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AN ATTRACTOR NETWORK OF WEAKLY-COUPLED EXCITABLE NEURONS

FOR GENERAL PURPOSE OF EDGE DETECTION

by Shaobai Li

The prospect of emulating the impressive computational capacities of biological systems

has led to much interest in the design of analog circuits, potentially implementable in

VLSI CMOS technology, that are guided by biologically motivated models. However,

system design inevitably encounters the contrary constraints of size(or complexity) and

computational power (or performance). From a high level design point of view, we

believe that theoretical analysis of the model properties will undoubtedly benefit the

implementation at a lower level. This thesis focuses on this simple aim to provide an

extensive study of task-specific models based on dynamical systems in order to reduce

model complexity or enhance the performance of algorithms.

In many examples, it is the self-evolving dynamics of the model that allows the intrinsic

parallel computations of algorithms, which are traditionally expressed by differential

equations and systems. For instance, simple image processing tasks, such as the detection

of edges in binary and grayscale images, have been performed by a reaction diffusion

equation using the FitzHugh-Nagumo model as the reaction term in the previous work

done by Kurata et al. (2008); Nomura et al. (2003, 2008, 2011b,a). Once the initial

condition is correctly assigned according to a processed image, system states of this

model will automatically evolve to the final result.

From an application of view, the spatial distribution of system state can be regarded as

a grid network with a proper discrete pattern; each network node becomes a FitzHugh-

Nagumo type of neuron, while the diffusion term turns out to be the nearest couplings

among them, where the coupling strength k is proportional to the original coefficient of
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diffusion D. So, one neuron (node) in the network deals with one pixel in the processed

image. However, in previous study, this one-to-one mapping of image pixels to compo-

nent neurons makes the size of the network a critical factor in any such implementation.

The wrong edges are found due to the intrinsic mechanism of the algorithm when the

diffused the processed image are used to pick out edges among the grayscale intensity

levels and their most successful method solves this problem by a doubling of the size of

the network.

In the thesis, we propose two main improvements of the original algorithm in order for

the smaller complexity and the better performance. We treat dynamics of the coupled

system for the purpose of edge detection as a k-perturbation of the uncoupled one.

Based on stability analysis of system state for both uncoupled and coupled cases, the

system used for edge detection is identified as a Multiple Attractor type network and

the final edge result corresponds to an attractor in high dimensional space. Hence, we

conclude that the edge detection problem maps an image to an initial condition that is

correctly located within the attraction domain of an expected attractor. For the first

improvement, in order to get rid of the wrong edges, we provide a way of quantify

the excitability of uncoupled neurons based on the Lyapunov exponents so that the

boundary of attraction domain of the attractors can be well estimated. Moreover, an

anisotropic diffused version of processed image is used for the further enhancement on the

performance. For the second improvement, in order for diffusion of the processed image

being accomplished by the hardware, we introduce a self-stopping mechanism to the

original equation. Moreover, we link the basic design rules on system parameter settings

to the fundamental theorem of WCNN (weakly coupled neural network) (Hoppensteadt

and Izhikevich, 1997), which states that an uncoupled neuron must be near a threshold

(bifurcation point) in order for rich dynamics to be presented in the coupled network.

We apply our techniques to detect edges in data sets of artificially generated images

(both noise-free and noise-polluted) and real images, demonstrating performance that

is as good if not better that the results of (Nomura et al., 2011b,a) with a smaller size

of the network.
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Chapter 1

Introduction

Biological neural networks carry out massively parallel, robust computation while dis-

sipating low power and have brought many neuroscientists and neuromorphic system

designers under their spells. On the neuroscientific side, in 1952, Hodgkin and Huxley

(1952) modelled the generation and propagation of the spike among the cells in the giant

axon of the squid by using nonlinear partial differential equations. Spike is a sudden

change in the neuronal membrane potential which is also referred to as action poten-

tial. Hodgkin-Huxley’s model provides a new approach to understand the mechanism

of this most common phenomena in neuron cells by using dynamical system theory.

Since then, such neurophysiological models are analyzed, simplified and further devel-

oped with the help of dynamical system theory (DST). One of the most famous jobs

was done by FitzHugh (1961) and Nagumo et al. (1962). They use a planar system (a

two-dimensional system, originally the dimension of Hodgkin-Huxley is four) to repli-

cate the complicated dynamics presented in Hodgkin-Huxley model. On the engineering

end, Mahowald and Douglas (1991) proposed the concept of a “silicon neuron” - a silicon

device whose physics resembled that of a neuronal membrane, and which could thereby

replicate neural behaviour in real time by analog electronic circuitry. Since then, the

techniques that transform the neuron models described by the dynamical systems in-

to corresponding integrated circuits have been thoroughly studied and a large number

of silicon neurons and neuromorphic silicon chips have been built (Basu and Hasler,

2010)(Cosp et al., 2008)(Wijekoon and Dudek, 2008). However, all of these designs face

a fundamental trade-off between, on the one hand, the level of abstraction at which

the neurons are modelled and circuits designed, often using DST (Arthur and Boahen,

2011); and on the other, the size of the silicon area on which they are fabricated. As a

consequence, even though many successful neuromorphic and neurophysiological neuron

chips emulating the sensory visual network, such as artificial silicon retina (Zaghloul

and Boahen, 2006), have been designed, they perform image processing tasks at lower

resolution (normally 50× 50 pixels) compared to digital processors. Hence, system size

1



2 Chapter 1 Introduction

is the most important issue when designing the neurally inspired circuit for the purpose

of image processing.

In fact, there have always been protracted disputes on the level of abstraction for neural

models among neuroscientists and neuromorphic system designers. In 1943, inspired by

the topology of real neural networks, i.e., synaptic organization, and in order to explore

the emergence of logical reasoning within such structures, McCulloch and Pitts (1943)

proposed a mathematical model of simplified neurons with an activation threshold and

binary outputs. Each single neuron can take as input, an arbitrary number of outputs

of other neurons. The coupling of neurons within such a network is composed of direct

connections and each connection has a weight. A neuron is set to its active state if

the weighted sum of all the incoming signals(i.e. all the states of presynaptic neurons)

exceeds the threshold, and inactive if not. In order to use a network of such simplified

neurons to emulate the dynamics of logical reasoning, their first applied this model to

compute a series of boolean functions.

Clearly, the McCulloch-Pitts neuron is a rough imitation which mainly draws upon

the morphological properties of neurons. With advances in neurobiology, the artificial

models have incorporated key biological features, such as activation functions instead

of binary thresholds, and with a continuous set of possible output values. According to

Maass’s classification (Maass, 1997, 2001), networks of McCulloch-Pitts neurons with

binary valued functions are called first generation neural network models, while their

extensions which contain continuous activation functions and real-valued outputs, called

firing rates, are called second generation neural network models. Many physiologists

agree that firing rates describe how neurons encode and transmit information. Such

neural networks can implement complicated mathematical functions, and have been

shown to be capable of learning such functions. A considerable number of supervised

learning and unsupervised learning rules have been proposed, many of which can be

traced back to Hebb’s work on synaptic plasticity (Hebb, 1949) in 1949, driven by

coincident firing of connected neurons.

Nevertheless, this type of artificial neural networks are not satisfying for all neuron mod-

el designers. There are still a large number of researchers who believe that this kind

of neuron is strongly restrictive for large amounts of data processing due to its lack

of employment of spike dynamics. Arguments against the firing rate coding as neural

information transmission can be found especially in vision area. Thorpe (1990) pointed

out Poisson-like rate codes failed to satisfy rapid sensory processing in human vision.

Moreover, Eckhorn et al. (1989) discovered that binary images are created through neu-

ronal oscillation in the cat midbrain whose features are used to create the actual image

in the further layer. Other evidence found in the electrosensory system of electric fish

(Heiligenberg, 1991), in the auditory system of echo-locating bats (Kuwabara and Suga,
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1993) confirm that neurons process sensory information based on action potentials (num-

bers, timing, phase etc.) or their interactive activities (network oscillation, concurrent

rhythms etc.).

1.1 Previous Works

Dynamical neuron models are also widely adopted in many cases of computer vision

and image processing. Chen and Wang (2002) have performed very innovative work

using oscillators for image segmentation. They constructed oscillator networks with lo-

cal excitatory lateral connections and a global inhibitory connection. Yen and Finkel

(1998) simulated facilitatory and inhibitory interactions among oscillators to do con-

tour integration. Li (2001) has proposed elaborate visual cortex models with oscillators

and applied them on lattice drawings. Yu and Slotine (2009) proposed a network of

oscillatory neurons of Morris-Lecar model (a generalised FitzHugh Nagumo model) for

the purpose of visual grouping. Nomura and his colleagues (Nomura et al., 2003, 2008,

2011b,a; Kurata et al., 2008) use a discrete reaction diffusion system for detecting edges

in real grayscale images. Moreover, such kinds of reaction-diffusion networks are built

using CMOS technology (Karahaliloǧlu and Balkır, 2004).

Our work is based on the Nomura’s network model for the purpose of edge detection.

Specifically in his model, each neuron is connected only with all the four in its neigh-

bourhood with diffusive coupling. Once the initial condition is correctly set according

to the processed image, the system variable in neural model will automatically search

for the edge map as the final steady state. They gave special importance to the stabili-

ty of the output as a distinctive from other algorithm using reaction-diffusion systems.

And the stability of the output makes the system more suitable in implementation with

analogy circuitry. Their algorithm (Nomura et al., 2003) was first applied to detect

edges in binary images by assigning the system parameter a with a constant threshold

between the two intensity levels, which they referred to image threshold. The algorithm

was then extended from binary to grayscale images (Nomura et al., 2011b) by replacing

the constant image threshold with a variable one, which are obtained by diffusing the

processed image. In doing so, they encountered some problems that they overcame by

enlarging the size of the system for better performance (Nomura et al., 2011b). They

failed to provide sufficient theoretical analysis of the algorithm to explain the ability of

edge detection of the network. Consequently, they failed to provide the generalisation

of the proper way to set system parameters. They attempted to explain the stability of

the network model based on Turing instability which are denied in the later work done

by themselves Kurata et al. (2008).

In this thesis, we emphasise the theoretical analysis of this network model, in order to

deal with the problem they found. In the high level design procedure, we set out to
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refine in performance and reduce in size, a network model for edge detection, that can

be more suitable to be fabricated in silicon, based on the dynamical system theory.

First, we provide the definition of the image threshold for a monostable FitzHugh-

Nagumo model by evaluating the maximum Lyapunov characteristic exponent, so that

we can correctly formulate the problem introduced when extending the algorithm to

grayscale images. Next, according to the result of the analysis of two coupled FitzHugh-

Nagumo models as a network, we also simplify the network system by eliminating the

coupling term of the membrane potential. Finally, we propose a novel method of ob-

taining the threshold by anisotropic diffusion in order to solve the problem.

1.2 Objective

It is the explicit objective of this research to explore, analyze and create biologically in-

spired dynamical models of neural systems and networks for the purpose of information

processing, which are also implementable and optimized for CMOS VLSI design tech-

nology. Our engineering application specifically focuses on the simple image processing

task of edge detection. And this thesis focuses on the methodologies which is based on

DST for the following purposes:

• simplify the existing structure of system dynamics for edge detection

• improve the resultant performance without increasing the system scale.

Based on the work done by Nomura et al. (2008, 2011a), the first task of our study

is to identify the system model used for the purpose of edge detection as the Multiple

Attractor network, according to the theory of weakly coupled neural network (WCNN).

We correspond the shape of some of the non-hyperbolic equilibria XM of the network

model to the potential edge patternM and illustrate their stability through simulations

on small network. Then, in a second task, we study the “wrong edge” problem and as-

cribe it to the poor accuracy of the boundary domain ∂B(XM) and the usage of isotropic

diffusion of the processed image as image threshold. Finally, we attempt to redesign the

system following the stability analysis of the system and present a reasonable method of

setting system parameters and coupling strengths according to the fundamental theorem

of weakly coupled neural network (WCNN).

1.3 Outline of the Thesis

This thesis is organised as below,
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• In Chapter 2, we present some fundamental knowledge in the field of image pro-

cessing. Some important concepts that are frequently referred to throughout the

thesis, are formally defined. Particularly, we introduce the criteria for evaluat-

ing the edge detection performance of algorithms for artificial images used in this

thesis.

• In Chapter 3, we provide a geometrical analysis of a planar single FitzHugh-

Nagumo model. Specifically, we provide a few bifurcation patterns on a single

FitzHugh-Nagumo model. Then, we derive, from the continuous reaction diffusion

equations, the basic network model, of which the single element is a FitzHugh-

Nagumo type neuron. After this, we link the detailed dynamical analysis on a

single neuron to its neural excitability which is the inspiration of the edge detec-

tion algorithm. At last, we provide a brief review and discussion on the work by

Nomura et al. (2003, 2008, 2011b,a) and Kurata et al. (2008) on the development

of the edge detection algorithm. In particular, we point out the problems they

encountered in defining thresholds in grayscale images.

• Chapter 4 covers a basic theoretical analysis of the edge detection ability of the

network model introduced in Chapter 3. Specifically, we first provide an analytical

analysis of the stability of system at the origin, in order to deny the original

explanation provided in (Nomura et al., 2003, 2008, 2011b) using Turing instability.

Then, we provide the stability analysis on the small network consisting of only

two coupled neurons. After identifying the network type of the model, we change

the coupling strength as bifurcation parameter. We find that Hopf bifurcation

points in the coupled network determine the stability boundaries of attractors

XM representing the edge patterns M. Based on this, we simplify the network

model by eliminating the coupling of one specific state variable. Finally, we link

the system model to the theory of Weakly Coupled Neural Network (WCNN)

(Hoppensteadt and Izhikevich, 1997).

• Chapter 5 covers the modification on the original algorithm proposed by Nomura

et al. (2008, 2011a,b) in order to deal with the accompany “wrong edge” prob-

lem. Firstly, we provide a detailed analysis on the such a problem of Nomura’s

model with an example of one dimensional edge detection. Secondly, we show

that the boundaries of the attraction domain ∂B(XM) are closely related to the

excitability of each single neuron. Specifically, we provide the improved definition

of the thresholds θ of excitability of the single neuron by using Lyapunov exponen-

t. Thirdly, we construct our model to perform edge detection by introducing an

anisotropic diffusion and we evaluate its performance on both artificial and real

images. As a result, the edge detection performance for the artificial images are

improved and the edge detection performance for the real images are also compa-

rable to Nomura’s method (Nomura et al., 2011a) while halving the network size.

The results of this chapter were the following publication:
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- S. Li, S. Dasmahapatra and K. Maharatna. Dynamical system approach to edge

detection using coupled FitzHugh-Nagumo neurons. IEEE Transactions on Image

Processing, Currently under review:-, 2014 expected.

• In Chapter 6, we mainly focus on the stability of the final output of detected edges

to refine our design proposed in the previous chapter. Firstly, we redesign the

process of diffusing processed image in order to assign the threshold of excitability

θ. As a result, the diffusion process will be automatically stopped due to the

intrinsic mechanism and it becomes more suitable for the hardware design as no

stopping time is required to be computed. Secondly, we link the basic rules of

design to the fundamental theorem of WCNN theory so that we are able to provide

the rationale setting system parameters and coupling strengths, which the previous

work failed to provide. Specifically, the system parameters are properly set in order

for the uncoupled network being close to the bifurcation and the coupling strength

is designed to be anisotropically controlled by the magnitude of gradient from a

processed image. The results for both artificial and real images are provided in

comparison with the method proposed in Chapter 5.

• Finally, Chapter 7 presents the most important conclusions drawn in the thesis.



Chapter 2

Image Processing Basics

The focus of this chapter is on the background of image processing to this thesis. In Sec-

tion 2.1, we will start with some important concepts of image processing used throughout

the whole thesis. And in Section 2.2.1, the evaluation criteria for the performance of the

edge detection algorithms used in the thesis will be introduced. Finally in Section 2.3,

we introduce the test images.

2.1 Digital Image Representation

Figure 2.1: Convention of the coordinates of the digital image representation

In a digital image processing context (Gonzalez and Woods, 2008), an input image con-

sidered as an analog two-dimensional input is conventionally described by a continuous

function U(x, y) of two continuous variables x and y. The map

U : x, y 7→ U(x, y)

7
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indicates the image intensity at a specific point (x, y) and thereby the whole function

U(x, y) describes a spatial distribution of the image signal. In order to numerically

process such a spatial signal in digital computer, it is usual to convert U(x, y) into a

2-D numerical arrays U(m, n) consisting of M rows and N columns. (m, n) is a pair of

non-negative integers denoting the coordinate of original image intensity distribution,

where

0 6 m 6 M− 1, 0 6 n 6 N− 1

Figure 2.1 shows the coordinate representation of an digital image U(m, n). Suppose

m and n are the lengths of the image in x or y direction and spatial variables (x, y)

are discretised uniformly in both directions with the finite difference ∆h = lx/M = ly/N.

The M×N numerical arrays illustrated in Figure 2.1 can be written in a more traditional

matrix notation:

U =


U(0,0) U(0,1) . . . U(0,N−1)

U(1,0) U(1,1) . . . U(1,N−1)
...

...
...

U(M−1,0) U(M−1,1) . . . U(M−1,N−1)

 (2.1)

Each element of this matrix U(m,n) is called an image element or a pixel. Clearly, U(m,n) =

U(x = m ·∆h, y = n ·∆h). Sometimes for the sake of convenience of expression, we also

pack the pixels in U into an MN × 1 column vector in column order. If denote the

sequence number of element in the column vector as i, then the mapping the coordinate

(m, n) in U to the index i can be defined as,

fc : Z>0 × Z>0 → Z+

(m, n) 7→ fc(m, n) = i,

i = n ·M + m + 1

(2.2)

Correspondingly, the inverse of the map will be,

f−1
c : Z+ → Z>0 × Z>0

i 7→ f−1
c (i) = (m, n),

m = (i− 1) mod M

n = d i
M
e

(2.3)

dxe is the ceiling function denoting minimum integer greater than x. So, in the rest of

the thesis, we will use both notations with different subscripts, such as Ui and U(m,n),

to denote the same concept in different cases.
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Normally, a pixel Ui = U(m,n) has four neighbors whose coordinates are given by

(m + 1, n), (m− 1, n), (m, n + 1), (m, n− 1)

This set of pixels, also called the 4-neighbors (Gonzalez and Woods, 2008) of the pixel

Ui, is denoted by N4(Ui). And correspondingly, the set of the coordinates of these pixels

in N4(Ui) is denoted by P(m,n) or Pi. Normally, for the coordinates within the digital

image, both m and n are located in the ranges [0,M − 1] and [0,N − 1] respectively.

But it is worth noting that for those pixels on the border or corner of an image, their

neighbouring pixels lie outside the image. In these cases, we also use m = −1,M and

n = −1,N to denote the coordinate outside of the image.

The intensity levels of digital images are also quantized as the equally spaced discrete

values (Gonzalez and Woods, 2008). The number of the discrete intensity levels is

denoted by L and it is typically an integer power of 2 (L = 2n) so that

Ui ∈ [0, L− 1].

Conventionally, when a digital image Ui has 2n intensity levels, it is convention to refer

to the image as an “n-bit image.” For instance, an image with 256 possible discrete

intensity levels ranging from 0 to 255 is called an 8-bit image. The grayscale images

used in this thesis are all 8-bit images.

2.2 Edge Detection

2.2.1 Edge Map and Evaluation of Edge Detection Algorithm

Edge pixels are defined as pixels where the function of the image intensities Ui changes

abruptly and edges are defined as sets of connected such edge pixels. As a result of edge

detection, the edge information in the processed image are provided in an edge map

denoted by M(m,n), which is usually a binary image of the same size as the processed

image. If we denote the set consisting of all the coordinates of edge pixels in a processed

image as S, then an edge map of such image can be expressed as follows,

M(m,n) =

{
1, (m, n) ∈ S
0, (m, n) ∈qS

In order to compare the performance of the different edge detection algorithms, it is

important to determine the criteria by which edge detection performance can be eval-

uated. Canny (1986) provided a good summary on evaluating a generally formulated

edge detection problem, in which he outlined the performance criteria which are widely

accepted in the areas of computer vision and image processing. We list them as follows,
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Good detection. First, as many edges as possible in the original image are required to

be detected in the edge image. In other words, the error rate of missing edges has to be

small for the good detection. Second, as many as the edges in the edge image should

truly exist in the original image, which means the error rate of wrong edges has to be

small for the good detection.

Good position. The edge detected in the edge image should reflect its original position

of the edge in the processed image as correctly as possible.

Generally, it is still difficult to produce a convincing quantitative results for assessing the

edge detection algorithms according to the criteria stated above. Several studies have

shown the problems and most of them is based on using artificial images. Normally,

because the artificial images contain merely simple geometric patterns, their ground

truth data of edges can be precisely specified. The evaluation of an edge detection

algorithm can be carried out by comparing the resultant edge map M(m,n) with the

ground truth Mgt(m,n). In particular, in order to compare the performance of edge

detection of algorithms for artificial images, we will the following four measures, the

true positive tp, the rate of the true positive tpr, the false positive fp and the rate of

false positive fpr.

tp =
∑

(m,n)∈Sgt
M(m,n), tpr =

tp∑M(m,n)

fp =
∑

(m,n)∈qSgt
M(m,n), fpr =

fp∑
(1−Mgt(m,n))

(2.4)

where, Sgt denotes the set of the coordinates of edge pixels in the ground-truth data.

The true positive pixels are the ones in the ground truth image Mgt and also detected

in the edge image M. And the false positive pixels are the ones only detected in the

edge image M but not in the ground truth image Mgt.

2.3 Test Images

The images used to test the performance of the edge detection algorithm studied in this

thesis include both artificial images and real images. Moreover, white noise is added to

the images when a robustness test is carried out.

Artificial Images

The basic structure of the artificial image used in this thesis is provided in Figure

2.2(a). It consists of 12 groups of small square patterns [101× 101], so the size of whole

image is [303 × 404]. The intensity levels of the artificial image are 63, 127 and 191

and either group of circles or squares has all permutations of these intensity levels. The
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corresponding ground truth data is provided in Figure 2.2(b). The ground truth data

of the edges denoted by Mgt(m,n) is automatically computed by programs in Matlab.

