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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND APPLIED SCIENCE

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Xin Liu

In Systems Biology, it is usual to use a set of ordinary differential equations to charac-

terize biological function at a system level. The parameters in these equations generally

reflect the reaction or decay rates of a molecular species, while states characterize the

concentration values of species of interest, e.g. mRNA, proteins and metabolites. Often

parameter values are estimated from in vitro experiments which may not be true reflec-

tions of the in vivo environments. With internal states, some may not be accessible for

experimental measurement. Hence there is interest in estimating parameter values and

states from noisy or incomplete observations taken at inputs/outputs of a system. This

thesis explores several probabilistic inference approaches to do this.

The study starts from a thorough investigation of the effectivenesses of the most com-

monly used one-pass inference methods, from which the non-parametric particle filtering

approach is shown to be the most powerful method in the sequential category. After this

study, the family of Approximate Bayesian Computation (ABC) methods, also known

as likelihood-free batch approach, is reviewed chronologically and its advantages and

deficiencies are summarized via a statistical toy example and two biological models. Ad-

ditionally, a novel ABC method coupled with the sensitivity analysis technique has been

developed and demonstrated on three periodic and one transient biological models. This

approach has the potential to solve problem in high dimension by selectively allocating

computational budget. In order to assess the capability of the proposed method in

real-world problems, we have modeled the polymer pathway and conducted quantitative

analysis via the proposed inference approach.
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Chapter 1

Introduction

1.1 Problem statement

This thesis is about parameter estimation and inference from computational models of

biological systems. In analyzing biological function at a system level, rather than at

individual component level, we ofter use descriptions based on simultaneous ordinary

differential equations. These equations contain parameters (e.g, decay rate or reaction

rate of a molecular species) and states (concentrations of species of interest, e.g. mRNA,

proteins and metabolites). Some of these parameters are estimated from knowledge of

the reaction or in vitro experiments. Sometimes, the interest lies in measuring the

concentrations of reaction intermediates. With experimental methods it is not always

possible to either measure parameters in vivo settings or to observe all intermediates

produced in complex biological phenomena. Hence, it is of interest to ask if we can

derive computational methods by which parameters and states of a system can be ac-

curately inferred from partial data, usually in some input-output forms. Additionally,

measurements of biological variables are inherently noisy due to variabilities in experi-

mental conditions as well as noise in instrumentation. Consequently, it is often desirable

to quantify the uncertainty associated with any estimate made, either of the parameters

or of the state variables.

In this thesis we study computational models of systems biology for state and parameter

estimation using probabilistic inference methods. As many of these models/systems

are dynamic in nature, the main focus of our work is within the state-space modeling

formalism, consisting of continuous dynamical processes from which noisy observations

are made at discrete points in time (Liu and Niranjan, 2012). The work due to Sitz et al.

(2002) is a starting point for this formulation and subsequent algorithmic settings, in

which we numerically integrate the underlying ODE system between time points where

observations are made, assuming this part is deterministic. A particular example of

using this formulation in systems biology is the work of Lillacci and Khammash (2010),
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who used an extended Kalman filter (EKF) to analyze the heat shock response system

of E. coli.

Advanced computational methodologies centered around the idea of Approximate Bayesian

Computation (ABC) have attracted much interest since their first development in popu-

lation genetics (Tavaré et al., 1997; Pritchard et al., 1999). They have been shown to be

useful in systems biology for precisely the same problems we wish to address. The nature

of the underlying biological system, and the way different molecular interactions appear

as terms in the system of ODEs, cause a number of difficulties in applications of these

type of models. The reproducibility of results claimed in the literature is sometimes

problematic for this reason. How parameters cause such difficulties has been explored

by Gutenkunst et al. (2007), who analyze a number of systems biology models and

suggest that the set of parameters can be decomposed into having sloppy and stiff prop-

erties with respect to the behavior of the system. Meanwhile the ABC algorithms have

advanced significantly in the probabilistic inference community including methods for

adaptively setting convergence thresholds (Del Moral et al., 2012). In this dissertation

we thoroughly explore the modern ABC algorithms, and their applicability to parameter

estimation and inference in systems biology models, particularly in light of Gutenkunst

et al. (2007)’s work on parameter behavior (stiff and sloppy). We address this issue by

sensitivity analysis (Saltelli et al., 1999; Zi, 2011).

Finally, analysis of this type is only possible after a biological system has been described

by ODEs. This requires carefully listing the molecular species involved in the system,

and writing down the biochemical equations describing their interactions. In this thesis,

we study a polymer production system by modeling the pathway with three differential

equations and twenty parameters. Quantitative analysis including sensitivity analysis,

parameter estimation and dependence of production on the external supply is carried

out. The reliability of results is verified biologically by collaboratively work with Dr.

Ipsita Roy from University of Westminster. However, due to the complexity of sub-

pathway and insufficient experimental data, the process is still in progress. The model

presented in this dissertation is part of early work towards modeling a dual polymer

production pathway, in which two polymers will be simultaneously produced via a series

of chemical reactions, e.g. energy releasing TCA cycle and glycolysis.

1.2 Contributions

Following are the four main contributions of this thesis:

• We have concluded the particle filter (PF) is more powerful than extended and

unscented Kalman filters. This is done by initializing the PF with parameters

far from their true values, while providing Kalman filters with a highly favorable
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initialization which is the closest to the truth among all the particles. Moreover,

comparisons are also carried out between the sequential and batch methods in

terms of computational cost, accuracy and ability to handle noise. A paper based

on this contribution is published as Liu and Niranjan (2012).

• A collection of Approximate Bayesian Computation (ABC) methods, also known

as likelihood-free methods, has been studied theoretically and empirically. We

track their chronological developments, and their mathematical derivations are also

given. Moreover, the advantages or the deficiencies of methods are demonstrated

by simple biological or statistical examples. Features of all considered approaches

are summarized. A review paper has been submitted to IEEE Transaction on

Computational Biology and Bioinformatics based on this work.

• We have developed a new method for ABC coupled with sensitivity analysis tech-

nique. Relying on the importance of parameters to the system, the computational

budget is selectively partitioned so that the crucial parameters can be estimated

with high precision. The effectiveness of the proposed method is demonstrated on

three oscillatory models and one transient model taken from the systems biology

literature. A submission to PLoS Computational Biology was made based on this

work.

• We have developed a model for the polymer pathway and conducted the quantita-

tive analysis including sensitivity analysis and parameter estimation based on the

mathematical expressions. Moreover, we simulate the behavioral response to the

different concentration levels of external fed species and substrate. The reliability

of investigation is verified biologically by our collaborator Dr. Ipsita Roy, and a

manuscript is preparing based on the achieved results.

1.3 Thesis organisation

The reminder of this thesis is organized as follows. Chapter 2 gives a literature review

of biological systems modeling, state-space models, Bayesian inference and sensitivity

analysis techniques. Chapter 3 reviews the popular ABC methods both theoretically

and empirically. Chapter 4 presents a new ABC method to tackle issues with existing

ABC methods. In Chapter 5, we illustrate the modeling of a biochemical system and

conduct a quantitative investigation. Finally, Chapter 6 concludes the thesis, and points

out avenues for future work.





Chapter 2

Literature Review

In this chapter, we introduce some biological systems to be worked with. Additionally,

the state-of-the-art inference and learning algorithms under the state-space models frame-

work are discussed.

2.1 Systems biology

Biological systems are interpreted via studying mechanisms of their components such

as cells, molecules, proteins or mRNA. Quite often, the living organism of interest is

so complicated that conducting experiments on it is impossible. Studies are therefore

instead carried out on individual components of the organism that have been isolated

from their biological environments, and an experimental setup of this kind is called in

vitro. In this setting, measurements may be inconsistent with those that are from studies

being conducted on the unified whole, namely in vivo.

This limitation motivated the development of a systematic strategy to interpret the

biological problems. Systems Biology is an inter-disciplinary study including mathe-

matical modeling, quantitative analysis and experimental validation motivated towards

understanding biological problems at the system level.

The precursors of this field are Hodgkin and Huxley (1952) who developed a mathemati-

cal model for characterizing a dynamic movement of a neuronal cell along the axon. The

work due to Noble (1960) is also seen as the foundation, in which Noble (1960) derived

a computer solvable model of the heart pacemaker. This model has been verified by a

huge amount of experimental data, they are therefore regarded as the pioneers of systems

biology. Von Bertalanffy (1968) later proposed the systems theory which elucidates the

definition of systems biology.

Insight into kinetic mechanism such as Michaelis-Menten kinetics (Michaelis and Menten,

1913) and enzyme-catalyzed kinetics (Roberts, 1977) is an important aspect of modeling
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in Systems Biology. Particularly, the development of Systems Biology Markup Language

(SBML) operating as a representation format provides a standard way to describe math-

ematical formulas in computational biology. This ‘universal’ language enables software

to easily interpret models independently of their representations, and saves the cost for

communicating between modeler and software engineer.

In addition, advanced technology platforms such as genomics, metabolomics and pro-

teomics provide large quantities of high quality biological data. Consequently, the cross-

fertilization of the quantitative expression, the experimental data and the statistical

tools greatly aids interpretation of the biological problems of interest. For instance, the

Physiome Project, a worldwide collaboration, is intended to deepen insight into human

physiology. This project’s efforts are targeted towards databasing the functional behav-

ior of whole organism, and the development of integrated quantitative and descriptive

modeling.

2.2 Biological systems

2.2.1 Gene regulatory network

In biological systems, genes and proteins are known to regulate each other, either along

signalling pathways or in combinatorially acting to achieve selective actions (either in

space or in time). Genes and transcription regulatory networks define how such regu-

lation takes place. A particular example of such regulation is feedback known as auto-

regulation (Alon, 2006), shown in Figure 2.1(a). In this simple auto-regulatory gene

network, the DNA sequence is transcribed to produce the corresponding mRNA, which

is then translated into protein. Quite generally, in auto-regulation, the concentration of

the resulting protein influences the degree to which the gene is transcribed. As a result

of this, the circuit is able to achieve faster transient response of how much protein is

needed in the cell. Another example is the repressilator network shown in Figure 2.1(b)

in which three genes mutually negatively regulate the activities of each other. LacI, the

first repressor gene initially inhibits the second repressor gene, TetR. The product of

the TetR protein decreases the expression of cI which is the third gene in the system. A

closed loop is ultimately formed, as cI inhibits LacI.

In systems biology, these kinds of reaction are quantitatively captured by a set of or-

dinary differential equations (ODEs) and solutions of which help explain and interpret

the cellular behaviors of systems at a system level. In order to strengthen the inter-

pretation, several synthetic biological systems have been constructed, one of which is

call the repressilator system and it is suggested to mimic the periodic oscillations by

six differential equations associated with four parameters (Elowitz and Leibler, 2000).

These equations are used to describe the change in species concentration with respect to
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(a) (b)

Figure 2.1: (a): An illustration of a gene autoregulatory network (Alon, 2006). Pro-
tein X is the product of gene X, which binds a site in its promoter and acts as the
repressor of the own transcription. (b): Example of gene regulatory network represent-

ing a cyclic loop for repressilator system.

time in which parameters reflect the transcription rates of proteins and the translation

rates/decay rates of mRNA. We use this circuit as one of the examples in this disser-

tation and provide these mathematical descriptions in chapter 4 as equations (4.12) -

(4.17).
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Figure 2.2: Concentration of mRNA in LacI gene, synthesized from the deterministic
and stochastic models of the repressilator system, where the schematic graph of the
repressilator system is given as Figure 2.1(b) and this system is also considered as an
example for assessing the performance of inference approaches presented in chapter 4.

The behavior of the mRNA of LacI being captured by the deterministic repressilator

model is shown in the left-hand side of Figure 2.2. In the graph, periodic repetition

every 50 minutes is clearly observed and the behavioral uncertainty is completely ruled

out in the simulation. McAdams and Arkin (1999); Elowitz and Leibler (2000) increased

the realism of the model by proposing a stochastic repressilator model that takes into

account the randomness of evolution which may be caused by noise in instrumentation

or variability in experimental conditions. The simulation of this stochastic repressilator

model is given in the right-hand side of Figure 2.2, in which the noise of system output
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is evident.

If the system to be modeled has no randomness involved in its evolution, it is more

appropriate to formulate the system deterministically. However, a few processes such as

the stock market and medical data appear stochastic in time sequence, and the future

states can evolve in various ways in comparison to the deterministic processes. The

model can account for the behavioral uncertainty of these systems by treating them in

a stochastic manner and defining the evolution dynamics probabilistically. Simulation

of stochastic repressilator model is shown in the right-hand side of Figure 2.2. It can be

seen from the graphs, the two models only differ in details of their behavior but show

the same general trend of evolution.

2.2.2 Metabolic dynamics

The ability of living organisms to sustain life and digest is referred to as metabolism.

Information about how substrates are utilized and catalyzed by enzymes to produce

products is encoded in this metabolic pathway.

From a functional point of view, metabolism can be further categorized into Catabolism

and Anabolism. The catabolic pathway breaks down substrates such as protein and

nucleic acids to form smaller units, e.g. amino acids and nucleotides, finally releasing

energy through further degradation. Anabolism refers to how end-products are synthe-

sized, in which the small units and the released energy are utilized for constructing new

large molecules.

One of the metabolic pathways rooted by glucose is shown in Figure 2.3. In this system,

glucose, the starting material for reactions, is manipulated by seven enzymatic steps and

converted to ethanol and glycerol.

Teusink et al. (1998) used this glycolysis pathway as an example to investigate the

effectiveness of metabolic control analysis on quantifying the importance of intermediate

metabolites. As an extension of this previous work, Teusink et al. (2000) refined the

glycolysis pathway by adapting previous interpretation and examined the reliability of

the proposed model. Similarly, mathematical expressions of the glycolysis pathway that

satisfied the empirical investigations were developed. Hynne et al. (2001) studied the

rate constants and maximum velocities at stationary state of glycolysis pathway by a

simple fitting approach. Yang et al. (2007) inferred the intermediate metabolites and

fluxes by using a Bayesian approach only given the input-output species.

2.2.3 Cell Cycle

The cell cycle is a sequence of biological events by which a cell duplicates (reproduction)

and divides to produce two daughter cells. Specifically, in organisms whose cells have no
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Figure 2.3: Metabolic pathway of glycolysis. Glucose is converted to glycerol and
ethanol in the system. In the diagram, circles represent substrate and end-products,
boxes are intermediated metabolites and chemicals above arrows are enzymes (Wu et al.,

2005).

nucleus (prokaryotes), the reproduction of cells is accomplished by a particular process,

namely binary fission. In this process, the DNA molecule replicates itself and attaches

a copy to the cell membrane. Subsequently, two daughter cells with identical genetic

materials are formed by pulling apart the mother cell. The division of prokaryotes takes

place without nucleus, since the cell of prokaryotes does not contain nucleus.

For organisms whose cells have nucleii (eukaryotes), the cycle consists of three phases

and is more complex than those of prokaryotes. Prior to reproduction and division, cells

are in an initial quiescent phase, which is known as the resting phase. The preparations

for reproduction and division are achieved via Gap1, Synthesis and Gap2 phases which

constitute the interphase of cell cycle. For the sake of simplicity, they are denoted as

G1, S and G2.

In G1, the cell grows in volume and starts to synthesize various enzymes which will

be utilized in the S phase. Following the G1, during the S phase, all chromosomes

are replicated via producing two (sister) chromatids for each, such that the DNA is

completely doubled. At the pre-mitotic phase, in G2 phase, the cell rapidly grows and

speeds up protein synthesis, and completes the preparation for Mitosis. As seen in

Figure 2.4, checkpoints are used by the cell cycle which are dedicated to monitoring

and manipulating the progress (Elledge, 1996). Specifically, checkpoints play a role in

controlling the quality of DNA replication and are also responsible for repairing DNA

damage. The process cannot continue if the checkpoint requirements are not fulfilled.

The final phase of the cell cycle is mitotic (M) consisting of mitosis and cytokinesis,

during which the cell stops growing and consumes the cellular energy on division into

two genetically alike daughter cells. More specifically, chromosomes in the mother cell

are initially separated into two identical sets of chromosomes in mitosis, and each set

is allocated in its own nucleus. Division of the mother cell into two daughter cells is

carried out in cytokinesis, by which the cytoplasm, organelles and cell membrane are

separated with each equally sharing the genetic materials.

Computational biologists have devoted their intensive efforts to modeling this cell cycle

system in the past decade. Tyson (1991), being the pioneer in this field, mathematically
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characterized the interaction of cdc2 and cyclin. In the simplified cell cycle, this process

is crucial, since it forms a heterodimer (maturation promoting factor) that acts as the

regulator of the major events of the cell cycle. The intrinsic machinery of the cell cycle

was further studied by Tyson and Novak (2001), in which the irreversibility of transitions

occurring between two phases (G1 and S-G2-M) was assessed. Consequently, the simple

model was enriched following this empirical investigation, becoming a reasonable model

of the control systems in yeast cells, frog eggs, and cultured mammalian cells. Chen

et al. (2000) modeled the regulation of the cyclin-dependent kinase that ‘switches on’

DNA synthesis and mitosis in the budding yeast, Saccharomyces cerevisiae, via nine

nonlinear ordinary differential equations. Srividhya and Gopinathan (2006) proposed

a time delay model with seven differential equations for characterizing the cell cycle in

higher eukaryotes. One variable in these formulas describes the mass of the cell, which

is usually regarded as the checkpoint of G2/M.

Additionally, several efforts towards integrating quantitative study and a ‘wet-lab’ en-

vironment have been undertaken by Cross (2003); Battogtokh and Tyson (2004). A

comprehensive review of the empirical investigation of the cell cycle in computational

biology can be found in Ingalls et al. (2007).

Figure 2.4: Schematic diagram of the cell cycle process, obtained from
Ricochet Science’s website: http://ricochetscience.com/category/diseases/

cancer/. Though the four phases are shown roughly equal in time, in fact the time
spent in each phase is different. From the simulation, the relative times are: G1: 55%,

S: 15%, G2: 15% and M: 15%.

Even though the rapid development of biotechnology makes the exploration of systems

experimentally possible, however, the experimental cost would be sometimes extremely

expensive. Consequently, the above limitation motivates the computational biology

in which the biological system is mathematically described and the hypothesis can be

verified via the simulation before carrying out the experiment. The state-space models,

facilitating to produce the synthetic biological data, are introduced in the following

http://ricochetscience.com/category/diseases/cancer/
http://ricochetscience.com/category/diseases/cancer/


Chapter 2 Literature Review 11

section.

2.3 State-space models

State-space models are general mathematic expression for describing data, and have

been intensively used in many areas, such as system biology (Quach et al., 2007), com-

putational finance (Shephard, 1996), environmental analysis (Wikle et al., 1998) and

geophysical science (Ghil and Ide, 1997). In the setting of state-space models, the sys-

tem of interest is consisted of two kinds of variables: latent (unobservable) variables,

and visible (observable) variables. The series of latent variables, are referred to as

states, while the sequence of visible variables, are known as observations. State-space

models are dedicated to quantifying how observations arise from the states at a given

time. Mathematical description of these problems are due to Bar-Shalom and Fortmann

(1987); Kitagawa and Gersch (1996).

2.3.1 Linear dynamical systems

The simplest form of state-space models is the linear dynamical system (LDS) which

formulates processes as

xt = Axt−1 + wt,

yt = Cxt + vt, (2.1)

where xt ∈ Rn×1 and yt ∈ Rm×1 are the states and observations of dynamics at time

instance t. A ∈ Rn×n is the transition matrix and C ∈ Rm×n is the observation matrix.

wt and vt are independent Gaussian random variables from N (0,Q) and N (0,R).

The set of linear dynamical systems is the typical approach for formulating data in the

domains of control theory and machine learning. Among applications in those fields,

control engineering is the area for most frequently using LDS. For example, Parker and

Johnson (2009) proposed a scheme for decoupling LDSs in the context of control theory

so as to cancel the effect of disturbance inputs and correct unwanted behavior. Liu

et al. (2011) enriched LDS and developed a tool based in control theory for enhancing

the controllability of complex networks. In addition, Shi and Lu (2010) claimed that

LDS itself is capable of summarizing the electroencephalography (EEG) signals, in which

EEG signals with disturbance are regarded as the observations. The use of LDS in EEG

paved a way to classify signals given noisy observations.

In machine learning, Rauch et al. (1965) combined LDSs and Maximum Likelihood

Estimator in tracking state behavior of system, and illustrated the effectiveness of this

state-of-the-art solution by deploying to a numerical example. Zhang and Boukas (2009)
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focused on finding the solution to estimate the unknown transition matrix in LDSs,

success of the proposed approach was demonstrated by two toy numerical examples.

In the review literature, Roweis and Ghahramani (1999) claimed that, due to their

generality, typical problems in machine learning such as principle component analysis

(PCA), independent component analysis models (ICA) and Kalman filtering can be

formulated as LDSs.

In computational biology, LDSs also play a crucial role to characterize the dynamics stud-

ied; for instance, Yang et al. (2007) formulated a metabolic pathway into the LDSs where

the model adopted the stoichiometry matrix as the coefficient A. The concentrations

of intermediate metabolites and end-products are mapped to states and observations

in LDSs, respectively. Fluxes and enzymes consumed in reactions are indicated by the

transition matrix A, and observations related to states are quantified by the observation

matrix C. Similar treatments of LDSs in modeling gene expression data can be found

in the literatures (Beal et al., 2005; Sanguinetti et al., 2006).

LDSs are also useful in describing biological signals such as the electroencephalography

(EEG). For example, Sanei and Chamber (2007); Cheung et al. (2010) characterized

the multi-channel of EEG signals as the observations of LDSs, yet the unmeasurable

information in the cortex was treated as the latent variables and the parameters in

model indicated the cortical connectivities.

2.3.2 General state-space models

Nonlinear state-space models with Gaussian noise

In its default setting, LDSs are unable to model numerous intricate problems in the real

world which motivates the development of nonlinear state-space models, given as

xt = f(xt−1) + wt, (2.2)

yt = h(xt) + vt, (2.3)

where f : Rn → Rn and h : Rn → Rm. wt and vt are Gaussian noise with the same

distributions presented in LDS. Transition of state in dynamics at time series is depicted

by a nonlinear function f(·), equation 2.2 is called the transition model. Observations

respond to states which are quantified by function h(·), also known as the observa-

tion model, given in equation 2.3. LDS can be seen as a particular case of nonlinear

state-space models. We give two examples to illustrate how to describe dynamics with

nonlinear state-space models.

Example 2.1. The univariate non-stationary growth model is often adopted as a bench-

mark system to assess the performances of learning tools in the literature, such as Kita-

gawa and Gersch (1996); Arulampalam et al. (2002). The mathematical expression of
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this system is

xt =
1

2
xt−1 +

25xt−1

1 + x2
t−1

+ 8 cos(1.2t) + wt (2.4)

yt =
x2
t

20
+ vt (2.5)

where wt ∼ N (0, Q) and vt ∼ N (0, R). Summarizing the univariate non-stationary

growth system in nonlinear state-space models, functions f(·) and h(·) are given as:

f(xt−1) =
1

2
xt−1 +

25xt−1

1 + x2
t−1

+ 8 cos(1.2t), (2.6)

h(xt) =
x2
t

20
, (2.7)

Nonlinear state-space models with non-additive Gaussian noise

According to the relation between dynamics and noise, the nonlinear state-space models

are developed to multiplicatively corrupt with Gaussian noise. The stochastic volatility

model falls into this category.

Example 2.2. The stochastic volatility model found itself as a useful tool to formulate

problems in finance. For instance, Hull and White (1987) quantitatively analyzed op-

tion pricing by characterizing it in the stochastic volatility model. Further, numerous

statistical learning tools employ the stochastic volatility model to demonstrate their ca-

pabilities for inference (Liu, 2001; Chib et al., 2002; Girolami and Calderhead, 2011).

The stochastic volatility model is given as:

xt = φxt−1 + ηt (2.8)

yt = εtβexp
(xt

2

)
(2.9)

where ηt ∼ N (0, σ2
η) , εt ∼ N (0, 1) and β is the rate constant. It can be seen from the

formulations, that although noise is still additively imposed in the transition model, in

the observation model it acts as a multiplier to observations. In addition, to express the

stochastic volatility model with the nonlinear state-space model, functions are represented

as:

f(xt) = φxt−1 (2.10)

h(yt) = βexp
(xt

2

)
(2.11)

Statistical expression of state-space models

From a statistical point of view, an alternative way of writing state-space formulations
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of equation 2.2 - 2.3 is given below

x0 ∼ p(x0|θ0), (2.12)

xt ∼ p(xt|xt−1,θs), (2.13)

yt ∼ p(yt|xt,θobs), (2.14)

where x0 is the initial condition of states, t ∈ [0, . . . , T ] is a vector of time points, x ∈ Rn

and y ∈ Rm. θ0, θs and θobs are parameters involved in the initial states distribution,

transition distribution and observation distribution, respectively. In this setting, the

probability p(xt|xt−1,θs) is known as the transition distribution, similarly, p(yt|xt,θobs)

is the observation distribution. The graphical representation of the state-space models

in a statistical context shown in Figure 2.5. It has found applications in control or heart

Figure 2.5: Graphical description of state-space models, including parameters for
state model and observation model (shown as θs and θo, respectively.).

beat modeling, taking external inputs such as disturbances from motor and abnormal

heart beat pulse which are treated as factors of the transition distribution as well.

Consequently, the transition distribution is further extended as p(xt|xt−1,θs,ut), where

the external inputs are termed as ut. In Example 2.3, we rewrite the aforementioned

examples in probabilistic forms.

Example 2.3. Linear state-space models in probabilistic form:

p(x0|θs) = N (x0|π0,Σ0), (2.15)

p(xt|xt−1,θs) = N (xt|Axt−1,Q) (2.16)

p(yt|xt,θobs) = N (yt|Cxt,R) (2.17)

where parameters for transition distribution denoted as θs = {π0,σ0,A,Q}, and θobs =

{C,R}.
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Example 2.4. The univariate non-stationary growth model in the probabilistic form:

p(x0|θs) = N (x0|π0, σ0), (2.18)

p(xt|xt−1,θs) = N (xt|axt−1 +
bxt−1

1 + x2
t−1

+ c cos(1.2t), Q), (2.19)

p(yt|xt,θobs) = N (yt|
x2
t

20
, R), (2.20)

where θs = {π0, σ0, a, b, c,Q}, and θobs = R.

Example 2.5. The stochastic volatility model in the probabilistic form:

p(x0|θs) = N (x0|0,
σ2

1− φ2
), (2.21)

p(xt|xt−1,θs) = N (xt|φxt−1, Q), (2.22)

p(yt|xt,θobs) = N (yt|0, β2exp(xt)), (2.23)

where θs = {φ,Q}, and θobs = β.

2.3.3 Likelihood function

Likelihood, central to the operation of inference methods including Maximum Likeli-

hood (ML), Expectation Maximization (EM), Particle Filter (PF), etc, represents the

probability of event occurrence given a set of parameters. In the inference problems, this

likelihood is expressed as a function denoted as Lθ = p(y|θ) that takes the parameters

of a statistical model as variables. Let us assume that no Gaussian noise is imposed to

dynamics in the transition model and the observation function h(·) is an identity matrix

I, then the likelihood function can be derived as

x = f(x0,θs), (2.24)

y = Ix + v ∼ N (0,σ2
v), (2.25)

p(y|θobs) = (2π)−
n
2 |Σ|−

1
2 exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
. (2.26)

Equation (2.26) is called probability density function (PDF) of likelihood function. Since

the identity matrix solely describes how states are linearly related to observations, the

system transition f(·) directly replaces the term Ixt in formulation.

A multivariate Gaussian case is represented as an illustration of likelihood distribution.

Suppose the observed sequence of data is distributed in multivariate Gaussian having

means and covariance matrix given as µ = [−1.5, 2.5] and Σ =

[
2 1.15

1.15 0.8

]
; the surface

of likelihood is shown in Figure 2.6.
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Figure 2.6: Surface of likelihood of the given multivariate Gaussian distribution, the
region in red color depicts the higher probability for being the true values.

2.3.4 Inference problems in the state-space models

Suppose a biological system has the latent state variables, denoted as x, which might con-

sist of concentrations of chemical species of interest, e.g. mRNA, proteins and metabo-

lites. Inference in systems biology is to identify those hidden information by given the

observations y, via a reverse engineering process.

Differential equations based state-space models

In computational biology, the dynamical systems are often characterized by a set of ordi-

nary equations. The differential equations capture the changes in system with respect to

time and the solution to these equations helps in explaining the behavior at the system

level. More specifically, biological systems adapting state-space models with ODEs are

described as

ẋt = f(x,θs), (2.27)

xt = xt−1 +

∫ t

t−1
f(x,θs)dτ, (2.28)

yt = h(xt) + vt, (2.29)

where vt and θs are the same Gaussian noise for the observation model and transition

parameters as previously represented. As the underlying system is deterministic, no

noise is added to the transition model.

For quantitative analyzing dynamics, even though all biological systems are the continuous-

time processes, which are assumed to be observed at discrete instances in time. Following
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Sitz et al. (2002) and other authors, the way to solve this problem is to numerically in-

tegrate the state dynamics between temporal points at which observations are made, as

shown as equation 2.28.

State and parameter estimations

Statistically, the inference task is defined to compute the posterior distribution of the

latent state. Following Bayes’s rule, the posterior distribution of state is shown as

p(x0:t|y1:t) =
p(y1:t|x1:t)p(x0:t)∫
p(y1:t|x0:t)p(x1:t)

, (2.30)

where unknown states and the sequence of observations are denoted as x = [x0, . . . ,xt]

and y = [y1, . . . ,yt], respectively. Following Andriue et al. (2001), we adopt the notation

x0:t to refer to data in time sequence from 0 to t. The two terms in the numerator are

the likelihood and the prior distribution, which can be expanded as

p(y1:t|x1:t) =
t∏
t=1

p(yt|xt), (2.31)

p(x0:t) = p(x0)

t∏
t=1

p(xt|xt−1). (2.32)

Parameters θs, in their specifications, such as rate constants of biochemical reactions,

synthesis and decay rates of macromolecules, delays incurred n transcription of genes

and translation of proteins, and sharpness of nonlinear effects (Hill coefficient) are often

unknown in dynamics. Hence, those need to be simultaneously estimated with the latent

states. A common solution to this problem is to adopt the unknown parameters as

additional states in the system and to impose an artificial dynamics on them (Kitagawa,

1998; Liu, 2001). This technique is known as the state extension (Sitz et al., 2002) and

dynamics of parameters in the probabilistic form are described as

θs,0 ∼ p(θs,0|θp,0), (2.33)

θs,t ∼ p(θs,t|θs,t-1,θp), (2.34)

where θs,0 is the initial guess of the parameters and is generated by θp,0. The parameters

are further explored by the transition kernel which is determined by θp.

Example 2.6. Lotka (1925); Volterra (1926) initially proposed the predator-prey mod-

els, intended to formulate the continuously overlapping interactions of two species in an

environment. Two first-order, yet nonlinear differential equations are used to describe



18 Chapter 2 Literature Review

this system, which is denoted as

dx

dt
= αx− βy, (2.35)

dy

dt
= δxy − γy, (2.36)

where x and y are the populations of prey and predator, respectively. This model has

been extensively used in economics (Desai and Ormerod, 1998), computational finance

(Lee et al., 2005) and ecology (Berryman, 1992).

A large number of parameter estimation methods in the field of computational biology

make use of this predator-prey model to demonstrate their effectivenesses. An example of

this is Toni et al. (2009) who employed the predator-prey model for testing performance

of the proposed inference method, in which parameter vector θs = {α, β, δ, γ} is to be

estimated. ABC-SIS (Toni et al., 2009) (details are introduced in chapter 3) with an

initial guess of parameter values drawn from a uniform distribution θ0 ∼ U(a, b), as-

sociated with transitions made randomly using a certain distance in each iteration, has

yielded precise estimate of parameters. Mapping these algorithmic settings to equations

2.33-2.34, initial guess and transition distribution can be probabilistically described

p(θs,0|θp,0) = U(θs,0|a, b), (2.37)

p(θs,t|θs,t-1,θp) = N (θs,t|θs,t-1,σ
2
p), (2.38)

where θp,0 = {a, b} and θp = {σ2
p}.

There are a few solutions for the problem of imposing artificial dynamics on unknown

parameters, the one represented in equation 2.38 is known as the random walk kernel

and is often chosen for the state inference (Sun et al., 2008) and parameter estimation

problems (Andrieu et al., 2004). As an alternative, Gordon et al. (1993) suggested to

specify the variance σ2
p of the Gaussian as σ2

p = KEN−2/d, where E is the discrepancy

between the minimum and the maximum of the current particles (the concept of ‘particle’

will be introduced later in section A.1.4), K is a parametric constant, N is the number of

particles and d is the dimension of parameter vector. In addition, Liu and West (2001)

introduced the use of kernel smoothing with shrinkage for parameter evolution, details

of this scheme is introduced in the section A.4 of Appendix A and a comparative study

between this parameter evolution and the random walk can be found in chapter 4.

A variety of forms of state-space models characterizing the data of system are presented,

and the rigorous mathematical description of the parameter estimation problem has been

introduced in this section. In the following, several estimation methods being categorized

as sequential and batch will be discussed.
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2.3.5 State-space models with ODEs

The biological systems are often characterized by a set of ordinary differential equations

(ODEs), which capture changes to a system with respect to time and solutions of which

help to explain behavior at the system level. As mentioned in Chapter 2, we generally

consider nonlinear state-space models of the biological systems in which the dynamics

are deterministic and observations noisy. More specifically, the nonlinear state-space

models adapted for systems biology are given as

ẋt = f(xt,θ), (2.39)

xt = xt−1 +

∫ t

t−1
f(x,θt)dτ, (2.40)

yt = h(xt) + vt, (2.41)

where state vector xt may consist of concentrations of different molecular species at

time t, and yt quantifies the noisy observations relating to xt via the output function

h(·). θ = {θ1, . . . , θp} is the parameter vector of dynamics. It is necessary to recall

that vt is the zero mean Gaussian noise corrupting observations, and its covariance

matrix is denoted by R. This R is a positive definite matrix, quantifying the quality of

observations. Additionally, R is defined as a diagonal matrix due to the noise corrupting

to each observation is assumed to be uncorrelated. Setting ofR governs the performance

of inference methods, investigation on this subject is given in section A.6.3.

2.4 Bayesian inference

Inference is the process of running certain algorithms or probability models on a set of

observed data, such that the values of parameters and unobserved quantities such as

concentration of species can be predicted. In this field, point estimators, for instance

minimum mean squared error (MMSE) and maximum likelihood (ML), propose a single

value as the ‘best estimate’ of an unknown. Rather than claim efficiency as the pragmatic

advantage of point estimators, however, we prefer to emphasize their disadvantages

such as relying on an explicit form of likelihood or loss function and conclusions are

represented without characterizing uncertainty.

Bayesian inference is therefore motivated by making inferences from data using probabil-

ity models for quantities about either observed or unobserved. The essence of Bayesian

methods involves the use of probability for quantifying uncertainty in inferences, which

allow us to interpret conclusion in a statistical way. In this thesis, probability distri-

butions are notatedas p(θ|y) or p(x|y), indicating the guess of parameters or states is

conditional on the observations y.

The probabilistic conclusions about θ given y is referred to as the posterior distribution,
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following Bayes’ rule, which can be evaluated as

p(θ|y) =
p(y|θ)p(θ)

p(y)
, (2.42)

where p(y|θ) is known as likelihood introduced in section 2.3.3 and p(θ) is called prior

distribution which will be discussed in the following section. In addition, p(y) =∫
p(y|θ)p(θ)dθ is the sum over all possible values of θ (in the discrete cases, p(y) =∑
θ p(y|θ)p(θ)dθ). In general, p(y) is considered as a constant due to its independence

from θ, with fixed y, yielding the unnormalized posterior distribution, given as

p(θ|y) ∝ p(y|θ)p(θ). (2.43)

Equations 2.42 - 2.43 derive the primary mechanics of Bayesian inference, where the

primary task is to form the prior distribution and likelihood in an appropriate way so

that inference can perform smoothly.

2.4.1 Beta prior distribution

In Bayesian inference, the prior distribution quantifies the initial guess of unknown quan-

tity which could be parameter or hidden state variable. p(θ) or p(x) allow us to express

any belief we have in the value of θ or x prior to observing any data. More specifi-

cally, the prior distribution can be varied in accordance with different assumptions or

knowledge. For instance, the prior distribution could be used to characterize the prob-

ability of tossing coins giving heads, without performing any trials. Here we illustrate

the effect of prior on updating posterior via an example previously introduced in Rogers

and Girolami (2011), where three possible assumptions include no information about

the outcome of coin tosses, equal probability of either heads or tails and biased to flip

heads more than tails can be made.

Each of these assumptions can be encoded by different prior distribution, moreover, the

parameter θ implying the possibility of results can be any value between 0 and 1. Figure

2.7 shows the densities characterizing three different prior scenarios. As shown in the

graph, the blue line is a uniform density and shows no preference for any particular value

of θ. The red curve is shaped symmetrically centered on θ = 0.5, which indicates a fair

coin being tossed and value of θ is most likely allocating between 0.4 and 0.6. Rather

than the first two cases, the green line clearly implies its preference that value of θ is

most certainly greater that 0.5. This suggests that the coin is biased to give more heads

than tails.

These continuous random variables that are varied between 0 and 1 can be formulated
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Figure 2.7: The prior densities p(θ) are evaluated using value of θ for three assump-
tions, where the no prior information, fair chance and biased assumption are shown as

blue, red and green lines, respectively.

by the beta distribution, given as

p(θ) = Beta(θ|α, β) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, (2.44)

where α and β are the parameters for determining the shape of density, and both must

be positive. Γ(α) is the gamma function and defined as Γ(α) =
∫∞

0 xα−1e−xdx. This

function is used to ensure the density p(θ) integrates to 1 and leads to the independence

on data for prior. We will henceforth denote the beta distribution as B(α, β), and

the priors shown in Figure 2.7 are accordingly written as p1(θ) = B(θ|1, 1), p2(θ) =

B(θ|50, 50) and p3(θ) = B(θ|5, 1).

2.4.2 The exact posterior

In Bayesian inference, the process involves updating a prior distribution p(θ) to a pos-

terior distribution p(θ|y). From the mathematical convenience perspective, it is natural

to expect that some general relations might hold between prior and posterior. That is,

the posterior distribution should be expressed due to its same mathematical form as the

prior distribution. This property is called conjugacy, which can be achieved by fixing

likelihood to a particular form.

Consider the beta distribution example, it is referred as the conjugate prior to the

binomial likelihood. In probability theory, the binomial distribution plays a role in

characterizing density of the number of successes in a sequence of n independent ‘yes’ or

‘no’ experiments, with each trial yielding success with a parametric probability θ. Then
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the binomial distribution is given as

p(k|θ) = Bin(k|n, θ) =

(
n

k

)
θk(1− θ)n−k, (2.45)

where n and k are the number of experiments performed and number of successes,

respectively.
(
n
k

)
= n!

k!(n−k)! is called binomial coefficient. When n is set to one, the

binomial distribution becomes a special case which is known as Bernoulli distribution

and this success or failure experiment is called a Bernoulli trial.

Considering the expression given in equation (2.43), having beta distribution as prior

and Bernoulli distribution as likelihood, posterior is written as

p(θ|y = k) ∝ p(θ)p(k|θ)

∝
[

Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

]
×
[(
n

k

)
θk(1− θ)n−k

]
∝ θk+α−1(1− θ)n−k+β−1. (2.46)

Therefore, we have

p(θ|y) =
Γ(α+ β + n)

Γ(α+ y)Γ(β + n− y)
θα+y−1(1− θ)β+n−y−1. (2.47)

Notice the posterior is given the same form as prior distribution, i.e. p(θ|y) ∼ B(θ|δ, γ)

where δ = α + y and γ = β + n − y, and it shows how the posterior parameters are

updated by incorporating the new number of heads yt to the first prior parameter α and

the new number of tails n− yt to the second prior parameter β.

