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ABSTRACT 
 
Gas turbine combustor designers now routinely use high-
fidelity reactive computational fluid dynamics (CFD) analyses 
to gain valuable insight into the complex reactive flow-field 
and pollutant formation process. But, a large number of such 
computationally expensive CFD analyses are generally required 
to arrive at an acceptable combustor configuration. Therefore, 
given the practical limits on available computational resources 
and time, traditional combustor design methodologies using 
only high-fidelity CFD analyses need further improvement. To 
address this, a combustor design strategy using multifidelity co-
Kriging response surface model (RSM) is developed and 
applied for the design of a two-dimensional test combustor 
problem in the spatial domain using steady-state Reynolds-
averaged Navier Stokes (RANS) formulation. The design and 
optimization problem is set-up for two geometric variables and 
a single-objective, NOx concentration, as it is of current interest 
to the combustor design community. The developed multi-
fidelity strategy is also assessed for performance against high-
fidelity Kriging RSM strategy. This study demonstrates that the 
multi-fidelity design strategy can obtain good designs with up 
to ten times less effort than a full grid sampling search plan. 
However, the multi-fidelity co-Kriging strategy does not 
outperform the high-fidelity Kriging strategy for the given 
spatial domain problem. 
 
 
1. INTRODUCTION 
  
     In 2001, the Advisory Council for Aeronautical Research in 
Europe (ACARE) laid down stringent fuel consumption and 
pollutant emissions targets for the year 2020 [1]. Year 2020 is 

not far off in terms of component development cycle times in 
the gas turbine industry and new stringent targets for 2050 are 
already under evaluation. Also, it is clear that these current and 
upcoming targets could only be realised by a major step change 
in gas turbine technologies and by developing rapid and 
efficient component design methodologies. Thus, the strategy 
employed during combustor design and development has a 
direct impact on the achievability of ACARE targets. The gas 
turbine combustor design process is known to be a challenging 
task of maintaining a crucial balance between a number of 
performance objectives – for e.g. low emissions, high power, 
high efficiency, low pulsations and a wide range of operating 
conditions [2]. Thus, the strategy employed during combustor 
design and development has a direct impact on the achievability 
of design targets within practical time limits. Due to the latest 
advances in computing power and higher accuracy CFD codes, 
high-fidelity combustion CFD is now becoming an important 
and regular part of a combustor design strategy [3]. Since a 
large number of high-fidelity CFD analyses are generally 
required during the combustor development phase, there is a 
need for a computationally efficient strategy where the search 
algorithm is not coupled directly to expensive CFD simulations.	
  
 
The current state-of-the-art in the context of combustor design 
and optimization is the use of a Kriging response surface model 
(RSM) based design strategy; where pre-defined sets of high-
fidelity combustor CFD simulations within the target design 
space can be represented by an intermediate Kriging model on 
which a global search is performed. Previous studies [3-5] 
based on this methodology acknowledged that Kriging model 
based combustor design strategies could yield acceptable 
designs within a manageable timeframe by reducing the total 
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number of required high-fidelity CFD analyses. Yet, successful 
combustor design and optimization still largely depends on the 
total number of design variables, and objective and constraint 
functions involved. With the complexity of combustor designs 
and hence number of design variables expected to further 
increase, the Kriging based design strategy may not be able to 
perform efficiently within realistic time frames. Hence, the 
current best strategy for combustor design utilizing only high-
fidelity CFD analyses needs further improvement.  
 
In this study, a combustor design strategy employing co-
Kriging RSM technique is developed and applied for the design 
of a two-dimensional test combustor problem in the spatial 
domain using steady Reynolds-averaged Navier-Stokes 
(RANS) formulation. Since reduction of NOx emission is now 
a major driver of the next generation combustor design process 
[6, 7], the design and optimization problem here is set-up for 
two geometric variables and a single-objective, thermal NOx 
concentration. Initially, using multiple sampling plans a 
standard high-fidelity Kriging RSM strategy is used to find an 
optimal combustor design configuration for low NOx. Later, 
multi-fidelity co-Kriging strategy, consisting of two levels of 
solutions; a fast but approximate low-fidelity and an expensive 
but accurate high-fidelity combustor solution, is developed and 
used to perform combustor design optimization. To evaluate the 
effectiveness of the applied strategies, the total number of high-
fidelity CFD evaluations used is fixed. Then using a number of 
different starting sampling plans, the high and multi-fidelity 
design strategies are run to collect statistical data with mean 
convergence behavior used as a performance indicator. A 
confidence level assessment of both strategies is also 
performed.  
 