(a) Artificial images with the intensity levels 0, 127
and 255

(b) Ground-truth data of the artificial images

Figure 2.2: Artificial images and the corresponding ground truth of the edge
data.

Real Images

Figure 2.3 presents all the real images used in this thesis, which are, respectively, traffic

cone [604 × 437], tire [512 × 512], pillow [468 × 552], video camera [435 × 577], stairs

[441× 579] and briefcase [419× 577]. They are all downloaded from the website “Edge

Detector Comparison” based on the work done by Heath et al. (1997).Original pho-

tographs are in colours and we convert them into grayscale images with the built-in

function in Matlab.
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Real images used for testing algorithms of edge detection. 2.3(a)
Traffic cone. 2.3(b) Tire. 2.3(c) Pillow. 2.3(d) Video camera. 2.3(e) Stairs.
2.3(f) Briefcase. All the real images are provided by Heath et al. (1997) which
are available on the website “Edge Detector Comparison”.



Chapter 3

Dynamical System For Edge

Detection

This chapter introduces the background theory of ordinary differential equations (ODEs)

and dynamical system which are used in the following chapters. We highlight a selection

of fundamental concepts of dynamical system theory. Then, we provide an example of

studying a FitzHugh-Nagumo type of neuronal model in order to see how its properties

are analysed by using dynamical system theory. Then, we focus on the basic model in

the edge detection algorithm which is a set of continuous reaction-diffusion equations.

We elaborate the system structure from the derivation of the discrete version of the

reaction-diffusion equations and explain how the edge detection algorithm can be driven

by the excitability of a single neuron. Finally, we provide a review of Nomura’s edge

detection algorithms based on the discrete reaction-diffusion equations.

The theory of dynamical system introduced in this chapter is based on the books (Perko,

1991; Izhikevich, 2006), which we recommend for further details and references.

3.1 Basics on ODEs

A general system of ordinary differential equations (ODEs) can be expressed as

dx1

dt
= f1(x1, x2, . . . , xn)

dx2

dt
= f2(x1, x2, . . . , xn)

...

dxn
dt

= fn(x1, x2, . . . , xn)

13
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where each component fi is assumed to have continuous mixed partial derivatives with

respect to all xj up to a sufficiently high order. Introduce a state vector

x =


x1

x2

...

xn

 ∈ Rn

and define a map f : Rn → Rn by

x 7→ f(x) =


f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fn(x1, x2, . . . , xn)

 .

Then the system can be written as

ẋ ≡ dx

dt
= f(x), x ∈ Rn. (3.1)

Denote a solution to Equation 3.1 with an initial condition x0 ∈ Rn by x(t, x0). General

theory of smooth differential equations (Perko, 1991) ensures the existence and unique-

ness of such solution x(t) for any x0 ∈ Rn.

Nullclines and Equilibria of Dynamical Systems

In order to analyse the behaviour of the dynamical system in Equation 3.1, one would find

its nullclines and equilibria. Each nullcline of the dynamical system can be determined

by

fi(x) = 0.

And a point x ∈ Rn is an equilibrium of the dynamical system if

f(x) = 0.

For all the points on the specific nullclines fi(0) = 0, the derivative of the specific system

state ẋi is zero. And at an equilibrium where f(x) = 0, all derivatives ẋ = 0. So, any

solutions x(t, x) starting at the equilibrium x consist of only one point, namely the

equilibrium x.
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The local stability of the equilibrium x is determined by the Jacobian matrix

J = DxF =



∂f1

∂x1

∂f1

∂x2
. . .

∂f1

∂xn
∂f2

∂x1

∂f2

∂x2
. . .

∂f2

∂xn
...

...
. . .

...
∂fn
∂x1

∂fn
∂x2

. . .
∂fn
∂xn


evaluated at x. If we use λi to denote the ith eigenvalue of the Jacobian J |x,

J |xvi = λivi (3.2)

where vi is the eigenvector corresponding to λi. A dynamical system is said to be locally

stable at an equilibrium x if all the eigenvalues λi of the Jacobian matrix evaluated at

the equilibrium J |x have negative real part

Re(λi) < 0.

Jacobian matrix J is said to be hyperbolic when none of its eigenvalues λi has zero real

part, and to be nonhyperbolic when at least one of its eigenvalues λi has zero real part.

Bifurcation

Sometimes, one would be interested in how the qualitative behaviour of system in Equa-

tion 3.1 changes when the system dynamics defined by f changes with respect to system

parameters µ. Consider a dynamical system

ẋ = f(x, µ), x ∈ Rn,

where µ = (a1, a2, · · · , am) ∈ Rm denotes the system parameters. A parameter value µ0

is said to be regular, if for any µ belongs to an open neighbourhood S of µ0, the quali-

tative behaviour of dynamical system remains the same. In contrast, a parameter value

µ0 is said to be a bifurcation value, if there exist some value µ1 in any neighbourhood S

of µ0 such that the qualitative behaviour of dynamical system is different for µ0 and µ1.

This thesis deals with only two types of bifurcations which occur in dynamical systems;

namely, saddle-node bifurcation and Hopf bifurcation. These two types of bifurcations

are the simplest cases which occur at a nonhyperbolic equilibrium; the Hopf type of

bifurcation occurs when the eigenvalues of J has a pair of purely imaginary eigenvalues.

Saddle node bifurcation appears when one (just one) eigenvalue of J is zero.
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3.2 FitzHugh-Nagumo Model

Generally, the FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 1962) is a sim-

plified model of neural dynamics, able to fire periodic spikes. However, for the parameter

settings adopted here, the FitzHugh-Nagumo model is not an oscillator and can only fire

a single action potential instead of periodic ones. The FitzHugh-Nagumo model which

can be expressed as the following two-variable ordinary differential equations: v̇ =
1

ε
[v(1− v)(v − a)− w] =− 1

ε
[v3 − (a+ 1)v2 + av + w]

ẇ = v − bw =v − bw
(3.3)

where x = (v, w)T ∈ R2 is the vector of state variables. Specifically in a neuroscience

context (Ermentrout and Terman, 2010), v denotes the membrane potential and w is

the gating variable. ε � 1, 0 < a < 1 and b > 0 are all system parameters. Such a

two-dimensional dynamical system which is also called planar system is usually analysed

by plotting its phase portrait in the state space R2.
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Figure 3.1: Phase portrait of FitzHugh-Nagumo model for a = 0.3, b = 1 and
ε = 0.001. The initial conditions of two illustrative solutions are (0.25, 0) and
0.35, 0.

Figure 3.1 provides an example of phase portrait of the FitzHugh-Nagumo system in

Equation 3.3. The whole plane which is also called phase plane denotes the state space

R2. For any point (v, w) on the phase plane, the vector (f1(v, w), f2(v, w)), where

f1(v, w) =
1

ε
[v(1− v)(v − a)− w],

f2(v, w) = v − bw,

indicates the direction of change of the point. So the vectorised function f in Equa-

tion 3.1 is also referred to as the vector field. As introduced in Section 3.1, a nullcline
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refers to a set of points in state space of which the derivatives with respect to one of the

state variables are all zeros. For the two-variable dynamical system in Equation 3.3, the

two nullclines are two curves in the phase plane as the two black solid lines shown in

Figure 3.1. The nullclines of the FitzHugh-Nagumo system defined by v̇ = 0 (v-nullcline)

and ẇ = 0 (w-nullcline) can be expressed asw = v(1− v)(v − a)

w =
1

b
v

(3.4)

The v-nullcline of the system is a cubic curve and the w-nullcline is a straight line. Their

intersection at the origin (0, 0) is an equilibrium. We also present two illustrative solu-

tions with different initial conditions as two trajectories in Figure 3.1. The equilibrium

(0, 0) is stable as these two different trajectories finally converge to it.

The general form of Jacobian of the FitzHugh-Nagumo model in Equation 3.3 is

J =

(
−3
ε v

2 + 2(a+1)
ε v − a

ε
−1
ε

1 −b

)
(3.5)

The specific Jacobian matrix of the equilibrium at the origin is

J =

−1

ε
(3v2 − 2(a+ 1)v + a) −1

ε
1 −b

∣∣∣∣∣∣
(v,w)=(0,0)

=

−aε −1

ε
1 −b


(3.6)

where the trace τ and the determinant ∆

τ = −a
ε
− b

∆ =
1

ε
(ab+ 1)

And the eigenvalues of J can be obtained by solving the characteristic equation∣∣∣∣∣∣−
a

ε
− λ −1

ε
1 −b− λ

∣∣∣∣∣∣ = 0

which can also be written in the polynomial form

λ2 − τλ+ ∆ = 0 (3.7)
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Figure 3.2: Nullclines of FitzHugh-Nagumo models for different values of the
parameters a and b

And the two solutions of this characteristic equation are

λ1 =
−(aε + b) +

√
(aε − b)2 − 4

2
, λ2 =

−(aε + b)−
√

(aε − b)2 − 4

2
(3.8)

As mentioned above, the parameters a, b and ε are all greater than 0. If (a/ε− b)2−4 <

0, λ1 and λ2 are complex conjugate and they both have the negative real parts. If

(a/ε− b)2 − 4 > 0, then it is easy to check that λ2 is smaller than 0. While

λ1 =
−(aε + b) +

√
(aε − b)2 − 4

2

=
−(aε + b) +

√
(aε + b)2 − 4ab

ε − 4

2

<
−(aε + b) +

√
(aε + b)2

2

= 0

So, the equilibrium of the FitzHugh-Nagumo system in Equation 3.3 at the origin is a

stable node within the given condition for the parameters a > 0, b > 0 and ε > 0.

As shown in Figure 3.2, one can imagine that changing the values of system parameters a

and b will also change the positions of these two nullclines. In particular, the parameter

a determines the location of the intersection (a, 0) of the v-nullcline and v-axis between 0

and 1 on the v-axis, and thereby, influences both values of two extrema (one is minimum

and the other is maximum) near it. And the value of parameter 1/b determines the slope

of w -nullcline so that it may have one, two or three intersections (equilibria) with the

v -nullcline as shown in Figure 3.2(b). So that parameters a and b control the numbers

of intersections of the two nullclines, namely the equilibria. And a straightforward
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calculation shows that the system has origin as its only fixed point if and only if

(a− 1)2 − 4

b
< 0 (3.9)

or two fixed points, origin and (a+1
2 , a+1

2b ), if (a−1)2− 4
b = 0 or three fixed points, origin

and (v±, w±), where

v± =
a+ 1±

√
(a− 1)2 − 4

b

2
, w± =

v±
b

(3.10)

So either increasing b with a fixed or reducing a with b fixed will lead to the generation

of two equilibria other than the origin.

Consider the situation where the system (3.3) has only two equilibria, i.e. v = a+1
2 and

b = 4
(a−1)2

, the Jacobian becomes

J =

(
1
ε ·

(a−1)2

4 −1
ε

1 − 4
(a−1)2

)

The trace τ and the determinant ∆ of the Jacobian are respectively,

τ =
1

ε
· (a− 1)2

4
− 4

(a− 1)2

∆ = 0

(3.11)

and the eigenvalues are,

λ1 = −τ, λ2 = 0;

So the system undergoes a saddle-node bifurcation.

The middle intersection of two nullclines (v−, w−) is always saddle with the given con-

dition for a, b and ε. It can be figured out by checking its Jacobian matrix

J |(v−,w−) =

(
1
ε (a+ 2

b ) −1
ε

1 −b

)

The corresponding

∆|(v−,w−) = −1

ε
(ab+ 1) < 0

Hence, it is easy to check that

λ1|(v−,w−) =
τ +
√
τ2 − 4∆

2
>
τ +
√
τ2

2
> 0

λ2|(v−,w−) =
τ −
√
τ2 − 4∆

2
<
τ −
√
τ2

2
6 0
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However, the stability of upper equilibrium (v+, w+) changes according to the different

values of system parameters. In order to track the stability of (v+, w+) after the saddle-

node bifurcation, we look into a concrete example where we fix a = 0.3 and sweep the

value of b. The results are provided in Figure 3.3(b) below.
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(a) Boundary of Saddle node bifurcation (solid line) and Hopf
bifurcation (dashed line).
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(b) Bifurcation diagram of single FitzHugh-Nagumo model
with a = 0.3.

Figure 3.3: Bifurcation structure of single FitzHugh-Nagumo model in Equa-
tion 3.3. (b) illustrates how a newly appearing equilibrium (v+, w+) changes
after saddle-node bifurcation for a specific value of a = 3 as circled in (a).UN:
unstable node, UF: unstable focus, SF: stable focus, SN: stable node.

The solid and the dashed lines respectively indicates v+ and v− changing along the

parameter b. It is clear to see that there is a bifurcation at b = 8.16 which we have shown

is a saddle-node bifurcation. Figure 3.3(b) shows that the upper equilibrium (v+, w+)

is generally divided into four different partitions when b continues to increase after

the bifurcation point b = 8.16. These four partitions illustrate four different stability

states of the upper equilibrium (v+, w+). It can be clearly seen from Figure 3.3(b) that

(v+, w+) becomes stable if b > 8.56; the vertical dashed line b = 8.56 in Figure 3.3(b)

gives the stability boundary of the upper equilibrium (v+, w+). A direct calculation of

J at (v+, w+) when a = 0.3 and b = 8.56 shows that

λ1,2 ≈ ±0.3058i

which are a pair of purely imaginary values. So, (a, b) = (0.3, 8.56) with the given value

ε = 0.001 is a point for Hopf bifurcation. Indeed, for each value of 0 < a < 1, there will

be two values of the parameter b, bSN and bH , respectively denoting the saddle-node

and Hopf bifurcations. And Figure 3.3(a) provides these two sets of bifurcation points

of (a, b) in the a-b plane. The analytical expression of the solid curve (saddle-node

bifurcation) is given by

b =
4

(a− 1)2
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and the dash line (Hopf bifurcation) denotes a traceless Jacobian J(v+). Hence,

− 1

ε
(3v2

+ − 2(a+ 1)v+ + a)− b = 0 (3.12)

Substituting (3.10) into (3.12) gives

(a− 1)2 − 6

b
+ (a+ 1)

√
(a− 1)2 − 4

b
+ 2εb = 0
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(a) Phase portrait of FitzHugh-Nagumo system with an unstable upper equilib-
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(b) Phase portrait of FitzHugh-Nagumo system with a stable upper equilibrium

Figure 3.4: Phase portrait of FitzHugh-Nagumo system with three equilibria

Figure 3.4 provides another two phase portraits of the FitzHugh-Nagumo model which

have three equilibria. Specifically, the upper equilibrium in Figure 3.4(a) is unstable

while the one in Figure 3.4(a) is stable. The red or blue solid line in both figures

denotes the stable or unstable eigenspace of the saddle (v−, w−). And the red or blue
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dashed curves are corresponding the stable or unstable manifolds. In Figure 3.4(b), it

can be clear to see that the connected two stable manifolds of the saddle (v−, w−) form

a separatrix which divides the whole phase space R2 into two parts. So, such a planar

model in Figure 3.4(b) is also called bistable system.

3.3 The Model of Edge Detection

The most basic model for the purpose of edge detection is a two component reaction-

diffusion system described by a pair of parabolic partial differential equations, as follows:
∂v

∂t
= f(v, w, a) +Dv∇2v

∂w

∂t
= g(v, w) +Dw∇2w

(3.13)

Again, v and w are the state variables defined in space (x, y) ∈ R2 and at time t ∈ R. We

shall follow the convention in a neural context (Ermentrout and Terman, 2010) using

v and w, respectively for the membrane potential and the channel gating variable of

a neuron, as previously introduced in Section 3.2. The time t is implicitly included.

f(v, w) and g(v, w) are the reaction terms while Dv∇2v and Dw∇2w are the diffusion

terms,where Dv and Dw are two diffusive coefficients respectively for each of the state

variables and ∇2 is the Laplacian operator,

∇2 =
∂2

∂x2
+

∂2

∂y2

In the application of image processing, Nomura et al. (2011a) choose the FitzHugh

Nagumo model in Equation 3.3 as the reaction term in the reaction diffusion system. In

their algorithm, v, indeed v(x, y, t), is used to denote the time evolution of the spatial

distribution of rescaled image intensities. Specifically, the initial condition v(x, y, 0) takes

the rescaled intensity distribution U r(x, y) of the original image (unrescaled intensity

distribution is denoted as U(x, y)). However, w(x, y, t), which is initially set as zero,

does not have a specific meaning in image description.

In order to understand the principle of the edge detection algorithm based on the model

in Equation 3.13, we first discretise the reaction diffusion system in Equation 3.13 ac-

cording to the input of digital image. It will be seen that the reaction diffusion system

after discretisation is equivalent to a neural network, where a single network element

is a FitzHugh-Nagumo type of neuron and the diffusion terms play the same role as

the nearest neighbour coupling. Second, we focus on the pure diffusion terms, namely

a single FitzHugh-Nagumo model, to get the basic idea of edge detection mechanisms
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inspired by its system dynamics. Finally, we provide a review of all the algorithms pro-

posed by Nomura and his colleagues (Nomura et al., 2003, 2008, 2011b,a; Kurata et al.,

2008) followed by a brief evaluative conclusion on the latest one proposed by them.

3.3.1 From Reaction Diffusion System to Coupled Neuronal Network

For the discretisation of the reaction diffusion system in Equation 3.13, Nomura et al.

(2008) originally used the Crank-Nicolson scheme (Thomas, 1995), which is a relatively

advanced method to processing partial differential equations. Here, we use the most

basic discretisation scheme and our main purpose of this section is to show that the

discretised diffusion terms in Equation 3.13 are equivalent to the nearest neighbour

couplings of the network. Because both the v and w variables will be treated similarly

in the discretisation, we only take v variable as an example here. Recall the definitions

of the first and second partial derivatives,

∂v

∂x
= lim

∆h→0

v(x + ∆h, y)− v(x, y)

∆h
∂v

∂y
= lim

∆h→0

v(x, y + ∆h)− v(x, y)

∆h

∂2v

∂x2
= lim

∆h→0

v(x+∆h,y)−v(x,y)
∆h − v(x,y)−v(x−∆h,y)

∆h

∆h

∂2v

∂y2
= lim

∆h→0

v(x,y+∆h)−v(x,y)
∆h − v(x,y)−v(x,y−∆h)

∆h

∆h

Since the initial value of v(x, y, t) is determined by the intensity distribution U(x, y) of

an image, we discretise the reaction diffusion system following the digital image rep-

resentation provided in Figure 2.1 for the numerical solutions. Hence, we choose the

finite differences in the processed image and the reaction diffusion systems to be the

same finite difference, ∆h. So, the reaction diffusion system in Equation 3.13 will be

discretised to a spatial grid of the same dimension as the processed image. We rewrite

the partial derivatives in the discrete form by changing to the symbols listed below,

∂2v

∂x2
→ ∆xxv,

∂2v

∂y2
→ ∆yyv

v(x, y)|(x=m·∆h, y=n·∆h) → v(m,n)

where, ∆xxv and ∆yyv are the second order differences of state variable v with respect

to x and y respectively.
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Hence, the second partial derivatives of state variable v(x, y) with respect to x and y can

be written in the following discrete forms,

Dv∇2v(x, y) = Dv(∆xxv(m,n) + ∆yyv(m,n))

= Dv(
v(m−1,n) − 2v(m,n) + v(m+1,n)

∆h2 +
v(m,n−1) − 2v(m,n) + v(m,n+1)

∆h2 )

=
Dv

∆h2 ((v(m−1,n) − v(m,n)) + (v(m+1,n) − v(m,n))+

(v(m,n−1) − v(m,n)) + (v(m,n+1) − v(m,n)))

= kv
∑

(m′ ,n′ )∈P(m,n)

(v(m′ ,n′ ) − v(m,n))

(3.14)

where, kv = Dv
∆h2

is a constant and P(m,n), as mentioned in Section 2.1, is the set of

consisting of the coordinates in the neighborhood of (m, n).

P(m,n) = {(m− 1, n), (m + 1, n), (m, n− 1), (m, n + 1)}

Note that for the pixels at the boundaries or corners, we impose boundary condition:

v(−1, n) = v(0, n), v(M, n) = v(M− 1, n),

v(m, −1) = v(m, 0), v(m, N− 1) = v(m, N)
(3.15)

Hence, there are no outer pixels contributing to the coupling. Specifically, the neurons

at the edge of the network will have three neighbour neurons contributing to its coupling

while the ones at the corner have only two. So, the coupling term (3.14) in state variable

v can be further written as,

kv
∑
j∈Pi

(vj − vi) (3.16)

As illustrated above, the diffusion coupling in w can also be discretised following the

same derivation. So the original model can be expressed as the ordinary differential

equations of its single element,
v̇i = f(vi, wi, ai) + kv

∑
j∈Pi

(vj − vi)

ẇi = g(vi, wi) + kw
∑
j∈Pi

(wj − wi)
(3.17)

where, kv = Dv
∆h2

and kw = Dw
∆h2

are all the constants denoting the coupling strength of

the network. In the original work done by Nomura et al. (2011a), the coupling strength

does not change among the network. Pi = fc(P(m,n)) is a set consist of all the sequence

numbers of the elements adjacent to the i-th element in the network.

