until the next reaction will occur is randomly chosen from an exponential

distribution with mean 1/a0(X), where a0(X) =
∑M

j=1 aj(X).

2. The next reaction Rµ which has to occur in the next infinitesimal time interval

(t+ τ, t+ τ + dτ) is randomly chosen with probability aµdτ .

Those two steps of the algorithm will accurately keep track the system’s trajectories in

time. Indeed, this can be explained as follows, the probability that the next reaction

will occur in the infinitesimal time interval (t+ τ, t+ τ + dτ), and will be Rµ is defined

as P (τ, µ)dτ = P 0(τ)aµdτ . Here P 0(τ) is the probability that no reaction occurs in the

time interval (t, t+ τ), and aµdτ is the probability that the next reaction Rµ which has

to occur in the next infinitesimal time interval (t+ τ, t+ τ + dτ). In order to compute

this probability, we divide the interval time (t, t+ τ) into n sub-intervals of width ε = τ
n .

Hence, the probability that none of the reactions occurs in any of n sub-intervals is(
1−

∑M
j=1 aj(X)ε

)n
. We now take the limit of n to infinite to obtain the probability
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that no reaction occurs in the time interval (t, t+ τ) as follows:

P 0(τ) = lim
n→∞

1−
M∑
j=1

aj(X)ε

n

= lim
n→∞

(
1−

∑M
j=1 aj(X)τ

n

)n

= exp

− M∑
j=1

aj(X)τ

 (1.5)

therefore, we get:

P (τ, µ)dτ = P 0(τ)aµdτ

= exp

− M∑
j=1

aj(X)τ

 aµdτ

=
(
a0(X)e−a0(X)τdτ

)( aµ
a0(X)

)
(1.6)

= P (τ)P (µ|τ) (1.7)

here, P (τ) = a0(X)e−a0(X)τdτ is the probability of the waiting time that the next

reaction occur; P (µ|τ) =
aµ

a0(X) is the probability that given τ , reaction µ is chosen

to occur. It is clear that τ is an exponential distributed variable with mean 1/a0(X);

therefore, τ can be chosen from an exponential distribution with mean 1/a0(X). The

next reaction µ is then picked up with probability
aµ

a0(X) . Consequently, the two random

variables τ and µ are chosen as follows:

τ =
1

a0(X)
ln

(
1

r1

)
, µ = the integer satisfying

µ−1∑
j=1

aj(X) < r2

M∑
j=1

aj(X) ≤
µ∑
j=1

aj(X)

(1.8)

here, r1, r2 are two random numbers generated from the uniform distribution in the unit

interval. After these two steps, the time is set to t + τ and the state X is updated to

X + νµ.

As we can see, the CME is used for stochastic molecular details and can be simulated

by using Gillespie’s algorithm. However, it is still complicated to understand the under-

lying behaviour of the system. As a consequence, it should be reduced to an Ordinary

Differential Equation (ODE) which is simpler and can be used for dynamical systems

analysis. Since the ODEs tracks the time evolution of the system where all fluctuations

are ignored; therefore, it is simpler to use the ODEs to explicitly determine the state

space of the system. In order to do that simplification, we need to study the Langevin

approximation which is seen as a bridge between the ODE and CME. A description of

the Langevin approximation is detailed in the following section.
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1.1.3 The Langevin Approximation

In this section, we will try to approximate the discrete Markov process defined by the

CME (1.4) by a continuous Markov process by replacing a Poisson distribution by a

Normal distribution. Firstly, let assume that we can find τ small enough such as no

propensity function aj(X) is likely to change its value by a significant amount in the

time interval [t, t + τ) for all 1 ≤ j ≤ M . Consequently, the number of times reactions

Rj occur in the interval has a Poisson distribution with parameter aj(X)τ (Gillespie,

2007). Therefore, the molecular numbers of species can be updated according to the

following equation:

X(t+ τ) = X(t) +
M∑
j=1

Pj(aj(X)τ)νj , (1.9)

Here Pj(.) is a Poisson distribution with the same mean and variance aj(X)τ . Supposing

that τ is also large enough that the average number of reaction firing during τ is � 1:

aj(X)τ � 1 for all j = 1, . . . ,M. (1.10)

Under these assumptions, we can approximate the Poisson distribution by a normal

(Gaussian) distribution N (m,σ2) with the same mean and variance. As a result, the

equation now describes the time evolution of the system in terms of continuous random

variables rather than discrete variables:

X(t+τ) = X(t)+
M∑
j=1

Nj(aj(X)τ, aj(X)τ)νj = X(t)+
M∑
j=1

[
aj(X)τ +

√
aj(X)τNj(0, 1)

]
νj

Thus

X(t+ τ) = X(t) +

M∑
j=1

νjaj(X)τ +

M∑
j=1

νj

√
aj(X) dWj (1.11)

where dWj = Nj(0, 1)
√
τ is a Wiener process or Brownian motion (Dehling et al.,

2007). This equation is known as a Chemical Langevin Equation (CLE) or Langevin

approximation. In order to describe the CLE in terms of molecular concentration, the

propensities aj(X) should be appropriately replaced by ãj(Y) scaled by powers of volume

Ω to translate between molecule numbers X and concentrations Y = X/Ω. As a result,

in general, we have ãj(Y) = aj(X)/Ω (Gillespie, 2000; Pakka et al., 2010). Consequently,

equation (1.9) can be re-written as:

Y(t+ τ) = Y(t) +
1

Ω

M∑
j=1

Nj(Ωãj(Y)τ,Ωãj(Y)τ)νj

= Y(t) +
1

Ω

M∑
j=1

[
Ωãj(Y)τ +

√
Ω
√
ãj(Y)τNj(0, 1)

]
νj (1.12)
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Therefore,

Y(t+ τ) = Y(t) +

M∑
j=1

νj ãj(Y)τ +
1√
Ω

M∑
j=1

νj

√
ãj(Y) dWj (1.13)

1.1.4 The RRE Approximation

In equation (1.13), as we take the limit of volume Ω→∞ and keep the concentration Y

constant, the second term in the right side of the equation will become negligibly small

compared with the other terms; therefore, the CLE reduces to the following equation

(Gillespie, 2000):

Y(t+ τ) = Y(t) +
M∑
j=1

νj ãj(Y)τ (1.14)

Therefore

dY(t)

dt
=

M∑
j=1

νj ãj(Y) (1.15)

The last equation is known as the “concentration” form, a reaction rate equation (RRE).

We can take the equation (1.1) in the previous section as an example; the corresponding

reaction rate equation for concentration variable Y = (Y1, Y2)ᵀ is given as follows:

dY1

dt
= k1Y1Y2 − k2Y1

2

and

dY2

dt
= −k1Y1Y2 + k2Y1

2

(1.16)

where k1, k2 are deterministic rate constants and

Y1 =
X1

Ω
, Y2 =

X2

Ω
, ã1(Y) = k1Y1Y2, ã2(Y) = k2Y1

2

In order to find the relationship between the deterministic and stochastic rate constants,

we can re-write (1.16) in matrix form as follows:

d

dt

(
X

Ω

)
=

(
1 −1

−1 1

)(
k1

(
X1
Ω
X2
Ω

)
k2

(
X1
Ω

)2
)

⇒ d(X) =

(
1 −1

−1 1

)(
k1
Ω X1X2dt
k2
Ω X1

2dt

)
On the other hand, we have

d(X) =

(
1 −1

−1 1

)(
a1(X)dt

a2(X)dt

)
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where

a1(X) = c1X1X2

a2(X) = c2
X1(X1 − 1)

2
≈ c2

2
X1

2 for X1 � 0
(1.17)

By performing propensity function matching, we obtain

c1 =
k1

Ω
, c2 =

2k2

Ω
(1.18)

In our study, the RRE is used for the deterministic models and we also use both Gillespie

and Langevin simulations to describe the stochastic dynamical behaviour of the system.

The continuous stochastic model built up by using Langevin approximation is called a

Langevin model which is then simulated and compared to the Gillespie simulation.

In fact, experiments can feed into description of reactions that are expressed in terms of

distribution or histogram; therefore, this can be obtained from the Fokker-Planck equa-

tion in which we can quantitatively capture the probability distribution of the system

states. A description of the Fokker-Planck equation is detailed in the following section.

1.1.5 The Fokker-Planck Equation

The Fokker-Planck equation describes the time evolution of the probability density func-

tion of species motion in stochastic dynamic systems. In deterministic systems, the sys-

tem state assumes a well-defined value at a unit time for a given set of initial conditions.

In stochastic systems, however, it is a random variable which is characterized by its

time-parameterized probability density function (PDF), P (X, t). I will show how the

Fokker-Planck Equation can be obtained from the Chemical Master Equation. Indeed,

assuming that X(t) is a vector of the number of molecules, then the time-evolution

description of the joint probability distribution of all species is given by the following

Chemical Master Equation (CME):

∂

∂t
P (X, t) =

M∑
j=1

[P (X− νj , t) aj (X− νj)− P (X, t) aj (X)] (1.19)

We now set fj(X, t) = P (X, t) aj (X) and assume that we will treat X as real numbers

instead of integers, we expect that this assumption is true if the molecule numbers are

large enough. We also assume that functions fj(X, t) are infinitely differentiable, and
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therefore satisfies the following Taylor expansion:

fj(X− νj , t)− fj(X, t) =

N∑
i=1

(−νij)
∂

∂Xi
fj(X, t) +

1

2

N∑
i=1

∂2

∂Xi
2

(
νij

2fj(X, t)
)

+
N∑

i,k=1
i 6=k

∂2

∂Xi∂Xk
(νijνkjfj(X, t))

therefore,

P (X− νj , t) aj (X− νj , t)− P (X, t) aj (X) = −
N∑
i=1

∂

∂Xi
[(νijaj(X))P (X, t)]

+
1

2

N∑
i=1

∂2

∂Xi
2

[(
νij

2aj(X)
)
P (X, t)

]
+

N∑
i,k=1
i 6=k

∂2

∂Xi∂Xk
[(νijνkjaj(X))P (X, t)]

(1.20)

Summing over all the reactions, this yields:

∂

∂t
P (X, t) = −

N∑
i=1

∂

∂Xi

 M∑
j=1

νijaj(X)

P (X, t)

+
1

2

N∑
i=1

∂2

∂Xi
2

 M∑
j=1

ν2
ijaj(X)

P (X, t)


+

N∑
i,k=1
i 6=k

∂2

∂Xi∂Xk

 M∑
j=1

νijνkjaj(X)

P (X, t)

 (1.21)

The last equation is a description of the Chemical Fokker-Planck Equation (Gillespie,

2002) , I now show how this equation is related to the Chemical Langevin Equation. To

do so, we re-write the Langevin equation as follows:

X(t+ τ) = X(t) +
M∑
j=1

νjaj(X)τ +
M∑
j=1

νj

√
aj(X) dWj (1.22)

Where dWj = Nj(0, 1)
√
τ is a Wiener process. This equation can be described as a

stochastic process with the drift term µ(X, t) and the diffusion term σ(X, t) as follows:

dX(t) = µ(X, t)dt+ σ(X, t) dW (1.23)

where µ(X, t) is a vector with elements µi(X, t) =
∑M

j=1 νijaj(X), σ(X, t) is a matrix

with components σij(X, t) = νij
√
aj(X). As a result, the corresponding Fokker-Planck
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is expressed as follows:

∂

∂t
P (X, t) = −

N∑
i=1

∂

∂Xi
(µi(X, t)P (X, t))+

1

2

N∑
i=1

N∑
j=1

∂2

∂Xi∂Xj

(
M∑
k=1

σik(X, t)σjk(X, t)P (X, t)

)
(1.24)

Again, we take equation (1.1) for an example, the corresponding Fokker-Planck equation

for the system X = [X1, X2]ᵀ is described as follows:

∂

∂t
P (X, t) = −

2∑
i=1

∂

∂Xi
(µi(X, t)P (X, t))+

1

2

2∑
i=1

2∑
j=1

∂2

∂Xi∂Xj

(
2∑

k=1

σik(X, t)σjk(X, t)P (X, t)

)
(1.25)

where

a1(X) = c1X1X2 =
k1X1X2

Ω
, a2(X) = c2

X1(X1 − 1)

2
=
k2X1(X1 − 1)

Ω
(see equation (1.18))

µ(X, t) =

µ1(X, t)

µ2(X, t)

, µ1(X, t) = a1(X)− a2(X), µ2(X, t) = −a1(X) + a2(X)

σ(X, t) =

 √
a1(X) −

√
a2(X)

−
√
a1(X)

√
a2(X)



1.1.6 Model Reduction

The Gillespie’s algorithm provides a means to simulate the stochastic dynamical be-

haviour of species in biochemical systems. This allows us to obtain a sample of the

trajectories, however, it does not help understand the underlying behaviour which is

encapsulated in the set of reaction equations. The CLE is an approximation of the

Gillespie simulation where the jump Markov process is replaced by a continuous Markov

process. The Fokker-Planck equation which is the direct consequence of the CLE, on the

other hand, probabilistically captures the motion of the system. Unlike these methods,

the RRE only observes the mean change in the number of components which is therefore

simpler to analyse. However, as the number of variables is large, the RRE description

would be hard to understand the complex interaction among those variables. In con-

trast, if the behaviour of the system is somehow described by a lower dimensional model,

says a two-dimensional model, we then can mathematically analyze the dynamics of the

system by plotting the time evolution of the two variables on a plane. The impact of

the two variables on the dynamical behaviour is therefore easier to analyse. As a result,

in order to better understand the underlying behaviour of the system, we need to do a

model reduction so that the very complicated system can be reduced to a simpler sys-

tem which is potentially easier. In fact, this can be done by replacing the CME by the



12 Chapter 1 Introduction

reaction rate equations. Next, the differential equations can be reduced by identifying

fast processes which are observed to happen very quickly compared to the others in the

system. A standard method of doing this is to apply an adiabatic approximation for the

fast processes. The description of this method is illustrated in the following section.

1.1.7 Adiabatic Approximation

Firstly, the fundamental principle of the reduction method is to divide the system into

two parts which evolve on slow and fast times-scales separately. For example, assuming

that we have a fast-slow system of two species as follows :

dx

dt
= f(x, y, ε)

ε
dy

dt
= g(x, y, ε)

(1.26)

Where 0 < ε � 1 is the singular perturbation parameter (Holmes, 2009). In this

example, x is a slow variable whereas y is a fast variable since the rate of change in y is

faster than that in x. Such systems are said to be singularly perturbed (Tian, 2003) in

which the trajectories follow the slow manifolds that are invariant under the dynamics

of the systems. In our particular system, the slow manifold can be obtained by taking

the limit of ε to zero, then we get:

lim
ε→0

εdy

dt
= lim

ε→0
g(x, y, ε) = 0 (1.27)

Assuming that there exists y = h0(x) such that g(x, h0(x), 0) = 0, we say our system is

now reduced to a slow manifold. In this case, the second reaction is actually a fast process

which is then eliminated off the system. This is known as an adiabatic approximation.

As a result, the adiabatic approximation can be obtained by simply setting ε = 0. In

other words, the fast processes are set to their steady states so that the rest the system

only responds to the evolution of the slow processes.

In fact, there is not only one slow manifold h0(x) which exists, but a family of slow

manifolds h(x, ε) that drive the system (Zagaris et al., 2004; Sobolev and Tropkina,

2012). To find those slow manifolds, we utilize an approach called invariant manifold

method which is suggested by Roussel and Fraser (Roussel, 1997; Roussel and Fraser,

2001). This method is described in the following section.
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1.1.8 Invariant Manifold Method

The basic idea of this method is that, in order to find the slow manifolds, we won’t set

ε to zero but do the asymptotic expansions for h(x, ε) as follows:

h(x, ε) = h0(x) + εh1(x) + ε2h2(x) + . . . (1.28)

Therefore, from (1.26) we obtain:

g(x, h(x, ε), ε) = ε
dy

dt
= ε

dy

dx
.
dx

dt
= ε

∂h(x, ε)

∂x
f(x, h(x, ε), ε) (1.29)

hence,

g(x, h(x, ε), ε)− ε∂h(x, ε)

∂x
f(x, h(x, ε), ε) = 0 (1.30)

This equation can be solved to obtain the following general expression of h(x, ε):

h(x, ε) = F (x, ∂h(x, ε)/∂x, ε) (1.31)

In order to solve equation (1.31), we start with an initial function h0(x, ε = 0) and

putting it back into the right term of the equation to obtain h1(x, ε). This procedure

is then repeated until convergence. The detailed description of this method will be

presented in Chapter 3.

1.2 Motivation

Modelling GRNs is challenging on many different levels. Empirically, it is difficult to

measure which reactions occur in a living organism. Models are therefore, by neces-

sity, built up by guess work based on the basic mechanism for protein production and

references made from a series of indirect experiments to identify proteins which appear

to play a key role in a mechanism of interest. The models derived are usually a set of

reactions together with best guessed (or tuned) reaction rates that form the Chemical

Master Equations.

The behaviour of the system can then be simulated using the Gillespie algorithm which

allows those who construct these models to investigate questions such as the robust-

ness to changes in parameters. However, understanding the dynamics directly from

the Chemical Master Equations is usually difficult due to the large number of chemical

species and the lack of analytic tools that can be directly applied to a set of chemical re-

actions. In order to overcome this, the common practice is to try to replace the chemical

master equations by a more analytically amenable model which is normally described by

differential equations or stochastic differential equations. The next step is to eliminate

fast reacting components in order to simplify the model. In the chapters on the wild-
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type system and in simplification (Chapters 2, 3, 4, 5), I start with the CME which I

take as the generator of the correct behaviour, and then use the RRE, Langevin and the

Fokker-Planck equations of reduced models to approximate this reference behaviour. In

Chapter 6, I reverse the order of introducing the models, I start with a RRE and infer

the necessary CME in order to generate a reference stochastic behaviour of a synthetic

circuit.

I will concentrate on modelling the competence behaviour displayed by B. Subtilis and

in particular, the model proposed by Süel et al. (2006, 2007). This is a model that has

received very considerable attention (792 references to date). Their paper provided a

first step towards simplifying the chemical master equations by replacing the reaction

rate equation by differential equations and then eliminating “fast” changing variables

to obtain a two species model consisting a pair of coupled differential equations. The

authors then studied the structure of the fixed points for these differential equations and

showed that a slight modification can lead to a change in the fixed points stability and

the system behaviour.

My interest has been to extend the analysis in their papers. In particular, the com-

petence behaviour is stochastically driven, so we would like to put back this stochastic

behaviour in the simplified model. As we will see through this thesis this proved far

more challenging and a low-dimensional model was not fully able to be constructed us-

ing a standard model reduction procedure. This procedure is basically described in the

following steps:

1. Replace the chemical master equations by a set of Langevin equations

2. Eliminate fast reactions from the RRE to obtain a reduced set of equations describing

the dynamics of slowly varying species.

However, both these steps were problematic. The Langevin equations are stochastic

differential equations which capture the mean change in the number of components in

a reaction (the drift term) and the fluctuations around this (the noise term). As the

chemical master equations can be described by a Poisson process, it is usually expected

the drift term to be proportional to the number of reactants and the variance describ-

ing the fluctuations to be equal to the drift term. However, for this reduction to be

accurate requires the number of the reactants to be sufficient large. Unfortunately, the

nature of the competence mechanism is that it relies on the fluctuation of very small

number of mRNA molecules described in Süel et al. (2006, 2007), which is then am-

plified through a positive feedback mechanism. This creates a number of problems for

standard modelling. Firstly, the size of fluctuations in the Langevin model can drive

the molecule number negative (which is clearly unphysical). Secondly, despite the fact

that the mRNA molecules react very quickly, I have failed to find a mathematically con-

sistent way of eliminating the mRNA molecules, while capturing the large fluctuations

they induce (these problems will be discussed in Chapter 4). I, thus, have to introduce

the fluctuations artificially to model those observed in the full system. Although I was
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unable to solve this problem, one of the contribution of the thesis is to pin-point this

problem. Moreover, as I show late in Chapter 5, I model the noise by tuning the noise

term in a Langevin equation to fit the distribution generated from the CME.

The second difficulty is in eliminating that species involved in fast reactions. In fact, if

you are only interested in the fixed-point structure, then you can ignore the noise term

and set all the drift term to zero. However, we can do better than that. The competence

behaviour is captured by a slow manifold. This manifold can be projected onto the

ComK-ComS plane where it is seen that the trajectories of Gillespie simulation follow

roughly the same trajectory. The reason for this is because the dynamics of the whole

system breaks up into different time scales. Thus, although the individual reactions do

not have very different time scales, there still exists one slow time scale describing the

trajectory of the system after the transition to competence. This trajectory is uniquely

characterized by the values of ComK and ComS. However, as I will show, to obtain the

correct trajectory, it is insufficient to do the reduction as described by Süel et al. (2007),

but instead use an invariant manifold method first proposed by Roussel (1997); Roussel

and Fraser (2001). A second contribution of the thesis is to show how to apply this to

the competence model (this is described in section 3.2 of Chapter 3).

Once we have an accurate 2-dimensional model of the dynamics, it is interesting to

put back the stochastic behaviour to obtain a full low-dimensional description of the

behaviour of the system. Unfortunately, as I discussed earlier, I have been unable to

systematically derive a correct stochastic model. However, we can build a model with

a tunable noise chosen to reproduce the noise observed in the full system. This can

be done by exploring the empirical noise during the simulation and approximating the

relation between the size of noise and the corresponding concentration of reactant. In

spite of the fact that I could not provide an explicit mathematical description of this

relation, however, I would show evidence that our effective model of the fluctuations

in a Langevin model reproduces the dynamical behaviour of the original system. This

is another critical contribution to the thesis. When the stochastic reduced model is

obtained, then we can have a number of available analytic tools allow us to investigate

the behaviour better. Particularly, we can use the Fokker-Planck equation to obtain a

probability density function which describes the probability of the system being at a

particular state. I describe this in Chapter 5.

I have also extended this analysis to a second set of models produced by the same

group and described in Cagatay et al. (2009a). Here the authors used techniques from

synthetic biology to construct a strain of cells containing different circuits for becoming

competent. The group’s starting point was a set of differential equations with the

same qualitative behaviour as the wild-type. I analysed this new model and show that

their differential equations are inconsistent with a physically meaningful set of Chemical

Master Equations. I also show that their model is susceptible to being trapped around

the secondary fixed point (which is weakly stable in their model), giving rise to transient
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noise oscillatory behaviour. Interestingly, the second fixed point can be avoided by

reducing the noise, stopping the system from jumping into the basin of attraction of this

fixed point. I provide this analysis in Chapter 6.

To sum up, the regulatory network we have been working on is more complicated than

it has been thought to be. The more we analyze the system, the more interesting results

we can find. This is also the reason why we have spent lots of time trying to understand

the underlying behaviour of the system. Thus, the discovery of negative results has

prevented us from following a straightforward publishing path. However, since we have

found useful evidences which help change the way we understand the wild-type genetic

circuit, we have submitted a paper for publishing those results.

1.3 Structure of Thesis

The rest of thesis is structured as follows. In Chapter 2, I describe the competence

circuit which is used to model cellular behaviours followed by reproducing the phase-

plane analysis of this circuit using the discrete and continuous models. I also describe

the model in more detailed way by giving a set of differential equations which are derived

from the Chemical Master Equation (CME) for biochemical reactions in gene expression.

In Chapter 3, I show the inadequacy of the assumptions made by Süel et al. (2007) which

leads to poor quantitative observations of the system. To solve this problem, I present

a solution to the problem of dimensionality reduction based on invariant slow manifold

technique. This allows our original high-dimensional system to be reduced to a lower-

dimensional system which is easier for a systematic analysis. I also make a comparison

between the novel reduced model with the original two-dimensional model with respect

to the full-dimensional system. In the competence regime, the reduced model accurately

captures the time scale for returning to the vegetative state, and is thus an improvement

upon the analysis of Süel et al. (2007).

In fact, the dynamics of the system is driven by noise which can be described by a

stochastic process. As a result, I demonstrated standard methods of approximating the

model and putting the noise back into the reduced system to be able to come up with

a reduced stochastic model which provides a correct way of simulating the dynamics of

system.

However, as I will show that this step is a bit tricky and it is very difficult to capture the

noise of the system. In order to really understand the system, Chapter 4 is followed by

conducting a small research about a simple two species genetic circuit which is narrowed

down from our complicated high dimensional system. The purpose of this study is to

focus on a still unresolved problem in model reduction which currently prevent us from

accurately reducing the full stochastic system to a low dimensional stochastic system.
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By focusing on a simpler problem (only 2 variables) we seek to reveal the principles for

such model reduction.

Finally, by adding some noise to the continuous model, the stochastic continuous model

can be used to stimulate the cell behaviour more realistically. As a result, a Fokker-

Planck equation that accurately captures small fluctuations about the stable attractor

of the system will be detailed in Chapter 5. We also apply this equation in order to

mathematically approximate the probability distribution of molecular concentrations

as cells make a transition from their original vegetative state into a competent state

followed by an estimation of the initialization probability of entrance into competence.

In Chapter 6, we study another genetic circuit called SynExSlow which was introduced

by Cagatay et al. (2009a). This circuit was expected to produce a similar behaviour

compared to the wild-type but provide less variability in competence duration. In order

to understand the underlying behaviour, the authors tried to reduce the system to a low-

dimensional system from the chemical reactions. However, as we show that the RRE

of the model can not be reconstructed from a physically allowed Gillespie simulation;

therefore, it is needed to be simulated by a stochastic Langevin approximation. We

re-engineered a valid CME so that the mean dynamics could possibly be tracked by the

same RRE as in Cagatay et al. (2009a). Nevertheless, we will show that the stochastic

Langevin approximation of the SynExSlow model does not produce the same behaviour

in comparison with Gillespie simulation.