We now illustrate how the posterior distribution p(θ|y) is accordingly updated for three

different prior scenarios. In addition, the expected value and variance of θ are used

to quantify the effect of priors. Supposing a random variable is drawn from a beta

distribution with parameters α and β, i.e. x ∼ B(α, β), then its expected value and

variance are computed as

E[x] =
α

α+ β
, var[x] =

αβ

(α+ β)2 + (α+ β + 1)
. (2.48)

Therefore, for all three scenarios, we can compute the expected value of θ (the notation

of expected value Epn(θ)[θ] is simplified as En[θ]):

E1[θ] =
1

2
= 0.5, E2[θ] =

1

2
= 0.5, E3[θ] =

5

6
= 0.833.

Similarly, the notation of variance varpn(θ)[θ] is simplified as varn[θ], and values are

calculated as:

var1[θ] = 0.083, var2[θ] = 0.002, var3[θ] = 0.019.
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Note that the expected value of θ under no prior knowledge and fair coin scenario is

identical, of which the variance for the first scenario is much higher than another. This

makes sense as both priors show no preference, leading to equal probability for head and

tail. However, the lower variance of the fair coin implies less uncertainty in comparison

to the no prior knowledge case. This is because most of the probabilities θ for second

scenario are valued between 0.4 and 0.6, while θ for the first scenario can be any value

between 0 and 1 causing more uncertainty.

From equation (2.47), we can update the posterior distribution toss by toss, via a beta

distribution with parameter δ = α+yt and γ = β+n−yt. Let the first coin toss (n = 1)

be head (yt = 1), then under the three different prior settings, we have

Ep1(θ|yt)[θ] = 0.667, Ep2(θ|yt)[θ] = 0.505, Ep3(θ|yt)[θ] = 0.857,

with variances as:

varp1(θ|yt)[θ] = 0.055, varp2(θ|yt)[θ] = 0.002, varp3(θ|yt)[θ] = 0.015.

The increase of expected value and decrease of variance under all three scenarios are

naturally expected, since the current coin tossing is evidence to suggest that heads are

more likely than tails and further decreases the uncertainty in belief.

Supposing the complete results of ten tossing trials are given as

H, H, H, T, H, H, T, H, T, H.

We show how the posterior distribution p(θ|yt) is updated from the prior (previous pos-

terior distribution p(θ|yt−1)), incorporating the new observed coin tosses. In the graphs
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Figure 2.8: Posterior distribution p(θ|yt) (shown as the red line) is evolved from the
previous posterior distribution p(θ|yt−1)) (shown as the blue line), incorporating the

observation of coin tosses.
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shown in Figure 2.8, the red line shows the posterior after one toss being seen, and the

blue line is the prior or the previous posterior. It is consistent with the aforementioned

calculation, the possibility θ dramatically increases after having a head tossing as evi-

dence. The results up to toss 3 suggest that heads is much more likely than tails (3 out

of 4), therefore, it seems unexpected for seeing tails on the fourth toss and the density

has been ‘pulled’ back to the low values of θ. The similar decrease is also seen due to

the arrival of tails at the ninth toss, while the expected value of θ jumps up a bit for

tossing heads at the tenth trial.

For the fair coin prior, considering the same sequence of coin tossing, we show the

evolution of posterior distribution in Figure 2.9. As shown in these graphs, we can see
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Figure 2.9: Posterior distribution p(θ|yt) (shown as the red line) is evolved from the
previous posterior distribution p(θ|yt−1)) (shown as the blue line), under the fair coin

prior setting.

very little change in the evolution of the posterior distribution. These slight changes

are caused by the small amount of new observations. Recalling the parameters of beta

prior distribution are set as α = 50 and β = 50, this parametric setting implies that 50

successes out of 100 tosses, as a result of which 10 more tosses make little distinguishable

difference. We will see how a large amount of tosses (e.g. 1000) changes posterior

distribution under all three priors in the following discussion.

Following from these conclusions for the no prior knowledge and fair coin cases, for

the biased prior of which the evolution of posteriors is shown in Figure 2.10, it is not

surprising that an unexpected arrival of tails will decrease the expected value of θ and

increase in uncertainty.

We observe that a new toss observation will be either too influential for changing pos-

terior (scenario 1 and 3), or have no effect on updating posterior at all (scenario 2). We

show the posterior distributions updated after 1000 tosses, under three priors. From the

graphs, it notices that all posteriors are similar, especially the scenarios 1 and 3 which
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Figure 2.10: Posterior distribution p(θ|yt) (shown as the red line) is evolved from
the previous posterior distribution p(θ|yt−1)) (shown as the blue line), under the biased

prior setting.

are mostly identical to each other. The reason there is a difference between the posterior

for scenario 2 and the other two is due to the fair coin prior having the most certainty

(lowest variance), therefore, more data is needed to remove this strong belief and deliver

the identical distributional shape.
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Figure 2.11: Posterior distributions updated after 1000 coins under all three prior
settings.

In addition, as the number of observations increases, the initial guess (prior) contributes

less to the posteriors and becomes unimportant. It makes perfect sense from the math-

ematical perspective, as the posterior is the result of multiplying the prior by the likeli-

hood (ignoring the normalizing constant). As more and more data is involved in updating

posterior, the likelihood becomes the product of individual likelihood for increasing ob-
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servations, while the prior remains unchanged. Consequently, the likelihood dominates

the posterior evolution.

2.4.3 Gaussian-Gaussian conjugated pair

The Gaussian-Gaussian is another widely used conjugated prior-likelihood pair. In the

following, a discussion will be made on how posteriors are evolved with the arrival of

observations, associated with the mathematical convenience of conjugated Gaussian-

Gaussian pair.

Let us assume that a set of Gaussian random variables y = {y1, . . . , yN} (these variables

are assumed independent to each other) follows the distribution y ∼ N (µ, σ2), for which

the mean µ is unknown and the variance σ2 is fixed. The likelihood, that serves as a

function to evaluate the probability of the observations given µ, is written as

p(y|µ) =
N∏
n=1

p(yn|µ) =
1

(2πσ2)N/2
exp

{
− 1

2σ2

N∑
n=1

(yn − µ)2

}
. (2.49)

It is noticeable that the likelihood takes the form of the exponential of a quadratic form

in µ. In order to pursue the mathematical convenience, we use the Gaussian distribution

for the prior p(µ), given as

p(µ) = N (µ|µ0, σ
2
0) =

1√
2πσ2

0

exp

{
−(µ− µ0)2

2σ2
0

}
, (2.50)

where µ0 is the mean of p(µ) and corresponds to an initial arbitrary guess for µ. σ2
0 is

the variance of the prior and implies the reliability of this initial guess. This Gaussian

prior is the conjugate distribution for the Gaussian likelihood function, which is due to

the posterior being a product of two exponentials of quadratic functions of µ and so also

is Gaussian. The relevant derivation is given in the following.

Following Bayes’ rule shown in equation (2.43), we consider the log of the posterior

ln p(µ|y) = ln p(y|µ) + ln p(µ), (2.51)

where the first term in right hand side can be further extended as

ln p(y|µ) = −1

2
ln 2πσ2 − 1

2σ2

N∑
n=1

(yn − µ)2, (2.52)

and the second term can also be written as

ln p(µ) = −1

2
ln 2πσ2

0 −
1

2σ2
0

(µ− µ0)2. (2.53)
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Substituting equations (2.52) - (2.53) into equation (2.51), we have

ln p(µ|y) = − 1

2σ2

N∑
n=1

(yn − µ)2 − 1

2σ2
0

(µ− µ0)2 + const

= − 1

2σ2

N∑
n=1

(
y2
n − 2ynµ+ µ2

)
− 1

2σ2
0

(
µ2 − 2µµ0 + µ2

0

)
+ const

= − 1

2σ2

N∑
n=1

y2
n +

µ

σ2

N∑
n=1

yn −
Nµ2

2σ2
− µ2

2σ2
0

+
µµ0

σ2
0

− µ2
0

2σ2
0

+ const, (2.54)

after re-arrangement and grouping, we have

ln p(µ|y) =
Nµ

σ2

N∑
n=1

yn +
µµ0

σ2
0︸ ︷︷ ︸

first-order terms

−Nµ
2

2σ2
− µ2

2σ2
0︸ ︷︷ ︸

second-order terms

+const. (2.55)

The terms − 1
2σ2

∑N
n=1 y

2
n and −µ20

σ2
0

in equation (2.54) are irrelevant to µ, therefore

these two terms are grouped into constant. In addition, as a function of µ, equation

(2.55) is again a quadratic form, where the expression is completely characterized by the

mean and variance. This rearrangement is so called ‘completing the square’, in which

a quadratic form defining the exponent terms in Gaussian distribution is given, and

the goal becomes to determine the corresponding mean and variance. This task can

be achieved by mapping the concrete expression to the exponent in a general Gaussian

distribution N (x|µ, σ2) given as

−(x− µ)2

2σ2
= − x2

2σ2
+
xµ

σ2
+ const. (2.56)

Mapping the equation (2.55) to equation (2.56), denoting p(µ|y) ∼ N (µN , σ
2
N ), we can

have

σ2
N =

1
N
σ2 + 1

σ2
0

=
σ2σ2

N

Nσ2
0 + σ2

(2.57)

µN = σ2
N

(
µ0

σ2
0

+
N
∑N

n=1 yn
σ2

)
=

σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

ȳ. (2.58)

We next illustrate how the posterior distribution p(µ|y) changes under different priors or

evolves by incorporating increasing numbers of observations. Supposing the observations

follow a Gaussian distribution y ∼ N (5, 0.03), and similarly we also consider one strongly

informative prior µ ∼ N (3, 1) and one non-informative prior µ ∼ N (0, 5).

Figure 2.13 shows the evolution of posteriors after observing one, four, seven and ten

data. From the graphs, it is noticeable that the posterior distribution is ‘shrunk’ to-

wards the real mean value µ = 5 along with less uncertainty, as we observe more and
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Figure 2.12: Prior densities for two different settings, where the informative and
non-informative priors are shown as green and red lines, respectively.
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Figure 2.13: Posterior distributions are updated by incorporating different number
of observations, under the informative prior.

more data. Moreover, the posteriors after seeing seven and ten observations are barely

distinguishable, this is because the term ȳ in the mean of posterior shown in equation

(2.58) becomes stable and changes slightly, when a certain amount of observations is

used to update the posterior.

Comparing to the informative prior, we carry out the same investigation on the non-

informative prior case, for which the results are shown in Figure 2.14. As we expected,

the evolved posterior after observing several data points becomes stable and the final

density implies that five is most likely to be the value of mean of observations µ = 5.

Even though two different priors are involved to examine how posteriors change with

respect to the increasing observations, the effect of informative/non-informative prior

on posterior evolution is diminished as more data is seen.

In the following discussion, we illustrate how the posterior changes in response to the

different types of observations. Let us assume the observation in this example is vector-
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Figure 2.14: Posterior distributions are updated by incorporating different number
of observations, under the non-informative prior.

valued data, more specifically, two observations, y1 ∼ N (µ1,Σ1) and y2 ∼ N (µ2,Σ2).

Given a non-informative prior distribution as µ ∼ N (µ0,Σ0) = N (0, 10I) where I

denotes the identity matrix, and equally reliable observations through covariance as

Σy,1 = Σy,2 = 0.01I, we can have posterior distribution p(µ|y1,y2) as shown in Figure

2.15.
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Figure 2.15: Posterior distribution p(µ|y1,y2) is inferred by incorporating observa-
tions which are generated by fixed means µ1 = (0, −1) and µ2 = (1, 0). The densities
of first, second observations and posterior are shown as the red, green and black circles,
respectively. A: Equally reliable observations. B: The second observation y2 is more
reliable than the first observation y1. C: y1 is more reliable in the vertical direction,

while y2 is more reliable in the horizontal direction.

From the Figure 2.15.A, when the components in observation have the same level of
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certainty or uncertainty, the posterior lies between the densities of the two observations.

Conversely, when y1 is less reliable than y2 via setting Σy,1 = 0.1I and Σy,2 = 0.01I, we

can see from Figure 2.15.B that the posterior moves towards the density of y2. Moreover,

different components can have a specific ‘preferred’ direction, for instance we define y1

has less uncertainty on the vertical direction in comparison to y2 and y2 is more reliable

on the horizontal direction. This can be achieved by setting the covariance matrix as

Σy,1 = 0.01

(
10 1

1 1

)
, Σy,2 = 0.01

(
1 1

1 10

)
. (2.59)

By favoring different components in observations, the posterior shown as Figure 2.15.C

implies that components will contribute more to posterior in the directions with less

uncertainty.

2.4.4 Other distributions in the exponential family

In general, the posterior distribution p(θ|y) has no closed-form expression, and it is prob-

lematic to compute such a distribution due to the intractable integral for the normalizing

constant p(y). Thus much research uses conjugate priors to yield an analytical solution

to the posterior, such that it can be computed without evaluating the denominator

in Bayes’ rule. Apart from the aforementioned beta-binomial and Gaussian-Gaussian

conjugate prior-likelihood pairs, there are some more common conjugate pairs and we

briefly introduce some of them in the following.

In section 2.4.3, we have introduced the use of Gaussian-Gaussian conjugate pair to infer

the mean of Gaussian given a set of random Gaussian variables with known variance.

We now wish to infer the variance with a fixed mean. Recalling that the likelihood,

when used as a function of variance σ2, can be rewritten as

p(y|σ2) =
N∏
n=1

N (yn|µ, σ2)

∝ 1

σN
exp

{
− 1

2σ2

N∑
n=1

(yn − µ)2

}
. (2.60)

For the sake of simplicity, we use the precision that is defined as λ ≡ 1
σ2 to describe

Gaussian distribution, rather than the variance σ2. Bishop (2006) suggests that the

gamma distribution should be adopted as the conjugate prior for this likelihood, which

is proportional to the power of λ and the exponential of a linear function of λ. The

gamma distribution is written as

Gam(λ|a, b) =
1

Γ(a)
baλa−1 exp(−bλ), (2.61)
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where Γ(a) is the gamma function that is introduced in section 2.4.1 ensuring that the

gamma distribution is correctly normalized. Now considering a Gam(λ|a0, b0) as prior

distribution, multiplying by the likelihood shown in equation (2.60), we can write the

expression of posterior distribution as

p(λ|y) = λa0−1λN/2 exp

{
−b0λ−

λ

2

N∑
n=1

(yn − µ)2

}
. (2.62)

This expression can be formed into the distribution Gam(λ|aN , bN ). By noting the terms

with respect to equation (2.61), we have

p(λ|y) ∼ Gam(λ|aN , bN ) (2.63)

aN = a0 +
N

2
(2.64)

bN = b0 +
1

2

N∑
n=1

(yn − µ)2. (2.65)

From equations (2.63) - (2.65), one can interpret that the curvature of posterior is

increased by adding values N/2 to prior parameter a0. Additionally, b implies how

wide the gamma distribution spreads out, and bN therefore quantifies the uncertainty of

posterior after having N observations. Rather than working with the precision λ, if the

variance σ2 is used in the likelihood function, its corresponding conjugate prior is called

the inverse gamma distribution. Here we work with the precision, due to its convenience

for denotation.

We now progressively make the task harder, that is how to choose a conjugate prior

if both the mean and the precision are unknown. Following the hints for finding the

appropriate prior in aforementioned examples, we first decompose the likelihood into

the functions related to µ and λ

p(y|λ) =

N∏
n=1

(
λ

2π

)
exp

{
−λ

2
(yn − µ)2

}

∝
[
λ1/2 exp

(
−λµ

2

2

)]N
exp

{
λµ

N∑
n=1

yn −
λ

2

N∑
n=1

y2
n

}
. (2.66)

We now encode the joint distribution p(µ, λ) as the same form as likelihood shown in

equation (2.66), to identify the parametric settings for conjugate prior.

p(µ, λ) = p(µ|λ)p(λ)

∝ exp

{
−βλ

2
(µ− c/β)2

}
︸ ︷︷ ︸

first component

λβ/2 exp

{
−
(
d− c2

2β

)
λ

}
︸ ︷︷ ︸

second component

. (2.67)

From equation (2.67), we can therefore define p(µ|λ) and p(λ) as Gaussian and gamma
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distributions, respectively. More specifically, the first component in equation (2.67) en-

codes the distribution p(µ|λ) and the second component corresponds to the distribution

p(λ). Consequently, we have

p(µ|λ) = N (µ|µ0, (βλ)−1) (2.68)

p(λ) = Gam(λ|a, b), (2.69)

where µ0 = c/β, a = 1 + β/2, b = d− c2/2β and c, d and β are user-specific constants.

The distribution shown in equation (2.68) is known as Gaussian-gamma distribution.

Figure 2.16 shows some plots for Gaussian-Gamma distribution obtained with different

prior settings, from which we can observe that a in Gamma distribution controls the

shape of density, while the parameter b influences the level of distribution spread. Notice
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Figure 2.16: Gaussian-Gamma distributions. Graphs are plotted with different prior
settings.

that this distribution holds a coupling property between the precision of µ and the value

of λ, as the precision of mean µ for Gaussian-gamma distribution is a function of λ.

When the random Gaussian variables follow the multivariate Gaussian distribution

X ∼ N (x|µ,Λ−1), with an unknown mean and known precision, the conjugate prior is

another Gaussian distribution. If the mean is known, while the precision is unknown,

then the conjugate prior is Wishart distribution. When both the mean and the preci-

sion are unknown, following the same principle of reasoning to the univariate case, the

conjugate prior is known as Gaussian-Wishart distribution. More details about these

conjugated pairs can be found in Bishop (2006).

The gamma distribution is also used as the conjugate prior for Poisson distribution,

of which the major use is to model the incidence rate of disease in epidemiology. In

general, Poisson distribution quantifies the probability of numbers of events occurring
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in a fixed duration or space. Assuming all events occurring with a known average rate

and independently in the time being, the Poisson distribution likelihood function is

written as

p(y|θ) =

N∏
n=1

1

yn!
θyne−θ

∝ θ
∑N
n=1 yneNθ

∝ θSeNθ, (2.70)

where S =
∑N

n=1 yn and y a positive integer vector, e.g. yn = 0, 1, 2, . . ., and parameter

θ defines the rate of occurrence, In order to have the posterior distribution p(θ|y) in the

same form as prior, following the derivation given in Gelman et al. (2013), we therefore

define the conjugated prior for Poisson likelihood as

p(θ) ∝ θa−1e−bθ, (2.71)

noticing that equation (2.71) has the identical form of gamma distribution with param-

eters a and b. Similarly to the beta-binomial case, here we can express posterior as

p(θ|y) ∼ Gam(y|a+NS, b+N).

Apart from introduced distributions, there are some more widely used conjugate prior-

likelihood pairs such as Dirichlet-Multinomial. Even though the conjugacy provides

several attractive advantages such as computational convenience and intuitive interpre-

tation, however, both prior and likelihood have to be characterized according to the

problems of interest. More specifically, the prior should be set in accordance with how

well we know about problems before seeing any data, any constraints applied on prior

and whether the underlying system is discretized or continuous. Likewise, under the

state-space models, the likelihood function is written in response to the type of noise

corrupting observations. It can also be expected that increasing observed data can

gradually remove the effect of prior on determining posterior. Consequently, the infer-

ence should be performed on priors which satisfy reality, rather than for computational

convenience.

2.5 Inference methods

Computational modeling of biological systems is about quantitatively describing bio-

chemical systems using differential equations (Kitano, 2002). Knowledge of biological

processes is captured in these equations, and when their solutions match measurements

of the system of interest it helps confirm our understanding of mechanism at the sys-

tems level. Examples of such models include cell cycle progression (Chen et al., 2000),

integrate and fire generation of heart pacemaker pulses (Zhang et al., 2000) and cel-
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lular behavior in synchrony with the circadian cycle (Leloup and Goldbeter, 2003). A

particular appeal of modeling is that models can be interrogated with what if type ques-

tions to improve our understanding of the system, or can be used to make quantitative

predictions in domains in which measurements are unavailable.

A central issue in developing computational models of biological systems is setting states

such as concentration of proteins, metabolite and mRNA, and parameters such as rate

constants of biochemical reaction, synthesis and decay rates of macromolecules, delays

incurred in transcription of genes and translation of proteins, and sharpness of nonlin-

ear effects (Hill coefficient). Parameter values are usually determined by conducting in

vitro experiments (Niedenthal et al., 1996; Wadsworth et al., 2001; Tseng et al., 2002;

Wiedenmann et al., 2004). When parameter values are not available from experimen-

tal measurements, modelers often resort to hand-tuning during the model development

process and publish the range of values of a parameter required to achieve a match

between model output and observed data. In this setting, however, we encounter two

difficulties. First, parameters measured by in vitro experiments may be far away from

those obtained in vivo. Second, some parameters of the system may not be amendable

in the experimental setting. These limitations motivate the use of statistical tools to

infer the unknown parameters in the systems.

As previously discussed, one way of setting parameters systematically is based on tech-

niques for search and optimization. For example, Mendes and Kell (1998) compared sev-

eral optimization based algorithms for estimating parameters along biochemical path-

ways and concluded that no single approach significantly outperforms other available

approaches. Follow up work on a reasonably large system is described in Moles et al.

(2003) where 36 parameters of a nonlinear biochemical dynamical model are optimized

using stochastic global optimization using evolutionary strategies. Similar work on a

developmental gene regulation circuit is described by Fomekong-Nanfack et al. (2009);

Ashyraliyev et al. (2008), and a spline approximation based method for learning the pa-

rameters of enzyme kinetic model in a cell cycle system is described in Zhan and Yeung

(2011).

An alternate approach is the use of probabilistic Bayesian formulations to quantify

uncertainties in the process of estimating parameters. Work described by Golightly and

Wilkinson (2005); Dewar et al. (2010); Barenco et al. (2006); Vyshemirsky and Girolami

(2008); Jayawardhana et al. (2008); Lawrence et al. (2006) falls into this category. While

maximum likelihood estimation has been the popular tool (Muller et al., 2004; Muller and

Timmer, 2004; Baker et al., 2005; Bortz and Nelson, 2006) with probabilistic methods,

approximate Bayesian treatment via variational Bayes (VB) and Markov Chain Monte

Carlo methods have also been explored. With time varying or dynamical systems, some

authors have pointed out advantages of sequential estimation models, formulating the

problem as state and parameter estimation in a state-space modelling framework (Quach

et al., 2007; Sun et al., 2008; Lillacci and Khammash, 2010). Kalman filtering and its
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variants, and nonparametric particle filtering have been applied in this setting (Liu and

Niranjan, 2012; Nakamura et al., 2009; Yang et al., 2007).

2.5.1 Approximate Bayesian computation methods

Apart from the deterministic approximation methods, in the batch category, a class of

data-driven algorithms, namely approximate Bayesian computation algorithms (ABC),

has been widely used to address the parameter estimation problem. ABC methods are

ideal for systems for which it is possible to synthesize data but the computation of

likelihood is computational expensive or intractable, therefore, such class of methods is

also known as likelihood-free.

Pritchard et al. (1999) initially invented the ABC method associated with a simple rejec-

tion criterion, in order to tackle the parameter estimation problem in genetics. Since the

coalescent tree that is used for conveying the inheritance relationships between alleles of

gene in genetics is of high dimensionality and the human chromosome dataset is large,

all state-of-the-art methods were infeasible. As an alternate, Pritchard et al. (1999)

evaluated the coalescent model and yielded sets of pseudo-data by using a collection of

samples for parameters. If the current pseudo-data is identical to the real data, then

the corresponding sample is accepted for representing the posterior of parameter, but

otherwise rejected. The key conceptual idea of ABC depends on this acceptance/re-

jection scheme, which operates without the likelihood evaluation or other deterministic

approximations. This simple rejection based ABC method (called ABC-rejection) is

only feasible for systems with low parameter dimensionality. To alleviate this issue,

Wall (2000) considered a distance metric to quantify the discrepancy the real dataset

and pseudo-data, associated with a threshold ε. According to Wall (2000), if the dis-

tance between the pseudo-observation and the real data is lower than the threshold ε,

then the corresponding sample can be treated as an estimate of the parameter.

Even though the concepts of distance metric and threshold were introduced to enhance

the capability of ABC-rejection, the tuning of threshold is tricky, as one needs to com-

promise between accuracy and computational expense by tweaking this threshold. Beau-

mont (2003) proposed their ABC method, which uses a local weighted regression ad-

justment to ABC-rejection, which is called ABC-regression. This method projects all

estimations from ABC-rejection into a regression model and operates a local adjustment

to improve the posterior estimates.

However, both ABC methods have a serious deficiency in that their computational ef-

ficiency dramatically decreases if the prior distribution for generating the samples is

non-informative. A possible solution, Marjoram et al. (2003) developed their treatment

of ABC in context of MCMC, namely ABC-MCMC. Although the transition chain moves

samples around the space, as long as a significant number of iterations are run, samples
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are guaranteed to converge to the target distribution. However, this ABC method in-

herits the disadvantages of MCMC including slow chain mixing and dependence on the

covariance of transition.

A more powerfully ABC based method was introduced by Sisson et al. (2007), which

merges the previous innovative SMC sampler (Del Moral et al., 2006) in the ABC setting,

known as ABC-PRC. Despite ABC-PRC overcoming the problems evident in ABC-

MCMC, its original version violated the condition of SMC sampler and thus leaded to

a biased estimation. In this case, ABC algorithms such as ABC-SIS (Toni et al., 2009),

ABC-PMC (Beaumont et al., 2009) and ABC-SMC (Del Moral et al., 2012) which use a

similar framework as ABC-PRC have been proposed. Also, Sisson et al. (2009) corrected

their ABC-PRC method.

Particularly, the capability of ABC methods on parameter estimation in the context of

biological systems was highlighted by Toni et al. (2009). In Chapter 3, we thoroughly

review this rich collection of algorithms and provide the empirical suggestion of using

these approaches in systems biology. Meanwhile, as the discussion seen in chapter 3,

ABC type methods, being data-driven solutions, require fine tuning of the acceptance

criterion to strike a balance between accuracy and computational complexity. This

dilemma, however, motivates the algorithm proposed in Chapter 4.

2.6 Sensitivity analysis

From the perspective of model, parameters, or combinations of parameters, can be

classified as sloppy or stiff with respect to how sensitive the outputs respond to the

variations of parameter values. Sensitivity analysis is a class of techniques for quantifying

the properties of parameters in terms of stiff or sloppy, and which has been applied

to various areas such as economic modeling for decision making (Triantaphyllou and

Sánchez, 1997), social sciences (Kennedy, 2003; Saisana et al., 2005), chemistry (Saltelli

et al., 2005; Komorowski et al., 2011) and engineering (Becker et al., 2011). We focus

on its use on systems biology, and briefly introduce it below.

Local sensitivity analysis

Sensitivity analysis can be carried out locally or globally. From a practical perspective,

the local methods carry out the sensitivity analysis by calculating the partial derivatives

of system dynamics with respect to parameters, associated with operating points in the

parameter space. Sensitivity index is often used as the quantitative measurement of the

sensitivity, and its definition is given as

Si =
∂xi
∂θ

= lim
∆θ→0

xi(θ + ∆θ)− xi(θ)

∆θ
∼=

xi(θ + ∆θ)− xi(θ)

∆θ
, (2.72)
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where xi is the ith system output, θ is the parameter of interest and ∆ is the variation

considered in parameter. It can be seen from this definitional derivative that an accurate

approximation can be achieved by using a significantly small ∆θ, however, the choice of

∆θ value is heavily empirical.

Dickinson and Gelinas (1976); Rabitz et al. (1983) proposed an alternative way to com-

pute the sensitivity index, in which a differential equation of sensitivity index is consti-

tuted, given as

∂Si
∂t

=
∂

∂t

(
∂xi
∂θ

)
=

∂

∂θ

(
∂xi
∂t

)
=
∂ẋ

∂θ
, (2.73)

where ẋ is the ODEs of the dynamics of interest. This differential equation is often

numerically solvable. Dickinson and Gelinas (1976); Rabitz et al. (1983) empirically

suggested that the initial conditions of equation 2.73 are required to assign the reasonable

values based on the relationship between θ and x0.

A closely related method of sensitivity analysis used in some biological problems is

metabolic control analysis which aims to measure the dependence of state variables in

metabolic networks, e.g fluxes and species concentrations, on kinetic parameters. This

dependence is quantitatively described by the control coefficient, which is defined as

Cx
θ =

θ

x
× ∂x

∂θ
(2.74)

This method was derived to quantify the metabolic networks (Kacser and Burns, 1973;

Heinrich and Rapoport, 1974; Fell and Sauro, 1985; Reder, 1988), and it was subse-

quently applied to study other biological processes, e.g. cell signaling (Ihekwaba et al.,

2004) and genetic networks (Swameye et al., 2003).

In addition, an innovative sensitivity analysis technique based on principal component

analysis (PCA) was proposed for analyzing sensitivity by given the inferred particles for

unknown parameters (Toni et al., 2009). This method has applied to the repressilator

gene regulatory network and the MAP kinase signaling pathway (Secrier et al., 2009),

and successfully discriminated the sloppy and stiff parameters of these two systems.

However, the reliability of this approach depends on the precision of inference. If the

parameters of the system are inaccurately estimated, the sensitivity analysis result is not

robust. Due to this limitation, we cannot use PCA-based sensitivity analysis technique

in our proposed inference method described in chapter 4, since our approach requires to

provide the reliable sensitivity analysis result given the relatively low precision inference.

In addition, we carry out a comparative study on this PCA-based method and details

can be found in section 4.4.

Global sensitivity analysis

It is evident that the local sensitivity analysis techniques are heavily dependent on the



38 Chapter 2 Literature Review

operating points considered. However, due to the sophisticated mechanisms in most

biological systems, values of parameters can be greatly varied and precise determination

is impossible. which may lead to unreliable results. In order to overcome this difficulty,

sensitivity analysis techniques are then carried out with tolerance for the substantial

variation of parameters, results obtained within this strategy are classified as the global

sensitivity analysis.

A straightforward global sensitivity analysis technique is to assign the parameter values

by picking the samples from a particular range so as to mimic variations in reality. This

simple scheme is inefficient for generating samples that fully cover the parameter space.

Alternatively, Latin hypercube sampling was proposed by McKay et al. (1979); Iman

et al. (1981), in which the parameter space is split into equal intervals and samples

from each individual are drawn with equal probability. This grid sampling method

outperforms the random scheme in terms of diversity, since the randomly drawn samples

may neglect some intervals in space.

By assuming a monotonic relationship between parameters and system outputs, the

correlation coefficient (CC) also plays its role in sensitivity analysis and is calculated as

rθ,y =
Cov(θ,y)√

Var(θ)Var(y)
=

∑N
i=1 (θi − θ̄)(yi − ȳ)√∑N

i=1 (θi − θ̄)2 ×
∑N

i=1 (yi − ȳ)2

, (2.75)

where N is the number of samples picked, and θ̄ and ȳ are mean of samples and system

outputs, respectively. Value of correlation coefficient is between -1 and 1, where a posi-

tive coefficient implies that an increase in the parameter values leads to a corresponding

growth of the system outputs. In contrast, negative value indicates that an increase

in parameter value decreases system outputs. Based on this concept, rank correlation

coefficient (RCC) that is obtained by using the rank-transformed data, and partial rank

correlation coefficient (PRCC) whose coefficient is calculated after eliminating the lin-

ear effects on y caused by parameters except the underlying one, are further involved in

sensitivity analysis. Details can be found at Saltelli et al. (2008); Marino et al. (2008)

The family of correlation coefficient methods were successfully applied to study the TCR

signaling pathway (Zheng and Rundell, 2006), an HIV model (Blower and Dowlatabadi,

1994; Blower et al., 2000) and pharmacokinetic model (Kiparissides et al., 2009).

Sobol’ method, was invented by Sobol’ (1990) to handle the sensitivity problem for

nonlinear and non-monotonic systems. The idea of Sobol’ method is to decompose

system dynamics f(θ) into summands of various simplified functions which take different

combinations of parameters in increasing dimensionality. This can be mathematically

described as

f(θ) = f0 +

np∑
i=1

fi(θi) +

np∑
i=1

np∑
j=i+1

fij(θi, θj) + . . .+ f1,...,np(θ1, θ2, . . . , θnp), (2.76)
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where f0 is a constant. The total variance D is defined as

D =

∫
Θnp

f2(θ)dθ −
(∫

Θnp

f(θ)dθ

)2

, (2.77)

where the integrals of each summand over its own variables is zero, that is the second

term in equation 2.77 is cancelled (Saltelli and Bolado, 1998). Additionally, by parti-

tioning the system dynamics, then partial variances can be individually calculated by

following

Di1i2...is =

∫
. . .

∫
f2(θi1 , θi2 , . . . , θis)dθi1dθi2 . . . dθis (2.78)

The approximation of this integral can be achieved with Monte Carlo integration, and

then the sensitivity index can be computed as

Si1i2...is =
Di1i2...is

D
(2.79)

This fraction explains about how total variance is apportioned to the individual kinetic

parameter or their combinations. Higher value indicates that the corresponding param-

eter or combination is more crucial to characterize system behavior. Although Sobol’

method can converge to the analytical solution (Kim et al., 2010), the dependence on

Monte Carlo approximation may be highly computational-demanding (Zi, 2011).

Another variance-based approach, Fourier amplitude sensitivity test (FAST), provides a

way to partially overcome the computational complexity of the Sobol’ method. Specifi-

cally, FAST transforms system outputs to the frequency domain and characterizes kinetic

behaviors by using Fourier series. By doing so, approximation of sensitivity index can

be achieved by the summation of Fourier series. In similarly to Sobol’ method, FAST

analyzes the sensitivity index by using the Monte Carlo method, as a result, the com-

putational complexity is much higher than other approaches where it needs to tradeoff

between accuracy and efficiency in most cases. Comparing to Sobol’ method, FAST can

achieve the reliable sensitivity analysis result with cheaper computational expense, if

only the first-order sensitivity index is required to compute (Saltelli and Bolado, 1998).

Details of the first-order sensitivity index and FAST are given in chapter 4. Conse-

quently, this method is adopted in our work to perform the sensitivity analysis.

2.7 Discussion

In this chapter, we outlined the main tasks which are consisted in systems biology. As

the first step in the roadmap of systems biology, we set out to show the different forms of

state-space models and their mathematical descriptions. Combined with the discretiza-

tion technique, state-space models possess the ability to mimic the noisy observations
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of biological systems.

From the perspective of the thesis, we roughly categorized the inference methods in

terms of how they process data. We gave an overview of sequential methods, beginning

with the most famous family of Kalman filters, the method ends up to a powerful

sampling-based filtering technique, i.e. particle filter. Additionally, we also reviewed

the approaches for estimating parameter in a batch fashion, which span a wide range

from the most straightforward ML algorithm to the latest RMHMC algorithm, as well

as modern methods, featuring the likelihood-free, ABC methods were introduced.



Chapter 3

Approximate Bayesian

Computation Methods

This chapter is a review of Approximate Bayesian Computational (ABC) methods, a

class of powerful algorithms for Bayesian inference that do not require explicit computa-

tion of likelihood. We provide a tutorial introduction to a variety of algorithms centered

around the ABC idea and illustrate their relative performances on a Gaussian mixture

model and two models of system biology: the widely used Lokta-Volterra model and the

Heat Shock Response model considered in the previous chapter.

3.1 Basic ABC methods

The basic idea in ABC algorithms is to sample the unknown from a prior distribution,

θ ∼ π(θ), synthesize data from the model under study, X∗ ∼ f(x0, θ
∗), where x0 is the

initial condition and f(·, ·) is the model, and accept θ∗ as a sample for the posterior if

the synthesized data X∗ is close enough in some sense to the observations X. In our

discussion with Systems Biology models, we will focus on f(·, ·) being a set of ordinary

differential equations which can be numerically integrated. We will also use Euclidean

distance between the synthesized and the observations as measure of discrepancy. Vari-

ety of the ABC frameworks are derived by considering different sampling strategies and

adapting the threshold at which acceptance decisions are made.

In order to retain the consistency of notation throughout the descriptions in chapter 3,

we assume that the dimension of parameter in system is one, i.e. Dp = 1, therefore,

the scalar θt denotes a sample of the parameter at the time instant t and the collection

of samples is described as θ. However, in most real world situations, the dimension of

parameters in system is always greater than one, as a result, the scalar θt is naturally

extended to a vector, denoted as θt, and the collection of samples becomes a matrix,

41
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given as Θ.

3.1.1 ABC-Rejection algorithm

In its earliest form (Tavaré et al., 1997), the generated particle θ∗ was accepted only

if X∗ was identical to the observations X. It became immediately evident that this

is an inefficient procedure because thousands of trails needed to be performed before

accepting one of the generated particles. A modification to the scheme, introduced by

Pitt and Shephard (1999) was to define a threshold ε and accept particles when the

discrepancy between X∗ and X was within this. This variant of the method is normally

referred to as the ABC-rejection algorithm shown in Algorithm 1.

Algorithm 1 ABC-rejection

Input: π(θ), ε, x0, Nrej , X, ρ(·, ·) and f(·, ·).
Output: θ = {θ1, . . . , θNreg}

n=1
Repeat
1. Draw θ∗ ∼ π(θ)
2. Synthesize X∗ ∼ f(x0, θ

∗)
3. Evaluate discrepancy d = ρ(X∗,X)
4. if d ≤ ε then
5. θn = θ∗

6. n = n+ 1
7. end if
until n = Nrej

The procedure of ABC-rejection is illustrated in Figure 3.1, which shows the steps taken

by ABC-rejection to approach the posterior distribution.

The function ρ(·, ·) in Algorithm 1 quantifies a distance between synthesized the true

observations. The Euclidean distance is often chosen for this metric function in the

context of systems biology, which is given by

ρ(X∗,X) =

NOT∑
i=1

‖x∗i − xi‖, (3.1)

where ‖x∗i −xi‖ denotes the norm of error between x∗i and xi, and NOT is the number of

data points of observations. Intuitively, tolerance ε plays a crucial role in performing the

ABC-rejection. If ε approaches zero, the approximated posterior distribution becomes

infinitesimally close to the target distribution. This is achieved at the expense of more

computation, therefore, efficiency becomes an issue. Likewise high precision cannot be

expected with tolerance ε increasing considerably.

Example 4.1 Take the deterministic Lotka-Volterra model (Lotka, 1925; Volterra, 1926)

as an example and which is also considered in Example 2.6 of chapter 2. The ODEs
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Figure 3.1: The procedure of ABC-Rejection algorithm: The graph.A shows the prior
distribution of parameters (there are two parameters in this illustration i.e. θ = [θ1, θ2])
where the dot and triangle are samples drawn from the prior distribution. It is easy
to see from the graph.B that is the simulation yielded from the dot parameter set is
sufficiently close to the true data, thus the dot sample for parameter is accepted. In
contrast the simulation from the triangle set mimic poorly the true data, and are there-
fore rejected. By running through the process, the posterior distribution is obtained
and shown in the graph.D, and turns out to be narrower than the prior distribution.

of this Lotka-Volterra model are described as

ẋ1 = f(x1) = αx1 − x1x2, ẋ2 = f(x2) = x1x2 − βx2, (3.2)

where x1 and x2 are two species in a system. In particular, observations of the system

are corrupted by Gaussian noise which is generated from N (0, 0.05). The time length

for synthesizing the pseudo-observations is 100 min, sampling at regular intervals of 0.2

minutes, that is the number of data for representing the pseudo-observations is 500. We

generate the observations with the true model: α = β = 0.5. Starting from the same prior

distribution for picking particles, i.e π(θ) ∼ U(0.2, 0.9), we examine the performance of

ABC-rejection under different epsilons: ε = 300, 100, 20, 10. The inference under each

epsilon is carried out 10 times. The results of inferences are shown in Figure 3.2 where

the ability of ABC-rejection to estimate parameters is varying considerably with respect

to the epsilon value. The performance of ABC-rejection in terms of efficiency under

ε Computational time (second) Acceptance rate

300 4.434±0.11 100%±0

100 4.493±0.14 95.6%±1.6

20 154.4±18.1 2.43%±0.2

10 727.6±35.3 0.05%±0.02

different tolerances is summarized and listed in Table 3.1.1. We can conclude that if the
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coarse acceptance criterion is employed, the algorithm appears as an efficient method with

high acceptance rate, however, a few undesired particles are also accepted to represent

the posterior. In contrast, the particles are able to narrowly circle around the true point

when the harsh tolerance is taken; yet, this high precision requires more computational

expense and the decline of acceptance rate is evident.
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Figure 3.2: Illustration of the posterior distribution p(θ|X) (blue ellipses) obtained
under different tolerances ε, where the small red cross implies the point of true param-

eters.