So finally, Figure 3.5 shows the basic architecture of the neuronal network. The circles

represent the basic computing elements i.e. the cells of the network. And the lines
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wiring the circles represent the coupling among the cells. It can clearly seen that each

neuron is only connected to its 4-neighbors so that this kind of coupling is called the

nearest neighbour coupling. The cell matrix consists of M rows and N columns which is

of the same dimension of the input images. So it is a one-to-one structure that one cell

within the network will relate to one pixel of the input image.
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Figure 3.5: Network structure of the system

3.3.2 Excitability and Fast Slow Dynamics

The detailed dynamics of the FitzHugh-Nagumo model is previously presented in Sec-

tion 3.2. Here, we focus on the neural properties of such a two-dimensional system which

is claimed as the inspiration of the edge detection algorithm (Nomura et al., 2003). We

recall the Equation 3.3 again as follows,

v̇ =
1

ε
f(v, w) =

1

ε
(v(1− v)(v − a)− w)

ẇ = g(v, w) =v − bw
(3.18)

with the ranges of the system parameters a,b and ε

0 < a < 1, b > 0, ε� 1

Nomura et al. (2008) claimed that the FitzHugh-Nagumo model without any diffusion

terms must be a monostable system for the purpose of edge detection. So, we also need
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the condition below,

b <
4

(a− 1)2

We have already presented in Section 3.2 that the origin (0, 0) is always a stable equi-

librium with the system parameters under these conditions. So that the solutions with

any initial conditions will converge to it. In neuroscience, this origin is also called the

resting state of a neuron. Here, as an example, we take illustrative solutions with dif-

ferent two initial conditions (v1(0), w1(0)) = (0.24, 0) and (v2(0), w2(0)) = (0.26, 0) with

the parameter settings a = 0.25, b = 1 and ε = 0.001. So, both solutions start at the

v-axis and

v1(0) < a, v2(0) > a

These two solutions are both plotted in the phase portrait and the time domain (see

Figure 3.6). The solution trajectory (v1(t), w1(t)) directly goes to the equilibrium (0, 0)

while the other one (v2(t), w2(t)) with the initial condition v2(0) slightly greater than

a goes along another way making a big loop then back to (0, 0). Correspondingly, for

the v(t) curves in time domain as shown in Figure 3.6, v1(t) directly shrinks to zero,

whereas, v2(t) goes up to nearly 1 then rapidly down to a negative value with a gradual

approach to v axis, exhibiting a pulse in time. Recalling that v denotes the membrane

potential of a neuron, such a sudden change of v in time which is thereby referred to as

action potential or spike in a neuroscience context.

It can be clearly seen that the parameter a for each neuron works as a “threshold” to

divide the solution trajectories starting on the v-axis generally into two different states,

directly being back to the origin (resting state) or generating a spike (excited state), even

though they will both go to the stable origin in the end. This property is often referred

to as excitability. Although later in Chapter 5, we will show that a is not accurate as

a threshold of these two states for the monostable FitzHugh-Nagumo model and simply

treating this as a threshold leads to some problems, the idea of excitability forms the

fundamentals of the edge detection method (Nomura et al., 2003, 2008). For a simple

case of edge in processed image where two areas of different intensities UA and UB are

adjacent, one can image that these two areas will be divided as two different states as

shown in Figure 3.6. So within either of the two areas, the difference among the pixels

is very small and will be extremely insensitive for the coupling terms in Equation 3.16.

And thereby the coupled system will behave exactly like the uncoupled one. However,

for the pixels at the boundary between two areas, the differences are huge and they will

be picked out by including the diffusion terms, namely the nearest neighbour coupling.

So, only the neurons which are located at the boundary connecting the higher or lower

image intensity levels will keep a high membrane voltage level stably as time proceeds.

The constant ε is chosen as a small value to ensure the fast-slow dynamics. Figure 3.7

provides three phase portraits of monostable FitzHugh-Nagumo model with different

values of the parameter ε as well as the solutions v(t) and w(t)) in time domain. As
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Figure 3.6: Excitability of single FitzHugh-Nagumo model where the system
parameters are fixed at a = 0.25, b = 1 and ε = 0.001. The initial conditions of
two illustrative solutions are respectively (0.24, 0) and (0.26, 0)

shown in Figure 3.7, for ε = 0.001 the state variables (v, w) as a point in the phase

portrait will travel much slower along the w-axis, namely up or down, than along the

v-axis, namely left and right; Most of the vectors in the field are nearly parallel to the

v axis in the phase plot, see Figure 3.7(a). As a result, the two trajectories are clearly

separated in Figure 3.7(a). However, the boundary of excited state and resting state are

not clear in Figure 3.7(d) and Figure 3.7(g); the state variable (v, w) are all going back

to zero towards the same direction and along the similar solution trajectories.

In order to study the firing property of a single neuron, it is generally accepted by many

neuroscientists, e.g. (Ermentrout and Terman, 2010) to simply classify the spiking neu-

rons to be excitable or oscillatory, according to whether they can fire by themselves

without any input. So, we call the individual model used here as the excitable cel-

l, because it cannot generate any spikes intrinsically, while in fact, setting the initial
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conditions such as Equation 3.19 for each neuron is equivalent (Izhikevich, 2006) to ap-

plying a synaptic pulse input to the variable vi in the system described by Equation 3.17.

Hence, in order to make a single neuron distinguish between different input membrane

potentials, a sufficiently small value of ε is necessary. We will take this condition as an

important prerequisite. So, in the rest of the thesis, we restrict our single model to an

excitable FitzHugh-Nagumo type neuron with global mono-stability.
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(a) Phase portrait of FitzHugh-
Nagumo model for a = 0.25, b = 1
and ε = 0.001
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(b) Trace of the membrane poten-
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(d) Phase portrait of FitzHugh-
Nagumo model for a = 0.25, b = 1
and ε = 0.01
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(g) Phase portrait of FitzHugh-
Nagumo model for a = 0.25, b = 1
and ε = 0.1
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Figure 3.7: Phase portraits of FitzHugh-Nagumo model in Equation 3.3 with
different values of ε. For the parameter settings, a = 0.25, b = 1, and ε is
chosen as 0.001 for (a), 0.01 for (d) and 0.1 for (g). For all the values of ε,
two types solutions starting respectively with (0.26, 0) (blue trajectories) and
(0.24, 0) (green trajectories) are plot in the phase portraits followed by their cor-
responding curves in time domain. The initial conditions (0.24, 0) and (0.26, 0)
is separated by (a, 0) = (0.25, 0), while the two trajectories are widely separated
only when ε is set very small.
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3.4 Nomura Edge Detection Algorithms

This subsection aims to provide a brief review of the edge detection algorithm and its

improved editions by Nomura and his colleagues (Ebihara et al., 2003; Kurata et al.,

2008; Nomura et al., 2003, 2008, 2011b,a).

The discretised system in Equation 3.17 is also referred to as the grid system by Nomura

et al. (2008, 2011a). As mentioned above, the initial values of vi are determined by the

original processed image for the edge detection. Specifically with this one neuron to one

pixel structure, each membrane potential vi of the neuron takes a rescaled pixel intensity

U r(m,n) as the initial condition. So, the initial condition of each neuron in the network

is given by the following expressions,{
vi(0) = U r(m,n) = ξU(m,n), ξ � 1

wi(0) = 0
(3.19)

where U r(m,n) and U(m,n) respectively indicate the rescaled and unrescaled light intensity

of the pixel (m, n). ξ is the rescaling coefficient and usually ξ = 1
1024 for 8-bit levels of

gray scale image (Nomura et al., 2011a).

3.4.1 Binary Edge Detection Algorithm

In order to illustrate how the system detects the edges from binary images, we start with

two examples of one dimensional edge detection. The discretisation in one dimensional

cases is relatively easier, where U r(x) can be discretised as U ri with the spatial x = i·∆h.

∆h is again the finite difference and i is the one-dimensional coordinate as well as the

sequence number of each element. It will be shown that how a one dimensional system

in Equation 3.17 detects edges from the one dimensional step functions by based on the

monostability and excitability of the FitzHugh-Nagumo model with the nearest neighbour

coupling.

The first step function is provided as below,

v(0) = U ri =

{
0.10, 1 6 i 6 30

0.15, 31 6 i 6 60
, wi(0) = 0 (3.20)

And the second step function is provided as below,

v(0) = U ri =


0.10, 1 6 i 6 20

0.15, 21 6 i 6 40

0.10, 41 6 i 6 60

, wi(0) = 0 (3.21)
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The value of the parameter a is set as 0.125 between the two intensity levels. For other

parameter settings, ε = 0.001, b = 1, kv = 4 and kw = 20.
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(a) Edge detection result on the step function in E-
quation 3.20
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(b) Edge detection result on the step function in
Equation 3.21

Figure 3.8: Edge detection results on one dimensional step function in Equa-
tion 3.20 and Equation 3.21 with constant image threshold. For other parameter
settings, ε = 0.001, b = 1, kv = 4 and kw = 20

As mentioned above, for simple FitzHugh-Nagumo model without coupling in Equa-

tion 3.3, all the solutions will converge to the origin in the end. And if the coupling

is included, all the neurons except the ones at the edges will behave similarly to the

uncoupled case because the coupling is small. And each neuron at the edge point x0 will

maintain as a fixed high value in v forming a spatial pulse, namely v(x0) > v(x), x 6= x0.

The results are provided in Figure 3.8. Hence, by setting parameter a to be a constant

between the higher and lower image intensity levels, the system in Equation 3.17 is able

to detect the edges in a binary image. And the final edge map M will be defined via a

simple thresholding as follows,

M(m,n) =

{
1, vi(t > τs) > 0.5

0, vi(t > τs) 6 0.5
(3.22)

where τs is the steady state time, for the time t > τs, the solution (v(t), w(t)) reaches the

final steady state. In order to illustrate the final result of edge detection is in a steady

state, we plot the whole time evolution of v(t, x) in Figure 3.9(a) and Figure 3.9(b) withe

different initial conditions given in Equation 3.20 and Equation 3.21. It can be seen from

both the figures in Figure 3.9, that the system state v(t, x) does not change anymore

when approximately t > 0.21. So, the value of τs can be chosen as 0.21.

3.4.2 Gray Level Image Edge Detection Algorithm

The network system in Equation 3.17 using a constant value of a as the threshold is

only available for the binary image. In order to extend the application of edge detection
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Figure 3.9: Time evolution of v(t, x), where x = i∆h, i ∈ [1, 60], t ∈ [0, 1].
Steady state pattern can found at t = 1 where two edge positions are detected

to gray level images, the threshold is required to be adjusted according to the processed

image. So, Nomura et al. (2008, 2011b) proposed a method which chooses a blurred

rescaled image intensity distribution as the threshold. Specifically, it is obtained via

another diffusion equation,
∂θ

∂t
= D∇2θ (3.23)

with the initial condition,

θ(x, y, 0) = U r(x, y)

where, θ(x, y, t) denotes the diffused image intensity distribution and D is the continuous

diffusion coefficient. Through the same discretisation with the same boundary condition

provided in Section 3.3.1, we get

θ̇i = d
∑
j∈Pi

(θj − θi), θi(0) = U r(m,n) (3.24)
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where, d = Dθ
∆h2

is a constant. The diffusion adopted here is isotropic as reflected in

the constant diffusion coefficient d. And blurring the original image U r with such an

isotropic diffusion is equivalent to filtering U r with a Gaussian filter (Black et al., 1998)

which is a solution to Equation 3.23 of the form

θ(x, y, t) =
1

4πDt
e−(x2+y2)/4Dt. (3.25)

So by choosing a appropriate constant of the time τ , the parameter ai is set as θ(m,n)(τ)

which is one “frame” of the time evolving solution θ(m,n)(t) to the Equation 3.24.

However, the result of simply setting a variable threshold is not ideal for the edge

detection of the gray level images; for a single edge position in the original image, they

would get a correct spatial pulse denoting it but also a wrong one close to the correct

one. The detailed formulation of this problem will be introduced later in Chapter 5. In

order to eliminate the false pulses, Nomura modified the original system in Equation 3.17

as follows, 

v̇i
0 = f(v0

i , w
0
i , a

0
i ) + kv

∑
j∈Pi

(v0
j − v0

i ) + v̇i
1H(−v̇i1)

ẇi
0 = g(v0

i , w
0
i ) + kw

∑
j∈Pi

(w0
j − w0

i )

v̇i
1 = f(v1

i , w
1
i , a

1
i ) + kv

∑
j∈Pi

(v1
j − v1

i )

ẇi
1 = g(v1

i , w
1
i ) + kw

∑
j∈Pi

(w1
j − w1

i )

(3.26)

where (v0
i , w

0
i , v

1
i , w

1
i ) are the dynamical variables. H(x) is the Heaviside step function,

which gives 1 when x ≥ 0 and gives 0 when x < 0. Basically, the new model in

Equation 3.26 doubles the size of the original model in Equation 3.17. The superscripts 0

and 1 in each variable determines which subsystem the variable belongs to. Nomura et al.

(2011b,a) claim that the term v̇i
1H(−v̇i1) in Equation 3.26 works for the elimination of

the wrong spatial pulses, if the diffused intensity distribution a1
i is more blurred than

a0
i . More details are available in (Nomura et al., 2011b).

3.4.3 Improved Gray Level Image Edge Detection Algorithm

Although the algorithm introduced above for the edge detection on gray level images

works in most cases, it still fails in some specific cases where darker intensity areas are

surrounded by the brighter backgrounds. Nomura et al. (2011b) identified this problem

and provided an improved approach which merged both the edge maps obtained from

the original image intensity distribution Um,n and its black-and-white inversion Ūm,n to

obtain the final result. For an 8-bit image, the inverted image intensity distribution, is

Ūm,n = 255− Um,n.
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Their recent results in (Nomura et al., 2011a) demonstrate the improvement in edge

detection with this method.

3.4.4 Conclusion

Hence, the edge detection algorithm proposed by Nomura and his colleagues (Ebihara

et al., 2003; Kurata et al., 2008; Nomura et al., 2003, 2008, 2011b,a) for the 8-bit gray

level images can be concluded as in Algorithm 1

Algorithm 1 Nomura’s Method

1: Rescale the image intensity distribution U rm,n = ξU(m,n) with ξ = 1/1024 so that

0 6 U r(m,n) 6
1
4 .

2: Solve the equation θ̇0
i = d0

∑
j∈Pi(θ

0
j − θ0

i) with the initial condition θ0
i(0) = U ri

to get a blurred version of rescaled image with a stopping time τ to obtain the
threshold value a0

i = θ0(τ).

3: Solve the equation θ̇1
i = d1

∑
j∈Pi(θ

1
j − θ1

i) by using a larger constant d1 > d0 with

the same initial condition θ0
i(0) = U ri to get the second threshold value a1

i = θ1(τ).
4: Solve the equation below,

v̇i
0 = f(v0

i , w
0
i , a

0
i ) + kv

∑
j∈Pi

(v0
j − v0

i ) + v̇i
1H(−v̇i1)

ẇi
0 = g(v0

i , w
0
i ) + kw

∑
j∈Pi

(w0
j − w0

i )

v̇i
1 = f(v1

i , w
1
i , a

1
i ) + kv

∑
j∈Pi

(v1
j − v1

i )

ẇi
1 = g(v1

i , w
1
i ) + kw

∑
j∈Pi

(w1
j − w1

i )

with obtained thresholds a0
i and a1

i plus the initial conditions (vi(0), wi(0)) = (U ri, 0)
and the zero boundary conditions to get the steady state solution in v0, which is
v0
i (τs).

5: Obtain the first putative edge mapM1 via a simple thresholding v0
(m,n)(τs) as below,

M1(m, n) =

{
1, v0

i (τs) > 0.5

0, v0
i (τs) 6 0.5

6: Repeat the steps 1 to 5 above to get a second putative edge map M2 from the
black-and-white inversion of the original image Ū(m,n)

7: Get the final edge map M by merging the two putative ones, M =M1 ∪M2

The detailed parameter setting and the edge detection results of both artificial and

real images by this algorithm will be provided in Chapter 5 to be compared with our

proposed edge detection method of this thesis.



Chapter 4

Theory of Weakly Coupled

Neural Network

The discussion provided in Section 3.3.2, focusing on the excitability of a single neuron,

provides some intuition for how edge detection methods work, using the network model

in Equation 3.17. However, it is not enough as a good theoretical explanation of the

mechanism of edge detection of such a network of coupled neurons. Originally, Nomura

et al. (2003, 2008) ascribe the success in detecting the edges of their algorithm to two

features of the grid system. One is the thresholding effect of the reaction part which is

chosen to be the mono-stable FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al.,

1962). This is clearly shown in the previous chapter and we will focus on how to quantify

the excitability of FitzHugh-Nagumo model in the next chapter. The other is the strong

inhibitory constraint they set to the model that the diffusion of inhibitor should be much

faster than that of activator. They claim that it is a necessary condition to ensure the

stability of the final edge detection result. Because the condition is also similar to the

famous Turing condition, they adopt Turing instability as the theoretical basis of their

algorithm, which refers to loss of the stability of the unique attractor for pure reaction

dynamics in the presence of diffusion.

However, the later work done by Kurata et al. (2008) differentiates the stable edge

results obtained from Nomura’s algorithm from the Turing patterns. They point out

that the final edge detection results are neither the Turing patterns nor another example

of propagation failures. In order to understand the model and simplify the problem, they

focus on the simplest network structure which has only two excitable elements. Through

both numerical simulation and analytical method, they conclude that the trivial state

(the origin) is always stable no matter whether the diffusion term is included or not and

the edge results are the newly appearing stable state.

In this chapter, we present the same results to that of (Kurata et al., 2008) and further

analytically prove that the origin as stable equilibrium in the uncoupled system will

35
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remain stable when the diffusion terms are included, for any large size of the system

(M × N). We link the ability of the system to edge detection to the dynamical theory

of weakly coupled neural network (Hoppensteadt and Izhikevich, 1997). The coupled

neuronal network has a large size due its intrinsic pixel-neuron structure. In order to

study such a model of very high dimension, it is natural and reasonable to think about

building the link between uncoupled single neuron and the coupled ones and further

the relationship between a small sub-graph of coupled neurons to the whole network.

In fact, the simple linear structure of the nearest neighbour coupling makes the idea

feasible. In Section 4.1, we mainly focus on proving that the origin remains stable with

different settings of the coupling. In Section 4, we provide several examples to show that

the mono-stable uncoupled neurons becomes a multiple stable network and those high

dimensional stable equilibria, that appear only when coupling is included, correspond to

the putative edge detection results. Specifically, we demonstrate the effect of coupling

term to the networks and link the network model in Equation 3.17 to the theory of

WCNN (Weakly-Coupled Neuron Network) (Hoppensteadt and Izhikevich, 1997).

4.1 Stability of Coupled Networks at Origin

In Section 3.2, we checked that the model of a single neuron is mono-stable under the

given condition of system parameters. In this section, we will further prove that the

coupled network will keep the same stability at the origin when the coupling is included.

Namely, the system is always stable within some certain ranges of parameters no matter

the neurons are coupled or not. First, we will analyse the structure of the whole network

where the Jacobian of network connectivity can be expressed as a negative Laplacian

matrix. Second, we will prove that this negative Laplacian matrix is always semi-

negative definite based on the specific nearest coupling structure of the system by using

the theory of Schur’s complement. Specifically, we start with a chain structure and then,

extend the conclusion to the grid structure of the whole network.

4.1.1 Coupling Network and Laplacian Matrix

Consider the dynamics of the whole system consisting of M× N neurons,

Ẋ = F(X) (4.1)

where X = (v1, w1, v2, w2, . . . )
T ∈ R2MN×2MN. F(·) : R2MN×2MN → R2MN×2MN is a

vectorised function including the couplings. Figure 4.1 illustrates the structure of the

whole neural network. Each black node represents a FitzHugh-Nagumo type of neuron.

Each solid lines represent the couplings within a row while each dash represents those

crossover the rows. So, each neuron is only connected to its nearby neurons forming
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Figure 4.1: The network described in Equation 3.17 is a grid structure consisting
of excitable elements (black nodes) and nearest couplings (solid or dashed lines).
Each row of elements connected with the solid lines in the network can been
seen as a chain. And the whole network can been seen as a chain of chains
connected with the dashes.

a grid structure as whole. We will show later that this way of separately treating the

couplings as two groups will facilitate understanding of the network structure.

The Jacobian J of the whole model in (4.1) can be expressed as below,

J = DF(X) = Ju(X) + G (4.2)

where

Ju = J1 ⊕ J2 ⊕ . . . JMN =

 J1
J2

. . .
JMN

 ∈ R2MN×2MN (4.3)

is the Jacobian of the uncoupled network. The Jacobian Ji of a single uncoupled neuron

is provided in Equation 3.5 which we rewrite as following,

J =

(
−3
ε v

2 + 2(a+1)
ε v − a

ε
−1
ε

1 −b

)

Ju(0) can be easily proved to be negative definite since each Ji(0) is negative definite.

G is the Jacobian of all the coupling terms. Because the network is linearly coupled,

namely the coupling terms are linearly dependent on the state variableX, G is a constant

negative Laplacian matrix.

In graph theory, the Laplacian matrix is used as a representation of a graph such as the

network structure studied here in Figure 4.1. And it is also used to model the structure

of linear coupling in neural networks (Yu and Slotine, 2009). Generally, the Laplacian
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matrix is proved to be semi-positive definite in many other books such as (Fan, 1997).

Here, we focus on the specific structure of our network model and provide an alternative

proof. So, it will be finally shown that J(0) = Ju(0) + G is always negative definite,

namely, the system is stable at the origin no matter whether the coupling is included or

not.

Proof. In details, the coupling matrix G can be expressed as the sum of two parts,

G = Gc + Gd

Gc represents the part of Jacobian contributed by the couplings within the rows of the

network which can be expressed as below,

Gc = I(M) ⊗A(N) ⊗K (4.4)

And Gd represents the Jacobian contributed by the couplings crossover the rows,

Gd = A(M) ⊗ I(N) ⊗K (4.5)

where ⊗ indicates the Kronecker product. For example, let L =
(
l11 l12
l21 l22

)
and M =

(m11 m12
m21 m22 ),

L⊗M =

(
l11M l12M

l21M l22M

)
=


l11m11 l11m12 l12m11 l12m12

l11m21 l11m22 l12m21 l12m22

l21m11 l21m12 l22m11 l22m12

l21m21 l21m22 l22m21 l22m22


K =

(
kv

kw

)
is the matrix of coupling strength. I(N) ∈ RN×N is the identical matrix.

A(N) is a symmetric matrix of N× N size as expressed below,

A(N) =

−1 1
1 −2

. . .
−1

 ∈ RN×N, (4.6)

Since both K and I are diagonal matrices, whether the matrices Gc and Gd are negative

definite is determined by A.

A (p + q) × (p + q) nonsingular square matrix M can be partitioned as a 2 × 2 block

matrix as shown below,

M =

(
M1 M2

M3 M4

)
where, M1 is a p × p matrix while M4 is a q × q matrix. So, M2 is a p × q matrix and

M3 is a q × p matrix. If M4 is nonsingular, the matrix, the Schur’s Complement of M
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with respect to M4 (Boyd and Vandenberghe, 2004) is defined as

M/M4 = M1 −M2M
−1
4 M3. (4.7)

Moreover, Schur’s Complement Lemma Boyd and Vandenberghe (2004) states that, if

M is symmetric, i.e., MT
1 = M1, MT

4 = M4 and MT
2 = M3, then the property that M

is negative semi-definite is equivalent to that the Schur’s complement in Equation 4.7 is

negative semi-definite.

