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Abstract 26 

 27 

A central tenet of tuberculosis (TB) pathogenesis is that caseous necrosis leads to extracellular matrix 28 

destruction and bacterial transmission. We reconsider the underlying mechanism of TB pathology and 29 

demonstrate that collagen destruction may be a critical initial event, causing caseous necrosis as 30 

opposed to resulting from it. In human TB granulomas, regions of extracellular matrix destruction 31 

map to areas of caseous necrosis.  In mice, transgenic expression of human matrix metalloproteinase-32 

1 causes caseous necrosis, the pathological hallmark of human TB.  Collagen destruction is the 33 

principal pathological difference to wild type mice, whereas the release of pro-inflammatory 34 

cytokines does not differ, demonstrating that collagen breakdown may lead to cell death and 35 

caseation.  To investigate this hypothesis, we developed a 3-dimensional cell culture model of TB 36 

granuloma formation utilising bioelectrospray technology. Collagen improved survival of 37 

Mycobacterium tuberculosis-infected cells analyzed by LDH release, propidium iodide staining and 38 

total viable cells.  Taken together, these findings suggest that collagen destruction is an initial event in 39 

TB immunopathology, leading to caseous necrosis and compromising the immune response, revealing 40 

a previously unappreciated role for the extracellular matrix in regulating the host-pathogen 41 

interaction. 42 
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Introduction 49 

 50 

The intensive biomedical research effort to develop new vaccination approaches and shorter treatment 51 

regimens for tuberculosis (TB) have not yet resulted in significant changes to disease management  52 

[1-3], suggesting that paradigms of pathogenesis may be incomplete.  The pathophysiological 53 

hallmark of TB is caseous necrosis, which is thought to result from Mycobacterium tuberculosis 54 

(Mtb)-mediated macrophage cell death [4-6].  An excessive pro-inflammatory immune response may 55 

exacerbate tissue destruction [7], and this concept of pathology informs novel vaccine and 56 

immunomodulatory strategies [8, 9].   57 

 58 

In this model of TB pathology, caseous necrosis is proposed to cause tissue destruction, leading to 59 

lung cavitation and transmission of infection [10, 11].  This long-established paradigm primarily 60 

derives from classical experiments in the rabbit model of Mycobacterium bovis infection, where large 61 

tubercules develop and then rupture into the airways [12].  However, dissection of the precise 62 

sequence of events is limited by suitable animal models, since caseous necrosis is generally not 63 

observed in immunocompetent mice [13].  Caseous necrosis is observed in TB granulomas of 64 

humanised mice engrafted with fetal human liver and thymus tissue [14], while large regions of 65 

necrosis may develop in mice that control Mtb proliferation poorly and develop a very high 66 

mycobacterial load [15].  However, in human granulomas mycobacteria are very infrequent [16], and 67 

therefore in human disease pathology is initially driven by a low mycobacterial load.   68 

 69 

We have previously demonstrated that MMP-1 expressing mice develop collagen destruction within 70 

granulomas when infected with the standard laboratory strain, Mtb H37Rv, and this collagen 71 

destruction occurred in the absence of caseous necrosis [17].  However, the relationship between 72 

matrix destruction and the cell death that forms caseous necrosis have not been systematically 73 

examined, nor the consequences of matrix destruction on the interaction between host immune cells 74 

and Mtb.  We reconsider the sequence of events driving immunopathology in TB by studying human 75 
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lung biopsy tissue, mice expressing human MMPs and 3-dimensional cell culture systems, and 76 

conclude that collagen destruction is an early event that increases host cell death.  77 

  78 
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 79 

Methods 80 

Ethics statement:  The project was approved by the Hammersmith and Queen Charlotte's & Chelsea 81 

Research Ethics Committee, London (ref 07/H0707/120).  Lung biopsy tissue was taken as part of 82 

routine clinical care and processed for standard diagnostic testing.  The residual tissue blocks not 83 

required for diagnostic purposes were analyzed in this study and were released from the 84 

Hammersmith Hospitals NHS Trust Human Biomaterials Resource centre.  The ethics committee 85 

approved the analysis of this tissue without individual informed consent since it was surplus archived 86 

tissue taken as part of routine care.  All animal experiments were approved by the Home Office of the 87 

