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INTRODUCTION
With escalating demands for digital entertainment,
digital video becomes an essential part of everyday
life. Meanwhile, broadband wireless communica-
tion networks such as the Third Generation Part-
nership Project (3GPP) Long Term Evolution
(LTE) networks have become more pervasive
than their wire-line based counterparts. LTE is
capable of supporting innovative new services,
providing high quality of experience. Video traffic
covers a wide range of services, such as video tele-
phony, entertainment, advertising, as well as
video-enabled call centers and services. The video
services provided by LTE networks are expected
to become increasingly more popular. Therefore,
the provision of reliable video quality assessment
is essential for the performance analysis of wire-
less multimedia applications in LTE networks.

The quality of experience (QoE), which is
defined as the overall consecutive quality of an
application or service, is commonly used for rep-
resenting true user perception [1]. The end-to-
end QoE is influenced by a wealth of factors in
wireless networks. Therefore, accurate evalua-
tion of the QoE of video services is a challenging
task. In general, the factors affecting the QoE
may be classified into subjective and objective
categories [2]. The subjective factors include
user emotion, experience, expectation, and so
on, while the objective factors relate to both
technical and non-technical aspects of the ser-
vices. The network’s end-to-end QoS parame-
ters, the network/service coverage, and the
terminal functionality are among typical techni-
cal factors. The convenience of service setup,
service content, pricing, and customer support
are some examples of the associated non-techni-
cal factors.

Since video services are ultimately watched by
human observers, the subjective opinion of the
observer is the best QoE indicator of video ser-
vices. In a typical subjective assessment study,
the original reference video sequence and the
corresponding sequence received after channel-
induced impairments are presented to a panel of
observers, who give their subjective ratings. The
mean opinion score (MOS) is the most common-
ly used metric representing these opinions [3].
There already exist standards and studies defin-
ing the procedures of subjective video quality
evaluation [4, 5]. These methods differ in terms
of their evaluation metrics with regard to the
specific application considered, such as the ref-
erence video, the legitimate range of results, the
length of the video sequence, the number of
observers used, the type of display, and so on.
Hence, subjective tests are the most pertinent
QoE measurements, because the results are
obtained directly by humans. However, subjec-
tive quality evaluation requires considerable
human resources and time. It can neither be eas-
ily repeated nor used in real-time. Due to the
limitations of regular subjective measures,
researchers tend to rely on simple objective mea-
sures for video services. These methods are
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mainly based on certain objective metrics, such
as the peak signal-to-noise ratio (PSNR) [6],
structural similarity index metric (SSIM) [7],
video quality metric (VQM) [8], and so on.
Moreover, the weights of a given QoS/QoE map-
ping function can be generated by using statisti-
cal analysis [9]. However, the results provided by
conventional objective techniques do not corre-
late well with those obtained by subjective
approaches. Then, another approach, termed
pseudo-subjective quality assessment (PSQA),
was proposed due to its combined advantages of
both subjective and objective methods [10]. The
quality assessment model is first trained by the
results gleaned from subjective approaches,
which reflect the effects of subjective factors.
Upon convergence, this model can be used for
predicting the quality of video services without
any human involvement [11]. However, these
approaches have not been widely investigated at
the time of writing.

In order to fill this gap, our work focuses on
the critical assessment of video streaming over a
LTE network, taking into account both the
objective network parameters as well as the
users’ subjective factors. A reliable QoE assess-
ment method is essential for wireless operators
in designing efficient radio resource manage-
ment schemes for the sake of meeting the antici-
pated future demand of video streaming services
at satisfactory QoE levels. Our main contribu-
tions are summarized as follows.

•First, we report on the results of a large-
scale subjective assessment campaign with the
objective of building up a database for evaluat-
ing the QoE of video services in wireless net-
works with the aid of an LTE wireless network
simulator, which generates impaired video
sequences for different values of the controllable
QoS parameters. Each impaired test sequence is
associated with specific QoS parameters. Corre-
spondingly, the opinion scores of human
observers are collected and averaged for gener-
ating the MOS as the QoE metric for the given
impaired test sequence. We collect the QoS
parameters and their corresponding QoE metric
in a database.