2. COMBUSTOR SPATIAL FLOW-FIELD 
 
The test combustor modeled for this study is the one used by 
Keller et al. [8] in an experimental study of mechanisms of 
instabilities in turbulent combustion and also used in [3] for 
developing combustor design strategies. It consists of an oblong 
rectangular cross-section to model the essential features of 
planar flow with a profiled backward-facing step designed to 
act as a flame holder. Note that the key focus in this section is 
to develop a qualitative understanding of the thermal NOx 
production mechanism and its spatial variation in the 
combustor, which is to be used as the objective function in the 
design studies considered later.  
 
Figure 1 shows the computational domain used for steady 
RANS CFD modeling of the combustor, indicating locations of 
key features and inlet and outlet boundary conditions. The 
computational domain uses appropriate boundary conditions at 
the inlet and outlet of the system representing completely 
mixed propane and air mixture and uniform velocity at the 
entrance to the test section (i.e. combustion chamber). In 
addition to the original test setup, cooling holes are provided 

near the outlet, both at the upper and the lower wall, of the 
combustor for a realistic gas turbine combustor representation. 
 

 
 

Fig. 1. 2D computational domain of the combustor with a 
flame-stabilizer step (All dimensions in mm) [3, 8] 

 
Table 1. ANSYS FLUENT 12.1 CFD setup parameters 

Solver: Pressure based 
Space: 2D (Second-order accurate) 

Energy equation: Yes 
Turbulence model: k - ε (standard wall functions) 

Transport and reaction model: 
Species Partially premixed combustion 

Mixture properties PDF-mixture (propane + air) 
Equivalence ratio 0.86 

NOx model  
Formation pathways Thermal NOx only 

(Zeldovich mechanism) 
[O] model Equilibrium  

[OH] model Equilibrium  
Turbulence interaction  Temperature PDF mode 
Boundary conditions: 

Inlet Velocity-inlet 
Inlet (Momentum) Vin = 13.3 m/s 

Inlet (Temperature): 300 K 
Outlet: Outflow 

Cooling inlet: Velocity inlet; Vin = 13.3 m/s 
Reynolds number: 2.06 * 104 (based on step height) 

Operating pressure: 101325 Pa 
 
The main parameters employed in the commercial CFD 
package ANSYS FLUENT 12.1 are detailed in Table 1. The 
solver used is pressure based and employs a second-order 
discretization scheme for space. The standard k - ε model is 
used for turbulence modeling, with standard wall functions. 
The SIMPLE pressure-correction method is used for pressure-
velocity coupling. The combustion process is lean with an 
equivalence ratio of 0.86. The partially premixed combustion 
model in ANSYS FLUENT is used as the species model which 
solves a transport equation for the mean reaction progress 
variable  C, (to determine the position of the flame front), as 
well as the mean mixture fraction 𝑓, and the mixture fraction 
variance  𝑓′!. For NOx, only thermal NOx formation is 
considered, as it is the predominant mechanism of overall NOx 
production in distillate-oil or gas fired turbines [9]. An 
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equilibrium assumption is considered for both [O] and [OH] 
radicals which are used to compute the formation rate of NO. 
This is mainly to keep the overall computation cost lower [10] 
and within practical time frames. An investigation into spatial 
grid dependent accuracy of the CFD solution was carried out in 
[3] using five grid cell count refinements (mesh1: 11000, 
mesh2: 46000, mesh3: 190,000, mesh4: 420,000 and mesh5: 
800,000) to evaluate a converged reactive solution. Eight 
processes were used in parallel on a cluster of Intel quad core 
processors with 2.8GHz clock rate. As shown in Figure 2, from 
an engineering design optimization perspective, mesh 3 
accuracy was deemed suitable to be used for high-fidelity CFD 
analysis and design optimization. 
 