Note that A(N) can be partitioned as below,

A(N) =

(
A1 A2

AT2 A3

)
=



−1 1 · · · 0 0

1 −2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −2 1

0 0 · · · 1 −1


∈ RN×N

Since A3 = −1 < 0, the Schur’s complement of A(N) with respect to A3 is A1−A2A
−1
3 AT2 ,

which is indeed A(N−1). According to Schur’s complement lemma, if A(N) is negative

semi-definite then A(N−1) will also be negative semi-definite, and vice versa. Keep ap-

plying this property recursively until N = 2, we obtain

A(2) =

(
−1 1

1 −1

)

A(2) is a semi-negative definite matrix with two eigenvalues λ1 = −2 and λ2 = 0. Hence,

A(N) is also semi-negative definite. Finally, both Gc and Gd are semi-negative definite.

Gc 6 0, Gd 6 0

Finally,

J(0) = Ju(0) + Gc + Gd < 0,

since sum of semi-negative definite matrices and negative definite matrix is negative

definite.

Hence, we have proved that the stability of the origin does not change when the coupling

is included. So, Turing instability which requires the loss of stability of the unique

equilibrium of uncoupled system is not applicable here. Generally, Turing instability

is a sufficient condition for generating self-organising patterns in the network. We will

show that even though the coupling terms does not change the stability of the origin,

instead, it makes the original monostable uncoupled system become multi-stable and

the final edge detection result can seen as another stable equilibrium X ∈ R2MN which

is chosen according to the initial image U r.
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4.2 Attractor Network

The behaviour or property of a network system without coupling is equivalent to the

single FitzHugh-Nagumo model. Thereby, if the nearest coupling is not included, i.e.

kv = 0 and kw = 0, the whole system with the parameter settings in Equation 3.9 has a

unique equilibrium which is the high dimensional origin (0 ∈ R2MN). It has already been

proved that this high dimensional origin is always stable so that any non-zero initial

conditions will finally shrink to zero. However, in the simulation of edge detection on

images, we clearly see the initial conditions translated from processed images evolve to

final stable edge maps. Hence, we believe that the couplings bring bifurcations to the

whole system and new stable equilibrium other than the origin appears as the expected

result of edge detection.

We will present several simulations on the networks of a few neurons in order to support

our belief. More specifically, we will track the equilibrium with continuum in coupling

strength in order to justify the bifurcation types. Finally, we link our discussion on the

property of the network to the theory of weakly coupled neuron network.

4.2.1 Edge Map: High Dimensional Attractor after Bifurcations

We start with the simplest network case that consists of only two neurons (M = 1,N =

2). The equations of such system can be expressed as below,

v̇1 =
1

ε
(v1(1− v1)(v1 − a1)− w1) + kv(v2 − v1)

ẇ1 = v1 − bw1 + kw(w2 − w1)

v̇2 =
1

ε
(v2(1− v2)(v2 − a2)− w2) + kv(v1 − v2)

ẇ2 = v2 − bw2 + kw(w1 − w2)

(4.8)

where X = (v1, w1, v2, w2)T ∈ R4. We will use X to indicate the equilibrium in R4 of the

system. And we determine the stabilities of X according to the Jacobian of the system

in Equation 4.8 which can be expressed as below,

J =
−ε−1(3v2

1 − 2(a1 + 1)v1 + a1)− kv ε−1 kv 0

1 −b− kw 0 kw

kv 0 −ε−1(3v2
2 − 2(a2 + 1)v2 + a2)− kv ε−1

0 kw 1 −b− kw


(4.9)
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and correspondingly, G ∈ R4×4 is expressed as below,

G =


−kv 0 kv 0

0 −kw 0 kw

kv 0 −kv 0

0 kw 1 −kw


We set the system with a1 = 0.1, a2 = 0.2, b1 = b2 = 4 to ensure the condition in

Equation 3.9 so that the uncoupled network (kv = 0,kw = 0) has only one equilibrium

at the origin. To examine the stability, we evaluate the Jacobian at the origin and find

the largest eigenvalue,

max
i

(Re(λi|X=0)) = −9.2423 (4.10)

When the coupling is included (kv = 1,kw = 5), we evaluate all the equilibria of system

by seeking the real solutions to F(X) = 0 and list them in Table 4.1, together with the

corresponding eigenvalues in Table 4.2.

X X1 X2 X3 X4

v1 −0.1055 0.7853 −0.1450 0.3081
w1 0.0245 0.1146 0.0415 0.0440
v2 0.4646 −0.1298 0.7261 −0.0619
w2 0.0653 0.0493 0.1038 0.0176

Table 4.1: List of all the high dimensional equilibria X = (v1, w1, v2, w2)T for
the coupled two neurons in Equation 4.8. For the parameter settings, a1 = 0.1,
a2 = 0.2, b1 = b2 = 4. For the settings of coupling strength, kv = 1 and kw = 5.

µ|X X = X1 X = X2 X = X3 X = X4

λ1 −3.6362 −5.6116 −4.8088 2.8869
λ2 2.6280 −2.1870 −0.1036 −3.5807
λ3 −0.1459 −0.1756 −0.2493 + 0.2727i −0.0281
λ4 −0.0255 −0.0702 −0.2493− 0.2727i −0.1469

Table 4.2: List of eigenvalues µ|X = (λ1, λ2, λ3, λ4)T of Jacobian in Equation 4.9
for all the equilibria in Table 4.1. Specifically, X2 and X3 are stable equilibria,
because all the real parts of their eigenvalues of Jacobian are negative.

It can be seen that all the values of λ2 and λ3 are negative or have negative real part.

Hence, X2 and X3 are the newly appearing stable equilibria (attractors) other than the

origin.

In the application of edge detection, only v variables take the value from the original

image U r. Here, the values of w1 and w2 do not have the specific meaning in final edge

detection results. If we define a map, v : R2MN → RMN, so that

v|X = (v1, v2, v3, · · · )
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then for a system of two coupled elements, the value of v as the expected pattern of

edge detection results would only follow into one of the three cases below,

(v1 ≈ 1, v2 ≈ 0) (v1 ≈ 0, v2 ≈ 1) (v1 ≈ 0, v2 ≈ 0)

where, the sign ‘≈’ denotes ‘being close to’. The first case means the left pixel is an

edge (assuming that v1 takes the image intensity of the left pixel as initial value and v2

takes that of the right). The second case means the right pixel is an edge, and the third

case means no edge. It can be clearly checked in Table 4.1 that

v|X=0 = (0, 0)

v|X2
= (0, 79− 0.13) ≈ (1, 0)

v|X3
= (−0.150.73) ≈ (0, 1)

The example above illustrates that the number of the equilibria becomes larger than one

if a sufficiently large coupling is included. Moreover, these newly appearing equilibria

could be either stable or unstable and each pattern of possibly potential edge detection

results corresponds to one of those stable attractor.

4.2.2 Effect of Coupling

Through the simulation provided in the previous section, we have got the basic idea

that the monostability of uncoupled network is broken by the coupling and the system

becomes multistable. And these newly appearing high dimensional equilibria are indeed

closely related to the potential edge maps. This section will include couplings of different

strengths to the whole network, in order to investigate their influences on the system

dynamics. We will start with the uncoupled monostable network and treat both kvi and

kwi as the bifurcation parameters. By changing both kvi and kwi within a relatively

small range, we examine how the stability changes. Finally, we will include extremely

strong couplings to the network, in order to examine how the bifurcation condition is

influenced by the initial parameter settings, ai and bi.

Small Coupling and Bifurcation Pattern

In section 3.2, we have shown the bifurcation pattern for a single FitzHugh-Nagumo

model, by tracking v+. Here, we will see that the bifurcation pattern for two coupled

neurons is similar to that for a single neuron.

The parameter settings a1 = a2 = 0.1 and b1 = b2 = 2 are the same for both examples

in Figure 4.2. Moreover, the coupling strength kv2 = 1 and kw2 = 5 also remain

as constants. In the first simulation, kw1 = 10 is constant and kv1 is treated as the

bifurcation parameter swept from 40 to 55. While in the second simulation. kv1 = 1
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Figure 4.2: Bifurcation diagram on coupling strength as bifurcation parameters

is constant and kw1 is treated as the bifurcation parameter swept from 5.5 to 8. The

bifurcation patterns presented in Figure 4.2 are similar to that of a single neuron in

Figure 3.3(b); the equilibrium undergos first a saddle node bifurcation then a Hopf

bifurcation if we reduce the value of kv1 or increase the value of kw1. Because the ratio

ε of timescales for v and w is chosen as a very small constant, kv is required to be set

as a large value in order to make qualitative influence to the system; it shows that the

bifurcation happens at least when kv1 > 40.

Consider the network in Equation 4.8 and we can rewrite expressions as below{
εv̇1 = v1(1− v1)(v1 − a1)− w1 + εkv1(v2 − v1)

ẇ1 = v1 − b1w1 + kw1(w2 − w1)
(4.11)

with similar equations for v2 and w2, because of the symmetry of the coupled two

neurons. It can be seen in this system of equations that the coupling through the state

variable v may contribute little to the whole system dynamics compared to that through

the state variable w, when ε� 1. Therefore, it may be omitted from the model. In order

to support this assumption, we provide another two groups of simulations illustrating

the influence of kvi on the two coupled neurons. For the sake of convenience, we assume

kv1 = kv2 = kv and kw1 = kw2 = kw without loss of generality. We focus on the specific

parameter settings (a1 = a2 = 0.25, b1 = b2 = 4), and investigate both the uncoupled

and the coupled cases for two different values of ε: (0.001, 0.0005). The initial condition

adopted is

(v1(0), v2(0)) = (0.26, 0.24), (w1(0), w2(0)) = (0, 0).

So in this case, the expected edge detection result will be

v = (v1, v2)|t→∞ ≈ (1, 0)
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The first four figures in Figure 4.3 present the simulation result for ε = 0.001. Fig-

ure 4.3(b) and Figure 4.3(d) show that clear edge detection (in red) result is obtained

when kv = 0. However, when kv increases, the edge is no longer detected and both v

curves and w curves will be more and more similar to the uncoupled cases as shown in

Figure 4.3(a) and Figure 4.3(c). When ε further decreases to 0.0005, as shown in the

rest figures in Figure 4.3, the effect of changing the strength of kv on the edge obtained

is very little, as shown in Figure 4.3(f) and Figure 4.3(h), so that it reasonable to neglect

it.

The simulation results in the previous sections tell us that, first, the increase of kv is

not conducive to get the edge result, and second, the effect of v coupling is limited for

sufficiently small ε. These two conclusions provide the justification for removing the

coupling term through v in Equation 3.17 to obtain a simplified model follows,
v̇i = f(vi, wi, ai)

ẇi = g(vi, wi) + kw
∑
j∈Pi

(wj − wi), (4.12)

where, the neurons are coupled only via kw. Again, Pi = fc(P(m,n)) is the set of nearest

neighbours of the i-th element. The edge detection results provided later will illustrate

that the elimination of the v coupling does not adversely affect the performance of the

algorithm for the whole network system.

Extremely Large Coupling

Assume that v = (v1, v2)T , w = (w1, w2)T and kw1 = kw2 = k. It can be clearly

seen from equation Equation 4.8 that w is linearly dependent on v as,

v +

(
−b1 − k k

k −b2 − k

)
w = 0

So,

w = −
(
−b1 − k k

k −b2 − k

)−1

v

=


b2 + k

b1b2 + k(b1 + b2)

k

b1b2 + k(b1 + b2)
k

b1b2 + k(b1 + b2)

b1 + k

b1b2 + k(b1 + b2)

 v

when the coupling strength kw goes to infinity, w can be written as,

w =
1

b1 + b2

(
1 1

1 1

)
v
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Figure 4.3: The effect of v coupling on system dynamics. The first four figures
(a), (b), (c) and (d) present simulation for ε = 0.001 and the rest four figures (e),
(f), (g) and (h) present that for ε = 0.0005. Figures in the left column illustrate
the simulation of the uncoupled models, while figures in the right column are
that of the coupled models. In all the simulation of coupled models, kw = 10
and kv is swept from 0 to 10 with the step of 0.5. For other parameter settings,
a1 = a2 = a = 0.25,b1 = b2 = b = 4.
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Since ε� 1, we omit the influence of kvi and substitute the equation above to equation

Equation 4.8 to obtain,{
(b1 + b2)(−v3

1 + (a1 + 1)v2
1 − a1v1)− (v1 + v2) = 0

(b1 + b2)(−v3
2 + (a2 + 1)v2

2 − a2v2)− (v1 + v2) = 0

Eliminating the variable v2 obtains the equation of v1. And the result obtained in

Mathematica is presented below,

−(b1 + b2)v1p(v1) = 0

where p(v1) is a univariate polynomial of degree 8 whose coefficients are functions of a1,

a2, b1 and b2. Obviously, this equation has a root v1 = 0, but it is still a difficult work

to find out the explicit analytical condition when it has other roots. So, we will present

a numerical simulation on such coupled two neurons to see whether the coupled network

always has equilibrium other than the origin.

b 2

b1

(4, 4)

(2, 2)

1 2 3 4 5

1

2

3

4

5

Figure 4.4: Structural stability of the uncoupled system to the extremely large
coupling through the state variable w. For parameter settings, a1 = a2 = 0.25,
ε = 0.001. For coupling strength kv1 = kv2 = 1 and kw1 = kw2 = 5× 103. Two
straight lines respectively indicates the boundary of saddle-node bifurcation
(solid line) and Hopf bifurcation (dashed line). The boundaries exhibits the
symmetry due to the same setting of ai. Generally, the uncoupled network
requires to be set near to its bifurcation points, to ensure that it undergoes the
bifurcations after the coupling is included.

Two groups of time domain simulation on these two points are presented in Figure 4.5.

In either group, we focus on two identical neurons and we check both uncoupled and

coupled case by running the system at the same initial conditions (v0, w0) = (0.24, 0)

and (v0, w0) = (0.26, 0). a is chosen to be 0.25 in both groups of simulations. However,

in contrast to the first group (Figure 4.5(a)4.5(b)4.5(c)4.5(d)), b is increased from 2 to
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4 in the second group (Figure 4.5(e)4.5(f)4.5(g)4.5(h)) so that the second single neuron

is nearer to the bifurcation point in the uncoupled case. For coupled cases, the coupling

strength kv is chosen as a small value while kw is increased to an extremely large one.

It can be seen from results of the first group simulation (b = 2) that there is no new

equilibrium turning up no matter how large kw is. However, different result is obtained in

the second case (b = 4) where a new equilibrium appears when the coupling is included.

Hence, we can draw a conclusion that the parameters of the uncoupled neuron is required

to be set sufficiently near to its bifurcation point in order for the coupled case having

new equilibrium other than the origin.
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Figure 4.5: Two groups of simulations to check the structural stability of the
uncoupled system to the extremely large coupling through the state variable w.
For parameter settings, a = 0.25, ε = 0.001 in both simulations. However, b is
chosen to be 2 in first group and 4 in second one. In the coupled systems for
both simulation, kw is swept from 100 to 103.
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4.3 Discussion and Conclusion

Through the simulations, we can get some basic ideas about linking the dynamics of the

network system described in Equation 3.17 to its mechanism of edge detection. Consider

the dynamics of the neural network in Equation 4.1 in a more specific expression as below,

Ẋ = Fu(X) + C(X), X ∈ R2MN.

where, Fu(·) : R2MN → R2MN and C(·) : R2MN → R2MN are vectorised functions which

respectively represent the uncoupled dynamics and the coupling. Again, we use X to

denote the equilibria obtained from Ẋ = 0. We have shown the system has only one

equilibrium for the uncoupled dynamics F(X) = 0 with the appropriate parameter

settings. And if the coupling is included, the whole system will have more equilibria X.

We elaborate that one of the equilibria X which is likely to be non-hyperbolic can be

mapped to the expected edge map M. We use XM to denote such an equilibrium. By

tracking XM, these equilibria, we find out that the behaviour of system experience two

bifurcations, firstly saddle-node bifurcation and secondly Hopf bifurcation. Moreover,

the stability of these equilibria are assuring if they are beyond the Hopf bifurcation. We

point out that this pattern is similar to that of single neuron. Thereby, the ability of

the network to pick up edges as the steady final results indeed inherits from a single

FitzHugh-Nagumo model. Most importantly, it is clearly shown that certain conditions

should be satisfied to ensure the Non-hyperbolicity of the network system, that the

uncoupled system is required to be near the bifurcation point.

Thus, the problem of detecting the correct edges in an image by using the class of

dynamical models such as in Equation 3.17 addressed in this thesis, is equivalent to

the following two steps. First, we determine the existence of a stable equilibrium XM.

Second, we examine whether its attraction domain contains the initial condition given

by the rescaled image,

U r ∈ B(XM).

Based on these observations, we reasonably link the network system described in Equa-

tion 3.17 to theory of WCNN. The theory mainly claims that WCNNs requires to be

non-hyperbolic to exhibit non-trivial behaviours. From a brain dynamics point of view,

these non-trivial behaviours are always considered valuable in performing computational

tasks on given input patterns. In other words, if all the neurons in a weakly coupled

network are locally hyperbolic, then such a network is proved to have similar local be-

haviour to the uncoupled network and even the corresponding linearised system. In our

case, the simulations previously provided show that the uncoupled neuron is required to

be near enough to its bifurcation point to get a corresponding bifurcation after being

coupled. So, the coupling works as a disturbance to the uncoupled neurons which are

nonhyperbolic, namely structurally unstable.
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Based on this theory, Hoppensteadt and Izhikevich (1997) introduce the classification

of a general neural network. They claim that most of the networks of coupled neurons

can be classified as one of the following three types, if assume the input pattern is a

stationary image, or changing slowly dependent on the time.

MA type (Multiple Attractor Neural Network) The input pattern is given as an ini-

tial condition of the network, and the network converges to one of possibly many choices.

GAS type (Globally Asymptotically Stable Neural Network) The key pattern is given

as a parameter that controls the location of a unique limit cycle or the shape of a unique

equilibrium.

NH types (Nonhyperbolic Neural Network) The input pattern is given as bifurcation

parameter that perturbs a nonhyperbolic equilibrium.

The simulations provided above clearly shows that the network system in Equation 3.17

belongs to the MA type of neural network. However, it is slightly different from a gen-

eral MA type network. According to Hoppensteadt and Izhikevich (1997), in order for

a MA type network to perform an association process, each attractor of the network is

associated to a prior memorised input pattern. A typical example of an MA type net-

work is the Hopfield network (Hopfield, 1982). But, none of the stable equilibria of the

system in Equation 3.17 corresponds to a prior memory. Either the algorithms proposed

by Nomura et al. (2011a,b) or the ones proposed in this thesis work for general purpose

edge detection. There is neither process of remembering nor requirement of doing this.

In order for the system capable of processing all kinds of patterns, it should be possible

for the system to converge to any of the attractors. We denote the attraction domain

of a specific attractor X by B(X) and the corresponding boundary by ∂B(X). In other

words, finding the “exact image threshold” is equivalent to evaluating the boundary of

attraction domain ∂B(X) of the stable equilibrium representing the detected edge map

M.

For the binary edge detection algorithm, the system parameter settings are constant for

all the neurons, which makes both the stable equilibrium X and the boundary ∂B(X)

irrelevant to the initial conditions once the system parameter settings are determined.

So, the initial images can only converge to a very limited number of stable equilibria.

This is also the reason why constant a is only suitable for binary images. By introducing

the variable a, the system becomes suitable for grayscale images. However, the parameter

settings of the whole system are now influenced by the initial conditions set by the images

and so are the boundaries of attraction domains ∂B(X) which are the “exact image

threshold”. So it becomes a very difficult problem to find such “exact image threshold”

for such high dimensional system of Equation 4.3 and how it changes according to

the initial condition given by the image U . We note that Nomura et al. Nomura
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et al. (2003)Nomura et al. (2008)Nomura et al. (2011b) treat the system parameter a

as an estimate for the “exact image threshold”, inspired by the excitability of the single

neuron. However, the parameter a is not even accurate as a threshold of excitability

of the uncoupled single FitzHugh-Nagumo type of neuron. So, the method of setting a

according to the diffused image indeed controls the attraction domain of the attractors,

so that the initial condition can automatically choose its destination as correctly as

possible. We address this issue in the next chapter.





Chapter 5

Quantification of Excitability

Using Continuous Lyapunov

Exponents

The chapter focuses on the solution to the “wrong edge” problem found in edge detection

result when extending Nomura’s models from binary image application to grayscale one.

Previously in Section 4.3, we have indicated that the initial condition X0, namely the

rescaled input image U r, would automatically evolve towards to a specific attractor X

representing the edge detection result, once it is located in the attraction domain B(X).

So basically, we ascribe the appearance of the wrong pulse or edge to that the boundary

of attraction main ∂B(X) is not correctly found. Firstly, we provide an example of

one-dimensional edge detection in order to clearly illustrative the problem. Secondly,

we quantitatively analyse the excitability of a single neuron by using Lyapunov exponent

and find that the problem is caused by the inaccurate definition of the image threshold.

Hence, we redefine the image threshold according the quantitative analysis. Thirdly, we

propose our edge detection method according to the new image threshold and adopt the

anisotropic diffusion to further inhibit the generation of the wrong pulse. Finally, we

compare the results obtained from Nomura’s algorithm and our method.

5.1 Problem Caused by Variable Threshold

This section will present the problem introduced when the threshold is set by diffusing

the grayscale values of U r. We mainly focus on an example of a 2-step image that sets

53
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initial condition

vi(0) = U ri =


0.10, 1 6 i 6 50

0.15, 51 6 i 6 100

0.20, 101 6 i 6 150

, wi(0) = 0. (5.1)

For such a 2-step function, a constant a is no longer sufficient for detecting both edges.

So, according to Nomura’s algorithm, we evaluate the parameter ai = θ(τ) according

to Equation 3.24, where we choose the constant d = 10. With this example, we aim

to extensively present the problem of the “wrong pulses” discovered in (Nomura et al.,

2011b). With increasing values of the stopping time τ of the diffusion, we obtain θ with

increasing degrees of blurring, with the consequent results provided in Figure 5.2.