This example illustrates the capability of ABC-rejection on parameter estimation with-

out likelihood evaluation, however, it can be challenging to strike a balance between

computational efficiency and accuracy.

The tradeoff made for acceptance rate and precision limits the widespread use of ABC-

rejection. Beaumont (2003) introduced the modification of standard rejection ABC

method associated with a local regression adjustment. This so-called ABC-regression

method and ABC-rejection appear fundamentally in collecting samples for approximat-

ing the posterior distribution. With making use of the local correction, ABC-regression

is allowed to afford a relatively large tolerance ε. The innovation of this algorithm

is in characterizing the relationship between the collection of accepted samples and

their corresponding discrepancies via a linear regression model. We escape the detail

of ABC-regression method in this section, due to the high similarity. The derivation,

interpretation, pseudo-code and illustrative example for ABC-regression can be found

in the section A.9 of Appendix 6.
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3.1.2 ABC-MCMC algorithm

Although the local regression process has the effectiveness for correcting estimate with

only a negligible computational cost, an informative prior must be set for ABC-rejection

and ABC-regression. When samples are generated from a non-informative prior distri-

bution, thousands of attempts will be rejected leading to inefficiency. As a solution of

this difficulty, Marjoram et al. (2003) performed MCMC algorithm in the ABC setting,

namely the ABC-MCMC.

In ABC-MCMC, a Markov chain transition kernel q(θ∗|θt) of invariant distribution

p(θt|X) is allowed to apply on each sample so that
∫
q(θ∗|θt)p(θt|X) = p(θ∗|X), leading

to the samples still being distributed according to the posterior of interest (Andriue

et al., 2001). When the current distance between pseudo-observations and true dataset

is less than the tolerance ε, the proposal is taken as the sample for parameter with an

acceptance probability, defined as

h(θ∗, θ) = 1 ∧ p(θ
∗)q(θ|θ∗)

p(θ)q(θ∗|θ)
= min

(
1,
p(θ∗)q(θ|θ∗)
p(θ)q(θ∗|θ)

)
. (3.3)

The steps for executing ABC-MCMC algorithm are given in Algorithm 2.

Algorithm 2 ABC-MCMC

Input: θ1 ∼ π(θ), ε, x0, Nmcmc, X, k(·), ρ(·, ·) and f(·, ·).
Output: θ = {θ1, . . . , θNmcmc}

t=1
Repeat
1. Move θt → θ∗: θ∗ ∼ k(θt) where k(·) is given as equation A.37
2. Synthesize X∗ ∼ f(x0, θ

∗)
3. Calculate distance d = ρ(X∗,X)
4. if d ≤ ε then
5. generate indicator u ∼ U(0, 1)

6. if u < min
(

1, π(θ∗)k(θt|θ∗)
π(θt)k(θ∗|θt)

)
then

7. θt+1 = θ∗

8. t = t+ 1
9. else
10. θt+1 = θt
11. t = t+ 1
12. end if
13. end if
until t = Nmcmc

It can be seen that, apart from the acceptance criterion conducted by ABC, the proposed

samples must additionally be accepted according to the MH acceptance probability. The

use of this acceptance probability makes the Markov chain satisfy the detailed balance

condition, and guarantees its convergence to the stationary distribution p(θ|X). We

prove this in what follows, and these standard derivations are described in (Marjoram
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et al., 2003).

Taking the notations previously mentioned, the detailed balance can be described

p(θ|X)r(θ → θ∗) = p(θ∗|X)r(θ∗ → θ), (3.4)

where r(θ → θ∗) is the MH transition mechanism, given as

r(θ → θ∗) = k(θ∗|θ)p(X|θ∗)h(θ, θ∗). (3.5)

Substituting equation 3.5 into the left-hand side of the detailed balance condition, we

have

p(θ|X)r(θ → θ∗) = p(θ|X)k(θ∗|θ)p(X|θ∗)h(θ, θ∗)

=
p(X|θ)π(θ)

p(X)
k(θ∗|θ)p(X|θ∗)h(θ, θ∗)

=
p(X|θ)π(θ)

p(X)
k(θ∗|θ)p(X|θ∗)π(θ∗)k(θ|θ∗)

π(θ)k(θ∗|θ)

=
p(X|θ∗)π(θ∗)

p(X)
p(X|θ)k(θ|θ∗)

= p(θ∗|X)p(X|θ)k(θ|θ∗)

= p(θ∗|X)p(X|θ)k(θ|θ∗)h(θ∗, θ)

= p(θ∗|X)r(θ∗ → θ), (3.6)

which holds the equality.

Example 4.3 Deploying all aforementioned methods to the Lokta-Volterra model, start-

ing from a relatively non-informative prior, we attempt to illustrate the advantage of

the ABC-MCMC. In this case, the initial θ1 is generated from a Gaussian distribution

θ1 ∼ N (0.7, 0.012) and the tolerance ε is set to 20. For illustrating the outperformance

of ABC-MCMC, ABC-rejection draws the samples from the identical prior. As shown

in Figure 3.3, the posterior estimate from ABC-MCMC converges to the true value from

a relatively far place after a few iterations. Moreover, it can be seen from the contour of

the posterior shown in the right panel of Figure 3.3 that ABC-rejection performs simi-

larly in terms of accuracy. The gain of Markov transition kernel k(·) is evident in the

computational efficiency, where ABC-MCMC takes approximately 1300 iterations with

an acceptance rate of 7.69% to collect 100 samples, whereas 24000 iterations are taken

by ABC-rejection to collect 100 samples, yielding an acceptance rate of 0.42%. We also

note that even though the tolerance is set to a value that is identical to Example 4.1

(ε = 20), however, ABC-rejection performed worse in this study in comparison to the

results shown in Figure 3.2. This is because the prior distribution is non-informative in

this simulation, while it is set to a relatively favorable prior (easier to generate samples

that is close to the true values) in the previous study.
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Figure 3.3: First column: the trajectories of estimations for α and β from the
ABC-MCMC algorithm. Second column: the histograms of the inferred samples, notice
that the estimates obtained in the burn-in phase are not included in the histograms.
Last column: The comparative study of performances between ABC-MCMC and ABC-

rejection in term of the contour of particles.

Interestingly, as shown in graphs, even though two parameters are simultaneously es-

timated, it becomes immediately apparent that the variance of samples for α is con-

siderably lower than the one for β. This phenomenon is known as sloppiness/stiffness,

and such property gives a rise to the concept of sensitivity analysis, which motivates

our innovative ABC-based inference algorithm. This algorithm will be introduced in

Chapter 4.

3.2 Advanced ABC methods

A variety of deficiencies, such as the simple sampling method, the curse of dimensionality

and the slow Markov chain mixing, limit the widespread use of basic ABC methods

on parameter estimation of biological systems (Beaumont, 2010). The advanced ABC

methods were developed by focusing on determining the acceptance criterion, either

deterministically or automatically. In addition, the adaptive transition kernel is also

merged in the SMC based ABC methods.
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3.2.1 ABC-partial rejection control (ABC-PRC) algorithm

ABC-MCMC is able to partially alleviate the constraint on informativeness of prior,

however, it suffers from the slow Markov chain mixing. A toy example was considered

by (Sisson et al., 2007; Beaumont et al., 2009; Del Moral et al., 2012), and we took

this problem to illustrate this particular issue with ABC-MCMC, which is represented

below.

Example 4.4 Suppose it is of interest to estimate the mean µ of a mixture Gaussian

model with a prior distribution π(·), given as

f(x∗|µ) =
1

2
N (x∗;µ, 1) +

1

2
N (x∗;µ, 0.01), π(µ) ∼ U(−10, 10), (3.7)

where N (x∗;µ, σ2) is the one-dimensional normal probability density function of mean µ

and variance σ2, evaluated at x∗, and U(a, b) is the uniform distribution on the interval

[a, b]. The true observation x is assumed to be zero (i.e. x = 0), therefore, the true

posterior distribution is given as

p(µ|x) ∝ p(x|µ)p(µ) = {N (0;µ, 1) +N (0;µ, 0.01)} I[−10,10](µ). (3.8)

where I[−10,10](µ) is the indicator function, returning one if µ is in the interval [−10, 10],

otherwise, zero. In this toy example, the L1 distance is used as the function to measure

the discrepancy between x∗ and x, since x = 0, ρ(x∗, x) = |x∗ − x| = |x∗|. In the ABC

setting, the posterior distribution is approximated by the tolerance, given as

pε(µ|x) ∝ p(ρ(x, x∗) ≤ ε|µ)p(µ)

= p(|x∗| ≤ ε|µ)I[−10,10](µ)

= p(−ε ≤ x∗ ≤ ε|µ)I[−10,10](µ), (3.9)

where p(−ε ≤ x∗ ≤ ε|µ) indicates the region p(x|µ) that is between p(−ε|µ) and p(ε|µ).

Such region is blacked in Figure 3.4, and it can be counted via the cumulative distribution.

For the mathematical convenience, we shift the distribution of interest whose mean is

µ to the zero mean Gaussian distribution. Such shifting can be done by subtracting the

original variables by µ, i.e. µ− µ = 0. Additionally, it is due to the function of interest

is a mixture Gaussian model, as a result of which we need to shift all distributions to

zero mean Gaussian. After the shifting, this region can be calculated as

p(−ε ≤ x∗ ≤ ε|µ) = Φ(ε− µ)− Φ(−(ε+ µ)) + Φ(10(ε− µ))− Φ(−10(ε+ µ)) (3.10)

where Φ(·) is the cumulative distribution function of the normal Gaussian distribution.

For moving the samples, the MH transition kernel following the random walk is given as

k(µ∗|µn) ∼ N (µn, 0.152). (3.11)
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Figure 3.4: Illustrative graph shows how to calculate the region of interest after
shifting by misusing the mean µ.

Results shown in Figure 3.5 were obtained by setting tolerance as ε = 0.025 and the

number of MCMC iterations as Nmcmc = 20000. It can be easily observed from the
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Figure 3.5: A: Trajectory of samples for µ obtained from 20000 ABC-MCMC iter-
ations. B: Histogram of the samples, and the true target distribution pε(µ|x) is shown

as the red solid line.

graphs that, after converging to the true value, the samples again move to the place in

space away from the true value leading to the multi-modal distribution. Moreover, no

samples visit the tails of distributions within 20000 ABC-MCMC iterations. As this toy

example is deliberately designed for illustrative purpose, the true distribution p(µ|x) can

be approximated by pε(µ|x) whose analytical solution is given as equation 3.10. The

target distribution is shown as the red curve in Figure 3.5, which provides evidence to

illustrate that ABC-MCMC suffers from the slow-mixing chain problem in this simple

example.
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To overcome this problem, SMC method has been recently merged into the ABC frame-

work and details are introduced below. In brief, the philosophy of SMC is to gradually

approach the posterior of interest via a series of intermediary distributions, which are

constituted by a collection of particles θ = {θ1, . . . , θNsmc}. In the intermediary phase,

each particle will be perturbed around the space through the transition kernel and its

importance is weighted based on how well it can represent the posterior. Those fittest

realizations are ‘encouraged’ to characterize the target distribution by frequent selec-

tion, whilst those with negligible weights are discarded. Moreover, within the ABC

framework, through bypassing the evaluation of the likelihood, the target distribution

p(θ|X) is approximated as pε(θ|ρ(X∗,X) ≤ ε). Intuitively, when the prior distribution is

non-informative and the tolerance ε is small, the computational complexity immediately

becomes an issue.

In the earliest form of SMC sampling ABC methods, Sisson et al. (2007) derived an

innovative ABC approach by combine the previously proposed SMC sampler (Del Moral

et al., 2006) with a partial rejection control scheme (ABC-PRC) at which the acceptance

criterion is specified as a sequence of tolerances ε = {ε1, . . . , εT }. A smooth approach to

the target posterior can be expected with this tolerance path, rather than a jump caused

with a specific value of ε. Basically, ABC-PRC draws the particles from the previous

population by considering their weights, and perturbs those particles around the space

using the transition kernel, θ∗∗ ∼ k(θ∗). The pseudo-observations are synthesized from

the underlying model, X∗ ∼ f(x0, θ
∗∗), where x0 is the initial condition and f(·, ·) is the

dynamics. Particle θ∗∗ is accepted and weighted if the discrepancy between synthetic

data X∗ and true dataset X is lower than the current tolerance εt. When the diver-

sity issue appears, i.e. all particles collapse to a few values and this problem can be

formulated as {
∑Nsmc

i=1 (wit)
2}−1 ≤ Nsmc

2 , particles are resampled associated with their

corresponding weights. The procedure of ABC-PRC is diagrammatically illustrated in

Figure 3.6.

A variety of SMC-based ABC methods were developed with different weighting processes

for pursuing unbiasedness and adaptivity. The earliest sequential sampling ABC method,

ABC-PRC, however, can be shown to have inappropriate weight evaluation leading to

biased estimation. The proof is given below. Considering the SMC sampler (Del Moral

et al., 2006), the weight evaluation is given as

wit ∝
π(θit)Lt−1(θ∗|θit)
π(θ∗)kt(θit|θ∗)

, (3.12)

where π(·) is the prior distribution for generating the initial particles and Lt−1(·) is

known as the backward Markov transition kernel defining the probability for moving

particles from θit to θ∗. Following the suggestion from Sisson et al. (2007), the Gaussian

random walk kernel is adopted for Lt−1(θ∗|θit) and kt(θ
i
t|θ∗).

Beaumont et al. (2009) pointed out that the threshold εt for accepting particles violates
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Figure 3.6: In the beginning of each iteration, particles are picked from the previous
population associated with weights, subsequently, those particles are perturbed by the
transition kernel. The pseudo-observations are synthesized by solving the ODEs of
system under study, if the discrepancy between synthetic dataset and true observation
is lower than the current acceptance criterion, then the particles are retained. When the
effective sample size Neff is smaller than a threshold, i.e. {

∑Nsmc

i=1 (wit)
2}−1 ≤ Nsmc

2 , a
resampling step will be carried out on the particles and reset the weights to 1/Nsmc.

the condition of using this weighting scheme from the previous SMC sampler (Del Moral

et al., 2006)1.

Let us assume an extreme case in which ε is set to zero, then only if X∗ = X the particle

θt−1 would be taken as θt (for elaborating, here, θ∗∗ is instead denoted as θt−1). To show

the biasedness, we first define the joint density p(θt, θt−1) as

p(θt, θt−1) = p(θt−1)p(θt|θt−1)

= π(θt−1|X)p(θt|θt−1,X)

= π(θt−1|X)
kt(θt|θt−1)f(X∗|θt)I(X∗ = X)∫
kt(θt|θt−1)f(X∗|θt)I(X∗ = X)dθt

∝ π(θt−1|X)kt(θt|θt−1)f(X|θt). (3.13)

We further consider an arbitrary integrable function r(·), having variable θt with weights

1 As the weight is defined as wt = pt(θt)
qt(θt)

, for approximating the target distribution at the time

t, in the original SMC sampler, Del Moral et al. (2006) achieves the approximation by marginal-
izing the particles coupled with an artificial constructed backward transition kernel Lt−1. That is
pt(θ1:t) = pt(θt)

∏t−1
j=1 Lj(θj |θj+1). However, when using εt, the distribution of current particles θt is

approximated as pεt(θt) = πεt(θt,X
∗|X) ∝ π(θt)f(X∗|θ∗)I(ρX∗,X), so it can not be described as the

marginal distribution in θt.
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wt, and expectation of r(·) is written as

E[r(θt)wt] ∝
∫∫

r(θt)p(θt, θt−1)wtdθtdθt−1

∝
∫∫

r(θt)π(θt−1|X)kt(θt|θt−1)f(X|θt)
π(θt)Lt−1(θt−1|θt)
π(θt−1)kt(θt|θt−1)

dθtdθt−1

∝
∫∫

r(θt)f(X|θt−1)π(θt−1)kt(θt|θt−1)f(X|θt)
π(θt)Lt−1(θt−1|θt)
π(θt−1)kt(θt|θt−1)

dθtdθt−1

∝
∫∫

r(θt)f(X|θt−1)f(X|θt)π(θt)Lt−1(θt−1|θt)dθtdθt−1

∝
∫∫

r(θt)π(θt|X)f(X|θt−1)Lt−1(θt−1|θt)dθtdθt−1

∝
∫
r(θt)π(θt|X)×

{∫
f(X|θt−1)Lt−1(θt−1|θt)dθt−1

}
dθt. (3.14)

Principally , the unbiased result should be denoted as

E[r(θt)wt] ∝
∫
r(θt)π(θt|X)dθt, (3.15)

where only the particles at t time instant θt are involved. If the backward tran-

sition kernel Lt−1(θt−1|θt) is irrelevant to the current particles θt, i.e. the integral∫
f(X|θt−1)Lt−1(θt−1|θt)dθt−1 is always a constant, then the expectation of function

r(θt) could be unbiased as shown in equation 3.14. However, the backward transition

kernel adopts the random walk scheme, that is Lt−1(θt−1|θt) = kt(θt−1|θt) ∼ N (θt, σ
2
k),

which violates the condition. Consequently, the weights from equation 3.12 certainly

produce biased estimates.

Example 4.5 In order to illustrate the biased estimate made by ABC-PRC, we con-

sider the previously studied Gaussian mixture model. By using the identical algorithmic

settings such as x = 0, σ2
k = 0.152 and ρ(x∗, y) = |x∗|, ABC-PRC is carried out with

10 consecutive iterations, associated with the sequence of tolerances starting from ε1 = 2

down to ε10 = 0.01. The number of particles Nsmc is set to 1000. Results are given in

Figure 3.7. The posterior distribution approximated by tolerance pεt(θ|X) can be solved

analytically as given in equation 3.10, and simulations from different tolerance values

εt are shown as the purple curves. We also draw the exact posterior distribution by

considering εt = 0 as the red dashed line. As seen in the graph, only in the first iter-

ation particles can roughly represent the posterior distribution. However, in successive

iterations a failure to cover the distributional tail is clearly observed. Consequently, we

discern that ABC-PRC yields biased estimations. One positive outcome of this study

is that, unlike ABC-MCMC, ABC-PRC has the appealing property of being capable of

avoiding the multi-modal estimation.
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Figure 3.7: Histograms of particles obtained from the ABC-PRC in 1st, 4th, 8th and

10th iterations for estimating mean µ of a Gaussian mixture model. The red dash line
represents the true posterior distribution p(µ|x) whose explicit expression is given as
equation 3.8, while the green solid line shows the posterior distribution approximated
by the current tolerance pεt(µ|x) and of which the expression is given as equation 3.9.

3.2.2 ABC-sequential importance sampling (ABC-SIS) algorithm

Since the weighting scheme adopted in the original ABC-PRC leads to biased estimates,

two similar methods, population Monte Carlo (Cappé et al., 2004) based method, namely

ABC-PMC, and sequential Monte Carlo based algorithm known as ABC-SIS were pro-

posed by Beaumont et al. (2009) and Toni et al. (2009). Sisson et al. (2009) issued a

correction to the original ABC-PRC algorithm. Due to the high similarity among these

algorithms, we only mention ABC-SIS as a representative paradigm of ABC-PMC and

corrected ABC-PRC.

Aiming to yield unbiased estimation of the target distribution, ABC-SIS abandons the

constructed backward transition kernel for approximating the intermediary distributions.

Alternatively, it carries out this approximation by straightforwardly using the prior

distribution and the current tolerance εt, denoted as

pt(θt) =
π(θt)

B

B∑
j=1

I(ρ(X∗j ,X) ≤ εt), (3.16)

where π(θt) is the prior distribution for generating the initial particles for parameter; B

is the number of sets of pseudo-observations synthesized; I(·) is the indicator function; εt

is the threshold for accepting particles to represent the intermediary distribution pt(θt).
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In the importance sampling based methods, the weight is defined as

wt(θt) =
pt(θt)

qt(θt)
, (3.17)

where qt(θt) is called the proposal distribution and the numerator is approximated by

equation 3.16. The fundamental concept in importance sampling is to encourage the

frequent selection of crucial samples, which is accomplished by choosing an appropriate

proposal distribution. Following the derivation introduced by Andriue et al. (2001), the

proposal distribution is formulated as

qt(θt) =

∫
qt−1(θt−1)k(θt|θt−1)dθt−1, (3.18)

here qt(θt) is adopted as the marginal distribution of the previous proposal distribution.

Since the previous proposal distribution qt−1(θt−1) is the approximation of the interme-

diary distribution at time t−1, i.e. pt−1(θt−1), qt(θt) can be regarded as the distribution

obtained from perturbing pt−1(θt−1). Replacing the qt−1(θt−1) as pt−1(θt−1) in equation

3.18, the proposal distribution is rewritten as

qt(θt) =

∫
pt−1(θt−1)k(θt|θt−1)dθt−1. (3.19)

Here the integral
∫
pt−1(θt−1)dθt−1 is always analytically intractable. To address this,

by applying the Monte Carlo approximation (Doucet et al., 2001), we have

∫
pt−1(θit−1)dθit−1 ≈

1

N

N∑
j=1

δ
θ̂j∼pt−1(θt−1)

(θjt−1)w(θi)

≈ 1

N

N∑
j=1

w(θjt−1), (3.20)

N is the number of particles and {θit−1, i = 1, . . . , N} are realizations from the distri-

bution pt−1(θt−1). Since {θ̂j , j = 1, . . . , N} are taken from pt−1(θt−1), therefore, each

θ̂j belongs to θit−1. Consequently, δ
θ̂j∼pt−1(θt−1)

(θit−1) always equals one. By making use

of this approximation, the proposal distribution at time t can therefore be given as

qt(θ
i
t) ≈

1

N

N∑
j=1

w(θjt−1)k(θit|θ
j
t−1). (3.21)

Defining bt(θt) =
∑B

j=1 I(ρ(X∗j ,X) ≤ εt), and substituting equation 3.16 and 3.21 into
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the weight calculation, we have

wt(θ
i
t) =

pt(θ
i
t)

qt(θit)

=
π(θit)bt(θ

i
t)

B
N

∑N
j=1w(θjt−1)k(θit|θ

j
t−1)

∝ π(θit)∑N
j=1w(θjt−1)k(θit|θ

j
t−1)

. (3.22)

If the system of interest is formulated deterministically, the particle θit is used to generate

the pseudo-observations only once and therefore B is set to 1. When the target system is

stochastic, θit is utilized for synthesizing the pseudo-observations more than once, which

means that B > 1.

Notice that these three algorithms only differ in the resampling process triggered by

the effective sample size, but not in kind. In the beginning of each iteration t 6= 0, all

algorithms pick particles from the previous population with their corresponding weights

before moving these particles by the transition kernel. In ABC-PRC, beyond this picking

strategy, if a severe degeneracy is observed (i.e. the effective sample size is lower than

a threshold), particles will be resampled according to the current weights. However, in

the other two methods, ABC-PMC and ABC-SIS, this additional resampling is canceled,

since Beaumont et al. (2009); Toni et al. (2009) claimed that the resampling in response

to degeneracy is unnecessary as it is already performed at the beginning of each iteration.

The block for describing ABC-SIS steps is given in Algorithm 3.

Algorithm 3 ABC-SIS

Input: θ0 = {θ1
0, . . . , θ

Nsmc
0 } ∼ π(θ), x0, X, k(·), ρ(·, ·), f(·, ·), T and ε = {ε1, . . . , εT }

Output: θT = {θ1
T , . . . , θ

Nsmc
T }

for t = 1, . . . , T do
for i = 1, . . . , Nsmc do

1. Draw θ∗ from θt−1 according to weights wt−1

2. Move θ∗ → θ∗∗: θ∗∗ ∼ k(θ∗) where k(·) is given as equation A.30
3. Synthesize X∗ ∼ f(x0, θ

∗∗,i)
4. Calculate distance d = ρ(X∗,X)
5. if d ≤ εt then
6. θit = θ∗∗,i

7. compute weight wit =
π(θit)∑N

j=1 w
j
t−1k(θit|θ

j
t−1)

8. end if
end for

end for

ABC-PRC and ABC-SIS could be infeasible in some complex problems, as these two

algorithms perturb particles by the random walk and finding the covariance matrix σ2
k

of this kernel requires a fine hand-tuning process. The posterior may diverge by using a

large σ2
k, whereas, if σ2

k is set to small, particles are highly correlated which can not cover
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the space of the target distribution well. On the other hand, ABC-PMC specifies the

adaptive movement of particles by taking twice the variances of the previous population

as the diagonal elements of the covariance matrix for the random walk.

Example 4.6 To illustrate how ABC-SIS overcomes biased estimation which is en-

countered by the ABC-PRC, we examine the performance of the ABC-SIS on the same

problem, as well as the algorithmic settings. Outputs from ABC-SIS are plotted in Fig-

ure 3.8. As shown in the graphs, ABC-SIS fully covers the target distributions in all

iterations, even the distributional tails where ABC-PRC fails to explore. Consequently,

the modification of weight calculation successfully removes the bias of the ABC sampling

approach.
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Figure 3.8: Histograms of particles obtained from the ABC-SIS in 1st, 4th, 8th and

10th iterations for estimating mean µ of a Gaussian mixture model. The red dash line
represents the true posterior distribution, that is p(µ|x), while the green solid line shows

the approximated posterior distribution, i.e. pεt(µ|ρ(x∗, x) ≤ εt).

3.2.3 ABC-sequential Monte Carlo sampler (ABC-SMC) algorithm

Apparently, the transition kernel k(·) and the tolerance ε play significantly crucial roles in

determining the performance of all ABC methods. For the SMC-based ABC methods,

the schedule of tolerances ε = {ε1, . . . , εT } needs to be carefully designed, as large

decreases lead to low acceptance rate, and conversely, small step sizes in the schedule

require more iterations. Moreover, the computational complexity of weight calculation

is quadratic in the number of particles, which may become an issue with large number

of particles.

To address these problems, Del Moral et al. (2012) proposed the innovative SMC-based

ABC method which reduces the computational complexity to linear in the number of

particles. The idea of the ‘linear’ weight calculation also provides an automatic way of

finding the path of tolerance.
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This adaptive ABC-SMC algorithm is theoretically underpinned by the previous SMC

sampler (Del Moral et al., 2006), in which weights are evaluated as

wit ∝ wit−1

pt(θ
i
t)Lt−1(θit−1|θit)

pt−1(θit−1)kt(θit|θit−1)
, (3.23)

similarly, Lt−1(·) is the backward Markov kernel, and following the suggestion from

Del Moral et al. (2006), an optimal choice for this backward kernel is chosen as

Lopt
t (θt|θt+1) =

pt(θt)kt+1(θt+1|θt)∫
pt(u)kt+1(u|θt)du

. (3.24)

Unfortunately, the analytical solution of the integral in equation 3.24 is intractable. As

one of the possible solutions, an MCMC kernel of invariant distribution pt+1(·) for the

transition kernel kt+1(·) is considered for approximating the optimal backward kernel

Lopt
t (·). Consequently, the weight can be approximated as following

wit ∝ wit−1

pt(θ
i
t)Lt(θ

i
t−1|θit)

pt−1(θit−1)kt(θit|θit−1)

∝ wit−1

pt(θ
i
t)

pt−1(θit−1)
×
pt(θ

i
t−1)kt(θ

i
t|θ

i)
t−1)

pt(θit)

× 1

kt(θit|θit−1)

∝ wit−1

pt(θ
i
t−1)

pt−1(θit−1)

∝ wit−1

∑Msmc
m=1 Iεt(X

∗,i
m,t−1,X)∑Msmc

m=1 Iεt−1(X∗,im,t−1,X)
(3.25)

where X∗ ∈ RMsmc×Nsmc×Ds×NOT are the pseudo-observations, and X∗,im,t−1 can be in-

terpreted as the mth synthetic outputs generated by the ith parameter particle at t time

instant θit−1. Iεt(X
∗,i
m,t−1,X) is an indicator function that returns one if the discrepancy

between pseudo-observation X∗im,t−1 and data X is less than the tolerance εn, zero oth-

erwise. Symbol Msmc here is the integer factor, functioning to operate Msmc SMC filters

in parallel (Andrieu and Johanes, 2008).

Benefiting from the weight calculation, ABC-SMC is able to adaptively select the current

tolerance level εt. The idea behind this automatic scheme is to determine an appropriate

reduction of the tolerance level based on the proportion of particles surviving under the

current tolerance. If a large amount of particles remain ‘alive’, it implies the acceptance

criterion is relatively loose and it is safe to make a jump for the next tolerance level.

In contrast, if the ratio of ‘alive’ particles is low, this means particles are less likely to

describe the posterior, therefore, a tiny movement should be considered. Such process

is mathematically described as PA(Xt, εt+1) ≤ αPA(Xt, εt).

For intentionally moving particles toward the target distribution, ABC-SMC determines
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the diagonal elements of covariance matrix for the random walk as the variances of the

previous population, which is denoted as

var(θ) = E[θ2
t ]− (E[θt])

2, (3.26)

where the expectation expands as

E[θt] =

Nsmc∑
i=1

witθ
i
t. (3.27)

Substituting equation 3.27 into equation 3.26, the variance is formulated as

var(θ) = E[θ2
t ]− (E[θt])

2

=

Nsmc∑
i=1

(witθ
i
t)

2 − (

Nsmc∑
i=1

witθ
i
t)

2 (3.28)

Consequently, the algorithm for ABC-SMC is shown in Algorithm 4 where the notations

are clarified in Table 3.2. A comparative study of ABC-SMC against other methods is

introduced in section 3.3.1, particularly, a competition between ABC-SMC and ABC-SIS

is represented in section 3.3.2.

Algorithm 4 ABC-SMC

Input: Details are listed in Table 3.1 and set t = 1
Output: θ = {θ1, . . . , θNsmc}

Set ε1 to an arbitrary enough large value
Repeat
1. If {

∑Nsmc
i=1 (wit)

2}−1 ≤ NT , then resample θt according to their weights wt;
details can be found in Kitagawa (1998);

2. Move θt → θt+1: θt+1 ∼ k(θt), where σ2
k is determined by equation 3.28.

3. Synthesize X∗t+1 ∼ f(x0,θt+1)
4. Compute the ratio of θt+1 remaining ‘alive’ under current tolerance εt,

such function is defined as PA(X∗t+1, εt), details are given in A-D:
A. compute Msmc ×Nsmc distance matrix D = ρ(X∗t+1,X) using equation 3.1
B. compute Msmc ×Nsmc indicator matrix I : Im,n = I(dm,n, εt) where

I(·) = 1 if dm,n ≤ εt, otherwise, I(·) = 0.

C. constitute 1×Nsmc summation vector v: vn =
∑Msmc

m=1 Im,n

D. PA(X∗t+1, εt) =
∑Nsmc
n=1 (vn 6=0)
Nsmc

.
5. Determine εt+1 by solving PA(X∗t+1, εt+1) ≤ αSMCPA(X∗t+1, εt).
6. if εt+1 ≥ εTa then

Calculate weights wt+1 = wt
PA(X∗t ,εt+1)
PA(X∗t ,εt)

and t = t+ 1

7. else
θ = θt and set εt = εTa.

until εt ≤ εTa.
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Table 3.1: Definitions of Inputs

Method Input

ABC-SMC 1. Number of particles Nsmc; Initial tolerance ε0, target
tolerance εTa; integer factor Msmc; tolerance reduction fac-
tor αsmc. 2. θi0 ∼ π(θ), i = 1, . . . , Nsmc, initial particles
for parameters. 3. X0 : Ds × Nsmc ×Msmc, initial con-
dition for system states. 4. True system observations X:
Ds ×NOT. 5. Resampling threshold NT = Nsmc/2

Table 3.2: List of Notations
ABC-SMC

Description Symbol Function Dimension

number of particles used for SMC Nsmc represent prior/pos-
terior distribution of
parameter

scalar

integer factor Msmc number of SMC filters
are used in parallel

scalar

initial particles for parameters θ0 initially use for generat-
ing solution of dynamics

Dp ×Nsmc

initial condition of states x0 states of dynamics at 1st

time instant
Ds × 1

weights vector w represent the impor-
tances of particles for
parameters

1×Nsmc

tolerance reduction factor αsmc calculate the next toler-
ance level

scalar

synthetic system output X∗ synthetic system out-
put obtained by solving
ODEs of dynamics asso-
ciated with the current
particles of parameters

Msmc × Nsmc ×
Ds ×NOT

distance matrix D represent discrepancy
between each synthetic
and real datasets

Msmc ×Nsmc

indicator matrix I show if the underlying
discrepancy is less than
epsilon

Msmc ×Nsmc

summation vector v summation of elements
in indicator matrix as
column-wise

1×Nsmc

3.3 Quantitative performance comparison

In this section, we examine the performances of ABC approaches on parameter esti-

mation to the heat shock response model in increasing dimensionality of the unknown

parameters. This biological system is used as an example in the section A.4 of Appendix

A for quantifying how an initialization influences the performance of the three sequential
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inference methods. In this study, this system is used for exploring how the tolerance

schedule dominates the performance of the ABC algorithms.

3.3.1 Two unknown parameters case

We first consider the relatively simple case in which two parameters are assumed un-

known and the other four parameters are assigned to values from the literature (El-

Samad et al., 2006). The algorithmic settings for generating the synthetic dataset are

the same in all simulations. As seen from the previous study described in the section A.4

of Appendix A, the difficulty of estimating the parameters rapidly grows with respect

to the prior distribution and the dimensionality of unknown parameters. To ensure the

identifiability of inference, only stiff parameters are assumed unknown (analysis of sensi-

tivity of the heat shock model is given in chapter 4). Hence the inference task is focused

on two unknown parameters space (kd and αd), while the remaining four parameters

are fixed to their true values, i.e. Kd = 3 and αd = 0.015. In addition, each unknown

parameter is assigned the flat non-informative prior. All simulations were carried out

with MATLAB R©on an Intel R©XeonTMW3520 @ 2.67GHz with 12 GB RAM computer.

Implementation details are following given

• ABC-rejection generates samples from the uniform distribution θkd ∼ U(0, 10) and

θαd ∼ U(0, 1). The samples with a population of 1,000 are accepted with tolerance

ε = 0.7.

• ABC-regression uses the same prior for generating the samples as ABC-rejection.

Mean of dataset is taken as the summary statistics and tolerance ε = 0.7. The

population of samples for representing posterior is 1,000.

• ABC-MCMC initializes the inference from the place where θ0 = [3.5, 0.02]. The

random walk proposals are utilized for parameters, in particular, N (θt−1, 0.00012)

for kd and N (θt−1, 0.0000072) for αd. We employ 2,000 MCMC iterations associ-

ated with the tolerance ε as 10.

• ABC-PRC generates particles from the uniform distribution θkd ∼ U(−10, 10)

and θαd ∼ U(−1, 1) with a population of 1,000. The path of tolerances starts

from 4 and goes down to 0.7 within 10 iterations, reducing consistently in each

iteration. The transition kernels for moving particles use the simplest random walk

kernel, specifically, N (θt−1, 2
2) for kd and N (θt−1, 0.012) for αd. The threshold for

triggering resampling is set to 500.

• ABC-PMC and ABC-SIS use the algorithmic settings which are identical to ABC-

PRC.
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• ABC-SMC uses the same prior distributions for synthesizing particles, for which

population is 1,000 and Msmc is 10. The target tolerance εT is 10 and the dis-

count factor αsmc for determining the next tolerance is 0.99 and the threshold for

performing resampling is 500.

The priors for generating the initial samples in ABC-rejection, ABC-regression and ABC-

MCMC are tuned to strike a balance between accuracy and efficiency. In other words,

to deliver comparable results with an affordable computational cost, the optimal initial

conditions are chosen for these non-sophisticated approaches. In addition, tolerance for

ABC-MCMC is adapted to a relatively larger value, because otherwise the proposed

samples can barely survived under the tolerance considered in other non-sophisticated

methods.

Figure 4.9 shows the estimates from seven ABC methods. Apparently, the non-sophisticated

methods (ABC-rejection and ABC-regression) produce the estimations which success-

fully recover the unknowns and are in good agreement with the results obtained from the

advanced approaches (ABC-PRC, ABC-SIS, ABC-PMC and ABC-SMC), while ABC-

MCMC fails to make accurate inferences. As expected, all SMC based algorithms outper-

form the non-sophisticated methods in terms of accuracy, and the unknown parameters

are inferred by the advanced algorithms with a high similarity.

As previously claimed, the computational complexity heavily depends on the acceptance

criterion, and so we further assess the number of model evaluations required to fulfill

the target tolerance. Since the evaluation of the complex system is usually expensive,

therefore, the comparison is carried out after accounting for the cost of synthesizing

pseudo-observations. In order to make a fair comparison, each approach is run 10 times

and the results are shown in Figure 3.10.

As shown in the graph, more trials are attempted by the basic methods to find the

fittest samples, while the majority of SMC based approaches consume less cost for

simulating pseudo-observations. We note that ABC-PMC, however, is an exception.

The significant increase of computational cost is caused by the transition kernel k(·)
which utilizes twice the variance of the empirical population as the covariance matrix

σ2
k. Such adaptivity negatively influences the rate of convergence when the prior (or

posterior distributions in the early iterations) is widely distributed leading to the large

σ2
k, subsequently, many proposals are rejected. ABC-SIS and ABC-PRC, benefiting

from an appropriate σ2
k of transition kernel, are clearly observed the outperformance in

terms of computational efficiency. However, this cannot be expected in the case with

high dimension, since finding an appropriate σ2
k might be impossible. This claim is

supported by the investigation stated in section 4.2.2.

ABC-SMC seemingly accomplishes an attractive balance between adaptivity and effi-

ciency in this example. Due to the ‘no rejection’ strategy of ABC-SMC, uninfluenced
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Figure 3.9: Full posterior distributions of parameters kd and αd of the heat shock
model obtained by seven methods, where the red dash lines and the red ‘+’ both denote
the true values of parameters. The scatter plots in each of the parameters are mirror

images about the diagonal histograms.

by the large transitions in the first few iterations, all particles are kept. In addition,

most realizations are assigned non-zero weights by the importance evaluation coupled

with the loose tolerances. As a result, the large amount of ‘surviving’ particles leads to

a rapid reduction of tolerance in the early stage. Subsequently, due to the wide distri-

bution of particles and decreased tolerance, only few particles are weighted as non-zero,

which results in a serious drop of the effective sample size. Hence, a resampling step
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Figure 3.10: Number of model evaluations required to achieve the target tolerance by
six ABC methods. We have not included ABC-MCMC results because the estimations

were poor quality.

is triggered to enrich the diversity and it prevents the particles from collapsing. When

a slow tolerance reduction is observed meaning that the particles almost achieved the

convergence, the algorithm should be stopped by the fulfillment of tolerance. In other

words, an appropriate target tolerance can greatly boost the computational efficiency,

since less attempts will be made to satisfy the criterion with negligible movement. Al-

though this determination is highly case dependent, a heuristic solution was suggested

by Del Moral et al. (2012) to stop the algorithm when the drop of tolerance is less than

1.5%.