 
 

Fig. 2. Effect of spatial grid refinement on combustor outlet 
temperature profile as captured using steady RANS [3] 

 
The spatial variation in the combustor flow-field captured using 
steady RANS is shown in Figure 3. The primary function of the 
flame-stabilizer step is to provide a low-velocity region for 
flame stabilization and combustion. The steady turbulent 
flames require flame stabilization mechanisms [11]. The 
recirculation zone behind the step provides the low-speed 
region necessary for flame stabilization. Figure 3(a) shows the 
progress variable and indicates the position of the flame surface 
(or flame front) inside the chamber. As the Reynolds number of 
the flow is in the turbulent regime, the mixture burns only in 
the location where the turbulent flame speed ST is able to 
sustain the mixture velocity 𝑢, i.e. the region behind the step. 
Therefore the chamber behind the step is separated into unburnt 
and burnt mixture regions by an interface, where combustion 
has started but not yet fully established. Above this surface (C = 
0), the fuel and oxidizer mixture is mixed but unburnt, and 
below this surface (C = 1), the mixture is completely burnt. 
Thus, due to high mixture velocity in the upper part of the 
chamber behind the step, much of the mixture escapes unburnt 
from the combustor. Figure 3(b) shows the temperature field 
inside the combustor. The temperature is maximum (~2100 K) 
in the burnt mixture region, reduces in the interface region and 
is the lowest in the unburnt mixture region. The temperature of 
the mixture which escapes unburnt from the combustor remains 
at the inlet temperature of 300 K. Figure 4 shows the outlet 

temperature profile of the combustor as captured by steady 
RANS. The NOx analysis in the spatial domain is performed by 
post-processing the previously computed reactive flow solution. 

 
(a) Progress variable distribution 

 

 
(b) Temperature distribution 

 

 
(c) Flow-field with temperature above 2100K 

 

 
(d) Spatial distribution of NO in ppm 

 
Fig. 3. Spatial variation in combustor flow-field captured using 

steady RANS analysis 
 

 
Fig. 4. Outlet temperature profile of the combustor 

 
With combustion and fluid dynamics model turned off, only the 
NOx model is run until thermal NO residual convergence. 
Figure 3(d) shows the NO flow-field as captured by the steady 
RANS simulation. It shows significant thermal NO production 
behind the flame stabilizer step due to the occurrence of 
reaction processes at very high temperatures. This is in 
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agreement with the Zeldovich mechanism of thermal NO 
formation [12, 13]. Figure 3(c) shows the part of the reactive 
flow-field where the temperature is the highest (>2100K) which 
correlates to the high thermal NO concentration zone in Figure 
3(d). Figure 5 shows the outlet thermal NO (ppm) profile of the 
combustor captured by steady RANS. 
 

 
Fig. 5. Outlet thermal NO profile of the combustor 

 

3. SPATIAL DOMAIN DESIGN PROBLEM  
 

 
Fig. 6. Flame-stabilizer step design parameterization using 

spline control points 
 

 
 

Fig. 7. Design space with lower and upper bounds 

 
The construction of the 2D profiled backward-facing step 
combustor in Figure 1 is carried out using a cubic spline within 
the CAD package CATIA (Computer Aided Three Dimensional 
Interactive Application) version V5R18. CATIA is a multi-
platform CAD/CAM/CAE commercial software suite 
developed by the French company Dassault Systemes [14]. A 
cubic spline is a spline constructed of piecewise third-
order polynomials which passes through a set of control 
points. Consider a 1-dimensional spline for a set of n+1 points 
(y0, y1 … yn) with n intervals between them. There is a separate 
cubic polynomial for each interval, each with its own 
coefficients 

Yi (x) = ai + bi x + ci x2+ di x3	
   Eq. (1) 
 
Together, these polynomial segments are denoted as Y(x), the 
spline, as shown in Equation 1, where, x is a parameter x Є [xi, 
xi+1] and i = 0, … n.  ai, bi, ci and di are the constraints. 
 