United Kingdom, which is responsible for approving laboratory animal care and experiments in the 88 

UK, under project licence PPL 70-7160.  All experiments were performed in accordance with the UK 89 

Animal (Scientific Procedures) Act 1986 in the containment level 3 animal facility at Imperial 90 

College London.  For analysis of blood from healthy donors, this work was approved by the National 91 

Research Ethics Service committee South Central - Southampton A (ref 13 SC 0043) and all donors 92 

gave written informed consent. 93 

Extracellular matrix staining in human lung biopsies:  Lung biopsies from patients under 94 

investigation for probable lung cancer who had pulmonary TB diagnosed as a result of the biopsy 95 

appearances were studied.  All patients had caseous necrosis, the pathognomonic appearance of 96 

tuberculosis, and responded well to standard antibiotic treatment.   Staining for Masson’s Trichrome, 97 

Picrosirius red and Elastin Van Gieson was performed according to standard protocols. 98 

Mouse M. tuberculosis infection protocol:  All mice were bred on the C57BL6 background, which is 99 

relatively resistant to infection with Mtb.  Mice expressing human MMP-1 and -9 under control of the 100 

scavenger receptor A promoter-enhancer and wild-type littermates were infected intranasally with 101 

5,000 colony forming units M. tuberculosis that had recently been isolated from a patient with 102 

pulmonary TB [18].  Preliminary studies demonstrated that this protocol reliably produced a 103 

pulmonary deposition of approximately 500 CFU and caused giant cell formation, a characteristic 104 
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feature of human disease not caused by Mtb H37Rv in C57BL6 mice.  In each experiment, there were 105 

a minimum 5 mice per group and 3 separate experiments were performed. Mice were checked 106 

regularly for signs of distress and weighed fortnightly.  Mice were sacrificed by terminal overdose of 107 

anaesthetic at 22 weeks and dissected as previously described [17].  For protein analysis and colony 108 

counting, one lobe was homogenised in 1ml PBS.  Colony counting was performed by plating on 109 

Middlebrook 7H11 agar (BD Biosciences).   Lung homogenate and BALF was sterilized through a 110 

0.2μm filter (Millipore) [19].    111 

Luminex analysis:  MMP and cytokine concentrations were analyzed on a Bioplex 200 platform 112 

(Bio-Rad, Hemel Hempstead, U.K.) according to manufacturer’s protocol.  MMP concentrations were 113 

analysed by the MMP Fluorokine multianalyte profiling (R&D Systems, Abingdon, UK) and cytokine 114 

concentrations were measured using the Cytokine mouse panel (Invitrogen, UK). 115 

2-Dimensional In Vitro Granuloma (IVG) model:  The model described by Altare’s group was 116 

adapted [20].  Peripheral Blood Mononuclear Cells (PBMCs) were isolated from single donor buffy 117 

coats from the National Blood Transfusion Service (Colindale, UK) or from healthy volunteers. 118 

Leukocytes were isolated by density centrifugation over Ficoll Paque (Amersham Biosciences, UK).  119 

Total PBMCs were plated in 24 well plate at 1x106 cells/well in 10% AB serum in RPMI 120 

supplemented with 2mM glutamine and 10μg/ml ampicillin. PBMCs were infected with Mtb at a 121 

multiplicity of infection (MOI) of 0.001.  122 

DQ collagen degradation assay:  PBMCs were resuspended in collagen mix solution:  8 parts sterile 123 

collagen type I (Advanced BioMatrix, San Diego, CA) with DQ collagen (Invitrogen, Paisley, UK) in 124 

1:7 ratio, and 1 part of sterile 10X RPMI, NaOH in HEPES and AB serum.  pH was corrected to 7.0 125 

using 7.5% NaHCO3.  1x106 PBMCs were seeded in 4-well cover glass bottom chamber slides (PAA 126 

laboratories) and M.tb was added at MOI of 0.001 to infection wells. Slides were incubated and 127 

observed under confocal microscope (Leica. 128 

Green Fluorescent collagen degradation assay:  4-well glass bottom chamber slides (PAA 129 

laboratories) were coated with 0.005% poly-L-lysine (Sigma, Poole, UK), washed sequentially with 130 