•Second, a new QoE assessment method
relying on a two-step structure is proposed for
achieving good accuracy with a feasible imple-
mentation complexity. Thanks to its self-learning
property and acceptable computational complex-
ity, a feed-forward back propagation (BP) neural
network (NN) is adopted for MOS prediction.
Moreover, compared to the existing PSQA
scheme, in order to avoid any local minima and
to improve the achievable accuracy, particle
swarm optimization (PSO) [12] is invoked for
post-processing the NN’s weights when neces-
sary. To the best of our knowledge, there exists
no prior work on integrating the NNs with PSO
for successively predicting the video quality in
the literature. The samples including the QoS
parameters and QoE metric in the database can
be used for training as well as for characterizing
the performance of the proposed method “out-
side” the training set.

•Finally, the accuracy improvements achieved
by the proposed QoE assessment method are
characterized by our numerical results for

demonstrating the benefits of the proposed
PSO-aided NN weight post-processing. As a
result, our proposed method is capable of achiev-
ing reliable QoE prediction.

The remainder of this article is organized as
follows. The next section commences with a brief
overview of subjective quality assessment, while
our new quality assessment method is proposed
after that. Then our numerical results are pre-
sented. The final section concludes this article.

SUBJECTIVE QUALITY ASSESSMENT

Based on our subjective quality assessment, we
can construct a database containing a large set
of subjective assessment scores recorded for
diverse video streams encoded with the H.264
codec, which is corrupted by a simulated LTE
network. This database can then be utilized for
studying the reliability of our proposed quality
assessment method. The framework of the video
assessment method is shown in Fig. 1, whose
details are provided below.

SOURCE SEQUENCES
As shown in Fig. 2, six test video sequences in
the YUV format are used in our experiments.
These sequences are of the Common Intermedi-
ate Format (CIF) (352 ¥ 288 pixel) image reso-
lution, and the frame rate is 30 frames per
second. The representative CIF was specifically
chosen, since it is the recommended screen size
of mobile phones and small handheld terminals
as well as of tablet PCs. Each of the six video
clips contains 300 frames with the duration of 10
seconds. The sequences have diverse content in
terms of motion activity, objects, people, and so on.

As defined in the ITU-T P.910 recommenda-
tion, both spatial information (SI) and temporal
information (TI) can be used to characterize the
quality of video sequences [4]. Spatial domain
perceptual quality measurements are typically
based on the Sobel filter, which is applied to
each luminance frame at each time instance.
Once the standard deviation of the (352 ¥ 288)-
pixel CIF image from the original sequence is
computed, the maximum value within the entire
300-frame sequence is taken as the SI. By con-
trast, temporal-domain perceptual quality mea-
surements are based on the pixel difference
between the two neighboring frames. Then the
TI is calculated as the maximum standard devia-
tion of the pixel difference over the (352 ¥ 288)-

Figure 1. Framework of the video assessment method.
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pixel CIF space within the entire video clip. The
SI and TI results recorded for the six test videos
are provided in Fig. 2, where it can be seen that
the test sequences exhibit a wide range of SI and
TI values.

TEST SEQUENCES
In our questionnaire-based experiments, a set of
test sequences were generated from the six
source sequences. The test sequences suffer
from different levels of distortions after being
transmitted over the LTE wireless network simu-
lator. The main processes of the video transmis-
sion are described in the following sections.

Video Compression — Owing to the bandwidth limi-
tation of wireless networks, it is necessary to
compress a video source before its transmission
by means of compression algorithms. H.264 is an
industrial video compression standard that con-
verts digital video into a format that requires
less bandwidth for transmission [13]. H.264/SVC
(scalable video coding) has the ability to adap-
tively support different qualities of the transmis-
sion links. The H.264-encoded video contains
the so-called base layer (BL) and several
enhancement layers (ELs). The former provides
the basic video quality for transmission over low-
quality channels, while the latter is capable of
increasing the video quality when the channel is
capable of supporting an increased data rate.
According to the available bandwidth, dropping
one or more enhancement layers is an efficient
method to avoid real-time video transcoding [13].