Figure 6 shows a closer view of the flame stabilizer step (A-B-
C) baseline geometry. Points A, B and C are connected by a 
spline curve of which control point A and C are fixed. 
However, the angle θ at point C is free. At control point B, the 
x-coordinate is fixed at a distance of 95.5mm from the inlet and 
the y-coordinate is variable. Thus, two variables [Y and θ] are 
used to change the shape of the flame-stabilizer step and thus 
influence flame/vortex interaction processes downstream. A 
baseline spline is defined by Y = 17.5mm and θ = 90 degrees. 
Figure 7 shows the two-dimensional design space that is 
considered for the design study indicating the upper and lower 
limits of the variable values. 
 
With the optimisation parameters and design space defined, a 
reasonably accurate representation of the design space is 
evaluated on a 10x10 regular grid of design points for outlet 
thermal NO objective function in spatial domain. The spatial 
domain objective function for combustor outlet NOx is 
concerned with thermal NO concentration in parts per million 
(ppm) at the outlet plane. For this prediction a custom field 
function in ANSYS FLUENT 12.1 is setup, which computes 
NO ppm from the following equation [10]: 
 

NO  ppm =   
NO  mole  fraction  x  10!

1 −   H!O  mole  fraction
 

 
Eq. (2) 

 
An area-weighted average of the thermal NO in ppm at the 
outlet plane is considered as the objective function to be 
minimized in the optimisation process. 
 
Figure 8 provides a relatively accurate map of the objective 
function landscape, constructed using a 10x10 regular grid of 
CFD evaluations data of steady outlet thermal NO and Kriging 
RSM. A valley of lower objective function values is observed 
at higher values of Y and intermediate values of θ, indicating a 
region of good designs. This valley becomes the area of 
attention when applying Kriging optimization strategy for 
steady outlet NO. Figure 9 shows the best and worst designs for 
outlet thermal NO objective function when using a 10x10 
regular grid of CFD evaluations. The best design [c.f. Figure 
9(a)] is obtained at high values of Y and intermediate values of 
θ. The amount of thermal NO produced is low mainly due to 
the small recirculation zone behind the step [c.f. Figure 10(a)] 
and is entrapped. Hence, a low amount of thermal NO is 
transported towards the outlet. However, in the case of worst 
design [c.f. Figure 9(b)], the thermal NO production is larger 
due to bigger recirculation vortex behind the step [c.f. Figure 
10(b)]. Therefore, a smaller recirculation vortex behind the step 
favors good designs with lower thermal NO. 
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Fig. 8. Kriging response surface for steady outlet thermal NO 
generated using 10x10 regular grid CFD data 

 
 

	
  
	
  

(a) Best design [Y = 0.89, θ = 0.44, NO = 8.170 ppm]  

	
  
	
  

(b) Worst design [Y = 0, θ = 0.22, NO = 10.980 ppm] 

	
  
 

Fig. 9. Best and worst designs for outlet thermal NO obtained 
using 10x10 regular grid CFD evaluations 

 
(a) Best design 

	
  
(b) Worst design 

	
  
Fig. 10. Vortex behind the best and worst step designs for 

outlet thermal NO 
 

4. KRIGING RSM BASED DESIGN STRATEGY 
 
The existing strategies that use response surfaces for design and 
optimization can be classified on the basis of the type of 
response surface and the method that is used to search for the 
update points. Jones [15] provides an excellent description of 

various types of response surface methods that are currently 
used. The Kriging interpolation method was first developed by 
Daniel Krige [16] as a geostatistical technique to estimate 
unknown values from data observed at known locations. More 
information and detailed derivation of the Kriging prediction 
methodology is given in Sacks et al. [17]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 11. Kriging response surface model based high-fidelity 
combustor design strategy 

 
Figure 11 shows the Kriging RSM based high-fidelity 
combustor design strategy. The three key stages of the strategy 
are: (1) Initial sampling using DOE (2) Constructing Kriging 
response surface and (3) Update points search strategies for 
increasing Kriging prediction accuracy. Identifying the effects 
of variables or parameters within a design space, a space filling 
design of experiments (DOE) method is used to generate an 
initial sample of evaluation points. These DOE points are 
evaluated in parallel using CFD analysis. A database of 
objective function values at sample points obtained using CFD 
evaluations is built.