6 
 



PBS, 0.5% glutaraldehyde (BDH) then PBS. Wells were coated with collagen-FITC solution (Sigma, 131 

1mg/ml) in 0.1M acetic acid solution, washed with PBS then sodium borohydride solution (Sigma) 132 

and sterile HBSS. Wells were seeded with PBMCs, infected with M.tb and observed under confocal 133 

microscope (Leica Microsystems).  134 

Lactate dehydrogenase (LDH) assay:  Cell culture supernatants were harvested, sterile filtered 135 

(Millipore, UK) and analyzed as per manufacturers’ instructions (Roche, Burgess Hill, UK). 136 

Agar 3-dimensional cell culture model:  Soft agar (1.5%, Sigma) was heated in a microwave for 2 137 

minutes and warmed to 50oC. A final agar concentration of 0.7% was prepared with 10x RPMI 1640, 138 

AB serum (10%), 1M HEPES, 7.5% NaHCO3 and distilled water. PBMCs were incorporated within 139 

the agar +/- collagen and the gel was allowed to set at 37oC.  RPMI with 10% AB serum was added to 140 

the wells and sampled at predetermined time points.   141 

Cell Encapsulation using Electrostatic Bead Generator:  PBMCs were isolated and embedded into 142 

alginate microspheres using an electrostatic bead generator as described [21] (Nisco, Zurich, 143 

Switzerland). Briefly, PBMC were mixed with sterile alginate mix (3%, Sigma, UK or Pronova UP 144 

MVG  alginate , NovaMatrix, Norway) in HBSS without Ca/Mg, 1M HEPES and 7.5% NaHCO3 to a 145 

final concentration of 5x106 cells/ml. Purified human collagen solution (VitroCol, Advanced 146 

BioMatrix) was added at 1mg/ml for alginate-collagen microspheres.   Mtb-stimulated microspheres 147 

were generated by adding either UV killed Mycobacterium tuberculosis H37Rv or bioluminescent 148 

Mtb H37Rv expressing the Lux operon, at multiplicity of infection (MOI) 0.1, to the alginate solution 149 

prior to microsphere generation.  150 

Alginate suspension containing cells +/- Mtb +/- collagen was injected via a Harvard syringe driver 151 

into the bead generator at 10ml/hr, with a 0.7mm external diameter bioelectrospray needle. 152 

Microspheres were formed by ionotropic gelling in 100mM calcium chloride. Microspheres were then 153 

washed twice with HBSS and then placed in RPMI supplemented with 10% AB serum at 37oC.  154 

Supernatant surrounding the microspheres was harvested at defined time points.   155 
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Immunofluorescence and Confocal Imaging:  Microspheres were fixed in 4% paraformaldehyde, 156 

washed in PBS and then stained with DAPI (4',6-diamidino-2-phenylindole) or calcein. Confocal 157 

images were acquired on a Leica SPE microscope with an APO 40 X 1.15 NA oil immersion lens.  158 

Flow cytometry:  Cells were extracted from microspheres by dissolving in 15mM EDTA in PBS for 159 

10 minute at 37oC. Cells were suspended in PBS containing 50μg/ml propidium idodide (PI), and the 160 

fluorescence was analyzed by flow cytometry (BD Accuri™ C6 flow cytometer).  Three replicates 161 

were taken for each experiment and 10,000 cells were acquired for each sample. Experiments were 162 

repeated at least three times.  163 

Cell viability assay:  Microspheres containing PBMCs infected with UV-killed Mtb at MOI of 0.1 164 

were generated from alginate, alginate-collagen (Advanced BioMatrix) or alginate-gelatin (Sigma).  165 

Microspheres were incubated in 96-well plates for 4 days at 37oC. Cell viability was analyzed using 166 

the CellTiter-Glo® 3D Cell Viability Assay (Promega) according to manufacturer’s instructions.  167 

Luminescence was analyzed by Glomax Discover (Promega).  168 

Statistics:  Paired groups were compared by Students t-test, while multiple groups were analyzed by 169 

one-way ANOVA.  Differences were considered significant at P < 0.05.   170 
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Results  171 

 172 

Caseous necrosis maps to regions of collagen destruction in human pulmonary granulomas 173 