3.3.2 Three unknown parameters case

In the previous example we found ABC-SIS and ABC-SMC perform similarly in both

accuracy and computational efficiency, therefore, a comparison is further carried out

to discriminate their abilities on parameter estimation by increasing the dimension of

unknown parameters. The study introduced below is to identify parameters kd, αd

and α0 with assuming the remaining three are known. The method of generating the

synthetic dataset is identical to the two unknown parameters case, and the prior and the

transition kernel for α0 are identical to those for αd that are described in last section.

Comparison is carried out by setting two tolerance paths for ABC-SIS, in which the

initial tolerance ε0 and the final tolerance εT are identical to ABC-SMC (ε0 = 480 and

εT = 10). Since ABC-SMC on average requires 240 iterations to reach εT in an automatic

manner, for a fair comparison, ABC-SIS declines the tolerance from ε0 down to εT in



64 Chapter 3 Approximate Bayesian Computation Methods

regular intervals (total number of intervals is 240). In addition, we further assess how

ABC-SIS benefits from a manually-chosen tolerance sequence, via a tolerance schedule

defined as ε = [488, 440, 392, 344, 296, 249, 201, 153, 105, 57, 10] which is shown as the red

line in Figure 3.11(c).

Posterior distributions of parameters are shown in Figure 3.11(a) and 3.11(b). As seen

from the graphs, since ABC-SMC adaptively utilizes the variance of the empirical distri-

bution for the transition kernel, it greatly outstrips ABC-SIS in terms of the uncertainty

of estimation. From the perspective of efficiency, the computational advantage of ABC-

SMC cannot be expected in this higher dimensional example. The side effect from

the adaptivity of ABC-SMC is clearly shown in Figure 3.11(d), in which substantially

more model evaluations were taken by ABC-SMC. Nevertheless, benefiting from the ‘no

rejection’ strategy, ABC-SMC can be ran in parallel which partially alleviates this com-

putational complexity. By using 8 cores for the parallel computing, the time duration

for simulating pseudo-observations 14,000,000 times was cut to one eighth of its original

value. Even though the computational expense is still ten times greater than ABC-SIS

with well designed tolerance schedule, efficiency can be further boosted by using more

cores.

We note that the tolerance sequence used governs the computational performance of

ABC-SIS, better performance is evident with a suitable tolerance path, whereas a neg-

ative influence is observed if the tolerances are inappropriately chosen.

In summary, from the comparisons carried out on the heat shock response system, it is

clear that ABC-SMC has the superior performance in terms of accuracy, and the adap-

tivity further increases its appeal. The computational efficiency of ABC-SMC, however,

substantially decreases in the problems with high dimensionality. Majority of SMC type

ABC methods (except ABC-PMC) are more attractive in tackling simple problems, how-

ever, deterministically assigning tolerance sequences and the tuning of transition kernel

limit their appeals for complex problems. The non-sophisticated methods are somewhat

straightforward solutions in the inference problem, rather than the advanced methods.

From the study conducted in the section A.4 of Appendix A, we note that the particle fil-

tering algorithm is capable of precisely estimating the parameters of heat shock model,

regardless of the combination of the two unknowns. Additionally, the PF, benefiting

from the one-pass data visiting scheme, can expect an improvement on the computa-

tional efficiency. The family of ABC algorithms, except ABC-MCMC, are reliable for

accurately inferring two or three unknown parameters of heat shock system. The su-

perior performance of ABC methods, however, is highly dependent on the algorithmic

settings, e.g. the tolerance and the transition kernel. Moreover, similarly to the compar-

ative study represented in section A.7, ABC approaches might struggle with efficiency

due to their batch nature, and the increase of computational complexity with respect to

the growth of dataset volume is considerably greater than the PF. Since ABC methods
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Figure 3.11: (a) and (b): Posterior distributions of the parameters kd, αd and α0

obtained by ABC-SIS and ABC-SMC, where the red dash lines are the true values
and the red ‘+’ is the location that particles should center. (c): Paths of tolerance, in
which two schedules with different reductions are considered in ABC-SIS. (d): Counts
of model evaluation that are carried out by ABC-SIS and ABC-SMC to reach the target

tolerance.

bypass the evaluation of likelihood, therefore, these approaches alleviate the statistical

assumption of additive noise and become suitable for the problems without sufficient

prior knowledge.

3.4 Discussion

In this chapter, we thoroughly investigated the approximate Bayesian computation

methods both theoretically and empirically. Starting from the simplest ABC-rejection

approach, we chronologically converge to the most powerful adaptive ABC-SMC algo-

rithm. The features of all mentioned ABC methods are summarized in Table 3.3.

Interestingly, in the study of ABC-regression method, the use of summary statistics

heavily effects the performance of algorithm. When the mean of data is the only adopted

statistics term, the method performs the best. Insights on the influence of summary

statistics represent an avenue for further study of ABC type methods and which may

make it an appropriate treatment in the context of systems biology.



66 Chapter 3 Approximate Bayesian Computation Methods

Table 3.3: ABC methods summary

Method Time Advantage Disadvantage

ABC-Rejection 1997 Straightforward, simply com-
pare the simulation with real
dataset.

1. Sensitive to the choice of
prior.
2. Performance completely
depends on choice of tolerance
ε.

ABC-Regression 2002 More accurate than ABC-
Rejection.

1. Sensitive to the choice of
prior.
2. Performance depends on
choice of summary statistics
s.

ABC-MCMC 2003 Partially alleviates the de-
pendence of prior distribution
by using the transition kernel
k(·) for perturbing samples.

The transition kernel needs to
be tuned. Possibly trap in a
region with rare opportunity
to jump out if small σ2

k is used,
while the acceptance rate will
be low if the σ2

k is large.

ABC-PRC 2009 1. Candidate samples are
drawn from the previous itera-
tion with importance weights,
efficiently eliminate the can-
didates which negligibly con-
tribute to posterior.
2. The use of tolerance sched-
ule makes algorithm gradually
approach the target.

1. Tweak the covariance of
transition kernel function k(·).
2. Superior performance can
be only achieved by consider-
ing an appropriate tolerance
path.

ABC-SIS 2009

ABC-PMC 2009 The covariance matrix σk of
the transition kernel k(·) is
adaptively determined.

Computational complexity
caused by simultaneously
using the adaptive transition
kernel and the fixed tolerance
schedule.

ABC-SMC 2012 1. Adaptively select the toler-
ance level and transition ker-
nel.
2. Weight computation de-
pends on the ratio of survived
particles.

Highest computation com-
plexity among algorithms
for the real biological
systems.



Chapter 4

Approximate Bayesian

Computation coupled with

Sensitivity Analysis

In this chapter, we propose a three stage strategy inference framework by considering the

approximate Bayesian computation methods coupled with sensitivity analysis technique.

A systematic re-allocation of computational effort is suggested to achieve a decent com-

promise between accuracy and computational efficiency. The effectiveness of the pro-

posed method is demonstrated on three oscillatory models and one transient response

model taken from the Systems Biology literature.

4.1 Parameter Sensitivity

As suggested by Gutenkunst et al. (2007), parameter or combination of parameters,

can be decomposed into having sloppy and stiff properties through sensitivity analysis

(Saltelli, 2002; Gutenkunst et al., 2007; Marino et al., 2008). We demonstrate these

parameter properties on the simple Lokta-Volterra system, given as

dx

dt
= αx − x y

dy

dt
= x y − β y,

where, x and y are the populations of predator and prey respectively. We simulated a

set of synthetic data associated with different parameter values drawn from the interval

[0 1], and evaluated the error between datasets synthesized from the arbitrary values and

the true values (i.e. [0.5 0.5]). Equal output contours on the error surface are shown in

Figure 4.1. Along the major axis of the ellipses, which is largely parallel to the variable β,

67
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we see that the output can tolerate large changes in parameter values. Along the minor

axis, approximately parallel to the parameter α, the model is sensitive to the changes

in parameter values. Thus in this illustration, β is termed as a sloppy parameter and

log(α)

lo
g
(β

)

Contour of cost function for LV model

−0.8 −0.75 −0.7 −0.65

−0.76

−0.74

−0.72

−0.7

−0.68

−0.66

−0.64

−0.62

−0.6

−0.58

sloppy

stiff

Figure 4.1: Contours on the error surface between true and synthesized data as the
parameters move away from their true values to illustrate stiff and sloppy parameters in
the Lokta-Volterra model. Error is minimum when the parameters are set to their true
values at log(α) = −0.7 and log(β) = −0.7. Contours are approximately ellipsoidal.
Along the sloppy axis, which is dominated by β, the error varies slowly as a function of
parameters, whereas along the stiff axis (along which the model has greater sensitivity
to parameters), the variation in error is steep. By observing this, we would regard β as

a sloppy parameter.

α, a stiff parameter. This conclusion also means that when ABC methods are applied

to the Lokta-Volterra model, the uncertainty in the estimation for β is greater than the

estimation for α (simulation can be found in chapter 3).

Sensitivity analysis can be carried out in various ways. A straightforward approach

to quantify sensitivity is based on the gradients with respect to kinetic parameters

that can be computed numerically. Such local sensitivity analyses, determined by the

gradients at operating points of interest, are often unsuitable for dynamical biological

systems which can undergo large changes in operating regimes during the processes of

interest (Zi, 2011). Toni et al. (2009) used a PCA-based sensitivity analysis technique

to differentiate stiff/sloppy parameters in the context of Systems Biology. This method

has similar limitations (as discussed in section 4.4). Thus in this work we use variance

partitioning method, known as the extended Fourier amplitude sensitivity test (eFAST)

introduced by Saltelli et al. (1999); Saltelli (2002), which is a refined version of the Fourier

Amplitude Sensitivity Test (FAST) (Cukier et al., 1973). The idea in this method is to

quantify the statistical variance of the model output when the parameters are allowed to

traverse a wide range in their input space. Briefly, this is achieved by tagging different

frequencies to different parameters, allowing changes in the parameters by changing them

at the respective frequencies, and quantifying the changes in output in the frequency

domain. The variation due to each parameter shows up in the output as amplitudes

of the Fourier coefficients when moving along the search trajectories of the parameter
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space.

4.1.1 Extended Fourier Amplitude Sensitivity Test (eFAST)

The extended Fourier amplitude sensitivity test (eFAST) (Saltelli et al., 1999), is one

of the popular sensitivity analysis techniques based on variance decomposition, being

applicable for the nonlinear and non-monotonic systems. The algorithm initially par-

titions the total variance of the dataset, evaluating what fraction of the variance can

be determined by variations in the parameter of interest. This quantity, known as the

sensitivity index, is calculated as

S =
Varθ[E(Y|θ)]

Var(Y)
=
Di

D
(4.1)

‘Translating’ this definition into eFAST, the sensitivity is assessed by picking the samples

for the parameter of interest with the highest frequency ωmax, while the samples for the

rest of the parameters are selected with the complementary frequencies ω−i. This process

is repeated until the samples of each parameter is drawn with highest frequency once.

An illustrative example of this cycling process is shown in Figure 4.2.

Figure 4.2: When we wise to evaluate the sensitivity of parameter θ1, its samples
are drawn with the highest frequency ωmax, while the samples for other parameters
θ−i = {θ2, θ3, θ4} in the system are picked using the complementary frequencies
ω−i = {ω1

−i, ω
2
−i, ω

3
−i}. Through this process, all parameters in system should be

assigned to the highest frequency once.

Taking this sampling strategy, eFAST claims to be capable of apportioning the total

variance ( term D in equation 4.1) into the partial variance (term Di in equation 4.1)

caused by individual variation of the parameter. Algorithmically, the parameter sensi-

tivity with respect to a specific state is evaluated by a fraction, given as equation 4.1,

where the numerator is the variance of outputs of the specific state. More specifically,

the outputs adopted for numerator are synthesized by the parameter samples which are

drawn from the frequency vector by setting the underlying parameter to the highest

frequency. The denominator of this fraction is the summation of output variances of the

same state, and these outputs are generated by different parameter samples, which are

drawn from all possible combinations of frequency settings. For example, if we need to

assess the sensitivity of parameter θ1 with respect to the second state x2 of a system
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that has four parameters, it can be calculated as

S1
2 =

σ̂1
2

σ̂1
2 + σ̂2

2 + σ̂3
2 + σ̂4

2

, (4.2)

where the subscript of σ shows which state in system is under study, and the superscript

implies which parameter is sampled using the high frequency (i.e. the parameter of

interest).

The sensitivity in some cases consists of the the first-order sensitivity index that calcu-

lates the standalone effect of the underlying parameter, and the higher-order sensitivity

index that captures the interaction among the underlying parameter and other parame-

ters of any order. For example, as seen in Figure 4.3, if the sensitivity of parameter θ1 is

under study, the system sensitivity index ST of an arbitrary model with three parame-

ters can be decomposed into the total sensitivity index of parameter θ1 and the index of

complementary parameters (all parameters in system except the underlying θ1), denoted

as ST1 and S−1. In addition, the total sensitivity index ST1 can be further specified as

the first-order index S1, the second-order indices {S12, S13} and the third-order index

S123 (Saltelli, 2002).

Figure 4.3: Sensitivity of parameter in an arbitrary system that has three parameters.
Of interest is the parameter θ1, therefore, the total effect of θ1 consists of the first-
order index S1, second-order indices {S12, S13} and the third-order index S123. The
S−1 indicates the effect of complementary parameters on system outputs when the

underlying parameter is θ1.

Unfortunately, the nature of FAST prohibits the individual calculation of indices except

the first-order. Consequently, Saltelli (2002) derived the extended FAST algorithm to

solve this incapability, in which even though the individual higher-order indices are still

impossible to calculate, the total sensitivity index ST1 can be evaluated by subtracting

the total indices of complementary parameters from the ‘unit circle’. Algorithmically,

the sensitivity index of complementary parameters θ−1 can be approximated by picking

the samples for θ−1 with the complementary frequencies and evaluating the variance

caused by the variations of θ−1. Consequently, denoting the variance of complementary

parameters as D−1, the total sensitivity index of θ1 can be calculated as

ST i =
D −D−i

D
(4.3)
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More specifically, a heuristic strategy for selecting samples for parameter was also de-

rived by Saltelli (2002) which considerably boosted the performance in comparison to

the original version. Saltelli et al. (1999) initially proposed a sinusoidal function for

generating samples, given as

θ = G(sin(ωs))

=
1

2
+

1

π
arcsin(sin(ωs)), (4.4)

where ω is a Dp×1 vector of frequencies assigning to parameter vector θ = [θ1, . . . , θDp ].

From the implementation, the high frequency for specifying the underlying parameter

is called the maximum frequency ωmax, computed as (Nse− 1)/2Me, where Nse specifies

the number of samples drawn from the function G(·). Me is the interference factor (from

the empirical investigation (Saltelli, 2002; Marino et al., 2008), is usually used as 4 or

6) and acts as the remover for numerical amplitude from superposing of waves. The

low frequencies for θ−i are set in the range [1 ω−i,max] with a regular increment
ω−i,max

Dp
,

where ω−i,max = ωmax
2Me

. Terms s in equation 4.4 defines a 1×Nse scalar vector from −π
to π.

This sampling approach can be seen as an exploration of space in a grid scheme.

For visualizing the distribution of samples drawn from this strategy, we consider a 2-

dimensional toy example and set frequencies of state variables as ω1 = [1 : 1 : 20] and

ω2 = [20 : 1 : 40]. To aid intuition, the number of samples drawn from function G(·)
is defined in a low dimension Nse = 25. As seen from the graph, an even distribution of
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Figure 4.4: Distribution of samples for 2-dimensional variables toy example, points
are drawn from the function without random shift.
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samples in the space is evident.

The diversity of samples from the original sinusoidal function becomes a serious issue,

and therefore, various combinations of frequencies are taken as compensation so that

the samples are distributed as widely as possible in the unit hypercube parameter space.

However, the frequency for sampling function is positively correlated to the sample size,

as a result of which, one has to make a trade-off between the diversity of samples and

computational cost. This problem was addressed by (Saltelli et al., 1999), in which a

random shifting factor is adopted in the sinusoidal function, given as

θ = G(sin(ωs+ϕ))

=
1

2
+

1

π
arcsin(sin(ωs+ϕ)), (4.5)

where ϕ is the Dp×Nse matrix for random phase-shifting uniformly distributed in [0, 2π].

With identical frequency vectors, samples drawn from the function coupled with random

phase-shifting can more thoroughly cover the parameter space. In order to illustrate the

clear advantage of the sampling approach with randomness, we consider the previously

studied 2-dimensional toy example with the fixed frequencies ω1 = 10 and ω2 = 20. The

number of samples chosen from the function increases to 2049 ( Note that Nse has to be

an odd number, since the calculation of Fourier amplitude is carried out in pairs and the

median element is isolated), yet other algorithmic settings remain the same. Figure 4.5

shows the distribution of samples with/without random phase-shifting: it is easily seen

that the sinusoidal function coupled with randomness holds a better space exploring

capability.
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Figure 4.5: Distributions of samples for 2-dimensional variables toy example, points
are obtained with/without random shift.



Chapter 4 Approximate Bayesian Computation coupled with Sensitivity Analysis 73

Since the entire samples are drawn from the Dp dimensional unit hypercube, i.e. Ki =

(θ|0 ≤ θi ≤ 1; i = 1, . . . ,Dp), for casting the realizations to the real-value space, samples

must be scaled. In the cases studied here, we assume that the samples of parameters

should always satisfy the uniform distribution, i.e. θ ∈ U(a, b). Taking the appealing

property of the uniform distribution, the sample from the unit hypercube can be easily

converted to the real-value space by the mapping process shown below

θi = (b− a) ∗ θi − a. (4.6)

As the complexity of the dataset analyzed by eFAST is high, for the purposes of elab-

oration, the information about the structure of the dataset is clarified. Specifically,

the dataset synthesized has five dimensions and is defined as Y(Nse,NOT,Ds,Dp,Nr).

For example, a point in the dataset y(n, t1, s2, p3, r4), describes the value of state s2 at

time instant t2, and pseudo-observations are synthesized by using nth parameter vector

(n = 1, . . . ,Nse) from rth4 G(·) function, which produces samples for the parameters by

specifying the frequency of θp3 as ωmax.

The practical details for running eFAST are split into two parts: the model-evaluation

and the sensitivity index calculation. The first half is shown in Algorithm 5 and the

remaining half is given in Algorithm 6. Due to the complexity of eFAST, we list the

variables needed to be initialized in Table 4.1 and all used variable notations are clarified

in Table 4.2.

Table 4.1: Definitions of initializations for eFAST
Method Input

eFAST 1. T is the number of interested time instances.
2. Number of samples Nse; Number of search curves
Nr; Interference factor Me; Maximum frequency can be
assigned for the underlying parameter ωmax = (Nse−1)

2Me
;

3. Maximum frequency can be assigned for the param-
eters in system except the underlying parameter θ−i:
ωmax,-i = ωmax

2Me

4.1.2 PCA based technique

Toni et al. (2009) introduced a principal component analysis based local sensitivity anal-

ysis technique that was dedicated to sequential Monte Carlo methods. In this approach,

stiffness/sloppiness is quantified via the eigenvectors (principal components, PCs) of the

covariance of the accepted particles from the last iteration, this covariance-variance ma-

trix is denoted as Σ ∈ RDp×Dp . PCA orthogonalizes parameters in the Euclidean space,

thus, the first eigenvector indicates the direction of the highest variance. From the point

of view of SMC, the first eigenvector shows the direction in which the particles distri-

bution shows maximum variance. In contrast, the last eigenvector conveys the direction
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Algorithm 5 model-evaluation phase in eFAST

- Initialize the inputs, details are given in Table 4.1.
1. Model evaluation

for i = 1, . . . ,Dp do
A. for r = 1, . . . ,Nr

B. Define the frequency a DP × 1 vector ω: set frequency for
the underlying parameter θi: ωi = ωmax

C. Define the frequency vector ω: Set frequencies ω−i
for the complementary elements in

parameter space θ−i; Details are described in the text of eFAST method.
D. Generate a Dp×Nse Matrix of random phase shift ϕ ∼ U(0, 2π).

[ equation (4.5) ]
E. Generate a 1×Nse vector of variables s according to

s = π(2× (1 : Nse)−Nse − 1)/Nse.
F. Generate the parameter samples θ

θ = 0.5 + 1
π arcsin(sin(ωs+ϕ))

[ equation (4.5) ]
G. Map back values of θ from STEP 1.F to their real values,

following inverse cumulative density function and
concern the pre-defined distribution of θ

[ equation (4.6) ]
H. for n = 1, . . . ,Nse

Synthesize the current system output NOT ×Ds

matrix by integrating system dynamics Ytemp =
∫ T

0 f(x0,θn)dt
I. Yn,i,r = Ytemp

end for
end for

end for
After Model Evaluation step, a 5-D synthetic dataset Y(Nse,NOT,Ds,Dp,Nr) is ob-
tained. Example for interpreting this data construct can be found in text.

of the the smallest variance. Consequently, specifying the eigenvalue corresponding to

ith column of eigenvectors as λi, the variation in the collection of particles at the last

iteration can be proportionally explained by ith eigenvector as

λi
trace(Σ)

. (4.7)

A larger proportion is due to a greater contribution to variance in the population, and

correspondingly, plays a more crucial role in determining uncertainty. Of interest is

to carry out the sensitivity analysis relying on the last column of eigenvector, since it

extends the least in the space of the posterior distribution (i.e. has the least uncertainty).

As a result, the parameter that contributes the most to this eigenvector is seen as stiff to

the system. Similarly, the parameter which dominates the first eigenvector is regarded

as the sloppy parameter.

In order to quantitatively study how parameters constitute the eigenvector, one needs to

project the eigenvectors onto the raw parameters. Specifically, denoting the normalized
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Algorithm 6 sensitivity index calculation in eFAST
2. Compute sensitivity index

A. Define two indices for utilizing symmetry property:
Nq = Nse−1

2 and N0 = Nse+1
2 .

for k = 1, . . . ,Ds do
for t = 1, . . . ,NOT

for i = 1, . . . ,Dp

for r = 1, . . . ,Nr

for j = ωmax : ωmax : Me ∗ ωmax

D. Compute Ar
j by using equation

C. Ar
j = 1

Nse
{y(N0, t, s, i, r)+{

∑Nq

q=1 [y(N0 + q, t, s, i, r) + y(N0 − q, t, s, i, r)]× cos j π
NSe

q}}
D. Br

j = 1
Nse
{
∑Nq

q=1 [y(N0 + q, t, s, i, r)− y(N0 − q, t, s, i, r)]× sin j π
NSe

q}
end for
for j = 1 : (Nse − 1)/2

E. Ar
o = 1

Nse
{y(N0, t, s, i, r)+{

∑Nq

q=1 [y(N0 + q, t, s, i, r) + y(N0 − q, t, s, i, r)]× cos j π
NSe

q}}
F. Br

o = 1
Nse
{
∑Nq

q=1 [y(N0 + q, t, s, i, r)− y(N0 − q, t, s, i, r)]× sin j π
NSe

q}
end for

G. compute partial variance D̂
t,k
i,r = 2

∑
Ar
j + Br

j

H. compute overall variance D̂
t,k
overall,r = 2

∑
Ar

o + Br
o

end for
I. compute the partial variance over Nr search curve: D̂t,k

i = mean(D̂
t,k
i,r )

J. compute the overall variance over Nr search curve: D̂t,k
overall = mean(D̂

t,k
overall,r)

K. compute the importance of parameter θi for
appraising kth state in time instance t: st,ki = D̂t,k

i /D̂t,k
overall

end for
end for

end for
- Output Dp ×NOT ×Ds sensitivity index matrix S

eigenvectors and the corresponding eigenvalues as

eigenvector =


v1,1 v1,2 . . . v1,p

v2,1 v2,2 . . . v2,p

...
... . . .

...

vp,1 vp,2 . . . vp,p

 and eigenvalue =


λ1

λ2

...

λp

 , (4.8)

the contribution from parameter θj to the last eigenvector is then calculated by

χj =
v2
j,p∑p

n=1 v
2
n,p

(4.9)

where χj is called eigenparameter and represents the square of the eigenvector being

reflected in the direction of the real parameter θj .

Since no extra computational cost is paid for the sampling, this PCA-based sensitivity

analysis performs well computationally. Moreover, stiffness/sloppiness can be appro-
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Table 4.2: List of variable notations for eFAST
eFAST

number of resampling curves Nr how many resampling
curves are utilized in
parallel

scalar

number of samples picked from each curve Nse use to produce variation
of parameter

scalar

frequency vector ω assign to parameters for
computing amplitudes

Dp × 1

highest frequency ωmax possible highest fre-
quency can be assigned
to the underlying
parameter

scalar

highest complementary frequency ω-i,max possible highest fre-
quency can be assigned
to parameters except
the underlying one

scalar

curve function G(·) produce the values for
parameters

none

incremental factor vectors s construct the angles for
G(·)

1×Nse

random shift matrix ϕ construct the angles for
G(·)

Dp ×Nse

interference factor Me remove the amplitude
to be computed from
superposing

scalar

initial particles for parameters θ0 initially use for generat-
ing solution of dynamics

Dp ×Nse

synthetic dataset Y dataset is generated by
using all samples from
curves

Nse ×NOT ×Ds ×
Dp ×Nr

sensitivity index matrix S sensitivity of each pa-
rameter for different
state at particular time
instance

Dp ×NOT ×Ds

priately differentiated by this algorithm if the accepted particles precisely estimate the

parameters. However, when the particles fail to recover the unknown parameters, an

incorrect sensitivity analysis from this PCA-based method is assigned. Investigation on

this deficiency can be found in section 4.4.

4.1.3 ABC methods enhanced by sensitivity analysis

A new ABC based approach is developed by exploiting the fact that the values of the

sloppy parameters can vary in a reasonable range, while the stiff parameters are deter-

minants for evaluating the behavioral response and are therefore required to be precisely
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assigned. This method can be seen as a selective allocation of the computing budget

for sloppy and stiff parameters. It has three strategies, in which all parameters of a

mode are simultaneously estimated alongside a coarse acceptance criterion. In the sec-

ond phase of the eFAST technique, in order to differentiate the stiffness/sloppiness, the

insensitive parameters are fixed to the values that are the mean of the posterior from the

coarse analysis. In the final step, the stiff parameters are re-estimated by considering

tighter error tolerances. Consequently, for ABC methods, this favorable allocation of

computation budget alleviates the manual tuning for balancing accuracy and efficiency.

Our approach is shown in Figure 4.6, and the pseudo-code is given in Algorithm 7.

Figure 4.6: Computational steps in the proposed approach: Starting from an initial
distribution of parameter values, we carry out a coarse approximate Bayesian Compu-
tation (ABC) estimation of parameters. Following this, using sensitivity analysis we
identify sloppy and stiff parameters of the system. The sloppy parameters are fixed
to values determined by the coarse analysis. In the final stage, we estimate the stiff
parameters of the system by running the ABC method to tighter error tolerance. This
achieves a selective partitioning of the computational budget, and reliable estimates

can be achieved within reasonable times.

To illustrate the proposed method, we study four models taken from systems biology

literatures. Three of those models are oscillatory processes: oscillations caused by tran-

scriptional delay of an autoregulator (Monk, 2003), the repressilator circuit studied in

the synthetic biology literature (Elowitz and Leibler, 2000) and the progression of cell

cycle regulation (Leloup and Goldbeter, 2003). The fourth is the cellular response to

heat shock model, a system we have considered in our past work using extended Kalman

and particle filter approaches (El-Samad et al., 2006; Lillacci and Khammash, 2010; Liu

and Niranjan, 2012). These cover a range of parameter values and complexities in the
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Algorithm 7 ABC-SMC coupled with SA

Input: Initial parameters Θ0 ∈ RDp×Nsmc ;
Small values for αsmc and Nsmc

Other algorithmic settings defined in Table.3.1 and 4.1
Output: ΘT = {θT1 , . . . ,θTNsmc

}
Run eFAST
1. Carry out the eFAST on the system of interest. [Alg.5-6]
2. Group θ ∈ RDp×1 → sloppy θsp ∈ RDsp×1 and stiff θst ∈ RDst×1.
Run 1st ABC-SMC
3. Apply ABC-SMC on θ to propose the inference Θ∗. [Alg.4]
4. Fix sloppy parameters θsp in ΘT to corresponding values in Θ∗.
Run 2nd ABC-SMC
5. Increase values of αsmc and Nsmc.
6. Apply ABC-SMC on θst to propose the inference Θ∗∗. [Alg.4]
7. Fix stiff parameters θst in ΘT to corresponding values in Θ∗∗.
End

structure of the nonlinear dynamical equations characterizing the systems. The follow-

ing sections highlight the distinct feature of our method through several comparative

studies.

4.2 Case study

In this section, we demonstrate the effectiveness of proposed method via three periodic

and one transient biological systems, and the details of implementation are given in

section D.3 of Appendix D. The Matlab code for producing results shown following

discussion can be downloaded from Code link.

4.2.1 Delay-driven oscillatory system

The first model we consider is an oscillatory system in which periodic oscillations are

caused by transcriptional delays. Such a system was formulated by Monk (2003) for

quantitatively explaining oscillations of the tumor suppressor and related transcription

factors p53, Hes1 and NF-κB. This oscillatory system is characterized by the delay

differential equations, given as below

dm

dt
=

1

1 + (p(t− τ)/p0)n
− µmm(t)

dp

dt
= m(t)− µpp(t), (4.10)

where, m(t) and p(t) describe the concentrations of mRNA and protein level in the sys-

tem, their corresponding decay rates are shown as µm and µp. τ represents a transcrip-

tion (and translation) delay and this lag is caused by the process of protein activation

https://www.dropbox.com/s/1zdzbuckurtzlja/ABCHS.rar?dl=0
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so as to manipulate the transcription. The Hill coefficient and its threshold are denoted

as n and p0, respectively. The implementation details for performing this simulation are

given in section D.3.

We assess the performance of ABC+SA in terms of accuracy of estimation and ability to

reconstruct system behavior. Particularly, the precision of an estimate is quantitatively

measured by the relative root mean square error (RRMSE), given as

RRMSE =

√∑N
i=1 (θ̂i−θtrue)2

N

θtrue
. (4.11)

In addition, for the sake of comparison, the original ABC-MCMC is also carried out

on parameter estimation associated with various tolerances, either a coarse acceptance

criterion or a small tolerance. The analysis of this delay-driven autoregulation system

is shown in Figure 4.7, as seen in the pie chart, µp and n are the stiff parameters while

µm and P0 are sloppy.

Marino et al. (2008) asserted that eFAST sometimes artificially yields a few negligible

sensitivity indices for a parameter and these artifacts may derive from aliasing and

interference effects. Consequently, Marino et al. (2008) introduced a ‘dummy’ parameter

to eliminate this artifact. This factor does not really appear in models and has no effect

on system behavior in any way, whilst the evolution of ‘dummy’ parameter is a standard

practice in the screening methods in the family of global sensitivity analysis techniques

(chapter 4 in Saltelli et al. (2000)).

In simulation, for a fair comparison, the small tolerance of both methods is identically

set as ε = 1000 and the coarse acceptance criterion for ABC+SA method is defined as

ε = 3000. Histograms of estimations obtained are shown in the A, B and C columns

of Figure 4.7, from which it can be easily observed from the graphs that the ABC-

MCMC associated with large ε performs poorly. For the original algorithm, however,

the precision of estimations is comparable to ABC-MCMC+SA method whose poste-

rior distributions center around the true values for the stiff parameters. In terms of

accuracy, our proposed method is not clearly advantageous but still greatly outperforms

ABC-MCMC in terms of computational efficiency, as shown in Figure 4.7.F. We further

examine the performance of the original algorithm under a comparable computational

cost, such that it takes a similar amount of time, and to this end the tolerance ε is set

to 1400. Unsurprisingly, by utilizing this loose tolerance, ABC-MCMC can only deliver

one precise estimation, yet fails to do so for the other three parameters.

Inferring the value of the parameter is essential to simulate the hidden states in the

system, therefore, the ability of the parameter estimation algorithms to characterize the

system behavior is further examined in this work. Curves in Figure 4.8 show the set

of system outputs synthesized by utilizing the true values proposed in literature, and

the inferred parameter values from a previous study. The distinct outperformance of
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Figure 4.7: Sensitivity analysis and parameter estimation on the delay-driven p53

oscillatory model. Column A: Estimation of parameters µp, n, P0 and µm from ABC-
MCMC combining with SA. Column B: Estimation of the same parameters from ABC-
MCMC with large tolerance ε. Column C: Estimation of the same parameters from
ABC-MCMC with small tolerance ε. C and D: Average sensitivities of states (mRNA
and protein) with respect to each of the parameters shown as pie charts (see text for
technical details of the dummy variable). F: Computational times for the proposed
method and ABC-MCMC associated with different tolerances (The green and red bars

show the results of large ε and small ε, respectively).

the proposed method and ABC-MCMC with small tolerance is evident. However, due

to the relatively inaccurate estimation of sloppy parameters, an offset in the synthetic

dataset with respect to the ‘real’ one occurs in the last few time instants.

In addition, in order to quantitatively analyze these results, we calculate the RRMSE of

inferences and list them in Table 4.3. The similarly low RRMSE values of stiff parameters
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Figure 4.8: The curves for the concentrations of mRNA and protein in the delay-
driven p53 oscillatory model (noise-free). Simulations are produced by using true val-
ues (blue line) and inferred parameter values from ABC-MCMC+SA (red line), ABC-
MCMC with loose tolerance (green line) and tight tolerance (purple line). Curves
illustrate that the proposed method and the original algorithm with small ε perform
highly similar (overlapped) in characterizing system behavior, while the imprecise pa-
rameter estimation from ABC-MCMC coupled with large ε delivers a bad reflection of

process.

from the proposed method and ABC-MCMC with small tolerance explains why their

corresponding synthetic datasets overlap with one another. Moreover, even though

ABC-MCMC with loose acceptance criterion wins over the other two types of methods

for some parameters (e.g accuracy of P0 is highest of the three and the inference of µm is

precisely in comparing to ABC-MCMC+SA), however, the sloppy parameters contribute

less in characterizing system behavior, resulting in the corresponding synthetic dataset

having the lowest precision.

Table 4.3: RRMSE of inferences from the proposed and original methods

parameter ABC+SA ABC+small ε ABC+large ε

µp 0.04 ± 1.5× 10−5 0.03 ± 0.8× 10−5 0.27 ± 2.6× 10−8

n 0.03 ± 2.6× 10−5 0.09 ± 4.3× 10−4 0.15 ± 2.2× 10−3

P0 0.08 ± 3.7× 10−5 0.28 ± 2.9× 10−3 0.06 ± 5.8× 10−4

µm 0.58 ± 7.3× 10−4 0.27 ± 6.4× 10−4 0.26 ± 1.7× 10−5

Consequently, for these simple scenarios, the proposed method is not remarkably accu-

rate but a better computational efficiency is achieved.
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4.2.2 Repressilator system

The deterministic repressilator system is constructed as a synthetic gene regulatory

circuit which can sustain oscillations by the mutual repression of gene transcription

(Elowitz and Leibler, 2000). This system consists of six differential equations, from

three pairs of mRNA and protein, and has four parameters. This system was analysed

by Toni et al. (2009) to demonstrate their ABC-SIS approach. The equations of the

system are

dm1

dt
= −m1 +

α

1 + pn3
+ α0 (4.12)

dp1

dt
= −β(p1 −m1) (4.13)

dm2

dt
= −m2 +

α

1 + pn1
+ α0 (4.14)

dp2

dt
= −β(p2 −m2) (4.15)

dm3

dt
= −m3 +

α

1 + pn2
+ α0 (4.16)

dp3

dt
= −β(p3 −m3), (4.17)

where, α0, α, n and β are the four parameters to be estimated from noisy observations

of the six state variables, m1, . . . , p3.

Figure 4.9.A describes the average sensitivity of parameters with respect to state m1

in the system. Likewise, as shown in Figure 4.9.B, the sensitivity can be specifically

evaluated at each time instant. Only the average sensitivity result takes part in this

example but the decomposition of sensitivity is sometimes useful, e.g. to catalyze the

specific reaction for achieving a rapid growth of species at a particular phase.

Considering these sensitivity results for ABC-SMC (Del Moral et al., 2012), we intend

to initially fix the values of the sloppy parameters α and β taken from the first coarse

search, given as 1035 and 5.698. A greater computational effort by increasing of Nsmc

and Msmc leads to precise estimates for the stiff parameters α0 and n, where the results

are shown in Figure 4.9.C-D. It is clear that the means of the posterior distributions of

the stiff parameters converge to their true values.

Moreover, for analyzing the effect of the sloppy/stiff properties on parameter estimation,

we further conduct simulations for all possible combinations of sensitivity assignments.

Simulations are run 10 times for each combination, and results are summarized in Ta-

ble 4.4. We note that success can only be achieve if the algorithmic setting has the

appropriate sensitivity assignment and at least one stiff parameter is precisely inferred.

In addition, a fair comparative study between ABC-SMC+SA and ABC-SIS for pa-
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Figure 4.9: Results of sensitivity, parameter estimation and reproduction of the
repressilator system. A: Pie graph shows the average sensitivity of parameters with
respect to the state m1. B: Curves represent the sensitivity of parameters for state m1

at each time instant. C and D: Histograms show the estimations of the stiff parameters
α0 and n from ABC-SIS. E and F: Histograms for the same stiff parameters from
ABC-SMC+SA. G: Simulations of state m1 using true values, inferred values from
ABC-SMC+SA and ABC-SIS. H: Counts of model evaluation taken by ABC-SIS and

ABC-SMC+SA to achieve the final tolerance εT .

rameter estimation on repressilator system is conducted by setting identical algorithmic

conditions, including regime of dataset, prior distribution and target tolerance. The

results of stiff parameters from ABC-SIS are given in Figure 4.9.E-F. It is clear that

the inferences from ABC-SIS successfully recover the true values of parameters, and are

also similar to the results published in the literature (section 3.2 in Toni et al. (2009)).
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Table 4.4: Parameter estimation to repressilator system within different sensitivity
appointments

Combinationsa

Sloppy Stiff Mean of estimatesb

α0 α n β 0.43±4.5 (×) 1900±2000 (×) 3.0±0.06 (×) 8.2±22.1 (×)

α0 n α β 0.3±10(×) 2.3±0.6 (×) 1500±4700 (×) 3.7±8.8(×)

α0 β n α -0.1±4.7(×) 7.8±7.9(×) 3.2±0.2(×) 2100± 6100(×)

α β n α0 1600±2100 (×) 5.9±7.1(×) 2.3±0.4 (X) 1.4±1.9(X)

α n β α0 1700±1800(×) 2.1±0.2(×) 4.7±16.1(X) 0.5±2.8(×)

n β α α0 2.8±0.3(×) 8.4±35(×) 1600±2600(×) -1.6±2.6(×)

a True values: α0 = 1; α = 1000; β = 5; n = 2
b Indicator: success (X); failure (×).

Similarly to the previous study, the abilities of methods to recreate system dynamics is

considered. Simulated system dynamics by using the true and inferred values are shown

in Figure 4.9.G. Even though the proposed method is problematic in producing the iden-

tical amplitude while an offset in periodicity is observed in the simulation of ABC-SIS,

these two methods can still be seen as capable of mimicking the system outputs.