Parametric 
geometry 

DoE  
(N points) 

Build database of 
CFD evaluations 

Build Kriging 
response surface 

Search Kriging 
response surface for 

update points 

Add U update points  
to the database and 

rebuild Kriging 
response surface 

Convergence /  
Budget limit? 

Best design 

‘N’ DoE 
points CFD 
analysis in 

parallel 

‘U’ update 
points CFD 
analysis in 

parallel 
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Fig. 12. Steady outlet thermal NO optimization search histories over a fixed computational budget of  

10 high-fidelity CFD runs (4 in initial sample + 6 updates) 
 
 

 
	
  

Kriging RSM consisting of best overall design amongst different search histories 
(a) After DOE 

 

 
 

 

(b) After DOE + Updates 

 
 

Kriging RSM consisting of worst design amongst different search histories 

(c) After DOE 

 

(d) After DOE + Updates 

 
 

Fig. 13. Kriging response surfaces consisting of best and worst designs for steady outlet thermal NO (ppm) 
 

Y Theta Y Theta 

Y Theta Y Theta 
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Then, a Kriging response surface model is constructed based 
on the observations at sample points within the design space. 
This surface provides an initial prediction of the variation of 
objective function values in the design space. As the response 
surface model accuracy is limited due to a relatively small 
initial sample, the accuracy of the model is increased by 
adding further update points. For the design optimization 
strategy to be efficient, both exploration and exploitation of 
the design space is necessary in order to search interesting 
design configurations and improve the quality of the RSM. 
Simultaneously, the available information must be used to 
rapidly converge to a global optimum. Here, the update points 
are found using a genetic algorithm followed by dynamic hill 
climbing algorithm, which provides a combination of global 
and local search strategy to find the exact location of the 
predicted optimum configuration. The resulting update points 
are again evaluated in parallel using CFD analysis and added 
to the database to update the Kriging model. This process is 
continued until the RSM is converged or the given 
computational budget gets exhausted. 
 
Since using a 10x10 grid of points to sample the design space 
is very expensive, attention here is focused on using a small 
initial sample plan followed by an update strategy to locate the 
best design. The total computational budget for this Kriging 
based design strategy in the spatial domain is fixed here at 10 
high-fidelity CFD runs (c.f. Table 2). For initializing the 
design study, 4 space-filling sample points are generated using 
the optimal Latin-Hypercube DOE method. After constructing 
the Kriging surface, based on the observations from the DOE 
points, two update points are generated per update cycle (c.f. 
Table 3). One is obtained using the best Kriging prediction 
criterion in the response surface and the other is obtained 
using the expected improvement criterion [18]. Thus a 
balanced exploration and exploitation approach is used to 
update the Kriging response surface model [18]. Further, the 
Kriging based design strategy (c.f. Figure 11) is applied on 9 
different optimal Latin-Hypercube DOE samples to 
investigate their effect on the strategy’s ability to find 
optimum design configurations within the given 
computational budget of 10 high-fidelity runs.  
 
Figure 12 shows the optimization search histories for the 
Kriging based design strategy using 9 different DOE samples 
over a fixed computational budget of 10 high-fidelity CFD 
runs for outlet thermal NO. It also shows the mean 
performance of all the 9 search histories. As observed in 
Figure 12, the different initial samples clearly have an effect 
on the way the optimization process progresses. This is 
because different initial samples lead to different information 
being available at the DOE stage with altered Kriging model 
convergence behaviour. Hence, each optimization cycle leads 
to a different optimal design in Figure 12. A spread, or 
variation, in the search histories convergence is also shown in 
Figure 12.  Figure 13 shows the Kriging response surfaces 
consisting of best and worst designs for steady outlet thermal 

NO (ppm) after the DOE stage and end of the optimisation 
cycle stage. In comparison to the shape of the response 
captured using the 10x10 grid CFD evaluations (c.f. Figure 8), 
the response surface after DOE + Updates in Figure 13(b) 
captures the good and bad design regions within the given 
fixed computational budget. But, the response surface in 
Figure 13(d) fails to capture the shape of the response within 
the given budget. This difference is due to the quality of the 
information available at the respective DOE stages, which 
subsequently affects convergence and finding the optimal 
design with a limited budget. This observation is consistent 
with one of the possible pitfalls associated with Kriging 
mentioned by Jones [15].    
 