The H.264 family enhances the encoding loop
consisting of a combination of intra-frame cod-
ing and inter-frame coding relying on motion
compensation. Each video frame is either intra-
coded (I), forward predictive coded (P), or bi-
directionally predictive coded (B), according to

its specific position in the Group of Picture
(GoP) structure, such as IBBPBBPBB. The first
I and P frames serve as a reference for the first
two B frames. These reference frames must be
transmitted first. Hence, the transmission order
and display order may be different from each other.

As illustrated in Fig. 3, the encoding process
is implemented by the JSVM encoder [14]. After
encoding, an H.264 video file is generated. In
order to obtain the trace file, the video file is fed
into the Bit Stream Extractor to produce the
original Network Abstraction Layer Unit
(NALU) trace file. However, the NALU trace
file does not contain the frame index informa-
tion. Therefore, this trace file is processed by
F-N Stamp to generate NALU trace files con-
taining the information of the frame index [15].
The trace file information is then stored for
transmission over LTE wireless networks.

Transmission over LTE Wireless Networks — A system-
level 3G LTE wireless network simulator based
on the OPNET software is used to qualify the
impact of wireless transmissions on the source
sequences. In this simulator, the video sequences
are delivered over the downlink of the 3G LTE
wireless network. A video server provides
live/on-demand video content, where the video
files are saved in their H.264-encoded versions [13].
At the evolved Node B (eNB), the video is sent
to the user equipment (UE) using the available
radio resources, for studying the effects of the
wireless channel on video transmission. The
details of our simulation procedures are shown
as follows.

Step 1: Initialization: The parameters are ini-
tialized before simulations. All the UEs are dis-
persed uniformly across the cell. First, the trace
file of the test video sequence is obtained, which
contains all the parameters of each frame of the

Figure 2. Illustration of the source video sequences.
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source video, including the frame type, frame
size, frame index, and so on.

Step 2: Packetization: For a given UE, the
simulator generates virtual frames according to
the trace file information in the application
layer. Then each virtual frame is divided into
several packets for transmission.

Step 3: Wireless Transmission: Given the
scheduling scheme, the eNB allocates the avail-
able radio resource blocks (RBs) to different
UEs based on the near-instantaneous wireless
channel conditions. Each packet is further sepa-
rated into multiple bursts and then transmitted
over the assigned RBs. For each RB, the specific
choice of modulation and code scheme (MCS) is
selected for transmission, depending on the
near-instantaneous channel condition [16]. Usu-
ally the objective of the adaptive modulation and
coding (AMC) scheme is to maximize the trans-
mission data rate without violating the burst loss
rate target. For example, in the case of good
channel conditions, a modulation/coding scheme
with higher throughput is selected and vice
versa. If a video burst is incorrectly received, the
eNB has to retransmit this burst with the aid of
a specific HARQ mechanism and Chase-Com-
bining reception. The maximum number of
retransmissions must not be excessive in order to
avoid excessive delay.

Step 4: QoS Collection: The UE receives the
bursts and checks whether they are decoded cor-
rectly or not. If all of the bursts in a packet are
received without errors, the UE assembles these
bursts into a packet. Otherwise, a packet is
assumed to be lost and discarded. Meanwhile, a
set of QoS parameters including the delay, delay-
jitter, packet loss rate (PLR), and MLBS are
recorded.

Step 5: Sequence Recovery: Following the
downlink transmissions via the LTE network, the
trace file can be recovered at the UE. If all the
packets in a frame are assembled correctly, the
UE removes the header of each packet and
assembles them into the corresponding frame in
accordance with the packet index. If any packet
in a frame is lost or cannot be assembled in time
for display, this frame is regarded as being lost.

The NALU-Filter records the NALUs in
accordance with their frame-index order, and
removes the NALUs of those specific frames that
have not arrived at the receiver in time. After fil-
tering, the trace file is fed to the JSVM Bit
Stream Extractor together with the original com-
pressed video, generating the received H.264
videos. Next, the JSVM decoder decodes them
into a YUV video. In the decoding process, the
dropped frames are replaced through copying
their previous frames. In this way, a test video
sequence is generated with the given QoS param-
eters. The simulation configurations are flexible,
including the UE’s location, and so on. Then the
procedures from Steps 2 to 5 are repeated in
order to obtain different test sequences associat-
ed with different sets of QoS parameters.