As suggested by Toni et al. (2009), the prior distribution and transition kernel need

to be chosen with care, otherwise the inference would be unacceptable. In the original

literature, this claim was investigated using the stochastic Lotka-Volterra model with

different prior distributions, where promising results can only be obtained with partic-

ular priors. In this repressilator example, we struggled with tuning the algorithm to

deliver satisfactory accuracy, because the details of the transition kernel and tolerance

schedule are not provided in the original work. This algorithmic setting is appropriate

from the viewpoint of accuracy, but requires an unaffordable computational cost. In

order to quantify how ABC-SIS is influenced by this algorithmic setting, we compare

the computational expense between ABC-SIS and our proposed method using identical

initial and final tolerances. Since ABC-SMC on average requires 140 iterations to reach

εT we reduce the tolerance from ε0 down to εT using 140 steps at regular intervals. The

results are shown in Figure 4.9.H, from which it can be easily seen that the number of

evaluations made by ABC-SIS is approximately seven times greater than ABC-SMC.

We note that the conclusion drawn from this comparison is somehow opposite to the

investigation presented in section 3.3.2, because the dimension of unknown parameters

of the repressilator model (4 unknown parameters) is higher than the previously con-

sidered system (3 unknown parameters). Additionally, the repressilator example uses

a more uninformed prior than the heat shock system, and therefore ABC-SIS expends

considerable computation on searching for acceptable particles due to the ‘non-fittest’

chosen transition kernel and tolerance schedule.

Consequently, although the use of sensitivity analysis has no significant effect for ABC-

SMC on improving the accuracy of estimation in this repressilator example, it does
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provide inspiration for how the problem in high dimensions may be tackled. In com-

parison to ABC-SMC, ABC-SIS requires a great deal of manual tweaking to achieve

satisfactory precision, while the computational complexity of ABC-SIS is much higher

than ABC-SMC when using an inappropriate algorithmic setting.

4.2.3 Heat shock response system

In the section A.4 of Appendix A, we considered the heat shock protein response system

as a biological example for demonstrating the effectivenesses of Kalman algorithms and

particle filter. When all parameters were unknown, being the hardest case considered,

the non-parametric PF is able to recover four unknowns of six parameters. In order to

discriminate the abilities of the proposed method and PF, a comparative study is carried

out on the heat shock response system under the assumption that all parameters are

unknown.

Figure 4.10(a).A describes the average sensitivity of parameters with respect to state

St in the system, as shown in graph, the parameters αd, kd and α0 are sensitive for

producing system outputs, which are thus required to be precisely inferred. Making

use of identical algorithmic settings (Liu and Niranjan, 2012), the estimation of stiff

parameters from the proposed method are shown in Figure 4.10(b) and the results of

sloppy parameters are given in Figure 4.10(c). It can be easily seen that the particles of

the stiff parameters converge the true values (α0 is inferred with relatively low precision

and large variance, this is due to its less significance in behaving system dynamics, in

comparison to the other two stiff parameters), whereas it fails to recover the true values

of the sloppy parameters. Additionally, in the previously studied example, when the

state St is hidden in observations, PF was found to be incapable of precisely inferring

the parameters kd and αd. Given the sensitivity of parameters with respect to the state

St, it is naturally expected this failure, since the behavior of St is governed by these stiff

unknown parameters. Consequently, if St is hidden in the observations, its corresponding

stiff parameters are impossible to estimate.

In particular, assuming all parameters unknown, PF (four of six) seemingly wins the bat-

tle over ABC-SMC+SA (three of six) in terms of successful inferences. Figure 4.10(a).C-

E suggests that the proposed method slightly outperforms PF in terms of re-creating

system dynamics, especially state St.

Consequently, the typical one-pass inference methods, e.g. particle filter and extended

Kalman filter appear to be capable of efficiently producing the most promising estima-

tions of partial parameters. While ABC-SMC+SA loses the competition in the count of

successes, it does benefit from re-allocation of computational budget facilitated by the

sensitivity analysis, and the method is capable of precisely estimating stiff parameters.
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Figure 4.10: Sensitivity analysis, inference of parameters and system re-
characterization of heat shock model. (a) A: Average sensitivities of parameters with
respect to state St. B: Sensitivities of parameters for St at each time instant. C-D:
Reproduction of state St by using true values, estimates from ABC+SA and particle
filter respectively. (b) and (c): Scatterplots and Histograms for the stiff parameters
(kd, αd and α0) and sloppy parameters (αs, ks and ku). The red lines indicate the true

values of parameters and the red ‘+’ implies the location of the true parameters.

4.2.4 Deterministic cell cycle system

A system with high dimension of parameters is the ideal scenario for using the pro-

posed method to address the inference problem. In this work, the effectiveness of ABC-

SMC+SA approach on parameter estimation in a complex scenario is illustrated by the
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cell cycle system.

The philosophy of cell cycle system can be found in the section 2.2.3 of chapter 2, and

the model considered in this work mathematically describes the cytokinesis appearing

in Saccharomyces cerevisiae. The formula of this process consists of six ordinary dif-

ferential equations with twenty parameters (Jacquet et al., 2003), of which the details

are described in Appendix D. Eight parameters are constructed without physical inter-

pretation and assigned identical values and therefore we seek only to estimate the other

twelve parameters.

Partial results of average sensitivities of parameters with respect to three state variables

are shown in Figure 4.11.A-C. It is clear that parameters Vkx and Vpx are most significant

for characterizing state M , while Vp and Vks are crucial in the behavior of states M∗

and MN .

ABC-SMC, associated with the flat prior, either non-informative or informative, is un-

able to terminate the ODE solver. This is due to, in high dimensional systems, the pa-

rameter values chosen for the ODE solver, i.e. Runge-Kutta method, being less probable

for the algorithm to achieve convergence and this difficulty causes infinite computational

consumption towards finding a solution. When ABC methods tackle inference problems

involving complex systems then prior to performance they should be tuned to find a

particular parameter value interval that can deliver the convergence of ODE solver.

As an alternative to the original ABC-SMC, by combining it with sensitivity analysis

we may partially alleviate. It is unnecessary to tune the prior until the ODE solver is

terminated. Instead, the estimator determines the sloppy parameters by adopting the

values where the inference algorithm gets trapped.

The estimates of the two stiff parameters are shown in Figure 4.11.D-E (the complete

results are given in Figure D.2 - D.3 of Appendix D), as seen from the graphs, inferences

achieve a good convergence to the true values. Surprisingly, as shown in Figure 4.12.B

and E, the method produces an inaccurate estimation of parameter Vks having the stiff

properties, as well as in parameter Vp.

Particularly, the effect of imprecise estimations on system characterization is shown in

Figure 4.12.C, in which the divergence is evident. Such divergence may be due to the

greater values of Vp and Vks resulting in the forward reaction contributing much more

than the backward reaction.

To increase precision of its inferences, ABC-SMC+SA method further reduces the di-

mensionality of the unknown by fixing the two stiff parameters with accurate estimates,

and re-identifying the parameters causes a failure of system characterization. Particles

of these two unknown parameters, as shown in Figure 4.12.A and D, ultimately center

around their true values. Consequently, the synthetic dataset is capable of capturing
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Figure 4.11: Results for sensitivity analysis and parameter estimation of cell cycle
model. A, B and C: Average sensitivity status of parameters for states M , M∗ and MN .
(other three graphs will be presented in Figure D.1 of Appendix D); D and E: Histogram
graphs for estimates of the stiff parameters Vpx and Vkx from ABC-SMC+SA, of which

the true values are highlighted by the red lines in the figures.

the dynamics better when all stiff parameters are precisely inferred, where the results

are shown in Figure 4.12.F.

In the algorithmic sense, the proposed method is sensitive to the noise corrupting ob-

servations. When the noise variance multiplier is set to 0.01, the algorithm performed

decently. However, increases of this multiplier negatively influences the method and

values greater than 0.1 causes a failure in inference.

In addition, the proposed method using kernel smoothing with shrinkage of parameter

evolution, i.e. equation A.41, outperforms the random walk kernel in terms of conver-

gence and adaptivity. This kernel proposes particles according to the mean and variance

of the previous posterior distribution, and resulting transition influences the specific di-

rection of particle perturbation automatically ‘shrinking’ the step size with decreasing

variance. The random walk kernel, however, perturbs particle with a non-specific di-

rection and a fixed distance in each iteration, as a result of which it may struggle with

the multi-modal issue. A comparative study of two evolutions is carried out on the

cell cycle system, in which the posterior distributions are plotted in the waterfall effect.

The evidence given in Figure 4.13 supports the conclusion, and the advantage of the

proposed method in terms of convergence is apparent.
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Figure 4.12: System reproduction and parameter estimation for cell cycle system
from the second and third parses. A and D: Histogram graphs of the promising in-
ferences for parameters Vp and Vks from 3rd estimate iteration. In figure, the original
windows use the same x-axis as the B and E for comparison purpose. Histograms of
realizations are zoomed-in and shown in the small windows. B and E: Histogram graphs
of the imprecise inferences from 2nd estimate iteration. C: Curves of the concentration
for state MN synthesized by using the true values and estimations from the 2nd parse.
Clearly, simulations diverge after a few iterations. F: Synthetic outputs of state MN ,

while which is simulated by utilizing the values from the 3rd parse.

4.3 How the choice of Msmc/Nsmc affects performance

In ABC-SMC algorithm, the Msmc and Nsmc would prefer to be set as large as possible,

but are unfortunately limited by the computational budget, which strikes a balance be-

tween efficiency and accuracy. The use of Msmc and Nsmc is highly case dependent, and

an one-for-all answer of selecting this algorithmic setting is sometimes impossible. The

solution of this is difficult, but can be investigated by empirically testing the performance

of different parameterizations.

A comparison of various settings is carried out on the repressilator system, in which

ABC-SMC is performed without SA and the amount of particles, i.e. the multiplication

of Msmc and Nsmc, is fixed as 40,000. More specifically, the particles are distributed in

three combinations: Msmc = 20 and Nsmc = 2, 000, Msmc = 200 and Nsmc = 200, or

Msmc = 2, 000 and Nsmc = 20. Performances of these three combinations in terms of

tolerance reduction and count of iterations are given in Figure 4.14, and the accuracy

of inferences is summarized in Table 4.5.

As seen in the graphs, from the perspective of computational efficiency, a greater budget

is required with decreasing values of Msmc. This is due to lower value of Msmc causing a

higher probability of particles being ‘killed’ and having a zero weight. This in turn results
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Figure 4.13: Estimations of Vpx in the cell cycle system are shown in waterfall
effect. (a) Results from ABC-SIS associated with the random walk kernel, in which the
multi-modality is evident. (b) Results from ABC-SMC with kernel smoothing. This

transition of parameter offers a better convergence property.

in tolerance taking longer to converge due to smaller decrements being applied. For

instance, considering the large Msmc example, i.e. Msmc = 2000, evaluating importance

using equation 3.25, the zero weight barely appears. Intuitively, the greater non-zero

proportion of the weight vector implies that most particles fulfill the current acceptance

criterion, therefore, a large decrement should be taken for the next tolerance level.

Table 4.5: Comparison of RRMSE for different values of Msmc/Nsmc
RRMSE

Msmc Nsmc

Paras

α0 n β α
2000 20 20.8±72.2 4.8±0.15 7.8±0.3 4.1±0.02
200 200 16.1±46.1 3.5±0.005 6.2±7.7 3.1±0.15
20 2000 12.4±56.9 3.6±0.16 5.8±0.4 2.2±0.67

From the perspective of accuracy, when gaining a larger number of particles, the diver-

sity of realizations increases and better performance in terms of precision is naturally

expected. This conclusion is illustrated by the comparison of RRMSE of inferences
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shown in Table 4.5, in which settings where Nsmc = 2000 perform best, with higher

values generally outperforming lower values.

Moreover, aiming only to assess the effect ofMsmc andNsmc on ABC-SMC, the algorithm

is run without SA and adopts a relatively loose tolerance, as a result of which, inferences

are relatively inaccurate.
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Figure 4.14: A: Tolerance paths received from different combinations of Msmc and
Nsmc, where the target epsilon εTa is set to 20. B: Counts of iterations are taken by

different combinations of Msmc and Nsmc to achieve the εTa.

4.4 Why use eFAST for sensitivity analysis?

Sensitivity analysis can be carried out globally, or locally, to appraise the significance of

parameters in dynamics. eFAST, which operates globally, was performed to investigate

this property so as to guide the re-allocation of the computational budget. From the

local perspective, apart from the gradient based solutions, Toni et al. (2009); Secrier

et al. (2009) undertook a kinetic study associated with the principle component analysis

and demonstrated its success on some models from systems biology literatures.

In brief, this method quantifies the sensitivity according to how parameters contribute

most to the eigenvector of the covariance matrix of the particles. More specifically, for the

smallest eigenvalue, the corresponding eigenvector indicates the direction of certainty.

Consequently, a parameter is regarded as stiff when it contributes to this eigenvector

the most. Details on the operation of this PCA-based sensitivity analysis technique can

be found in section 2.6 of chapter 2.

Its simple implementation and negligible computational requirements are the major

virtues of the PCA-based method, but it is strongly dependent on the precision of
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inference. When inaccurate estimates are fed to such methods, the reliability of analysis

will be negatively affected. An illustration is carried out on the repressilator system,

in which we deploy the PCA-based approach on two sets of inferences, one of which

achieves a good convergence to the true values, while another does not.

The effectiveness of PCA-based method, in an ideal algorithmic environment, is clearly

observed in Figure 4.15(a) where parameters n and α0 are seen as stiff, since these two

parameters contribute to the eigenvector which has the smallest eigenvalue (i.e. comp.4

in graph) the most. This result is identical to the one from eFAST and from the literature

(Toni et al., 2009). When this method is used with imprecise inferences, as shown in

Figure 4.15(b), the significances of β and α are greater than n and are unreliable. In

contrast, eFAST delivers the global solution of sensitivity analysis, and barely struggles

with the local minimum.

To facilitate the proposed inference method, given inaccurate estimates, the superior

performance of sensitivity analysis approach is required to work with a selective com-

putational allocation. To this end, eFAST takes priority.
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Figure 4.15: Sensitivity analysis for repressilator by using PCA-based technique
Toni et al. (2009). (a) Correct sensitivity analysis, one is the same as one presented
in Toni et al. (2009). (b) Incorrect sensitivity analysis, since the failure is caused by

concerning unreliable posterior population for inferred parameters.
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4.5 Discussion

In this chapter, we proposed an approximate Bayesian computation coupled with sen-

sitivity analysis inference method for parameter estimation problems in the context of

systems biology. When all the model parameters are simultaneously estimated, the

estimator is often required to strike a balance between accuracy and computational

efficiency. The method works on the fact that each model parameter has different signif-

icances for characterizing dynamics, those which are dominant are categorized as stiff,

others are sloppy. This suggests that the values of parameters that are more critical

(stiff parameters) need to be determined with care, while the sloppy parameters need

not be estimated to high precision. To facilitate such inference, we propose a three

stage strategy in which sloppy parameters of a model are estimated in a coarse search

followed by sensitivity analysis to guide the selective computational budget allocation

and re-estimation of the stiff parameters to tighter error tolerances.

The effectiveness of the proposed method is demonstrated on three oscillatory models

and one transient response model taken from the systems biology literature. In the

simple problem, e.g. the delay-driven oscillatory system, the outperformance of this

ABC+SA method in terms of accuracy was not observed. Nevertheless, this inference

algorithm does indeed lead to an improvement in the computational efficiency. The

major contribution of this work is the introduction of a re-allocation scheme for com-

putational budget, which allows to reduce the dimensionality of unknown parameters,

potentially paving a way for parameter estimation on more complex systems.

However, it is envisioned that the method proposed may lose its appeal without a val-

idation assessment. As exemplified in our case study of cell cycle system, the method

found itself only capable of partially reaching the true values, and an extra inference

iteration was carried out to compensate for this imprecision. In reality, inaccurate infer-

ences are usually hard to realize, therefore, a validation assessment becomes necessary

to work with the proposed method to check the reliability of inferences. The temporary

yet non-systematic solution of this problem is to perform the algorithm with succes-

sive iterations and then verify the success by integrating information from dynamics

re-characterization.

In addition, when parameters in the system have no noticeable difference in sensitivity,

the advantage of proposed method cannot be expected. In the cell cycle system, for

instance, parameters equally contribute to the output of state RA (sensitivity analysis

with respect to RA is given in Figure D.1 of Appendix D), as a result of which, all

parameters need to be determined with care.





Chapter 5

Modeling a polymer pathway

In this chapter, we conduct a mathematical modeling of intracellular polymer synthesis

in Alcaligenes eutrophus bacterium. The development of the model described in section

5.1 closely follows the work of Leaf and Srienc (1997), and includes the basic biochemical

reaction descriptions for completeness. The novel contributions of our work is carried

out the quantitative analysis including sensitivity analysis and parameter identification

to this polymer pathway, via the proposed approach presented in chapter 4.

5.1 Biochemical pathway modeling

An enzyme-catalyzed pathway for producing polymers is considered in this work. Since

disposable plastics has become a serious issue in the past decades, as the solution of this

problem, Polyhydroxybutyrate (PHB), benefiting from its biodegradable property, is

widely used as the material for producing plastics. Several bacteria such as Escherichia

coli and Ralstonia eutrophus are used as the bacterial fermentation for producing PHB.

Figure 5.1 shows a Alcaligenes eutrophus bacterium based pathway for synthesizing PHB,

in which glucose is initially fed as the substrate. Glucose is next converted to form

pyruvate through glycolysis reaction, with the release of free energy. As the product

of glycolysis, pyruvate is a crucial intersection in metabolic reactions, and determines

the end-product. Of interest is to analyze the sub-routine in pathway for producing

PHB from acetyl-CoA, in which three enzymatic reactions, i.e. thiolase, reductase and

synthase, are taking place (Poirier et al., 1995).

Several quantitative tools and culturing methods have been deployed to understand the

mechanism of PHB pathway. A representative work due to van Wegen et al. (2001), ex-

perimentally measured the concentrations of intermediates in this polymerization pro-

cess, performing in Escherichia coli. In this work, the concentration ratio of acetyl-

CoA/CoA is claimed as the most sensitive for the PHB production. Kessler and Witholt

95



96 Chapter 5 Modeling a polymer pathway

(2001) reported the diversity of regulatory mechanisms of PHB metabolism, and exam-

ined the strategies of the transcription levels and enzymatic levels to exert regulation

under various microorganisms. Shang et al. (2007) discussed the role of dissolved oxygen

in fermentation, and suggested that this factor is as crucial as the functions of carbon

and nitrogen for batch-fermentation. Moreover, variety of models for this PHB pathway

are proposed by using different kinetic expressions. Gombert and Nielsen (2001) consid-

ered the Michaelis-Mention kinetic for characterizing PHB synthesis, and various values

of parameters in expressions need to be adapted under different physiological conditions.

Wlaschin et al. (2006) quantitatively elucidated the connections between enzymes and

metabolites of PHB network by viewing the metabolism as a weighted sum of elementary

modes.

Figure 5.1: Metabolic pathway transforming from glucose to poly-3-
hydroxybutyrate. In this system, ADP and NADPH are used to power the process. For
modeling purposes, Acetoacetyl-Coa, D-3-hydroxybuyrate and Poly-3-hydroxybutyrate

are simplified as AcAcCoA, 3HBCoA and PHB, respectively.

Leaf and Srienc (1997) modeled the PHB pathway through a principle driven method,

in which the system is formulated by three differential equations and twenty parame-

ters. In this work, we also follow the identical kinetics modelling method to formulate

this polymerization process, as a result, the difference between our expression and the

previous model is minor. The procedure of modelling is described following. In order to

describe the change of flux concentration with respect to time, we first introduce a set
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of balance equations of the pathway intermediates, denoted as

d[AcAcCoA]

dt
= vthiolase − vreductase − µ[AcAcCoA] (5.1)

d[3HBCoA]

dt
= vreductase − vsynthase − µ[3HBCoA] (5.2)

d[PHB]

dt
= vsynthase − µ[PHB], (5.3)

where v denotes the rate of reaction and µ represents the rate of self-dilution caused

by expansion of the biomass during growth (Fredrickson, 1976). Each balance equation

generally indicates increase or decrease of its particular intermediate during reaction.

For solving such balance equations, the rates of reactions are necessarily formulated

explicitly. The modeling of reactions has been previously addressed by the intensive

use of Michaelis-Menten expressions, which appears unrealistic, therefore, we choose to

develop more complex expressions to describe these mechanisms

Quite often, in modeling of enzyme-catalyzed reaction, solution is exploited by the num-

ber of substrates and products and mechanisms between these components (Cleland,

1963). The symbols are often used to describe the kinetic information, such as

A
 P Uni Uni (5.4)

A
 P + Q Uni Bi (5.5)

A + B
 P Bi Uni (5.6)

A + B
 P + Q Bi Bi (5.7)

Apart from classifying the number of substrates and products, in enzyme kinetics, four

types of mechanisms are also defined (Roberts, 1977). If all substrates are participated

before any products are released, the reaction is then called sequential. The mechanism

is known as ordered when the addition of substrates and leaving of products follows an

obligatory order. Correspondingly, if the substrates are participated and the products

are released without an obligatory order, such mechanism is called random. The most

complex one is known as Ping Pong, in which the release of one or more products

happens before all substrates participated. In the next section we illustrate how three

rate reactions that appear in the PHB pathway are modeled.

5.1.1 Modeling of enzyme-catalyzed reactions

In this section, we discuss the methodology for characterizing enzyme catalyzed reaction

which closely follows the presentation in Roberts (1977). For the sake of completeness,

this modeling process is described.

In this polymerization system, thiolase is the enzyme for catalyzing the reaction for con-

verting acetyl-CoA (AcCoA) to form acetoacetyl-CoA (AcAcCoA) along with releasing
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part of co-enzymes (CoA). This reaction is shown as the step 3 in Figure 5.1 which is

mathematically described as

AcCoA + AcCoA
 AcAcCoA + CoA (5.8)

Since this thiolase reaction occurs satisfying the Ping-Pong Bi-Bi mechanism (Davis

et al., 1987), we can simply draw a diagrammatical description given in Figure 5.2, in

which E denotes the thiolase enzyme. A and B are acetyl-CoA, which are the sub-

A B QP

FEA

FP

FB

EQ

E E

Figure 5.2: The diagrammatical description of Ping-Pong Bi-Bi mechanism for
thiolase reaction.

strates of this reaction. P represents acetoacetyl-CoA, the first product in the reaction,

while Q denotes CoA, the second product in this sub-pathway. The EA, FP, FB and

EQ are intermediate complexes (Michaelis-Menten complex) (Roberts, 1977) after the

participation of substrates or the departure of products.

To consider the structure of a reaction, it is convenient to use a diagrammatic method,

namely the King-Altmen method (King and Altman, 1956) Specifically, enzymes in

the reaction are formed in different geometrical patterns with arrows to represent the

possible interconversions of species. Each arrow in patterns is labelled with a rate

constant and any substrates/products may be consumed in the corresponding step. If the

underlying step is reversible, a backward arrow is attached following the same philosophy.

Consequently, in the King-Altmen procedure, the thiolase reaction can be formed as

Figure 5.3 The next step in the King-Altmen method is to propose all possible ways

FP

FEQ FB

E EA
K
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K

−1

K
1
[A] K
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6
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[P]K
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−4
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−6
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Figure 5.3: Thiolase reaction formed in the King-Altmen procedure.
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that each enzyme can be connected. Two conditions are applied: First, the number

of lines in pattern for connecting enzymes should be one line less than the number of

species. Second, the underlying enzyme can not be the starting point and the finishing

point at one time, therefore, close loops are not allowed in the King-Altmen description.

The diagram of thiolase reaction can then be decomposed into six patterns. The possible

patterns for species E and EA in reaction, are given in Figure 5.4 below The patterns
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Figure 5.4: Possible patterns of species E and EA in the thiolase reaction and their
corresponding kinetic expressions.

of intermediates FP and F are given in Figure 5.5.

All possible patterns of enzyme species FB and EQ are shown in Figure 5.6. As more

substrates and products are consumed or released the number of possible patterns drawn

from the King-Altmen method increases considerably. Therefore, finding the correct

geometric patterns is the central challenge in modeling enzymatic reaction.

In this thiolase-catalyzed reaction, of interest is to derive the rate equation of the first

product, i.e. AcAcCoA (P). From the scheme shown in Figure 5.3, the differential

equation describing the rate of production of AcAcCoA (P) can be written as

d[P]

dt
= k3[FP]− k−3[F][P]. (5.9)

Concentration of a species of interest, say [FP], is expressed as a fraction of the total

concentration of all species in the medium/volume. The fraction is given by the ratio of

the sum of all kinetic terms relating to the species of interest to the sum of all kinetic
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Kinetic termsDiagramsEnzyme species
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Figure 5.5: Possible patterns of species FP and F in the thiolase reaction and their
corresponding kinetic expressions.
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Figure 5.6: Possible patterns of species FP and F in the thiolase reaction and their
corresponding kinetic expressions.

terms in the system.

[FP] =
Kinetic terms of FP

Σ
× [E0], [F] =

Kinetic terms of F

Σ
× [E0]. (5.10)

where [E0] denotes the total concentration of species and Σ represents all kinetic terms

in system. Further expanding the equation 5.10 by using kinetic terms of species FP
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and F shown in Figure 5.5, we can rewrite equation 5.10 as

d[P]

dt
=

[E0]

Σ
· (k1k2k−3k3k5k6[A][P] + k1k2k3k4k5k6[A][B]

+ k1k2k−3k3k−4k−6[A][P] + k1k2k−3k3k−4k−5[A][P]

+ k2k−3k3k−4k−5k−6[P][Q] + k−1k−3k3k−4k−5k−6[P][Q])

− [E0]

Σ
· (k1k2k−3k3k−4k6[A][P] + k1k2k−3k3k5k6[A][P]

+ k1k2k−3k3k−4k−5[A][P] + k2k−3k3k−4k−5k−6[P][Q]

+ k−1k−3k3k−4k−5k−6[P][Q] + k−1k−2k−3k−4k−5k−6[P][Q])

=
[E0]

Σ
· (k1k2k3k4k5k6[A][B]− k−1k−2k−3k−4k−5k−6[P][Q]). (5.11)

Notice that in the equation 5.11, only one positive and one negative terms are shown in

the numerator. Intuitively, the positive term indicates reactions occurring in the forward

direction, which is quantified by the concentration of products and their corresponding

rate constants. The negative term indicates the reaction being taken place in reverse,

calculated by multiplying product concentrations and all reverse rate constants. These

two terms expression is always true in for all substrate-product mechanisms, except for

random kinetics.

For deriving the final rate equation, we further define num1 = k1k2k3k4k5k6[E0] and

num2 = k−1k−2k−3k−4k−5k−6[E0]. Using this variable transformation, the rate of pro-

duction can be rewritten as

d[P]

dt
=
num1 · [A][B]− num2 · [P][Q]

Σ
, (5.12)

where the complete expression of Σ is given as

Σ = k−1k3k4k5k6[B] + k2k3k4k5k6[B] + k−1k−2k4k5k6[B]

+ k−1k−2k−3k5k6[P] + k−1k−2k−3k−4k6[P] + k−1k−2k−3k−4k−5[P]

+ k1k−2k4k5k6[A][B] + k1k3k4k5k6[A][B] + k1k−2k−3k5k6[A][P]

+ k1k−2k−3k−4k6[A][P] + k1k−2k−3k−4k−5[A][P] + k−2k−3k−4k−5k−6[P][Q]

+ k1k2k−3k5k6[A][P] + k1k2k4k5k6[A][B] + k1k2k−3k−4k−6[A][P]

+ k1k2k−3k−4k−5[A][P] + k2k−3k−4k−5k−6[P][Q] + k−1k−3k−4k−5k−6[P][Q]

+ k1k2k3k−4k6[A] + k1k2k3k5k6[A] + k1k2k3k−4k−5[A]

+ k2k3k−4k−5k−6[Q] + k−1k3k−4k−5k−6[Q] + k−1k−2k−4k−5k−6[Q]

+ k1k2k3k4k−5[A][B] + k1k2k3k4k6[A][B] + k2k3k4k−5k−6[B][Q]

+ k−1k3k4k−5k−6[B][Q] + k−1k−2k4k−5k−6[B[Q] + k−1k−2k−3k−5k−6[P][Q]

+ k2k3k4k5k−6[B][Q] + k1k2k3k4k5[A][B] + k−1k3k4k5k6[B][Q]

+ k−1k−2k4k5k−6[B][Q] + k−1k−2k−3k−4k−6[P][Q] + k−1k−2k−3k5k−6[P][Q]. (5.13)
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Rewriting the terms in Σ by grouping kinetic terms relating to similar reactants give in

the expression, we have Σ as

Σ = (coefA)[A] + (coefB)[B] + (coefP)[P] + (coefQ)[Q]

+ (coefAB)[AB] + (coefPQ)[PQ] + (coefAP)[AP] + (coefBQ)[BQ], (5.14)

in terms of new coefficients

coefA = k1k2k3(k−4k6 + k5k6 + k−4k−5)

coefB = k4k5k6(k−1k3 + k2k3 + k−1k−2)

coefP = k−1k−2k−3(k5k6 + k−4k6 + k−4k−5)

coefQ = k−4k−5k−6(k2k3 + k−1k3 + k−1k−2)

coefAB = k1k4(k−2k5k6 + k3k5k6 + k2k5k6

+ k2k3k−5 + k2k3k6 + k2k3k5)

coefPQ = k−3k−6(k−2k−4k−5 + k2k−4k−5 + k−1k−4k−5

+ k−1k−2k−5 + k−1k−2k−4 + k−1k−2k5)

coefAP = k1k−3(k−2k5k6 + k−2k−4k6 + k−2k−4k−5

+ k2k5k6 + k2k−4k6 + k2k−4k−5)

coefBQ = k4k−6(k2k3k−5 + k−1k3k−5 + k−1k−2k−5

+ k2k3k−5 + k−1k3k5 + k−1k−2k5). (5.15)

Substituting equation 5.14 into equation 5.12, the rate reaction of product is specified

as

d[P]

dt
=

num1 · [A][B]− num2 · [P][Q]

{(coefA)[A] + (coefB)[B] + (coefP)[P] + (coefQ)[Q]
+ (coefAB)[AB] + (coefPQ)[PQ] + (coefAP)[AP] + (coefBQ)[BQ]}

.

(5.16)

Specifically, following the suggestion from Roberts (1977), the maximum velocity for a

particular direction can be defined as a fraction, in which the numerator is the specified

direction of the underlying reaction and the denominator is the coefficient for species

involved in the director. In this case, the maximum velocities of the forward V1 and

backward direction V2, when the substrates A and B or products P and Q are saturating,

are given as

V1 =
num1

coefAB
, V2 =

num2

coefPQ
, keq =

num1

num2
, (5.17)

where keq indicates the rate constant when the system is in the equilibrium.

By multiplying the rate equation by num2
coefAB · coefPQ , the numerator of equation 5.16 is
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transformed as

numerator =
num1 · [A][B] · num2

coefAB · coefPQ
− num2 · num2 · [P][Q]

coefAB · coefPQ

=
num1 · [A][B] · num2

coefAB · coefPQ
− num1 · num2 · [P][Q]

keq · coefAB · coefPQ

= V1V2 · [A][B]− (V1V2 · [P][Q])/keq. (5.18)

And the denominator is given as

denominator =
coefA · [A] · num2

coefAB · coefPQ
+
coefB · [B] · num2

coefAB · coefPQ

+
coefP · [P] · num2

coefAB · coefPQ
+
coefQ · [Q] · num2

coefAB · coefPQ

+
coefAB · [AB] · num2

coefAB · coefPQ
+
coefPQ · [PQ] · num2

coefAB · coefPQ

+
coefAP · [AP] · num2

coefAB · coefPQ
+
coefBQ · [BQ] · num2

coefAB · coefPQ
(5.19)

At this point, we further consider the Michaelis constant for representing the rate con-

stant. In particular, the Michaelis constant, being the most widely adopted notation in

computational modeling, is more like a complex expression rather than an actual kinetic

description. In this denotation scheme, the rate constant of a reactant is defined as

the ratio of the relevant coefficients. Moreover, the Michaelis constant is always named

after the remaining letter after other terms are canceled out from the numerator and

denominator. For the denominator shown as equation 5.19, we have

Kb =
coefA

coefAB
, Ka =

coefB

coefAB
, Kq =

coefP

coefPQ
, Kp =

coefQ

coefPQ
(5.20)

Particularly, in enzyme-catalyzed reaction, a few enzymes may act as inhibitors so that

the equilibrium of the system can be achieved. In this case, inhibitors influence the

substrate A and product P, causing the reaction of these two reactants to occur in

reverse direction (Davis et al., 1987). Consequently, the following transformations can

be written down

coefAP

coefPQ
=
coefAP

coefP
· coefP

coefPQ
=

1
coefP
coefAP

·Kq = Kia ·Kq

coefBQ

coefAB
=
coefBQ

coefB
· coefB

coefAB
=

1
coefB
coefBQ

·Ka = Kiq ·Ka (5.21)

Understanding of these inhibition constants is quite straightforward. It is due to the

letters of denominator are in different directions, and constant can be seen as the in-

hibitory rate for reactant which is named by the remaining letter in denominator after

canceling out from numerator. For example, the letters A and P in coefAP are in dif-

ferent directions, and P in denominator coefAP is canceled by the numerator coefP.
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Consequently, the remaining is A and the fraction coefP
coefAP is therefore defined as the

inhibition rate of substrate A.

Substituting equation 5.20 and 5.21 into the denominator of the rate equation, we have

denominator =
coefA · [A] · num2

coefAB · coefPQ
+
coefB · [B] · num2

coefAB · coefPQ

+
coefP · [P] · num2

coefAB · coefPQ
+
coefQ · [Q] · num2

coefAB · coefPQ

+
coefAB · [AB] · num2

coefAB · coefPQ
+
coefPQ · [PQ] · num2

coefAB · coefPQ

+
coefAP · [AP] · num2

coefAB · coefPQ
+
coefBQ · [BQ] · num2

coefAB · coefPQ

= V2 · [A] ·Kb + V2 ·Ka · [B]

+
V1 · [P] ·Kq

Keq
+
V1 · [Q] ·Kp

Keq

+ V2 · [A] · [B] +
V1 · [P] · [Q]

Keq

+
V1 · [A] · [P] ·Kq

KiaKeq
+
V2 · [B] · [Q] ·Ka

Kiq
. (5.22)

Consequently, we can formulate the rate reaction for producing AcAcCoA as

vthiolase =
V1V2 · [A][B]− (V1V2 · [P][Q])/keq

{V2 · [A] ·Kb + V2 ·Ka · [B] +
V1·[P]·Kq
Keq

+
V1·[Q]·Kp
Keq

+ V2 · [A] · [B]

+ V1·[P]·[Q]
Keq

+
V1·[A]·[P]·Kq
KiaKeq

+ V2·[B]·[Q]·Ka
Kiq

}

(5.23)

where A and B denote the concentration of acetyl-CoA, P is the first product of this

sub-pathway and represents the concentration of acetoacetyl-CoA, and Q is the second

product and indicates the concentration of released CoA.

Following the suggestion of Haywood et al. (1988) that the reaction of synthesizing

3HBCoA is a sequential ordered Bi-Bi mechanism, we can derive the equation of rate

reaction of 3HBCoA by using a similar procedure, which is given as

vreductase =
V1V2 · [A][B]− (V1V2 · [P][Q])/keq

{V2 ·Kia ·Kb + V2 ·Kb · [A] + V2 · [B] ·Ka + V2 · [A] · [B] +
V1·[P]·Kq
Keq

+
V1·Kp·[Q]
Keq

+ V1·[P]·[Q]
Keq

}
(5.24)

where A is the first substrate of this reaction and denotes the concentration of acetoacetyl-

CoA, B is the second substrate which is the concentration of externally supplied NADPH.

P and Q represent the concentrations of 3HBCoA and NADP+, respectively.

Gerngross et al. (1994); Wodzinska et al. (1996) claimed that the synthase enzyme

remains covalently linked to the polymer chain when it grows and that therefore the
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product macromolecule is more likely to be insoluble in an aquatic environment. As a

result, the PHB is produced solely by diffusing from 3HBCoA. Exploiting this truth,

Leaf and Srienc (1997) claimed that the rate reaction for producing PHB can be seen

as a simple irreversible Michaelis-Menten kinetics, which is given as

vsynthase =
V1 · [3HBCoA]

Km + [3HBCoA]
, (5.25)

where V1 is the maximum velocity towards the PHB production and Km is the concen-

tration of PHB when the reaction rate is half of the V1.

5.2 Quantitative analysis

Wang and Lee (1997); Wong et al. (1999) claimed that PHB production in Alcaligenes

eutrophus starts from a rapid cellular growth with few PHB being synthesized, and

finally achieves an accumulative phase in which the cellular growth becomes low and

velocity of PHB production hits maximum. Unfortunately, the substantial uncertainties

of parameters in this transition limit the experimental exploration of the process with re-

spect to these parameters. Quantitative descriptions offer an opportunity to thoroughly

explore the dynamics.

5.2.1 Model output

In the previous chapters, we have studied several biological systems such as the repres-

silator system acting the periodic behaviors along its self-regulation and the heat shock

response system achieving the transient status after the transition caused by heat shock.

When the values of parameters in these models are assumed to be known, subsequently,

the outputs of systems are solely governed by the initial conditions. This PHB pathway,

however, is completely different from all aforementioned systems, since its outputs are

additionally influenced by the externally fed species, i.e. NADPH. In order to illustrate

how the PHB production is affected in response to the concentration of NADPH, we car-

ried out the simulations by considering the infinitely and limited external species supply,

i.e. setting the initial concentration of NADPH to 200 and 2, respectively. The time

interval for synthesizing the outputs is set to 400 hours, where the typical time length

in real life is approximately 50 hours. Following the literature (Leaf and Srienc, 1997),

the initial concentration of AcCoA is set to 200, while other species are zero. Results

of this simulation is shown in Figure 5.7, as given in the graph, the concentration of

PHB rapidly grows in the initial phases, then the curve starts to drop after achieving

the maximum. This decline is caused by the dilution. Moreover, the peak of PHB

production with limited NADPH is reached earlier than the one with abundant supply.

This is expected because the intermediate species hydroxybutyrate, being the substrate
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of producing PHB, is synthesized by consuming NADPH. If NADPH is insufficiently

provided, the hydroxybutyrate is stopped synthesizing due to the shortage of NADPH,

subsequently, its maximum volume is early reached.
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Figure 5.7: Concentrations of species in PHB pathway, which are synthesized by
solving ODEs with consideration to the infinite or limited external supply (NADPH).

In addition, we further assess how the PHB production changes in response to different

levels of the externally supplied NADPH. The study is performed by comparing the

maximum volume of PHB production that is produced by supplying NADPH with low,

moderate and abundant levels. The results are shown in Figure 5.8(a), which are similar

to the results shown in Figure 5.7 where the abundant NADPH supply is generally

advantageous for stimulating the production of PHB. However, the rate of increase of

maximum volume slows down with the extra feeding of NADP, meaning that a steady-

state is achieved. We also consider the combinatory influence of the initial substrate

AcCoA and NADPH on PHB production, as shown in Figure 5.8(b), the amount of

production only appears evidently different when the supply of external input is small.

Through abundant feeding, more substrate can be converted to the end-product.

5.2.2 Sensitivity analysis

In chapter 4, we have claimed that our proposed method is ideal for applying to the

parameter estimation problem with high dimensions, therefore, this PHB system is em-

ployed to test the effectiveness of our inference method by assuming all parameters are

unknown.