 
5. CO-KRIGING RSM BASED DESIGN STRATEGY 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 14. Co-Kriging response surface model based multi-

fidelity combustor design strategy  
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(a) 

 

(b) 

 
 

Fig. 15. (a) Optimization search history of CoTGL strategy over a fixed computational budget of 4 DoE + 3 update cycle (6 update 
points) runs (b) Comparison between Kriging and CoTGL strategies mean performances 

 
 

 
 

(a) After DOE 

 
 

(b) After DOE + Updates 

 
 

Fig. 16. CoTGL response surface consisting of best overall design for steady outlet thermal NO (ppm) 
 

 
(a) CoTGL model correlation 

(r2 = 0.2789) 

 
 

 
(b) Kriging model correlation 

(r2 = 0.8785) 

 

Fig. 17. Comparison between correlations of CoTGL and Kriging RSM (after DOE + Updates) predictions with 10x10 CFD data 
for steady outlet thermal NO (ppm) 

Y Theta Y Theta 
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Table 2 Relative budgets of Kriging and co-Kriging design strategies for spatial domain outlet thermal NO optimization 

Strategy 
Given budget for high-

fidelity CFD runs 
Total no. of high-fidelity 

CFD runs performed 
Cost ratio 

Total no. of low-fidelity CFD 
runs performed 

Kriging 10 10 - - 

CoTGL 10 7 E ≈ 10C 30 
  

Table 3 High and low fidelity CFD runs budget distribution for Kriging and Co-Kriging design strategies over DOE and 
update cycle stage [Note: NE and UE in bold, NC and UC in round brackets, EI: expected improvement update, BP: best 

predicted update, ER: maximum error update] 

Strategy DOE Update cycle 1 Update cycle 2 Update cycle 3 

Kriging 4 2 [1 EI, 1 BP] 2 [1 EI, 1 BP] 2 [1 EI, 1 BP] 

CoTGL 4(15) 1(5) [1 EI, 2 BP, 2 ER] 1(5) [1 EI, 2 BP, 2 ER] 1(5) [1 EI, 2 BP, 2 ER] 

 
Co-Kriging is in effect an extension of the Kriging 
methodology [19], which consists of correlating multiple levels 
of data. CFD simulations can be run at different levels of 
complexity, e.g. using two different levels of mesh resolution, 
such that there is a relatively accurate but slow analysis along 
with a fast but less accurate analysis. However, in the context 
of design optimization, these fast approximations, though 
somewhat inaccurate, may well include important flow-field 
features and can be used for design search investigation.  To 
improve the efficiency of only high-fidelity surrogate model 
based design optimization systems (c.f. Figure 11), a greater 
quantity of fast (or cheap) analyses can be used in combination 
with a smaller number of expensive accurate analyses, in a 
multi-fidelity co-Kriging methodology, to enhance the accuracy 
of the high-fidelity function surrogate model at a lower 
computational cost [20]. More information and detailed 
derivation of the co-Kriging method is given in Forrester et al. 
[19, 20]. Figure 14 shows a co-Kriging response surface model 
based design optimization strategy with NC (cheap) and NE 
(expensive) DOE points and UC (cheap) and UE (expensive) 
update points per update cycle, where NC > NE and UC > UE.  
NE DOE points and UE updates are subsets of NC and UC 
respectively. Starting with an initial set of NC and NE DOE 
points, a combined database of objective function values is 
constructed. Based on these observations, a co-Kriging 
response surface model is built. Further, to increase the 
accuracy of the co-Kriging response surface model, update 
points are selected at either or all locations of the co-Kriging (a) 
best prediction, (b) maximum prediction error and (c) 
maximum expected improvement. Also, the update points UC 
and UE are evaluated in parallel and the co-Kriging RSM is re-
built and searched for optimal designs. This process is iterated 
until response surface model convergence or the end of a given 
computational budget. 
 
