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Abstract—Much progress has been made recently in the
development of 3D acquisition methods and technologies, which
increased the availability of low-cost 3D sensors, such as the
Microsoft Kinect. This promotes a wide variety of computer
vision applications needing object recognition and 3D shape re-
trieval. We present a novel algorithm for full 3D reconstruction
of unknown moving objects in 2.5D point cloud sequences, such
as those generated by 3D sensors. Our algorithm incorporates
structural and temporal motion information to build 3D models
of moving objects and is based on motion compensated temporal
accumulation. Unlike other 3D reconstruction methods, the
proposed algorithm does not require ICP refinement, key-
point detection, feature description, correspondence matching,
provided object models or any geometric information about
the object. Given only a fixed centre or axis of rotation, the
algorithm integrally estimates the best rigid transformation
parameters for registration, applies surface resampling, reduces
noise and estimates the optimum angular velocity of the moving
object.

I. INTRODUCTION

The increasing availability of low-cost 3D sensors such as
the Microsoft Kinect has allowed many 3D reconstruction
methods to be developed. The reconstruction of 3D models
of rigid objects is generally achieved by the following steps:
First the data acquisition step where point clouds or range
images (depth maps) are generated by the 3D sensor. This
data is 2.5D where only the surfaces facing the sensor are cap-
tured. Secondly, an optional segmentation and filtering step is
applied to separate the observed object from its background.
Thirdly scans from different viewpoints are aligned together
in one coordinate frame (registration). Then the aligned scans
are typically resampled and merged (integrated) by surface
reconstruction techniques into a seamless 3D surface and
rendered for display.

We present an algorithm for 3D reconstruction of point clouds
that is based on motion-compensated temporal accumulation.
Given a fixed centre or axis of rotation, the algorithm esti-
mates the best rigid transformation parameters for registra-
tion, and reconstructs the full geometry of rotating 3D objects
from 2.5D point clouds, such as those generated by 3D
sensors. This algorithm accumulates surface information over
the sequence after applying a series of rigid transformations
on the point clouds of the input sequence, and then resamples
the accumulated point clouds based on a computed space
partitioning and votes for the best reconstruction based on

the number of points in each resampled point cloud.

The novelty of the algorithm relies in the fact that it does
not not require key-point detection, feature description, cor-
respondence matching, any subsequent ICP refinement steps,
provided object models or any geometric information about
the object. Moreover, the algorithm performs surface resam-
pling, noise reduction and estimates the optimum angular
velocity of the moving object integrally.

For this research, we assume that the object is already
segmented, the motion is purely rotational, and the angu-
lar velocity is approximately constant subject to monotonic
change. However the algorithm can be generalised to any
rigid motion (translational and rotational).

This paper is structured as follows: first we will discuss the
related work to our algorithm in terms of registration and
temporal accumulation. Second, we give a detailed overview
of our algorithm with establishing the foundations for under-
standing its methodology. Then we validate and verify the
theory and give experimental analysis. After that we show
experimental results on synthetic and real data and finally
we evaluate the performance of the algorithm in terms of
noise and processing time and conclude this paper.

II. RELATED WORK
A. Registration

For rigid objects, registration concerns finding the transfor-
mation (rotation and translation) that aligns data sets into one
global coordinate system. The goal is to find transformations
that align the 2.5 point clouds acquired from different views
to one consistent 3D point cloud model correctly representing
the object.

There are many methods for 3D data registration which can
be classified in a number of ways. Generally, registration
methods can be divided to rough (global) and fine registration
(local), a detailed review of methods for 3D registration is in
[1].