In order to run the inference method, the sensitivity of parameters needs to be quantified,

similarly, the eFAST plays the role in analyzing the sensitivity. For applying the eFAST
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Figure 5.8: (a): Maximum volumes of PHB concentrations generated by using various
levels of NADPH supply. (b): Maximum volumes of PHB concentrations generated by

feeding various initial substrate AcCoA and NADPH.

approach, we set the numbers of search curves (Nr) and samples picked from each curve

(Nse) to 5 and 2049, respectively. Results are shown in Figure 5.9. It appears that

production is predominantly governed by three maximum velocity parameters: V1,thiolase,

V1,reductase and V1,synthase. We note that the concentration of hydroxybutyrate is directly

inhibited by the parameter Kia,reductase. This inhibitory reaction occurring in the step

immediately proceeding the final output of the pathway is why this system is highly

sensitive to this parameter. The significance of parameter Kia,reductase can be further

verified from the outputs of AcAcCoA, where a sharp decline caused by the inhibition

occurs after reaching its maximum volume, in comparison to hydroxybutyrate which has

a smooth decline.

Moreover, a simulation is dedicated to visualize the effects of stiff and sloppy parameters

on PHB production. In this example, we consider parameters V1,thiolase and Kp,reductase,

as V1,thiolase is the most stiff parameter in dynamics but its value from estimation/liter-

ature is only 0.005, and the proportion of Kp,reductase occupied in sensitivity pie chart

is less than 2%, but its value is determined as 16.6. Figure 5.10 shows the synthetic

concentration of PHB generated by using the parameter values with various multipli-
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Figure 5.9: Result of sensitivity analysis for PHB production pathway.

ers. Apparently, even though the real value of Kp,reductase is 3500 times greater than
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Figure 5.10: Maximum concentration of PHB synthesized by using various values
of parameter V1,thiolase and parameter Kp,reductase. Options of value changing are 10%,
50%, 100%, 150% and 200%. In simulation, V1,thiolase = 0.005 and Kp,reductase = 16.5.

V1,thiolase, the behavioral response to changes of Kp,reductase is negligible, whereas the

influence of V1,thiolase is noticeable.
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5.2.3 Parameter estimation

With this insight into the contribution of parameters to the system, we first determine

the values of sloppy parameters by a coarse search. In the first run, since the considered

all unknown case might be the hardest parameter estimation problem, particles for the

sloppy parameters are therefore generated from the informative prior. For instance, the

parameter Kp,thiolase that contributes less than 1% to the system outputs and whose

value is previously set to 31.4, then the initial particles of this parameter are generated

from the distribution given as θ0 ∼ U(29, 32). We generate the synthetic data for 25

hrs (90000 min), with a regular sampling interval of 0.2 min, and system output is

represented by 450000 sample points, where the coarse and tight tolerances are set to

1,500 and 700 respectively. The additive noise corrupting to observations is generated

following a zero mean Gaussian distribution, where the diagonal elements of covariance

matrix R is set to variance of solutions of ODEs, i.e. X multiplying a constant. In

this simulation, this constant is defined as 0.05. The results of parameter estimation are
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Figure 5.11: Parameter estimation of four stiff parameters V1,thiolase, V1,reductase,
V1,synthase and Kia,reductase. Results are represented in scatter-histogram graph. The
lines in the histograms denote the true values considered in the literature (Leaf and
Srienc, 1997). Red crosses are the corresponding points of the true values in the scatter

graphs.

given in Figure 5.11, from which the bias estimation is somewhat observed, for instance,

the true values of parameters V1,synthase and Kia,reductase are adopted as 0.0088 and 5

for generating the observations (van Wegen et al., 2001), and an offset of the mean of

the posterior distribution is evident. The discrepancy between the inferences and the

adopted values may be caused by the difficulty of all parameters assumed unknown

leading to low precision of the estimation for sloppy parameters. However, we also note

that the parameter Kia,reductase can be accurately estimated when it is left as the only

unknown parameter of the system.
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5.3 Glycolysis pathway

As we stated in complete pathway of PHB shown in Figure 5.1, the original species

glucose need to be converted to pyruvate in prior to involve in the PHB sub-pathway.

The reactions occurring to form pyruvate from glucose is called glycolysis, for which the

schematic graph is described in Figure 5.12.

Figure 5.12: Schematic graph of the glycolysis pathway. The one way arrow indicates
the reaction happens irreversibly, while the two ways arrow implies that the underlying
reaction is reversible. The complete name of enzymes shown in graph are HK: hex-
okinase; PGI: phosphoglucose isomerase; PFK: phosphofructo-kinase-1; ALD: aldolase;
TPI: yriose phosphate isomerase; GAPDH: glyceraldehyde 3-phosphate dehydrogenase;
PGK: phosphoglycerate kinase; PGM: phosphoglycero-mutase; ENO: enolase; PYK:

pyruvate kinase.

The glycolysis is a very general enzymatic pathway, which decomposes the glucose to

prepare the specific substrate (in PHB example, Acetyl-CoA is such substrate) for par-

ticular reactions via extended systems. Most of reactions occurring in glycolysis are

modeled in a similar way for formulating the PHB sub-pathway. Referring to Teusink

et al. (2000); Hynne et al. (2001), with the King-Altman method introduced in section

5.1.1, the reactions associated with enzymes PGI and ENO can be easily modeled as the

uni-uni Michaelis-Menten kinetics, given as

v = V1

[A]
Ka

(
1− [P]

[A]Keq

)
1 + [A]

Ka
+ [P]

Kp

, (5.26)
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while the reactions involve enzymes such as HK, PGK, GAPDH and PYK can be for-

mulated as the bi-bi Michaelis-Menten kinetics without inhibitor, given as

v = V1

[A][B]
KaKb

(
1− [P][Q]

[A][B]Keq

)
(

1 + [A]
Ka

+ [P]
Kp

)(
1 + [B]

Kb
+ [Q]

Kq

) . (5.27)

Noticing that there is a cyclic interaction occurring among species F16bP, DHAP and

GAP, this looped regulatory mechanism causes a serious difficulty in modeling. Recall-

ing the King-Altman method that models biochemical reaction by drawing all possible

geometric patterns that form end-product, this complex cyclic interaction might result

in explosion of potential pattern numbers. Thus Teusink et al. (2000) suggest that sev-

eral interactions among intermediate species (e.g. fructose 2,6-bisphosphate), enzyme

(aldolase) and energy container (AMP) are assumed to be constant, rather than time-

varying. In addition, the effort is also made on regarding complex reactions as a rapid

equilibrium, that is using the linear rate function to model sophisticated mechanisms.

Following the work (Teusink et al., 2000; Hynne et al., 2001), the rate equation is given

as

v = V1
gRλ1λ2R

R2 + LT 2
(5.28)

with

λ1 = [F6P]/KR,F6P (5.29)

λ2 = [ATP]/KR,ATP (5.30)

R = 1 + λ1λ2 + gRλ1λ2 (5.31)

T = 1 + cATPλ2 (5.32)

and

L =L0

(
1 + Ci,ATP[ATP]/KATP

1 + [ATP]/KATP

)2(1 + Ci,AMP[AMP]/KAMP

1 + [AMP]/KAMP

)2

(
1 + Ci,F26bP[F26bP]/KF26bP + Ci,F16bP[F16bP]/KF16bP

1 + [F26bP]/KF26bP + [F16bP]/KF16bP

)2

. (5.33)

By using the value of parameters given in the original literature coupled with our PHB

sub-pathway, we simulate the concentration of pyruvate that is shown in Figure 5.13.

From the graph, we can see that the change of pyruvate concentration becomes transient

after a rapid increase in the beginning half hour. Such behavioral response obviously

violates our expectation, where it should exist oscillation. The disagreement could be

caused by the different organisms adopted for performing experiment, where the glycol-

ysis was carried out in Saccharomyces cerevisiae and the PHB was measured in Bacillus.

One of the solutions is to estimate the value of parameters in glycolysis by our real
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Figure 5.13: Simulation of pyruvate obtained by using the model and parameter
values given in Teusink et al. (2000).

experimental glucose-PHB data. However, it is due to the curse of dimensionality (the

number of parameters in glycolysis is 54 and the overall number of this complete PHB

pathway will be 81), a decent inference of parameters of interest is somehow impossi-

ble under such limited input-output data. We look forward to estimating parameters

precisely after having more experimental data for the individual species in this PHB

pathway.

5.4 Discussion

In this chapter, we formulated a biochemical pathway into a set of ordinary differential

equations using well-established kinetic laws. Quantitative analysis including sensitivity

analysis and parameter estimation was performed to verify the reliability of our model

and conclusions were checked with previously work. Even though this illustrative path-

way has already been studied, the presented exploration can be considered as a hands-on

experience, so that another sophisticated half of this pathway (PHA) can be modeled

more thoroughly.
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Conclusion and Future Work

6.1 Conclusion

This thesis has shown the application of several probabilistic methods for parameter

estimation in computational models of Systems Biology. The parameter estimation al-

gorithms are simulated and their performances, in terms of computational speed and

accuracy of estimating the underlying unknown parameter for values, are explored thor-

oughly. We are able to derive several conclusions from this computational study.

When sequential inference algorithms (extended Kalman, unscented Kalman and parti-

cle filter) are applied to the joint estimate of state and parameters, the non-parametric

method of particle filtering offers a distinct advantage over the other approximation

based parametric methods. By systematically exploring the performance of these meth-

ods on the heat shock response model studied by previous authors, we were able to

demonstrate reliable convergence to the true underlying parameter values for a range of

combination of observed/unobserved states and known/unknown parameter values. In

this work, a particular problem in approximated methods (EKF/UKF) is to find out

optimal initial conditions. The results reported by the previous authors (e.g. Lillacci

and Khammash (2010)) are reproducible only when the conditions are initialized close

to their true values. The particle filter, however, due to the interacting nature of the

parallel evaluation, often estimate the unknown correctly even when all the particles are

set further away from the EKF/UKF initializations. This property makes the PF an

attractive estimation approach requiring minimal knowledge of where the true value of

the unknown parameter might lie.

We also demonstrate that one-pass algorithms are capable of very efficient computation,

achieving the same quality of estimation as batch methods but at a significantly reduced

computational expense. While this is not a major advantage with respect to present day

data sets in systems biology, we speculate that sequential problems will naturally arise

113
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in biological problems in the near future, for example in modeling at the single-cell level

of series of cells passing through a micro fluidics channel.

The family of algorithms centered around approximate Bayesian computation (ABC)

were reviewed theoretically and empirically in Chapter 3. This is a powerful method-

ology for inference and parameter estimation as reported by Toni et al. (2009) among

others. Starting from the naive ABC algorithm, and reviewing through the popular

methods in the literature, the abilities of approaches at enhancing performance in terms

of dependence on initialization, accuracy and computational cost are shown by applying

to either the biological models or the statistical models. In the last part of this review,

by comparing parameter estimation methods on a particular biological model, an em-

pirical guidance of choosing the algorithm for inference problems in systems biology is

given.

The parameters in system could be simultaneously estimated with various uncertainties

in their inferences, and this phenomena has been explored by Gutenkunst et al. (2007)

who suggested that the set of parameters can be decomposed into having sloppy and stiff

properties with respect to the system behavior. We proposed a two stage ABC based

inference approach in the light of sensitivity of these parameters, by which the sloppy

parameters are assigned values determined by a coarse analysis and the stiff parameters

are re-estimated by using a harsh acceptance criterion. This selective allocation of com-

putational budget allows us to achieve a decent balance between accuracy and efficiency.

The effectiveness of this proposed method is illustrated by inferring the parameters in

four biological models and successfully reproducing system behaviors.

In the final part of this research, described in Chapter 5, we have modeled the funda-

mentals of chemical reactions that polymerize glucose. This system is different from the

previously considered systems such as the heat shock response model and the repressi-

lator model, since the production of this polymer system is governed by the external fed

species while others are self-regulatory systems (the heat shock system is not regulatory

but it has no external input). This polymer system is captured by three differential

equations and nineteen parameters, whose development closely follows the work of Leaf

and Srienc (1997), while the novel contributions of our work are carried out by the quan-

titative analysis including sensitivity analysis and parameter identification. In this work,

we assume all parameters are unknown which might be the possible hardest inference

problem, and our proposed method described in Chapter 4 successfully recovers the true

values of the stiff parameters.

6.2 Future work

As proposed in Chapter 4, the ABC method redistributes the computational budget with

respect to the sensitivity of parameter. Unsurprisingly, it may encounter a latent state
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which has no distinct sensitivity partition, in which case the selective computational

scheme is impossible to provide. Moreover, it could be more reliable to quantitatively

define the stiffness or sloppiness rather than observing it intuitively.

From an algorithmic point of view, a possible extension could be to derive advanced

ABC methods that may give superior performance. Of particular interest is to use the

Riemann manifold Hamiltonian Monte Carlo method in the ABC framework, in which

geometric information can efficiently guide the movement of particles to the place thus

affecting the less tolerance value. In addition, methods can benefit considerably from

GPU computing. Since in the adaptive ABC method adopted in this work, particles

are chosen to represent the posterior without necessarily being required to satisfy the

acceptance condition and therefore can be distributively calculated over a large number

of GPU computing units.

In this work, the modeled polymerization for synthesizing PHB contributes only half

of the dual polymer-production pathway, whereas in reality another polymer, namely

polyhydroxyalkanoates, is also simultaneously produced by the system. We will for-

mulate the complete pathway in the future, since we are interested in finding a way

of selectively producing the particular polymer by switching on/off the corresponding

parameter-controlled intermediate species. We will also focus on validating the quanti-

tative analysis of polymer pathway introduced in Chapter 5, including estimating the

parameters in glycolysis pathway by using additional experimental data and examining

the agreement between synthetic input-output data and the real data.





Appendix A

Inference algorithms

A.1 Sequential inference methods

Inference methods are generally categorized into sequential and batch, where the batch

approaches update the inference of state/parameter by re-visiting the distant past data,

and which are useful for the off-line problems. Conversely, the sequential approaches

also known as the one-pass methods recursively estimate state/parameter by given the

data whose arrival is sequential. This class of sequential methods is useful in the real-

time applications such as robotics and system control. In the following section, several

popular sequential inference methods will be discussed.

A.1.1 Kalman filter

The Kalman filter is the most well-known one-pass algorithm whose superior perfor-

mance depends on the linearity of underlying system and assumption of Gaussian noise

corrupting to observations (Kalman, 1960). This parametric approach has been widely

used for tracking (Chan et al., 1979) and navigation (Loebis et al., 2004). Algo-

rithm 8 describes the pseudo-code for the Kalman filter. Notation here is the ex-

tended state space which consists of the latent states and the unknown parameters,

i.e. s = [x1, . . . , xn, θ1, . . . , θDp ]. Outputs st|t and Σt|t are the estimates to state/pa-

rameter and their covariance at time t. The Kalman filter consists of two steps which

are prediction and correction. In the prediction phase, the method proposes a temporal

state using the underlying dynamical system and previous state. Corrections are made

for state coupled with the new coming observations.

1In the step, the capital T is the transpose symbol.
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Algorithm 8 Kalman filter
Initialization

1. Input s0|0, Σ0|0 and y1:T .
for t = 1 to T do

Prediction

2. st|t−1 = Ast−1|t−1

31. Σt|t−1 = AΣt−1|t−1A
T + Q

Correction

4. Kt = Σt|t−1C
T(CΣt|t−1C

T + R)−1

5. st|t = st|t−1 + Kt(yt −Cst|t−1)
6. Σt|t = Σt|t−1 −KtCΣt|t−1

end for
7. Output s1:t.

A.1.2 Extended Kalman filter

While the kalman filter described in Algorithm 8 is the optimal estimator for linear

with additive Gaussian noise, many real-world problems do not fall into this category.

Non-linearity and non-Gaussian of noise are common in many practical problems such

as the systems problems of interest to us. One way of addressing this issue is to use

approximation. The extended Kalman filter (EKF) is an approach that uses Taylor

series expansion of non-linearity and truncate to the first order terms (Jazwinski, 1970;

Bar-Shalom et al., 2001). This linearization of functions f(·) and h(·) is always described

as

Ft =
∂f

∂s

∣∣∣∣
s=st−1|t−1

, Ht =
∂h

∂s

∣∣∣∣
s=st|t−1

. (A.1)

Often truncating to the first order terms is considered good enough, similarly, EKF

consists of the prediction and correction steps. The pseudo-code of EKF is given in

Algorithm 9 and its derivation is given in section B.3 of Appendix B. An illustrative

example is shown in Example 2.7.

Algorithm 9 extended Kalman filter
Initialization

1. Input s0|0, Σ0|0 and y1:T .
for t = 1 to T do

Prediction

2. st|t−1 = f(st−1|t−1)

32. Σt|t−1 = FtΣt−1|t−1F
T
t + Q

Correction

4. Kt = Σt|t−1H
T
t (HtΣt|t−1H

T
t + R)−1

5. st|t = st|t−1 + Kt(yt − h(st|t−1))
6. Σt|t = Σt|t−1 −KtHtΣt|t−1

end for
7. Output s1:T .
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Example 2.7. We consider the univariate non-stationary growth model shown in the

Example 2.1 as the case to study the effectiveness of EKF to track nonlinear/non-

Gaussian system (Arulampalam et al., 2002). In this example, the time length of data is

set to 80 and state is initialized following x0 ∼ N (0, 1). More specifically, the variances

of process and observation noises are used as σ2
w = 10 and σ2

v = 1, respectively. Figure

A.1 demonstrates the performance of EKF on tracking the behaviors of dynamics. It is

easy to observe a discrepancy between the inferred and true state transitions. It needs to

mention that EKF
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Figure A.1: An example of state estimation of the system shown in Example 2.1 by
EKF. In the graphs, the blue solid line is the true state obtained by direct synthesizing
data from the system dynamics. The red lines show the inference of state from EKF only
given the data of observations. Clearly, an abrupt climb can be seen in the left graph
where which can be seen as the unreliable inference. In comparing to the left graph, a
relatively precise inference is shown in the right graph. This is because sometimes the
linearization neglects the higher-order terms, and in this case a single observation has
disturbed tracking by the model. We ran this example ten times, in which the similar

abrupt climb happened in five simulations.

A.1.3 Unscented Kalman filter

The distinct feature of EKF is to locally linearize the nonlinear dynamics so that they

could be identified by using Kalman filter settings. However, as claimed by Julier et al.

(1995), the performance of EKF heavily depends on the ability of the linear (first-order)

or quadratic (second-order) linearization on capturing information of dynamics. EKF

performs extremely poorly when a considerable amount of information is lost during the

transformation. More practically, calculation of the Jacobian matrix is prone to human

error and is difficult to debug.

2In the step, the capital T is the transpose symbol.
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An alternative way of deriving an approximate filter, introduced by Julier et al. (1995), is

known as the unscented Kalman filter (UKF). The idea here is, instead of approximating

the function, we approximate the distribution over parameters by a set of samples.

These samples are deterministically drawn for constructing the prior distribution, and

then which are propagated through the function of system. These propagated points

are known as sigma points, which in association with the new observation are utilized to

update the mean and the covariance of the posterior distribution at each time instant.

Let the dimension of the extended state space is n = Ds+Dp, with the prior state st|t−1

and covariance Σt|t−1, and 2n+ 1 sigma points χ selected:

χ0
t = st|t−1, (A.2)

χit = st|t−1 +
√

(n+ λ)Σt|t−1, i = 1, . . . , n (A.3)

χit = st|t−1 −
√

(n+ λ)Σt|t−1, i = n+ 1, . . . , 2n. (A.4)

where the prior state st|t−1 can be regarded as the reference point in sigma points, and√
(n+ λ)Σt|t−1 is the regular interval of increment/decrement for other sigma points.

An illustrative example for producing sigma points from 2-dimensional Gaussian random

variable is shown in Figure A.2.

Figure A.2: Weighted sigma points for a 2-d Gaussian random variables. The second-
order statistical information of the distribution is captured by those points.The weights

of these sigma points are implied by the their heights.

A crucial concept in sampling based methods (UKF belongs to this category) is the

weighting scheme, which measures how much the sample is identical to the true under-

lying state/parameter. The sample which has a high weight indicates that its value is
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close to the true parameter/state. UKF determines the weights of sigma points by the

following scheme

wm
χit

= λ/(n+ λ), i = 0 (A.5)

wc
χit

= λ/(n+ λ) + (1− α2 + β), i = 0, (A.6)

wχit = 1/ {2(n+ λ)} , i = 1, . . . , 2n; , (A.7)

where wm
χit

and wc
χit

are two weight vectors for updating the state s and the covariance

matrix Σ, respectively. They only differ in the first element of vector, while others are

identical. λ is a scaling parameter, defined as λ = α2(n+κ)−n. Parameter α determines

the spread of the sigma points in space, the value of which is suggested to be in the range

10−1 ≤ α ≤ 1 (Julier, 2002). Constant κ is a scaling factor usually set to 3 − n. β is a

non-negative weighting factor and is often used to represent the higher order moments

of the distribution being used to approximate the posterior (Julier, 2002). Empirically,

β is set to 2 (Haykin, 2001).

The generic form of UKF is given as in Algorithm 10. Derivations of UKF are detailed

in Van Der Merwe and Wan (2001).

Algorithm 10 Unscented Kalman filter
Initialization

1. Input s0|0, Σ0|0 and y1:T .
for t = 1 to T do

Collection of sigma points

2. Use st|t−1 and Σt|t−1 for picking sigma points χt−1, via equation (A.2) - (A.4).
Prediction of states

3. χt|t−1 = f(χt−1)

4. st|t−1 =
∑2n

i=1w
m(i)
χ χ

(i)
t|t−1

5. Σt|t−1 =
∑2n

i=1w
c(i)
χ [χ

(i)
t|t−1 − st|t−1][χ

(i)
t|t−1 − st|t−1]T + Q

Prediction of observations

6. ŷt|t−1 = h(χt|t−1)

7. yt|t−1 =
∑2n

i=1w
m(i)
χ ŷ

(i)
t|t−1

Correction

8. Σyy =
∑2n

i=1w
c(i)
χ [y

(i)
t|t−1 − ŷt|t−1][y

(i)
t|t−1 − ŷt|t−1]T + R

9. Σsy =
∑2n

i=1w
c(i)
χ [χ

(i)
t|t−1 − st|t−1][y

(i)
t|t−1 − ŷt|t−1]T

10. Kt = ΣsyΣ−1
yy

11. st|t = st|t−1 + Kt(yt − yt|t−1)
12. Σt|t = Σt|t−1 −KtΣsy

end for
13. Output s1:T .

Example 2.8 We also employ the univariate non-stationary growth model to examine

the performance of UKF on tracking state behavior. Using the same algorithmic settings

and initialization as in the case of EKF case, we show results in Figure A.3. Even
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through UKF is incapable of exactly capturing the state behavior, it still outperforms the

EKF in term of accuracy.
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Figure A.3: State estimation of the system shown in Example 2.1 by UKF. In the
graph, the blue solid line is the true transition of system, while the green line shows the
inference from UKF only given the observations. In comparison to the EKF, as shown
in the right graph, UKF tracks the state behaviors better. The superior accuracy is a
good reflection of the improvement from the second-order Gaussian approximation. In
the simulation of this toy example, UKF usually produces precise inference. Likewise,
we also ran this example ten times for UKF, and the failure as shown in the left graph

will occasionally happen (3 of 10).

A.1.4 Particle filter

Being a derivative-free method, UKF is not restricted to differentiable dynamics. Com-

pared to the EKF which provides an approximation to the first order accuracy, it is

claimed that the UKF is capable of delivering at least second-order accuracy (Julier and

Uhlmann, 1997; Van Der Merwe and Wan, 2001). Since the approximation in the UKF

is made locally, the approach cannot guarantee that the solution obtained is the global

optimum, and this problem is highly possible when the target system is complex.

Quite often, the particle filter (PF), also known as the sequential Monte Carlo (SMC)

method (Liu and Chen, 1998; Doucet et al., 2000, 2001; Arulampalam et al., 2002), is

adopted as an alternative to tackle complex inference problems. PF is a Monte Carlo

approach that uses randomly drawn samples to represent the distribution of unknown

state/parameter, instead of performing approximation by minimum number of samples

(UKF) or requiring the closed form derivative (EKF).

The role of PF for state and parameter estimation has been studied from several fields

over many decades. These include the adaptive estimation of neural networks (Kadirka-

manathan and Niranjan, 1993), target tracking from bearing-only measurements (Bar-
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Shalom et al., 2001), modeling futures contracts in computational finance (Niranjan,

1997) and to find global minima of artificial neural networks (de Freitas et al., 2000).

Algorithmically, a few versions of PFs have been developed as special cases of the fun-

damental PF which is also known as the general SIS algorithm and will be introduced

below. For instance, Gordon et al. (1993) proposed the sequential importance resam-

pling filter (SIR) as a variant of the basic PF and by which the degeneracy problem

is partially addressed. In order to alleviate the influence of the proposal distribution

chosen, Pitt and Shephard (1999) derived a novel PF, namely auxiliary sampling impor-

tance resampling algorithm, based on SIR associated with a proposal distribution that

samples particles in pairs. In the following, we give the derivations of SIS and SIR.

Perfect Monte Carlo method

In Monte Carlo approach settings, the idea is that if one is able to randomly generate N

independent and identically distributed (i.i.d) samples or particles {x(i)
t ; i = 1, . . . , N}

from the posterior distribution p(xt|y1:T ), then the representation of the posterior is

given as

pN (xt|y1:T ) =
1

N

N∑
i=1

δ(xt − x
(i)
t ), (A.8)

where δ(·) is the Dirac delta function, indicating if sample x
(i)
t is identical to state xt.

Using of the Dirac delta function, the expectation of function f(x) can be approximated

as

IN (f) =

∫
xt

f(xt)p(xt|y1:T )dxt ≈
1

N

N∑
i=1

f(x
(i)
t ) (A.9)

This approximation tends to the real expectation if the law of large numbers is applied,

i.e.

ÎN (f)
a.s→ IN (f), as N → +∞, (A.10)

where
a.s→ denotes almost sure convergence. Moreover, if the real variance of f(x0:t) is

less than positive infinity

σ2
f = Ep(xt|y1:T )[f

2(xt)]− {Ep(xt|y1:T )[f(xt)]}2 < +∞. (A.11)

then, a central limit theorem holds

√
N [IN (f)− I(f)]

N→+∞⇒ N (0, σ2
f ), (A.12)

where ⇒ denotes convergence in distribution.
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Expectation of the dynamics I(f) can be easily obtained and the rate of convergence of

the estimation is independent of the dimensionality of xt (Doucet et al., 2001). However,

in other deterministic numerical integration methods (such as hybrid extended Kalman

filter (Lillacci and Khammash, 2010)), the rate of convergence will slow down due to the

increase in dimension, a problem known as the curse of dimensionality (Bishop, 2006).

Since in general, directly sampling from the posterior distribution p(xt|y1:T ) is impos-

sible, this perfect Monte Carlo sampling is impractical for commonly encountered real-

world problems. Consequently, importance sampling (IS) has been developed (Geweke,

1989), for which the conceptual idea is to sample particles from an arbitrary distribu-

tion, known as the proposal distribution, and using a weighted sum of these samples for

inference, as derived below.

Importance Sampling Method

Introducing a proposal distribution q(xt|y1:T ) from which we can conveniently draw

samples, we can rewrite the first part of equation A.9 for the expectation IN (f) as3,

I(f) =

∫
xt

f(xt)
p(xt|y1:T )q(xt|y1:T )

q(xt|y1:T )
dxt. (A.13)

In this approach, the significance of a sample for representing posterior is quantified by

its importance weight, which is defined as w(xt) = p(xt|y1:T )
q(xt|y1:T ) . Substituting the expression

of importance weight into equation A.13, the expectation can be rewritten as

I(f) =

∫
xt

f(xt)w(xt)q(xt|y1:T )dxt. (A.14)

Consequently, if one is able to sample N i.i.d particles from the proposal distribution

{x(i)
t ∼ q(xt|y1:T ); i = 1, . . . , N} , then a Monte Carlo approximation can be made for

IN (f); that is

ÎN (f) =
1

N

N∑
i=1

f(x
(i)
0:t)w(x

(i)
t ) (A.15)

By applying the law of large numbers, convergence ÎN (f)
a.s→ IN (f) exists. Addition-

ally, considering the central limit theorem, the convergence rate of ÎN (f) will not be

influenced by the dimension increase.

Sequential Importance Sampling

Importance sampling, an introduced in the previous section is defined in batch mode, i.e.

for all the data 1 : T available together. When data needs to be processed sequentially,

we can formulate sequential importance sampling as proposed by Robert and Casella

3For sake of interpretation, the proposal distribution is denoted as q(xt|y1:T ), in general, it can be
any arbitrary distribution.
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(1999); Liu (2001).

The novelty of SIS is made by adopting the marginal distribution of the proposal distri-

bution at time t− 1, that facilitates the proposal distribution at time t, given as

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1,y1:t). (A.16)

Expanding p(x0:t|y1:t) according to Bayes’s theorem, we have

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)∫
p(y1:t|x0:t)p(x0:t)

∝ p(y1:t|x0:t)p(x0:t), (A.17)

where the integral at denominator
∫
p(y1:t|x0:t)p(x0:t) is usually treated as a constant.

Substitute equations (A.16) - (A.17) into the equation for importance weight

w(xt) =
p(x0:t|y1:t)

q(x0:t|y1:t)

∝ p(y1:t|x0:t)p(x0:t)

q(xt|x0:t−1,y1:t−1)q(x0:t−1|y1:t−1)
. (A.18)

Then, another transformation for wt−1 is performed

w(xt−1)

p(x0:t−1|y1:t−1)
=
p(x0:t−1|y1:t−1)

q(x0:t−1|y1:t−1)
× 1

p(x0:t−1|y1:t−1)

=
p(y1:t−1|x0:t−1)p(x0:t−1)

q(xt−1|x0:t−2,y1:t−1)q(x0:t−2|y1:t−2)
× 1

p(y1:t−1|x0:t−1)p(x0:t−1)

=
1

q(xt−1|x0:t−2,y1:t−1)q(x0:t−2|y1:t−2)

=
1

q(x0:t−1|y1:t−1)
. (A.19)

Further transforming the calculation of importance weight by substituting equations

(A.19) into equations (A.18)

w(xt) = w(xt−1)
p(y1:t|x0:t)p(x0:t)

q(xt|x0:t−1,y1:t)p(x0:t−1|y1:t−1)
. (A.20)

Since the dynamics of interest is assumed to act as a Markov Chain, therefore, they

obey two properties of Markov process

1st property: p(y1:t|x0:t) =
t∏

j=1

p(yj |xj), (A.21)

2nd property: p(x0:t) =

t∏
j=1

p(xj |xj−1). (A.22)
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Applying the properties to the equation (A.20), the importance weight calculation be-

comes

wt = wt−1

∏t
j=1 p(yj |xj)p(xj |xj−1)∏t−1

j=1 p(yj |xj)p(xj |xj−1)q(xt|x0:t−1,y1:t)

= wt−1
p(yt|xt)p(xt|xt−1)

q(xt|x0:t−1,y1:t)
. (A.23)

As the proposal distribution can be any distribution, for the sake of convenience, the

state transition distribution p(xt|xt−1) is generally used as the proposal distribution.

Consequently the importance weight can be recursively calculated

wt ∝ wt−1p(yt|xt). (A.24)

Sequential Importance Resampling

SIS provides a recipe for estimating online, but, suffers from a serious deficiency due to

the weights of particles become increasingly skewed over many iterations. As a result,

only one particle is taken to represent the empirical distribution after a few iterations.

This problem is usually known as degeneracy (Doucet et al., 2001; Arulampalam et al.,

2002).

A solution to this problem of degeneracy in samples is to resample the population of

samples periodically, i.e. duplicate samples with hight weights and kill off those with low

weights. This idea, introduced by Kitagawa (1998), leads to the Sequential Importance

Resampling (SIR) in which the current particle xi is replaced by xj and index j is

determined when the cumulative density function of weights up to wj is greater than

a uniform distributed indicator. After each resampling step, the weights are reset to

1/N and the previous trajectory of importance weights is discarded. Consequently, the

importance weight is further simplified as 4

w
(i)
t = p(yt|x

(i)
t ). (A.25)

SIR can be carried out by steps stated in Algorithm 11.

A graphical illustration of the weighting and resampling steps for SIR is shown in Figure

A.4. Although the additional resampling step benefits the elimination of the degeneracy

effect, it simultaneously results in the sample impoverishment problem, since the particles

having high weights are repeatedly selected. Many particle filtering techniques have been

developed to combat the degeneracy problem. Pitt and Shephard (1999) proposed the

auxiliary particle filter and Musso et al. (2001) designed the regularised particle filters,

both of which are attempts to deal with this problem.

4the procedure of transforming SIS to PF is given in section B.4 of Appendix B
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Algorithm 11 Sequential importance resampling
1. Initialization, t = 0
for i = 1, . . . , N do

sample xi0 ∼ p(x0) and set t = 1
end for
2. Importance sampling

for i = 1, . . . , N do
sample x̃it ∼ p(xt|xit−1) and set x̃i0:t = (xi0:t, x̃

i
t)

end for
for i = 1, . . . , N do

evaluate the importance weights w̃i
t = p(yt|x̃it)

end for
Normalize the importance weights
3. Selection step

Resample with replacement N particles (xi0:t; i = 1, . . . , N) from the set (x̃i0:t; i =
1, . . . , N) according to the importance weights
Set t → t+1 and go to step 2.

Example 2.9 We also consider the univariate non-stationary growth model as an exam-

ple for testing the ability of SIR for tackling nonlinearity/ non-Gaussian. In this case,

the environmental settings are identical to those which are adopted in the EKF and UKF

simulations. The results are shown in the Figure A.5, in which SIR illustrates a clear

advantage over the two parametric Kalman filters.

Next, we review several batch inference methods covering from the classical Expectation

Maximization estimation method to the most recent Riemann manifold Hamiltonian

Monte Carlo approach. The advantages and disadvantages of these batch inference

methods will be briefly discussed and illustrated via some toy examples.

A.2 Batch inference methods

As opposed to the sequential inference approaches, the class of batch methods iteratively

estimate parameter/state. In this category, all past observations need to be stored and

revisited when a new observation appears.

A.2.1 Maximum-likelihood Estimation (MLE)

Maximum-likelihood estimator (MLE) can be traced all the way back to Edgeworth

(1908), which finds the fittest value of parameters by maximizing the likelihood function

(given the dynamical model f(·) and the observations y). This ML algorithm can be

mathematically described as

θ̂ML = argmax
θ∈Θ

{p(y|θ)}. (A.26)
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Figure A.4: In this illustrative example, SIR begins with the unweighted particle

{x̃it−1, N
−1} at time instant t−1, which approximates distribution p(xt−1|y1:t−2). Par-

ticles are then calculated their corresponding weights by using likelihood p(yt−1|xt−1)

at time t − 1. This process returns a collection of weighted particles {x̃it−1, w̃
i
t−1},

which provides the approximation of p(xt−1|y1:t−1). The resampling step follows the
weighting step, in which only the fittest particles will be picked. The weighted measures
that negligibly contribute to posterior distribution are neglected at the resampling step.
Particles obtained from weighting and resampling steps are both to approximate the

posterior distribution p(xt−1|y1:t−1).

MLE is often carried out with the natural logarithm of likelihood, denoted as ln(p(y|θ)),

which provides the algebraic convenience as the advantage. Additionally, it can also

avoid the overflow/underflow of calculation in some problems.

Hasenauer et al. (2010) derived a novel MLE-based approach to estimate the distribu-

tions of parameters in the heterogeneous cell population model. Effectiveness of the

proposed method was assessed on the synthetic data from a model of TNF signal trans-

duction. Weber et al. (2011) applied the MLE to infer the parameters in six differential

equations that describe a regulatory mechanism at the trans-Golgi network in mam-

malian cells (Kramer and Radde, 2010). Andreychenko et al. (2012) employed the MLE

to estimate the rate constants of a simple stochastic gene expression model includ-

ing three reactions and a multi-attractor model which consists of three genes and four

parameters. Schelker et al. (2012) improved MLE by first systematically refining the

initial guess of states before employing MLE, and success of the proposed approach was

tested by applying to JAK-STAT signaling pathway. Rodriguez-Fernandez et al. (2013)



Appendix A Inference algorithms 129

0 20 40 60 80 100
−20

−10

0

10

20

30

Time (sec)

 

 

True

PF

Figure A.5: State estimation of system shown in Example 2.1 by SIR (PF). The
blue solid line is the true system state, while the pink line shows the inference from SIR.
It is clear that the performance of this non-parametric approach greatly outperforms the
Kalman algorithms in terms of accuracy. We also denote that SIR with 1000 particles
successfully infer the state dynamics in all ten simulations, while the percentages of

EKF and UKF are 50% and 70%, respectively.

deployed MLE to accomplish the simultaneously parameter estimation and model dis-

crimination for a chemical system, by which a regulation of the high affinity K+ uptake

system is characterized.

A.2.2 Expectation-Maximization method

ML is not feasible in certain circumstances, such as when the size of latent state is

increases exponentially over time making calculation of the likelihood impossible or ex-

pensive, or the likelihood function no closed-form analytical solution. These difficulties

motivate the need for a more powerful technique, which is called expectation maximiza-

tion (EM) and maximizes equation A.26 via two steps: the (E)xpectation step and the

(M)aximization step.

Since there is no concrete applications in this thesis which are related to EM algorithm,

the details are omitted in this section. However, in order to tell a complete story of

inference methods, EM algorithm is briefly introduced here. The procedure to carry out

the EM algorithm and an illustrative Gaussian mixture model can be found in Appendix

B.1.

Let us assume the system has a joint likelihood p(X,Z|θ) where the X are observed

variables and Z are the hidden variables, governed by parameter θ. The E-step is to

calculate the expectation of joint log-likelihood w.r.t to the posterior distribution of the

hidden variables given the old values of parameters θold. This expectation is denoted as
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Q(θ,θold), can be mathematically described as

Q(θ,θold) = Ep(Z|X,θold)[lnp(X,Z|θ)],

=

∫
Z
p(Z|X,θold)lnp(X,Z|θ)dZ. (A.27)

Next, the goal of M-step is to maximize the Q(·) in order to obtain updated parameters

estimates

θnew = argmax
θ∈Θ

Q(θ,θold). (A.28)

Technically, the way in which the EM algorithm estimate the parameters is by gradu-

ally approaching the maximum of the likelihood by increasing the lower bound of the

posterior distribution over hidden variables. Details of the proof can be found in Bishop

(2006).

Numerous applications in systems biology accomplish parameter estimation and struc-

ture identification by utilizing EM algorithm, and a few representative examples are

introduced below. Berthoumieux et al. (2012) first assessed the reliability of EM al-

gorithm on estimating parameters of Linlog models which are dedicated to formulate

metabolism. EM algorithm was then applied to identify parameters for a model charac-

terizing central carbon metabolism in the Escherichia coli. Daigle et al. (2012) developed

a novel Monte Carlo EM algorithm which requires no prior knowledge about parameter

values, and the authors illustrated the clear advantage of the proposed method over

other typical inference approaches in terms of accuracy and computational efficiency,

via comparative studies to four biological models from the systems biology literatures.

Baldacchino et al. (2012) investigated the performance of the EM method on structure

detection and parameter estimation of the nonlinear regression with exogenous inputs

model, and empirically claimed that is is capable of yielding precise estimation only

given noisy incomplete observations. Vavoulis et al. (2012) combined the EM algorithm

with sequential Monte Carlo, in which the expectation of the joint log-likelihood of the

latent state variables and the observed variables is instead approximated by a collection

of particles. The capability of this EM-SMC algorithm was tested by estimating param-

eters in Hodgkin-Huxley-type models of single neurons. Liu et al. (2013) introduced a

new dynamic framework for describing phenotypic formation in metabolic trait loci and

carried out the model identification via EM algorithm.