Figure 5.1 provides a zoomed in view of the local area around both the potential edge

positions in the original step function in Equation 5.1. Because the isotropic diffusion

d in Equation 3.24 is constant for all the neurons and the magnitudes of the two steps

are the same, the diffused steps in θ(τ ; d) around both the edge positions have the same

shapes for each value of τ as shown in Figure 5.1(a) and Figure 5.1(b).
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Figure 5.1: Image threshold θi(τ) with τ equal to 0.015, 0.030, 0.060, 0.120,
0.200, 0.300, 0.500 and 1.000, respectively corresponding to the cases provided
in Fig. 5.2

Note that, within a small local area around the edge position as shown in either Fig-

ure 5.1(a) or Figure 5.1(b), the diffused step is center-symmetric. Considering the right

half of the step, the intensity level closer to the edge position becomes more distant from

the original step level after diffusion, i.e. the more θi(τ) decreases. Because ai is directly

set as θi, the neuron closer to the edge position is more likely to be excited when the

step is diffused. Hence estimate that for large τ , there will be more than one neuron in

an excited state, located not just at, but near the edge. Hence a wrong pulse will be

produced as shown in Figure 5.2(c). The mechanism and outcome are similar to those
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in the second example in Figure 3.8 where there indeed are two edges to be detected.

Further, the more diffused θ(τ) is, the greater is the distance between the two pulses

around either step, as shown in Figure 5.2(d).

Hence, we can summarize that the “wrong pulse” problem (Nomura et al., 2011b) is

introduced by the method of setting a as variable threshold owing to the following

reasons. For too small a value of τ , such as the case where τ = 0.015 in Figure 5.2(a),

the threshold is not sufficiently diffused, and thus there is no edge detected. And for

too large a value of τ , such as the case where τ = 0.5 in Figure 5.2(c), the threshold is

spread out too far and a second stable edge is obtained at the wrong positions.
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(a) Edge detection result on the step function in Equation 5.1 with τ = 0.015.
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(b) Edge detection result on the step function in Equation 5.1 with τ = 0.060.
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(c) Edge detection result on the step function in Equation 5.1 with τ = 0.500.
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(d) Edge detection result on the step function in Equation 5.1 with τ = 1.000.

Figure 5.2: Edge detection results on one dimensional step function in Equa-
tion 5.1 with ai = θi(τ ; d = 10) which is the variable image threshold obtained
from Equation 3.24 with different values of τ . For other parameter settings,
b = 1, ε = 0.001 kv = 4 and kw = 20.



Chapter 5 Quantification of Excitability Using Continuous Lyapunov Exponents 57

5.2 Proposed Edge Detection Method by Using Anisotrop-

ic Diffusion

In order to deal with the emergence of the wrong pulse, we proposed an alternative

algorithm without increasing size of the system based on the model in Equation 3.17. In

details, we provide a more accurate definition of the image threshold for a monostable

FitzHugh-Nagumo model in Equation 3.3 by evaluating the Lyapunov characteristic

exponents, which enables us to correctly deal with the problem when extending the

algorithm to gray level images. Finally, in order to enhance the performance of edge

detection, we introduce the anisotropic diffusion to Equation 3.24 where d is also deter-

mined by the rescaled image U r.

5.2.1 Image Threshold: Boundary of Attraction Domain

As previously discussed in Section 4.3, the initial condition X0 = U r requires to be

located within the attraction domain of the correct attractor B(XM). Hence, we need

to evaluate the boundaries of attraction domain ∂B(X) in the model in Equation 4.3

and track their changes when system parameters change.

However, it is a very difficult task to find the exact boundaries ∂B(X) for such a high di-

mensional system in Equation 4.3. We note that Nomura et al. Nomura et al. (2003)No-

mura et al. (2008)Nomura et al. (2011b) treat the system parameter a as an estimate for

the exact boundary, which they called “image threshold”, inspired by the excitability of

the single neuron. However, we will show later that the parameter a is not an accurate

threshold of excitability for a single FitzHugh-Nagumo model in Equation 3.3., and is

even less likely to be a reasonable estimate of ∂B(X) for the coupled network.

Indeed, we find it also a difficult work to evaluate the threshold of excitability for a

single FitzHugh-Nagumo model. By the term “threshold”, we often refer to a boundary

between two states, or a critical value beyond which a qualitative change appears in a

system property. Such as what we have observed in Section 3.3.2, a single neuron has

two categories of the initial conditions, one of which leas to the resting, the other to the

excited state. However, there is no explicit boundary between these two states for the

individual monostable system used here, no matter how small ε , the ratio of timescales

of the fast and slow variables, is, because such a monostable system has a property

that its trajectories have a continuous dependence on its initial conditions (Palis and

de Melo, 1982). Take the FitzHugh-Nagumo model in Equation 3.3 as an example.

We use x to denote the vector of state variables (v, w)T and use x(t;x0) to denote the

solution with the initial condition x0. Continuous dependence of trajectories x(t;x0) on

its initial conditions x0 indicates that, for a system which has only one globally stable

equilibrium x, two solutions x(t;x0) and x(t;x0 + δx0) could be arbitrarily close, as
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long as their initial conditions are sufficiently close δx0 → 0. In order to deal with

the contradiction, we require to quantify the excitability of a single FitzHugh-Nagumo

model in Equation 3.3 by using the Lyapunov exponent.

The Lyapunov exponent (LE) λ measures the rate of divergence of solutions x(t;x0) and

x(t, x0 + δx0), for initial conditions x0 differing by an infinitesimal δx0. Define Φt(x0)

as the derivative of the trajectory x(t;x0) with respect to the initial condition x0:

Φt(x0) :=
∂x(t;x0)

∂x0

and let m1(t), . . . , mn(t) be the eigenvalues of Φt(x0). The LEs of x0 can be defined as

λi := lim
t→∞

1

t
ln |mi(t)|, i = 1, . . . , n (5.2)

5.2.2 Computation of Lyapunov Exponents

In this section, we focus on the single FitzHugh-Nagumo model in Equation 3.3 and

evaluate the LEs in order to investigate how the trajectories starting in an infinitesimal

neighbourhood of x0 diverge from each other. We start with a brief introduction of the

numerical method of computing LEs used in this thesis. The more detailed method and

relevant proofs can be found in some articles and books (Parker and Chua, 1989; Sandri,

1996). We Consider the single FitzHugh-Nagumo system as follows,

ẋ = f(x), x ∈ R2 (5.3)

The direct way of computing all the Lyapunov exponents λi(x0) of this system is to

follow the definition in Equation 5.2. In order to evaluate the derivative of the trajectory

Φt(x0) with respect to the initial condition x0, we need to integrate the Jacobian matrix

Dxf(x) = ∂f(x)
∂x along the solution x(t;x0) to the system in Equation 5.3 with the initial

condition x0. In order words, to calculate Φt(x0), we need to solve the combined system

as follows, {
ẋ

Φ̇

}
=

{
f(x)

Dxf(x) · Φ

}
,

{
x(t0)

Φ(t0)

}
=

{
x0

I

}
(5.4)

where the first row is the original system in Equation 5.3 and the second row is the

linearized equation called variational equation. The variational equation can be obtained

by differentiating both the sides of Equation 5.3 with respect to x0 (Parker and Chua,

1989). However, this direct approach is problematic. For large value of t (Parker and

Chua, 1989; Sandri, 1996), the columns of Φt(x) will asymptotically align with the

eigenvector corresponding to the largest eigenvalue of Dxf(x). So, both the matrix Φt(x)

and its eigenvalues mi(t) will be ill-conditioned especially for the fast-slow dynamical

system such as the one in Equation 3.3. Indeed, if applying the direct approach here,

one of the eigenvalues m1 of Φt(x0) will fast shrink to zero.
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So, instead of the definition in Equation 5.2, we are looking at the definition of Lyapunov

exponents of order n such as introduced in (Sandri, 1996),

λn(x0) = lim
t→∞

1

t
ln[Voln(Φt(x0))] (5.5)

where Voln is the n-dimensional volume. And it is shown in (Oseledec, 1968) that

λn =
n∑
i=1

λi (5.6)

So, based on this relationship, an alternative approach of computing all the λi can

be introduced. Assume u1, · · · , un are n column vectors of the matrix Φt(x0). In-

tegrate the combined system in Equation 5.4 for a relatively small period ∆T from

Φ0 = (u
(0)
1 , · · · , u(0)

n ) = I to obtain Φ∆T = (u
(1)
1 , · · · , u(1)

n ). Get the orthonormal

Φ̂∆T = (û
(1)
1 , · · · , û(1)

n ) by using the Gram-Schmidt method as follows,

p
(1)
1 = u

(1)
1 , û

(1)
1 = p

(1)
1 /‖p(1)

1 ‖
p

(1)
2 = u

(1)
2 − 〈u

(1)
2 , û

(1)
1 〉û

(1)
1 , û

(1)
2 = p

(1)
2 /‖p(1)

2 ‖
· · ·

p(1)
n = u(1)

n −
n−1∑
i=1

〈u(1)
2 , û

(1)
i 〉û

(1)
i , û(1)

n = p(1)
n /‖p(1)

n ‖

(5.7)

The n-dimensional volume Voln(Φ∆T (x0)) is

Voln(Φ∆T ) ≈ ‖p(1)
1 ‖ · · · ‖p(1)

n ‖

Again, we continue to integrate the combined system from Φ̂∆T of the orthonormalised

column vectors for the next time interval ∆T to get Φ2∆T . By repeating this integration

and orthonormalisation procedure K times, during the k-th step, the increase factor of

the volume is
Voln(Φk∆T )

Voln(Φ(k−1)∆T )
≈ ‖p(k)

1 ‖ · · · ‖p(k)
n ‖

Therefore, the n-order Lyapunov exponents λn can be obtained as follows,

λn(x0) = lim
K→∞

1

K∆T

K∑
k=1

ln(‖p(k)
1 ‖ · · · ‖p(k)

n ‖)

And according to the relation provided in Equation 5.6, we can obtain each the Lyapunov

exponent λi as follows,

λi(x0) =
1

K∆T

K∑
k=1

ln(‖p(k)
i ‖). (5.8)

Either too small or too large a value of ∆T will lead to the numerical inaccuracies in

computing λi. Parker and Chua (1989) suggest using a ∆T that is ten or twenty times
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the natural period the system. In this thesis, Equation 5.4 is solved with the constant

time step dt = 0.001. So, we choose T to be 0.01. Moreover, for the system with a

globally stable equilibrium x such as Equation 3.3, if µ1, · · · , µn are the eigenvalues of

the Jacobian at x, we can obtain

λi(x) = Re(µi), i = 1, · · · , n (5.9)

As Lyapunov exponent λi is defined as the average rate of the diversion or contraction

of the nearby trajectories as t → ∞. So, theoretically for nearly all the x0 Parker and

Chua (1989) in the basin ∂B(x) of x, λi(x0) = λi(x). In other words, any transient

progress can be ignored if K is set as a very large integer. In order to maintain the

influence of the transient process, we choose K = 200 in this thesis.

For the detailed parameter settings in simulation, we vary the value of parameter a from

0.1 to 0.7 with step-size ∆a = 0.1 to get different planar systems. For each system,

we evaluate the LEs λ = (λ1, λ2) for the initial condition w0 = 0, and v0 ∈ [0, 1] with

step-size 0.001. Again, the ratio of timescales of fast slow variables, ε is kept as 0.001.

The results are provided in Figure 5.3.

Due to the global stable node at the origin, all the solutions starting from x0 will finally

converge with the others starting from x0 +δx0. So, it can be seen that all the LEs λ(v0)

are negative. However, there is a distinct cusp in each curve of λ1(x) in Figure 5.3(a)

and a steep drop in each curve of λ2(x), indicating that from the vicinity of specific

initial values, the solution trajectories maximally diverge before they finally approach

to the stable node as shown in Figure 3.7(a). In order to clearly show the position of

initial conditions where the dynamical system maximally changes its behaviour, we plot

the other two curves λ̂1 and dλ̂2
dv0

together for each system of different a in Figure 5.3(c),

where

λ̂i =
λi

max
v
′
0

|λi(v′0)| , i = 1, 2

The drop in each curve of λ2(v0) corresponds to the cusp in dλ̂2
dv0

, and their positions

coincide with those of the cusps in λ̂1 as shown in Figure 5.3(c). This identifies the

specific initial conditions for which the trajectories are most widely separated for a

single neuron as shown in Figure 3.7(a). So, for each system with different settings of

parameter a, we define the threshold of excitability θ∗ to be the v0 value at which the

Lyapunov exponent λ1 reaches its peak.

Figure 5.4(a) provides the detailed relationship between a and θ∗. The curve of the

function a(θ∗) is nearly a straight line. We choose the interval θ∗ ∈ (0.1, 0.3) where

the change of curve of the function a(θ∗) is relatively flat. And we do the linear fitting

to obtain a continuous linear function a : θ∗ 7→ a by least squares method provided in

MATLAB. The interpolated linear function is obtained as follows,
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Figure 5.3: Lyapunov exponents of the single FitzHugh-Nagumo model with
different values of parameter a from 0.1 to 0.7 with step-size ∆a = 0.1. b is
constantly chosen as 1 so that all the systems are monostable. Distinct cusps
and steep drops are respectively found in the curves of λ1(x, a) (in (a)) and
λ2(x, a) (in (b)). And in each pair of λ1 and λ2 having the same value of a,
these rapid changes coincide at the same horizontal position, as shown in (c),
denoting the threshold of excitation (spiking).

a = c1 · θ∗ + c2, c1 ≈ 1.02, c2 ≈ −0.01 (5.10)

Correspondingly, we will rescale the original image intensity U to the interval U r ∈
(0.1 0.3) with the expression provided below,

U r = 0.1 + 0.2 · U
L

(5.11)

where L is the maximum value of image intensities; L = 255 for the 8-bit image. It can

be seen from Figure 5.4(b) that the real threshold of excitability θ∗ is larger than the

parameter a. In the application of edge detection, we assign θ∗ with the diffused version

of processed image θ(τ)

θ∗i = θi(τ). (5.12)

So, if simply assume a = θ∗, the input image U r is required to be sufficiently diffused
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Figure 5.4: The quasi-linear relationship between system parameter a and image
threshold θ∗.

in order to detect as more edges as possible. Naturally, the wrong edges will be more

likely to emerge as discussed in Section 5.1. Later in this thesis, we will use θ to denote

both the rescaled image and the threshold of excitability for a single neuron, due to the

relation presented in Equation 5.12.

5.2.3 Anisotropic Diffusion

In Section 5.1, the problem of generating wrong pulses with the variable image threshold

(Nomura et al., 2011b,a) has been stated. We recall the two reasons which cause the

problem. First, the parameter ai is inaccurately treated as the image threshold θ.

Second, the extent of the diffusion is isotropically controlled for all the edges by the

same constant d and stopping time τ . Due to the inaccurate settings of parameter ai,

Nomura et al. (2003, 2008, 2011b) adopt a sufficiently diffused image threshold θ(τ) in

order to detect as many edges as possible. However, if the sufficiently diffused θ(τ) is

indiscriminately applied for all the edges in image, there may be more neurons in the

excited state in addition to the ones corresponding to the correct edge position. So,

the wrong pulses will turn up as shown in Figure 5.2. To solve this problem, a new

model in Equation 3.26 was introduced by Nomura et al. (2008, 2011b), containing two

sub-systems per pixel in Equation 3.17, with the extra copy (v1
i , w

1
i ) is given slightly

different dynamics in order to inhibit the generation of wrong pulses of the original

system (v0
i , w

0
i ).

We attempt, instead, to keep the size of the system fixed and look for an alternative

solution. Specifically, we first use LEs λ to measure the separation between two solutions

for nearby initial values and thereby evaluate a more accurate relation between the

parameter a and the threshold of excitability θ as in Equation 5.10. Then, since it is

the sufficiently diffused image threshold θ(τ) that leads to the emergence of a second

wrong pulse as discussed previously, the most direct way to inhibit the generation of the
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wrong pulses is to use a less blurred image (smaller diffusion constant d if the stopping

time τ is fixed) as the threshold so that it is more likely to only excite the neuron at

the correct edge position while inhibiting the ones around it. In other words, we require

different diffusion speeds for different regions of processed image. It is worth pointing

out that Perona and Malik (1990) provide a case of using an anisotropic diffusion in edge

detection. Their work shows that controlling the extent of diffusion differently according

to the magnitude of the gradient of processed image helps improve the performance

of processing local details. Following their work, we propose a model of anisotropic

diffusion by modifying the diffusion constant in the original discrete diffusion equation

in Equation 3.24 as follows:

θ̇i = di
∑
j∈Pi

(θj − θi)

di = d̃ · H(
||∇U ri||

max
i

(||∇U ri||)
− η)

(5.13)

where, d̃ is a small constant. H(·) is the Heaviside step function. η is a constant

threshold. And ||∇U ri|| is the magnitude of the gradient for U ri which can be discretised

as follows,

||∇U ri|| = ||(
∂U ri
∂x

,
∂U ri
∂y

)|| =√
(U r(m+1,n) − U r(m−1,n))2 + (U r(m,n+1) − U r(m,n−1))2

2∆h

(5.14)

with the same boundary condition in Equation 3.15.

As a result, di is no longer constant, but takes on two values {0, d̃}. If the normalized

gradient magnitude ||∇Uri||
max(||∇Uri||) is greater than the threshold η, di is chosen as d̃. Oth-

erwise for smaller magnitude of gradients, it is set to 0. In this way, we can inhibit the

diffusion of the state of the neurons which do not correspond to regions of large gradients

such as edges. By setting the appropriate value of η, the anisotropic diffusion will also

contribute to solve the problem of noise sensitivity introduced by adopting the accurate

threshold.

Finally, the novel edge detection algorithm using anisotropic diffusion for 8-bit grayscale

images can be summarised as in Algorithm 2, for ease of comparison to Nomura’s method

in Algorithm 1.
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Algorithm 2 Binary Diffusion Coefficient

1: Rescale the image intensity distribution U rm,n = ξ1U(m,n) + ξ2 with ξ1 = 1/1275 and
ξ2 = 0.1 so that 0.1 6 U r(m,n) 6 0.3.

2: Solve the equation below get an anisotropically diffused version of rescaled image
θi(τ) with a stopping time τ ,

θ̇i = di
∑
j∈Pi

(θj − θi)

di = d̃ · H(
||∇U ri||

max
i

(||∇U ri||)
− η)

||∇U ri|| = ||(
∂U ri
∂x

,
∂U ri
∂y

)||

3: Evaluate the system parameter ai = c1θi(τ) + c2, where c1 ≈ 1.02 and c2 ≈ −0.01.
4: Solve the new model equation below,

v̇i = f(vi, wi, ai)

ẇi = g(vi, wi) + kw
∑
j∈Pi

(wj − wi)

with the initial condition (vi(0), wi(0)) = (U ri, 0) and the zero boundary conditions
to get the steady state solution in v, which is vi(τs).

5: Threshold v(m,n)(τs) to get the final binary edge map M(m,n).

M(m, n) =

{
1, vi(τs) > 0.5

0, vi(τs) 6 0.5
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5.3 Results

This section applies Algorithm 2 proposed in the previous section to detect the edges

in the test images, which are previously introduced in Section 2.3, including both arti-

ficial and real ones. We also apply the same test images to Nomura’s method (Nomura

et al., 2011b) in Algorithm 1 so that we can provide a comparison between these two

algorithms. Specifically for testing the noise immunity of the algorithm, we present a

robustness test in comparison to the results obtained from purely gradient magnitude

map and Canny detector.

Artificial Images

The basic structure of artificial image has been introduced in Section 2.3. Moreover, in

order to test the applicability of the two algorithms on different ranges of original image

intensities, we also apply them on a lighter and a darker version of the original artificial

image as respectively shown in Figure 5.5(c) and Figure 5.5(d). And both are of the

same size [303× 404] as the original artificial image.

In order to evaluate the edge detection performance, the edge images obtained with

the two algorithms are compared with the ground-truth data of edges as shown in

Figure 5.5(b). Specifically in order to quantify the performance of edge detection of

algorithms for artificial images, we will adopt the following four measures, the true pos-

itive tp, the percentage of the true positive tpr, the false positive fp and the percentage

of false positive fpr.

We present the accuracy of edges detected using Algorithm 1 (Nomura’s method) in

Figure 5.6(a), Figure 5.6(c) and Figure 5.6(e), which are to be contrasted with those

obtained by Algorithm 2 in Figure 5.6(b), Figure 5.6(d) and Figure 5.6(f). Table 5.1

shows the comparison with the ground-truth edge information in Figure 2.2(b). Because

both the algorithms using the class of dynamical networks choose the higher of the two

intensity levels that change appreciably across an edge as the location of edge, that is

what we identify. So, following Nomura et al. (2011b), we also allow for an error of one

pixel shift when calculating the true positive and the false positive.

Fig. 5.5(a) Fig. 5.5(c) Fig. 5.5(d)

Algo#1 Algo#2 Algo#1 Algo#2 Algo#1 Algo#2

tp (No. of Pixels) 11340 5758 11230 5758 11057 5758

tpr (%) 97.08% 98.37% 97.15% 98.37% 97.03% 98.37%

fp (No. of Pixels) 1878 0 2080 0 2039 0

fpr (%) 1.61% 0% 1.79% 0% 1.75% 0%

Table 5.1: Quantitative evaluations of edge detection algorithms
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It is clear that the results on edges detected by Algorithm 2 improve upon those detected

using Algorithm 1 (Nomura et al., 2011b). Specifically, the rate of true positive tpr is

increased nearly 1.2% and the rate of false positive decrease to 0%. It is also worth

noting that the true positives obtained with Algorithm 1 number nearly twice as those

from Algorithm 2. The reason is that the Nomura algorithm merges the two edge maps

obtained respectively from the original and the inverted images and we allowed one pixel

error when calculating the these measures so that most of the true positive pixels in one

edge map would be the neighbour of the ones from the other map. As a result, the

edges obtained with the Algorithm 1 will normally be as twice thick as the ones with

our algorithm.

Since it is generally accepted (Canny, 1986) that thinner edges are better than thick

ones, this is another indicator of how Algorithm 2 improves upon Algorithm 1.