For co-Kriging in the spatial domain, two different levels of 
grid (or spatial) resolutions are used. The fine grid resolution 
(mesh3) is used as the expensive high-fidelity model and the  

 
coarse grid resolution (mesh1) is used as the cheap low-fidelity 
model. In order to apply the co-Kriging based design 
optimization strategy for two different grid level (CoTGL) 
solutions, the computational cost ratio between the cheap low-
fidelity (C) and expensive high-fidelity (E) CFD solutions is 
used as the basis for determining the total number of CFD 
evaluations. Table 2 shows the details of the CoTGL strategy 
budget relative to the standard Kriging strategy for design 
optimization in the spatial domain. The distribution of the total 
number of high and low fidelity CFD runs over four stages 
(DOE and three update cycles) of the CoTGL strategy relative 
to the Kriging strategy is shown in Table 3. The total number of 
high-fidelity CFD runs over CoTGL design optimization cycle 
is limited to seven. The remaining three high-fidelity runs are 
replaced by an equivalent number of low-fidelity runs, as 
determined by the cost ratio between the low and high fidelity 
model for CoTGL. 
 
Figure 15(a) shows the steady outlet thermal NO optimization 
search histories for the CoTGL design strategy, using nine 
different DOE samples, over a fixed computational budget and 
the mean performance of all the search histories. The DOE 
evaluation consists of four high-fidelity and fifteen low-fidelity 
CFD runs. Further, the three-update cycles consist of three 
high-fidelity and fifteen low-fidelity CFD runs in total (c.f. 
Table 3). Similar to the Kriging strategy optimization histories 
(c.f. Figure 12), the different initial samples cause variations in 
CoTGL model convergence due to different information being 
available at the DOE stage. Hence, different optimal designs 
are obtained at the end of each optimization cycle. Figure 15(a) 
also shows the variation in the convergence across the different 
CoTGL experiments at the end of the budget. Figure 15(b) 
shows the comparison between the means of the optimization 
search histories for the Kriging and CoTGL strategies for 
steady outlet thermal NO.  The CoTGL strategy does not 
perform better than the Kriging strategy in terms of mean 
convergence at the end of the fixed computational budget. 
However, the CoTGL mean for outlet thermal NO is below the 
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Kriging mean after the DOE stage, thus indicating the CoTGL 
strategy’s ability to find a good design earlier in the design 
process. 
 
Figure 16 shows the response surfaces of the CoTGL strategy 
containing best optimal designs for steady outlet thermal NO. 
In comparison to the shape of the response surface captured 
using 10x10 grid CFD evaluations (c.f. Figure 8), the shape of 
the CoTGL response surfaces after DOE [Figure 16(a)] and 
updates [Figure 16(b)] appear more globally accurate, 
compared to the Kriging response surfaces [Figure 13(a) and 
13(b)] due to the availability of a greater quantity of 
information from the low-fidelity model. However, the CoTGL 
response surface at the end of the optimization cycle [Figure 
16(b)] also appears to be non-smooth due to presence of noise 
from the low-fidelity model. This noise is regressed in the co-
Kriging prediction. More information on regression 
methodology used is provided in [19]. Figure 17 shows the 
comparison between the correlation of CoTGL and Kriging 
RSM predictions (at the end of the computational budget) with 
10x10 CFD data. As per the scatter plots of Figure 17, the 
relationship between CoTGL RSM prediction and 10x10 CFD 
data for outlet thermal NO is more non-linear as compared to 
the relation between Kriging RSM prediction and 10x10 CFD 
data. The CoTGL model has r2=0.278 which is much lower 
than the Kriging model (r2=0.878). Even though visually, the 
shape of the CoTGL RSM appears more accurate, the presence 
of noise in the prediction again lowers the correlation. Table 4 
shows the comparison between the best designs obtained by 
different spatial domain strategies for outlet thermal NO within 
fixed computational budget. The overall best design 
configuration with lowest thermal NO value is found by 
Kriging strategy.  
 