Intuitively, a major drawback of EM is that the initial guess of the parameter should

be appropriately chosen, otherwise, the algorithm may return the local maximum. In

order to solve this difficulty, a few ‘local’ solutions (still within the EM framework),

e.g. the algorithm introduced by Daigle et al. (2012), are adopted. Beyond this point,

variational Bayesian methods are a means of overcoming this shortcoming of the EM

algorithm.
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A.3 Markov chain Monte Carlo methods

The popular methods for Bayesian inference when analytical solutions are not possible,

or when it is difficult to directly sample from posterior densities of interest are Markov

chain Monte Carlo (MCMC) method. MCMC methods consider an arbitrary distribu-

tion from which samples are randomly drawn, and based on the acceptance probability

the samples are being used to estimate the distribution of unknown parameters. Sev-

eral MCMC methods covering from the most basic Metropolis-Hastings (MH) to the

advanced Riemann Manifold Hamiltonian Monte Carlo (RMHMC) will be introduced

in the following sections.

A.3.1 Metropolis-Hastings algorithm

Among the MCMC methods, Metropolis-Hastings (MH) algorithm is the most straight-

forward and underpins the developments of other methods. This method was initially

invented by Metropolis and Ulam (1949), and generalized by Hastings (1970).

In the MH algorithm, the collection of samples at the first time instant x0 is randomly

drawn from the prior distribution. Subsequently, at each iteration, values of the samples

are suggested empirically by the proposal distribution q(·). These candidate values of

samples are accepted/rejected by an acceptance probability. Procedure of MH algorithm

is described in Algorithm 12.

Algorithm 12 Metropolis-Hastings algorithm

1. Input x0, q(·) and MCMC iteration number IM.
for t = 1 to IM do

2. Draw x∗ ∼ q(x∗|xt−1)
3. Draw indicator u ∼ U(0, 1)

4. if u < min(1, p(x∗)q(xt−1|x∗)
p(xt−1)q(x∗|xt−1)) then

xt = x∗

5. else
xt = xt−1

4. end if
end for

7. Output x1:IM .

Example 2.10 Consider a mixture Gaussian model, which is mathematically described

as

p(x) =
K∑
k=1

πkN (x|µk, σ2
x), (A.29)

If we consider a simple example for which K = 2, π = [0.3, 0.7], µ = [0, 10] and

σ2
x = [2, 4]. of interest is to estimate the mean of this mixture Gaussian model, 1000
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data points are generated from equation A.29 by using the command mvnrnd of MATLAB.

The noisy observations are synthesized by corrupting the noise vt ∼ N (0, 0.01) to the

data points. The random walk scheme is adopted as the transition kernel of MH in this

example, given as

x∗ = q(xt−1) = xt−1 + ω ∼ N (0, σ2
k), (A.30)

where σ2
k is the user-chosen parameter effecting the distance that sample is moved in

each transition. Four sets of algorithmic settings (MCMC iteration IM and σ2
k) are

conducted for this toy example to introduce the abilities of the MH algorithm. As shown

in Figure A.6, it is evident that the performance of MH is highly dependent on the

MCMC iterations and the covariance of the transition kernel. That is, an inappropriate

covariance of transition function leads to the chain failing to mix, and biased estimation

may be made when not enough MCMC iterations have been performed.
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Figure A.6: Illustration of MH for the mixture Gaussian model with different algo-
rithmic settings.

MH algorithm is a straightforward solution to discover the posterior. However, the major

disadvantages of this approach is that samples can be highly correlated and carefully

parametric tuning is needed in order to achieve a desirable acceptance rate, motivating

the development of other advanced algorithms.

A.3.2 Gibbs sampling method

Gibbs sampling method, a special case of MH algorithm, enhances its capabilities by

making use of a particular choice of q(x∗|xt−1) (for sake of clear description, the time

index is denoted as the superscript), originally introduced by Geman and Geman (1984);
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Gelfand and Smith (1990). Consider the same distribution p(x) with variables vector

x = [x1, . . . , xn]T. In each step of the Gibbs sampling, the system state is updated

component-wise, rather than as an entire vector. That is, the value of each variable is

drawn from the distribution conditional on the values of the other variables, denoted as

xi ∼ p(xi|x−i). The subscript −i is a compact way for describing the indices [1, . . . , i−
1, i+ 1, . . . , n]. This sampling scheme is cyclically carried out through all the variables

in the system.

Gibbs sampling is a special case of MH algorithm, since the acceptance probability

of proposed moves is always set to one. Specifically, let us assume the ith state at the

previous time step is moved from xt−1
i to x∗i with the transition probability q(x∗i |xt−1) =

p(x∗i |x
t−1
−i ), then the acceptance probability of x∗i becomes

A(x∗,xt−1) =
p(x∗)q(xt−1|x∗)
p(xt−1)q(x∗|xt−1)

=
p(x∗i ,x

∗
−i)p(x

t−1
i |x∗−i)

p(xt−1
i ,xt−1

−i )p(x∗i |x
t−1
−i )

=
p(x∗i |x∗−i)p(x∗−i)p(x

t−1
i |x∗−i)

p(xt−1
i |x

t−1
−i )p(xt−1

−i )p(x∗i |x
t−1
−i )

. (A.31)

If we take the previous sample xt−1
−i as the value for perturbed sample x∗−i, we can

further derive the acceptance probability as

A(x∗,xt−1) =
p(x∗i |x

t−1
−i )p(xt−1

−i )p(xt−1
i |x

t−1
−i )

p(xt−1
i |x

t−1
−i )p(xt−1

−i )p(x∗i |x
t−1
−i )

= 1. (A.32)

That is, each MH move is always accepted. Generally, Gibbs sampling can be described

as Algorithm 13.

Algorithm 13 Gibbs sampling method

1. Input x0 and MCMC iteration number IM.
for t = 1 to IM do

2. Draw xt1 ∼ p(x1|xt−1
2 , xt−1

3 , . . . , xt−1
n )

3. Draw xt2 ∼ p(x2|xt1, x
t−1
3 , . . . , xt−1

n )
...

4. Draw xti ∼ p(xi|xt1, xt2, . . . , xti−1, x
t−1
i+1, . . . , x

t−1
n )

...
5. Draw xtn ∼ p(xn|xt1, xt2, . . . , xtn−1)

end for
7. Output x1:IM .

Example 2.11 Assume we have a linear system which is denoted as

y = θX + ω, X ∼ N (0, 1), (A.33)
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where X ∈ R2×100 and X ∼ U(0, 1) , θ = [7, 1.8] and ω ∼ N (0, 1). Of interest is to

estimate β given the noisy observations y ∈ R1×100. The MCMC iteration number IM is

set to 1500, the sample is initially generated from the uniform distribution U(0, 10) and

the proposal density for moving the sample is used as q(θ∗) = θt−1 + v ∼ N (0,σ2
k), and

σ2
k = 0.2. Figure A.7 shows estimates to the posterior distribution of parameters p(θ|y),

for MH algorithm and Gibbs sampling algorithm, respectively. Both methods produce

accurate estimations. The only difference is that MH algorithm converges to the target

distribution along an arbitrary trajectory, whereas moves in Gibbs is always parallel to

one of the axes.

This example also shows that Gibbs sampling method always accepts each sample, com-

pared to MH which accepts the sample 66% of the time in 1200 iterations. That is, more

iterations are needed if MH is required to produce the same number of accepted samples

as Gibbs sampling method.

It can easily be seen that Gibbs sampling algorithm alleviates the acceptance rate issue

of MH algorithm, however, unsurprisingly, the dependence of local moves introduces the

opportunity for Gibbs sampling to get stuck in a local mode and be unable to represent

the posterior.
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Figure A.7: Realizations of two chains constructed by Gibbs sampler (left) and MH
(right) for estimating the parameters of a linear system. The likelihood p(y|θ) is shown

as the ellipse contours in graph.

Gibbs sampling has been applied ti a range if real-world statistical problems (Casella

and George, 1992). For instance, Zeger and Karim (1991); Dellaportas and Smith (1993)

casted the generalized linear model in the Bayesian framework and achieve computa-

tional efficiency by using Gibbs sampling; Diebolt and Robert (1994) assessed the ef-

fectiveness of Gibbs sampling on evaluating the posterior distribution of the hidden

data of mixture models; in systems biology, Geyer and Thompson (1995); Churchill and
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Lazareva (1999) employed Gibbs sampling to restore the sequence of states visited by

the hidden Markov chain using the DNA sequence as the observed outputs. Lange et al.

(1992) casted the absolute number of CD4 T-cells which is regarded as a marker of

disease progression for persons infected with HIV to the nonlinear models, and analyzed

the data by identifying the parameters of models by using Gibbs sampling.

A.3.3 Riemann manifold Hamiltonian Monte Carlo method

Aforementioned conventional MCMC methods are required to tweak the algorithmic

settings in order to achieve good inference performance. Specifically, a large movement

made in each MCMC step offers a higher chance for a sample to escape from the trapped

region. Nevertheless if the sample has already been in a region of high probability, it is

more likely to be rejected to the detriment of the acceptance rate. In contrast, a small

move increases the acceptance rate but more iterations are required to explore the entire

space and the retrieved samples are highly correlated.

Information geometry has been combined with MCMC to solve this difficulty, in which

the moves of MCMC samples are driven by gradient of dynamics. (Duane et al., 2011)

proposed the first genuine physics-inspired MCMC, known as Hamiltonian Monte Carlo

(HMC), which adopted a Hamiltonian dynamical system to facilitate the transition of

samples. Geometric information adds to the appeal of HMC by guiding its exploration

to enhance its efficiency. Nevertheless, in the empirical investigation (Neal, 2010), HMC

just partially alleviates the dependence on the tuning process, since its transition ker-

nel needs to define a user-specific constant to propose the move of samples, associating

with the gradient of dynamics. An advanced method has recently been invented by

Girolami and Calderhead (2011), namely Riemann manifold Hamiltonian Monte Carlo

method (RMHMC), which considerably enhances the effectiveness of MCMC method by

using geometric information automatically without requiring manual refinement. Be-

cause RMHMC is not directly relevant to this thesis, but is introduced for completeness.

Details of the algorithm and a comparative study can be found in Appendix B.2.

RMHMC adopts the geometric information for guiding the exploration, and has shown

great potential in parameter estimation. Calderhead and Girolami (2011) highlighted

the use of RMHMC on the high dimensional parameter estimation problem, and its effec-

tiveness is illustrated by applying to parameter inference of the cell signaling pathways

and the enzymatic circadian control system. Yuan et al. (2012) successfully analyzed the

abnormalities of heat beat with RMHMC, in combination with a state-space point pro-

cess model. Dondelinger et al. (2013) pre-processed the experimental data by modeling

with a Gaussian process so as to boost the efficiency of RMHMC. The effectiveness of

this approach was examined by studying two benchmark ODE systems, in which results

obtained were on a par with the original RMHMC in terms of accuracy, yet required

less computational expense.
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A.4 Kalman and Particle Filters

In the following section, we introduce the general framework of state-space models with

partial observations from the biological systems. Three popular one-pass inference meth-

ods are preliminarily studied on the incomplete noisy synthetic dataset, where the poten-

tials of methods to identify the kinetic parameter are thoroughly explored. A comparative

study between sequential and batch methods is further carried out to deliver empirical

guidance for choosing an inference algorithm.

A.5 Estimating state and parameter

In systems biology, the process of interest is often characterized by a set of ordinary

differential equations (ODEs), which capture changes to a system with respect to time

and solutions of which help to explain behavior at the system level. As mentioned in

Chapter 2, we generally consider nonlinear state-space models of the biological systems

in which the dynamics are deterministic and observations noisy. More specifically, the

nonlinear state-space models adapted for systems biology are given as

ẋt = f(xt,θ), (A.34)

xt = xt−1 +

∫ t

t−1
f(x,θt)dτ, (A.35)

yt = h(xt) + vt, (A.36)

where state vector xt may consist of concentrations of different molecular species at

time t, and yt quantifies the noisy observations relating to xt via the output function

h(·). θ = {θ1, . . . , θp} is the parameter vector of dynamics. It is necessary to recall

that vt is the zero mean Gaussian noise corrupting observations, and its covariance

matrix is denoted by R. This R is a positive definite matrix, quantifying the quality of

observations. Additionally, R is defined as a diagonal matrix due to the noise corrupting

to each observation is assumed to be uncorrelated. Setting ofR governs the performance

of inference methods, investigation on this subject is given in section A.6.3.

Quite often, the hidden states and the unknown kinetic parameter values, give rise to

difficulties in throughly exploring the system. Biochemical experiments conducted in

virtro for the latent state variable, and the elaborate hand-tuning of parameter values

until satisfactory results are achieved, are conventional solutions. However, the measure-

ment taken in vitro might not be a good reflection of those in vivo and the unreliability

of tweaking process necessitates the use of probabilistic inference tools for identifying

system, either state variable or kinetic parameter.

Following the method suggested by Sitz et al. (2002), the unknown parameters are
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treated as the additional states of system. In order to estimate parameters, an artificial

dynamics is imposed to the unknowns and the random walk scheme is usually chosen,

which is given as

θt = k(θt−1) = θt−1 + ωθt (A.37)

where k(·) is the function to perturb the parameters, and ωθt is the zero mean Gaussian

with covariance matrix σ2
k. The random walk scheme is often used as the artificial

dynamics due to its simplicity.

Several probabilistic inference approached such as Maximum-Likelihood (ML), Expectation-

Maximization (ML) and Markov chain Monte Carlo (MCMC) have been previously

applied to identify the biological systems, either only states or states and parameters

simultaneously. In the following sections, we focus on the use of EKF, UKF and PF,

being known as the popular sequential methods, to infer the states and parameters of

a specific biological system. The introduction of EKF, UKF and PF can be found in

section A.1.2, A.1.3 and A.1.4 of chapter 2. A comparative study of performance of

these three approaches is carried out, and the empirical suggestion of using considered

methods are proposed according to the comparison.

A.5.1 Estimating single hidden state or unknown parameter

In this study, we consider cellular response to heat shock as a model system to illustrate

the effectiveness of three sequential inference approaches. El-Samad et al. (2006) describe

a heat shock response model in the bacterium Escherichia coli, with three differential

equations. The model consists of genes encoding molecular chaperones, transcribed in

response to a sudden change of environmental temperature, transcription factor σ32,

which, via binding to RNA polymerase enables the transcriptional regulation of heat

shock proteins. σ32, which is rarely present under normal temperatures in the range

(30 ◦C-37 ◦C), rapidly accumulates at elevated temperatures activating the transcription

of heat shock genes, leading to a different equilibrium.

The variation in total numbers of the relevant proteins are lumped in the model as

two terms whose dynamics is described, along with the numbers of unfolded proteins as

follows

Ḋt = Kd
St

1 + KsDt
1+KuUf

− αdDt

Ṡt = η(t)− α0St − αs
KsDt

1+KuUf

1 + KsDt
1+KuUf

St

U̇f = K(t)[Pt − Uf ]− [K(t) +Kfold]Dt. (A.38)
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Here, Dt represents the number of molecules of chaperones, St, the number of molecules

of σ32 and Uf describes the total number of unfolded proteins. Pt and Kfold are the

total concentration of proteins in the cell and the coefficient for the folding process,

respectively. K(t) and η(t) are constants assuming different values at different steady

state temperatures.

El-Samad et al. (2006) proposed an advanced algorithm based on the Lyapunov function

to analyze the robustness of biological circuits, and gave a quantitative analysis of the

heat shock model by applying the proposed algorithm on the system. Petre et al.

(2011) simplified the original model by identifying the reaction of behavioral response

to heat shock and proposed a mathematical validation of the simple model. Lillacci

and Khammash (2010) used this heat shock model as an illustration to examine the

capability of their proposed inference algorithm for parameter estimation. In this work,

a validated test is combined to UKF and the parameters of heat shock model are precisely

estimated.

Since the heat shock system has been previously employed to test the effectiveness of

inference approach, and the advantage of the proposed method is claimed based on the

investigation (Lillacci and Khammash, 2010). Consequently, we consider this system

as a reference to carry out the comparison between the previously studied algorithm

(Lillacci and Khammash, 2010) and other approaches (EKF and PF). The synthetic

data is simulated by solving the heat shock model by making use of MATLAB’s ODE45

function to integrate the differential equations, generating data over a time length of 200

min and sampled at regular intervals of 0.2 min, giving 1000 samples points representing

the observations. In the simulation, the states found hidden in observations are reflected

through the observation function h(·). As an example, if the state Dt in the heat shock

system is hidden in the observations, such inaccessibility can be mimicked by defining a

binary diagonal observation matrix, given as

h(·) = G =

 0 0 0

0 1 0

0 0 1

 . (A.39)

The simplest scenario we considered is one in which two of the three states and all

parameters were assumed known. This corresponds to the case of a well understood

biological system, some aspects of which are experimentally observable, subject to ad-

ditive measurement noise, whereas others are inaccessible. The objective is to precisely

estimate the hidden state given only the input-output dynamics.
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A.5.2 Extended Kalman filter

As shown in the pseudo-code of EKF (Algorithm 9), the analytical solutions of Jaco-

bian matrix of system transition and observation function are required, these first-order

partial derivatives are given as

F t =


∂fDt
∂Dt

∂fDt
∂St

∂fDt
∂Uf

∂fSt
∂Dt

∂fSt
∂St

∂fSt
∂Uf

∂fUf
∂Dt

∂fUf
∂St

∂fUf
∂Uf

 , Ht =


∂hDt
∂Dt

∂hDt
∂St

∂hDt
∂Uf

∂hSt
∂Dt

∂hSt
∂St

∂hSt
∂Uf

∂hUf
∂Dt

∂hUf
∂St

∂hUf
∂Uf

 . (A.40)

EKF is set to start from the initial prior state vector x̂0 = [0, 0, 0] and the diagonal

elements of error covariance P̂0 are 25, 25, 25 and 1 × 10−2, respectively. The process

noise covariance matrix is set to an approximately zero diagonal matrix, 5× 10−6, while

the diagonal elements in covariance matrix for observation noise R are initially 0.01

times variance of synthetic state data X. This multiplier of variance is varied in the

following section to examine the effect of noise level on the performance of inference

algorithms. The results of inferring with EKF in the single hidden state case are given
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Figure A.8: State estimation of heat shock model by the EKF algorithm, in which
only one state is assumed to be unknown. Each row shows a particular hidden state
when assuming the other two are known. In order to compare, the ‘true’ states gener-

ated by directly solving the system transition are shown as the blue dash lines.

in Figure A.8. As shown in the graphs, the behaviors of this transient system have been

accurately tracked by EKF, when only a single state is unobserved.

In the upcoming simulation, EKF is used for estimating the parameters of the system,

where only one parameter is assumed to be unknown while the remaining five are known

Moreover, all states are observed in the simulation. The inferences are shown in Figure

A.9. A good convergence to the true value can be observed in three cases, and failures

occur in the estimation for parameters αs, Kd and Ku. Information on these three
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Figure A.9: Estimations of single unknown parameter of the heat shock model using
EKF algorithm. Each graph shows result of the particular unknown parameter with
assuming the remaining five parameters and three states in system are known. For
comparison, the true values of parameters provided from literatures are shown as the

blue dash lines.

parameters is lost due to the truncation of high-order terms in Taylor series expansion

is neglected during the consecutive linearizations. This example serves to illustrate

the limitation of EKF caused by the linearization, which make it possibly incapable of

capturing the behavioral information of highly complex systems.

A.5.3 Unsecented Kalman filter

Likewise, we first test the performance of UKF on inferring the single hidden state or

parameter within the identical dataset and algorithmic settings, i.e. the initial guess

and covariance matrix. The results of UKF inferring the single hidden state are shown

in Figure A.10.

It can be seen from Figure A.10, as expected, a good ability for tracking system behavior

is clearly shown. Moreover, comparing these parameter estimation results from the

UKF (shown in Figure A.11) with those for the EKF shown in Figure A.9, the UKF

outperforms the EKF on parameter estimation, since the UKF successfully reaches the

true values of parameters αs, Ku and Kd, whereas failures appear for the EKF.

A.5.4 Particle filter

The appeal of PF lies in its potential to introduce a Markov chain transition kernel

K(x∗0:t|x0:t), with invariant distribution p(x0:t|y1:t) to perturb the particles toward the

high density areas, i.e.
∫
K(x∗0:t|x0:t)p(x0:t|y1:t) = p(x∗0:t|y1:t) (Andriue et al., 2001).
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Figure A.10: State inference of heat shock model by UKF. Each row shows the
particular hidden state with assuming other two in system are known. For comparison
purpose, the true states produced by directly solving ODEs are shown as the blue dash

lines.
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Figure A.11: Estimations of the single unknown parameter of heat shock model
using UKF algorithm, assuming all states are observable and the remaining five are
known. The true values of parameters provided from literatures are shown as the blue

dash lines.

From a practical perspective, in order to carry out a tracking behavior which helps

convergence from an arbitrary initial guess to the true value, random walk given as

equation A.37 is often adopted for this transition kernel. There is an extensive discussion

in the literature on the ratio between the assumed noise variance of the random walk

and the noise variance of the observations being the determinant of convergence in SMC

setting (Kitagawa, 1998; Bar-Shalom et al., 2001; Li et al., 2004).

However, this random walk may sometimes lead to divergence of the posterior. Liu

(2001) suggested an alternative state/parameter evolution, where a kernel smoothing

with shrinkage is utilized for achieving estimate convergence. Updating of state/param-
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eter in each iteration is controlled by either a specific direct or the variance-dependent

step size. This scheme is adopted in our work to perform the evolution of state/param-

eter, and its mathematical description is given below

xt+1 = axt + (1− a)x̄t + ωxt

a =
3δ − 1

2δ
, (A.41)

where δ is a discount factor in [0 1] and x̄t is the mean of particles at time instance t.

ωxt ∼ N (0, h2V t) is the additive noise corrupting parameter evolution. where h2 = 1−a2

and V t is the covariance matrix of particles at time instance t. A comparison between

the traditional random walk and this advanced transition kernel is carried out and

represented in chapter 4.

The capability of PF for estimating a hidden state or an unknown parameter is also

assessed by applying to the previously studied case. Unsurprisingly, as seen in Figure

A.12 and Figure A.13, PF accurately captures system dynamics and achieves good

convergence to the true value of the parameter.

Consequently, we conclude that EKF struggles with the loss of information caused by

linearization and produces inaccurate estimates. UKF performs similarly to PF on

system identification in terms of accuracy. PF, benefiting from its sampling strategy,

is clearly observed the superior performance on inference. The additional complexity

caused by particles is likely, however, to come at an extra computational cost.
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Figure A.12: State estimation of heat shock model by using PF algorithm, in which
only one state is unknown, while other two of three are observable. Each row shows
the particular hidden state. Behavior of the latent state generated by directly solving

the system dynamics are shown as the blue dash lines.

In the simple case, the estimates from UKF and PF are very much the same, while EKF
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Figure A.13: Single unknown parameter estimations of heat shock model by PF
algorithm, where all states are observable and five of six parameters are given. The

true values of parameters from the literatures are shown as the blue dash lines.

may fail to converge to the true value of parameter. In the following section, we are

progressively making the problem harder, and attempt to discriminate the capability of

UKF and PF on parameter estimation.

A.6 Influences of initial condition and regime of data on

Kalman and particle filterings

Intuitively, the conceptual idea of UKF and PF is identical to each other (based on

sampling), however, they only differ in the number of particles drawn and the way

to pick particles. When the system of interest is highly nonlinear, UKF is limited

by the deterministic sampling scheme and the untunable number of samples used. In

comparison to UKF, PF takes the advantage of its capability of randomly drawing the

particles and specifying the number of particles based on the complexity of the system

of interest.

In the previously studied case, no clear difference in the ability for system identifica-

tion appear. We further examine the algorithms on inference without providing such

favorable environmental settings.

A.6.1 Estimating a single unknown parameter with unfavorable prior

and various observed states

In this set of simulations, we keep the regime of dataset the same including the time

length and sampling interval. In addition, all states are assumed to be observable in
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system outputs. Algorithms are carried out only with differences in initialization, in

which the EKF and UKF are set to be the closest to the truth among all the particles

used as initial samples of the PF.

By considering this favorable setting for Kalman filter techniques, algorithms are em-

ployed to identify the system, either by simultaneously estimating the parameter Ks and

state St or by only inferring the parameter by given complete noise-free observations.

Results are shown in Figure A.14.
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Figure A.14: Estimations of a single parameter Ks from all states are observable
and two observed states with different initializations. The boxes show the distribution

of samples of the particle filter at 1st, 250th and 1000th points in time.

As shown in Figure A.14, three algorithms perform similarly in the complete observation

case. Interestingly, when parameter Ks and state St are simultaneously estimated, even

though the EKF and UKF are provided a highly favorable algorithmic setting, they fail

to recover the correct value of the unknown, while the PF is still able to find the correct

solution. Having a relatively high nonlinearity in its expression, the hidden state St

leads to a lower probability for parametric approaches to find the correct solution. In

order to verify this claim, we further examine the methods on simultaneously estimating

Ks and another two states. Estimates of Ks with different hidden state are shown in

Figure A.15, from which we can easily observe that the decline in nonlinearity positively

effects the performance of Kalman filtering techniques.

By making the inference task progressively harder, we next examine the performances of

algorithms in estimating one parameter simultaneously, with all possible combinations

of two states being left unknown. Complete results are shown in Figure A.16. We note

the general trend of EKF performing worse than the other two. Quite often, the UKF

algorithm gains the higher rates for converging to the true values when the hidden state
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Figure A.15: Estimations of a single parameter Ks from the unfavorable initial-
izations, assuming states Dt or Uf are unknown. The boxes show the distribution of

samples of the particle filter at initial, two hundredth and final points in time.

variable is formulated by the simple equation. For instance, in the cases that assume

Dt or Uf are unobserved, it is easier for UKF to find the correct solution of unknown

parameters, in comparison to St is the hidden state. PF, as expected, is found to be

more resilient than either EKF or UKF in converging to the true.

Consequently, we conclude that the PF has the greatest potential to recover the correct

value from either the unfavorable prior distribution or the incomplete observation. For

the kalman methods, the capability of inference is considerably driven by the nonlinearity

of hidden state variable, however, a general superiority of UKF over EKF is always

expected.

In addition, as seen in the graphs, some particular parameters, for instance α0 and αs,

are easier for parametric methods to converge to the true value than others. This is ex-

pected because the conditional posterior probabilities over these particular parameters

are unimodal, and close to Gaussian, so Kalman filtering techniques have a good chance

of achieving promising solutions. When the parameter is lumped in models with a high

nonlinearity, the posterior distributions are often multi-modal and non-Gaussian, there-

fore non-parametric particle filtering is better suited. This identifiability is related to the

sensitivity of parameters in model and has been quantitatively defined by Gutenkunst

et al. (2007), this problem also appears in the approximate Bayesian computation meth-

ods introduced in chapter 3.

In this single unknown parameter case, we explore all the possible combinations and find

in 20 of the 42 simulations, PF has an advantage over EKF and UKF, whereas in the

remaining 22 it performs no worse than them. Table A.1 summarizes the success/failure
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by studying these graphs.
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Figure A.16: Estimations of all parameters in the single unknown cases. Starting
from the unfavorable initializations, assuming one or two states are inaccessible in the
observations. The boxes show the distribution of samples of the particle filter at 1th,
250th and 1000th points in time. Rows of graphs are categorized by parameter. Columns
show the latent states in simulation. The results of EKF, UKF and PF are indicated

by green, red and purple dash lines, respectively.

A.6.2 Estimating multiple parameters

Three sequential inference algorithms are further applied to estimate two parameters

and infer the state St of the heat shock response system. Estimations of Ks and Kd are

shown in Figure A.17 as a representative example and the complete results are shown

in Appendix C. By studying all graphs, in all possible combinations of two unknowns,

PF wins the battle among three sequential algorithms in 13 of 15 cases, except two

simulations for {Kd,Ku} and {αs,Kd}.

Quite naturally, more failures appear in algorithms using a unfavorable prior distribu-

tion. This is to be expected because the problem is then significantly harder than the

single unknown parameter case. A comparison of various initial conditions from which

convergence is reached for the three sequential filters is carried out, where the results

are shown in Figure A.18. We find that the PF is more resilient than either EKF or

UKF in converging to the true solution.

For completeness, we also consider the extreme case of all parameters being unknown by

given two noisy observations (Dt and Uf ). Results are given in Figure C.1 of Appendix
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Figure A.17: Estimations of Ks and Kd in the two unknown parameters space,
assuming state St is hidden in system outputs. First column: Results obtained from
the EKF. Trajectory of tracking behaviors is shown in the left-hand side of the bottom
row. Second and Third columns: Graphs of estimations produced by UKF and PF,

respectively.

C. EKF and UKF were found to be incapable of estimating in such scenarios, whereas

PF was able to correctly estimate four of six unknowns. The two failures occurred in

the inferences for Kd and αd, which is probably due to their significant influences on

charactering the hidden state St.

A.6.3 Effects of data regimes

Several questions, such as how would methods perform when fast data sampling is

considered, what is the minimal time window preventing algorithms from breaking down,

and what is the effect of noise on inference, can be posed. Such empirical investigations,

fortunately, is possible to gain if the mathematical expression of the system is given.

In order to explore the effect of time length, we carry out three sequential filters using

data generated with various time windows, i.e. 40, 60, 80, 100, 120, 140, 160, 180, 250 and 350

min. By studying the simulations shown as Figure C.2 - C.4 in Appendix C, when the

time length is less than 80 min (i.e. 120 data points for representing observations with

sampling at 0.2 min), Kalman filtering algorithms break down due to the insufficient

system information provided. Due to it being highly case dependent, it is not possible

to offer general guidance on choosing this setting

Sampling interval, as the critical factor of operating regime, is sometimes a limitation
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Figure A.18: A comparison of simultaneously estimating Ks and Kd starting from
various conditions, from which convergence is reached for the three different sequential
filters. If the method fail to produce precise estimation, then the underlying prior is
denoted by red ‘+’, when the success occurs, the starting point of this simulation is

described by blue ‘o’.

in performance (e.g. fast sampling of data point is a bottleneck for cellular metabolism

as the intracellular turn-over is less than the sampling rate (Villas-Boas et al., 2007)),

as a result of which, the investigation of effect of data regime could be more meaningful.

Apart from the regular setting of sampling interval which is taken from the previous

literature (Lillacci and Khammash, 2010) and defined as 0.2 min, several reasonable

values including 0.1, 0.25, 0.5 and 1 min, are adopted for synthesizing dataset. The

results of this study can be found at Figure C.5 - C.7 in Appendix C the benefits of

faster or slower sampling intervals are summarized in Table A.2, from which we can find

rapid sampling may be useful in some scenarios.

Intuitively, noise should be an issue for performing inference approaches. Simulation to

quantitatively analyze the influence of noise are carried out by varying the multiplier as

0.0001, 0.001, 0.01, 0.05, 0.1 and 1. The estimations of parameter Kd from multiplier

chosen as 0.0001, 0.05 and 1 are shown in Figure A.19. It is clearly observed that all

algorithms find the correct value with approximately zero noise, while failures are found

in three sequential filters when the observations are massively noisy. Nevertheless, as

seen in the middle column of Figure A.19, PF outperforms other parametric methods in

terms of handling noisy observations. Complete results are shown in Figure C.8 - C.10

of Appendix C
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Figure A.19: Estimation of parameter Kd in the two unknowns (Kd and Ks) from
three sequential algorithms. columns are response to the noise variance mutilplier

0.0001, 0.05 and 1, respectively.

A.7 The advantage of sequential approaches

The Kalman and PF algorithms adopted in this work are sequential approaches. Their

use should be considered in the context of Bayesian inference methods that operate on

batch data (Vyshemirsky and Girolami, 2008; Wilkinson, 2009), for example as in the

heat shock model where all the data are available. In such cases, the sequential mod-

els, being one-pass algorithms offer a computational advantage. We illustrate this by

comparing the PF and a Metropolis-Hastings sampler (MH). To ensure a fair compari-

son, the MH was carried out in the simplest environmental setting, that is to infer the

single unknown parameter given completely noise-free observations. Results of these

estimations and comparisons of the computational cost are shown in Figure A.20. Un-

surprisingly, the MH successfully recovers the unknown in all cases, however, since the

MH re-visits the entire dataset at each iteration, PF is more efficient than MH with

increasing numbers of iterations.

In addition, the heat shock response system has been used for demonstrating the capabil-

ity of maximum-likelihood estimator (MLE) for parameter estimation by El-Samad et al.

(2006), and we are therefore motivated to deliver an empirical investigation to quan-

tify the effectivenesses of these two methods. While the noise is set reasonably, MLE

outperforms PF in terms of accuracy and computational efficiency, regardless the com-

bination of unknown parameter and hidden state. We then examine two algorithms by

using various initializations and generating the additive noise from a mixture-Gaussian

distribution, given as vt ∼ 0.3 ·N (10, 52) + 0.7 ·N (25, 102). Results are shown in Figure

A.20, where the negative effect of mixture Gaussian noise on MLE is evident. However,
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Figure A.20: First and second panels: estimations of parameters within single un-
known space from Metropolis-Hastings algorithm. top corner: comparison of computa-
tional costs between a batch method and PFs in estimating single unknown parameters.
bottom corner: performance of a deterministic optimization approach. From various ini-
tial conditions, when simultaneously estimating two unknown parameters with mixture
Gaussian observation noise, the maximum-likelihood method fails to converge (true
values denoted by green ‘×’) whereas the PF was able to find the correct solution in
the posterior mean in about half of these and the results are shown in Figure C.11 of

Appendix C.

PF is able to find the correct solutions in about half of its attempts.

A.8 Discussion

This work demonstrates the effectiveness of the method of particle filtering in state

and parameter estimation of deterministic biological systems from noisy observations.

We have shown this via a comparative study between extended Kalman, unscented

Kalman and particle filtering applied to the heat shock response system using single

and multiple parameter estimations. While previous authors (Sun et al., 2008; Lillacci

and Khammash, 2010) have argued that the Kalman filter itself is capable of such

estimations, our critical appraisal shows that this is only possible when the initial guess

of the state and/or state parameters are very close to the true values. Convergence

is not achieved when the initial conditions differ significantly from the corresponding

true values. The particle filter, on the other hand, is able to converge to true values

even when all the particles are initially set to values far away from the underlying true

values, providing a powerful, yet simple to implement, way of tackling difficult inference

problems in systems biology. We further showed in this work that when the complexity
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of the problem is gradually increased (i.e. the number unknown parameters/states to

be inferred), the Kalman filter algorithms failed well before the particle filter did. Even

in the extreme case of all parameters being unknown, the PF manages to find correct

estimates for four of the six cases. This suggests that the non-parametric approach of

the particle filter, by virtue of being able to systematically propagate uncertainties while

exploring the space over a wide range, is a powerful methodology to tackle such difficult

problems.

We also note that the identifiability of parameter/state caused by the sensitivity property

emerges as an issue in Kalman algorithms and particle filter. The quantitative analysis

of identifiability inspires our development of a new inference method to overcome this

difficulty and details are introduced in chapter 4.

A.9 ABC-Regression algorithm

The tradeoff made for acceptance rate and precision limits the widespread use of ABC-

rejection. Beaumont (2003) introduced the modification of standard rejection ABC

method associated with a local regression adjustment. This so-called ABC-regression

method and ABC-rejection appear fundamentally in collecting samples for approximat-

ing the posterior distribution. With making use of the local correction, ABC-regression

is allowed to afford a relatively large tolerance ε. The innovation of this algorithm is

in characterizing the relationship between the collection of accepted samples and their

corresponding discrepancies via a linear regression model, given as

θ̂ = Dβ + ω, (A.42)

where θ̂ ∈ RNreg×Dp are the accepted samples from the rejection scheme. β ∈ Rq×Dp

are the regression coefficients and q is the dimension of the summary statistics which

is introduced below. ω ∈ RNreg×Dp denotes the unobserved random variables and D ∈
RNreg×q is the matrix indicating the discrepancy between the pseudo-observations and

the true dataset, defined as

D =



s∗1,1 − s1 s∗1,2 − s2 . . . s∗1,q − sq
s∗2,1 − s1 s∗2,2 − s2 . . . s∗2,q − sq
s∗3,1 − s1 s∗3,2 − s2 . . . s∗3,q − sq

...
...

...
...

s∗n,1 − s1 s∗n,2 − s2 . . . s∗n,q − sq


. (A.43)

We note that this discrepancy matrix is calculated using the summary statistics s ∈
Rq×1, instead of the raw data x. This is because the ABC methods were motivated

initially to tackle the inference problem in population genetics, a field often making

use of very large datasets. When each individual point in dataset is used to evaluate
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the discrepancy matrix, the computational complexity becomes unaffordable. Summary

statistics5, capturing dynamical features as much as possible with minimum effort, are

instead used to calculate the matrix D.

The linear regression model shown in equation A.42 was taken by Beaumont (2003) to

correct the result from the rejection scheme, in which the updated inference is adopted

for the term ω in model and the previous result is corrected by

θ = θ̂ −DTβ (A.44)

= θ̂ − (S∗ − S)Tβ, (A.45)

where S ∈ Rq×Nreg is the summary statistics matrix of the true dataset, which is pro-

duced by replicating from the vector s. The value of the regression coefficients matrix β

is often determined via the least-squares estimator, in which the sum of squared residuals

(i.e. the unobserved random variables ω) is given as

SS(β) =

Nreg∑
n=1

θ̂n − (s∗ − s)′β

= (θ̂ −Dβ)T(θ̂ −Dβ), (A.46)

then the regression coefficients β can be estimated by first differentiating SS(β) with

respect to β, given as

∂SS(β)

∂β
= −2(θ̂ −Dθ̂)DT = 0. (A.47)

Then setting the equation A.47 to zero, we have

β = (DTD)−1DTθ̂, (A.48)

solution of β is obtained.

Moreover, in practice, errors (components in D) are not always equally allocated around

the ‘best-fitting line’ for the entire θ̂, violating model assumptions of homoscedasticity6.

To handle heteroscedasticity7, in ABC-regression, the sample from rejection-sampling

method θ̂i is weighted by the Epanechnikov kernel, defined as

wi = Kε(di) =

{
cε−1(1− (di/ε)

2) di ≤ ε
0 di≥ ε

(A.49)

5In systems biology, statistical measures such as mean, median, mode, standard deviation and skew-
ness are widely used. In population genetics, more information can be used as summary statistics. For
example, the number and frequency of segregating sites, number of population pairs, Shanon’s index
and variance of allele length in each population.

6Homoscedasticity means that the distance between each data point and ‘best-fitting line’ is identical.
7 Heteroscedasticity means that the distance between each data point and ‘best-fitting line’ is subject

to change.
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where di is the discrepancy between s∗i and ss, c is the normalizing constant and ε is

the tolerance value. Other kernel functions, for instance, the Gaussian kernel could be

adopted for weighting samples. The advantage of Epanechnikov kernel is due to an initial

smooth decrease, falling sharply to zero as di increases, therefore, few small non-zero

values are assigned to weights (Fan and Zhang, 1999; Beaumont, 2003).

The weighted least squares is naturally extended from the original least squares esti-

mator, which determines the regression coefficients matrix β by minimizing the sum of

squared residuals associated with their corresponding weights, given as

β = (DTWD)−1DTWθ, (A.50)

where the ith diagonal element of the weights matrix W is taken by Kε(di). ABC-

regression can be carried out with the steps shown in Algorithm 14.