The dominant and most widely used method for local regis-
tration of three dimensional data is the ICP (Iterative Closest
Point) algorithm [2] and its variants [3]. The high speed of
the ICP algorithm and its variants resulted in development
of many real time, high quality dense 3D model acquisition
methods using structured light [4]-[6], and more recently
using 3D sensors, such as the Microsoft Kinect [7]. ICP
based methods require an initial alignment between 3D point
sets to be known, as it depends on local optimisation and



not guaranteed to the global optimal alignment, and require
significant overlap between point clouds to be registered.
Global registration methods usually have a non-iterative ap-
proach which depends on the detection of local distinguish-
able points (key-points) and estimating the correspondences
between point sets by computing and comparing feature
descriptors of such key-points [8]-[10] . A recent compre-
hensive list and evaluation of 3D key-points detectors is pre-
sented in [11]. The complexity of feature-based approaches
typically depends on the resolution of the solution. These
approaches are often used to compute an initial alignment
and are followed by fine registration algorithms such as the
ICP.

There have been other methods attempting to achieve au-
tomatic global registration by transforming the 3D point
clouds to different domains, and then the resultant images
are compared and correlated in those domains to obtain
the transformation aligning the input point clouds, or point
correspondences between them, such as in [12], [13]. Such
methods are limited to special cases, such as point clouds
with smooth or isometric surfaces, or availability of normal
components. Moreover in many cases the transformation to
other spaces can be non-informative and ambiguous.

B. Temporal Accumulation

A temporal accumulation algorithm was used to determine
bulk motion of walking people in 2D image sequences for
gait analysis purposes [14]. [15] used temporal accumulation
of Fourier descriptors to extract arbitrarily moving arbitrary
shapes by tracing a locus of votes in the form of the
template shape, adjusted for the estimated motion of the
object relative to the time reference of each frame. [16]
perform temporal evidence accumulation on stereo image se-
quences for extraction of specified objects undergoing linear
motion. Temporal accumulation was used in [17] within an
evidence gathering algorithm which incorporates structural
and motion parameters to detect moving spheres in point
cloud sequences.

A colour-augmented search algorithm is used in [18] to accu-
mulate coloured point clouds from successive time frames for
a moving vehicle, to track the vehicle and build 3D a model
of it. Their algorithm requires 3D point clouds and a colour
image to align successive frames, the alignment is found
by a pre-filtered iterative coarse to fine optimisation by first
aligning the centroids of each colour-interpolated point cloud
and then projecting them to a 2D occupancy grid and then
by voting based on Euclidean as well as colour difference
between point pairs.

This approach is similar to ours in terms of using the best
alignment of the point clouds of the object to estimate
velocity. However it is very different in its methodology for
finding the alignment and input data. Their algorithm assumes
a small motion between frames, and hence alignment based
on centroid locations is most likely to be a “good enough”
rough initial alignment. If the motion is large, which leads to
no significant overlap between frames, alignment would fail
and hence the registration would be false.

Our algorithm does not require any colour information,

computation of object centroids, projecting to a 2D plane
or significant overlap between frames.

III. ALGORITHM

for every point cloud P; (t = 0;t < N;t++) do
for every angular velocity w;

(’UJj = Wmin; Wj = Wmax) w++) do

Rotate P, by R(wj,t)

Add to velocity cloud V;

end
Save V; in A
end
for every V; in A do
Build an octree representation O; for V;
for every occupied voxel in O; do
Find centroid of points within voxel
Add centroid point to downsampled cloud D
end
Save D; in B

end
Search B for D; with minimum number of points.

Algorithm 1: 3D object reconstruction by temporal accu-
mulation.

The proposed algorithm finds the registration of a series
of point clouds based on motion-compensated temporal ac-
cumulation. Motion compensation is simply back-projection
along the expected line of motion to convert the coordinates
to the same temporal frame of reference as the initial frame.
The algorithm takes each cloud in the sequence of a rotating
3D object and applies a series of rigid transformations based
on velocities given in a predefined range. Transformed point
clouds are accumulated together based on their velocity, each
velocity in the range will have a corresponding “velocity
cloud” that is the accumulation of point cloud transformed
by a transformation corresponding to that velocity. An octree-
based [19] space partitioning algorithm is applied to down-
sample each velocity cloud, and the resulting downsampled
velocity cloud with the minimum number of points is taken
as the truest representation of the object.