A large part of these sections has been retrieved from Süel et al. (2007) involving hy-

pothesis and parameters of the models which will be used through the thesis and future

work. Eventually, the conclusions and future work will complete the report in Chapter

7.





Chapter 2

Competence Circuit

In this chapter, we will study a particular genetic circuit for understanding the compe-

tence phenomenon in B. subtilis. The main purpose of this chapter is to reproduce the

results of Süel et al. (2007). However, we note a discrepancy in their results in Figure

2.10 which will tie into our further analysis in Chapter 3. As mentioned earlier, the de-

velopment of genetic competence is controlled by the competence-specific transcription

factor ComK. In our circuit, ComK activates transcription of its own gene while being

controlled by other genes including mecA, clpC, and comS. ComK forms a ternary com-

plex with ClpC and MecA that prevents it from binding to its specific DNA target, thus

preventing its own activation, ComS causes the reactivation of ComK by dissociating

the ternary complex allowing ComK to bind to its specific DNA target. In the following

section, we will briefly describe the competence circuit introduced by Süel et al. (2006,

2007).

2.1 Competence Circuit Architecture

Figure 2.1: Competence circuit architecture.

19
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The circuit architecture basically includes interactions among genetic elements which are

depicted in Figure 2.1. As we can see in the figure, the competence circuit includes the

following components: two genes comK and comS corresponding to two proteins ComK

and ComS, respectively; and promoters PcomK and PcomS . In the figure, ComK activates

the expression of its own gene (auto-regulation feedback) and inhibits expression of ComS

(negative regulation), that in turn interferes with degradation of ComK. The complex of

MecA, ClpP/C also actively degrades ComK. In the following section, we will describe

how to represent the relationship of these molecular components in an explicit form.

2.2 Modelling of Competence Circuit

2.2.1 Discrete Stochastic Model

The natural competence happens under environmental conditions as discussed previ-

ously. However, it does not mean that all cells become competent under the same

conditions. In fact, there are some cells that make a transition to competent state while

others may not. In other words, the competence should be described as random events

in which there is a switching state where the transition can be made by some stochastic

factor. As a result, if the switch is stochastic then different cells become competent

at different times which might have a selective advantage for the population. From

this point of view, a discrete stochastic model has been built in order to represent and

simulate the behaviour of the competence circuit by means of stochastic biochemical

reactions.

The expression of ComK is described by the following reactions (we denote square

bracket for molar concentration of reactant):

Pconst
comK

k1−→ Pconst
comK + mRNAcomK

PcomK
f([ComK],k2,kk,n)−−−−−−−−−−−−→ PcomK + mRNAcomK

mRNAcomK
k3−→ mRNAcomK + ComK

(2.1)

P constcomK and PcomK are constitutive and regulated promoters of ComK, respectively.

mRNAcomK and mRNAcomS are mRNA molecules from which proteins ComK and

ComS are translated, respectively. The symbols above the arrows denote the probabili-

ties of reactions in unit time. The first two reactions represent how much mRNAcomK is

produced from the binding of protein to the promoters on DNA, this is known as tran-

scriptional regulation. The last reaction shows how much protein ComK is synthesized
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from mRNAcomK , this is known as a translational regulation. The underlying biochem-

ical mechanism (transcription and translation) as well as the regulation of transcription

and translation can be found in the Appendix A.1, A.2.

Likewise, the expression of ComS is described as below:

Pconst
comS

k4−→ Pconst
comS + mRNAcomS

PcomS
g([ComK],k5,ks,p)−−−−−−−−−−−→ PcomS + mRNAcomS

mRNAcomS
k6−→ mRNAcomS + ComS

(2.2)

In these equations, the regulated transcription rates of ComK and ComS are given by

the following Hill equations (see Appendix A.3):

f ([ComK], k2, kk, n) =
k2[ComK]n

kk
n + [ComK]n

, g ([ComK], k5, ks, p) =
k5

1 +
(

[ComK]
ks

)p
(2.3)

The first equation represents the auto-regulation feedback of ComK, whereas the second

one shows the inhibition (negative regulation) of ComK on ComS.

The Hill equation involves concentrations of ComK and ComS whereas the discrete

model is described in terms of number of molecule. Hence, the relationship between

concentration and molecular number is captured in the parameter Ω:

Ω = AV = 6.023× 1023molec/mol × 1.66µm3 = 6.023× 1023molec/mol × 1.66× 10−15l

= 0.99982× 109molec/M

≈ 1molec/ nM (2.4)

Where A is Avogadro’s number and V is cell volume which is taken to be 1.66µm3. This

value is the same as that suggested in Süel et al. (2007). In fact, by measuring molar

concentrations in nM (nano-molar) we can ignore the factor Ω since it is very close to 1;

therefore, we can treat the concentrations of species in the same way as their molecular

number.

In the circuit, mRNA and proteins are also assumed to be degraded linearly:

mRNAcomK
k7−→ ∅ ComK

k8−→ ∅

mRNAcomS
k9−→ ∅ ComS

k10−−→ ∅
(2.5)
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k1 0.00021875s−1 k7 0.005s−1 k12 0.05s−1 n 2

k2 0.1875s−1 k8 10−4s−1 k13 4.5× 10−6 nM−1s−1 p 5
k3 0.2s−1 k9 0.005s−1 k−13 5× 10−5s−1

k4 0s−1 k10 10−4s−1 k14 4× 10−5s−1

k5 0.0015s−1 k11 2.02× 10−6 nM−1s−1 kk 5000nM

k6 0.2s−1 k−11 5× 10−4s−1 ks 833nM

Table 2.1: Parameters of the discrete model.

[P constcomK ] 1nM

[P constcomS ] 1nM

[PcomK ] 1nM

[PcomS ] 1nM

[mRNAcomK ] 0nM

[mRNAcomS ] 0nM

[MecA] 23nM

[MecAK ] 0nM

[MecAS ] 477nM

[ComK] 69nM

[ComS] 409nM

Table 2.2: Initial conditions.

Finally, the two proteins bind to MecA competitively and get degraded by the protease:

MecA+ComK
k11/Ω−⇀
↽−
k−11

MecAK MecAK

k12−→ MecA

MecA+ComS
k13/Ω−⇀
↽−
k−13

MecAS MecAS

k14−→ MecA

(2.6)

The reactions on the left represent the interference of MecA to the proteins by bind-

ing/unbinding to them, whereas the reactions on the right show the release of MecA

from the proteins.

An example of a set of model parameters is given in Table 2.1. The trajectories generated

by the discrete model can be simulated by using Gillespie’s algorithm (Gillespie, 2007) (I

used Dizzy (Ramsey et al., 2005) to generate the trajectories, the Dizzy file description

is detailed in Appendix A.11). Figure 2.2 shows such trajectories plotted with initial

conditions given in Table 2.2 on a log-scale phase plane (the labels K, S which are

denoted for [ComK] and [ComS], respectively, are treated as molecular numbers so that

we can plot on a log-scale plane). In this figure, the initial transient has been thrown

away in order to capture stable trajectories after a long running time. Even though

the simulation shows us the trajectories which describe the behaviour of the system, we

need to describe the system in a mathematical way in order to understand the underlying

cellular behaviour of the system. In the following section, we will represent the system
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Figure 2.2: Trajectories created by the discrete model.

by a set of differential equations.

2.2.2 The Differential Equations

We can approximate the reaction equations (2.1), (2.2), (2.3), (2.5) and (2.6) by a set of

differential equations under the assumption of large numbers of molecular populations

where we can ignore fluctuations. For example, the rate of change in concentration of

mRNA in the reaction (2.5) can be derived as:

d[mRNAcomK ]

dt
= −k7[mRNAcomK ]

As mRNAcomK is also involved in reaction (2.1), the final formula for mRNAcomK is

then:

d[mRNAcomK ]

dt
= k1[P constcomK ] + f ([ComK], k2, kk, n) [PcomK ]− k7[mRNAcomK ]

= k1[P constcomK ] +
k2[ComK]n

kk
n + [ComK]n

[PcomK ]− k7[mRNAcomK ] (2.7)

Similarly, we have the following differential equations:

d[ComK]

dt
= −k11[ComK][MecA] + k−11[MecAK ] + k3[mRNAcomK ]− k8[ComK]

(2.8)
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d[ComS]

dt
= −k13[ComS][MecA] + k−13[MecAS ] + k6[mRNAcomS ]− k10[ComS]

(2.9)

d[MecAK ]

dt
= −k12[MecAK ] + k11[ComK][MecA]− k−11[MecAK ] (2.10)

d[MecAS ]

dt
= −k14[MecAS ] + k13[ComS][MecA]− k−13[MecAS ] (2.11)

d[MecA]

dt
= −k11[ComK][MecA] + k−11[MecAK ] + k12[MecAK ]

+ k14[MecAS ]− k13[ComS][MecA] + k−13[MecAS ] (2.12)

d[mRNAcomS ]

dt
= k4[P constcomS ] + g ([ComK], k5, ks, p) [PcomS ]− k9[mRNAcomS ]

= k4[P constcomS ] +
k5

1 +
(

[ComK]
ks

)p [PcomS ]− k9[mRNAcomS ] (2.13)

This high dimensional system is hard to analyse. In fact, we can eliminate some variables

by assuming that very fast processes reaches equilibrium. This is known as a adiabatic

approximation which has been mentioned in section 1.1.7 of the previous chapter. Al-

though this assumption seems reasonable, we will see that the actual situation is far

more subtle. The decay rate of mRNA is higher than that of proteins, and transients in

mRNA thus decay much faster than these of proteins. This is the motivation for treat-

ing mRNA as a fast variable. As a result, we approximate the effect of mRNA on the

protein dynamics by replacing the time-dependent mRNA variable by their steady-state

values:
d[mRNAcomK ]

dt
= 0 ,

d[mRNAcomS ]

dt
= 0 (2.14)

From (6.17), (2.13) and (2.14) we have:

[mRNAcomK ] =
k1[P constcomK ] + k2[ComK]n

kk
n+[ComK]n [PcomK ]

k7
(2.15)

[mRNAcomS ] =

k4[P constcomS ] + k5

1+
(

[ComK]
ks

)p [PcomS ]

k9
(2.16)

therefore:

d[ComK]

dt
= −k11[ComK][MecA] + k−11[MecAK ] + k3[mRNAcomK ]− k8[ComK]

= −k11[ComK][MecA] + k−11[MecAK ] +
k1k3[P constcomK ] + k2k3[ComK]n

kk
n+[ComK]n [PcomK ]

k7
− k8[ComK]

(2.17)

Similarly, we find:

d[ComS]

dt
= −k13[ComS][MecA] + k−13[MecAS ] + k6[mRNAcomS ]− k10[ComS]
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= −k13[ComS][MecA] + k−13[MecAS ] +

k4k6[P constcomS ] + k5k6

1+
(

[ComK]
ks

)p [PcomS ]

k9
− k10[ComS]

(2.18)

The system has now been simplified as a five-dimensional system which includes a tuple

of variables (ComK,ComS,MecA,MecAK ,MecAS). The authors in Süel et al. (2007),

however, make it even simpler by assuming that the binding and unbinding processes of

proteins and protease complex are very fast so that the rest of the system only responds

to the steady-state values of MecAK and MecAS . Consequently, we set:

d[MecAK ]

dt
≈ 0 ,

d[MecAS ]

dt
≈ 0 (2.19)

From (2.10), (2.11) and (2.19) we obtain:

[MecAK ] =
k11[ComK][MecA]

k12 + k−11
, [MecAS ] =

k13[ComS][MecA]

k14 + k−13
(2.20)

In addition, the sum [MecA] + [MecAK ] + [MecAS ] remains constant since all reactions

involving MecA or its complexes (see Equation (2.6)) conserves this sum. We can see

this algebraically by looking at the changes in MecA and its complexes. That means

[MecA] + [MecAK ] + [MecAS ] = MT = const. Plugging this into (6.7), this yields:

[MecA] + [MecAK ] + [MecAS ] =

(
k11[ComK]

k12 + k−11
+
k13[ComS]

k14 + k−13
+ 1

)
[MecA] = MT

⇒ [MecA] =
MT

1 + k11[ComK]
k12+k−11

+ k13[ComS]
k14+k−13

(2.21)

From (2.13), (2.17) and (6.7) we yield:

d[ComK]

dt
= −k11[ComK][MecA] + k−11[MecAK ] +

k1k3[P constcomK ] + k2k3[ComK]n

kk
n+[ComK]n [PcomK ]

k7

− k8[ComK]

= −k11[ComK][MecA] +
k11k−11[ComK][MecA]

k12 + k−11
+
k1k3[P constcomK ] + k2k3

kk
n+[ComK]n [PcomK ]

k7

− k8[ComK]

= − k12k11MT [ComK]

(k12 + k−11)
(

1 + k11[ComK]
k12+k−11

+ k13[ComS]
k14+k−13

) +
k1k3[P constcomK ] + k2k3

kk
n+[ComK]n [PcomK ]

k7

− k8[ComK] (2.22)
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Similarly:

d[ComS]

dt
= − k13k14MT [ComS]

(k14 + k−13)
(

1 + k11[ComK]
k12+k−11

+ k13[ComS]
k14+k−13

) +

k4k6[P constcomS ] + k5k6

1+
(

[ComK]
ks

)p [PcomS ]

k9

− k10[ComS] (2.23)

As a result, by eliminating some variables which do not significantly impact on the

dynamical behaviour of the cells in the long run, we now can describe the system in form

of the two differential equations shown as (2.22) and (2.23). This is the two-dimensional

continuous model we are going to discuss briefly in the following section.

2.2.3 Analysis of Continuous Model

The dynamics of the circuit is reduced to two differential equations that determine

the time evolution of the concentrations ComK and ComS. After redefining some rate

equations, Equations (2.22) and (2.23) can be written as:

dK

dt
= αk +

βkK
n

kk
n +Kn

− δkK

1 + K
Γk

+ S
Γs

− λkK

dS

dt
= αs +

βs

1 +
(
K
ks

)p − δsS

1 + K
Γk

+ S
Γs

− λsS
(2.24)

where K = [ComK], S = [ComS]. In the first equation, αk and βk are basal expression

rates representing constitutive expression from the promoter PcomK and auto-regulated

expression rate, respectively. Accordingly, the second term represents the positive tran-

scriptional auto-regulation by ComK of its own gene. In both equations, the third and

fourth terms represent the competitive binding of ComK and ComS to MecA and linear

degradation with coefficients λk and λs, respectively.

Here, kk and ks are (activation and repression) coefficients which identify concentration

of ComK for which its own activation (repression) is half-maximal. In order to make

the equation look simpler, we rescale the variables as follows:

K 7→ K

Γk
, S 7→ S

Γs
, t 7→ δkt

where δk = δs = δ. Dropping primes for simplicity and redefining K, S, t, we come up

with the following differential equations:

dK

dt
= ak +

bkK
n

k0
n +Kn

− K

1 +K + S
−∆kK

dS

dt
= as +

bs

1 +
(
K
k1

)p − S

1 +K + S
−∆sS

(2.25)
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where

ak =
αk

Γkδk
, bk =

βk
Γkδk

, k0 =
kk
Γk
, ∆k =

λk
δk

as =
αs

Γsδs
, bs =

βs
Γsδs

, k1 =
ks
Γk
, ∆s =

λs
δs

(2.26)

In order to relate the parameters of the continuous model with the reaction rates used

in the discrete model, we replace [ComK], [ComS] in (2.22) and (2.23) by K and S,

respectively. By comparing the terms in the discrete model with the corresponding terms

in the continous model, we obtain:

αk =
k1k3

k7
[P constcomK ] =

k1k3

k7

P constcomK

Ω
βk =

k2k3

k7
[PcomK ] =

k2k3

k7

PcomK
Ω

αs =
k4k6

k9
[P constcomS ] =

k4k6

k9

P constcomS

Ω
βs =

k5k6

k9
[PcomK ] =

k5k6

k9

PcomS
Ω

Γk =
k−11 + k12

k11
δk = k12MT

k11

k−11 + k12
λk = k8

Γs =
k−13 + k14

k13
δs = k14MT

k13

k−13 + k14
λs = k10

(2.27)

2.2.4 Phase-plane Analysis

In order to analyze the dynamical behaviour of the system, we first look at the location

of nullclines by setting dK
dt = 0 and dS

dt = 0 (The values of dimensionless parameters

used in the text are given in Table 2.4, together with the original, unscaled parameters

given in Table 2.3). From (2.25), the solution of the equation dK
dt = 0 is:

S =
K

ak + bkKn

k0
n+Kn −∆kK

−K − 1 = h(K) (2.28)

To sovle dS
dt = 0, let u(K) = as + bs

1+
(
K
k1

)p , we have:

u(K)− S

1 +K + S
−∆sS = 0

⇒ ∆sS(K + S + 1) + S − u(K)(K + S + 1) = 0

⇒ ∆sS
2 + S(∆sK + ∆s + 1− u(K)) + u(K)(K + 1) = 0

(2.29)

The last equation is quadratic, solving this equation gives us the following expression of

S:

S =

√
∆s(K + 1)2 + (u(K)− 1)2 + 2∆s(K + 1)(u(K) + 1)− (∆s(K + 1)− u(K) + 1)

2∆s

= q(K)
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αk 0.00875 molec/s δk 0.001 s−1

αs 0 molec/s δs 0.001 s−1

βk 7.5 molec/s λk 10−4 s−1

βs 0.06 molec/s λs 10−4 s−1

Table 2.3: Original, unscaled parameters of the continuous model.

ak 0.00035 k0 0.2

as 0 k1 1/30

bk 0.3 ∆k 0.1

bs 3.0 ∆s 0.1

Table 2.4: Dimensionless parameters of the continuous model.

In order to find the fixed points which are located where the two nullclines intersect, we

put (2.28) back into (2.29), we obtain u(K)− h(K)
1+K+h(K) −∆sh(K) = 0. This equation

can be numerically solved using bisection method.

Figure 2.3 shows the location of nullclines dK
dt = 0 and dS

dt = 0 on the logarithmic scaled

plane of ComK and ComS together with vector field which describes the direction of

trajectories. The dotted line represents the nullcline of ComS and the dashed line shows

the nullcline of ComK. As we can see in the figure, there are three fixed points including

the stable (full circle), saddle (empty circle) and unstable focus (rectangle) fixed points.

The stability (stable/unstable) of these fixed points can be inferred from their lineari-

sation. Particularly, a fixed point is stable if all eigenvalues of its Jacobian matrix are

real or complex numbers with real parts less than zero. On the contrary, it is unstable if

there is at least one eigenvalue of them with real part greater than zero. From equation

(2.25), the Jacobian matrix for our system has the following form:

J =


(K) (S)

(K) −∆k + bkK
n−1k0

nn

(Kn+k0
n)2
− S+1

(1+K+S)2
K

(1+K+S)2

(S) −
bs
(
K
k1

)p
p

K
(

1+
(
K
k1

)p)2 + S
(1+K+S)2

−∆s − K+1
(1+K+S)2


By numerically solving for the fixed points, we yield three following fixed points:

(K,S) = {(0.0028, 20.488), (0.0173, 20.4880), (0.0348, 5.0851)}

Thus, the corresponding eigenvalues for the left-most, intermediate and right-most fixed

points as shown on the plane are:

(ek, es) = {(−376.5492,−367.6176), (373.3056,−348.1150),
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Figure 2.3: Nullclines and vector field of competence circuit in the continuous model.

Figure 2.4: Structure of fixed points.
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Figure 2.5: Diagram of different dynamical regimes (Source from Süel et al. (2007)).
The dots show representative points (ak, as) in each regime. Trajectories for these

systems are shown in Figure 2.6.

183.01 + 931.82i, 183.01− 931.82i)}

As a result, the left-most fixed point is classified as stable while the intermediate and

left-most fixed points are saddle and unstable focus fixed points, respectively. Figure 2.4

shows the structure of the fixed points and the trajectories generated from the discrete

model (the thine line). As we can see, the dense area around the fixed point is where

cells spend most of the time. As a result, it is more likely for cells to stay at the

steady state (near the stable fixed point) rather than getting away from this state and

come into competence where the ComK concentration is very high. In fact, the cell’s

behaviour can be analysed in terms of different dynamical regimes in which the system

may reside (Figure 2.5). Those regimes can be analysed in the plane including V/E

(Vegetative/Excitable), O (Oscillatory), C (stable competence), B1 (coexistence of two

competent states with different high level of ComK), C/E (“inverse” excitable) where

the rest of state is competent, B2 and B3 (coexistence of vegetative and competent

states) which are different in the number of unstable states.

In order to visually demonstrate the dynamical characteristics of system at these regimes,

Figure 2.6 shows sample trajectories which are created by the deterministic model given

by (2.25) with the corresponding values of the model parameters for different regimes.
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 2.6: Phase plane plots of dynamical regimes exhibited by the model (V/E
(Vegetative/Excitable) (e), O (Oscillatory) (c), C (Competence) (a), C/E (“inverse”
excitable) (d), B1 (two competent states) (b), B2 (vegetative and competent states)
(f), B3 (vegetative and competent states) (g)). The red (green lines) represent ComK
(ComS) nullclines, the other lines denote sample trajectories. Stable fixed points are
denoted as full circles, saddle points as empty circles and other unstable points as

rectangles.
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I used the ode45 solver (the ordinary differential equation solver) in Matlab to compute

the trajectories for each set of parameters, the systems are shown by the points marked

in Figure 2.5. In Figure 2.6, starting from the V/E regime, we keep as unchanged

but gradually increase the value of ak. In this case, the nullcline of ComS remains the

same but the nullcline of ComK starts moving downward. As the peak of the ComK

nullcline lies below the ComS nullcline, crossing the boundary between V/E and O states

(Figure 2.5), then the two fixed points which are denoted as circles disappear leaving

an unstable point. Consequently, there is a transition in the cellular behaviour from

the V/E (Vegetative/Excitable) state to the O (Oscillatory) state. Likewise, cells may

change from the oscillatory state to the competent state upon increasing. This makes

the nullcline of ComK also move downward and therefore, the unstable point becomes

a stable point as can be seen in the figure. We notice that the wild type is believed to

be in state V/E. From now on, we will therefore assume we are in the V/E state.

2.2.5 Probability of Initiation and Competence Duration

In Süel et al. (2007), the authors mentioned about the probability of initiation of com-

petence, Pinit, which is defined as the probability per cell cycle that a cell becomes

competent. In order to estimate Pinit, they suggested the following way: For a fixed

number of realizations c (c = 10 in our simulation) leading to competent events, we

compute the time needed for the initiation of competent events to occur. Assuming a

cell-cycle time of 4 hours, we calculate the number of cell divisions that have occurred

until competence arises by taking a sum of the inter-competence event durations which

are time durations between two consecutive competent events (see Figure 2.7) divided

by cell-cycle time. Dividing the total number of competent events by the number of

cell divisions gives Pinit. The competence duration, τcomp is computed as the time dur-

ing which the ComK molecules exceeds a threshold which is taken to be 104. I will

show the calculation result of reproducing how the initialization probability varies by

changing the model parameters by 20%. The changes in the probability of initiation of

competence as well as the competence duration are illustrated in Figure 2.8. As we

can see, the initialization probability as well as the competence duration change quite

significantly when changing bk,∆k,∆s, kk while it does not change much after varying

ks. This means the dynamical behaviour is less sensitive to the variation of ks compared

to the other parameters. In our simulation, however, the competence duration roughly

varies around 10 hours compared to 20 hours mentioned in the Supporting Online Ma-

terial in Süel et al. (2007) (Figure 2.9). This discrepancy comes from the fact that their

simulation results were inconsistent. In particular, when reconstructing the competence

circuit by introducing an additional transcription negative feedback loop onto comK,

forming CompRok strain, they estimated the competence duration using fluorescence

time traces and compared with that in the wild-type. Even though they claimed the

competence duration in the wild-type was 20.2 ± 9.9 hours (mean ± SD) compared to
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Figure 2.7: Inter-competence event duration

Figure 2.8: The probability of initiation (left) and competence duration (right) as
increasing and decreasing the values of parameters of model by 20%.
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Figure 2.9: Competence durations with different sets of model parameters (source
from Süel et al. (2007)).

(a) (b)

(c)

Figure 2.10: Normalized PcomK in the discrete stochastic simulations in wild-type
competence circuit (a), which is inconsistent with the normalized ComK (b) (source
from Süel et al. (2007)), and the competent events normalized by the maximum value
of ComK in our simulation (c), in which the competence duration is just about 10 hours

which agrees with that shown in Figure (a).
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13.9 ± 3.4 hours (mean ± SD) in the CompRok strain, it was inconsistent with their

simulation result mentioned in the main text (see Figure 2.10) where the competence

duration was just about 10 hours. On the other hand, the figure showed the normalized

quantity of PcomK while PcomK is supposed to be constant in their model. Moreover,

this quantity is inconsistent with the simulation result showed in the Supporting Online

Material they provided. In order to verify this, I did the discrete stochastic simulation

for the wild-type circuit using Dizzy with parameters given in the paper (the Dizzy file

can be found in Appendix A.11). The simulation was done for 10000 hours with 33

(c = 33) competent events being observed, the competence duration was computed to

be 11.0± 1.2√
33

hours (mean ± SD√
c
, c = 33).

2.3 Summary

In this chapter, I have reproduced some simulation results of the wild-type genetic

circuit which have been given in Süel et al. (2007). In doing so, we have conducted an

analysis to show how the cellular behaviour of the system can be divided into different

dynamical regimes. This is very important since it helps understand how cells behave

differently in each particular regimes, and suggests experimental interventions that can

probe the properties of biological systems that are in the neighbourhood of the particular

system under study. In the simulation, I also showed an inconsistency when computing

competence duration mentioned in Süel et al. (2007). Particularly, this is not only the

different competence durations observed but also the difference in the sensitivity of the

results obtained. This suggests that the authors might have measured different quantity

rather than competence duration. In addition, our simulations also showed how the

initialization probability and competence duration depend on the variation of the model

parameters. As a result, it describes how sensitive those parameters to the excitable

regimes.