For comparison, we store the traces of the
source video streamed from the eNB as well as
the test video streams recorded at the UEs dur-
ing simulations. The QoS parameters including
jitter, delay, the PLR, and the mean loss burst
size (MLBS) are collected for QoE assessment.
Given the different QoS parameters used in our
simulator, in total 70 test sequences are generat-
ed in our experiments.

SUBJECTIVE TEST
In order to minimize the impact of random envi-
ronmental factors on the results, there exist stan-
dardized methodologies for subjective quality
evaluation. In our experiments, we present both
the encoded and impaired video sequences to
human subjects using a double stimulus (DS)
absolute category rating (ACR) based subjective
assessment methodology [4]. To elaborate on the
DS studies, a pair of video clips are shown simul-
taneously on a split screen. The observers have
to evaluate the impairments imposed on a test
sequence by the network against the original
sequence, using a five-point scale ranging from
“very annoying” to “imperceptible.” In our study
the MOS is used to quantify the video impair-
ments, which is a subjective metric of quantifying
the video quality at the application level. The
MOS is usually quantified on a scale ranging
from 1 (worst) to 5 (best).

Figure 3. Illustration of creating distorted videos by a LTE network simulator.
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Most observers in our subjective quality
assessment are postgraduate students from Bei-
jing University of Posts & Telecommunications
(BUPT), aged between 20 and 28. As the
observers are inexperienced in video quality
assessment, specific instructions are provided to
all the observers on how to evaluate the video
sequences. First, a standard visual acuity chart is
used for testing the visual acuity and normal
vision of observers. Then we present three train-
ing sequences to indicate the typical impair-
ments, which they might perceive during the
experiment in order to familiarize the viewers
with the test software, the type of assessment,
the grading scale, reference sequence, test
sequence, and voting period. The range and
types of the impairments to be assessed are
detailed in a questionnaire. Note that when ana-
lyzing the test results, the quality ratings that
were assigned by the viewers to the training
sequences are not taken into account.

Again, the test session comprises 70 video
presentations, since the video database consists
of 70 distorted video sequences and the original
reference video sequence. In each video presen-
tation, a pair of video sequences including the
reference video and a distorted one is presented
to the observers only once. The play list of the
70 video pairs was presented to each observer in
a random order using a random number genera-
tor. This way, no two observers evaluate the
sequences in exactly the same order. Each pair
of the 300-frame sequences is displayed for 10
seconds at 30 frames per second. Afterward, the
observers are required to complete a question-
naire with the aim of judging the difference
between the original reference and the impaired

video sequences on a discrete five-point scale.
At the end of each presentation the observer is
given five seconds of voting time to rate the
quality of the stimulus based on the above-men-
tioned scale, ranging from “very annoying” to
“imperceptible.” The test for each viewer was
limited to less than half an hour so that the
observers do not experience any uneasiness or
fatigue during the experiment. Note that the
numerical values attached to the scale are used
only for data analysis, but are not shown to the
observers.

DATA POST-PROCESSING
Subjective evaluation according to the above
steps produces integer values between 1 and 5.
There may be variations in these distributions
due to the subjective judgement differences
between the observers. As a result, the overall
mean score of the impaired video sequence is
calculated as the arithmetic mean of all the indi-
vidual scores.

PROPOSED QUALITY ASSESSMENT METHOD

In this section we propose a new quality assess-
ment method based on neural networks (NN),
which takes into account both objective factors
and subjective factors. Our specific objective is
to design and train an NN that is capable of esti-
mating the MOS based on a number of LTE
quality metrics, such as the delay, delay-jitter,
packet loss rate (PLR), and so on. We will train
this NN with the aid of our MOS scores record-
ed by the observers for specific sets of the above
mentioned parameters so that in the future the
operators will need no human-based training.