We would also like to make a remark concerning the apparent lack of symmetry in

Figure 5.6(a), Figure 5.6(c) and Figure 5.6(e). Although each square of the artificial

image is symmetrical, we test the algorithms by applying the whole image [303 × 404]

consisting of 12 squares. This tableau of 12 squares is no longer symmetric with respect

to spatial reflections and rotations, which explains the asymmetry of the erroneous edge

patterns in Figure 5.6(a), Figure 5.6(c) and Figure 5.6(e).
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(a) Artificial images with the intensity levels 0, 127
and 255

(b) Ground-truth data of the artificial images

(c) Artificial images with the lighter intensity lev-
els 127, 191 and 255

(d) Artificial images with the darker intensity lev-
els 0, 63 and 127

Figure 5.5: Artificial images and the corresponding ground truth of the edge
data.
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(a) Edge Image with Nomura algorithm for the
artificial images in Figure 5.5(a)

(b) Edge Image with proposed algorithm for the
artificial images in Figure 5.5(a)

(c) Edge Image with Nomura algorithm for the
darker artificial images in Figure 5.5(d)

(d) Edge Image with proposed algorithm for the
darker artificial images in Figure 5.5(d)

(e) Edge Image with Nomura algorithm for the
darker artificial images in Figure 5.5(c)

(f) Edge Image with proposed algorithm for the
darker artificial images in Figure 5.5(c)

Figure 5.6: Edge detection results for artificial images. For the Nomura method,
the system parameters are set as b = 1, ε = 0.001, kv = 4 and kw = 20, and
the two diffusive constants d0 = 40 and d1 = 200 in Equation 3.24. Both
the diffusion stop times are τ = 1.0. For the proposed method, the system
parameters are set as b = 3.5, ε = 0.001 and kw = 5. The constant K = 10 and
the threshold η = 0.0 in Equation 5.13. The steady state time τs = 1.0 in the
model equations for both algorithm.
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Noise Robustness Test

In order to illustrate the usefulness of Algorithm 2, we run a noise robustness test

based on the same set of artificial images. As a result, we provide a model comparison

to Canny algorithm (Canny, 1986) and the method using only thresholded magnitude

of local gradients, in terms of true positive rate and false positive rate as the standard

deviation of the noise in the images is increased.

The intensity levels of the noise-free artificial image are 63, 127 and 191, to which we

add white noise with a standard deviation σ in the range from 10 to 60. For each noisy

image, the value of threshold η in Equation 5.13 is respectively set as 0.05, 0.15, 0.25. All

the measures are obtained by averaging over 50 simulations and the results are provided

in Figure 5.7 and Figure 5.8.
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Figure 5.7: Robustness test of Algorithm 2 in comparison to Canny detector.
The value of measures are taken as the average of 50 simulations.

It can be seen from Figure 5.7 that, for Canny detector, the average value of tpr remains

almost constant at around 0.965, while the average value of fpr increases with increasing

σ. For our method, although the tpr curves start at relatively higher value compared to

those of the Canny detector when σ = 10, they decrease upon increasing η. Specifically,

when η = 0.25 and σ = 60, the average value of tpr for Algorithm 2 decreases to 80%.

The fpr curves decrease appreciably when the larger value of η is chosen. Specifically,

when η = 0.25, we obtain the lower fpr by Algorithm 2 than that of Canny detector.

The procedure of denoising in Algorithm 2 is the binarisation on the diffusion param-

eter d̃, which is determined by the thresholded magnitude of gradient as shown in E-

quation 5.13. In fact, the thresholded magnitude of gradient can also been seen as a

denoised edge map from the processed image. In order to compare the results obtained

by Algorithm 2 and merely the thresholded magnitude of gradient, we run the noise

robustness test on the same sets of noisy images using these two methods and present

the resultant measures in Figure 5.8. It can be seen from Figure 5.8(b),Figure 5.8(d)

and Figure 5.8(f) that all the curves of fpr reduce upon increasing η. Specifically, the

results obtained by Algorithm 2 always contains much fewer false positives than that
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Figure 5.8: Robustness test of Algorithm 2 in comparison to the method using
pure local gradient magnitude with different values of η in Equation 5.13. In
each figure, the dashed line stands for the method using local gradient magnitude
and the solid line stands for Algorithm 2. η = 0.05 for 5.8(a) and 5.8(b).
η = 0.15 for 5.8(c) and 5.8(d). η = 0.25 for 5.8(e) and 5.8(f). The false positives
become much fewer when value of η increases for both algorithms. Algorithm 2
has largely reduced fpr curves with slight loss of tpr. The value of measures
are taken as the average of 50 simulations.
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of thresholded magnitude of local gradient, with the same value of η. The high tpr in

Figure 5.8(a),Figure 5.8(c) and Figure 5.8(e) is not very convincing due to the large

number of false positives. In a conclusion, according to these results, we can state that

the performance of Algorithm 2 is better than Algorithm 1 and comparable with that

of the Canny detector.

Real Images

Furthermore, we test Algorithm 2 for real grayscale images in comparison with Al-

gorithm 1 (Nomura’s method) and Canny detector . In Figure 5.9 and Figure 5.10,

we present the results respectively obtained by Algorithm 1, Algorithm 2 and Canny

detector along a row of the table with the original image as the left-most entry. All the

real images are previously introduced in Section 2.3 and they were also used by Nomura

et al. (2011a,b).

We find that Algorithm 2 is able to pick up more details than Algorithm 1 as shown in

Figure 5.10(g) compared with Figure 5.10(f) and these details can also be clearly found in

the result given by Canny detector as shown in Figure 5.10(h). We attribute this success

to the application of a more accurate relation between the threshold of excitability θ and

the system parameter a as in Equation 5.10. However, this increased accuracy makes

it relatively vulnerable to background noise in real images, especially illustrated by the

detection results for the ground in Figure 5.9(a) and Figure 5.9(e). Here, we choose

the threshold for anisotropic diffusion uniformly as 0.05 for real images and its value

should be appropriately chosen for each real image. The Canny detector shows the best

balance between the accuracy and the noise immunity among the three methods. In this

chapter, we aim to present the basic edge detection network in Equation 3.17 which has

the comparable edge detection ability (the balance between the noise immunity and the

accuracy) to Nomura’s method (Nomura et al., 2011a) without doubling the network

size. Since the main motivation of this chapter is to explore how dynamical theory

may be used to tailor the design phase of a silicon circuit, this halving of network size

compared with (Nomura et al., 2011a,b) would be of great benefit to that goal.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.9: Edge detection results for real images, (a) Traffic Cone [604× 437].
(e) and Tire [512×512]. (b) and (f) provide the edge detection results obtained
by adopting the Nomura method (Nomura et al., 2011a), in which the system
parameters are b = 1, ε = 0.001, kv = 4 and kw = 20, and the two diffusive
constants in Equation 3.24 for the diffusive a0

i and a1
i are respectively set as

d0 = 40 and d1 = 200. Both the diffusion stop times are τ = 1.0 and the
steady state time τs = 1.0 for the model equation Equation 3.26. (c) and (g)
provide the edge detection results with the proposed method in Algorithm 2
using anisotropic diffusion, in which the system parameters are b = 3.5, ε =
0.001, kv = 0 and kw = 5. The constant d̃ = 10 and the threshold η = 0.05 in
Equation 5.13 for all the images. And the anisotropic diffusion stopping time is
τ = 1.0. The steady state time τs = 1.0 for the model in Equation 4.12. ((d))
and ((h)) are the results obtained by the Canny’s algorithm where the thresholds
are automatically determined by the program provided in MATLAB.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.10: Edge detection results for real images, (a) Pillow [468 × 552].
(e) Video camera [435 × 577]. (b) and ((f) provide the edge detection results
obtained by adopting the Nomura method (Nomura et al., 2011a) ,in which the
system parameters are b = 1, ε = 0.001, kv = 4 and kw = 20, and the two
diffusive constants in Equation 3.24 for the diffusive a0

i and a1
i are respectively

set as d0 = 40 and d1 = 200. Both the diffusion stop times are τ = 1.0 and the
steady state time τs = 1.0 for the model equation Equation 3.26. ((c)) and ((g))
provide the edge detection results with the proposed method in Algorithm 2
using anisotropic diffusion, in which the system parameters are b = 3.5, ε =
0.001, kv = 0 and kw = 5. The constant d̃ = 10 and the threshold η = 0.05 in
Equation 5.13 for all the images. And the anisotropic diffusion stopping time is
τ = 1.0. The steady state time τs = 1.0 for the model in Equation 4.12. (d) and
((h)) are the results obtained by the Canny’s algorithm where the thresholds
are automatically determined by the program provided in MATLAB.





Chapter 6

Network Stability

The original description (Nomura et al., 2011b) on the system in Equation 3.17 points out

that, by appropriately setting its initial conditions based on the images of interest, the

system will self-organize spatio-temporal patterns and quickly exhibit stationary spatial

pulses as an edge detection result. In contrast, many edge detection methods using

other reaction diffusion systems, as mentioned in (Nomura et al., 2011b), are unable

to maintain a stationary output. Thereby, additional steps to compute stopping times

are necessary for those algorithms. Hence, Nomura et al. (2011a) claimed the network

stability as a main contribution as it facilitates the complexity of the design. However,

their work is still somehow incomplete. Firstly, recall that in Nomura’s algorithm, the

parameter ai is determined by the diffused image θi based on the relation below,

ai = θi(τ).

θ(τ) is one frame of the time-varying solution to the diffusion equation in Equation 3.23

which we rewrite as following,

θ̇i = d
∑
j∈Pi

(θj − θi)

As illustrated in both Chapter 3 and Chapter 5, τ determines the extent of diffusion

of an input image, once the value of d is fixed. Thereby, in Algorithm 1 as well as

in Algorithm 2, although no stopping time is required for the vector of state variables

(vi, wi), a time τ still needs to be computed in order to stop the diffusion in θ. Secondly,

the previous work done by Nomura et al. (2011b) failed to elaborate the relation between

the system parameters and the stability of the output.

Hence, this goal of chapter is firstly to find out an alternative way to stop the diffusion

process in Equation 3.23 instead of computing τ , and secondly, to discuss how to set

the system parameters ai, bi and coupling strength ki based on the stability analysis

on the network system. Section 6.1 introduces a mechanism to the original diffusion so

75
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that the dynamics can be automatically stopped. Specifically, the idea originates from

the OU process (OrnsteinUhlenbeck process) (Uhlenbeck and Ornstein, 1930), which is

a mathematical model to describe the Brownian motion under the influence of friction.

In contrast to the Wiener process which corresponds to the pure diffusion, OU process

includes a mean-reverting tendency so that it is possible for a Brown particle to move

back to the central location (starting point), admitting a stationary probability distri-

bution. Section 6.2 focuses on the analysis on the condition of Hopf bifurcation among

the network with the weak couplings. Section 6.3 provides detailed examples to how

the parameter settings of the uncoupled neurons are related to the coupling strength,

in order for the attractors representing expected edge patterns to be stable. Finally,

based on all the analysis, Section 6.4 presents a edge detection method using anisotropic

coupling strength ki which is controlled by the local gradient magnitude. Edge detection

results for both artificial and real images are provided. Moreover, the robustness test is

also carried out in comparison to Algorithm 2.

6.1 Self-Stopping Diffusion

In Chapter 5, we have shown that how edges are detected among the multiple intensity

levels by using a diffused version of the processed image θ(τ). Recall that in both the

previous algorithms, θ(τ) is obtained by solving a continuous diffusion equation in E-

quation 3.23. Figure 6.1 presents an illustrative example in which diffusion is considered

only in one dimension, namely, a chain of elements. Generally, diffusion smooths step

a
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Figure 6.1: The shape of the diffusion of a step as the solution to Equation 3.23
when τ = 0.5. The step function set is θi0(i > 6) = 0.15 and θi0(i < 5) = 0.1.
All the solutions θi(τ) will be smoothed versions of the step. Specifically, the
larger τ is, the more smooth the step is.

changes of intensity levels in an image. In Chapter 5, we have illustrated that the wrong

edge pulses will turn up when a sufficiently diffused image θ(τ) is used. Hence, we do

not want the diffusion process to run indefinitely. As discussed in Section 3.4.2 that,

we can choose a stopping time τ to control how smooth the result is, if the diffusion
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coefficient D in Equation 3.23 is always constant. Indeed, the stopping time is also set

in Algorithm 1 by Nomura et al. (2011a,b) to stop the diffusion, although they empha-

sizes the contribution of their method that no stopping time is required for the network

model in Equation 3.17. In our case of application to a hardware implementation, the

computation for the solution and the additional stopping time increases the complexity

of the off-chip design. Hence, we prefer an alternative method with which the diffusion

process can be stopped dynamically by itself. In this section, we will proposed a method

that evolves the diffusion process to have an appropriate asymptotically stable solution.

Recall the discrete diffusion equation in Equation 3.24 which we rewritten as

θ̇i = d
∑
j∈Pi

(θj − θi), θi(0) = U r(m,n)

where d = D/∆h2 is a constant which is proportional to D and Pi is a set consisting of

the coordinates of all the neighbour pixels of the ith pixel. Here,

Pi = {i− 1, i+ 1}

The discrete diffusion equation illustrates that, at a time t, the rate of changing in θ at

the specific position i is locally determined by the sum of the difference between θi and

its neighbourhood θi−1 and θi+1. The rate of changing in θi will be zero when there is

no difference between the nearby intensity levels. Therefore, the derivatives θ̇i for i > 6

or i < 5 is zero at the beginning. So, as clearly shown in Figure 6.1, the values of θi near

to the step edge changes much larger than those far from the step edge. If the diffusion

continue to run as τ goes to infinity, then final state of θ will be a constant value.

Hence, we need to add an another term to the discrete diffusion equation in Equation 3.24

in order to draw the diffused intensity θi back to the initial place, once it starts to deviate.

Basically, the restriction of state variable θi to its initial value θi0 can be expressed by

the following dynamics,
dθi
dt

= −(θi − θi0). (6.1)

For this equation, the derivative θ̇i is determined by the deviation of θi(t) from the initial

value θi0. The further the deviation is, the faster it is going back. Finally, any state of

θi will finally converge to the fixed value θi0. By adding 6.1 to the diffusion equation in

Equation 3.23, we obtain,

dθ

dt
= D∇2θi − D̃(θ − θ(0)) (6.2)

where D̃ is a non-zero constant and if both sides of the equation is divided by D̃, we

obtain
dθ

d(D̃t)
=
D

D̃
∇2θ − (θ − θ(0)) (6.3)
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Let t̃ = D̃t and ξ = D

D̃
. The equation becomes

∂tθ = ξ∇2θ − (θ − θ(0)) (6.4)

The equation above illustrate that the state variable θi will be drew back to the starting

point by the new added term θ− θ(0) once there is difference between the current state

θi(t) and the initial condition θi0. Hence, the diffusion process somehow still remember

the initial state. Assume the initial condition θ0 is a step expressed by the Heaviside

function AH(x− x0). Solving the partial differential equation in Equation 6.4 gives

θ(x) = C1e
x√
ξ + C2e

− x√
ξ − 1

2
Ae
−x+x0√

ξ

(
e
x√
ξ − e

x0√
ξ

)2
H(x− x0) (6.5)

By setting the following two boundary conditions,

θ(x→∞) = A, θ(x→ −∞) = 0

we evaluate the constants in Equation 6.5,

C1 =
1

2
e
− x0√

ξ , C2 = 0 (6.6)

So, the solution θ(x) to Equation 6.4 will be,

θ(x) =
1

2
e
x−x0√

ξ +AH(x− x0)(1− cosh

(
x− x0√

ξ

)
) (6.7)

The discrete form of Equation 6.4 can be expressed as below,

θ̇i = ξ
∑
j∈Pi

(θj − θi)− (θi − θi0) (6.8)

Again we run the equation with the same step function and the result chosen as the

steady state in Equation 6.8 for each value of ξ is provided as below,
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Figure 6.2: Control of the shape of the diffusion with the parameter ξ in Equa-
tion 6.8. When ξ is small the result is near to the original step.
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It can be clearly figured out that when ξ is large, the diffusion part in Equation 6.8 dom-

inates and the resultant solution will be sufficiently smoothed as the diffusion process.

While ξ is small, the result will be more near to the original step.

6.1.1 Modified Model Equations

We previously eliminate the coupling through the state variable v (kv = 0) due to the

very small value of ε. Here, based on the analysis provided above, we find an alternative

way of stopping the diffusion with a controllable parameter ξ. So, we proposed a modified

model for edge detection as below,

εv̇i = vi(vi − ai)(1− vi)− wi
ẇi = vi − biwi + ki

∑
j∈Pi

(wj − wi)

θ̇i = γ(ξ
∑
j∈Pi

(θj − θi)− (θi − θi0))

ai(t) = c1θi(t) + c2 (6.9)

It can be seen that updates in θi are independent of vi and wi. γ is a large constant,

γ � ε−1

One can image that when γ is large enough, the variable θi reaches its steady state very

quickly so that the equation can be independently treated. For the sake of convenience in

computer simulation, the third equation in Equation 6.9 will still be processed separately

from the first two in the following examples. The simulations on edge detection on both

artificial and real images are provided later in Section 6.4.

6.2 Stability of Multi-Attractor Type Network

According to the theory of WCNN, we know that the uncoupled neuron is required to

be set near to the bifurcation point in order for nonhyperbolicity of high dimensional

equilibrium X of the coupled network. Through the analysis provided in the previous

chapter, we find that the behaviours of the network system will undergo two bifurcations

when couplings are included, if the system parameters ai and bi are properly set. Assume

that we start with a relatively small value in kwi and gradually increase it, the system will

first experience a saddle-node bifurcation and then a Hopf bifurcation. Newly appearing

high dimensional equilibria become attractors only when ki continues to increase until

they go beyond the Hopf bifurcation. So if ε is fixed and takes an infinitesimal value,

stability of the attractors are influenced by all these parameters ai, bi and ki. As we

know, ai is determined by the diffused image θ which is controlled by the variance

diffusion parameter ξ.
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According to the WCNN theory, each single neuron in the network before including

the coupling requires to be set near to the Hopf bifurcation point. Once both ai and

bi are set, the stability of the attractors is only determined by the coupling strength.

Hence, the boundary, beyond which a specific high dimensional equilibrium representing

an edge detection result becomes an attractor, can be expressed as

β(k) = 0 (6.10)

where β : R2MN → R and k = (k1, k2, ..., k2MN). The goal of this section is to estimate

this boundary in order to appropriately set the coupling strength. As mentioned in

the previous chapter, the coupled network has many attractors. In order to pick out

the correct edge detection result, the previous methods only control the boundary of

attraction domain by diffusing the image and assigning the resultant value to parameter

ai. If stability of the attractors can be ideally controlled by the coupling strength ki, we

can reduce the number of the spurious attractors by unstabilising them. In other words,

the chance for the initial condition to converge to the correct attractor will increase.

This can be achieved by designing a pattern of ki according to the magnitude of the

local gradient of the input image.

6.2.1 Analysis on Jacobian: Hopf Bifurcation in Coupled Network

Denote the Jacobian of the whole network as J ∈ R2MN×2MN. If the coupling is not

included, then J is a block-diagonal matrix,

J = Ju =
⊕
i

Ji, (6.11)

where Ji is the Jacobian of a single neuron in Equation 3.5 which we rewrite as following,

Ji =

(
−ε−1(3v2

i − 2(ai + 1)vi + ai) −ε−1

1 −bi

)

Ji can be considered as a 2 × 2 sub-matrix in the diagonal of J. The relation below is

satisfied,

JiUi = UiΛi (6.12)

where Ui is the matrix with columns given by eigenvectors of Ji and Λi is the matrix

whose diagonal elements are eigenvalues of Ji. This relation also holds for J,

JU = UΛ (6.13)
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The eigenvalues of J can be found as the roots of characteristic equation of J

det(J− µI) =
∏
i

det(Ji − µI) = 0 (6.14)

It can be clearly seen that any eigenvalue λk of Ji must satisfy the equation (6.14).

Hence, the eigenvalue matrix of whole uncoupled network Λ can be expressed as below,

Λ =
⊕
i

Λi (6.15)

Consequently,

U =
⊕
i

Ui (6.16)

Assume that

Ji =

(
Jk,k Jk,k+1

Jk+1,k Jk+1,k+1

)
, k = 2i− 1

we know that the trace of a matrix equals to the sum of all its eigenvalues. Hence,

Jk,k + Jk+1,k+1 = λk + λk+1 (6.17)

If the ith neuron is undergoing a Hopf bifurcation by increasing the parameter bi to

its bifurcation point, then the eigenvalues λk and λk+1 are a pair of purely imaginary

conjugated eigenvalues. Correspondingly, Ji is traceless, namely

Jk,k + Jk+1,k+1 = 0.

Theorem 6.1. Assume there is no repeated eigenvalue λ for the uncoupled Jacobian Ju,

where

Ju =
⊕
i

Ji,

and

JiUi = Ui

(
λk

λk+1

)
, k = 2i− 1. (6.18)

Consider the change in the ith 2× 2 diagonal block of Ju as the ∆Ji,

∆Ji =

(
∆Jk,k ∆Jk,k+1

∆Jk+1,k ∆Jk+1,k+1

)
, k = 2i− 1

and with the corresponding changes of eigenvalues λk and λk+1, then the relation

∆λk + ∆λk+1 = ∆Jk,k + ∆Jk+1,k+1 +O(k2)

is satisfied for small value of coupling k.
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Proof. Let the perturbed Jacobian J be given as a function of coupling strength k.

Assume all the matrices in Equation 6.13 are differentiable in a neighbourhood of ki and

the derivative with respect to ki is denoted by a prime. We have

J
′
U−UΛ

′
= −JU

′
+ U

′
Λ (6.19)

As there is no repeated eigenvalue, we can assume that column eigenvector in the deriva-

tive matrix U′ can be expressed as the linear combination of the eigenvectors in U,

U
′

= UC (6.20)

Substitute (6.20) into (6.19) and both sides of equation premultiplying by the matrix

P∗ = U−1 give

P∗J
′
U−Λ

′
= −ΛC + CΛ (6.21)

The equation above has the following form if considered element by element,

p∗kJ
′
ul − δklλ

′
l = (λl − λk)ckl (6.22)

where p∗k and uk are respectively the kth left- and right-eigenvector (here, k = 2i− 1).