In the next chapter, I will provide a deeper insight into the weakness of the model in

which I show that the existing model is not good enough to describe the dynamical

behaviour of the system in terms of the competence duration in the excitable state. To

overcome this, I propose solutions to the problem in order to simplify the system and

at the same time capture the right dynamics of the system in that particular excitable

state.





Chapter 3

Reduction of Deterministic

Model in Competence Regime

In this chapter, I will address the inaccuracy in describing the competence duration of the

system during the excitable state in Süel et al. (2007). In particular, the authors tried to

reduce the full system to a 2D system given by equations (2.24) and (2.25) by applying

the adiabatic approximation for the fast processes which do not potentially contribute to

the dynamics of the system; and therefore, can be eliminated. However, as I will show,

this approach provides a quantitatively poor approximation of the model in the excitable

regime where cells are in the competent state. In order to solve the problem, I present a

method which is a combination of using the adiabatic approximation and slow-invariant

manifold method to obtain a better deterministic model for that particular regime.

3.1 Discrepancy in Competence Duration

The 2D adiabatic model given by equation (2.25) is reduced from the full system by

using adiabatic approximation for the mRNA and the complex protease. However, the

assumption produces an inconsistency in timescale between this model and the full

7D model from which it has been reduced. In this scenario, we do the simulation

for the excitable regime where the competent events occur and make a comparison

between the 2D adiabatic model and the 7D model. For simplicity, we denote the

species concentrations [MecA], [MecAK ], [MecAS ], [ComK], [ComS], mRNAcomK ,

mRNAcomS as A, Mk, Ms, K, S, RK , RS . The 7D deterministic model can be obtained

from the full stochastic system by taking the limit of the system volume to infinity as

discussed in section 1.1.3. The differential equations for a 7D system are re-written as

37
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below:

dRK
dt

= k1 +
k2K

n

kk
n +Kn

− k7RK

dRS
dt

= k4 +
k5

1 + (K/ks)p
− k9RS

dA

dt
= −k11KA+ k−11MK + k12MK + k14MS

− k13SA+ k−13MS

dMK

dt
= −k12MK + k11KA− k−11MK

dMS

dt
= −k14MS + k13SA− k−13MS

dK

dt
= −k11KA+ k−11MK + k3RK − k8K

dS

dt
= −k13SA+ k−13MS + +k6RS − k10S

(3.1)

In the simulation, I use the Matlab solver ode45 to generate trajectories for each de-

terministic models for the comparison, and the numerical initial condition for the in-

tegration is K = 1099, S = 564, A = 16, MK = 3, MS = 481, RK = 1, RS = 0.

The result of simulation shows that, in the 2D adiabatic model, cells spend about 3.9

hours in the competent state before coming back to the vegetative state. In the 7D

system, however, cells reside in competent state for approximately 10.1 hours (Figure

3.1). In addition, the trajectory created by the 7D deterministic model (3.1) does

not follow the vector field of the 2D adiabatic model (2.24) when coming back to the

vegetative state (Figure 3.2). In fact, the cooperative binding/unbinding of protein to the

complex protease are not fast processes as assumed (k11 = 2.02×10−6, k−11 = 5×10−4,

k13 = 4.5 × 10−6, k−13 = 5 × 10−5). In other words, it is a slow process of binding

and unbinding among protein and the complex protease that makes the degradation of

protein due to being absorbed by the protease slow; therefore, the time that the cells

spend in competent state lasts longer.

To verify our hypothesis, we speed up those processes by increasing the reaction rates

including k11, k−11, k12, k13, k−13, k14 by a factor of r = 10 and at the same time

reducing the total concentration of MecA by the same factor so that the speed-up does

not effect the parameters of the 2D adiabatic model (see Equation (2.27) in Chapter

2). The experimental result shows that the trajectory follows the vector field (Figure

3.3) and the competence duration is much closer to that in the 2D adiabatic model. In

particular, the time series of ComK are almost the same in the 7D and 2D models when

the chosen rate constants are sped up by a factor r = 100 (Figure 3.4).

In conclusion, the 2D adiabatic model is inaccurate for modeling the dynamics of the sys-

tem at the excitable regime where the competence occurs. In particular, the competence
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Figure 3.1: Time series of ComK.

Figure 3.2: Trajectory created by the 7D deterministic model.

duration is shorter than that in the full system by a factor of 2.5. For this reason, we

need to find a solution to the problem of dimensionality reduction which allows to sim-

plify our full system to lower-dimensional system while still preserving the competence

duration. This solution will be systematically built up in the following section.

3.2 Model Reduction

The problem of dimensionality reduction is critical in researching dynamical systems.

The main aim of this is to reduce a very high-dimensional system to lower-dimensional

system so that the system analysis can be done more easily. The solution to this problem

has been developed by a number of authors. In this section, however, we are going to

study a relatively efficient method called the multi-scale technique which has been widely

used in stochastic simulation, especially in chemical reaction systems (Bennett et al.,

2007; Lee and Othmer, 2010; Cotter et al., 2011). The main idea of this method is to

capture fast and slow species in the system based on the reactions they participate in.

In particular, all species which get changed by fast reactions are seen as fast species.
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Figure 3.3: Trajectory created by the 7D deterministic model after the speed-up.

Figure 3.4: Comparison in competence duration between the 7D and 2D adiabatic
models after speed-up.

Otherwise, they are defined to be slow species. In fact, those species can be characterized

by computing the rates of change in their concentrations during the time evolution of the

system. From the perspective of the simulation system, the slow species are invariant

with respect to the fast reactions on a fast time scale meanwhile the fast species quickly

reach equilibrium on a slow time scale. As a result, the problem of reduction can be

solved by setting fast and slow species to their starting values and quasi-steady states,

respectively. However, the characteristic of these species may not be defined if they

occur in both fast and slow reactions; therefore, the multi-scale method in general does

not seem to be a good choice for solving the problem. To overcome this, Bennett et al.

(2007) suggested a multiple time-scale approach in which all species are partitioned into

different parts, then forming a hierarchical slow invariant manifold evolving on different

time scales. Consequently, each part which attracts the flow of the system contains a

lower-dimensional slow manifold which can be identified for reducing the dimensionality

of the full-dimensional system. This method, however, is quite complicated when dealing

with a sophisticated high-dimensional system with too many variables. In our system,

we are going to try to address the problem by capturing the slow invariant manifold
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Figure 3.5: Structure of different models. The arrows shows an approximation of
high-dimensional system to a lower-dimensional system.

in a simpler way which is a combination of the slow invariant manifold method and an

iterative procedure suggested by Roussel and Fraser (Roussel and Fraser, 1990, 2001).

In the following sections, we will try to reduce our system to lower-dimensional systems

and make a comparison with other systems in terms of trajectories, competence duration,

etc. Our purpose is to come up with a reduced model which can best approximates the

cellular behaviour after the system enters the competent state. There are two critical

properties of the system dynamics we are interested in: the first one is the competence

duration; the second one is the stationary probability distribution which describes the

probability of the system being at a particular state. In this chapter, we focus on the first

property and try to find the approximate model which best preserves the competence

duration. Figure 3.5 shows the different systems we are going to work on including the

full discrete stochastic model (Full System), the 7D deterministic system (FullSys), the

5D deterministic system (5DDeSys), the 3D deterministic model (3DApprSys), the 2D

naive adiabatic model (2DDeNASys) and the 2D deterministic model (2DDeApprSys).
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Figure 3.6: Time series of ComK in the 7D (FullSys) and 5D deterministic (5DDeSys)
models.

3.2.1 Five-dimensional Deterministic System (5DDeSys)

The key idea of dimensionality reduction problem is to identify fast and slow reactions

or conservative variables. Since the model is in a high expression state for ComK, we

note that the higher decay rates of mRNA (k7 = k9 = 0.005) compared with proteins

(k8 = k10 = 10−4) can be used to justify the treatment of mRNA as fast variables;

therefore, we can eliminate the mRNAs by setting them to their steady state values

(dRK,S/dt = 0). Consequently, the full model described in (3.1) can now be reduced to

a 5D deterministic model (5DDeSys) as follows:

dK

dt
= −k11KA+ k−11MK +

(k3k1 + k2k3Kn

kk
n+Kn )

k7
− k8K (3.2)

dS

dt
= −k13SA+ k−13MS +

(k4k6 + k5k6
1+(K

ks
)p

)

k9
− k10S (3.3)

dA

dt
= −k11KA+ k−11MK + k12MK + k14MS

− k13SA+ k−13MS (3.4)

dMK

dt
= −k12MK + k11KA− k−11MK (3.5)

dMS

dt
= −k14MS + k13SA− k−13MS (3.6)



Chapter 3 Reduction of Deterministic Model in Competence Regime 43

In order to test if the 5D deterministic model preserves the competence duration, we

do the simulation for the 7D (FullSys) and 5D deterministic (5DDeSys) models using

the Matlab solver ode45, then compare the time series of ComK for both models. The

simulation result shows that the competence duration computed in both model is around

10.1 hours (Figure 3.6). This means we successfully reduce the full model to a 5D model

while still preserving the competence duration. In the following section, we will try to

reduce the 5D model to a 3D model.

3.2.2 Three-dimensional Approximate System (3DApprSys)

Let us consider the following reactions:

MecA + ComK
k11/Ω−−−−→ MecAK

MecAK
k−11−−−→ MecA + ComK

MecAK
k12−−→ MecA

MecA + ComS
k13/Ω−−−−→ MecAS

MecAS
k−13−−−→ MecA + ComS

MecAS
k14−−→ MecA

(3.7)

Since k12 � k11, k−11, therefore the degradation process of MecAK is much faster than

the others. In other words, MecAK will quickly reach its steady state at which dMK
dt =

0. As a result, we have MK = k11
k12+k−11

KA = KA
Γk

. Using the conservation equation

MT = A+MK +MS , we obtain (for Q = MT −MS)

MK =
(K/Γk)

1 + (K/Γk)
Q

We introduce dimensionless variables, K 7→ (K/Γk), S 7→ (S/Γs), Q 7→ (Q/MT ) (which

ranges from 0 to 1), in terms of which we obtain the following differential equations

(Notice that k4 = 0):

dK

dt
=

k3

Γkk7

(
k1 +

k2K
n

(kk/Γk)n +Kn

)
− k12MT

Γk

KQ

1 +K
− k8K (3.8)

dS

dt
=

(
(k5k6)/(Γsk9)

1 + (Γk/ks)pKp

)
− k10S −

k14

Γs
MT (1−Q) + k13MT

(
1−

(
1 +

S

1 +K

)
Q

)
(3.9)

dQ

dt
= Γsk13

(
1−

(
1 +

S

1 +K

))
(3.10)
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Upon introducing new parameters to simplify the appearance of these equations, as

before, we arrive at

dK

dt
= ak +

bkK
n

kn0 +Kn
− KQ

1 +K
−∆kK

dS

dt
=

ds
1 + (K/cs)p

− µ(1−Q) + εs

(
1−

(
1 +

S

1 +K

)
Q

)
−∆sS

dQ

dt
= εq

(
1−

(
1 +

S

1 +K

)
Q

) (3.11)

with the rescaled time variable t 7→ (k12MT /Γk)t. The parameters are defined with

respect to those in the CME as follows:

Γk = k−11+k12
k11

, Γs = k−13+k14
k13

, ak = k3k1
k7k12MT

, ∆k = Γkk8
k12MT

k0 =
kk
Γk
, cs =

ks
Γk
, ds =

k5k6Γk
k9k12MTΓs

, ∆s =
Γkk10

k12MT

εs =
k13Γk
k12

, εq =
ΓkΓsk13

k12MT
, µ =

k14Γk
Γsk12

.

(3.12)

The system can now be described in the 3D deterministic model (3DApprSys) given

by equation 3.11. Accordingly, the trajectories can now be computed and compared

with that in the 7D deterministic model (FullSys), Figure 3.7 shows that those trajec-

tories perfectly match at the excitable regime. Furthermore, the competence duration

computed in the 3D deterministic model is the same as that in the 7D deterministic

model (around 10.1 hours) (Figure 3.8). As a result, the 5D deterministic model can

be replaced with a 3D deterministic model which is much easier for analysis as well as

computation afterwards. In the previous section, Süel et al. (2007) introduced a 2D

naive adiabatic model which is simple for modelling the dynamics of cell’s behaviour.

Unfortunately, we have found that this model does not describe the dynamics of system

as expected. In particular, the observed competence duration is off by a factor of 3. In

the following section, we are trying to approximate the full system by a 2D approximate

system and at the same time, compare with the 2D naive adiabatic system in terms of

trajectory as well as competence duration. Since the full model is well approximated

by the 3D deterministic model, we therefore just need to compare the 2D approximate

model with this 3D deterministic model.

3.2.3 A Two-dimensional Approximate System

In the 3D deterministic model, there are no obvious fast variables. However, there may

be fast processes involving the interaction of several variables. To study this, we look at

the eigenvalues of the Jacobian matrix computed at every single point along the average

trajectory. The Jacobian matrix measures the stability of the trajectory to changes in

the parameters. That is, if X = (K,S,Q) then we can define the dynamics by Ẋ = f(X)
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Figure 3.7: Trajectories in 3D (3DApprSys) and 7D deterministic (FullSys) models.

Figure 3.8: Time series of ComK in 7D (FullSys) and 3D deterministic (3DApprSys)
models.

and we consider δẊ(t) = f(X+ δX)− f(X) = JδX(t). Where J is the Jacobian matrix

with components Ji,j = ∂fi(X)
∂Xj

. As a result, the solution is δX(t) =
∑
ciνie

λit, where

νi are the right eigenvectors corresponding to eigenvalues λi, and ci are the components

of X(t) along νi. Large negative eigenvalues point to the rapid decay of deviations,

and a widely separated set of eigenvalues enables us to eliminate these fast decaying
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modes. In more details, Figure 3.9 shows a plot of eigenvalues computed along the

average trajectory for the 3D system described in (3.11) on a 10-base logarithm scaled

polar coordinates.

In order to compute the average trajectory, we sample the data from the Gillespie

simulation of the full system; we then choose polar coordinates such that the origin is

positioned inside the region limited by all sampled trajectories. To construct the polar

coordinates, we divide the space into 360 equal small sector shaped subspaces where

each region i is defined by an angle θi = iπ
180 , i = 1, 2, . . . , 360 as can be seen in the

figure. Next, all the data which falls into a specific region will be stored for calculation.

Upon averaging in each of the unit-degree regions, we create an average trajectory by

joining these averages. In this figure, a particular eigenvalue is plotted in such a way

that the distance from it to the origin is computed by taking a 10-base logarithm of its

inverse absolute value.

It is clear that the 3 eigenvalues are separated from each other during the excitable

state back to the vegetative state, making possible a reduction to a lower-dimensional

system. In our case, the most negative eigenvalues are about 10 times as large as

the others in absolute value, implying the existence of a low-dimensional attracting

manifold. However, there also exists positive eigenvalues marked in Figure 3.9 which is

the hallmark of an excitable system. For this reason, the whole space is divided into

subspaces which are defined by positive and negative eigenvalues; the subspaces where

the positive eigenvalues are found are demarcated by angles α, β.

We have shown that, in the 3D system (K,S,Q), there is a fast relaxation mode along

the whole trajectory. As a consequence, almost all trajectories will lie close to a 2D

manifold. We can therefore reduce our system to a 2D system by assuming Q is a

function of K and S, ie. Q = Q(K,S). This means the dynamics of the system always

lies close to a 2D manifold in (K,S,Q) space and its velocity is uniquely determined

by K and S alone. As a result, we have dQ
dt = dQ

dK .
dK
dt + dQ

dS .
dS
dt . Plugging this back into

equation 3.11 we obtain:

εq

(
1−

(
1 +

S

1 +K

)
Q

)
=
dQ

dK

(
ak +

bkK
n

kn0 +Kn
− KQ

1 +K
−∆kK

)
+
dQ

dS

(
ds

1 + (K/cs)p
− µ(1−Q) + εs

(
1−

(
1 +

S

1 +K

)
Q

)
−∆sS

)
=
dQ

dK

(
ak +

bkK
n

kn0 +Kn
−∆kK

)
− dQ

dK

KQ

1 +K

+
dQ

dS

(
ds

1 + (K/cs)p
− µ+ εs −∆sS

)
+
dQ

dS

(
µ− εs

(
1 +

S

1 +K

))
Q

=
dQ

dK

(
ak +

bkK
n

kn0 +Kn
−∆kK

)
+
dQ

dS

(
ds

1 + (K/cs)p
− µ+ εs −∆sS

)
−Q

(
dQ

dK

K

1 +K
− dQ

dS

(
µ− εs

(
1 +

S

1 +K

)))
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Figure 3.9: The spectra of eigenvalues on a 10-based logarithm scale. The position
of the eigenvalue point is defined by the angle formed by the data point at which the
eigenvalue is evaluated and the vertical axis of the polar coordinates, and the distance
from that point to the origin. This distance is computed by taking the logarithm of the

inverse absolute eigenvalue.

⇒ Q =
εq − dQ

dK

(
ak + bkK

n

kn0 +Kn −∆kK
)
− dQ

dS

(
ds

1+(K/cs)p
− µ+ εs −∆sS

)
εq − dQ

dK
K

1+K + dQ
dS µ+

(
1 + S

1+K

)(
εq − dQ

dS εs

)
= F

(
K,S,

dQ

dK
,
dQ

dS

)

In order to estimate function Q, we use an iterative procedure (Fraser, 1988; Roussel,

1997) in which by starting from an initial trial function Q0(K,S) we compute Qn+1 =

F (K,S, dQndK , dQndS ), n = 1, 2, . . . . Choosing Q0 = 0, for example, we then obtain a set

of iteratively defined functions Qn as follows (The numerical values of parameters are
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Figure 3.10: Trajectories created by different deterministic models.

Figure 3.11: Competence duration using Q3 (the 2D approximation) and Q1 (the
adiabatic approximation) in comparison with the 3D deterministic model (3DApprSys).
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given in Table 3.1):

Q0 = 0

Q1 = F (K,S, 0, 0)

Q2 = F (K,S,
dQ1

dK
,
dQ1

dS
)

Q3 = F (K,S,
dQ2

dK
,
dQ2

dS
)

. . . (3.13)

Γk 25000 ∆k 0.1 ds 3.0 εq 0.09

Γs 20 k0 0.2 ∆s 0.1 µ 1

ak 3.5× 10−4 cs 0.033 εs 2.25

Table 3.1: The parameters used in 3DApprSys.

Approximate Model 3D model 7D Model

Q1 83.76 88.92
Q2 8.2 12.93
Q3 0.15 0.71

Table 3.2: Distance between the approximate models and the 3D, 7D deterministic
models.

As a result, we now can find a nth approximate function for Q by applying the iterative

procedure above. Putting the function Q back into Equation (3.11) then we obtain a 2D

deterministic model (2DDeApprSys) of the 3D deterministic model. Numerical exper-

iments show that Qn converges rapidly and even Q2 gives a very good approximation.

In particular, Fig. 3.10 shows the three different 2D models corresponding to the three

first approximate functions of Q (Q1,Q2,Q3) compared with the 3D deterministic model.

It turns out that Q1 is the same expression as that obtained by setting dQ/dt ≈ 0 in

the 2D naive adiabatic approximation. It is clear that the third approximation Q3 al-

most perfectly fits the 3D deterministic model. Indeed, we can quantify the difference

between the approximate models and the 3D, 7D deterministic models by simply tak-

ing dist =
∫
t

(
log10

(
K(t)
K0(t)

)2
+ log10

(
S(t)
S0(t)

)2
)
dt, where (K0(t), S0(t)) and (K(t), S(t))

represent the simulation trajectories generated by the 3D (7D) deterministic model and

the approximate models, respectively. These quantities are given in Table 3.2, in which

the distance between the trajectories in Q3 and the 3D (7D) deterministic model is the

smallest, we will therefore take Q3 as the deterministic approximation to the full system,
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the differential equation for the 2D approximate model can be described as follows:

dK

dt
= fk(K,S,Q3(K,S))

dS

dt
= fs(K,S,Q3(K,S))

(3.14)

where

fk(K,S,Q3(K,S)) =
k3

k7

(
k1 +

k2K
2

k2
k +K2

)
− k12KQ3(K,S)

Γk +K
− k8K

fs(K,S,Q3(K,S)) =
k5k6/k9

1 + (K/ks)5
− k10S − k13Γk

SQ3(K,S)

Γk +K

+ k−13(MT −Q3(K,S))

(3.15)

Figure 3.11 shows a comparison of the competence duration between the naive adia-

batic approximate model introduced in Süel et al. (2006, 2007) (Q1) and the iteratively

produced model where Q3(K,S) is used in the K,S evolution equations. Evidently, the

competence duration in the 2D approximation (Q3) is about ten hours which agrees

with that in the full system whereas this duration is only roughly four hours in the

adiabatic approximation. This significant discrepancy implies that the naive adiabatic

model provides a poor approximation of the original system.

We now need to find out whether or not the initial condition impacts on the competence

duration in the reduced deterministic model. In fact, the transient before coming to the

excitable state is critical to the initialization of probability but it does not significantly

impact on the competence duration once the system enters the competent state. In

order to verify this claim, we plot different trajectories generated by the 2D deterministic

model at different initial conditions such that the system become competent, we then

compute the competence duration for each trajectory and compare this quantity with

that computed from the stochastic full system. The trajectories from the stochastic

model are also sampled and plotted on the same plane. The initial conditions for the

integration are chosen from the simulation data generated by the Gillespie algorithm

satisfying 1000 ≤ K ≤ 1585, 158 ≤ S ≤ 794. In our experiment, We take 50 sampled

trajectories and normalize them such that they start from the origin of the axis (Figure

3.12). In the full stochastic model, the competence duration is 9.1± 1.0√
50

. The competence

duration in the deterministic model is 9.4± 0.6√
50

. This means the competence duration

in the deterministic model is roughly about 10 hours which agrees with that in the

stochastic model.

We now compare the 2D deterministic model (Q3) with the 2D naive adiabatic model

(Q1) in terms of competence duration with different initial conditions. To do so, we ap-

ply the same procedure above for the two deterministic models to produce corresponding

trajectories, and plotting them on the same axis (Figure 3.13). For the 2D naive adi-

abatic model, the competence duration computed was 6.3 ± 3.5√
50

hours compared to
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Figure 3.12: Competence duration in stochastic and deterministic models.

Figure 3.13: Competence duration in different deterministic models.

9.4± 0.6√
50

in the 2D deterministic model. This quantity proves that our reduced model

is much better than the 2D naive adiabatic model in terms of competence duration. In

other words, the 2D deterministic model captures the dynamics of the cell’s behaviour

in more accurate way compared to the naive adiabatic model. Moreover, the third ap-
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proximation of Q (Q3) produces a near perfect match in the excitable regime and almost

fits the 3D deterministic model all the way back to the vegetative state.

3.3 Summary

In this chapter, I have introduced an effective solution to the model reduction problem

in competence regime. I also showed how much improvement we can achieve for the

approximate model compared to the adiabatic approximate model. The discrepancy

between the full system and the 2D adiabatic approximate model in terms of compe-

tence duration in the excitable state shows the weakness in the assumptions of the fast

processes. Additionally, it also proves that the model reduction should not be done by

an adiabatic approximation alone but need to capture those fast processes in a better

way. Our simulation showed that the competence duration computed in this model is

smaller than that in the full model by a factor of 3.

Our reduction approach provides a better model in which the competence duration and

dynamical behaviour at the excitable regime are conserved. In fact, noise plays a critical

role in driving the competence to occur and describing the molecular stochastic processes

more realistically. In the following chapter, we are going to find a way of putting the

noise back into the reduced system to be able to come up with a stochastic model, and

find out if the stochastic model describes the same behaviour as that in the original

system.



Chapter 4

Reduction of A 2-Species Model

To Track Noise-driven Transition

In the previous chapter, we discussed the model reduction for the deterministic model.

The deterministic model, however, does not fully describe systems which are driven by

stochastic noise. Stochasticity plays a crucial role in this model as it is the mechanism

which drives cells into competence. However, as we will see, modelling the stochastic

behaviour is particularly challenging for this model because of the very small number

of mRNAs and the existence of a positive feedback loop. Indeed, the standard way of

constructing the stochastic model can be performed in two steps: firstly, we replace the

chemical master equations by a set of Langevin equations; secondly, we eliminate fast

reactions from the reaction rate equations (RRE) to obtain a reduced set of equations

describing the dynamics of slowly varying species. However, both these steps were prob-

lematic. In fact, for the Langevin equation to approximate the model well requires the

molecular number of the species to be significantly large. Unfortunately, the dynamical

behaviour relies on a very small number of mRNA, which is then amplified through a

positive feedback loop. Thus, eliminating fast variables may result in losing lots of fluc-

tuations which are needed to drive the system to competent state. This consequently

leads to the failure of the reduced model to capture the correct noise terms in the original

stochastic model and therefore, poorly produces the dynamical behaviour of the system.

These issues are briefly described in the following section.

4.1 Discrepancy in Langevin and Gillespie Simulations

As discussed in Chapter 1, the Langevin approximation is used to build up a continuous-

time stochastic model of our system. In this section, we will show the fact that the contin-

uous stochastic model may provide a totally different dynamical behaviour in comparison

with the Gillespie simulation. In the Langevin simulation (details of the simulation can

53
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Figure 4.1: The trajectories generated by the 7D Langevin simulation.