Figure 4. Illustration of the NN-based quality evaluation method.
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NN-BASED QUALITY ASSESSMENT METHOD

As shown in Fig. 4, there are two main steps in
our proposed method. First, a suitable NN archi-
tecture is chosen and its weights are trained using
our data in the MOS database. In order to
improve the accuracy of our QoE prediction tech-
nique, post-processing of the NN’s weights may
be invoked after the first step, if deemed neces-
sary. After the training, the NN becomes capable
of evaluating the video quality for arbitrary video
clips and channel impairments. Further details of
this method are described as follows.

Step 1: NN Training: Since the feed-forward
(FF) back propagation (BP) NN is of acceptable
computational complexity, it is used in the first
step of our quality assessment method. In this
FF NN, the information flows only along the for-
ward direction (called forwards), i.e. from the
input nodes data to the so-called hidden NN
nodes (if any) and then to the output nodes.
There are no cycles or loops in the NN. As
described in the previous section, we have con-
structed a video quality database, storing the
MOS values and the corresponding QoS param-
eters. This database can then be used for assess-
ing the quality of video transmitted over the
LTE wireless network. The database is divided
into two sets, one of which is used for training
the NN, while the other is for testing our tech-
niques outside this training set by comparing its
objective scores with the MOS scores.

A three-layer fully connected BP neural net-
work is trained for estimating the MOS with the
aid of four input nodes as the main objective
QoS parameters, namely, the delay, delay-jitter,
PLR, and MLBS. The NN only has a single out-
put node corresponding to the QoE metric,
namely, the MOS. Moreover, five hidden nodes
are invoked so as to strike a trade-off between the
MOS-estimation accuracy and the complexity
imposed. As a result, a N1 x N2 x N3 = 4 x 5 x 1
BP neural network structure is formulated in the
first step. The mean squared error (MSE)
between the desired and actual neural network
output averaged over all training data is chosen
as the fitness metric of the neural network, that is,

(1)

where Nd denotes the number of data points
used for training the BP-NN, y(n) is the output
of the NN, and z(n) is the desired output (i.e.
MOS) given by the database. Taking the square
root of the MSE yields the root-mean-square
error (RMSE).

In the BP-NN, a gradient-based approach is
used for optimizing the NN weights, for the sake
of minimizing the MSE between the MOS scores
rated by the observers and those estimated by
the NN. The steepest decent minimization of the
MSE adjusts the NN weights proportionately to
the MSE gradient w.r.t. the above mentioned
delay, delay-jitter, PLR, and MLBS parameters
so that the MSE is reduced after each weight
adjustment. After a given number of iterations
are carried out, for example 10, the training pro-
cess is completed and the resulting MOS-learn-
ing model is ready for use in the next step.

Step 2: NN Weight Post-Processing using
Particle Swarm Optimization(PSO): Whether
PSO should be invoked at all depends on the
specific performance requirements. As shown in
Fig. 4, the MSE between the desired and actual
MOS-outputs of the NN relying on the NN-
weights trained during the first step is calculated
and compared to the target MSE –ht. If the MSE
is no larger than –ht, the NN weights of the model
are confirmed and ready to be used for quality
assessment. Otherwise, the proposed PSO-aided
post-processing is applied to the weights with the
objective of further reducing the model’s MSE.
It is plausible that the post-processing will
remain futile, if the initial MSE is excessive. On
the other hand, a reduced MSE is achieved at
the expense of a higher computational complexi-
ty. Therefore, a suitable value of the target MSE
is based on a trade-off between the achievable
MOS-prediction performance and the complexi-
ty imposed, which can be found by simulations.

The PSO algorithm was originally conceived
for simulating the social behavior of bird flocks.
In PSO, a particle refers to a point in the design
space that changes its position based on both the
direction and velocity of the NN-weights updates.
Initially, a set of particles randomly propagates
in the design space, moving in randomly defined
directions over a number of consecutive PSO
iterations. The direction of a particle then grad-
ually changes in the direction of the best previ-
ous positions of both itself and of its peers in its
vicinity for the sake of discovering even better
positions quantified in terms of a certain fitness
measure or objective function.