λk is the kth element on the diagonal of Λ, ckl is the entry (k, l) of matrix C and δkl = 1

if k = l and 0 otherwise. So, we have

λ
′
k = p∗kJ

′
uk, k = 1, . . . , 2MN, (6.23)

So, for the ith block of sub-matrix Ji in J, we investigate the how the corresponding

eigenvalues λk and λk+1 (here, k = 2i− 1) change when the coupling is included,

∆λk = p∗k∆Juk +O(k2) (6.24)

We have already illustrated the structure of ∆J in Section 4.1.1,

∆J = G = Gc + Gd (6.25)

where the expressions of Gc and Gd are respectively provided in Equation 4.4 and Equa-

tion 4.5. However, we are not using isotropic constant k now, so based on Equation 4.4

and Equation 4.5, the expression of ∆J can be rewritten as following,

∆J = K(I(M) ⊗AN +A(M) ⊗ IN ) (6.26)

where diag(K) = (kv1, kw1, kv2, kw2, . . . , kvMN, kwMN).



Chapter 6 Network Stability 83

Assume that P ∗i = U−1
i , according to Equation 6.16, P can be expressed as

P =
⊕
i

Pi (6.27)

Hence, in the column vectors pk and pk+1, only the elements pk,k, pk+1,k, pk,k+1 and

pk+1,k+1 are non-zero. And it is also the same situation for uk and uk+1. Thereby,

∆λl =
∑

r,s∈{k,k+1}
(pr,l∆Jr,sus,l) +O(k2), l = k, k + 1 = 2i− 1, 2i (6.28)

Considering the structure of coupling that ∆Jk+1,k and ∆Jk,k+1 are both zeros,

∆λk + ∆λk+1 =(pk,kuk,k + pk,k+1uk,k+1)∆Jk,k+

(pk+1,kuk+1,k + pk+1,k+1uk+1,k+1)∆Jk+1,k+1 +O(k2)
(6.29)

Due to UP∗ = I, namely,

pk,kuk,k + pk,k+1uk,k+1 = 1

pk+1,kuk+1,k + pk+1,k+1uk+1,k+1 = 1
(6.30)

Hence,

∆λk + ∆λk+1 = ∆Jk,k + ∆Jk+1,k+1 +O(k2) (6.31)

So, it is clear to see that the relation described in Equation 6.17 still holds for small

couplings. Thereby, if one of the equilibria of the coupled network system becomes

non-hyperbolic by undergoing a Hopf bifurcation, then correspondingly, the block of

sub-matrix in J is traceless as expressed below,

Jk,k + ∆Jk,k + Jk+1,k+1 + ∆Jk+1,k+1 = 0 (6.32)

Recalling that Jacobian of a FitzHugh-Nagumo model is expressed as,

Ji =

(
−ε−1hi −ε−1

1 −bi

)
,

where

hi = h(vi, ai) = 3v2
i − 2(ai + 1)vi + ai.

And since we set kv = 0 in the previous chapter, we can define ki = kwi and consequently,

∆Jk,k = 0, ∆Jk+1,k+1 = −Ki
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where Ki equals to 2ki, 3ki and 4ki, respectively when the ith neuron is located at the

corner, the side or in the center area of an image. So, the relation described in the

equation below

− ε−1hvi,ai − bi −Ki = 0 (6.33)

is used to determine the Hopf bifurcation condition for the coupled network.

Since Izhikevich (2006) presented an example using normal form to estimate the state

variable after the saddle-node bifurcation, we attempt to estimate the relation between

vi and ki through the same way assuming all the neurons are exactly at the saddle-node

bifurcation points before the coupling is included. We start with the single FitzHugh-

Nagumo model by treating b as the bifurcation parameter. However, the accuracy

of resultant estimate is not sufficient for the application. Some relevant results are

presented in Appendix A.

6.3 Parameter Settings for Uncoupled Neurons

The estimation in Equation 6.33 provides the equivalent condition for Hopf bifurcation in

coupled network instead of evaluating the detailed Jacobian J and eigenvalues Λ. Now,

it remains to determine the value of parameter bi. The coupling strength ki is closely

related to the distance of an uncoupled neuron to its bifurcation point. One can image

that if bi is set relatively small, then the uncoupled neurons are relatively farther from its

bifurcation point. Namely, the network will be less susceptible to be nonhyperbolic. In

this case, we require that the coupling strength ki be increased. However, the condition

in 6.33 will no longer be effective if ki becomes too large. So, in this thesis, we claim

that the uncoupled network is sufficiently close to its bifurcation, if the two conditions

that the coupling strength ki is weak and the new fixed points of is an attractor are

both satisfied.

According to the bifurcation pattern provided in Section 4.2.2, a nonhyperbolic equi-

librium undergoes a saddle node bifurcation prior to a Hopf bifurcation. Figure 6.3(a)

illustrates the bifurcation structures of a FitzHugh-Nagumo model We use bSN and bH

to denote respectively the Saddle-Node and the Hopf bifurcation point. Recall that the

expression of the saddle-node bifurcation curve for the single FitzHugh-Nagumo model

is

bSN =
4

(a− 1)2
(6.34)

It can be clearly seen that curve of bH is always higher than bSN and difference between

these two curves can be approximated by a linear fitting expressed as below,

∆b = −0.3a+ 0.495 (6.35)
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Figure 6.3: Bifurcation structure of a single FitzHugh-Nagumo model. In (a),
the solid curve denotes the Saddle-Node bifurcation point for a single neuron
and the dashed curve denotes the Hopf bifurcation point. For fixed value of
a, the value of b for Hopf bifurcation is always larger that for Saddle-Node
bifurcation. And (b) presents the curve of the difference between the b values
for these two different bifurcation points.

Hence,

bH = bSN − 0.3a+ 0.495 (6.36)

Therefore, it is natural to consider the condition of saddle-node bifurcation as a good

starting point for ki = 0.

We will provide a simulation on four coupled neurons in a chain in order to check that

such a setting makes uncoupled neurons sufficiently close to Hopf bifurcation. Consider

a network consisting of four neurons, where X ∈ R8. Define five potential attractors

Xi,where i = 1, 2, ..., 5 as below,

v|X1
≈ [1, 0, 0, 0]T

v|X2
≈ [0, 1, 0, 0]T

v|X3
≈ [0, 0, 1, 0]T

v|X4
≈ [1, 0, 1, 0]T

v|X5
≈ [0, 1, 1, 0]T

and define

k = [k1, k2, k3, k4]T

It can be clearly seen that, in fact, v|X4
is the combination of v|X1

and v|X3
, while v|X5

is the combination of v|X2
and v|X3

.

For all the four neurons, ai = 0.1 and bi is set as bSN when coupling is not included.

So, bi = 4.9383. We carefully tuned the coupling strength and find out all these three
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equilibria X1, X2 and X3 have a pair of purely imaginary eigenvalues when

k = [0.47157, 0.23815, 0.23455, 0.1]T .

Namely they are all undergoing Hopf bifurcations. The values of the equilibria as roots

to the equation F(X) = 0 are presented in Table 6.1. At this time, the eigenvalues of

X4 and X5,

λ|X4
=



−173.05

1.19 + 30.92i

1.19− 30.92i

0.59 + 31.05i

0.59− 31.05i

−11.38

−14.71

−108.45


, λ|X5

=



−171.46

54.66

52.89

−11.44

11.08

11.91

−108.24

−14.73


If we slightly increase the coupling strength to

k = [0.48150, 0.23828, 0.23699, 0.1]T (6.37)

then X4 is right at the bifurcation point and it has two pair of purely imaginary eigen-

values. At this time, both X1 and X3 cross the boundary of stability while X2 is still

undergoing Hopf bifurcation. And the eigenvalues of X5 are

λ|X5
=



−172.97

54.76

51.72

−11.39

11.10

12.21

−108.24

−14.73


Again the values of the equilibria are presented in Table 6.2. Finally, in order to make

X5 go beyond the Hopf bifurcation point, we increase the coupling strength to

k = [0.54, 0.48259, 0.47759, 0.1]T



Chapter 6 Network Stability 87

Now, the eigenvalues of X5 are

λ|X5
=



−182.69

0.00 + 0.3109i

0.00− 0.3109i

−1.61 + 0.3131i

−1.61− 0.3131i

−11.13

−108.45

−14.71



X v1 v2 v3 v4

X1 0.6818 -0.0182 -0.0003 0.0000

X2 -0.0340 0.6818 -0.0180 -0.0001

X3 -0.0007 -0.0182 0.6818 -0.0081

X4 0.6805 -0.0343 0.6812 -0.0081

X5 -0.0337 0.6448 0.6455 -0.0081

Table 6.1: k1 = 0.47157, k2 = 0.23815, k3 = 0.23455, k4 = 0.1

X v1 v2 v3 v4

X1 0.6831 -0.0182 -0.0003 0.0000

X2 -0.0346 0.6818 -0.0181 -0.0001

X3 -0.0007 -0.0182 0.6824 -0.0081

X4 0.6818 -0.0343 0.6818 -0.0081

X5 -0.0343 0.6447 0.6460 -0.0081

Table 6.2: k1 = 0.48150, k2 = 0.23828, k3 = 0.23699, k4 = 0.1

X v1 v2 v3 v4

X1 0.6889 -0.0336 -0.0014 0.0000

X2 -0.0376 0.7289 -0.0328 -0.0003

X3 -0.0016 -0.0331 0.7295 -0.0080

X4 0.6860 -0.0604 0.7277 -0.0080

X5 -0.0382 0.6816 0.6832 -0.0081

Table 6.3: k1 = 0.54, k2 = 0.48259, k3 = 0.47759, k4 = 0.1

The simulation above provides a typical example illustrating the relation among the

stabilities of the attractors in a MA type network. From an application point of view,

although some potential attractors, such as X4 and X5, can be considered as the com-

bination of others, such as X1, X2 and X3, the condition for non-hyperbolicity, or more

specifically stability, of the latter is generally not applicable to the former. Because of

the nearest coupling, we can expect that the influence is only locally strong and becomes
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less obvious when distances among neurons increase. So, we can see that the bifurcation

condition of X1 and X3, in terms of k is almost equal to that of X4. It can be explained

that the edge pulses in the shape of X4 is not quite near to each other. Whereas in

X5, the two pulse are adjacent so that we require a much stronger coupling to reach the

bifurcation point.

However, we expect that bifurcation condition of attractor consisting of neighbouring

pulses become close to the combinatory conditions of each single one, when the uncou-

pled neurons becomes further close to the bifurcation point. Considering the extreme

case where all the uncoupled neurons are right at their own Hopf bifurcation points,

any infinitesimal coupling will lead both single pulse attractor and the corresponding

combinatory pulse attractor to become stable.

We will run another group of simulations to verify this idea. Assume that number of

the neurons in the network does not change and ai = 0.1 for all the neurons. Now, we

increase the value of parameter bi. By using µ to denote the constant in Equation 6.36,

we obtain,

bi =
4

(1− ai)2
− 0.3ai + µ (6.38)

We attempt to choose µ = 0.25. The values of all the selected equilibria obtained during

the simulation for different settings of k are listed in Table 6.4 and 6.5. Again we start

with the case where X1, X2 and X3 are undergoing Hopf bifurcations. At this time,

k = [0.24548, 0.12334, 0.12264, 0.1]T

In order for X5 becoming stable, we strengthen the couplings to values as below.

k = [0.24548, 0.24754, 0.24534, 0.1]T

It is clearly to see that these sets of coupling strength become much closer.

6.4 Anisotropic Coupling Strength

The section aims to propose an edge detection based on the analysis provided above.

The basic idea is to first set the parameter bi in Equation 6.38 with the parameter µ to

control the distance of the uncoupled neurons to the Hopf bifurcation point. Then, set

the coupling strength kwi according to the normalised gradient magnitude,

ki = ν +
||∇U ri||

max
i

(||∇U ri||)
(6.39)

ν is a parameter to set the baseline which controls the coupling strength. In contrast to

the setting of gradient magnitude in Algorithm 2, the magnitude adopted here to assign
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X v1 v2 v3 v4

X1 0.6818 -0.0097 -0.0001 0.0000

X2 -0.0187 0.6818 -0.0097 -0.0001

X3 -0.0002 -0.0097 0.6818 -0.0080

X4 0.6815 -0.0188 0.6817 -0.0080

X5 -0.0187 0.6644 0.6645 -0.0080

Table 6.4: k1 = 0.24548, k2 = 0.12334, k3 = 0.12264, k4 = 0.1

X v1 v2 v3 v4

X1 0.6815 -0.0186 -0.0004 0.0000

X2 -0.0187 0.7092 -0.0183 -0.0001

X3 -0.0004 -0.0185 0.7090 -0.0080

X4 0.6808 -0.0349 0.7085 -0.0080

X5 -0.0187 0.6818 0.6818 -0.0080

Table 6.5: k1 = 0.24548, k2 = 0.24754, k3 = 0.24534, k4 = 0.1

ki need not to be thresholded since the Hopf bifurcation points work as an intrinsic

boundary for the stability. One could image that if ν is relatively small, there will be

many neurons silent which however are supposed to be excited. In other words, some

of the edge points in the ground truth data will be missing. And if ν is too large, more

error edges will turn up in the final results. By doing so, we largely make use of the

property of the model according to the theory of WCNN and largely simplify the off-chip

design procedures. The algorithm can be concluded as the following Algorithm 3,
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Algorithm 3 Anisotropic Coupling Strengths

1: Rescale the image intensity distribution U rm,n = U(m,n)/1275 + 0.1 so that 0.1 6
U r(m,n) 6 0.3.

2: Solve the equation below get a diffused version of rescaled image θi(τs)

θ̇i = ξ
∑
j∈Pi

(θj − θi)− (θi − U ri)

3: Evaluate the system parameter ai = 1.02θi − 0.01 and set the system parameter bi
as

bi =
4

(1− ai)2
− 0.3ai + µ

4: Set the coupling strength as

ki = ν +
||∇U ri||

max
i

(||∇U ri||)

5: Solve the model equation below,
v̇i = f(vi, wi, ai)

ẇi = g(vi, wi) + ki
∑
j∈Pi

(wj − wi)

with the initial condition (vi(0), wi(0)) = (U ri, 0) and the zero boundary conditions
to get the steady state solution in v, which is vi(τs).

6: Threshold v(m,n)(τs) to get the final binary edge map M(m,n).

M(m, n) =

{
0, vi(τs) > 0.5

1, vi(τs) ≤ 0.5
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6.5 Results

This section applies the algorithm proposed in the previous section to detect the edges in

both the artificial and real images, in comparison to the results obtained by Algorithm 2.

Specifically for testing the noise immunity of the algorithm, we present a robustness test

in comparison to Algorithm 2.

Artificial Images

The basic structure of the artificial images used to test the method in Algorithm 3

is presented in Figure 6.4(a) , which is the same as that used in Section 5.3. The darker

and lighter versions of the artificial image are also applied in order to test the useful-

ness of the algorithm. Hence, the ground truth data also keeps the same as shown

Figure 6.4(b). We use this set of three artificial images to respectively test Algorithm 2

and Algorithm 3. Moreover, in order to see the influence of self-stopping diffusion on the

algorithm performance, we also test Algorithm 3 where we only replace the self-stopping

diffusion with the original diffusion which has a stopping time τ = 1. The results ob-

tained by using these three methods from all the artificial images are the same as shown

in Figure 6.4(c), where tp = 5758, tpr = 98.37%, fp = 0 and fpr = 0%.

Noise Robustness Test

For the noise robustness test of method in Algorithm 3, the three intensity levels of

the artificial image are chosen to be 63, 127 and 191 and the white noise is added with

an increasing standard deviation σ from 10 to 60 with step 10. Figure 6.6(a) presents

an illustrative example of the noisy image with σ = 30. We compare the results to

the previous method in Algorithm 2, which introduced in Section 5.2.3. As mentioned

above, ν in Equation 6.39 is set to denoise, achieving the same function as that of the

parameter η in Algorithm 2. Specifically, a smaller value of ν stands for a averagely weak

coupling strength and thereby a further distance from Hopf bifurcation point. Hence, a

lower rate of false positives would be expected in this case. In the simulation, ν is set

in the range −0.3 to −0.05 with a step of 0.05, for each value of σ, while η is set by

sweeping from 0.05 to 0.3 with a step of 0.05 for each value of σ.

Figure 6.5 presents the curves of true positive rate and false positive rate respectively

obtained by Algorithm 2 and Algorithm 3. Specifically, the solid lines in Figure 6.5(a)

and Figure 6.5(c) illustrate the resultant curves obtained by Algorithm 3 while the

dashed lines in Figure 6.5(b) and Figure 6.5(d) illustrate those by Algorithm 2. It

can clearly seen in Figure 6.5(c) that the curves of false positive rate decays upon a

decreasing ν as expected. The fpr curves of the proposed method is generally lower

than that of the previous method. But the previous method can always lead to higher

tpr curves.
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(a) )

(b)

(c)

Figure 6.4: Edge map obtained by Algorithm 2 and Algorithm 3 using both
self-stopping diffusion and diffusion with a stopping time. In Algorithm 2, the
parameter settings are b = 3.5, ε = 0.001, η = 0, d̃ = 10 and τ = 1. For
Algorithm 3, µ = 0.25 and ν = 0. For the self-stop diffusion, ξ = 3, otherwise
for the original diffusion, a stopping time τ is chosen to be 1. The results are all
the same as shown in (c), where tp = 5758, tpr = 98.37%, fp = 0 and fpr = 0%.
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Figure 6.5: Robustness test for the proposed method in comparison with the
previous algorithm in Section 5.2.3. Performance measures on the previous
method is illustrated by the dashed lines while measures on the proposed method
is illustrated by the solid lines. Generally, the results obtained by the proposed
method have less false positives. However, the results obtained by the previous
method have more true positive points.

Figure 6.6(b) and Figure 6.6(c) provide two illustrative edge maps which are obtained

from noisy image with σ = 30 respectively by Algorithm 2 and Algorithm 3.
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(a) Image with noise (σ = 30)

(b) η = 0.26

(c) ν = −0.22

Figure 6.6: The true positive rates of these two edge maps are nearly the same,
tpr = 0.8112 for 6.6(b) and tpr = 0.8110 for 6.6(b). The false positive rate of
the later (fpr = 0.0025) is lower than that of the former (fpr = 0.0030).
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Real Images

Figure 6.7 and Figure 6.8 provide the edge detection results from the real grayscale

images obtained by Algorithm 2 and Algorithm 3. For each real image, the baseline ν in

Equation 6.39 can be optimised for each value of the distance µ for uncoupled neurons

from the Hopf bifurcation point. Here, we choose µ = 0.25 and ν = −0.05. The results

obtained by both algorithms are similar. Hence, we can draw conclusion that the pa-

rameter settings in Equation 6.38 and Equation 6.39 which is designed according to the

theory of WCNN is appropriate to the model in Equation 4.12. And the diffused image

obtained by Equation 6.8 works correctly as that obtained from the original diffusion

process which requires a stopping time.

(a) (b) (c)

(d) (e) (f)

Figure 6.7: Edge detection results for real images, (a) Pillow [468 × 552]. (d)
Video camera [435×577]. (b) and (e) provide the edge detection results obtained
by Algorithm 2, in which the system parameters are b = 3.5, ε = 0.001, kv = 0
and kw = 5. The constant d̃ = 10 and the threshold η = 0.05 in Equation 5.13
The stopping time of the anisotropic diffusion is τ = 1.0. The steady time τs =
1.0 for all the models. (c) and (f) provide the edge detection results obtained by
Algorithm 3, in which the parameter b is set according to Equation 6.38 where
µ = 0.25 and the coupling strength ki is set according to Equation 6.39 where
ν = −0.05. The diffusive coefficient ξ = 3 in Equation 6.8. The steady state
time τs = 1.0 for the model.
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(a) (b) (c)

(d) (e) (f)

Figure 6.8: Edge detection results for real images, (a) Stairs [441 × 579]. (d)
Briefcase [419×577]. (b) and (e) provide the edge detection results obtained by
Algorithm 2, in which the system parameters are b = 3.5, ε = 0.001, kv = 0 and
kw = 5. The constant d̃ = 10 and the threshold η = 0.05 in Equation 5.13 The
stopping time of the anisotropic diffusion is τ = 1.0. The steady time τs = 1.0
for all the models. (c) and (f) provide the edge detection results obtained by
Algorithm 3, in which the parameter b is set according to Equation 6.38 where
µ = 0.25 and the coupling strength ki is set according to Equation 6.39 where
ν = −0.05. The diffusive coefficient ξ = 3 in Equation 6.8. The steady state
time τs = 1.0 for the model.
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Figure 7.1: One pixel to one neuron structure of the network model

In this thesis, we have set out to refine in performance and reduce in size, a reaction

diffusion system that models a physical process for edge detection (Nomura et al., 2011b)

that can be fabricated in silicon. As such, the aspects of computational complexity of

edge detection algorithms implemented in digital circuits are not relevant to the kinds

of algorithms that we have been studying in this thesis. In particular, we have chosen

to focus on edge detection to illustrate the usefulness of fixed point states of dynamical

systems in addressing a computational need, and the prior work presented by Nomura

et al. (2011a,b) provided a convenient reference for comparative purposes. In addition,

while there are many neural network algorithms that have been proposed for tackling

the task of edge detection, such as (Aizenberg et al., 1998; Suzuki et al., 2003, 2004), but

they typically use them as abstract data structures that enable sophisticated, biologically

inspired algorithms to be run on digital processors. We would like to emphasise this

difference from many existing algorithms, even though we do not completely eschew

digital software processing.

97
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In fact, we share the computational burden between software components that rely on

digital processing, which we refer to off-chip design, and hardware analog computation.