Table 4 Comparison between the best overall designs 
found by different spatial domain strategies and 10x10 

CFD data 
Strategy Y Theta NO (ppm) 

10x10 data 0.890 0.440 8.170 
Kriging 0.933 0.446 8.160 
CoTGL 0.913 0.529 8.170 

 
In this study, the DOE sample size (N) is 9, which may or may 
not be large enough. However, adding more samples is 
expensive as the computation time of the entire design cycle is 
high. Hence, to reduce the uncertainty associated with the 
accuracy of the estimated mean without adding more samples, 
the confidence level is assessed here using bootstrap 
methodology [21] in MATLAB version R2010a. Table 5 shows 
the upper and lower limit values of Kriging and CoTGL 
strategies 95% confidence intervals for steady outlet thermal 
NO. Figure 18 shows the comparison between the 95% 
confidence intervals on the Kriging and CoTGL means for 
steady outlet thermal NO. If the confidence intervals on the two 
sample estimates do not overlap, one can be confident that the 

true value (or population) of the estimate differs significantly, 
statistically [22]. For outlet thermal NO the confidence 
intervals on Kriging and CoTGL mean do overlap but not 
considerably. Also the lower and upper bounds of the 
confidence interval for the Kriging mean are narrower. Hence, 
a statistically significant difference would be observed on the 
population mean obtained by using Kriging and CoTGL 
strategies for outlet thermal NO. 
 

Table 5 Bootstrapped confidence intervals (CI) for 
Kriging and CoTGL strategies  

Strategy Lower limit (ppm) Upper limit (ppm) 
Kriging 8.194 8.281 
CoTGL 8.218 8.431 

 

 
 

Fig. 18. Estimated means with 95% CI and sample data of 
Kriging and CoTGL strategies for steady outlet 

thermal NO (ppm) 

6. CONCLUSION 
 
     Spatial domain combustion and thermal NOx formation 
mechanism in a two-dimensional combustor has been 
qualitatively modeled using steady RANS formulation. A stable 
flame-front was captured behind the flame-stabilizer step in the 
region with low mixture velocities. In the parts of the reactive 
flow-field with highest temperatures (>2100K), high thermal 
NO concentration is observed which is entrained by the vortex 
stabilized behind the step. Based on this analysis, outlet thermal 
NO was used as the objective function for developing and 
comparing combustor design strategies in spatial domain within 
a fixed computational budget. A Kriging RSM based high-
fidelity design strategy and co-Kriging RSM based multi-
fidelity design strategy using two-grid level solutions– CoTGL 
were used to optimize the shape of a flame-stabilizer step. Both 
design optimization strategies were repeated on nine different 
initial samples, which revealed how the convergence search 
history varied, leading to different optimal designs. The 
statistics of interest i.e. mean performance over all the DOE 
samples showed that strategy CoTGL found a good design 
earlier in the design process compared to the standard Kriging 
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strategy. However, using 95% confidence level assessment, the 
Kriging strategy CI was much narrower and below the CoTGL 
strategy CI.  
 
Hence, principally, it could be concluded that multi-fidelity 
CoTGL strategy does not outperform high-fidelity Kriging 
strategy for combustor design in the spatial domain. 
Nevertheless, evidence exists of finding a good design earlier in 
the process using CoTGL strategy compared to the Kriging 
strategy and full grid sampling search plan. This study forms 
the basis of investigation of multi-fidelity solutions based 
strategies for combustor design in the temporal domain. 
 

NOMENCLATURE 
 
C : Mean reaction progress variable 
𝑓 : Mean mixture fraction 
𝑓′! : Mean mixture fraction variance 
Φ : Equivalence ratio 
ACARE : Advisory Council for Aeronautical Research in       
     Europe 
CFD : Computation Fluid Dynamics 
CI : Confidence Interval 
CoTGL : Co-Kriging using Two Grid Levels 
DOE : Design of Experiments 
EI : Expected Improvement 
PPM : Parts Per Million 
RANS : Reynolds-averaged Navier Stokes 
RSM : Response Surface Model 
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