The dimension of the search space for each
particle is given by the number of NN weights
and bias-values used in the BP-NN, which is
d = (N1N2 + N2) + (N2N3 + N3) = 31. Without
loss of generality, the position of the first parti-
cle is initialized in accordance with the weights
and bias values of the model, which are obtained
by the training in the first step. Meanwhile, the
positions of the other particles are initialized to
random values obeying a given uniform distribu-
tion. The velocities of the particles are randomly
generated by using the specific upper and lower
bounds of VMAX and VMIN. In each iteration,
each particle tries to adjust its velocity according
to both its own personal best position ever visit-
ed, as well as the best previous global position
attained by any of its neighbor particles in order
to minimize the error function of the BP-NN.

DISCUSSIONS
For the video services considered, the NN-based
model can be used for quality assessment after
its training is completed. In order to ensure the
accuracy of the model, it is important to choose
suitable QoS parameters as the input nodes of
the proposed model. In other words, we have to
find out which specific QoS parameters the QoE
of the given video service depends mostly on.
The QoS parameter values invoked for training
are expected to be sufficiently diverse to include
almost all practical possibilities. On the other
hand, the subjective test used for establishing the
reference QoE must be performed carefully
according to a pre-defined subjective assessment
methodology.
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=N z n y n1 ( ) ( ) ,
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Naturally, the accuracy of the proposed model
based on the neural network and particle swarm
optimization (PSO) may be improved at the cost
of imposing an increased complexity, for exam-
ple by increasing either the number of iterations
in the NN or the number of particles in the
PSO. However, the accuracy typically cannot be
proportionately increased as a function of the
complexity. Indeed, there is a trade-off between
the accuracy achieved and the complexity imposed,
which will be discussed in the next section.

Although only CIF-resolution videos were
encoded by the H.264/SVC codec in our experi-
ments, the proposed method can be readily
invoked for the quality assessment of other reso-
lutions, including High-Definition (HD) video
frames. Even if the video frames are encoded with
the aid of other codecs, our technique remains
applicable, but the model must be re-trained.

NUMERICAL RESULTS AND ANALYSIS

In this section the performance of the proposed
assessment method is evaluated and compared
to other methods in terms of the quality metrics

considered. The video quality impairments
imposed by wireless transmissions were varied by
appropriately adjusting the parameters of the 3G
LTE wireless network simulator. The main
parameters employed in our experiments are
shown in Table 1 [17].

EFFECTS OF THE NUMBER OF
ITERATIONS/PARTICLES

Most parameters used during our NN-aided esti-
mation are assumed to be fixed. Then we need
to determine the number of PSO particles and
iterations used in the PSO algorithm. It is appar-
ent that the higher the number of particles and
iterations, the better the MSE performance at
the expense of computational complexity. Hence,
from the viewpoint of practical implementation,
it is necessary to trade off the achievable perfor-
mance against the computational costs. Figure 5a
quantifies the attainable MSE performance ver-
sus complexity for our assessment method as a
function of the number of PSO iterations, which
is assumed to be 30. Naturally, when the number
of PSO iterations increases, the MSE of MOS-
estimation improves. However, an MSE floor
may emerge when the number of iterations
becomes higher than 60, even though the com-
plexity quantified in terms of the number of
floating-point operations per second (FLOPS)
continues to increase linearly. Therefore, the
number of iterations was chosen to be 60 in our
experiments. On the other hand, Fig. 5b presents
the MSE performance versus the complexity as a
function of the number of PSO particles. It can
be observed that the number of particles can be
selected to be around 30 in order to strike an
elegant trade-off between the attainable perfor-
mance and the imposed complexity.

MSE PERFORMANCES
WITH/WITHOUT WEIGHT POST-PROCESSING

PSO-based weight post-processing is invoked
only for –h £ –ht. The MOS-estimation MSE per-
formance of the proposed method is character-
ized in Fig. 5c with different values of the
threshold –ht, where the relative ratio of activat-
ing the post-processing is also shown. As expect-
ed, upon increasing the threshold value, the
MSE is reduced as a function of the post-pro-
cessing activation ratio. However, the MSE
improvement is insignificant with large threshold
values. Therefore, we opted for –h t = 0.2 as a
good trade-off between the performance
achieved and the complexity imposed.