First, we investigated extracellular matrix integrity and caseous necrosis in lung granulomas from 174 

patients with pulmonary TB (Figure 1 and Supplemental figure 1).  Sirius red staining demonstrated 175 

that collagen was intact where cells had normal morphology, whereas in areas of caseous necrosis no 176 

collagen was visualised (Figure 1A and B).  Elastin van Giesen staining demonstrated no elastin was 177 

present in these regions (Figure 1C and D).  Similarly, Masson’s Trichrome staining showed that 178 

extracellular matrix was absent in areas of caseous necrosis (Supplemental Figure 1). Therefore, in 179 

patients with pulmonary TB, caseous necrosis and extracellular matrix destruction are observed 180 

concurrently, but whether cell death or matrix destruction is the initial pathological event cannot be 181 

determined. 182 

 183 

Expression of human MMP-1 in the mouse causes caseous necrosis in TB granulomas 184 

To address the relationship between matrix destruction and cell death, we infected mice expressing 185 

human matrix metalloproteinase (MMP)-1 under control of the scavenger receptor A promoter 186 

enhancer [22] with a clinical strain of Mtb recently isolated from a patient with pulmonary TB.  All 187 

mice were bred on the C57BL6 background, which is relatively resistant to mycobacterial infection, 188 

and were infected with 5,000 CFU intranasally, resulting in a pulmonary infectious dose of 500 CFU.  189 

In preliminary studies, we demonstrated that this strain caused typical pathological features of human 190 

TB not observed after infection with the standard laboratory Mtb H37Rv in C57BL6 mice.  C57BL6 191 

mice expressing human MMP-9 regulated by the same promoter acted as controls for the transgenic 192 

expression of a human MMP.  In all infected mice, multinucleate giant cells were observed within 193 

granulomas, implying that multinucleate giant cells result from infection with Mtb that has not 194 

undergone prolonged laboratory subculture (Figure 2A-C).  No difference in colony counts or weight 195 

loss occurred between strains, demonstrating that human MMP expression did not modulate control of 196 
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Mtb growth (Figure 2D-E).  Total lung inflammation was similar between mice (Supplemental figure 197 

2) and Mtb was visualised on Ziehl-Neelsen staining of granulomas in each mouse strain 198 

(Supplemental figure 3).  Mtb infection up-regulated human MMP-1 and MMP-9 expression in the 199 

respective transgenic mice (Figure 2F-G).  In the MMP-1 expressing mice, areas of tissue destruction 200 

were observed within the centre of granulomas (Figure 2K-M), that did not occur in wild type or 201 

MMP-9 mice (Figure 2H-J and N-P).  These regions contained amorphous debris with no cellular 202 

structure, typical of caseous necrosis observed in human TB.   Therefore MMP-1-expressing mice 203 

demonstrate pathology characteristic of human TB which is not seen in other immunocompetent mice 204 

of diverse genetic background [13] unless either humanised or in the context of very high 205 

mycobacterial load [14, 15]. 206 

 207 

To determine whether caseous necrosis resulted from an imbalance in TH1/TH2 immunity as has 208 

been postulated [6], we profiled cytokines and chemokines in lung homogenate and bronchial lavage 209 

fluid by luminex array.  Mtb infection up-regulated TNF-α, IL-1β, IL-12, IFN-γ, MCP-1 and IP-10 in 210 

all mouse strains, but no difference in cytokine profile was demonstrated (Figure 3A-F).  This 211 

suggested that the observed caseous necrosis did not result from MMP-1 expression having an 212 

immunomodulatory effect.  IL-6 concentrations were below the level of sensitivity of the assay even 213 

at maximal sensitivity. The only difference between the MMP-1 mice and their wild-type littermates 214 

is the expression of a collagenase, leading us to examine extracellular matrix integrity within 215 

granulomas.  In all areas of caseous necrosis, collagen was destroyed (Figure 3H), whereas in wild 216 

type mice and MMP-9 mice the extracellular matrix was intact and cells appeared viable within TB 217 

granulomas (Figure 3G and I, high magnification images Supplemental figure 4).   218 