A. Rotation in 3D

By definition, a rotation R about an origin is a transfor-
mation that preserves the origin; so rotations centre on the
coordinate system, as matrix or vector multiplication has no
effect on the zero vector (the coordinates of the origin). To
rotate an object P around any fixed point a = (ag, ay,a;)
in 3D space, we take the fixed point as the origin of a
Cartesian coordinate system, then apply the rotation. This
is done by applying a translation vector T' = —[ag, ay, az]T
then rotation, then translating back to the point of rotation,
given by:

bl

P =TRT'P (1)

Rotations in 3D can be represented by the axis-angle repre-
sentation in which a 3D unit vector represents an axis and
a scalar angle describes the magnitude of the rotation about



that axis. Six degrees of freedom are needed to describe a
rotation in 3D; three to determine position of the axis or
point of rotation, two for the normalized direction vector of
the axis and one for the scalar angle.

B. Angular Velocity

Having a sequence S = {Py, P1,...,Py_1} of N point
clouds, where each point cloud P; represents a set M
of 3D points distributed in R3, P = {pg,p1,...,00m—1}»
pi = {wi,yi, 2} of a rigid object rotating around a fixed
axis of a direction given by the unit vector u = [uy, uy, u.],
and passing through the point a = (az, ay, a,),with angular
velocity w, given by the equation:

do
w(f,u) = s )
which is defined as the rate of change of angular displace-
ment 6 measured by degrees per unit time ¢, which with a
time reference relative to the arbitrary start point (e.g. point
cloud number versus point cloud 0). The angular velocity
describes the speed of rotation and the orientation of the
instantaneous axis about which the rotation occurs. The first
step of the algorithm is to rotate each point cloud in the
sequence by a series of rotations; the instantaneous rotation
angle 6 is given by multiplying the angular velocity w by
time ¢:
0 =wt 3)

where w € W = [Wmin, Wmaz)- At any angular velocity,
according to [20], the instantaneous rotation by an angle of
0 about an axis in the direction of unit vector u is given by:

R(6,u)

w,t —

cosf + uzc UpUyC — U, SN0 Ugu,C + Uy sin b
UyUzC + U, Sin 6 cos + uf}c UyU,C — Uy Sin 6
UpUpC — Uy SING  UUyC + Uy Sin O cos ) + u2c

“)
where ¢ = (1—cos 8). If the position and direction of the axis
of rotation are given, to find the rotation we need to solve
for only one degree of freedom, that is the angle of rotation
0.

However if only a point of rotation is known, i.e. the direction
of the axis of rotations remains unknown, the dimensionality
of the problem increases, as there are three degrees of free-
dom to be solved. This can be solved by applying equation
(4) three consecutive times; by taking three angles around the
three main axis. thus the angular velocity will be presented
by three angles instead of an angle and an axis, as given by:

([, do. dv
v (dtx’ at Z) )

where v, ¢,1 are angles of consecutive rotations about the
X, Y, Z axis respectively, and Z,y, Z are the unit vectors of
these axes.

C. Temporal Accumulation

In the second stage of the algorithm, all point clouds
rotated by the rotation corresponding to the same angular
velocity are accumulated together; each angular velocity

Fig. 1: Four frames from a 2.5D sequence of rotating object.

w; € W will be represented as a point cloud V; which is
the sum of all object points of all point clouds rotated by
this velocity.

_ /o
Vi=) Pi.=
t= t=0

Ju

TR|w,; TP, (6)

The total temporal accumulation process A of the complete
sequence can be summarised by the equation:

Wmax

A= UJ v ™

J=Wmin

For each accumulated “velocity point cloud” V;, the 3D space
is spatially partitioned into fixed-sized volumes (voxels) using
an octree data structure [19], such that all points p; € V; are
associated with a voxel vy € O, where O; is the octree
representation of V;.

Then a downsampling process is performed such that all
points within each of the voxels in the octree are approxi-
mated with only one point which is their centroid. All velocity
point clouds will have the same number of points before
downsampling. However after downsampling, points from
different point clouds transformed by a rotation correspond-
ing to the correct angular velocity will theoretically coincide,
or near enough to be in the same voxel, requiring less voxels
in the voxel grid, and subsequently less points in the down-
sampled velocity point cloud D;, figure 2. Hence the down-
sampled velocity point cloud with the least number of points
(D*) is the truest alignment of the unknown 3D object:

D* = argm]viln(B) (8)

where B is the vector of the downsampled velocity point
clouds and M is the number of points in each cloud.