The very core of the original edge detection algorithm and the proposed ones is the

dynamical system described in Equation 3.17, of which the structure is clearly shown in

Figure 7.1. Building such a network using the technology of integrated circuit belongs

to the hardware design procedures. The design of the single element of this system in

Equation 3.3 is covered by the huge topic “silicon neurons” (Mahowald and Douglas,

1991; Mizoguchi et al., 2011) and the coupling structure is also thoroughly studied under

the other topic called “Cellular Neural Network” (Chua and Yang, 1988; Karahaliloǧlu

and Balkır, 2004). We provided an introductory review of silicon neurons and networks

in Appendix B. We provide a simplified version in Equation 6.9 by eliminating the

couplings of the membrane potentials from the adjacent neurons and we propose an

modification on dynamics so that the diffusion process will automatically stop. By taking

the rescaled image intensities as the input, such the system hardware can generate fast

self-evolving edge results of binary images and grayscale images respectively with an

constant image threshold (Nomura et al., 2003) or a variable one (Nomura et al., 2008,

2011b,a) embedded as the system parameters.

For evaluating the image threshold θ, the previous work (Nomura et al., 2011b,a) in

Algorithm 1 does not require many computations after hardware design as they adopt the

equation a = θ (which we find to be inadequate) and subject a to isotropic diffusion. The

diffusion equation in Equation 3.23 needs to be solved, and the rescaling of the intensities

of the original and inverted images need to be evaluated - these are the computational

tasks for Algorithm 1. In addition to the rescaling of the original image, our method

in Algorithm 2 requires another four steps in order to obtain the θ from the original

image U r. In particular, we need to set the constant threshold η within the correct

range, evaluate the magnitude of the gradient ‖∇U r‖, set the diffusion coefficient d and

finally, solve the anisotropic diffusion in Equation 5.13. All these computations belong

to the off-circuit design, which will be completed by the software program before being

applied to the circuit system. The major difference of our method in Algorithm 3 from

Algorithm 2 is to redesign the diffusion of rescaled image on hardware and the diffusion

process will automatically stop. By slightly increasing the chip size, we appreciably

reduce the off-chip procedure as no diffusion equation is required to be solved. A more

extensive comparison of these three algorithms is provided in next section.

7.1 Comparison on Models and Methods

The three methods of edge detection are mainly discussed and compared in this thesis,

which are respectively the original method by Nomura et al. (2008) in Algorithm 1, our

method using anisotropically diffused image in Algorithm 2 and the proposed one using

anisotropic coupling strength in Algorithm 3.
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Recall that the model of the system originally used by Nomura et al. (2011a,b) can be

expressed as follows,

v̇i
0 = f(v0

i , w
0
i , a

0
i ) + kv

∑
j∈Pi

(v0
j − v0

i ) + v̇i
1H(−v̇i1)

ẇi
0 = g(v0

i , w
0
i ) + kw

∑
j∈Pi

(w0
j − w0

i )

v̇i
1 = f(v1

i , w
1
i , a

1
i ) + kv

∑
j∈Pi

(v1
j − v1

i )

ẇi
1 = g(v1

i , w
1
i ) + kw

∑
j∈Pi

(w1
j − w1

i ).

(7.1)

This system is generally of double size of the one in Equation 7.2. In contrast, both our

previous method and proposed one still use the system. In fact, the expressions of the

network models used in the latter two algorithms can unified as the following equations,
v̇i = f(vi, wi, ai)

ẇi = g(vi, wi) + ki
∑
j∈Pi

(wj − wi) (7.2)

It is also worth noting that the coupling through the variable v (kv = 0) is eliminated

in the model for both of our methods.

All the three methods require a step to diffuse the original image in order to set the

system parameter a which is considered as a threshold in the dynamics of single neuron.

In Nomura’s method, the diffused image θi(τ) is obtained through a diffusion equation

by taking the image intensities as initial condition. And in our previous method, in

order for better performance, we slightly changed the diffusion equation by using non-

identical diffusive coefficient di so that θi(τ) becomes an anisotropic diffusive version of

the original image. However, a stopping time τ is needed in both of these two methods.

By adding a term of state variable subtracting the initial condition in the diffusion

equation, the proposed method does not require the setting of stopping time any more.

We use a different syntax θi(τs) to denote diffusive image in the proposed method where

τs is the time when state variables reach the steady state.

Nomura et al. (2011a,b) claim that doubling the size of the system benefits the reduction

of influence of the “wrong pulses” problem. This problem has been illustrated and

discussed in Chapter 5 in details by examples. The system parameter a is simply treated

as the diffused image θi(τ) in Nomura’s method. And we point out that it is one of the

important reasons which leads to the ”wrong pulse” problem. By carefully setting up the

relationship between a and θi(τ) (or θi(τs) in the proposed method), we solve the ”wrong

pulse” problem without increasing the size of the system. Moreover, according to the

range where the relationship becomes the most linear, we reset range of rescaled image
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U r ∈ [0.1, 0.3]. Nevertheless, why the original range U r ∈ [0, 0.25] was not mentioned in

the work done by Nomura et al. (2003, 2008, 2011a,b).

Algorithm 3 claims how to set the parameter bi and the coupling strength ki in the

system. However, both Algorithm 1 and 2 fails to do this. Based on the theory of

WCNN, the bi is required to set near to the Hopf bifurcation in an uncoupled neuron

which stands for the boundary of stability.

There is almost no steps for denoising in the Nomura’s method. And this drawback is also

mentioned in Nomura’s work (Nomura et al., 2011b) as well as in other work (Denisov

et al., 2010). In order to denoise, both of our methods use the preprocess of the image

for the normalized magnitude of the gradient ||∇U ri|| as well as a constant threshold

(η in previous method and ν in proposed one). In the previous method, denoising is

achieved by controlling the speed diffusion in θ(τ); the diffusive d̃ is binarised according

to the heaviside function H(||∇U ri|| − η). Differently for Algorithm 3, the mechanism

of denoising is directly embedded in the parameter setting of ki and binarisation is no

longer adopted because the boundary of Hopf bifurcation point in k makes a similar

function of thresholding.
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Table 7.1: Comparison on steps among Nomura’s method, previous method and
proposed algorithms

Nomura’s

algorithm

Previous

algorithm

Proposed

algorithm

Rescaling Ur ∈ [0, 0.25] Ur ∈ [0.1, 0.3] Ur ∈ [0.1, 0.3]

Diffusion of
Image

Solve the equations below
to obtain respectively two
diffused images θ0i (τ) and
θ1i (τ) with the stopping
time τ ,

θ̇0i = d0
∑
j∈Pi

(θ0j − θ0i )

θ̇1i = d1
∑
j∈Pi

(θ1j − θ1i )

where, d1 > d0 and the
initial conditions are
θ0i (0) = θ1i (0) = Uri .

Solve the equations below
to obtain an anisotropically
diffused image θi(τ) with
the stopping time τ ,

θ̇i = di
∑
j∈Pi

(θj − θi)

di = d̃ · H(||∇Uri|| − η)
where,

||∇Uri|| = ||( ∂U
r
i

∂x
, ∂U

r
i

∂y
)||

||∇Uri|| = ||∇Ur
i||

max
i

(||∇Ur
i||)

and the initial condition is
θi(0) = Uri .

Solve the equation below for
the blurred image θi(τs)
with steady state time τs,
θ̇i =
ξ
∑
j∈Pi

(θj−θi)−(θi−θi(0))
where, the initial condition
is θi(0) = Uri .

Parameter a a = θ(τ) a = c1θ(τ) + c2 a = c1θ(τs) + c2

Parameter b b = 1 b = 3.5 bi = 4/(1− ai)− 0.3 ∗ ai

Coupling
Strength

kv = 4, kw = 20 kv = 0, kw = 5

kv = 0,
kwi = ki = ν + ||∇Uri||
where,

||∇Uri|| = ||( ∂U
r
i

∂x
, ∂U

r
i

∂y
)||

||∇Uri|| = ||∇Ur
i||

max
i

(||∇Ur
i||)

Solving System
Equation

Solve the system in
Equation 7.1 with initial
condition
(v0i (0), w0

i (0), v1i (0), w1
i (0)) =

(Uri, 0, U
r
i, 0)

and zero boundary
condition for v0i (τs) with
steady state time τs

Solve the system in
Equation 7.2 with initial
condition
(vi(0), wi(0)) = (Uri, 0)
and zero boundary
condition for vi(τs) with
steady state time τs

Solve the system in
Equation 7.2 with initial
condition
(vi(0), wi(0)) = (Uri, 0)
and zero boundary
condition for vi(τs) with
steady state time τs

Edge Map

Obtain the first putative
edge map M1 via a simple
thresholding v0

(m,n)
(τs) as

below,

M1m,n =

{
1, v0i (τs) > 0.5

0, v0i (τs) ≤ 0.5
Repeat all the steps above
to get a second putative
edge map M2 from the
black-and-white inversion of
the original image Ū(m,n)

Get the final edge map M
by merging the two putative
ones, M =M1 ∪M2

Obtain the edge map M via
a simple thresholding
v(m,n)(τs) as below,

Mm,n =

{
1, vi(τs) > 0.5

0, vi(τs) ≤ 0.5

Obtain the edge map M via
a simple thresholding
v(m,n)(τs) as below,

Mm,n =

{
1, vi(τs) > 0.5

0, vi(τs) ≤ 0.5





Appendix A

Center Manifold Reduction of

Planar FitzHugh-Nagumo Model

In order to find out the local dynamics at the saddle node bifurcation where the Jacobian

J is singular, we need to focus on the center manifold at the corresponding bifurcation

point. Due to the whole network is uncoupled, we start with the dynamics of a single

neuron in Equation 3.3. Assume that b = 4
(a−1)2

. So the system is at the bifurcation

point and the system has a second equilibrium (vsn = a+1
2 , wsn = a+1

2b ) other than the

origin which is called a saddle node. In order for the convenience of analysis, we require

to locate the equilibrium at the origin with the coordinate transformation below,

v = v∗ + vsn, w = w∗ + wsn, b = b∗ + bsn (A.1)

Substitute the equations above in Equation 3.3 and it is obtained,

v̇ = −ε−1((v + vsn)3 − (a+ 1)(v + vsn)2 + a(v + vsn) + (w + wsn))

ẇ = (v + vsn)− (b+ bsn)(w + wsn)

ḃ = 0

(A.2)

For the sake of convenience, we keep using v and w as the state variable instead of v∗

and w∗. Rewrite the equation above in the form below,

ẋ = Lx + P (x) (A.3)

where L is the binarisation which equal to the Jacobian J at the origin,

L =

[
(εbsn)−1 −ε−1

1 −bsn

]
+

[
0 0

0 −b

]
(A.4)
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And P (x) includes all the high order terms,

P (x) =

[
p(v)

−wsnb

]
(A.5)

where

p(v) = −ε−1(v3 +
a+ 1

2
v2) (A.6)

It is clear that the determinant of L is zero and it has two eigenvalues,

Λ =

[
λ

0

]
=

[
(εbsn)−1 − bsn

0

]
(A.7)

And the two corresponding eigenvectors are,

ξ1 =

[
1

εbsn

]
, ξ2 =

[
1

b−1
sn

]
(A.8)

Now, we apply a transformation x = Ty in Equation A.3 where T = [ξ1 ξ2] in order to

diagonalize the Jacobian L,

ẏ = T−1LTy + T−1P (Ty) (A.9)

where

T−1 =

[
b−1
sn c −c
−εbsnc c

]
, c =

1

b−1
sn − εbsn

=
1

ελ
(A.10)

So the equation will be[
ẏ1

ẏ2

]
=

([
(εbsn)−1 − bsn

0

]
+ b

[
εbsnc b−1

sn c

−εbsnc −b−1
sn c

])[
y1

y2

]
+

[
q1(y1, y2)

q2(y1, y2)

]
,

q1(y1, y2) = b−1
sn cp(y1 + y2) + cwsnb = −(εb)−1c((y1 + y2)3 +

a+ 1

2
(y1 + y2)2) + cwsnb

q2(y1, y2) = −εbcp(y1 + y2)− cwsnb = bc((y1 + y2)3 +
a+ 1

2
(y1 + y2)2)− cwsnb

(A.11)

We substitute the expansions

h(y2, b) = µ1y
2
2 + µ2by2 + µ3b

2 +O(3), h
′
(y2) = 2µ1y2 + µ2b+O(2) (A.12)

into the equation blow,

h
′
(y2)q2(h(y2), y2)− λ1h(y2)− p1(h(y2), y2) = 0 (A.13)

Setting the coefficients of like powers of y2 equal to zero yields

µ1 =
(a+ 1)c2

2b
, µ2 ≈ 0 (A.14)
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Thus,

h(y2) =
(a+ 1)c2

2b
y2

2 +O(y3
2) (A.15)

Substituting this result into the equation below

ẏ2 = q(h(y2), y2), (A.16)

we obtain

ẏ2 = −cwsnb−
c

bsn
by2 +

(a+ 1)bsnc

2
y2

2− (
3c2

2λ
(a+ 1) +

c3wsn
ελ2

(a+ 1)2)by2
2 +O(3) (A.17)





Appendix B

Silicon Neurons and Networks

This section aims to introduce the basic model used throughout this thesis. It is based

on simplifying the Hodgkin-Huxley’s complicated model. But many qualitative features

of neuronal spike generation are well retained. Hence, in this brief introduction, the

detailed electrophysiology of neurons are omitted to a great extent.

As illustrated above, historically the dynamics of individual neuron is often neglected

when building the mathematic models of neural networks. But these intrinsic dynam-

ics are increasingly realized to have great computational properties. Ermentrout and

Terman (2010) concludes that population rhythms are generated through interaction of

three network components:

• The intrinsic properties of neurons

• The synaptic properties of neural connections

• Network structure

The general model for the whole system of a neural network described in this thesis can

be expressed as the form

ẋi = fi(xi, t) + Ci, xi ∈ RMi (B.1)

where the vector ẋi is the state variables(also called state vector) of a single neural

system i. fi(·) denotes the nonlinear vector functions of correspondent i -th single neural

system. fi(·) is assumed to be continuous and sufficiently smooth. Ci is the coupling

term of the system. Mi denotes the number of dynamical variables of the i -th single

neuron. And moreover, the total number of neurons within the network is denoted by

N . A network is composed of nodes and edges, with neurons identified with the nodes

and synaptic connections representing edges. In detail, a neuron noted by a state vector

can be described in terms of its dynamics without any coupling. For simplicity, they are
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briefly studied via a general two-state dynamics, x = (v, w)T in this case, which can be

written in the form
dv

dt
= f(v, w)

dw

dt
= εg(v, w)

(B.2)

where the time t in (B.1) is implicitly included, so that this system is indeed presented by

a system of ordinary differential equations. The state variable v represents the membrane

potential of the cell while the state variable w is called channel gating variable. And

due to it change very shortly compared to v, it is called also called a slow variable. And

the parameter ε is a small positive parameters. So, the oscillator state as a point in the

phase portrait will travel much slower along the w-axis, namely up or down, than along

the v-axis, namely left and right. One of the most significant feature of this fast-slow

two-dimension dynamics is that most of the state vectors in the phase plane will look

parallel to the axis.

This two-variable neuron, also called two-order system, two-dimensional system, or two-

state system, is a widely used model by both physiologists and modellers due to its

simplicity. Many neuron models belong to this classification including the Morris-Lecar

model and the models analyzed in Chapter 2 and 3 belong to this class. The dynamics

of this sort of models can mainly be characterized by the nonlinearity of their nullclines.

The v-nullcline of the Morris-Lecar Model defines a cubic-shaped curve and the w-

nullcline defines a monotonically increasing curve. The variation of the nullclines will

cause the qualitative changes in the behavior of dynamical systems, called bifurcation

(Izhikevich, 2006).

The most fundamental bifurcations which a normal dynamic neuron, such as the Morris-

Lecar model, possesses are referred to the qualitative changes on the dynamics of system

states, such as, the emergence or vanishing of equilibrium and limit cycles or the variation

on their stabilities (Izhikevich, 2006). Different combination of these qualitative changes

lead to different neuron dynamics and excitabilities. In order to easily understand the

influence of these dynamics and excitabilities of a single cell on whole system, Ermentrout

and Terman (2010) classifies the cells generally as excitable and oscillatory. Chapter 2 of

this thesis mainly introduce how a large network made up by all excitable cells completes

the image processing through a system of reaction diffusion equations. And Chapter 3

will focus on the properties and applications of a network made up by all oscillatory

neurons.

Apart from the threshold and rate-coded models created in the time of early generations

of artificial neural networks, a large number of circuit models mimicking real neurons

have also been proposed via CMOS process with schematic diagrams, experiment vali-

dation and even layout design. The most direct application of a silicon neuron is for the

neurophysiological simulation of a large scale network which is beyond the capability of
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digital computers. These physically implemented silicon neurons emulate neuronal be-

havior instead of solving systems of differential equations. And except neuron emulation,

this parallel feature of silicon neuronal cells is also believed powerful in the applications

where large amount of computations is required such as in motor controls and image

processing.

A series of fundamental design methodologies and elementary circuit devices of CMOS

technology, has been well concluded by Mead in (Mead, 1989) in order for neural network

design. Basically, the approach to derive a circuit model of dynamical neuron can be

figured out directly from Hodgkin and Huxley’s equations. In (Mahowald and Douglas,

1991), Mahowald and her colleague present a pioneering job of implementing a whole

conductance-based Hodgkin-Huxley type of neuron via CMOS process. This model is

quite accurate in representing biological neuron but consumes silicon area. Hence, the

simplified versions of the neuron model such as FitzHugh Nagumo model and Morris-

Lecar model are popular for circuit designers. In these models, it is very valuable that

the probability variables representing the gating state of activation and inactivation is

replaced by a current-like feedback gating variable to simply depolarize or hyperpolarize

the membrane potential. And the resultant reduction of the system dimension thor-

oughly facilitate the circuit design. However, designing these types of simplified neurons

commonly have to face up to two main problems. One is that all these types of reduced

two dimensional neuron models intrinsically have inductors. Conventionally, coiling spi-

ral CMOS inductor in VLSI technology is very costly in silicon area. So it has very

specific application such as RF circuits of low inductances or the design both precision

and bandwidth are highly required. The other problem is to deal with the complex

nonlinearity of the models.

Linares-Barranco et al. (1991) implemented and fabricate an analog VLSI chip of FitzHugh

Nagumo model in CMOS 2-µm process. They proposed a piecewise linear function syn-

thesis technique to present the nonlinearity of the cubic nullcline of the model and

adopted a transconductance mode of circuit structure to avoid the emergence of induc-

tors. Then, based on the basic design, they simplified the oscillator by replacing the

inductance with a hysteresis comparator to achieve a compact design. Cosp et al. (2008)

also provided a design of compact VLSI FitzHugh Nagumo neuron consisting of only 17

small transistors. They consider that the active inductor of low quality factor due to

the low parasitic series resistances is very suitable for FitzHugh Nagumo model as this

kind of model is coincidentally found to require a series resistance.

The nonlinearity of Morris-Lecar model is relatively difficult to implement than FitzHugh-

Nagumo model for its both cubic v-nullcline and sigmoid w-nullcline. Patel and De-

Weerth (1997) developed a silicon neuron of similar characteristics to those of Morris-

Lecar model in a 2 µm n-well process. This design utilizes the ohmic effect of transistors

to implement the nonlinearity of Morris-Lecar model. It is a current mode circuit of a

single neuron which consumes 22 transistors.
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Although these two-state models are substantially simpler than the original conductance-

based ones for the neurophysiologists, circuit modelers still find them too complicated.

Hence, considerably more attention is devoted to a group of very simple models called

Integration and Fire models which is written in the form (Izhikevich, 2006)

v̇ = I − v, if v = Vt, then v ←− 0, (B.3)

where v represents the membrane potential and I is the synaptic input current. The

very simple conception of neuron excitability is incorporated by this model that if the

membrane potential v reaches the threshold Vt, the voltage sensitive current will im-

mediately activate so that an action potential will be elicited. And soon after this, the

membrane potential will be reset to new value below the resting state.

Mead (1989) developed a simple circuit implementation of this model, ”Axon-Hillock”

circuit, which consumes only 8 transistors. It incorporates the neuronal computational

properties of class I excitability (Hodgkin and Huxley, 1952) (However, the threshold

for spike emission is intrinsically determined) and the refractory period, but no frequen-

cy adaptation. Moreover, another obvious drawback of this circuit is the huge power

consumption due to its own structure. Thereby based on that, a series of improvements

have been proposed. Schultz and Jabri (1995) presented an alternative circuit of which

the output spike frequency adapts the input and the spiking threshold can be externally

modulated. Boahen (1998) also presented that a structure of integrate and fire mod-

els connected with current-mirror integrator in negative-feedback mode can implement

spike-frequency adaptation. However, Schultz’s circuit still suffer from the large power

consumption and obviously Boahen’s added structure increase the circuit area. With

the respect to the reduction of power consumption, Schaik (2001) proposed a method

to make the poor power condition improved, but not to thoroughly reduce it. And in

(Culurciello et al., 2001), Culurciello and his colleagues fully discussed the method to op-

timize the power consumption but neglecting the model’s basic functionalities. Inspired

by Culurciello’s method, Indiveri (2003) proposed a compact design which is successful

in mimicking the neuron behaviors and reducing the power consumption. And the rel-

ative work of characterizing this circuit as well as presenting the experiment data was

provided in (Rubin et al., 2004).

The main advantage of the integrate and fire neuron is obvious that it can be imple-

mented in very compact structure, normally consisting of 8 to 20 transistors, due to the

reduction to the one-state equation. However, it looses many valuable computational

properties of real neurons. In spite of that, it is still worth noting that one importan-

t application of these models (Rubin et al., 2004) is to reproduce the spike-frequency

adapting behavior exhibited by most pyramidal cells in neocortex and hippocampus.

Similar to the integrate and fire models greatly incorporating the saddle-node bifurca-

tion mechanisms of those neural integrators, the Andronov-Hopf bifurcation mechanisms

of those neural resonators can also be presented by a simplified model called resonate and
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fire models. Nakada et al. proposed a circuit design of such a model via CMOS design

with low power consumption to present various dynamical behaviors of real neurons,

such as fast damped subthreshold oscillation, frequency preference (bandpass filter) and

post-inhibitory rebound.

Further more, by combining both the features of integrators and resonators together,

Izhikevich (2006) proposed a smart model of very simple nonlinearity to reproduce overall

20 neurocomputational properties which the cortex neurons commonly have. And he

proved it to be the simplest possible model which exhibits all these neurocomputational

properties. And inspired by this model, Wijekoon and Dudek (2006, 2008) built a circuit

consuming only 14 transistors in 0.35 µm technology with acceptable energy efficiency.
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