Figure 4.2: Competent events in Langevin (blue lines) and Gillespie (red line) simu-
lations.

be found in Appendix A.10), we face the fact that the number of mRNAcomS is so small

that it may be driven to negative value. However, avoiding this situation may result

in incorrect dynamical behaviour. Indeed, the trajectories generated by the stochastic

Langevin model are trapped on the way back to the vegetative state (Figure 4.1). In
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addition, in this model, cells do not rest in the stationary state but quickly jump into

the excitable regime and become competent. In order to statistically estimate how often

cells become competent in both models, we run several times simulations for 100 hours

with the same initial condition which is chosen at the fixed point of the steady state,

then plot the trajectories generated by each model. We found that, in the Langevin

model, all the cells enter the competent state while there are only a portion of that

population become competent in the Gillespie simulation (Figure 4.2).

In order to avoid this situation, I eliminated the mRNAcomS and therefore, reducing

the 7D system to a 6D system. However, this reduced model produced a much higher

initialization probability compared to the original 7D model. Moreover, the 5D model

which is reduced from the 6D model by eliminating both mRNAs does not produce any

competent event. This means the fluctuations in mRNAcomK which are critical to the

switching behaviour has been ignored; therefore, those fluctuations need to be put back

into the reduced model. To do this, I apply the same procedure for the reduction but

keep the fluctuations in the eliminated variables back into the reduced model. By doing

this, the reduced models brought the initialization probability down closer to that in

the original model, however, it was still high (all the details of this work are presented

in Appendix A.6). This means the noise terms in the stochastic model were still not

captured correctly.

In order to address the source of the issue, we will focus our attention on the behaviour

of the system near the stable fixed point and the transition beyond the intermediate

unstable fixed point to the competent state. To do this, we will be looking at a much

simpler noise-driven switching circuit which is extracted from the original system. This

is done by just looking at the dynamics of two variables ComK and mRNA while ignoring

the effect of the other variables. Even though the behaviour of this bistable model is

different from the full model in a long period of time, the dynamics of the system near

the fixed point should be similar in both models. Hence, the initialization probability

of becoming competent should also be qualitatively the same. As a result, by studying

this model, we hope to have isolated the behaviour of the full system we are interested

in, and therefore it is easier to address the source of problems which cause the failure

of model reduction. In this chapter, as we will see in the Langevin simulation that

the very small population of mRNA drives the number of protein negative contributing

to the failure of this approximation method. On the other hand, I will show that the

adiabatic approximation produces a very poor model even though the decay rates of

mRNA are much faster than that of protein. Interestingly, by estimating the size of

fluctuation in protein, I have found that the variance of protein is proportional to the

square of its molecular number while the Poisson model predicts that it grows linearly

to the population of protein. This finding is the key point of incorporating the correct

noise into the Langevin equation in order to come up with a better reduced model.
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4.2 The Two Species Model

In this section, we are interested in a feedback system in which a protein activates its

own transcription as the following chemical reactions:

Pconst
comK

k1−→ Pconst
comK + mRNAcomK

PcomK
f([ComK],k2,kk)−−−−−−−−−−→ PcomK + mRNAcomK

mRNAcomK
k3−→ mRNAcomK + ComK

mRNAcomK
k4−→ ∅

ComK
k6−→ ∅

(4.1)

where f ([ComK], k2, kk) = k2[ComK]2

kk
2+[ComK]2

.

The first two reactions represent how much mRNAcomK is produced from the binding

of protein to the promoters on DNA. The next reaction shows how much protein ComK

is synthesized from mRNAcomK . The fourth and fifth reactions represent the linear

degradation of the mRNA and protein, respectively. In fact, this model is simplified

from the 7D model by setting the variables MecA and MecAK to their steady values.

This is because the numbers don’t deviate from the steady state values. Moreover, the

system exhibits bistability and transition from a low to a high expression state of ComK

which is driven by noise in mRNA levels.

We denote the protein and mRNA as K and m, respectively. As a result, the determin-

istic differential equations for this model are described as follows:

dK

dt
= k5 + k3m− k6K

dm

dt
= k1 +

k2K
2

kk
2 +K2

− k4m

(4.2)

The model parameters are given in Table 4.1. The values of parameters k1, k2, k3, k4 and

kk are the same as that in the original 7D model. The degradation rate in ComK (k6)

was recalculated after setting MecA and MecAK to their steady values, here I introduce

the parameter k5 (k5 = 3.24 × 10−5) in order to keep the structure and the position of

the fixed points the same as that in the original system. The initial conditions are given

in Table 4.2, since P constcomK and PcomK do not change their concentrations, we set their

values to 1 for simplicity. The initial values for mRNAcomK and ComK were chosen

to be slightly away from the stable fixed point for simulation, the transient was then

thrown away. We first plot the nullclines of the system by setting dK
dt = 0, dm

dt = 0, we
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k1 0.00021875s−1

k2 0.1875s−1

k3 0.2s−1

k4 0.005s−1

k5 3.2× 10−5s−1

k6 1.4704× 10−4s−1

kk 5000nM

Table 4.1: Model parameters

[P constcomK ] 1nM

[PcomK ] 1nM

[mRNAcomK ] 0nM

[ComK] 20nM

Table 4.2: Initial conditions

obtain the following expression of nullclines of K and m, respectively:

m =
k6K − k5

k3
= h(K)

m =
k1 + k2K2

kk
2+K2

k4
= q(K)

(4.3)

In order to find the fixed points of the system, we substitute m from the first equation

into the second one in (4.3), this yields

k3

(
k1 +

k2K
2

kk
2 +K2

)
− k4 (k6K − k5) = 0 (4.4)

This cubic equation can be solved in close form. As a result, we obtain three following

fixed points:

(K,m) = {(71.0, 0.052), (389.0, 0.285), (54125.0, 39.72)}

The Jacobian matrix for our system has the following form:

J =

( (K) (m)

(K) ∂ff
∂K

∂ff
∂m

(m) ∂gg
∂K

∂gg
∂m

)

where ff = k5 + k3m− k6K, gg = k1 + k2K2

kk
2+K2 − k4m. As a result, we obtain:

J =

( (K) (m)

(K) −k6 k3

(m)
2k2Kk2k

(K2+k2k)2
−k4

)
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Hence, the corresponding eigenvalues for the left-most, intermediate and right-most fixed

points as shown on the plane are:

(ek, es) = {(−18,−0.3708), (−18.72, 0.36), (−18,−0.504)}

As a result, the left-most and right-most fixed points are classified as stable while the

intermediate is unstable fixed points. Consequently, our simple genetic circuit exhibits

bistable behaviour with two deterministic steady states (Figure 4.3), a low expression

in protein where its molecular number is small ((K,m) = (71.0, 0.052)), and a high

expression where the protein activates its own transcription generating a switching state

at which the protein is present in large numbers ((K,m) = (54125.0, 39.72)). Figure 4.4

shows an analysis of regime boundary for the model. In the figure, the regime limited

by the blue curve including the low stable fixed point presents a low expression regime,

whereas the regime outside of this box containing the other stable fixed point shows a

high expression regime. In order to compute the regime boundary, we start with the

middle fixed point and compute the Jacobian for that point. Next, we slightly move

away from the fixed point in two opposite directions of the eigenvectors and take those

as the initial conditions for the function ode45 with time step −∆t. This procedure allow

us to generate two “backward” trajectories which form a regime boundary separating

the low and high expression level regions.

Figure 4.3: Nullcline space of the simple model. The dashed line and solid line
represent the nullcline of protein and mRNA, respectively. The model exhibits bistable
behaviour with two stable fixed points (full black circle) and one intermediate unstable
fixed point (empty rectangle). The arrows show the vector field which specifies the

direction the trajectories follow.
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Figure 4.4: The boundary between two attraction domains.

4.2.1 Comparing Langevin and Gillespie Simulations

In this context, we are interested in the steady state where the protein exhibits a low

expression level. Firstly, we need to verify if the Langevin simulation works well on

this model by comparing it to the Gillespie simulation. The 2D Langevin model can be

described by the following equations:

∆K = (k5 + k3m− k6K) ∆t+
√
k3m+ k5 + k6K dWk

∆m =

(
k1 +

k2K
2

kk
2 +K2

− k4m

)
∆t+

√
k1 +

k2K2

kk
2 +K2

+ k4mdWm

(4.5)

where dWk, dWm are Wiener processes. Next, we collect all the simulation data and

plot PDF fitting histograms for comparison. The PDF fitting histograms are computed

as follows: since we are only interested in the low expression region, the simulation data

is therefore sampled for this region only. For both Langevin and Gillespie simulations,

we use the initial condition given in Table 4.2. We sample M simulations (M = 100); for

each simulation, the simulation will stop as long as the value of K hits 500 over which

ComK reaches high level of expression. In the Gillespie simulation, each sampled data

will be put into N = 50 bins ranging from 0 to 500 and this process will be iterated for

all M simulations. Let si be the total number of observations for bin i, i = 1, 2, . . . , N ,

the PDF for bin i is then estimated as fi = si∑M
j=1 sj×w

, where w is the width of the bin.

After this step, we obtain a histogram of the PDF for protein. Similarly, we apply the

same procedure for the Langevin simulation, noting the fact that the molecular number
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(a) (b)

Figure 4.5: Probability density function (PDF) fitting histograms of protein levels in
simulations from the Gillespie (4.1) and Langevin simulations (4.5) in the low expression

regime (a) and corresponding histogram fitting curves (b).

of protein is driven to negative values which is physically meaningless. However, we still

allow this to happen in order to get the distribution of protein. Hence, the bin range for

this case is chosen to be from −100 to 500. In order to compare the two histograms, the

standard way is to use Kernel density estimation (Rosenblatt, 1956; Bowman, 1984), or

smoothing function to approximate the data. In our case, I use function spline in Matlab

to approximate each histogram by a smooth curve along with error bars (see Figure 4.5)).

The figure shows that there is a significant difference between the two curves. In fact,

we can quantitatively measure this discrepancy using Kolmogorov-Smirnov test (Schrer

and Trenkler, 1995; Justel et al., 1997; Drew et al., 2000). The result shows that the

two samples were not drawn from the same distribution (p-value = 4.74×10−6 � 0.05).

Consequently, this implies that the dynamical behaviour has not been well approximated

by the Langevin approximation.

4.2.2 Tracking Time Scale Separation With Singular Perturbation

In the previous section, I showed that the 2D Langevin model does not produce a good

approximate model to the 2D Gillespie model. To solve this problem, we need to see

if we can approximate for the deterministic part of the model by looking at the time

scale separation of the dynamics. Hence, in this section, we expect to make a better

approximation than the adiabatic approximation by applying singular perturbation the-

ory. However, as I will show that this method does not produce a better approximation.

Firstly, we speed up the reaction rates k1, k2 and k4 by a factor of 1/ε (0 < ε ≤ 1);

therefore, the evolution of the system can defined as the following slow-fast processes
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(Berglund and Gentz, 2003):

dK

dt
= k5 + k3m− k6K

dm

dt
=

1

ε
(hk − k4m)

(4.6)

where

hk = k1 +
k2K

2

kk
2 +K2

, hk ≈ O(1), k4 ≈ O(1)

We now expand m as a power series in ε:

m = m
(0)

+ εm
(1)

(4.7)

In order to find the unknown m
(0)

and m
(1)

, we substitute the power series (4.7) into

the differential equations. This gives us the following expression:

∂m
(0)

∂t
+ ε

∂m
(1)

∂t
=

1

ε
(hk − k4(m

(0)
+ εm

(1)
))

dK

dt
= k5 + k3(m

(0)
+ εm

(1)
)− k6K

(4.8)

We then do the matching for the terms which have the same order of ε:

O(ε−1) : hk − k4m
(0)

= 0→ m
(0)

=
hk
k4

O(ε0) :
dm

(0)

dt
= −k4m

(1)

(4.9)

hence,

d

dt

(
hk
k4

)
= −k4m

(1)

⇒ m
(1)

= − 1

k2
4

d(hk)

dt
= − 1

k2
4

∂(hk)

∂K

dK

dt
(4.10)

We have

m = m
(0)

+ εm
(1)

=
hk
k4
− ε 1

k2
4

∂(hk)

∂K

dK

dt

dK

dt
= k5 + k3(m

(0)
+ εm

(1)
)− k6K

= k5 + k3
hk
k4
− εk3

k2
4

∂(hk)

∂K

dK

dt
− k6K

Finally,

dK

dt

(
1 + ε

k3

k2
4

∂(hk)

∂K

dK

dt

)
= k5 + k3

hk
k4
− k6K
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⇒ dK

dt
=
k5 + k3

hk
k4
− k6K

1 + εk3
k24

∂(hk)
∂K

(4.11)

(a) (b)

Figure 4.6: A comparison between the full model (4.2) and the adiabatic model (4.11)
with different values of ε. The full model tends to get closer to the adiabatic model
as ε is small (a); however, the gap between these models in short time scale is still

significant (b).

Figure 4.7: A comparison between the approximate model (4.11) and the adiabatic
model (4.11).

In order to compare the models, we do the simulation for those models using ode45

function, starting with the initial condition (K,m) = (80, 0) which is set away from

the stable fixed point and see how the trajectories is driven back to the fixed point.
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Figure 4.6 shows that the full model gets closer to the adiabatic approximate model

when ε is small; however, there is still a significant difference between these models in

short time scale. For this reason, we expect that the approximate model given by (4.11)

may provide a better approximation. However, the correction term turns out to be

so small that it almost does not make any significant improvement over the adiabatic

approximation (Figure 4.7). Indeed, the scaling factor E = 1 + εk3
k24

∂(hk)
∂K in equation

(4.11) does not significantly contribution to the correction term in the approximate

model (E ≈ 1). In fact, we notice that if dX
dt = f + η where η is the noise term, then

η ∝
√
f . On the other hand, our differential equation is scaled by E: dX

dt = Ef +
√
Efη

where
√
Ef ∝

√
f since E ≈ 1, hence the approximation will not work. In fact, the

singular perturbation theory works well for the system in long time scale; however, it

would never capture the dynamics of system in very short time scale unless we either

start the simulation with the initial conditions at which both models are matched or

make ε extremely small. However, this means the adiabatic model is good enough for the

approximation. This result also implies that the time scales are not split out; therefore,

the singular perturbation theory does not work properly.

In the next section, I will first compare the model distributions by simulating the dy-

namics to confirm the time-scales are not separated enough. As a result, we need to

find a way of quantifying the noise and incorporating it back into the system. To do so,

I demonstrate an empirical method of computing the size of fluctuation near the fixed

point and show that the size of fluctuation is proportional to the number of reactants.

This analysis is presented in section 4.3.2.

4.3 Stochastic Model Reduction

4.3.1 Time Scale Separation For The Reduction of 2D to 1D Langevin

Model

In the previous experiment, the Langevin simulation breaks down due to the very small

number of mRNA population having been driven to negative values. Hence, we will try

to adiabatically eliminate this small variable and check if this method gives a model that

is free from negative protein numbers. We notice that the mRNA lifetimes are shorter

than protein lifetimes (k4k6 = 34� 1), we therefore can assume that the mRNA quickly

reaches equilibrium, this yields:

m∗ =
k1 + k2K2

kk
2+K2

k4
(4.12)

dK

dt
= k5 + k3m

∗ − k6K (4.13)
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We then get a description of a 1D Langevin equation as follows:

dK =

k5 + k3

k1 + k2K2

kk
2+K2

k4

− k6K

 dt

+

√√√√√k5 + k3

k1 + k2K2

kk
2+K2

k4

+ k6K dWk

m∗ =
k1 + k2K2

kk
2+K2

k4
(4.14)

The simulation result shows that there are no competent events in the 1D Langevin

Figure 4.8: PDF fitting histograms in the 1D Langevin and 2D Gillespie models.

simulation (Figure 4.8). It means the adiabatic approximation does not capture the

noise-driven transitions in this model as shown in the results of the 2D Gillespie model.

It also implies that the fluctuation in the mRNA which is generated in the 2D Langevin

model significantly contributes to the switching behaviour of the system. Even though

the decay rate of mRNA is about 30 times faster than that of the protein, the production

rate of mRNA (k3 = 0.2) is 1000 times faster than the decay rate of protein (k6 =

1.4704×10−4); therefore, time scales of mRNA and protein are not completely separated.

Consequently, eliminating mRNA results in losing lots of fluctuation which is needed for

the transition to occur.

In this section, I have shown that the fluctuation in the 2D Langevin model has not

been captured correctly due to the small number of mRNA as well as the impact of the

positive feedback mechanism. However, eliminating the mRNA may result in losing the
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fluctuation which is needed for driving the system to the high expression regime. For

this reason, it is necessary to explore the fluctuations near the steady state in the 2D

Gillespie model whereby we would hope to construct the correct noise for the stochastic

model. By doing this, I have found that the mean change in mRNA computed from the

CME was significantly different from that in the corresponding reaction rate equations.

Moreover, the fluctuation computed from the simulation data differs from that obtained

from the linear noise approximation method by a factor of 4. This is the key issue which

prevented us from producing a good approximate reduced model. However, trying to fix

the mean of mRNA could change the characteristics of the fixed points in the original

model; therefore, this method is unable to apply in our case (All the details of this work

are performed in Appendix A.8). In order to preserve the structure of the fixed points,

we still need to do the model reduction using the adiabatic approximation, and try to fit

the fluctuation in the stochastic reduced model by using fitting curves. The reason why

we are doing this is because we would like to use the results from this study as a guide

for the 7D wild-type model. In this analysis, I will show that the standard deviation

is proportional to the number of reactants σX ∝ X instead of the usual σX ∝
√
X

standard deviation in the Langevin equation. By using fitting curves, I concluded that

the diffusion coefficient in the stochastic reduced model could be approximated by a

quadratic curve, the fluctuation is therefore tunable such that it can provide a better

approximation to the original 2D model. In the following section, I will show how to

compute the empirical fluctuation from the simulation data.

4.3.2 Fluctuation Estimation

In this section, I will try to estimate the size of fluctuation which is needed to be put

back into the 1D Langevin model (4.14), this may allow us to come up with a better

approximate model. To obtain this, our calculation will be based on the simulation data

of the full Gillespie model. I sample the simulation data as follows:

1. I run M Gillespie simulations using the reaction scheme as mentioned in section 4.1

with the initial condition given by the fixed point. For each run, we stop the simulation

as soon as the molecular number of protein exceeds 500. This is the threshold over which

the system enters the high expression state.

2. I collect and put the simulation data into N separate bins according to different values

of protein K (notice that we are only interested in the values of the protein and mRNA,

not the time step). In particular, each bin i = 1, 2, . . . N , contains a particular value

of protein Ki and a set of all possible values of mRNA with respect to Ki ( we don’t

count the frequency of mRNA). Let Li be the total number of mRNA values in bin

i, then the value of an instance of mRNA j belonging to bin i is denoted as mij where

j = 1, 2, . . . Li. For each bin i = 1, 2, . . . N , we compute the expected change in protein

Ki in time step ∆t denoted as ∆Ki that is determined by the propensity functions in



66 Chapter 4 Reduction of A 2-Species Model To Track Noise-driven Transition

which the protein gets involved. According to this, the expected change in Ki given mij

in a time interval ∆t denoted as ∆Kj
i can be estimated as ∆Kj

i = (k5+k3mij−k6Ki)∆t.

In our case, I take ∆t to be the same as that in the 1D Langevin model (4.14). Since ∆t

is the same in both Gillespie and 1D Langevin models, the only comparable term would

be k5 + k3mij − k6Ki. Thus, we can ignore ∆t and re-define ∆Kj
i as follows:

∆Kj
i ≡ k5 + k3mij − k6Ki (4.15)

where j = 1, 2, . . . Li. The variance of ∆Ki is then computed by the following equation:

σ2
∆Ki = E((∆Ki − 〈∆K〉)2) =

1

Li

Li∑
j=1

(∆Kj
i − 〈∆Ki〉)2 (4.16)

Here, 〈∆Ki〉 = 1
Li

∑Li
j=1 ∆Kj

i . On the other hand, since CME can be described by a

Poisson process; therefore, the variance in protein caused by this process is given as

follows:

Σ2
i = k5 + k3 〈mi〉+ k6Ki (4.17)

Here, the mean of mRNA for each bin i is computed as

〈mi〉 =
1

Li

Li∑
j=1

mij (4.18)

As a result, the size of fluctuation for this particular data bin is given by

Σ =
√

Σ2
i + σ2

∆Ki
(4.19)

In our simulation, we start with M = 100, N = 500. Figure 4.9 shows the estimated

square of size of fluctuation (Σ2) in protein which we can fit by a polynomial fitting

curve. Since we are only interested in fitting the part of the curve which account for

the tail of the probability distribution, we will do the fitting for 100 ≤ K ≤ 500. Figure

4.9 shows the fitting curves where we fit the empirical curve by a cubic and quadratic

curves. Those two fitting curves are defined as follows:

y0 = a0K
3 + a1K

2 + a2K + a3

y1 = b0K
2 + b1K + b2

where a0 = 4.8 × 10−9, a1 = −3.3 × 10−6, a2 = 0.001, a3 = 0.057, b0 = 1.1 × 10−6,

b1 = −0.00014, b2 = 0.15. In fact, we can measure the error for goodness of fit between

the fitting curve (f) and the empirical curve (Σ2) as follows:

Err =

√√√√ 500∑
i=100

(Σi
2 − fi)2 (4.20)
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Figure 4.9: The square of size of fluctuation given by (4.19) is well fitted by a quadratic
curve. This means the noise term in the reduced Langevin model should be proportional

to the number of ComK.

My calculation shows that the errors computed for the cubic and quadratic curves are

Err = 0.12 and Err = 0.16, respectively. This means the quadratic fitting curve is

only 40% less accurate than the cubic fitting curve; therefore, the empirical curve can

be reasonably approximated by a quadratic curve which is simpler than the cubic curve.

We also notice that the empirical curve does not grow linearly to K; therefore, it should

not be approximated by a linear line.

In this section, I have presented a method of approximating the fluctuation using simu-

lation data. The result has shown that the size of fluctuation can be fit by a quadratic

curve. In the next section, I will reduce our model to a 1D model by doing the adi-

abatic approximation for mRNA. I then approximate the fluctuation by solving the

Fokker-Planck equation for this 1D model, and show that the diffusion coefficient in the

corresponding Langevin equation is also reasonably fit by a quadratic curve.

4.4 Fluctuation Exploration Using The Fokker-Planck Equa-

tion

In this section, we will try to figure out how much noise is needed for the reduced

system in order to reproduce the original dynamical behaviour. To do so, we start with

the Langevin equation of protein when applying the adiabatic approximation for mRNA.
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This equation is described as follows:

dK = f(K)dt+ σk dW (4.21)

where

f(K) = k5 + k3

(
k1 + k2Kn

kk
n+Kn

k4

)
− k6K (4.22)

As a result, the corresponding Fokker-Planck equation is given by:

∂P (K, t)

∂t
= − ∂

∂K
(P (K, t)f(K)) +

1

2

∂2

∂K2
(P (K, t)D(K)) (4.23)

Here P (K, t) is the density function and D(K) = σ2
k. At the steady state we have

∂P (K,t)
∂t = 0; therefore, equation (4.23) now becomes:

− ∂

∂K

(
PFPs (K)f(K)

)
+

1

2

∂2

∂K2

(
PFPs (K)D(K)

)
= 0 (4.24)

hence,
∂

∂K

[
−PFPs (K)f(K) +

1

2

∂

∂K

(
PFPs (K)D(K)

)]
= 0 (4.25)

This means the bracketed term is independent of K. Since the probability vanishes for

very large and small values of K, the bracketed term has to be zero. As a result, we are

left with the first order ordinary differential equation:

∂

∂K

(
PFPs (K)D(K)

)
= 2PFPs (K)f(K) (4.26)

or

D(K) =

M−1 exp

(∫
K

2f(K ′)

D(K ′)
dK ′

)
PFPs (K)

(4.27)

where M is a normalization constant such that

500∫
0

PFPs (K) dK = 1. Thus, from 4.30 we

have

M−1

500∫
0

exp

 500∫
0

2f(K ′)

D(K ′)
dK ′


D(K)

dK = 1 (4.28)

thus,

M =

500∫
0

exp

 500∫
0

2f(K ′)

D(K ′)
dK ′


D(K)

dK (4.29)
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In fact, the probability distribution PFPs (K) can be obtained from the histogram of the

probability distribution of protein that we computed in section 4.2.1; therefore, from

(4.30) we can estimate D(K) using the following iterative formulas:

D(n+1)(K) =

M (n)−1
exp

 K∫
0

2f(K ′)

D(n)(K ′)
dK ′


PFPs (K)

, n = 0, 1, . . . (4.30)

where D(0)(K) is a guess function (in our case, I chose D(0)(K) = Σ2 where Σ is size of

fluctuation defined by 4.19, and M (n) is computed as follows,

M (n) =

500∫
0

exp

 500∫
0

2f(K ′)

D(n)(K ′)
dK ′


D(n)(K)

dK (4.31)

As a result, the procedure can be described in three steps:

1. Set initial condition D(0)(K) = Σ2, n = 0.

2. For each K = 1, 2, . . . , 500, we compute

M (n) =

500∫
0

exp

 500∫
0

2f(K ′)

D(n)(K ′)
dK ′


D(n)(K)

dK

then update

D(n+1)(K) =
M (n)−1

PFPs (K)
exp

 K∫
0

2f(K ′)

D(n)(K ′)
dK ′


In this step, every time we update D(n+1)(K) (K = 1, 2, . . . , 499), this value will be used

to compute D(n+1)(K + 1).

3. If max
K

{∣∣∣D(n+1)(K)−D(n)(K)

D(n)(K)

∣∣∣} < ε (I chose ε = 10−4) then stop, otherwise set

n = n+ 1 and return to step 2.