B= |J D, 9
J=Wmin
We can also find the best estimate for the object’s angular
velocity (w*) by this equation:

* = in (B 1
w” = arg min (B) (10)

IV. ANALYSIS

The algorithm is verified by implementing it on a 2.5D
synthetic sequence of a rotating object. Figure 1 shows four
point clouds from a sequence of thirty of an object rotating
about the horizontal X axis of the origin (0,0,0). Only
the front surface of the object is available to resemble real
data generated by depth sensors. The object has an angular
velocity of 20 degrees per unit time (d¢t~!). Given a range
of velocities [0,100] with a step of 10 dt~!, we apply the
algorithm; the point clouds are transformed and accumulated



Fig. 2: Steps of proposed algorithm. Top row shows velocity clouds (0-3)
accumulated from the 2.5D sequence according to angular velocities (0-30)
dt~1 respectively. Middle row shows the octree space partitioning of the
velocity clouds into voxels. Bottom row shows the downsampled velocity
clouds. The correct representation of the object is the downsampled point
cloud with minimum number of points.

into the velocity clouds, the 3D space of each velocity point
cloud is partitioned into voxels by an octree structure, and
downsampled, figure 2. Note that all velocity clouds have
the same number of points before downsampling.

If we take the histogram of the number of points in the voxels,
the velocity cloud corresponding to the correct velocity
should have a histogram with a peak value of the number of
point clouds in the sequence, 30 in this case, as each correctly
rotated point cloud accumulates one point. However because
the sequence is 2.5D, as with real data generated by depth
sensors, the histogram should be centred at approximately
half the number of point clouds. Histograms of the rest of
the accumulated velocity clouds will be centred towards the
left at low number of points in the voxel and typically have
multiple peaks with higher values for numbers of voxels,
figure 3.

This observation is based on the choice of voxel size relative
to the density of the point clouds; in this case the voxel size
was chosen to be small enough to allow only coincident or
very close points to exist within the voxel. Larger voxels
will still verify this observation, but will allow more points
to be within them resulting for higher number of peaks.
The angular velocity also has an effect on the shape of
the histogram; the larger it is, the smaller the overlap area
between point clouds is and hence more voxels containing
less points. Additionally, the cloud’s point density and the
isometry of the object also affect the shape of the histogram.
Nevertheless the significant property of the accumulated
velocity clouds is the distribution of the histogram rather than
the number of peaks or their amplitude.

V. RESULTS

Figure 4 show 2.5D point clouds from four sequences, one
synthetic and three real. And figure 5 shows the reconstructed
full 3D point clouds generated using the proposed algorithm.
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Fig. 3: Histograms of accumulated velocity clouds. It is clear that the
histogram of velocity cloud 2 is centered on higher number of points, thus
it is considered the most correct alignment. The blue histogram is generated
from the same velocity cloud but from a 3D sequence instead of 2.5D. Note
that the peak is centered at the number of point clouds in the sequence (30),
which verifies the methodology of the algorithm.

A. Surface Resampling and Reconstruction

The final step of every 3D model acquisition method is

to reconstruct the surface of the object after estimating the
alignment between multiple scans. When point clouds are
registered to one model, overlapping areas of different point
clouds coincide, resulting for the density of points to be
multiplied. Moreover, typical quantisation errors and missing
data from 3D sensors can generate empty areas in the point
cloud. This variety of point density on the registered model
negatively affects any subsequent rendering or recognition
processes. This problem is solved by resampling. Whether
it is up-sampling or downsampling, resampling methods aim
to smooth surfaces to have an approximately constant point
density, a robust resampling algorithm is presented in [21].
In our algorithm, resampling is integral; it is achieved in the
stage before last of our algorithm when the points in octree
voxels are approximated with their centroid. The resultant
downsampled point cloud will have an approximately uniform
point density; the density is dependent on the voxel size used
in the octree.
Detailed surface reconstruction is beyond the scope of this
research, here the Poisson surface reconstruction algorithm
[22] is applied on the resultant cloud that is the output of our
algorithm to reconstruct the 3D surface of the rotating object,
figure 6. For more accurate resampling that will produce
smoother reconstructed surfaces, an upsampling and hole
filling algorithm such as in [21] can be applied after using our
algorithm to obtain the correct object velocity, and transform
and accumulate the original point clouds of the sequence.