To elaborate further, Fig. 5d plots the cumu-
lative distribution function (CDF) of the MOS-
estimation MSE, when the proposed assessment
method is applied both with and without weight
post-processing. It is clear from Fig. 5d that our
weight post-processing is capable of achieving
performance gains, especially with a relatively
high initial MSE. For example, MSE  0.25 may
be achieved without PSO in 62 percent of the
cases, which increases to 91 percent with the
assistance of PSO.

Table 1. Main parameters in the LTE simulator.

Parameter Value 

Cellular layout 3-sector sites

Carrier frequency 2.0 GHz

Bandwidth 10 MHz

Size of resource bock (RB) 180 KHz

Number of resource bock (RB) 50

Fast fading model SCME

Antenna configuration (Tx:Rx) 1:1

Inter-eNB distance 500 m

Number of UEs 10

Path loss model PL(R) = 128.1 + 37.6log10(R), R in km

Shadowing standard deviation 8 dB

Antenna pattern (horizontal)
A(q) = –min[12q/q3dB)2,Am] 
q3dB = 70∞, Am = 20 dB

Transmit power 46 dBm

TTI length 0.5 ms

CQI feedback 2 TTI

ACK/NACK delay 8 TTI

AMC scheme 27

HARQ mode Chase combining

Max # of retransmission 3
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QOE PERFORMANCE EVALUATION USING
DIFFERENT ASSESSMENT METHODS

Figure 6 presents the true subjective scores, the
objective PSNR-to-MOS results, the VQM
results, and the MOS results attained by the pro-
posed method, respectively. The MOS vs. PSNR
mappings are MOS = 5 if PSNR  37, MOS = 4
if 31  PSNR < 37, MOS = 3 if 25  PSNR < 31,
MOS = 2 if PSNR 20  PSNR < 25, and MOS = 1
if PSNR  20. Then the PSNR metric can be
mapped to the integer MOS scores between
1 and 5. However, these MOS results do not
accurately reflect the actual user experience
reported by the observers. Moreover, the VQM
as a standardized objective method of measuring
video quality is also used as a reference [8]. In
Fig. 6 we observe that compared to the PSNR-
to-MOS and VQM methods, the MOS estimated
by the proposed method is in more close agree-
ment with those given by the viewers, indicating
that the proposed method succeeds in accurately
reflecting the users’ perception. Since the objec-
tive methods only consider a simple mapping
between the QoS and QoE, most of the predict-
ed MOS values result in a large deviation from
the subjective results in the case of the MOS val-
ues, indicating a high video quality. For example,
almost all the MOS values estimated by the

PSNR-to-MOS mapping method are larger than
the subjective results. For the VQM method,
when the MOS is lower than 1.5, the differences
between the subjective and estimated MOS
become fairly low. When increasing the MOS
values, the gap widens, and the MOS values of
the VQM become significantly lower than those
suggested by the subjective results. Furthermore,
the RMSEs of the proposed VQM and PSNR-
based methods are 0.4629, 0.8025, and 1.7726,
respectively. It can be seen that the RMSE of
our proposed QoE model is lower than those of
the other two methods, which further empha-
sizes the ability of the proposed system to quan-
tify the grade of user satisfaction in the presence
of transmission-induced video impairments.

CONCLUSIONS

Reliable quality assessment of video services
over wireless networks is essential for optimizing
their performance. In this article we first con-
structed a subjective quality assessment database
for characterizing the video impairments
imposed by a 3G LTE network simulator. The
QoS-related parameters of the simulator are
adjustable to meet the requirements. Then a
new quality assessment method based on neural
networks was proposed, where the weights of the

Figure 5. MSE performance under different conditions. a) MSE and complexity versus the number of PSO particles; b) MSE and
complexity versus the number of PSO particles; c) MSE and post-processing ratio versus threshold value; d) MSE CDF perfor-
mance with or without post-processing.
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model were trained and the match between the
objective and subjective results was verified. The
parameters of the proposed method were care-
fully selected with the aid of simulations, consid-
ering the trade-off between the attainable
performance and the computational complexity
imposed. Our method attains better QoE predic-
tion accuracy than the traditional objective
assessment methods. Future investigations will
be conducted in the context of other multimedia
services.
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