Figure 4.10 shows the empirical function D(K) given by (4.30) with initial condition

D(0)(K) = Σ2, and the corresponding fitting curves which have the following form:

z0 = α0K
3 + α1K

2 + α2K + α3

z1 = β0K
2 + β1K + β2

where α0 = 1.3 × 10−5, α1 = −0.0094, α2 = 2.2, α3 = −150, β0 = 0.0024, β1 = −0.99,

β2 = 110. The errors for goodness of fit for the cubic and quadratic fitting curves are
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Figure 4.10: Fluctuation fitting curve.

Err = 335.55 and Err = 460.2, respectively. Similarly, the quadratic fitting curve is

about 37% less accurate than the cubic fitting curve. For this reason, we can take the

quadratic fitting curve as a relatively good approximation for D(K).

In fact, the diffusion coefficient D(K) = β0K
2 + β1K + β2 with values of the three

parameters (β0,β1,β2) given above does not guarantee to produce a best approximate

model. Thus, the appropriate solution is to optimize those parameters such that we can

obtain a good approximation. This parameter optimization is detailed in the following

section.

4.5 Probability Distribution Fitting With Tunable Noise

In this section, I will show how to construct a 1D stochastic reduced model called as

the 1D Modified Langevin model. This model is built up by applying the adiabatic

approximation for the drift coefficient, and the diffusion coefficient defined by D(K) is

supposed to be fit by a quadratic curve. The deterministic description for the reduced

model is described as follows:

dK = f(K)dt+ σk dW (4.32)

where

f(K) = k5 + k3

(
k1 + k2Kn

kk
n+Kn

k4

)
− k6K (4.33)
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The variance D(K) = σ2
k can be written as follows,

D(K) = β0K
2 + β1K + β2 (4.34)

We now compute the stationary probability distribution at the steady state by solving

the following Fokker-Planck equation:

∂P (K, t)

∂t
= − ∂

∂K
(P (K, t)f(K)) +

1

2

∂2

∂K2
(P (K, t)D(K)) (4.35)

At the steady state we have ∂P (K,t)
∂t = 0; therefore, equation (4.33) now becomes:

− ∂

∂K

(
PFPs (K)f(K)

)
+

1

2

∂2

∂K2

(
PFPs (K)D(K)

)
= 0 (4.36)

hence,
∂

∂K

[
−PFPs (K)f(K) +

1

2

∂

∂K

(
PFPs (K)D(K)

)]
= 0 (4.37)

As a result, the solution for (4.37) is

PFPs (K) =

N−1 exp

(∫
K

2f(K ′)

D(K ′)
dK ′

)
D(K)

(4.38)

where N is a normalization constant. From (4.34) and (4.38), we obtain the following

expression for PFPs (K).

PFPs (K) =

N−1 exp


∫
K

2

k5 +
k3

(
k1+

k2K
′2

kk
2+K′2

)
k4

− k6K
′


β0K ′2 + β1K ′ + β2

dK ′


β0K2 + β1K + β2

(4.39)

In fact, we are only interested in approximating the tail of the distribution which drives

the transition to the high expression regime; therefore, we only need to do the integration

for 100 ≤ K ≤ 500. For each set of (β0,β1,β2), the solution for PFPs (K) can be computed

using Mathematica, the result is then compared with that obtained from the 2D Gillespie

model. We then choose the values of (β0,β1,β2) which best approximates the PDF of

the original 2D model. In our case, I choose 0.001 ≤ β0 ≤ 0.1, 0 ≤ β1 ≤ 1, 1 ≤ β2 ≤ 100.

My calculation shows that the best values of parameters are:

β0 = 0.011, β1 = 0, β2 = 61 (4.40)

Figure 4.11 show a comparison between the 1D Modified Langevin and 2D Gillespie mod-

els in terms of probability density functions with respect to different sets of parameters
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(β0,β1,β2). Since β1 = 0, D(K) is reduced to the following form:

D(K) = β0K
2 + β2 (4.41)

As we can see in the Figure 4.12, the PDFs near the tail of the distributions seems to be

(a) (b)

(c)

Figure 4.11: Contour plots of the distance between two distributions for sets of pa-
rameters (β2 = 61, β0, β1) (a), (β0 = 0.011, β1, β2) (b) and (β1 = 0, β0, β2) (c).

similar in both models, but they do not perfectly match due to the fact that the mean

of mRNA in the 2D Gillespie model does not match that in the 1D Modified Langevin

model as mentioned earlier.

4.6 Summary

In this chapter, I have presented a series of methods to capture the correct noise in the 2-

species model which was derived from the full 7D model. By studying this simple model

and focusing on the transition beyond the intermediate fixed point to the high expression
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Figure 4.12: Probability density functions in the two models with respect to β0 =
0.011, β1 = 0, β2 = 61.

regime, I hoped to correctly estimate the fluctuation which is then reflected in the full

7D system. In this model, I have shown that the Langevin method does not produce

a good approximation of the full model. The failure of the Langevin approximation

comes from different sources. Firstly, the size of fluctuations in the Langevin model

drives the number of species negative, which is physically meaningless. Secondly, the

system behaviour can not be generated by a Langevin equation with the usual variance

describing the fluctuations to be proportional to the number of reactants. In fact, it has

been found that the variance is proportional to the square of the number of reactants.

More importantly, we have found that the mean of mRNA computed in the simulation

deviates significantly from that obtained from the ODE. This is because the process of

averaging over the non-linear propensity function was incorrect when reducing from the

CME to ODE. Consequently, this prevents us from getting the fluctuation correct for the

reduced Langevin model. On the other hand, fixing the mean of mRNA could result in

losing the structure of the fixed points in the original model. For this reason, I decided

to do the adiabatic approximation for the mRNA in order to keep the fixed points

consistent, and try to fit the tail of the probability density function in the stochastic

reduced model with tunable noise. In fact, the tunable noise allows us to obtain an

approximate model which has the PDF closer to that in the original model. With these

results, we can apply the tunable noise for our original 7D wild-type model whereby

we hope to produce a better approximate model. In the equation (4.41), we notice

that for K large, then β0K
2 + β2 ≈ β0K

2; therefore, we can use this simple form for
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the diffusion coefficients of the Langevin equation in the 7D wild-type model. In this

case, we temporarily ignore the effect of MecA, MecAK and MecAS by setting the

off-diagonal entries of the covariance matrix for those variables to zero. Consequently,

the stochastic reduced model can be obtained by plugging the artificial tunable noise

into the model. In the next chapter, we will discuss the Fokker-Planck equation for the

wild-type reduced model in order to explore the characteristics of fluctuations which

induce the dynamical behaviour of the bacteria.



Chapter 5

A 2D Fokker-Planck

Approximation To the Wild-Type

Chemical Master Equation

In this chapter, we introduce in the Langevin description, a noise that reflects the ratio

of variances of the ComK and ComS distributions at the steady state. We then tune the

magnitude of this noise so that the stationary distribution, as computed from the solu-

tion of the time-dependent Fokker-Planck equation, gives rise to a bimodal distribution

of the ComK-ComS variables that is qualitatively similar to the marginal distribution

computed from the Gillespie simulation of the complete wild-type model described in

section 2.2. The similarity between the 7D model and the reduced 2D stochastic model

is quantified by comparing the corresponding probability density functions (PDFs) com-

puted from each model, using Jensen-Shannon divergence for two distributions.

In the previous chapter, we have introduced the 2D switching model which was derived

from the 7D wild-type system. In this model, we have studied the noise driven trajecto-

ries that are drawn away from the low expression fixed point by the dynamics, and found

that the noise term in the reduced stochastic model was proportional to the number of

protein. In this chapter, we hope to apply this finding to our 2D reduced model in order

to reproduce the dynamical behaviour observed in the 7D wild-type model.

5.1 The Fokker-Planck Equation For 2D Model

In our 2D reduced wild-type system (Chapter 3, equation (3.14)), we have a 2D Langevin

equation for X = [K S]ᵀ which can generally be described as follows:

dX = fdt+ µdW (5.1)
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where f = [fk(K,S, t) fs(K,S, t)]
ᵀ , µ =

(
µk(K,S, t) 0

0 µs(K,S, t)

)

As we mentioned above, we have found in the 2D switching model that, when reducing

from a 2D Langevin model to a 1D Langevin model, the noise term was proportional to

the number of protein. For this reason, we expect that we can use this as an assumption

for the 2D model described above; therefore, we have µk(K,S, t) = σkK, µs(K,S, t) =

σsS. For simplicity, we set the off-diagonal terms of the covariance matrix to zero;

therefore, the cross-derivatives terms in the Fokker-Planck equation can be removed. As

a result, the full form of the Fokker-Planck equation is given by:

∂P (K,S, t)

∂t
= −

[
∂

∂K
fk(K,S, t)P (K,S, t) +

∂

∂S
fs(K,S, t)P (K,S, t)

]
+

1

2

[
∂2

∂K2
µ2
k(K,S, t)P (K,S, t) +

∂2

∂S2
µ2
s(K,S, t)P (K,S, t)

]
(5.2)

We now convertK,S to 10-base logarithm phase by setting x = log10(K), y = log10(S).

Hence:

∂P̃ (x, y, t)

∂t
= −

[
∂

∂x

f̃k(x, y, t)P̃ (x, y, t)

10x ln(10)
+

∂

∂y

f̃s(x, y, t)P̃ (x, y, t)

10y ln(10)

]

+
1

2

[
∂2

∂x2

σ2
kP̃ (x, y, t)

ln2(10)
+

∂2

∂y2

σ2
s P̃ (x, y, t)

ln2(10)

]
(5.3)

where f̃k,s(x, y, t) = fk,s(10x, 10y, t), P̃ (x, y, t) = P (10x, 10y, t). We now set a(x, y, t) =
f̃k(x,y,t)
10x ln(10) , b(x, y, t) = f̃s(x,y,t)

10y ln(10) , α(x, y, t) =
σ2
k

ln2(10)
, β(x, y, t) = σ2

s

ln2(10)
, Equation (5.3) can

be rewritten as below:

∂P̃ (x, y, t)

∂t
= −[

∂

∂x
a(x, y, t)P̃ (x, y, t) +

∂

∂y
b(x, y, t)P̃ (x, y, t)]

+
1

2
[
∂2

∂x2
α(x, y, t)P̃ (x, y, t) +

∂2

∂y2
β(x, y, t)P̃ (x, y, t)] (5.4)

In order to numerically integrate this equation, we use finite difference method (Press

et al., 1992) in which a function f(x, y, t) is represented by its values at the discrete sets

of points:

xj = x0 + j∆x j = 0, 1, . . . , J

yl = y0 + l∆y l = 0, 1, . . . , L

tn = t0 + n∆t n = 0, 1, . . . , N

∆x and ∆y are grid spacings along x-axis and y-axis, respectively; ∆t is time step. From

now on, we will write anj,l for a(xj , yl, tn), bnj,l for b(xj , yl, tn), αnj,l for α(xj , yl, tn), βnj,l for

β(xj , yl, tn) and P̃nj,l for P̃ (xj , yl, tn). Since then, the differential terms given by (5.4)
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can be estimated as follows:

∂

∂x
a(x, y, tn)P̃ (x, y, tn) =

anj+1,lP̃
n
j+1,l − anj−1,lP̃

n
j−1,l

2∆x

∂

∂y
b(x, y, tn)P̃ (x, y, tn) =

bnj,l+1P̃
n
j,l+1 − bnj,l−1P̃

n
j,l−1

2∆y

∂2

∂x2
α(x, y, tn)P̃ (x, y, tn) =

αnj+1,lP̃
n
j+1,l − 2αnj,lP̃

n
j,l + αnj−1,lP̃

n
j−1,l

∆2
x

∂2

∂y2
β(x, y, tn)P̃ (x, y, tn) =

βnj,l+1P̃
n
j,l+1 − 2βnj,lP̃

n
j,l + βnj,l−1P̃

n
j,l−1

∆2
y

∂P̃ (x, y, tn)

∂t
=
P̃n+1
j,l − P̃

n
j,l

∆t

Equation (5.4) now becomes:

P̃n+1
j,l − P̃

n
j,l

∆t
=

(
−
bnj,l+1

2∆y
+
βnj,l+1

2∆2
y

)
P̃nj,l+1 +

(
bnj,l−1

2∆y
+
βnj,l−1

2∆2
y

)
P̃nj,l−1 +

(
anj−1,l

2∆x
+
αnj−1,l

2∆2
x

)
P̃nj−1,l

+

(
−
anj+1,l

2∆x
+
αnj+1,l

2∆2
x

)
P̃nj+1,l −

(
αnj,l
∆2
x

+
βnj,l
∆2
y

)
P̃nj,l

The equation above can be written as P̃n+1−P̃n
∆t

= AP̃n, in which P̃ ∈ RJ×L , A ∈
RJL×JL is a constant, very sparse matrix. As n → ∞ then P̃n+1 − P̃n = 0 → AP̃n =

0; therefore, the solution is to find the eigenvector of matrix A corresponding to its

eigenvalue being zero. In our case, we use a grid including 100×100 blocks (J = L = 100)

for doing the discretization. All the derivatives are then computed on a 10-base logarithm

phase plane (details of the method used for approximation can be found in the Appendix

A.9). In the following section, we will derive the probability density function by solving

the Fokker-Planck equation for the 2D approximate model.

5.2 Probability Density Function in The 2D Approximate

Model

As mentioned in Chapter 3, the 2D deterministic approximate model (2DDeApprSys)

(3.14) can be described as the following differential equations:

dK

dt
= fk(K,S,Q3(K,S))

dS

dt
= fs(K,S,Q3(K,S))

(5.5)

We now analyze the stability of the model by looking at the fixed points. Figure 5.1

shows the location of the nullclines in the 10-base logarithm K-S phase plane, together
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Figure 5.1: Phase-plane analysis of the 2DDeApprSys.

Figure 5.2: The nullclines in the 2D naive adiabatic model (2DDeNASys) and the 2D
approximate model (2DDeApprSys).

with the vector field presenting the directions of trajectories which follow. There are

three fixed points which are the intersections of the nullclines, the left-most of which is

stable and corresponds to the vegetative fixed point. The two others are unstable (the

middle one is a saddle and the right-most one is an unstable fixed point). Even though

the nullclines in this model are shifted with respect to the 2D naive adiabatic model

(2DDeNASys), the characteristics and positions of those fixed points are the same in

both models (Figure 5.2); therefore, cells also spend most of time residing in the region

which is near the stable fixed point. Consequently, it would be nice if we can capture

the probability distribution of the time cells spend in different regimes by solving the

Fokker-Planck equation. As I mentioned earlier, since we don’t know how to calculate
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the correct size of the noise, we are forced to tune it empirically. Let us consider a

corresponding stochastic process driven by noise of the approximate model below:

dK = fk(K,S,Q3(K,S))dt+ µkdwk

dS = fs(K,S,Q3(K,S))dt+ µsdws
(5.6)

Where dwk, dws are Wiener processes, and we set µk = σkK, µs = σsS. This is known as

a stochastic version of the 2D deterministic model (2DDeApprSys), we name this model

as 2DStoApprSys (see the model structure 3.5). The magnitudes σk, σs of the noise

terms are chosen to obtain the stationary probability distribution qualitatively similar

to that of the CME. Additionally, the initialization probability of competent events

computed from the stochastic model should also quantitatively be preserved. However,

this probability is very sensitive to the switching behaviour driven by the noise terms.

In other words, a slight change in coefficients σk, σs leads to a significant change in the

initialization probability. This is because of the exponential sensitivity of the tail of

the probability distribution to the noise-driven switching state in our particular circuit

(Mehta et al., 2008). Consequently, I have tried the simulation with different values

of σk, σs and quantify the similarity between the full model and the stochastic model.

To do so, I compare the PDFs computed from full discrete model and the stochastic

model using Jensen-Shannon divergence (Fuglede and Topsoe, 2004) which is a smoothed

version of the Kullback-Leibler divergence (Johnson and Sinanovic, 2001). The PDF

of the stochastic model can be obtained by solving the corresponding Fokker-Planck

equation while the PDF of the full discrete model is computed from the binned data.

Indeed, I first collect the simulation data obtained from Dizzy (Ramsey et al., 2005) for

ComK and ComS, I then create a data grid size 100 × 100 on a log-scale plane where

0 ≤ log10(K) ≤ 5, −2 ≤ log10(S) ≤ 3.5. The collected data will be stored in 100 × 100

bins, each bin is located at (log10(K(i, j)), log10(S(i, j))) on the grid (i = 1, 2, . . . 100,

j = 1, 2, . . . 100). A particular data point (log10(K ′), log10(S′)) is classified to bin (i, j) if

log10(K(i, j))−∆K/2 ≤ log10(K ′) ≤ log10(K(i, j))+∆K/2, and log10(S(i, j))−∆S/2 ≤
log10(S′) ≤ log10(S(i, j)) + ∆S/2, where ∆K and ∆S are grid spacings along axis K

and S, respectively. The PDF for point (log10(K(i, j)), log10(S(i, j))) is computed by

dividing the number of data points classified to that bin by the total of data points, then

dividing by the area of the bin (which is ∆K×∆S). After this step, we obtain a PDF for

all points on the grid and therefore, is comparable to that computed from the Fokker-

Planck equation in the stochastic model. Since the PDFs are stored as 2D matrices,

I therefore convert them to 1D vectors so that we can use Jensen-Shannon divergence

(from now on, we will use only one index to describe 1D probabilities). In order to apply

this method, we need to normalize the PDFs to obtain the corresponding probabilities

P and Q where
∑

i P (i) = 1,
∑

iQ(i) = 1. Suppose that P and Q are the probabilities

in the full discrete model and the Fokker-Planck equation, respectively; the Jensen-

Shannon distance between P and Q is then quantified as D(P,Q) = D(P ||M)+D(Q||M)
2 ,

where M = P+Q
2 , and D(P ||M), D(Q||M) are Kullback-Leibler divergences. However,
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there are two issues we have to deal with: firstly, since P is computed from the binned

data, there are many points on the grid at which P = 0 (unseen events), this makes

it difficult to compare distributions that predict non-zero probability for unseen events;

secondly, there are many points on the grid at which values of Q are extremely small

(ranging from 10−20 to 10−30 in our simulation). However, we should never predict the

derived probability of an event that is completely impossible; therefore, we set them

all to zero to avoid unnecessary bias when comparing with unseen events in P . As a

result, this again makes the divergence infinite. To solve those issues, we must take into

account the possibility of unseen events by doing a pre-processing procedure for P and

Q as follows (we take P for example):

1. Let S = {i|1 ≤ i ≤ 10000}, U = {i|P (i) < ε} (in our case, I choose ε = 10−20), and

V = S \ U .

2. We define P ′ : S 7→ [0, 1] such that, P ′(i) = ε for i ∈ U , otherwise P ′(i) = P (i)− ε |U ||V | .

By doing this, we don’t need to re-normalize P ′ since
∑

i P
′(i) =

∑
i P (i) + ε |U | −

ε |U ||V | |V | =
∑

i P (i) = 1, and similar for Q′.

For each pair of parameters (σk, σs), we compute D(P,Q) and sort them in descending

order, we then choose the pair of parameters corresponding to the smallest distance.

The pair of parameters chosen for our experiment satisfies 0.005 ≤ σk ≤ 0.02 and

0.001 ≤ σs ≤ 0.02. Figure 5.3 shows the distance between the PDFs in the full model

and stochastic model as a function of the noise terms.

Figure 5.3: Contour plot of distance as a function of σk and σs.
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In our experiment, I found that the stochastic model provides the best approximation

with σk = 0.008, σs = 0.005. As evidence, I show in Figure 5.4 2D contour plots of the

probability density function by solving the Fokker-Planck equation for the 2D stochastic

model (2DStoApprSys) described by (5.6), which are similar to those generated from the

CME by the Gillespie algorithm. In particular, both models produce similar bimodal

distributions (the dense areas) that are characteristics of the cell counts in the vegetative

and competent states obtained in Süel et al. (2006, 2007). Moreover, the initialization

probability was computed at 0.0043± 4.2× 10−4 which is just slightly smaller than that

in the full system (Pinit = 0.0076± 2.3× 10−4).

(a) (b)

Figure 5.4: Contour plots of probability density function of the 2DStoApprSys (a),
and probability distribution generated from the full discrete model (b).

5.3 Summary

To sum up, the objective of this chapter is to show whether or not we can use the

tunable noise which was observed in the 2D switching model for our 2D reduced model,

in order to obtain a similar stationary probability distribution compared to that in the

7D wild-type system. To do so, we have shown the numerical solution of the Fokker-

Planck which captures a bimodal probability distribution of the 2D approximate model,

in which it approximates the distribution of species under stochastic evolution. By

tuning the noise, we could estimate the similarity between the PDFs obtained from the

2D stochastic and 7D discrete models. Based on the estimated similarity with different

values of the tunable noise, we have chosen the noise parameters which best approximates

the original 7D model. Moreover, our experiment showed that the approximation has

been much improved; particularly, the stationary probability distribution probability is

similar to that in the original 7D system, and the probability of initialization is closer

to that computed from the 7D system.
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The limitation of this work is that we still have yet to show the explicit description

of the correct noise terms for the stochastic approximate model. The tunable noise is

only derived from first principles by taking into account the dynamical characteristics

of the variables being marginalized over. To what extent, the tunable noise induced

system may not quantitatively give us the right answer for the dynamics of system, but

it has been a significant improvement in the model reduction problem. On the other

hand, since the initialization probability of competence is sensitive to the noise terms

that induce switching behaviour, it is much more challenging to tune the noise in order

to get the right probability distribution. In spite of that, we have shown the tunable

noise can be experimentally chosen such that the corresponding stochastic model better

approximates the dynamics of the system.

In the next chapter, we are going to study another genetic circuit which is believed to

have a similar behaviour to the native wild-type circuit, but provides a less variation in

competence durations. This is to evaluate the generalisability of our method to genetic

circuits that generate excitable dynamics. However, as we will see that this circuit also

faces the same challenges which have been found in the wild-type model.



Chapter 6

The SynExSlow Genetic Circuit

Süel et al. (2007) used the phase diagram described in Chapter 2 to drive the wild-

type bacterium into dynamical regimes that are not normally observed in nature to

support the model of competence they proposed. Instead of altering the parameters

of a given circuit, it is possible to insert a completely new circuit into the cell and

design cell behaviour. A theoretical analysis of an alternative circuit showed it to be

capable of generating excitable behaviour just like the wild-type circuit. This motivates

Cagatay et al. to investigate how such an alternative circuit topology could behave in

a cell by engineering the regulatory networks SynEx and SynExSlow. In this chapter,

we perform a detailed analysis of this novel circuit, paying particular attention to the

issue of model reduction as before. We show that the ODE description from which the

dynamical behaviour was derived in Cagatay et al. (2009a) does not naturally follow

from a description in term of chemical reactions. We then construct a reaction scheme

that allows us to perform stochastic simulations in this model. We also find dynamical

behaviour that have not been reported in Cagatay et al. (2009a). The approach of this

chapter reverses the presentational order of model description. Here we start with the

RRE and infer a CME that can reproduce the RRE that describes the mean of the

variables.

6.1 Stochastic Description of SynExSlow

The SynEx circuit as designed was shown to have competence dynamics similar to native

cells but displayed a significantly smaller variation in competence durations. However,

the competent events were shorter than that in the native circuit. To make this closer

to that in native cells, they created the SynExSlow strain derived from the SynEx with

longer competent events by competitively interfering with the degradation of ComK

by MecA during the competence (Figure 6.1). This delayed exit from competence and

therefore made the competence durations longer.

83
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Figure 6.1: Topology of SynExSlow strain.

αk 0.00875 molec/s βk 7.5 molec/s kk 5000 molec

αm 0.075 molec/s βm 2.5 molec/s km 2500 molec

αs 0.5 molec/s βs 0.5 molec/s ks 500 molec

δk, δs 2× 10−6 molec−1s−1 Γk 25000 molec n 2

λk, λm, λs 10−4 s−1 Γs 20 molec p 2

Table 6.1: Parameters used in the deterministic equations of the SynExSlow model
(Source from Cagatay et al. (2009b)).

6.1.1 Postulating A CME to match The RRE

The deterministic description of the SynExSlow is expressed as follows:

dM

dt
= αm +

βmK
p

km
p +Kp

− λmM

dK

dt
= αk +

βkK
n

kk
n +Kn

− δkKM

1 + K
Γk

+ S
Γs

− λkK

dS

dt
= αs +

βsK
n

ks
n +Kn

− δsSM

1 + K
Γk

+ S
Γs

− λsS

(6.1)

where M is the total concentration of MecA, while K and S are denoted [ComK] and

[ComS], respectively. The model parameters are given in Table 6.1.