VI. EVALUATION
A. Noise

Even with significantly corrupted input data, our algo-
rithm was still able to detect the correct angular velocity



Fig. 4: Three point clouds from four 2.5 sequences. Top row is of a synthetic
sequence of 18 frames. Bottom three rows are of real objects placed on a
turn-table, each sequences has 8 frames.

Fig. 6: Poisson surface reconstruction.

and reconstruct the object. Moreover, the noise is integrally
reduced in the reconstructed point cloud as a result of space
partitioning and resampling stages of our algorithm, figure 5.
The performance of the algorithm is quantified against noise
by conducting an actual implementation on data corrupted
with noise. Figure 8 shows the performance of the algorithm
applied on a synthetic object with the presence of noise; to
give a useful meaning to the noise readings, we introduce
the error metric p, given by the ratio of mean cloud-to-cloud
distance to the width of the object, equation (12). The mean
cloud-to-cloud (C2C) distance is the mean of all distances
from each point in the reconstructed point cloud to its closest
point in the original ground truth model.

N
1 . :
p= N;ec: min [le —g| | fwidth x 100% (1)

where [V is the number of points in the reconstructed cloud
C, and G is the ground truth model.

The noise is modeled by an added Gaussian distribution
model with increasing standard deviation (o) and zero mean
(), given by the function:

1 2 2
—(z—p) /20 12
—F€
oV2m (12)

The performance of the algorithm against noise is shown in
figure 8.

N(z) =

B. Time

The performance of the algorithm in the case of given axis
of rotation is O(N - M - W) while in the case of a point of
rotation is O(N - M - W3). Where N is the number of point
clouds, M is the average number of points in each point
cloud, and W is the number of velocities in the given range.
Table 1 shows the algorithm’s processing time.

Fig. 7: Noise reduction. Top row: Original point cloud from sequence of
30 clouds (left), added Gaussian noise ( ¢ = 0.004) (middle), and result
of implementing the proposed algorithm on noisy sequence (right). Bottom
row shows the surface reconstruction of each point cloud.



Mug Cat Box Teddy | Bird
No. Clouds 30 18 8 8 8
Total Points 4896 | 30600 | 33453 | 58485 | 18464
No. Velocities | 10 150 10 30 45
Time (s) 0.16 13.01 1.46 6.65 3.25

TABLE I: Algorithm performance. (running on 2.4 GHz Intel Core i7 and
4GB RAM).
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Fig. 8: Performance against noise. The error metric at no added noise is
p = 0.0044%, which assures the accuracy of the algorithm. The object
dimensions are (0.120 x 0.095 x 0.080) meters>.

VII. CONCLUSIONS

We presented a novel algorithm for full 3D reconstruction
of unknown moving objects in 2.5D point cloud sequences.
Our algorithm incorporates structural and temporal motion
information to build 3D models of moving objects that is
based on motion compensated temporal accumulation. We
verified the theory of the algorithm, provided experimental
analysis, showed experimental results on synthetic and real
data and finally we evaluated the performance of the algo-
rithm. Unlike other 3D reconstruction methods, our algorithm
does not require ICP refinement, key-point detection, feature
description, correspondence matching, provided object mod-
els or any geometric information about the object. We demon-
strated how the algorithm integrally estimates the best rigid
transformation parameters for registration, applies surface
resampling, reduces noise, estimates the optimum angular
velocity of the moving object and finally fully reconstructs
unknown moving objects.
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