Algorithm 14 ABC-regression

Input: π(θ), ε, x0, Nreg, s, η(·), ρ(·, ·) and f(·, ·).
Output: θ = {θ1, . . . , θNreg}

n=1
Repeat
1. Draw θ∗ ∼ π(θ)
2. Synthesize X∗ ∼ f(x0, θ

∗)
3. Calculate summary statistics s∗ = η(X∗)
4. Evaluate discrepancy d∗ = ρ(s∗, s)
5. if d∗ ≤ ε then
6. θ̂n = θ∗, S∗n = s∗ and dn = d∗

7. n = n+ 1
8. end if
until n = Nreg

9. Evaluate weight vector w : 1×Nreg using equation A.49
10. Calculate regression coefficient matrix β : q ×Dp according to equation A.50
11. Replicate s : q × 1→ S : q ×Nreg

12. Compute θ = θ̂ − (S∗ − S)Tβ

Example 4.2 Let ABC-regression work through the deterministic Lotka-Volterra model

as a fair comparison, to illustrate its advantage over ABC-rejection. We examine the

performances of these two algorithms with different values of of ε and combinations of

summary statistics. Mean, variance and median are captured as the summary statistics

for the dataset; By making use ε as 20, 2 and 0.2, we progressively make the accep-

tance of particle harder. The results obtained using summary statistics are shown in

Figure A.21. It is easy to observe that the estimates from ABC-rejection roughly center

around the true values, and when the tolerance becomes tighter the precision of inference

from rejection scheme is increased greatly. Moreover, considering the identical tolerance

ε = 20, the accuracy of inference from ABC-rejection is lower than the results shown

in Figure 3.2. This is due to the discrepancy being evaluated based on the summary
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statistics in this example, instead of the raw dataset adopted in the previous study. Sur-

prisingly, the expected improvement from regression adjustment is only evident in the

case where mean is taken as the summary statistics. When the mean, variance and me-

dian are adopted simultaneously for summary statistics, ABC-regression performs worse

than ABC-rejection, regardless of the value of tolerance ε. This is known as the curse of

dimensionality (Bishop, 2006). The accuracy and reliability of ABC-regression decreases

rapidly with increasing number of summary statistics, therefore, such problem is the ma-

jor hindrance for the successful inference by ABC-regression (Joyce and Marjoram, 2008;

Beaumont, 2010). In addition, the informative prior distribution is considered, where

samples are generated from U(0.2, 0.9), while the true values of parameters are 0.5. We

also note that, in Lotka-Volterra model, the periodicity of species is irrelevant to param-

eter values and dependence only appears on the magnitude. Consequently, the gain of

choosing mean as summary statistics can not be expected generally.
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Figure A.21: Illustrations of the the posterior distribution p(θ|X)
from ABC-rejection and ABC-regression. The panels at columns
show p(θ|X) under three combinations of summary statistics: s =
{mean}, {mean, variance} and {mean, variance,median}. The panels at rows
denote the estimations under three tolerance levels: ε = {20, 2, 0.2}. The results
from ABC-rejection are shown in (blue ellipse) and (red ellipse) contours denote

ABC-regression, point of the true parameter values is indicated as the green cross.
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Table A.1: Results of all combinations in the single unknown case

Parameter State Success Clear Advantage of PF

Ks Ku Kd α0 αd αs Dt St Uf EKF UKF PF

? X X X X X X X X X X X No

X ? X X X X X X X × X X Yes

X X ? X X X X X X × X X Yes

X X X ? X X X X X X X X No

X X X X ? X X X X X X X Yes

X X X X X ? X X X × X X No

? X X X X X ? X X X X X No

X ? X X X X ? X X × X X Yes

X X ? X X X ? X X × X X No

X X X ? X X ? X X X X X No

X X X X ? X ? X X X X X No

X X X X X ? ? X X × X X No

? X X X X X X ? X X X X Yes

X ? X X X X X ? X × × X Yes

X X ? X X X X ? X × X X Yes

X X X ? X X X ? X × × X Yes

X X X X ? X X ? X X X X No

X X X X X ? X ? X × X X Yes

? X X X X X X X ? X X X No

X ? X X X X X X ? × X X Yes

X X ? X X X X X ? × X X No

X X X ? X X X X ? X X X No

X X X X ? X X X ? X X X No

X X X X X ? X X ? × X X No

? X X X X X ? ? X × × X Yes

X ? X X X X ? ? X × × X Yes

X X ? X X X ? ? X × X X Yes

X X X ? X X ? ? X × X X Yes

X X X X ? X ? ? X X X X No

X X X X X ? ? ? X × X X Yes

? X X X X X ? X ? X X X No

X ? X X X X ? X ? × × X Yes

X X ? X X X ? X ? × X X No

X X X ? X X ? X ? × X X No

X X X X ? X ? X ? × × X Yes

X X X X X ? ? X ? × X X No

? X X X X X X ? ? X × X Yes

X ? X X X X X ? ? × × X Yes

X X ? X X X X ? ? × X X No

X X X ? X X X ? ? × × X Yes

X X X X ? X X ? ? X X X No

X X X X X ? X ? ? × X X No
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Table A.2: Clear advantage of algorithms caused by sampling interval

sampling time (min) EKF UKF PF

0.1 X × ×
0.25 × × X
0.5 × × ×
1 × × ×



Appendix B

Details of EM and RMHMC

In this Appendix, we introduce the algorithmic details of Expectation-Maximization

(EM) and Riemann Manifold Hamiltonian Monte Carlo (RMHMC). Even though either

of these algorithms have not been directly used in our work, however, this introduction

is a solid complement of literature review presented in chapter 2. Two corresponding

examples are also shown.

B.1 Expectation Maximization (EM) method

We start with the joint likelihood, p(X,Z|θ), of observables X and hidden variable Z pa-

rameterized by θ. The E-step is to calculate the expectation of log-joint likelihood w.r.t

to the posterior distribution of the hidden variables given the old values of parameters

θold. This expectation is denoted as Q(θ,θold), given as

Q(θ,θold) = Ep(Z|X,θold)[lnp(X,Z|θ)],

=

∫
Z
p(Z|X,θold)lnp(X,Z|θ)dZ. (B.1)

Quite straightforward, the M-step is to maximize the Q(·) so that obtain the updated

parameters estimates

θnew = argmax
θ∈Θ

Q(θ,θold). (B.2)

The general EM algorithm can estimate parameter from an initial guess through the

cycling iterations, and the procedure can be summarized as the Algorithm 15.

157
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Algorithm 15 Expectation-Maximization method

1. Input initial guess of parameter θ0 and iteration number IEM.
Repeat following steps until the convergence criterion is satisfied:

2. E-step Evaluate the Q(θ,θold) following equation B.1.
3. M-step Propose the estimate of parameter: θnew =Q(θ,θold).
4. Update the log likelihood lnp(X,Z|θnew) and set θold = θnew

5. Output θnew.

Example 2.9 Consider a Gaussian mixture model as an illustrative example (Bishop,

2006), which has the joint likelihood as

p(X,Z|π,µ,Σ) = p(X|µ,Σ)p(Z|π)

=

N∏
n=1

K∏
k=1

πznkk N (xn|µk,Λ−1)znk , (B.3)

where xn is the observed data, znk is the latent variable of system and implies if the

data point xn belongs to the kth Gaussian component. As znk is a binary indicator, thus∑K
k=1 znk = 1. πk is known as the mixing coefficients and explains how the mixture

Gaussian distribution is proportionally constructed by the individual component, holding

the property
∑K

k=1 πk. πk and Σk are the mean and precision matrix of kth Gaussian

component.

The direct calculation of the complete-data likelihood is intractable, since variables Z

are hidden in system. Therefore, in the E-step, the expected value of Z under its pos-

terior distribution is used, instead of the expectation of complete-data likelihood. This

expectation of each znk can be described as

Ep(znk|xn)[znk] =
znkp(znk|xn)∑j=K
j=1 p(znj |xn)

=
znkp(xn|znk)p(znk)∑j=K
j=1 p(xn|znj)p(znj)

=
znk[πkN (xn|µk,Σk)]

znk∑j=K
j=1 [πjN (xn|µj ,Σj)]znj

=
πkN (xn|µk,Σk)∑j=K
j=1 πjN (xn|µj ,Σj)

= γ(znk), (B.4)

where γ(znk) is known as the responsibility that explains the contribution of kth Gaus-

sian component to the observation xn. By making use of the responsibility γ(znk), the

expectation of the complete-data log likelihood w.r.t the latent variables Z is given by

EZ[lnp(X,Z|π,µ,Σ)] =

N∑
n=1

K∑
k=1

γ(znk){lnπk + lnN (xn|µk,Σk)}. (B.5)
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In the M-step, with combined use of the multivariate Gaussian distribution and setting

the derivative of log likelihood in equation B.5 w.r.t the mean µk to zero, we can derive

the equation given as following

0 = −γ(znk)Σk(xn − µk)

= −
N∑
n=1

πkN (xn|µk,Σk)∑j=K
j=1 πjN (xn|µj ,Σj)

Σk(xn − µk), (B.6)

therefore, the mean µk can be updated by

µk =
1

Nk

N∑
n=1

πkN (xn|µk,Σk)∑j=K
j=1 πjN (xn|µj ,Σj)

xn, where Nk =

N∑
n=1

πkN (xn|µk,Σk)∑j=K
j=1 πjN (xn|µj ,Σj)

.

(B.7)

Similarly, we can obtain Σk and πk as given

Σk =
1

Nk

N∑
n=1

πkN (xn|µk,Σk)∑j=K
j=1 πjN (xn|µj ,Σj)

(xn − µk)(xn − µk)T (B.8)

πk =
Nk

N
. (B.9)

We illustrate the EM algorithm by applying to a 2-dimensional Gaussian mixture exam-

ple, in which 600 data points are generated by using command mvnrnd in MATLAB where

the mixing coefficients vector is defined as π = [0.2 0.4 0.4]. The mean and covariance

matrix for each Gaussian distribution are defined as

µ =

[
0 2 5

−0.5 3 5

]
,

Σ = [Σ1; Σ2; Σ3], where Σ1 =

[
1 1.5

1.5 3

]
; Σ2 =

[
0.3 0.5

0.5 4

]
; Σ3 =

[
5 1.5

1.5 0.6

]
,

π = [0.2, 0.4, 0.4]. (B.10)

Figure B.1 the results from EM algorithm applying to this artificial dataset at the differ-

ent iterations. As shown in graphs, when the mixing coefficients are known, the arbitrary

initial guess of mean and covariance matrix can eventually converge to their true values

after 13 iterations.

B.2 Riemann manifold Hamiltonian Monte Carlo (RMHMC)

method

In chapter 2, we have discussed two popular MCMC methods, i.e., Metropolis-Hastings

and Gibbs methods, where we have shown that these two algorithms are the high-
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Figure B.1: Illustration of EM algorithm for estimating the means of a Gaussian
mixture model. Sample points drawn from the joint distribution p(X,Z) are shown as
the red dots. The component Gaussians differentiated by EM are shown as the green,
blue and purple ellipse circles. In the first iteration, the initial guesses are arbitrarily
set to be far away from samples. EM algorithm finally achieves to the convergence after

13 iterations.

demanding algorithmic tuning methods. Specifically, a large movement made in each

MCMC step (covariance matrix of Markov transition kernel) offers higher chance for

sample to escape from the trapped region, on the other hand, the sample is more likely

to be rejected sacrificing on the acceptance rate if it is in a region of high probability.

In contrast, a small move increases the acceptance rate, however, more iterations are

required to explore the entire space and the retrieved samples are highly correlated.

The information geometry was combined with MCMC to solve this difficulty, in which

the moves of MCMC samples are driven by the gradient of dynamics. (Duane et al.,

2011) proposed the first genuine physics combined MCMC, known as Hamiltonian Monte

Carlo (HMC), which adopted a Hamiltonian dynamical system to facilitate the transi-

tion of sample. Geometric information adds to the appeal of HMC by guiding its ex-

ploration to enhance its efficiency. Nevertheless, from the empirical investigation (Neal,

2010), such method still desperately relies on the tuning process to address the infer-

ence problem, especially for the systems in highly dimensional. An advanced method

has recently been invented by Girolami and Calderhead (2011) , namely Riemann man-

ifold Hamiltonian Monte Carlo method (RMHMC), which considerably enhances the

effectiveness of MCMC method by utilizing the geometry information in an automatic

manner. RMHMC is briefly introduced below.

Quite similar to the previous presented case, of interest is to sample from a distribution

p(x) with the variables vector x ∈ RD and denote the logarithm of p(x) as L(x). An

auxiliary variable p ∈ RD with distribution p(p) ∼ N (0,M) is further employed, then
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the negative joint log-density of p(x,p) can be written as

H(x,p) = −L(x) +
1

2
log((2π)D|M)|) +

1

2
pTG(x)−1p. (B.11)

From the original literature of HMC (Duane et al., 2011), H(x,p) can be regarded as the

Hamiltonian dynamics, consisting of the sum of a potential energy function −L(x) at the

position x, a kinetic energy term 1
2pTG(x)−1p with the auxiliary variable p (generally

called momentum variable) and a mass matrix M. Generally, the capability of HMC is

driven by the mass matrix, and as the empirical suggestion, the identity matrix is often

used as M (Girolami and Calderhead, 2011). Unsurprisingly, if the dimensionality of

x is high, HMC will perform poorly and finding an appropriate M becomes somehow

impossible.

Girolami and Calderhead (2011) proposed the advanced HMC by adaptively adjusting

the transition of x based on the current position of the state x. Specifically, the mo-

mentum variable p is distributed as a function of state x, that is p ∼ N (0,G(x)). And

p(x) is defined on a Riemann manifold instead of Euclidean space, in a way the mass

matrix G(x) is possible to be used for a position-specific metric tensor. Consider an

observations y, the latent variables x and the joint density p(y,x), then the expected

Fisher information matrix is used to define the position-specific metric:

G(x)i,j = −Ep(y|x)[
∂2

∂xi∂xj
log p(y|x)],

= Ep(y|x)[
∂

∂xi
log p(y|x)

∂

∂xj
log p(y|x)]. (B.12)

The concept of utilizing the expected Fisher information matrix as the metric tensor on

Riemann manifold was first derived by Rao (1945), and which has been intensively em-

ployed in the modern statistical inference (Murray and Rice, 1993; Amari and Nagaoka,

2000).

With combined use of the expected Fisher information matrix, the Hamiltonian dynam-

ics can be given as

dxi
dτ

=
∂H

∂pi
= {G(x)−1p}i, (B.13)

dpi
dτ

= −∂H
∂xi

=
∂L
∂xi
− 1

2
tr(G(x)−1∂G(x)

∂xi
) +

1

2
G(x)−1∂G(x)

∂xi
G(x)−1p. (B.14)

The partial differential equations are solved by the generalized leapfrog integrator. Ad-

ditionally, as the constant mass matrix M is replaced by the position-specific metric

tensor G(x), solutions of equations (B.13) - (B.14) provide the way to automatically

move the state and momentum variable (x,p) → (x∗,p∗) with remaining the proper-
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ties of volume preservation and reversibility:

p(τ +
ε

2
) = p(τ)− ε

2
∇xH(x(τ),p(τ +

ε

2
)), (B.15)

x(τ + ε) = x(τ) +
ε

2
(∇pH(x(τ),p(τ +

ε

2
)) +∇pH(x(τ + ε),p(τ +

ε

2
))), (B.16)

p(τ + ε) = p(τ +
ε

2
)− ε

2
∇xH(x(τ + τ),p(τ +

ε

2
)). (B.17)

Consequently, to interpret the RMHMC conveniently, the updates of state and auxiliary

variables are rewritten in terms of Gibbs sampling as

p∗|xt−1 ∼ p(p∗|xt−1) = N (p∗|0,G(xt−1)), (B.18)

x∗|p∗ ∼ p(x∗|p∗). (B.19)

Similarly, the pair x∗,p∗ is accepted or rejected with the probability

A(x∗,xt−1) = min(1, exp(−H(x∗,p∗) +H(xt−1,pt−1))). (B.20)

Example 2.12 Consider a dynamical system which is formed as (Girolami and Calder-

head, 2011)

p(x|θ) ∼ N (g(θ),Σ−1
x ), g(θ) = θ1 + θ2

2, (B.21)

p(θ) ∼ N (0,Σ−1
θ ), (B.22)

where the diagonal elements of covariance matrix Σ−1
x is set to 2 and Σ−1

θ is used as an

identity matrix. HMC and RMHMC are employed to estimate the probability distribution

of parameter given the sequence of observations p(θ|x). For launching HMC, the mass

matrix M is set to be symmetric and whose diagonal elements are generated from the

zero mean Gaussian distribution and all off-diagonal entries are zero. Figure B.2(a)

demonstrates the results from HMC and RMHMC. In this case, the joint probability

density p(x,θ) is shaped as a banana by considering the mean as one, i.e. g(θ) = 1.

It can be easily seen that RMHMC outperforms HMC in term of efficiency, however,

both methods are able to thoroughly visit the space under this simple scenario. In order

to differ the ability of handling the complex circumstance between these two methods,

p(x,θ) is formed as a multimodal distribution via taking θ1 = 1 and θ2 = 2. No sample

is accepted by HMC with remaining the same algorithmic settings, and Figure B.2(b)

shows that RMHMC precisely estimates the posterior distribution.

B.3 Derivation of extended Kalman filter

The Kalman filter (KF) relying on the Gaussian approximation provides an estimator,

through recursive minimization of the covariance of approximation error, to infer the
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hidden state efficiently. Ideally, the original KF algorithm would like to tackle the linear

and Gaussian problem. Given the nonlinearity of biological systems, superior perfor-

mance of KF cannot be expected and this limitation motivates the extended Kalman

filter (EKF).

Similar to KF, EKF consists of two steps: prediction and correction. In the prediction

step, priors estimates of states and error covariance matrix Σ at the current time in-

stant, are produced by taking the estimates from the previous time instant through the

transition model. In correction step, in incorporating the current observation, the priors

are refined to propose the posterior estimates.

We describe the procedure of EKF in a more rigorous mathematical framework. Let

us assume the posterior estimation at time t follows a Gaussian distribution with mean

µxt and covariance Σxt , i.e. p(xt|Yt) ∼ N (µxt ,Σxt). From the perspective of Kalman

filtering, the mean µxt is seen as the difference between the real state xt and the inferred

variable x̂t|t, while covariance matrix Σxt is interpreted as the confidence in accuracy of

obtained estimations, denoted as P t|t. Consequently, taking the Kalman filter expres-

sion, the posterior estimation can be further written as

p(xt|Yt) ∼ N (xt − x̂t|t,P t|t), (B.23)

where Yt = {y1, . . . ,yt} is all observations up to time t. In order to compute the prior

estimate at next time step t + 1, from the Bayes law, the prior estimation (also the

conditional probability density function of xt+1 by given Yt) can be formulated as

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt)dxt (B.24)

=

∫
p(xt+1 − f(xt))p(xt|Yt)dxt. (B.25)

The extension of equation B.24 to equation B.25 due to the nonlinearity of the system

of interest is given as

xt+1 = f(xt) + ωxt , (B.26)

where ωxt is the Gaussian noise with zero mean andQt covariance. p(xt+1|xt) in equation

B.25 is therefore expressed as

p(xt+1|xt) = p(xt+1 − f(xt))

=
1

(2π)n/2 |Qt|
1/2

exp{−1

2
[xt+1 − f(xt)]

TQ−1
t [xt+1 − f(xt)]}. (B.27)

Since the nonlinearity caused by f(xt) violates the Gaussian assumption of equation

B.27. The innovation made by EKF is to linearize the system dynamics f(xt) in the

presence of Taylor series expansion. In this linearization, only the first-order deriva-
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tive terms around the posterior estimation x̂t|t remain while the higher-order terms are

neglected, such process can be denoted as

f(xt) = f(x̂t|t) +∇fx|x̂t|t · (xt − x̂t|t)

= f(x̂t|t)−∇fx|x̂t|t · x̂t|t︸ ︷︷ ︸
st

+∇fx|x̂t|t · xt, (B.28)

where ∇fx|x̂t|t is the Jacobian matrix of system dynamics f(·), given as

∇fx|x̂t|t =
∂f

∂x

∣∣∣∣
x̂t|t

. (B.29)

Taking this linearization to the nonlinear system model, equation B.26 can be rewritten

as

xt+1 = f(xt) + ωxt

= ∇fx|x̂t|t · xt + f(x̂t|t)−∇fx|x̂t|t · x̂t|t︸ ︷︷ ︸
st

+ωxt

= ∇fx|x̂t|t · xt + st + ωxt . (B.30)

Accordingly, the transition of state variable xt is updated linearly. Substituting equation

B.28 and equation B.23 into equation B.25, the prior estimation can be rewritten as

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt)dxt

=

∫
p(xt+1 − f(xt))p(xt|Yt)dxt

=

∫
N (xt+1 −∇fx|x̂t|t · xt − st,Qt) · N (xt − x̂t|t,P t|t)dxt (B.31)

For the sake of simplicity, we adopt a variable transformation here

zt = ∇fx|x̂t|t · xt. (B.32)

Then the mean and covariance matrix (actually, since the covariance matrix is diagonal,

therefore, such calculation is for variance) of this variable zt are given as

E[zt] = E[∇fx|x̂t|t · xt] = ∇fx|x̂t|tE[xt] = ∇fx|x̂t|t · x̂t|t (B.33)

var(zt) = E[ztz
T
t ] = E[(∇fx|x̂t|t · xt)(∇fx|x̂t|t · xt)

T]

= (∇fx|x̂t|t)E[xtx
T
t ](∇fx|x̂t|t)

T

= (∇fx|x̂t|t)P t|t(∇fx|x̂t|t)
T (B.34)

Expanding the distribution N (xt− x̂t|t,P t|t) associated with the similar variable trans-
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formation1, we have

p(xt|Yt) = N (xt − x̂t|t,P t|t) = N (x̃t − ˜̂xt|t, P̃ t|t)

=
1

(2π)n/2
∣∣∣P̃ t|t

∣∣∣1/2 exp{−1

2
(∇fx|x̂t|t · xt −∇fx|x̂t|t · x̂t|t)

T

× P̃
−1

t|t (∇fx|x̂t|t · xt −∇fx|x̂t|t · x̂t|t)}

=
1

(2π)n/2
∣∣∣P̃ t|t

∣∣∣1/2 exp{−1

2
(∇fx|x̂t|t · xt −∇fx|x̂t|t · x̂t|t)

T

× ((∇fx|x̂t|t)P t|t(∇fx|x̂t|t)
T)−1

× (∇fx|x̂t|t · xt −∇fx|x̂t|t · x̂t|t)}

=
∣∣∣∇fx|x̂t|t∣∣∣ · 1

(2π)n/2
∣∣∣(∇fx|x̂t|t)P t|t(∇fx|x̂t|t)T

∣∣∣n/2
× exp{−1

2
(∇fx|x̂t|t · xt −∇fx|x̂t|t · x̂t|t)

T

× ((∇fx|x̂t|t)P t|t(∇fx|x̂t|t)
T)−1(∇fx|x̂t|t · xt −∇fx|x̂t|t · x̂t|t)}. (B.35)

Therefore, from this expression, we can claim that

p(xt|Yt) = N (xt − x̂t|t,P t|t)

=
∣∣∣∇fx|x̂t|t∣∣∣N (∇fx|x̂t|t · xt −∇fx|x̂t|t · x̂t|t, (∇fx|x̂t|t)P t|t(∇fx|x̂t|t)

T). (B.36)

Substituting equation B.36 into the prior estimation, then it can be rewritten as

p(xt+1|Yt) =

∫
N (xt+1 −∇fx|x̂t|t · xt − st,Qt)

×N (∇fx|x̂t|t · xt −∇fx|x̂t|t · x̂t|t, (∇fx|x̂t|t)P t|t(∇fx|x̂t|t)
T)d(∇fx|x̂t|t · xt)

= N (xt+1 − st,Qt) ∗ N (xt+1 −∇fx|x̂t|t · x̂t|t, (∇fx|x̂t|t)P t|t(∇fx|x̂t|t)
T,

(B.37)

here ∗ represents the convolution of two distributions. After the calculation, the expres-

sion of prior estimation is given as

p(xt+1|Yt) = N (xt+1 −∇fx|x̂t|t · x̂t|t − st,Qt + (∇fx|x̂t|t)P t|t(∇fx|x̂t|t)
T)

= N (xt+1 − f(xt|t),Qt + (∇fx|x̂t|t)P t|t(∇fx|x̂t|t)
T). (B.38)

We therefore are able to conclude that if p(xt|Yt) is a Gaussian distribution with x̂t|t

mean and P t|t covariance matrix, then the prior estimation of state at the next time

step p(xt+1|Yt) can be delivered by making use of the linearization of system model f(·)
around x̂t|t. Given the equation B.38 and Qt = 0, the prior of state estimation and the

1 x̃t = ∇fx|x̂t|t · xt, ˜̂xt|t = ∇fx|x̂t|t · x̂t|t
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error covariance matrix are given as

x̂t+1|t = f(xt|t) (B.39)

P t+1|t = (∇fx|x̂t|t)P t|t(∇fx|x̂t|t)
T. (B.40)

For the sake of simplicity, in the pseudo-code and the details of implementations, the

Jacobian matrix∇fx is denoted as F . With a similar derivation, the posterior estimation

is produced by updating the prior associated with the observations at time t+ 1, which

are given as

Kt+1 = P t+1|tH
T
t+1

[
Ht+1P t+1|tH

T
t+1 +Rt+1

]−1
(B.41)

x̂t+1|t+1 = x̂t+1|t +Kt+1 · {yt+1 − h(x̂t+1|t)} (B.42)

P t+1|t+1 = {I −Kt+1Ht+1}P (t+ 1|t), (B.43)

where Ht+1 is Jacobian matrix of observation function h(·) around the x̂t+1|t, specified

as

Ht+1 = ∇hx|x̂t+1|t =
∂h

∂x

∣∣∣∣
x̂t+1|t

. (B.44)

Kt+1 is known as the Kalman gain, a measure of how much EKF should adjust the prior

estimate in response to the new observation. Algorithmically, a small covariance Rt+1

implies that new observations are the high quality, as a result of which, performing a

relatively large update for posterior is reliable. In contrast, when Ht+1P t+1|tH
T
t+1 is

smaller than the Rt+1, meaning the prior has already achieved a high accuracy and only

a tiny refinement is caused by the new observation. The complete block of pseudo-code

of EKF is given in Algorithm 9.

B.4 Derivation of sequential importance resampling

Particle filter (PF), one of the sequential Monte Carlo methods, allows for the online

approximation of the target distribution via a set of randomly drawn ‘particles’. This

method plays a significant role in solving real-time problems, in which the data arrival is

sequential. Moreover, the ‘sequential’ approach may well implying the evolution of PF

focuses more on information from the recent past rather than the one from the distant

past.

In the framework of PF, we are given information on the system of interest as

initial distribution: p(x0) for t = 0 (B.45)

transition model: p(xt|x0:t−1,y1:t−1) for t ≥ 1 (B.46)

observation distribution: p(yt|x0:t,y1:t−1) for t ≥ 1. (B.47)
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Here we denote the states and the observations up to time t as x0:t , {x0, . . . ,xt} and

y1:t , {y1, . . . ,yt}, respectively. These expressions are here formulated in generality.

Under the Markov assumption, the transition and observation models are simplified as

p(xt|x0:t−1,y1:t−1) = p(xt|xt−1) and p(yt|x0:t,y1:t−1) = p(yt|xt). More details can be

found out in section A.1.4 of chapter 2.

Of interest is to recursively estimate the filtering distribution p(xt|y1:t) and the expec-

tations of the posterior distribution p(x0:t|y1:t)

I(ft) = Ep(x0:t|y1:t)
[ft(x0:t)]. (B.48)

Given N particles {xi0:t−1}Ni=1 at time t − 1, which can precisely approximate the dis-

tribution p(x0:t−1|y1:t−1), then, PF paves a way to update N particles {xi0:t}Ni=1 for

approximating the posterior p(x0:t|y1:t). In most cases, direct sampling from the poste-

rior is impossible, thus, PF considers an alternative distribution for which sampling is

possible, namely the proposal distribution q(x0:t), to help particles update from x0:t−1

to x0:t. This proposal distribution q(·) should be designed with care, due to its critical

role in ‘encouraging’ the frequent selection of particles with important values.

More specifically, in a general SMC framework, the current particles {xi0:t−1}Ni=1 are used

to compute the new set of particles through the proposal distribution, denoted as

q(x̂0:t|y1:t) =

∫
q(x̂0:t|x0:t−1,y1:t)p(x0:t−1|y1:t−1)dx0:t−1. (B.49)

Unfortunately, in most cases, this integral is intractable. In PF, a Markov approximation

is adopted to deal this difficulty, and details are also provided in the section A.1.4 of

chapter 2. Updating made by the proposal distribution is then defined as

q(x̂0:t|y1:t) = q(x̂t|x0:t−1,y1:t)p(x0:t−1|y1:t−1). (B.50)

In PF, the importances of particles x̂0:t need to be weighted by the scheme given below

wt =
q(x̂0:t|y1:t)

p(x̂0:t|y1:t)

=
p(x0:t−1|y1:t)

p(x0:t−1|y1:t−1)
× p(x̂t|x0:t−1,y1:t)

q(x̂t|x0:t−1,y1:t)

∝ p(yt|x̂t)p(x̂t|x0:t−1,y1:t)

q(x̂t|x0:t−1,y1:t)
. (B.51)

Various PFs, such as auxiliary particle filter (Pitt and Shephard, 1999) and ‘likelihood’

particle filter (Arulampalam et al., 2002), have developed around different possible pro-

posal distributions. In the generic PF introduced in this work, the optimal proposal

distribution is used as

q(x̂t|x0:t−1,y1:t) = p(x̂t|x0:t−1,y1:t−1). (B.52)
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By doing so, the calculation of importance weights is simplified as

wt = p(yt|x̂t). (B.53)
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Figure B.2: (a): Illustrations of HMC (left) and RMHMC (right) for estimating the
invariant mean of a Gaussian distribution shown in equation B.21. The trajectories in
both cases represent 100 samples. The banana shape is the log joint density p(x,θ). (b):
Contour of the log joint density p(x,θ) is shown in the left graph, in which θ1 = 1 and
θ2 = 2. Red ellipse shown in right graph represents the distribution of samples obtained
from RMHMC and green (‘+’) indicates the true values of θ. This implementation is
modified from the code given by Professor Mark Girolami in EPSRC/RSS GRADUATE

TRAINING PROGRAMME 2012.
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Figure C.1: Simultaneous inference of all six model parameters from three noisy
state observations.
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Figure C.2: Top row : Estimation of Ks and Kd with 80s, 100s and 120s data length
from EKF. Bottom row : Estimation of Ks and Kd with 140s, 160s and 180s data

length from EKF. from EKF.
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Figure C.3: Top row : Estimation of Ks and Kd with 80s, 100s and 120s data length
from UKF. Bottom row : Estimation of Ks and Kd with 140s, 160s and 180s data

length from UKF.
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Figure C.4: Top row : Estimation of Ks and Kd with 80s, 100s and 120s data length
from PF. Bottom row : Estimation of Ks and Kd with 140s, 160s and 180s data length

from PF.
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Figure C.5: Top row : Estimation of Ks and Kd with 0.1s and 0.25s sampling
intervals from EKF. Bottom row : Estimation of Ks and Kd with 0.5s and 1s sampling

intervals from EKF.
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Figure C.6: Top row : Estimation of Ks and Kd with 0.1s and 0.25s sampling
intervals from UKF. Bottom row : Estimation of Ks and Kd with 0.5s and 1s sampling

intervals from UKF.
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Figure C.7: Top row : Estimation of Ks and Kd with 0.1s and 0.25s sampling
intervals from PF. Bottom row : Estimation of Ks and Kd with 0.5s and 1s sampling

intervals from PF.
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Figure C.8: Top row : Estimation of Ks and Kd with 0.0001, 0.001 and 0.01
multipliers from EKF. Bottom row : Estimation of Ks and Kd with 0.05, 0.1 and 1

multipliers from EKF.
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Figure C.9: Top row : Estimation of Ks and Kd with 0.0001, 0.001 and 0.01
multipliers from UKF. Bottom row : Estimation of Ks and Kd with 0.05, 0.1 and 1

multipliers from UKF.
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Figure C.10: Top row : Estimation of Ks and Kd with 0.0001, 0.001 and 0.01
multipliers from PF. Bottom row : Estimation of Ks and Kd with 0.05, 0.1 and 1

multipliers from PF.



182 Appendix C Supplementary graphs for Heat Shock study

0 5 10

0

2

4

6

K
d

K
s

PF with noisy observation corrupting mixture Gaussian noise

 

 

Start
Finish

Figure C.11: The performance of PF on inferring two parameters Kd and ks from
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Appendix D

Supplementary information of

ABC Coupled with Sensitivity

Analysis Method

D.1 Details of the cell cycle system

The formula of cell cycle consists of six ordinary differential equations with twenty

parameters (Jacquet et al., 2003), of which the details are described below

dM

dt
= −V1 + V2 + k2MN

dM∗

dt
= V1 − V2 − k1M

∗

dMN∗

dt
= k1M

∗ + V3 + V4

dMN

dt
= V4 − V3 − k2MN

dXA

dt
= V5 − V6

dRA

dt
= V7 − V8 (D.1)
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With

V1 = VKS

(
M

K1 +M

)
V2 = VP

(
M∗

K2 +M∗

)
V3 = VKSN

(
MN

K3 +MN

)
V4 = VPN

(
RA

Ka1 +RA

)(
MN∗

K4 +MN∗

)
V5 = VKX

(
MN∗

Ka2 +MN∗

)(
1−XA

K5 + 1−XA

)
V6 = VPX

(
XA

K6 +XA

)
V7 = VKR ×XA

(
1−RA

K7 + 1−RA

)
V7 = VPR

(
RA

K8 +RA

)
(D.2)

where the values of parameters are as following: VP = 0.3, VKSN = 0.5, VKS = 0.5,

VPN = 2, VKX = 1.3, VPX = 0.6, VKR = 1.6, VPR = 0.9, k1 = 6.6, k2 = 5, Ki = 0.01(i =

1, . . . , 8) and Ka1 = Ka2 = 0.2. Initial conditions of states are set as M = XI = RI = 1,

and M∗ = MN = MN∗ = XA = RA = 0.

D.2 Cell Cycle System
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Figure D.1: The average sensitivity status of parameters in states M , M∗, MN∗,
MN , XA and RA.
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Figure D.2: Histogram graphs show the estimations of parameters Vp, Vksn, Vpn,
Vkx, Vpx and Vkr from the original ABC-SMC. True values: Vp = 0.3, Vksn = 0.5,

Vpn = 2, Vkx = 1.3, Vpx = 0.6 and Vkr = 1.6.
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Figure D.3: Histogram graphs show the estimations of parameters Vpr, k1, k2, Vks,
Ka1 and Ka2 from the original ABC-SMC. True values: Vpr = 0.9, k1 = 6.6, k2 = 5,

Vks = 0.5, Ka1 = 0.2 and Ka2 = 0.2.

D.3 Implementation details

Delay-driven oscillatory system: Numerically integrating the delay differential equations

above using MATLAB’s dde23 package, we generated a dataset of 1000 minutes in length

at a sampling interval of 0.2 min. With the periodicity of this oscillation being 120 min,

this covers about 10 cycles. We progressively increase the complexity of the problem in
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each of the following examples; the dataset of the first considered example is generated

without corrupting noise, meaning noise-free. The parameters of the model were set

to the following values following Monk (2003): the initial state vector x0 = [3, 100],

delay τ = 18.5 min decay constants µm = 0.03 min−1, µp = 0.03 min−1 and terms in

the autoregulation function p0 = 100 and n = 5. The number of samples N is chosen

as 500 and prior distributions for generating the first samples are µm ∼ N (0, 0.001),

µp ∼ N (0, 0.001), p0 ∼ N (95, 10) and n ∼ N (2, 2). The diagonal elements of covariance

matrix Q for transition kernel k(·) is [5, 0.05, 0.05, 0.1]. The final tolerance εT is set to

3000 for the first run, and is narrowed down to 1000 for the second parse. Implementation

details for the sensitivity analysis are given as: the number of search curves Nr is 5;

number of samples used for each curve Nse is 2049; the maximum number of Fourier

coefficients M is 4; the samples for parameters after Fourier expansion are assumed

to satisfy the distributions as µm ∈ U(0.001, 0.1), µp ∈ U(0.001, 0.1), p0 ∈ U(1, 10),

n ∈ U(20, 150) and dummy variable ∈ U(1, 10).

Represillator: The initial state vector is x0 = [0, 2, 0, 1, 0, 3]. The initial particles are

generated from the distribution α0,0 ∼ U(−2, 10), n0 ∼ U(0, 10), β0 ∼ U(−5, 20) and

α0 ∼ U(500, 2500), for which the true values are α0 = 1, n = 2, β = 5, α = 1000; the

number of particles used N is chosen as 1500; the weighting factor α is 0.99 (notice that

α presented here is for running the weights calculation for ABC-SMC algorithm, and is

different from the system parameter α); the integer factor M is 10; the final tolerance εT

is set to 200 for the first parse and becomes 40 for the second; the discount factor δ for

transition kernel k(·) is 0.98; the threshold for resampling scheme is N/2; initial guesses

for states are chosen as X0 ∼ U(0, 1). The implementation details of the sensitivity

analysis are given as: the number of search curves Nr is 5; the number of samples Nse

used for each curve is 2049; the maximum number of Fourier coefficients M is 4; the

samples for parameters after Fourier expansion are assumed to satisfy the distributions

α0 ∈ U(0.5, 2), n ∈ U(1, 5), β ∈ U(3, 7), α ∈ U(700, 1200), and dummy variable ∈
U(1, 10). The way to generate the synthetic data is the same as ABC-SMC.

Heat Shock: Implement details follow the previous work Liu and Niranjan (2012) in-

cluding the time length, regular sampling interval and corrupted noise for observations.

For running the inference algorithm, the prior distributions for generating samples

for parameters kd ∼ N (3, 1), αd ∼ N (0, 0.1), α0 ∼ N (0, 0.1), αs ∼ N (3, 1), ku ∼
N (0, 0.1), ku ∼ N (0, 0.1); The true values of parameters are [kd, αd, α0, αs, ks, ku] =

[3, 0.015, 0.03, 3, 0.05, 0.0254]. Integer number M is 10; Number of used samples

N = 1500; the weighting factor α is 0.99; Threshold for resampling is N/2; the discount

factor δ for transition kernel k(·) is 0.99; Ideal tolerance for the first inference iteration is

εT = 10, while the ideal tolerance for the second inference iteration is εT = 2. The prior

distributions for generating samples for states X ∼ N (0, 2). For the second inference

iteration, the number of samples increases to N = 2500; Integer factor M is 20;

The implementation details of the sensitivity analysis are given as:the number of search
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curves Nr is 5; the number of samples Nse used for each curve is 2049; the maximum num-

ber of Fourier coefficients M is 4; the samples for parameters after Fourier expansion are

assumed to satisfy the distributions kd ∈ U(1, 5), αd ∈ U(0.001, 0.1), α0 ∈ U(0.001, 0.1),

αs ∈ U(1, 5), ks ∈ U(0.001, 0.1), ku ∈ U(0.001, 0.1) and dummy variable ∈ U(0.1, 6).

Cell Cycle: The implementation details of ABC-SMC for the most sensitive parameters

(i.e. Vp, Vpx, Vks and Vkx are the most sensitive parameters of this system) are given as:

The initial state vector for synthesizing the real dataset is x0 = [1, 0, 0, 0, 0, 0]. The time

length for generating dataset is 200 minutes, sampling at regular interval of 0.2 minutes

and no decaying needs to be considered, i.e. 1000 sample points are used for representing

the system outputs. The diagonal elements in covariance matrix for observation noise ω

are 0.05 times variance of synthetic state dataset X. The initial distributions of ABC-

SMC for synthesizing six state outputs are all following X̂0 ∼ N (0.5, 0.25); the prior

distributions for generating the samples of unknown parameters are V ks,0 ∼ U(−10, 10),

V kx,0 ∼ U(−5, 5), V px,0 ∼ U(−10, 10) and V p,0 ∼ U(−5, 5); the number of samples used

N is 2500; the integer factor M is 25; the weighting factor α is 0.99; the final tolerance

εT is 0.0005 the discount factor δ for transition kernel k(·) is 0.97; the threshold for

resampling scheme is N/2.
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