In previous chapters, we started with the chemical reactions to derive an ODE descrip-

tion for the system. However, in this section, we will do it backward: we start with

the ODE description that the authors provided and try to construct the corresponding

stochastic description which describes the model in terms of chemical reactions. Based

on the stochastic description of the SynEx provided in Cagatay et al. (2009b). We come

k1 0.00022 s−1 k6 0.2 s−1 k9 0.2 s−1 k12 0.005 s−1

k2 0.19 s−1 k7 0.005 s−1 k10 0.005 s−1 k13 0.0001 s−1

k3 0.2 s−1 k8 0.0625 s−1 k11 0.005 s−1

Table 6.2: The reaction rates used in the stochastic SynExSlow model.
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up with the following chemical reactions (the values of reaction rates taken from the

paper are detailed in Table 6.2):

Pconst
comK

k1−→ Pconst
comK + mRNAcomK

PcomK
f([ComK],k2,kk,n)−−−−−−−−−−−−→ PcomK + mRNAcomK

mRNAcomK
k3−→ mRNAcomK + ComK

Pconst
comS

k4−→ Pconst
comS + mRNAcomS

PcomS
g([ComK],k5,ks,n)−−−−−−−−−−−→ PcomS + mRNAcomS

mRNAcomS
k6−→ mRNAcomS + ComS

Pconst
mecA

k7−→ Pconst
mecA + mRNAmecA

PmecA
h([ComK],k8,km,p)−−−−−−−−−−−−→ PmecA + mRNAmecA

mRNAmecA
k9−→ mRNAmecA + MecA

mRNAcomK
k10−−→ ∅

ComK
k13−−→ ∅

mRNAcomS
k11−−→ ∅

ComS
k14−−→ ∅

mRNAmecA
k12−−→ ∅

MecA
k15−−→ ∅

MecAK
k15−−→ ∅

MecAS
k15−−→ ∅

MecA + ComK
k16/Ω−−−−→ MecAK

MecAK
k−16−−−→ MecA + ComK

MecAK
k17−−→ MecA

MecA + ComS
k18/Ω−−−−→ MecAS

MecAS
k−18−−−→ MecA + ComS

MecAS
k19−−→ MecA

(6.2)

Here, the Hill equations are given by:

f ([ComK], k2, kk, n) =
k2[ComK]n

kk
n + [ComK]n

g ([ComK], k5, ks, n) =
k5[ComK]n

ks
n + [ComK]n

h ([ComK], k8, km, p) =
k8[ComK]p

km
p + [ComK]p
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In this set of chemical reactions, I assume that MecAK and MecAS are degraded at the

same rate as that in the degradation of MecA, so that we can obtain the deterministic

description of the SynExSlow as described in equation (6.1). Indeed, using the same

assumption as done with the wild-type circuit, the rates of change in molecular numbers

of MecAK and MecAS can be described by the following differential equations:

d[MecAK ]

dt
= k16[ComK][MecA]− k−16[MecAK ] (6.3)

− k17[MecAK ]− k15[MecAK ] (6.4)

d[MecAS ]

dt
= k18[ComS][MecA]− k−18[MecAS ] (6.5)

− k19[MecAS ]− k15[MecAS ] (6.6)

We now assume that the binding and unbinding processes of proteins and protease

complex are very fast so that the rest of the system only responds to the steady-state

values of MecAK and MecAS . Consequently, we set:

d[MecAK ]

dt
≈ 0 ,

d[MecAS ]

dt
≈ 0

therefore,

[MecAK ] =
k16[ComK][MecA]

k17 + k−16 + k15
=

[MecA][ComK]

Γk

[MecAS ] =
k18[ComS][MecA]

k19 + k−18 + k15
=

[MecA][ComS]

Γs

(6.7)

We denote M as the total concentration of MecA, then we have:

[MecA] + [MecAK ] + [MecAS ] = M

therefore,

[MecA] +
[ComK][MecA]

Γk
+

[ComS][MecA]

Γs
= M

We obtain:

[MecA] =
M

1 + [ComK]
Γk

+ [ComS]
Γs

(6.8)

On the other hand, we have the corresponding differential equations for mRNAmecA

and MecA as follows:

d[mRNAmecA]

dt
= k7[P constmecA] + [PmecA]

k8[ComK]p

km
p + [ComK]p

− k12[mRNAmecA]

d[MecA]

dt
= k9[mRNAmecA]− k15[MecA]

− k16[MecA][ComK] + k−16[MecAK ]



Chapter 6 The SynExSlow Genetic Circuit 87

+ k17[MecAK ]− k18[MecA][ComS]

+ k−18[MecAS ] + k19[MecAS ] (6.9)

Since the concentrations of promoters do not change through the reactions, we set their

concentration to 1 for simplicity. We observe that the mRNA dynamics are faster

than that of proteins and tend to reach steady-state values faster than proteins. As a

result, we can approximate the effect of mRNA on the protein dynamics by an adiabatic

approximation, yielding:

[mRNAmecA] =
k7

k12
+

k8[ComK]p

k12(km
p + [ComK]p)

(6.10)

Since (6.7) and (6.9) we obtain:

d[MecA]

dt
= k9[mRNAmecA]− k15[MecA]− k15[MecAK ]

− k15[MecAS ]

= k9[mRNAmecA]− k15([MecA] + [MecAK ] + [MecAS ])

= k9[mRNAmecA]− k15M

=
k9k7

k12
+
k9k8

k12

[ComK]p

km
p + [ComK]p

− k15M

We now set

αm =
k9k7

k12
, βm =

k9k8

k12
, λm = k15 (6.11)

therefore,
dM

dt
= αm +

βm[ComK]p

km
p + [ComK]p

− λmM (6.12)

On the other hand, we also have the following differential equations for ComK and

ComS:

d[ComK]

dt
= k3[mRNAcomK ]− k13[ComK]− k16[MecA][ComK] + k−16[MecAK ]

(6.13)

d[ComS]

dt
= k6[mRNAcomS ]− k14[ComS]− k18[MecA][ComS] + k−18[MecAS ]

(6.14)

The differential equations for mRNAcomK and mRNAcomS are:

d[mRNAcomK ]

dt
= k1 +

k2[ComK]n

kk
n + [ComK]n

− k10[mRNAcomK ] (6.15)

d[mRNAcomS ]

dt
= k4 +

k5[ComK]n

ks
n + [ComK]n

− k11[mRNAcomS ] (6.16)

Since the dynamics of mRNAs are faster than that of proteins, we set d[mRNAcomK ]
dt = 0
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and d[mRNAcomS ]
dt = 0, we obtain:

[mRNAcomK ] =
k1

k10
+

k2[ComK]n

k10(kk
n + [ComK]n)

(6.17)

[mRNAcomS ] =
k4

k11
+

k5[ComK]n

k11(ks
n + [ComK]n)

(6.18)

From equations (6.17), (6.18), (6.13), (6.14), (6.8) and (6.7), we obtain the following

expression for ComK and ComS:

d[ComK]

dt
=
k1k3

k10
+
k2k3/k10[ComK]n

kk
n + [ComK]n

− k16(k17 + k15)M [ComK]

(k17 + k−16 + k15)
(

1 + [ComK]
Γk

+ [ComS]
Γs

) − k13[ComK]

d[ComS]

dt
=
k4k6

k11
+
k5k6/k11[ComK]n

ks
n + [ComK]n

− k18(k19 + k15)M [ComK]

(k19 + k−18 + k15)
(

1 + [ComK]
Γk

+ [ComS]
Γs

) − k14[ComK]

By redefining the variables (K for [ComK] and S for [ComS]), we obtain the following

differential equations:

dK

dt
= αk +

βkK
n

kk
n +Kn

− δkMK

1 + K
Γk

+ S
Γs

− λkK

dS

dt
= αs +

βsK
n

ks
n +Kn

− δsMS

1 + K
Γk

+ S
Γs

− λsS
(6.19)

where:

αk =
k3k1

k10
, βk =

k2k3

k10
, δk =

k16(k17 + k15)

k17 + k−16 + k15
, λk = k13

αs =
k4k6

k11
, βs =

k5k6

k11
, δs =

k18(k19 + k15)

k19 + k−18 + k15
, λs = k14

(6.20)

From (6.12) and (6.19), we obtain the deterministic description of the SynExSlow model

described in (6.1). This means the stochastic description above seems to be equivalent

to the deterministic description of the SynExSlow. However, in the following section,

we will find that the deterministic description can not be obtained from the system of

chemical reactions described above.
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6.1.2 Inconsistency of Parameter Values of CME

From equations (6.7), (6.11), (6.20) and , we have:

k14 = λs = 0.0001

k15 = λm = 0.0001

k4 =
αsk11

k6
= 0.0125

k5 =
βsk11

k6
= 0.0125

k19 + k15 = δsΓs = 4× 10−5

k17 + k15 = δkΓk = 0.05

(6.21)

As a result, we obtain k19 = δsΓs − k15 = 4 × 10−5 − 0.0001 = −6 × 10−5 < 0. In

fact, we still can do the Gillespie simulation even in this case where the reaction rate

is negative by replacing the reaction by its reversed reaction. However, this leads to

an incorrect expression of the propensity function. Thus, the SynExSlow model fails to

be reconstructed from the stochastic chemical kinetics. In other words, the SynExSlow

model can not be used to describe the molecular dynamics for such physical events which

happen inside cells. On the other hand, if the model were correct then the deterministic

differential equations obtained above should be approximated by a continuous Markov

process that satisfies the following Chemical Langevin Equation (CLE) (Gillespie, 2002,

2007; Cazzaniga et al., 2006):

dM =

(
αm +

βmK
p

km
p +Kp

− λmM
)
dt+ ηmdWm

dK =

(
αk +

βkK
n

kk
n +Kn

− δkKM

1 + K
Γk

+ S
Γs

− λkK

)
dt+ ηkdWk

dS =

(
αs +

βsK
n

ks
n +Kn

− δsSM

1 + K
Γk

+ S
Γs

− λsS

)
dt+ ηsdWs

(6.22)

where dWm dWk dWs are standard Wiener processes, and:

ηm =

√
αm +

βmKp

km
p +Kp

+ λmM

ηk =

√
αk +

βkKn

kk
n +Kn

+
δkKM

1 + K
Γk

+ S
Γs

+ λkK

ηs =

√
αs +

βsKn

ks
n +Kn

+
δsSM

1 + K
Γk

+ S
Γs

+ λsS

In order to understand this model, we need to analyse the stability of the continuous

model around the fixed points. Since the model is a 3D model, we therefore try to reduce

it to a 2D model using an adiabatic approximation. However, as I will show that this
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approximation does not produce a good model.

6.2 The Continuous Model

We re-write the continuous description of the SynExSlow model as follows:

dM

dt
= αm +

βmK
p

km
p +Kp

− λmM

dK

dt
= αk +

βkK
n

kk
n +Kn

− δkKM

1 + K
Γk

+ S
Γs

− λkK

dS

dt
= αs +

βsK
n

ks
n +Kn

− δsSM

1 + K
Γk

+ S
Γs

− λsS

(6.23)

Since we want to look at the dynamics of the system on (K,S) plane, we will try to

eliminate the variableM using an adiabatic approximation. Assuming that the dynamics

of M is very fast; therefore its time-dependent evolution can be set to its steady state

value (dMdt ≈ 0), we obtain:

M =
αm + βmKp

km
p+Kp

λm
(6.24)

Equation (6.23) now becomes:

dK

dt
= αk +

βkK
n

kk
n +Kn

−
δkK

(
αm + βmKp

km
p+Kp

)
λm

(
1 + K

Γk
+ S

Γs

) − λkK

dS

dt
= αs +

βsK
n

ks
n +Kn

−
δsS

(
αm + βmKp

km
p+Kp

)
λm

(
1 + K

Γk
+ S

Γs

) − λsS
(6.25)

By numerically solving equations dK
dt = 0 and dS

dt = 0, we obtain three following fixed

points:

(K,S) = {(128.9, 4987.3), (230.6, 5495.1), (5864.6, 1343.2)}

The corresponding eigenvalues for the left-most, intermediate and right-most fixed points

as shown on the plane are:

(ek, es) = {(−0.1076,−0.3478), (0.1073,−0.3434),

(−0.0162 + 0.7798i,−0.0162 + 0.7798i)}

As a result, the left-most fixed point is classified as stable while the intermediate and

left-most fixed points are saddle and stable focus fixed points, respectively. Figure 6.2

shows the nullcline plane as well as the structure of the fixed points of the 2D adiabatic

SynExSlow model. As we can see, the vector field shows that there exists a basin of at-
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Figure 6.2: Nullcline plane of the 2D adiabatic SynExSlow model. The red and green
thin lines are the nullclines of ComK and ComS, respectively. The stable fixed point is
denoted by a full circle, saddle point by an empty rectangle and the other stable focus

point by an empty circle. The arrows show the vector field.

Figure 6.3: Trajectories generated by the Langevin simulation.
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(a)

(b) (c) (d)

Figure 6.4: Trajectory generated by the 3D deterministic model (a), and its projection
on logarithmic planes K-S (b), K-M (c) and S-M (d). The numerical initial condition
for the integration is K = 3179, S = 1885, M = 17266 (these values are chosen from the
Langevin simulation). The existence of intersection point shown in the 2D projections

implies that the 3D model cannot be expressed as a 2D system.

traction formed near the stable focus fixed point. This means the oscillations may occur

in the case that the trajectories travel close to the fixed point. In fact, the trajectories

will be stuck in the attraction region for most of the time since this region is quite large

as we can see in Figure 6.2. Additionally, this also shows that these trajectories should

either be trapped in the attraction region or move upwards to the other stable fixed point

according to the direction of the vector field. However, the Langevin simulation of the

3D SynExSlow model shows that there are only few trajectories being trapped in that

region. Although this phenomenon rarely happens (only once in 10000 hour simulation),

it has not been observed in Cagatay et al. (2009a). Moreover, for the trajectories which

do not fall into the basin of attraction, these trajectories do not follow the vector field

but move horizontally along the K-direction before returning back to the other stable

fixed point (see Figure 6.3).

On the other hand, Figure 6.4 shows a trajectory generated from the 3D deterministic
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Figure 6.5: SynExSlow differs from the Native circuit in competence durations.

model and a projection of this trajectory onto 2D logarithmic planes. As we can see

in Figure 6.4, the 2D curve intersects itself due to the existence of attraction basin as

shown earlier. At this point, the trajectory can be either trapped in the attraction basin

or escape to the other stable fixed point. For this situation, the velocity of the model on

a 3D plane (K,S,M) is not uniquely determined by a 2D plane. Thus, the SynExSlow

model can not be reduced to a lower-dimensional model.

In addition to our observation, Figure 6.5 shows a comparison between the SynExSlow

and the Native circuit in competence durations. In this figure, the competence durations

in SynExSlow are less variable than these in the Native circuit; however, small “bumps”

caused by oscillations also occur in some competent events in the SynExSlow. Since

the Gillespie model fails to be reconstructed, we need to find a way of fixing it so that

we can build up a full stochastic model. The method will be detailed in the following

section.

6.3 Postulating A Modified CME That Is Consistent

In this section, we try to fix the chemical mechanism where we found k19 < 0 in order to

come up with a correct discrete model which is supposed to describe the same dynamical

behaviour as that in the stochastic continuous SynExSlow model. In fact, we can easily

fix this problem by changing the values of the model parameters such that k19 > 0.

However, I would show that the new set of parameters does not reproduce the dynamics
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[P constcomK ] 1nM

[P constcomS ] 1nM

[P constmecA] 1nM

[PcomK ] 1nM

[PcomS ] 1nM

[PmecA] 1nM

[mRNAcomK ] 1000nM

[mRNAcomS ] 1000nM

[mRNAmecA] 1000nM

[MecA] 300nM

[MecAK ] 100nM

[MecAS ] 100nM

[ComK] 100nM

[ComS] 5000nM

[X] 10nM

Table 6.3: Initial conditions.

of the system (the details of this work is presented in section 6.3.2). Alternatively, we

can fix this by replacing the reaction

MecAS
k19−−→ MecA

by the following reactions

MecAS
k19−−→ X

MecA + X
k20/Ω−−−−→ 2MecAS

where X is some complex. Under this assumption, MecA is now being consumed rather

than created. Even though this will change the original reaction scheme, it is still worth

trying to see if we can reproduce the dynamics. The reaction rate equation of X is

described as follows:
d[X]

dt
= k19[MecAS ]− k20[MecA][X] (6.26)

We make k20 large enough so the second reaction can be seen as very fast reaction. As

a result, its dynamics quickly reaches equilibrium; therefore, we have:

d[X]

dt
≈ 0 (6.27)

yielding:

k20[MecA][X] = k19[MecAS ] (6.28)

The differential equation for MecAS is expressed below:

d[MecAS ]

dt
= k18[ComS][MecA]− k−18[MecAS ] (6.29)



Chapter 6 The SynExSlow Genetic Circuit 95

Figure 6.6: Sample of trajectories generated from Gillespie simulation.

− k19[MecAS ]− k15[MecAS ] + 2k20[X] (6.30)

Plugging (6.28) into (6.29), we obtain:

d[MecAS ]

dt
= k18[ComS][MecA]− k−18[MecAS ] (6.31)

+ k19[MecAS ]− k15[MecAS ] (6.32)

Similarly, by setting d[MecAS ]
dt ≈ 0 and performing the parameter matching, we have:

k15 − k19 = δsΓs ⇒ k19 = k15 − δsΓs = 6× 10−5 (6.33)

As a result, we have built up the system from the biochemical reactions, the system is

now supposed to behave in the same way as it does in the stochastic SynExSlow model.

Figure 6.6 shows the trajectories which are sampled from running Gillespie simulation

with k20 = 1.5, Ω = 1 (The initial conditions are given in Table 6.3). As we can see in

Figure 6.6, the system behaves differently compared to the stochastic SynExSlow model

in which the small oscillations occur much more often near the weak stable fixed point.

Consequently, the discrepancy between the full Gillespie simulation and the Langevin

approximation implies that the Langevin model does not capture the noise distribution

that the Gillespie model puts in. In the next experiment, we will see if there is any

change in the oscillations when changing the volume of the system. This is based on

the fact that the Langevin equation describes the time-evolution of species in terms of

molecular numbers, however, the deterministic model explains this in terms of species
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(a) (b)

Figure 6.7: Sample trajectories generated by Langevin simulation (a), and by Gillespie
simulation (b) with Ω = 2.

concentrations. Therefore, it is necessary to describe the Langevin approximation in

terms of concentration instead of molecular number. The propensity function of the

averages of the concentrations zi = xi/Ω is aj(zi(t)) = 1
Ωaj(xi(t)). As a result, the full

Langevin equation can be described as follows:

Ω(xi(t+ τ)− xi(t)) = Ω

M∑
j=1

νjaj(xi)τ +

M∑
j=1

νj
√

Ω
√
aj(xi)dWj (6.34)

Therefore:

xi(t+ τ) = xi(t) +

M∑
j=1

νjaj(xi)τ +

M∑
j=1

νj
1√
Ω

√
aj(xi)dWj (6.35)

In this equation, we can reduce the noise by increasing the volume Ω. In fact, we will

see that the oscillations disappear in the Langevin simulation; however, they still occur

in the Gillespie simulation with the same value of volume Ω = 2 (see Figure 6.7). The

result obtained from the Langevin simulation agrees with the fact that it is less likely

for the trajectories to be trapped in the attractor region if the noise is small. Therefore,

there will be no oscillation in this case. However, this does not happen to the Gillespie

simulation in the same way as shown in Figure 6.7. It is clear that the inconsistency

of those two methods in simulation results shows the ineffectiveness of applying the

adiabatic approximation in our system. This has also been observed in the wild-type

circuit in the previous chapters. In addition, the SynExSlow model is derived from the

Native model which has been proven to poorly describe the dynamical behaviour of the

system. Particularly, the assumptions about the fast processes were incorrect leading to

the inaccuracy of the adiabatic model in capturing the right systematic behaviour. As

a result, the adiabatic SynExSlow model does not provide a correct cellular behaviour

of the system.
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6.3.1 Ruling Out An Alternative RRE

In fact, we are forced to assume that both MecAK and MecAS are degraded in order

to derive the deterministic description of the model, where there is no obvious reason

for such an assumption. Moreover, an explicit representation of the proteolytic action

of MecA was not introduced in the SynEx circuit, which is, however, the step that was

modelled in the wild-type with the usual enzymatic mechanism for which the Γk and

Γs were the Michaelis constants. For this reason, it is necessary to keep this mechanism

for the explicit description in the SynExSlow circuit. However, another alternative is to

remove the degradation of MecAK and MecAS in (6.2) so as to keep the description

consistent with that in the wild-type. By doing so, there is no change in the deterministic

description of ComK and ComS, however, the differential equations for MecAK and

MecAS now become:

d[MecAK ]

dt
= k16[ComK][MecA]− k−16[MecAK ] (6.36)

− k17[MecAK ] (6.37)

d[MecAS ]

dt
= k18[ComS][MecA]− k−18[MecAS ] (6.38)

− k19[MecAS ] (6.39)

Applying the same assumption for the fast processes, d[MecAK ]
dt ≈ 0 and d[MecAS ]

dt ≈ 0,

we obtain:

[MecAK ] =
[MecA][ComK]

Γk
(6.40)

[MecAS ] =
[MecA][ComS]

Γs
(6.41)

where Γk = k17+k−16

k16
, Γs = k19+k−18

k18
. Similarly, the differential equations for mRNAmecA

and MecA remains unchanged:

d[mRNAmecA]

dt
= k7[P constmecA] + [PmecA]

k8[ComK]p

km
p + [ComK]p

− k12[mRNAmecA]

d[MecA]

dt
= k9[mRNAmecA]− k15[MecA]

− k16[MecA][ComK] + k−16[MecAK ]

+ k17[MecAK ]− k18[MecA][ComS]

+ k−18[MecAS ] + k19[MecAS ] (6.42)

By setting d[mRNAmecA]
dt ≈ 0 and putting back into the equation for MecA, we yield:

d[MecA]

dt
=
k9k7

k12
+
k9k8

k12

[ComK]p

km
p + [ComK]p

− k15[MecA]
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− k16[MecA][ComK] + k−16[MecAK ]

+ k17[MecAK ]− k18[MecA][ComS]

+ k−18[MecAS ] + k19[MecAS ] (6.43)

From (6.43) and (6.42), we obtain:

d[MecA]

dt
=
k9k7

k12
+
k9k8

k12

[ComK]p

km
p + [ComK]p

− k15[MecA] (6.44)

We now use notation M for the total concentration of MecA, while K, S for the

Figure 6.8: Nullclines of ComK and MecA in the new SynExSlow model. Those
nullclines intersect at only one stable fixed point (full circle).

concentration of ComK and ComS. We have dM
dt = d[MecA]

dt , and we also have

[MecA] =
M

1 + [ComK]
Γk

+ [ComS]
Γs

(6.45)

Plugging (6.45) into (6.44), we obtain

dM

dt
=
k9k7

k12
+
k9k8

k12

[ComK]p

km
p + [ComK]p

− k15
M

1 + [ComK]
Γk

+ [ComS]
Γs

= αm +
βm[ComK]p

km
p + [ComK]p

− λm
M

1 + K
Γk

+ S
Γs
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Finally, we end up with the following deterministic description for the 3D SynExSlow:

dM

dt
= αm +

βmK
p

km
p +Kp

− λm
M

1 + K
Γk

+ S
Γs

dK

dt
= αk +

βkK
n

kk
n +Kn

− δkKM

1 + K
Γk

+ S
Γs

− λkK

dS

dt
= αs +

βsK
n

ks
n +Kn

− δsSM

1 + K
Γk

+ S
Γs

− λsS

(6.46)

where δk = k17/Γk and δs = k19/Γs. However, the new SynExSlow model is not a correct

model since it has only one stable fixed point (Figure 6.8).

6.3.2 Ruling Out An Alternative Set of Parameters

As mentioned in section 6.3, we can easily fixed the issue where k19 < 0 by changing

the model parameters. Particularly, we need k19 = δsΓs − k15 > 0; therefore, we obtain

either Γs > k15/δs = 50 or δs > k15/Γs = 5× 10−6. It would be easier to keep Γs as it is

while changing δs since the nullcline of ComK will remain the same while the nullcline of

ComS varies. Assuming that we choose δs = 6×10−6, then k19 = δsΓs−k15 = 2×10−5.

On the other hand, since (6.20), we have k−18 = k18Γs − k15 − k19 > 0; therefore,

k18 >
k15+k19

Γs
= 6× 10−6. Here, we can take k18 = 7× 10−6.

Figure 6.9: The variation of the nullclines under parameter (δs) changes. The new
nullcline of ComS (δs = 6 × 10−6) moves downward compared to the original one

(δs = 2× 10−6), the right-most fixed point is therefore shifted to the left.
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(a) (b)

Figure 6.10: Trajectories generated from the Gillespie simulation (a), and Langevin
simulation (b).

Figure 6.9 shows the variation of the nullclines under the change of parameter δs. We now

see if the new set of parameters reproduce the dynamics of the system. In order to verify

this, I do Gillespie simulation for the full system (the initial condition is given in Table

6.3) and then compare with that in the Langevin simulation described in (6.22). In fact,

trajectories generated from the Gillespie simulation are very different from that in the

Langevin simulation (see Figure 6.10). In Figure 6.10, the Gillespie simulation is pretty

much noisier than that in the Langevin simulation; therefore, trajectories generated

from the Langevin simulation look smoother. This means the Langevin model does not

capture the noise distribution that the Gillespie model puts in. In other words, the new

set of parameters does not help us reproduce the dynamics of the system.

6.4 Summary

In this chapter, I have performed the same analysis on the synthetic circuit SynExSlow

regarding to model reduction. The aim of this analysis is to generalize our method to

excitable circuits. However, my study has shown the challenges in describing the dynam-

ical behaviour of bacteria in the SynExSlow model. These challenges come from the fact

that there is a gap between simulating the cellular behaviour using Gillespie simulation

and the stochastic Langevin approximation. In fact, the model failed in describing the

real behaviour of the system as it could not be built up from a set of biochemical reac-

tions. On the other hand, the Langevin approximation still does not capture the right

noise in the Gillespie simulation though the circuit can be successfully re-constructed.

Moreover, the presence of small oscillations which have not been observed in the exper-

imental data mentioned in Cagatay et al. (2009a), leads to the impossibility of doing

model reduction. Consequently, these results strongly prove that the model reduction

can not be done by using adiabatic approximation alone, but needs to introduce a better
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solution so that the dynamics of the system can be well approximated.





Chapter 7

Conclusions

7.1 Results and Evaluation

Genetic circuit of competence helps us understand the sophisticated biochemical reac-

tions as well as the cellular mechanisms in bacteria B. subtilis. The discrete stochastic

model which has been used in the genetic circuit can simulate the system, but provides

limited insight. A deterministic continuous approximation gives deeper insight into the

system through the study of fixed points, but missed out noise induced dynamics which

is very important. Although the 2D adiabatic model is simple enough to understand

the cellular behaviour near the steady state, it is limited in providing correct dynamics

in the whole phase. Thus, reducing a very complicated high-dimensional model to a

much simpler low-dimensional model while preserving the right dynamics of the system

is critical to understanding cellular behaviour. We can then apply tools such as Fokker-

Planck equation to analyze the stochastic dynamic system which is characterized by its

time-parameterized probability density function (PDF). This also allows us to be able

to compute the initialization probability per unit time of the cell being in competent

state explicitly.

The thesis has shown experimental simulations which reproduced the results presented

by Süel et al. (2007) including trajectories, vector field, initialization probability, com-

petence duration, etc. However, it also shows the discrepancy in competence durations

between the simulation result computed by running Gillespie algorithm and that pro-

vided in the paper. In particular, it is explained that the dynamics of proteins during

the excitable state is actually faster than that discussed in the paper; therefore, the

competence duration cells spend during the competent state should be shorter. More-

over, our simulation has also shown that the noise basically does not impact on the

competence duration; however, the noise near the switching state can significantly effect

the initialization probability.

Apparently, the 2D naive adiabatic model meets lots of limitations as it describes the
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dynamics of a noise-induced system. For this reason, I have tried to come up with a

simple approximate model which can describe the dynamics of the system better. As a

result, I have built up a 2D approximate model using slow invariant manifold technique

and an iterative procedure which is easy to implement. The 2D approximate model

is verified to have preserved the fixed points and their stability in the original system.

Additionally, the simulation results showed the right behaviour in the excitable regime

where the competence duration is computed to be about 10 hours which is the same

as that in the full system. However, it is limited in describing the right behaviour at

the transient where cells spend a short period of time before getting back to steady

state. This is because the dynamics in mRNA molecules which were assumed to be very

fast had not been that fast. In other words, the time scales of the dynamics are not

completely separated. Consequently, applying the adiabatic approximation in this case

did not work properly. Moreover, the singular perturbation method used to capture the

fast processes did not improve the approximation either.

I also showed that the competence mechanism relies on the fluctuation of very small

number of mRNA molecules which is amplified through a positive feedback loop. The

role of feedback mechanism has also been studied as looking at the stochastic noise in

a single gene regulatory network, Tao et al. (2007) showed that a gene with feedback

regulation will have different total noise in the number of proteins compared to that

with the same average of protein molecules. Clearly, the effect of feedback regulation

mechanism on gene expression is critical to the dynamical behaviour of cells; therefore, it

has to be taken into account as doing the model reduction for any stochastic continuous

model. In our case, the simulation results have also shown that it is impossible to reduce

a Langevin model by using adiabatic approximation alone. This is not only because of

the fluctuations in proteins being ignored but also because of the impact of the positive

feedback which is known as essential for the bistability (Maamar and Dubnau, 2005)

having been missed out. On the other hand, the bistable genetic circuit is believed

to be very sensitive to the switching behaviour (Mehta et al., 2008). The simulation

results showed that a slight difference at the tail of the probability distribution among

approximate models may result in large variation in the number of cells entering the

competent state. Particularly, the Langevin approximate models produce much higher

initialization probability for cells to become competent than that in the Gillespie model

as a consequence of the exponential sensitivity of switching state.

In supplement to these results, I analyzed alternative regulatory networks SynEx and

SynExSlow which exhibit a similar behaviour as observed in the wild-type circuit. Our

simulations have shown the ODE description from which dynamical behaviour was de-

rived does not follow a chemical reaction description. Moreover, there is a discrepancy

between the experimental result claimed by Cagatay et al. (2009a) and the simulation

data. Particularly, our simulation showed small oscillations occurring near the unsta-

ble fixed point at the excitable regime; however, these have not been observed in their
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experimental result. As a result, this implies the impossibility of doing model reduction.

To sum up, I have presented an analysis of a competence genetic circuit which has

been typically used for researching cellular behaviour in bacteria Bacillus subtilis. Not

only have we reproduced the results in the paper but also provided a correct way of

observing the dynamical behaviour of the system. There are three important results we

have found through out the thesis. Firstly, the fluctuations in mRNA strongly contribute

to the total noise of the system, driving the system to the excitable state. As a result,

these fluctuations are unable to be ignored when doing the model reduction. Secondly,

the positive feedback which has not actually been captured in the reduction approaches

does impact on the noise of protein. This, as a result, leads to an inefficiency in our

approximation methods. Thirdly, the tail of the probability distribution is very sensitive

to the initialization probability which describes how often cells enter the competent state.

These results are vital to better understanding the real behaviour in genetic circuit. In

addition, I have also shown that, it is the very small number of mRNA as well as the

impact of positive feedback loop that cause the failure of the Langevin simulation. On

the other hand, it is very important to find out about the Langevin equation that the

variance of protein is proportional to square of its molecular number. This result allows

us to construct a reduced model which better approximate the dynamical behaviour of

the original model by putting an empirical noise back into the Langevin equation. We

then can solve the Fokker-Planck for the stochastic model in order to produce a complete

histogram of the species in terms of probability distribution. The empirical noise can be

tuned such that the probability distribution obtained from the Fokker-Planck best fits

that computed from the original model.

7.2 Future Work

In this thesis, we have presented an analysis of a competence genetic circuit which

exhibits the natural behaviour of bacterium. A part from the simulation results obtained,

however, the problem of dimensionality reduction has not yet been solved. In fact, a

completion of solution to the problem is critical to solving a variety of similar problems.

In particular, this method can be used to deal with some other complex genetic circuits

and make them simpler for analysis. On the other hand, our research has also showed

that there is a gap between the Gillespie and Langevin simulations in describing the

cellular behaviour. Moreover, the initialization probability obtained from the Langevin

simulation is much larger than that computed in the Gillespie simulation. In fact, the

Langevin approximation does not work effectively when the species populations are too

small; therefore, it is necessary to set out a solution to the Langevin method for this

particular case.

Even though there are challenges in modelling gene regulation network, we have found
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useful evidences which help us understand the wild-type genetic circuit better. Based

on these findings, we have come up with a relatively good approximate model which can

give us deep insights into the dynamics of the system. Moreover, this is an important

starting point to the generalisability of our method to genetic circuits that generate

excitable dynamics. For this reason, we have already submitted a paper to show these

results.

In additon, I showed the sensitivity of the switching behaviour at the tail of the prob-

ability distribution which was also observed by Mehta et al. (2008). The simulation

results also showed the significant contribution of the fluctuations in mRNA to the to-

tal noise of the system. As a result, ignoring these fluctuations may lead to a wrong

dynamical behaviour. On the other hand, the size of fluctuation of protein in the chem-

ical Langevin equations has been found to be proportional to the mean of protein. It

means that the fluctuation itself is much larger than it should be due to the effect of

the positive feedback scheme. Although I have provided evidences for this observation,

the question of how the positive feedback loop impacts on the fluctuation, however, still

remains unanswered. Thus, it should be nice if we can mathematically describe this

relationship in order to better understand the system. Consequently, we may come up

with a better solution to the model reduction in which the dynamical behaviour can be

well approximated.
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Appendix

A.1 Mechanism

A.1.1 Transcription

Transcription is the first stage of gene expression in which mRNA is synthesized from a

DNA template. At first, RNA polymerase binds to a specific base sequence in the DNA

called a promoter which is close to the start of the coding region of a gene. The RNA

polymerase then unwinds the DNA before a strand of gene is copied to RNA (Andrey

et al., 2006). After that, the RNA polymerase then adds more complementary strands

of RNA in order to create a message which is called mRNA (Robinson and van Oijen,

2013). mRNA contains regions which are not used in translating into proteins, these

regions are called introns and will be removed from mRNA so as to form mature mRNA,

which is able to leave the nucleus through pores and go into cytoplasm. In other words,

this process is basically to write down a message which is contained in DNA preparing

for the next stage known as translation. Bacteria, however, do not have a distinct

nucleus so there is no barrier to immediate translations; therefore, the transcription and

translation occur simultaneously in this case (Ralston, 2008).

A.1.2 Translation

During this process, the mRNA moved to the cytoplasm is decoded or translated in order

to produce the correct order of amino acids in a protein. In fact, mRNA after entering

the cytoplasm will become associated with ribosomes which are a combination of rRNA

and proteins. According to that, every three letters in mRNA codes for one amino acid,

and each initiator tRNA that pairs up with the mRNA codons, carries a specific amino

acid down to the ribosomes and drop that off to the growing protein chain, producing

protein base by base. After dropping that down, the tRNA naturally goes inside the
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cytoplasm to gather another amino acid and this process is iterated until the ribosomes

hits the stop sequences encoded as UAA, UGA or UAG (Alberts, 2002).

A.2 Regulation of Gene Expression

A.2.1 Transcription Regulation

Transcriptional regulation is the way a cell controls how often a given gene is transcribed

by making conditions for transcription initiation more favourable or less favourable. In

eukaryotic cells, transcription is controlled by proteins that bind to specific regulatory

sequences and modulate the activity of RNA polymerase (Geoffrey and Cooper, 2000).

In this process, transcription factors, which are proteins that bind to DNA in a se-

quence specific manner to regulate transcription, alter the rate at which transcripts are

produced. The transcription factors regulate transcription by either enhancing or pre-

venting the recruitment and binding of the RNA polymerase to the promoter of the gene

(Carey et al., 1999; Locker, 2000). In biology, transcription factors play a critical role in

development and differentiation of organisms. They can act in many different biological

contexts during development and can regulate many different gene programs in different

organisms (Zeitlinger and Stark, 2010).

A.2.2 Post-transcriptional Regulation

Post-transcriptional regulation of gene expression also determines how much mRNA is

translated into proteins. Cells may do it by several ways including mRNA processing

(polyadenylation, capping, and splicing), mRNA export and localization, mRNA decay,

and mRNA translation (Dubnau, 1991; Day and Tuite, 1998). In this process, more-

over, RNA binding proteins (RBPs) play a critical role in the development of mRNA

regulation and protein abundance. In addition, RNAs may contain more than one RBP-

binding site that is associated with multiple RNAs to be able to form ribonucleoprotein

(RNP) complexes which are involved in activities of cell metabolism such as DNA repli-

cation, expression of histone genes, regulation of transcription and translational control

(Cagatay et al., 2009b).

A.2.3 Translational Regulation

Translational regulation is about the control of the levels of protein synthesized from

its mRNA. The mechanisms are centred on the control of ribosome recruitment for

the initiation codon. They also are involved in the modulation of the elongation or

termination of protein synthesis. Basically, translational regulation includes specific
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RNA secondary structures on the mRNA. In eukaryotic cells, the translational control

is critical for gene regulation during nutrient deprivation and stress, development and

differentiation, nervous system function, aging, and disease (Sonenberg and Hinnebusch,

2009).

A.2.4 Protein Degradation

The level of protein concentration is both dependent on its rate of synthesis and its rate

of degradation; therefore, the regulation of protein degradation represents a potential

mechanism for modulating gene expression (Callis, 1995). In this process, proteasomes

which are very large protein complexes play a critical role in regulation mechanism by

which cells may regulate the concentration of particular proteins and degrade misfolded

proteins. Moreover, proteins are also labeled for degradation with a small protein called

ubiquitin which has been found in almost all tissues of eukaryotic organisms but not in

bacteria.

A.3 Hill Equation

In multiple-binding-site mechanism such as the activity of enzymes, the binding of a

molecule of substrate to one site may influence (activate or inhibit) the binding of another

of substrate to the second site. In order to quantify this effect, the Hill equation (Hill,

1910, 1913) was introduced and has been widely applied in biochemistry. To understand

how the Hill equation works, we first take an example of a chemical mechanism where

enzyme E convert other molecules called S into products P . Here, we assume that E

has two binding sites, and the substrate S can equally bind to one of the binding sites

to form a complex C. The chemical reactions are therefore given as follows:

S + E
c1−⇀
↽−
c−1

C1

c2−→ E + P

S + C1

c3−⇀
↽−
c−3

C2

c4−→ C1 + P

(A.1)

Let ET = E+C1 +C2. This quantity remains constant since all reactions involving E or

its complexes conserves this sum. Notice that enzyme E has two binding sites; therefore

we should have two different forms of C1 and C2. The differential equation for S, C1,
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C2 and P are described as follows:

dE

dt
= −c1SE + (c−1 + c2)C1

dS

dt
= −c1SE + c−1C1 − c3SC1 + c−3C2

dC1

dt
= c1SE − (c−1 + c2)C1 − c3SC1 + (c−3 + c4)C2

dC2

dt
= c3SC1 − (c−3 + c4)C2

dP

dt
= c2C1 + c4C2

(A.2)

The rate of generating P is given by v = dP
dt = c2C1 + c4C2. At the steady state, we set

dC1

dt
=
dC2

dt
= 0 (A.3)

and define

K1 =
c−1 + c2

c1

K2 =
c−3 + c4

c3

(A.4)

we obtain:

C1 =
SE

K1

C2 =
SC1

K2
=

S2E

K1K2

(A.5)

therefore, ET = E + C1 + C2 = E + SE
K1

+ S2E
K1K2

= E
(
S
K1

+ S2

K1K2

)
, this yields

E =
ET

1 + S
K1

+ S2

K1K2

(A.6)

Assuming that the unbinding rates are independent, this means c2 = c4 = cp, c−1 =

c−3 = c, we obtain

v = c2C1 + c4C2 = cpE(
S

K1
+

S2

K1K2
) (A.7)

From (A.6) and (A.7) we have:

v =
ET cp

(
S
K1

+ S2

K1K2

)
1 + S

K1
+ S2

K1K2

(A.8)

We now assume that the binding of substrate S to binding site of enzyme E activates

the binding of S to the complex C1, this means c3 � c1. As a result, K2
K1

= c1
c3

= α� 1,



Appendix A Appendix 111

hence

v =
ET cp

(
S
K1

+ S2

αK2
1

)
1 + S

K1
+ S2

αK2
1

(A.9)

For S
K1

= αC2
C1
� 1, this means S � K1, we have

v ≈
Vmax

S2

αK2
1

1 + S2

αK2
1

v ≈ VmaxS
2

K + S2

(A.10)

where Vmax = ET cp, K = αK2
1 . The last equation, called Hill equation, has sigmoidal

shape and in general case, this equation is expressed as follows:

v =
VmaxS

n

Kn + Sn
(A.11)

where n is a Hill coefficient but not the number of binding sites. In fact, n is always

smaller the number of binding sites.

A.4 Linearized Approximation

The linearized approximation is applied to explore the microscopic fluctuation near the

steady state of a stochastic process. In particular, this method allows us to mathemat-

ically describe the time-evolution of the covariances in terms of the parameters in the

rate equation and the stochastic fluctuation around the steady state. Firstly, we assume

that X(t) is a vector of the number of molecules Xi according to each chemical species

Si(i = 1, 2..., N) in the system, then the time-evolution description of the joint prob-

ability distribution of all species is given by the following Chemical Master Equation

(CME):

∂

∂t
P (X, t) =

M∑
j=1

[P (X− νj , t) aj (X− νj)− P (X, t) aj (X)] (A.12)

where the propensity function aj gives the probability that one reaction Rj (1 ≤ j ≤M)

will occur in the next time interval [t, t+ dt) in volume Ω. The stoichiometry νij repre-

sents the changing amount in the number of Si molecules caused by the reaction Rj . By

multiplying Equation (A.12) by X = X − νj + νj and summing over all X and noting

that 〈X〉t =
∑

X X (t)P (X, t), we get the following expression:

〈Xi(t+ ∆t)〉 = 〈Xi(t)〉+ ∆t
M∑
j=1

〈νijaj(X− νj)〉
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+ ∆t

∑
X

M∑
j=1

(P (X− νj , t) aj (X− νj)− P (X, t) aj (X))

 (A.13)

The last term in {.} vanishes by defining Y = X− ν. Thus, we yield:

d 〈Xi〉
dt

=
M∑
j=1

〈νijaj(X)〉 (A.14)

Similarly, by multiplying Equation (A.12) by (X− 〈X〉) (Xᵀ − 〈Xᵀ〉) and shifting vari-

ables in the sum over X, we get the following expression for the covariances:

dCov (Xi, Xj)

dt
=

M∑
k=1

〈(Xi − 〈Xi〉) νjkak(X)〉+ 〈(Xj − 〈Xj〉) νikak(X)〉+ 〈νikνjkak(X)〉

(A.15)

where Cov (Xi, Xj) = 〈(Xi − 〈Xi〉) (Xj − 〈Xj〉)〉. By doing a linearized approximation

of the propensities around the steady state X∗, we yield the time-evolution of the co-

variances Cij := Cov (Xi, Xj) as follows (see Avi and Ben (2012)):

d

dt
C = JC + CJᵀ + BBᵀ (A.16)

where J is the Jacobian matrix computed at the fixed point X∗, B is the diffusion

matrix which can be derived from the Langevin equation. At the steady state, the

covariance matrix C can be obtained by solving the Lyapunov equation for the steady

state
(
d
dtC = 0

)
:

JC + CJᵀ + BBᵀ = 0 (A.17)

In our 7D system, the diffusion matrix B is defined as follows:

B =



(K) 0 0
√
k3RK 0 0 0 0 −

√
k8K 0 0 −

√
k11KA

√
k−11MK 0 0 0 0

(S) 0 0 0 0 0
√
k6RS 0 0 0 −

√
k10S 0 0 −

√
k13AS

√
k−13MS 0 0

(A) 0 0 0 0 0 0 0 0 0 0 −
√
k11AK

√
k−11MK −

√
k13AS

√
k−13MS

√
k12MK

√
k14MS

(MK) 0 0 0 0 0 0 0 0 0 0
√
k11AK −

√
k−11MK 0 0 −

√
k12MK 0

(MS) 0 0 0 0 0 0 0 0 0 0 0 0
√
k13AS −

√
k−13MS 0 −

√
k14MS

(RK)
√
k1

√
k2Kn

kk
n+Kn 0 0 0 0 −

√
k7RK 0 0 0 0 0 0 0 0 0

(RS) 0 0 0
√
k4

√
k5

1+
(
K
ks

)p 0 0 0 −
√
k9RS 0 0 0 0 0 0 0



where K, S, A, MK , MS , RK , RS are denoted for [ComK], [ComS], [MecA], [MecAK ],

[MecAS ], [mRNAcomK ] and [mRNAcomS ]. Since we have the conservation law for the

complex protease, we therefore can eliminate one out of three rows corresponding to

MecA, MecAK and MecAS . For example, by removing the row for MS , we get the

corresponding diffusion matrix for the six remaining variables:

B =



(K) 0 0
√
k3RK 0 0 0 0 −

√
k8K 0 0 −

√
k11KA

√
k−11MK 0 0 0 0

(S) 0 0 0 0 0
√
k6RS 0 0 0 −

√
k10S 0 0 −

√
k13AS

√
k−13MS 0 0

(A) 0 0 0 0 0 0 0 0 0 0 −
√
k11AK

√
k−11MK −

√
k13AS

√
k−13MS

√
k12MK

√
k14MS

(MK) 0 0 0 0 0 0 0 0 0 0
√
k11AK −

√
k−11MK 0 0 −

√
k12MK 0

(RK)
√
k1

√
k2Kn

kk
n+Kn 0 0 0 0 −

√
k7RK 0 0 0 0 0 0 0 0 0

(RS) 0 0 0
√
k4

√
k5

1+
(
K
ks

)p 0 0 0 −
√
k9RS 0 0 0 0 0 0 0


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In according to that, the Jacobian matrix A is expressed as below:

J =



(K) (S) (A) (MK) (RK) (RS)

(K) −k8 − k11A 0 −k11K k−11 k3 0

(S) 0 −k10 − k13A −k13S 0 0 k6

(A) −k11A −k13A −k11K − k13S k12 + k−11 0 0

(MK) k11A 0 k11K −k12 − k−11 0 0

(RK) Kn−1k2kk
nn

(Kn+kk
n)2

0 0 0 −k7 0

(RS) −
k5
(
K
ks

)p
p

K
(

1+
(
K
ks

)p)2 0 0 0 0 −k9



A.5 Ito’s Lemma

The Ito’s lemma is used to find a stochastic process of a time-dependent function. In

particular, assuming that we have the following stochastic process:

dx = a (x, t) dt+ b (x, t) dW (A.18)

where dW is a Wiener process. Supposing that G is function of x and t, then G follows

the process:

dG =

(
∂G

∂x
a+

∂G

∂t
+

1

2

∂2G

∂2x
b2
)
dt+

∂G

∂x
b dW (A.19)

For example, choosing G = ln (x), we then get the following stochastic process for G

(Notice that ∂G
∂t = 0):

dG =

(
a (x, t)

x
− 1

2

b (x, t)2

x2

)
dt+

b (x, t)

x
dW (A.20)

A.6 Discrepancy Between Simulation Models In The Wild-

Type

A.6.1 Discrepancy Between The 7D Gillespie And Langevin Models

In order to compare the 7D Gillespie and Langevin models in the wild-type, we can

compute the covariances for the steady state so as to come up with a probability density

function (PDF) of species around the steady state, we then compare the PDFs obtained

from each model. In order to compute the PDF of the 7D Gillespie model, we sample

all the simulation data near the steady state (in our case, the sampled data satisfies
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0 ≤ K ≤ 200, 0 ≤ S ≤ 1000). We then compute the covariance matrix of the data using

built-in function cov in Matlab, the PDF is therefore computed using function mvnpdf .

The two probability density functions are shown in Figure A.1.

(a) (b)

Figure A.1: Probability density functions in the 7D Gillespie (a) and 7D Langevin
models (b).

(a) (b)

Figure A.2: Probability density functions in the 7D Langevin and Gillespie models
f(K,S = 409) (a), and f(S,K = 200) (b).

In order to quantify the difference between the two PDFs, we do the comparison by

cutting the PDFs at the fixed point (S∗ = 409) and projecting them on K-axis, this

allows us to obtain f(K,S = S∗). Similarly, we cut off the PDF at their tails (K∗ = 200)

and project them on S-axis in order to obtain f(S,K = K∗). It is clear that there is a

slight difference in those PDFs, especially the tail of the 7D Langevin probability density

function is larger than that of the 7D Gillespie. In order to quantitatively compare the

two curves shown in the figure on the left, we can compute the variances of the two data

sets by applying the formula: var(K) =
∫
K (K − µ)2f(K,S∗)dK, µ =

∫
K Kf(K,S∗)dK
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Figure A.3: Histogram of mRNAcomS .

where f(K,S) is the joint PDF. The variances computed for the 7D Gillespie and 7D

Langevin models are 17.4 and 20, respectively. This means the variance in the 7D

Langevin model is about 15% larger than that in the 7D Gillespie model. This implies

that the initialization probability computed in the 7D Langevin model will be larger.

In order to quantify this, we can estimate the probability of ComK near the tail of

the distribution where the system can possibly become competent. We suppose that

for very small ∆K and particular value of S, f(K,S) does not significantly change for

all 200 ≤ K ≤ 200 + ∆K; therefore, P (200 ≤ K ≤ 200 + ∆K) =
∫
S f(K,S)dS∆K,

we can take ∆K = 1 for simplicity. As a result, the probability computed for the

7D Langevin model is 7.4 × 10−4 which is roughly four times as large compared to

1.75 × 10−4 in the 7D Gillespie. Consequently, the initialization probability in the 7D

Langevin model is expected to be larger than that in the 7D Gillespie model. This

means the Langevin approximation does not capture the right dynamics of the system.

In fact, this approximation method can only work well if the populations of species are

large enough. However, we found that the mRNAcomS is present in very low number

near the steady state (Figure A.3). To avoid this circumstance, we can make a change

of variable to a logarithmic scale, then apply the Ito’s lemma to get the corresponding

Langevin equation (details of the lemma can be found in A.5). However, this solution

comes at the cost of extremely slow performance since the time step needed for the

simulation becomes very tiny. Consequently, it is better to eliminate this variable using

the adiabatic approximation. Since the lifetime of mRNA is 50 times shorter than that

of protein; therefore, the adiabatic approximation is suitable to be used in this case. In

the rest of this section, I will try to reduce the 7D system to a lower-dimensional system,
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Figure A.4: Structure of different stochastic models. The arrows shows an approxi-
mation of high-dimensional system to a lower-dimensional system.

the structure of stochastic models we are going to work on is illustrated in Figure A.4.

A.6.2 The 6DS Langevin model

This model is obtained by adiabatically eliminating mRNAcomS . We assume that the

dynamics of mRNAcomS denoted as ms is much faster than that in the protein; therefore,

we can replace this variable by its steady value:

ms =

k4 + k5Kn

1+( K
ks

)p

k9
(A.21)

The simulation result shows that the trajectories have not been trapped in the excitable

state but follow the slow manifold to get back to the vegetative state (Figure A.5).

However, the competent events occur more often compared to the that in the full 7D

Gillespie model (Figure A.6). Figure A.7 shows a comparison in terms of PDF for the two

models. By applying the same procedure as previously, we can see that the probability

distribution in the 6DS Langevin model (variance = 124) is much broader than that in

the 7D Gillespie model (variance = 17.4). Moreover, the probability of ComK near the

tail of the PDF computed for the 6DS Langevin model is 7.2 × 10−4, which is about

four times larger than that in the 7D Gillespie model (P = 1.75 × 10−4) (see Figure

A.8). Thus, we expect that the initialization probability should also be larger than

that in the 7D Gillespie model. In fact, the probability for cells to become competent is

computed to be about 0.11±0.002 which is roughly 14 times larger than that in the wild-

type (Pinit = 0.0076 ± 2.3 × 10−4). The discrepancy between Pinit in the Gillespie and

Langevin models probably comes from the fluctuation in the mRNAcomK which may

contribute a lot to the dynamics of system causing the transition to happen. In order
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Figure A.5: Trajectories generated by the 6DS Langevin model.

(a) (b)

Figure A.6: Competent events in the 6DS Langevin model (a) and the 7D Gillespie
model (b).

to address this, we do the simulation while keeping the mRNAcomS and eliminating

the mRNAcomK . As a result, we then come up with a 6DK Langevin model which is

described in the following section.
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(a) (b)

Figure A.7: Probability density functions in the 7D Gillespie (a) and 6DS Langevin
models (b).

(a) (b)

Figure A.8: Probability density functions in the 7D Gillespie and 6DS Langevin
models f(K,S = 409) (a), and f(S,K = 200) (b).

A.6.3 The 6DK Langevin model

In this case, we eliminate mRNAcomK denoted as mk by setting this variable to its

steady state value:

mk =
k1 + k2Kn

knk+Kn

k7
(A.22)

As a result, we obtain a 6DK Langevin model in which we find that cells will stay

around the steady state and never go to the excitable state (Figure A.9). This behaviour

is completely different from that in the case of eliminating mRNAcomS and it clearly

does not describe the right behaviour. Thus, we can not remove the mRNAcomK since

its dynamics plays a critical role in driving the system to the competent state. The
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Figure A.9: The probability density function in the 6DK Langevin model.

fluctuation in the mRNAcomK still significantly contributes to the total noise of protein;

therefore, it is necessary to put this fluctuation back into the noise term of the Langevin

equation.

In the following section, we will try doing this by introducing an Incomplete 5D Langevin

model in order to capture the fluctuation which has been ignored in the 6D Langevin

models.

A.7 The Incomplete 5D and 2D Langevin models

In this section, we still do the model reduction from the 6D models by eliminating the

mRNA. However, the issue is that how we can eliminate this variable but still include

its fluctuation to the stochastic component in the Langevin equation for the protein. In

fact, we can probably do that by treating the deterministic and stochastic terms of the

Langevin equation for the variable separately. In particular, we still do the adiabatic

approximation for the mRNAcomK by assuming that the mRNAcomK quickly reaches

equilibrium, we then get:

mk =
k1 + k2Kn

kk
n+Kn

k7
(A.23)
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The Langevin equation for mRNAcomK is:

mk(t+dt) = mk(t) +

(
k1 +

k2K
n

kk
n +Kn

− k7mk(t)

)
dt+

√
k1 +

k2Kn

kk
n +Kn

+ k7mk(t) dW

(A.24)

From A.23 and A.24, we end up with the following new Langevin equation formRNAcomK :

mk(t+ dt) = mk(t) +
√

2k7mk(t) dW (A.25)

In the last equation, the mRNAcomK evolves around its mean with the variance being

expressed in Equation (A.25). As a result, we can basically eliminate this variable in the

full system by doing the adiabatic approximation for the deterministic term only. How-

ever, we still keep the time-evolution of this variable and put it back into the stochastic

term. Consequently, the new Langevin equation is now described by the determinis-

tic part which only includes five variables and the stochastic part which consists of six

variables. To avoid confusion, we temporarily call this new model the Incomplete 5D

Langevin model. In this model, the trajectories are similar to that in the 6DS Langevin

model (Figure A.10).

(a) (b)

Figure A.10: Sample of trajectories (a), and competent events (b) in the Incomplete
5D Langevin model.

The PDF computed from the Incomplete 5D Langevin is still very different from that

in the 7D Gillespie model (Figure A.11). Moreover, the initialization probability is

estimated at 0.04 ± 0.007 which is smaller than that in the 6DS Langevin model but

still about five times as large as that in the 7D Gillespie model, though the probability

of ComK in the 7D Gillespie model is 10 times larger than the Incomplete 5D Langevin

model (P = 3.8 × 10−5). This is because the variance computed in the Incomplete 5D

Langevin model is 34.3 which is roughly twice as large as that in the 7D Gillespie model

(variance = 17.4), resulting in a longer tail of the PDF (Figure A.12). As a result, the

probability of being competent is decreased in the Incomplete 5D Langevin model but
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(a) (b)

Figure A.11: Probability density functions in 7D Gillespie (a) and the Incomplete 5D
Langevin models (a).

(a) (b)

Figure A.12: Probability density functions in 7D Gillespie and Incomplete 5D
Langevin models f(K,S = 409) (a), and f(S,K = 200) (b).

is still very high compared to that in the wild-type model. In order to verify if we end

up with the same result for the lower-dimensional system, we apply the same procedure

for the 2D deterministic approximate model which has been obtained in Chapter 3 so

as to construct an Incomplete 2D Langevin model. In this context, we also keep the

fluctuations in MecA, MecAK and MecAS and plug them back into the stochastic noise

term of the protein.

The simulation result shows similar trajectories but the number of competent events

seem to be larger compared to the Incomplete 5D Langevin model (Figure A.13) though

the PDFs computed from the two models looks similar (Figure A.14). In fact, the prob-

ability of competence in the Incomplete 2D Langevin model is estimated at 0.05± 0.005

which is 1.2 times larger than that computed in the Incomplete 5D Langevin model
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(a) (b)

Figure A.13: Sample of trajectories (a), and competent events (b) in the Incomplete
2D Langevin model.

(a) (b)

Figure A.14: Probability density functions in the Incomplete 5D (a) and the Incom-
plete 2D Langevin models (b).

(Pinit = 0.04 ± 0.007). Even though, the PDF near the steady state is not much

different from that in the Incomplete 5D Langevin model (Figure A.15). In Figure

A.15, the variance computed for the Incomplete 2D Langevin model is 28.4 which is

not significantly different from that computed in the Incomplete 5D Langevin model

(variance = 34.3), and the probability of ComK estimated near the tail of the distri-

bution is 4.6 × 10−5 which is again very close to that estimated in the Incomplete 5D

Langevin model (P = 3.8 × 10−5). Consequently, the small change near the tail of the

PDF leading to significant difference in the initialization probability shows the sensitiv-

ity of those models to the tail of the distribution. This result agrees with the observation

discussed in Mehta et al. (2008).

In this section, we showed our effort to approximate the dynamical behaviour of the full

system by a stochastic model. However, the simulation result implied that we can not
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(a) (b)

Figure A.15: Probability density functions in the Incomplete 2D and Incomplete 5D
Langevin models f(K,S = 409) (a), and f(S,K = 200) (b).

do the reduction merely using the standard methods. In fact, the fluctuations from the

mRNA are needed for the switching behaviour to occur. For this reason, it is critical to

preserve those fluctuations in doing the model reduction. It suggests that the adiabatic

approximation is not a good solution to the dimensionality reduction problem. However,

by doing the reduction for the deterministic part of the Langevin equation but putting

back into the system the fluctuation in the removed variables, we can reproduce a quite

similar dynamical behaviour in comparison with the original system. In spite of this, one

of the issue we have found when doing the reduction was the initialization probability.

This quantity generally differs from that computed from the full system by order of

magnitude implying that the noise has not been captured correctly. In fact, it is not

obvious when doing the transformation from the reduced RRE to the reduced Langevin

equation. Thus, I decided to manually construct the stochastic model by adding a

tunable noise into the model. The noise terms are then altered such that we can obtain

a better approximate model.

A.8 Linear Noise Approximation In The 2-Species Model

In this section, I try to identify the stochastic noise which arises from the small copy

number of species as well as to evaluate the mutual effect of the mRNA on the protein

noise (the details of this method can be found in section A.4).

The differential equations for the system near the fixed point (K∗,m∗) are given as

follows:

d 〈K〉
dt

= k5 + k3 〈m〉 − k6 〈K〉 (A.26)
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d 〈m〉
dt

= 〈f(K)〉 − k4 〈m〉 (A.27)

where f(K) = k1 + k2K2

kk
2+K2 , the Jacobian matrix A and diffusion matrix B are defined

as follows:

A =

( (K) (m)

(K) −k6 k3

(m) ∂f(K∗)/∂K −k4

)
, BBᵀ =

(
(K) k5 + k3 〈m〉+ k6 〈K〉 0

(m) 0 〈f(K)〉+ k4 〈m〉

)

We define the covariance matrix C as follows:

C =

(
σk

2 Cov(K,m)

Cov(K,m) σm
2

)

Solving the Lyapunov equation for the steady state AC + CAᵀ + BBᵀ = 0, we get:

−2σk
2k6 + 2k3Cov(K,m) + k5 + k3 〈m〉+ k6 〈K〉 = 0 (A.28)

k3σm
2 +

∂f(K∗)

∂K
σk

2 − Cov(K,m)(k4 + k6) = 0 (A.29)

〈f(K)〉+ k4 〈m〉+
2∂f(K∗)

∂K
Cov(K,m)− 2k4σm

2 = 0 (A.30)

At the steady state we have:

k5 + k3 〈m〉 − k6 〈K〉 = 0 ⇒ 〈m〉 =
k6 〈K〉 − k5

k3
(A.31)

From (A.28) and (A.31) we get:

σk
2 = 〈K〉+

k3

k6
Cov(K,m) (A.32)

On the other hand, at the steady state we have d〈m〉
dt ≈ 0, then k4 〈m〉 = 〈f(K)〉;

therefore, from (A.30) we yield:

σm
2 = 〈m〉+

1

k4

∂f(K∗)

∂K
Cov(K,m) (A.33)

From (A.29), (A.32) and (A.33) we have:

(k4 + k6)Cov(K,m) = σm
2 +

∂f(K∗)

∂K
σk

2

= k3

(
〈m〉+

1

k4

∂f(K∗)

∂K
Cov(K,m)

)
+
∂f(K∗)

∂K

(
〈K〉+

k3

k6
Cov(K,m)

)
= Cov(K,m)

∂f(K∗)

∂K

(
k3

k4
+
k3

k6

)
+ k3 〈m〉+ 〈K〉 ∂f(K∗)

∂K
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Figure A.16: A comparison between the mean of mRNA given by (4.18) (Chapter 4)
and its steady state value.

Therefore,

Cov(K,m) =
k3 〈m〉+ ∂f(K∗)

∂K 〈K〉

(k6 + k4)

(
1− k3

∂f(K∗)
∂K

k6k4

) (A.34)

Plugging (A.34) into (A.32), we obtain

σk
2 = 〈K〉+

k3

k6

k3 〈m〉+ ∂f(K∗)
∂K 〈K〉

(k6 + k4)

(
1− k3

∂f(K∗)
∂K

k6k4

) (A.35)

Next, we need to compare the mean of mRNA computed with that obtained from the

corresponding reaction rate equations, this will give us a clue of why the adiabatic

approximation produced such a poor model as described previously.

Figure A.16 shows this comparison in which the big gap between the two curves implies

that the adiabatic approximation is not good solution to the reduction problem. In fact,

the means of mRNA computed from both cases will match when the propensity functions

are linear; however, since we have non-linear propensity function a = k1 + k2K2

kk
2+K2 , this is

not always true. By using curve fitting solver in Matlab, we can fit the mean of mRNA

by a quadratic curve (e0K
2 + e1K + e2) where e0 = 3.4 × 10−6, e1 = −3.3 × 10−4,

e2 = 0.55 (Figure A.17). As a result, we can reduce our model to a 1D model by

replacing m = e0K
2 + e1K + e2, the stochastic process of ComK now becomes:

dK = g(K)dt+ ηk dWk (A.36)
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Figure A.17: A fitting curve of the mean of mRNA.

Figure A.18: A comparison between the variance of ComK computed from the linear
noise approximation (LNA) and that computed from the empirical data (non-LNA).
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where ηk = e0K
2+e1K+e2, g(K) =

(
k5 + k3(e0K

2 + e1K + e2)− k6K
)
. We now apply

the linear noise approximation for this reduced model, the Jacobian matrix A, diffusion

matrix B and covariance matrix C now become:

A =

( (K) (m)

(K) ∂g(K∗)/∂K 0

(m) 0 0

)
, BBᵀ =

(
(K) (b0K

2 + b1K + b2) 0

(m) 0 0

)

C =

(
σ̃k

2 0

0 0

)
Solving the Lyapunov equation for the steady state AC + CAᵀ + BBᵀ = 0, we get:

2
∂g(K∗)

∂K
σ̃k

2 + (b0K
2 + b1K + b2) = 0 (A.37)

Therefore,

σ̃k
2 = −(b0K

2 + b1K + b2)

2∂g(K
∗)

∂K

(A.38)

= − (b0K
2 + b1K + b2)

2(2k3e0K + k3e1 − k6)

We now compare the variance of ComK defined by (A.35) using the linear noise approx-

imation (LNP) and that defined by (A.38) using the empirical data (non-LNA). If the

linear noise approximation can capture the noise correctly, then the variance of ComK

should be the same as that computed from the reduced model. However, there is a big

gap between the two quantities (Figure A.18). In fact, those quantities differ from each

other by a factor of 4. This result suggests that the linear noise approximation may not

well measure the local fluctuation near the stable fixed point in a bistable model, where

any perturbation away from the fixed point can well be pushed to the other fixed point.

The empirical fluctuation gives us a clue of how the noise looks like, but it does not tell

us how much noise we need to put back into the reduced model in order to reproduce

the dynamical behaviour of the system. This is because the mean of mRNA has not

been captured correctly as expected. This is the key issue that has prevented us from

getting the correct fluctuation for the reduced model using adiabatic approximation. In

fact, we can fix the mean of mRNA by using the fitting curve b0K
2 + b1K + b2, this

allows us to obtain the following ODE:

dK

dt
= k5 + k3m− k6K

dm

dt
= k4(b0K

2 + b1K + b2)− k4m

(A.39)

However, this ODE does not have the same fixed points as that in the original model

(Chapter 4, equation (4.2)). Indeed, let (K∗,m∗) is the fixed point of the model (4.2).
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From the data shown on Figure A.16, we have

〈m〉 ≈ b0K2 + b1K + b2 > m∗ =
k1 + k2K2

k2k+K2

k4
for all 0 ≤ K ≤ 500

therefore,

b0K
∗2 + b1K

∗ + b2 > m∗ ⇒ k4(b0K
∗2 + b1K

∗ + b2)− k4m
∗ > 0

This means (K∗,m∗) is not the fixed point of the model (A.39). For this reason, we

still need to use the adiabatic approximation in order to preserve the structure of fixed

points and fit the fluctuation in the stochastic reduced model by using fitting curves,

this allows us to construct a tunable noise for the stochastic model which can be used

to produce a good approximation to the original 2D model.

A.9 A Finite Difference Method for The Fokker-Planck

Equation

In this section, we are going to introduce an explicit method called finite difference for

solving the Fokker-Planck equation given by AP̃n = 0 in Chapter 5. In order to build

up matrix A, we need to write matrix P̃ in form of vector. Let us do a mapping between

a two-dimensional point at (i, j) of matrix P̃n
i,j to an one-dimensional point in its vector

form by defining:

P̃(k) = P̃n
i,j , k = M(i− 1) + j, i = 1, 2, . . . ,M j = 1, 2, . . . ,M (A.40)

Therefore, matrix A can be then built up as follows:

A(M(i− 1) + j,Mi+ j) = −
ani+1,j

2∆x
+
αni+1,j

2∆2
x

, i = 2, 3, . . . ,M − 1 j = 2, 3, . . . ,M − 1

A(M(i− 1) + j,M(i− 1) + j + 1) = −
bni,j+1

2∆y
+
βni,j+1

2∆2
y

, i = 2, 3, . . . ,M − 1 j = 2, 3, . . . ,M − 1

A(M(i− 1) + j,M(i− 1) + j − 1) =
bni,j−1

2∆y
+
βni,j−1

2∆2
y

, i = 2, 3, . . . ,M − 1 j = 2, 3, . . . ,M − 1

A(M(i− 1) + j,M(i− 2) + j) =
ani−1,j

2∆x
+
αni−1,j

2∆2
x

, i = 2, 3, . . . ,M − 1 j = 2, 3, . . . ,M − 1

A(M(i− 1) + j,M(i− 1) + j) = −(
αni,j
∆2
x

+
βni,j
∆2
y

), i = 2, 3, . . . ,M j = 2, 3, . . . ,M − 1

(A.41)

In fact, in order to compute the second derivatives at a particular grid point (central

point), it is required of the data from its four neighbors namely top (t), bottom (b), right

(r) and left (l) (see Figure A.19). As a result, from (A.41), we define the corresponding
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Figure A.19: Finite-difference representation on a two-dimensional grid. The second
derivative at the point X is evaluated using the points to which A is shown connected.
The second derivatives at points A,B,C,D are computed using the connected points and

also using ”boundary points” shown as empty circles.

terms which are evaluated at the right, top, bottom, left and central points as follows:

qr(i+ 1, j) = −
ani+1,j

2∆x
+
αni+1,j

2∆2
x

, i = 2, 3, . . . ,M − 1 j = 2, 3, . . . ,M − 1

qt(i, j + 1) = −
bni,j+1

2∆y
+
βni,j+1

2∆2
y

, i = 2, 3, . . . ,M − 1 j = 2, 3, . . . ,M − 1

qb(i, j − 1) =
bni,j−1

2∆y
+
βni,j−1

2∆2
y

, i = 2, 3, . . . ,M − 1 j = 2, 3, . . . ,M − 1

ql(i− 1, j) =
ani−1,j

2∆x
+
αni−1,j

2∆2
x

, i = 2, 3, . . . ,M − 1 j = 2, 3, . . . ,M − 1

qc(i, j) = −(
αni,j
∆2
x

+
βni,j
∆2
y

), i = 2, 3, . . . ,M j = 2, 3, . . . ,M − 1

(A.42)
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The points where i = M, i = 0, j = M, j = 0 are boundary points where their derivatives

can not be identified since these points are outside the grid point. Hence, the boundary

condition is applied in order to make sure that there is no flux at boundary. As a result,

the value of central point evaluated at the boundary will be added up to the boundary

information which is located at the mirror image to the original source as shown on

Figure A.19. For example, the values of elements evaluated at the boundary points A,B

will be added up by qb and qr, respectively. In general, we have the following assigning

scheme for the boundary condition:

A(M(M − 1) + i,M(M − 1) + i) := A(M(M − 1) + i,M(M − 1) + i) + qb(M, i) i = 1, 2, . . . ,M

A(i, i) := A(i, i) + qt(i, i) i = 1, 2, . . . ,M

A(i(i− 1) +M, i(i− 1) +M) := A(i(i− 1) +M, i(i− 1) +M) + ql(i,M) i = 1, 2, . . . ,M

A(i(i− 1) + 1, i(i− 1) + 1) := A(i(i− 1) + 1, i(i− 1) + 1) + qr(i, 1) i = 1, 2, . . . ,M

(A.43)

We now have to find the solution to the equation AP̃ = 0. In fact, this is equivalent

with finding the eigenvector of A with respect to zero eigenvalue. However, since A is a

very large sparse matrix, it may require a lot of memory to store the data. In addition,

matrix A is not always positive definite unless ∆x,∆y � 1. This condition again may

slow down the performance since it requires more data points for the calculation. To

overcome this, we first start with a small number of data points, then gradually reduce

∆x or ∆y such as the condition is satisfied.

A.10 Langevin Simulation

In order to generate trajectories using Langevin approximation, we first need to construct

the Langevin equation for the system. The set of chemical reactions ri (i = 1, 2, . . . 16)

of the full system X = (K,S,A,AK , AS , RK , RS)ᵀ can be re-written as follows (we use
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the same symbols for variables as mentioned in the main text):

r1, Pconst
comK

k1−→ Pconst
comK + RK

r2, PcomK
f(K,k2,kk,n)−−−−−−−−→ PcomK + RK

r3, RK
k3−→ RK + K

r4, Pconst
comS

k4−→ Pconst
comS + RS

r5, PcomS
g(K,k5,ks,p)−−−−−−−→ PcomS + RS

r6, RS
k6−→ RS + S

r7, RK
k7−→

r8, K
k8−→ ∅

r9, RS
k9−→

r10, S
k10−−→ ∅

r11, A + K
k11/Ω−−−−→ AK

r12, AK
k−11−−−→ A + K

r13, AK
k12−−→ A

r14, A + S
k13−−→ AS

r15, AS
k−13/Ω−−−−→ A + S

r16, AS
k14−−→ A

(A.44)

The propensity functions ai (i = 1, 2, . . . 16) are detailed below:

a1 = k1

a2 =
k2K

n

kk
n +Kn

a3 = k3RK

a4 = k4

a5 =
k5

1 + (K/ks)p

a6 = k6RS

a7 = k7RK

a8 = k8K

a9 = k9RS

a10 = k10S

a11 = k11KA

a12 = k−11MK



132 Appendix A Appendix

a13 = k13SA

a14 = k−13MS

a15 = k12MK

a16 = k14MS

From (A.44), the stoichiometry vectors νj , j = 1, 2, . . . 16 which represent the change in

the amount of molecular numbers in X are defined as follows:

ν1 =



0

0

0

0

0

1

0


,ν2 =



0

0

0

0

0

1

0


,ν3 =



1

0

0

0

0

0

0


,ν4 =



0

0

0

0

0

0

1


,ν5 =



0

0

0

0

0

0

1


,ν6 =



0

1

0

0

0

0

0


,ν7 =



0

0

0

0

0

−1

0


,

ν8 =



−1

0

0

0

0

0

0


,ν9 =



0

0

0

0

0

0

−1


,ν10 =



0

−1

0

0

0

0

0


,ν11 =



−1

0

−1

1

0

0

0


,ν12 =



1

0

1

−1

0

0

0


,ν13 =



0

−1

−1

0

1

0

0


,

ν14 =



0

1

1

0

−1

0

0


,ν15 =



0

0

1

−1

0

0

0


,ν16 =



0

0

1

0

−1

0

0


Applying the formula of the Langevin equation mentioned in section 1.1.3 of Chapter 1,
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we end up with the following Langevin equation for the system:

K(t+ ∆t) = K(t) + (a12 − a11 + a3 − a8) ∆t+ (−W11
√
a11 +W12

√
a12 +W3

√
a3 −W8

√
a8)
√

∆t

S(t+ ∆t) = S(t) + (a14 − a13 − a10 + a6) ∆t+ (−W10
√
a10 −W13

√
a13 +W14

√
a14 −W6

√
a6)
√

∆t

A(t+ ∆t) = A(t) + (a12 − a11 − a13 + a14 + a15 + a16) ∆t

+ (−W11
√
a11 +W12

√
a12 −W13

√
a13 +W14

√
a14 +W15

√
a15 +W16

√
a16)
√

∆t

MK(t+ ∆t) = MK(t) + (a11 − a12 − a15) ∆t+ (W11
√
a11 −W12

√
a12 −W15

√
a15)
√

∆t

MS(t+ ∆t) = MS(t) + (a13 − a14 − a16) ∆t+ (W13
√
a13 −W14

√
a14 −W16

√
a16)
√

∆t

RK(t+ ∆t) = RK(t) + (a1 + a2 − a7) ∆t+ (W1
√
a1 +W2

√
a2 −W7

√
a7)
√

∆t

RS(t+ ∆t) = RS(t) + (a4 + a5 − a9) ∆t+ (W4
√
a4 +W5

√
a5 −W9

√
a9)
√

∆t

(A.45)

where Wi = Ni(0, 1), i = 1, 2, . . . 16. In simulation, Wi are Gaussian distributed random

variables with mean 0, variance 1; therefore, they can be easily generated using simple

algorithm in C++ or Matlab. The updating scheme given by (A.45) allows us to generate

trajectories of the system. In principle, the algorithm can be invalid if there is any

variable driven to negative values. We can avoid this by checking if the variables are

valid for updating, if not then set them to their previous values, reducing the time

step by half and start again. This procedure can be iterated until the duration of the

simulation is up.

A.11 Dizzy Simulation

The simulation data used in the main text is generated by running the Gillespie simu-

lation using Dizzy, the Dizzy file is detailed below:

PconstcomK = 1;

mRNAcomK = 0;

PcomK = 1;

ComK = 69;

ComS = 409;

PconstcomS = 1;

PcomS = 1;

mRNAcomS = 0;

MecAK = 0;

MecAS = 477;

MecA = 23;
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k1 = 0.00021875;

k2 = 0.1875;

k3 = 0.2;

k4 = 0;

k5 = 0.0015;

k6 = 0.2;

k7 = 0.005;

k8 = 1e− 4;

k9 = 0.005;

k10 = 1e− 4;

k11 = 2.02e− 6;

k−11 = 5e− 4;

k12 = 0.05;

k13 = 4.5e− 6;

k−13 = 5e− 5;

k14 = 4e− 5;

kk = 5000;

ks = 833;

n = 2;

p = 5;

r1, P constcomK → PconstcomK +mRNAcomK , k1;

r2, PcomK → PcomK +mRNAcomK , [k2 ∗ ComKn/(knk + ComKn)];

r3, mRNAcomK → mRNAcomK + ComK, k3;

r4, P constcomS → PconstcomS +mRNAcomS , k4;

r5, PcomS → PcomS +mRNAcomS , [k5/(1 + (ComK/ks)
p)];

r6, mRNAcomS → mRNAcomS + ComS, k6;

r7, mRNAcomK →, k7;

r8, ComK →, k8;

r9, mRNAcomS →, k9;

r10, ComS →, k10;

r11, MecA+ ComK →MecAK , k11;

r12, MecAK →MecA+ ComK, k−11;

r13, MecA+ ComS →MecAS , k13;
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r14, MecAS →MecA+ ComS, k−13;

r15, MecAK →MecA, k12;

r16, MecAS →MecA, k14;
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