 219 

Collagen improves survival of Mtb-infected human cells 220 

The development of caseous necrosis in MMP-1 mice suggested that the initial event in TB 221 

immunopathology is collagen destruction, which then leads to cell death, as opposed to the current 222 
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paradigm that collagen destruction occurs secondary to cell death.  To test this hypothesis, we first 223 

analyzed a 2-dimensional cell-culture in vitro granuloma model incorporating PBMCs and live Mtb 224 

[23].  Human granulomas contain very few mycobacteria relative to inflammatory cells [16], and so a 225 

low MOI was utilised to reflect clinical disease.  Granulomas formed over time (Figure 4A).  Mtb 226 

infection increased MMP and cytokine expression (Figure 4B-C and Supplemental figure 5).  To 227 

quantitate the functional effect of MMP activity on matrix turnover, cells were plated on slides coated 228 

with DQ-labelled collagen, which becomes fluorescent when degraded, or fluorescent collagen, which 229 

loses fluorescence when cleaved.  The increased MMP activity caused collagen degradation by both 230 

assays (Figure 4D-E).  Addition of human collagen to the cell culture media improved cellular 231 

survival after Mtb infection (Figure 4F).  However, cell-matrix interactions occur in a 3-dimensional 232 

framework and therefore we studied 3-D granuloma models impregnated with diverse matrices.  In an 233 

agar 3-D model, incorporation of collagen improved cellular survival after Mtb stimulation compared 234 

to cells in an agar matrix without collagen (Figure 4G).   235 

 236 

To further investigate this observation, we developed a 3-dimensional cell culture model of TB 237 

granuloma formation, since cell-matrix interactions occur in 3 dimensions.  This model permitted 238 

investigation of the hypothesis that matrix composition regulates the host-pathogen interaction 239 

without the need for extensive animal modelling.    We utilised a bioelectrospray system to generate 240 

microspheres incorporating alginate, which cross-links in a gelling bath containing calcium chloride, 241 

and this system permits regulation of the cellular and matrix fibrillar composition within the 242 

microspheres (Figure 5A-B) [21].  Monocytes within the microspheres phagocytosed Mtb (Figure 5C) 243 

and progressive cellular aggregation occurred in infected microspheres over time (Figure 5D).  Mtb 244 

infection led to a progressive increase in chemokine and MMP accumulation in the cell culture 245 

medium, demonstrating that inflammatory mediators increased in human TB are induced within this 246 

model (Figure 5E-F).  To determine whether the matrix regulated cellular survival, human type I 247 

collagen was incorporated into microspheres.  Cells in collagen-impregnated microspheres survived 248 

better when infected with Mtb, analyzed by LDH release (Figure 5G-H) and flow cytometry (Figure 249 
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5I).  Furthermore, total viable cell numbers in collagen containing microspheres were higher than in 250 

alginate-only microspheres (Figure 5J).  In contrast, incorporation of gelatin into the microspheres did 251 

not increase cellular viability (Figure 5J).  These data confirm that cells adherent to collagen fibrils 252 

have greater survival when infected with Mtb than those without extracellular matrix contact. 253 

 254 

 255 

  256 
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Discussion 257 

Taken together, our human, mouse and cellular data implicate that collagen destruction is an early 258 

event in TB pathogenesis, leading to the development of caseous necrosis and skewing the immune 259 

response in favour of the pathogen. Collagen breakdown reduces the survival of Mtb-infected cells.  260 

Collagen had a more pronounced effect on cell survival in 3-D cell culture than 2-D cell culture, 261 

consistent with the emerging concept that analysis of cell biology in three dimensions may 262 

recapitulate in vivo cellular behaviour more accurately than in standard tissue culture [24].  Collagen 263 

destruction preceding caseation in TB is opposite to the widely held disease paradigm that 264 

extracellular matrix destruction is a consequence of caseous necrosis [4, 6], and leads to a novel 265 

concept of TB immunopathology whereby extracellular matrix destruction is the initial pathological 266 

event (Figure 6).  This model is consistent with studies in cancer, where the extracellular matrix is 267 

known to be a cell survival factor [25].  However, human biopsy studies only provide a single disease 268 

time point and consequently cannot determine the precise chronology of events. Ultimate proof of this 269 

concept will require MMP inhibition studies in an animal model that recapitulates the key 270 

pathological features of human TB, such as the rabbit [26], with demonstration that collagenase 271 

inhibition reduces Mtb-driven immunopathology. 272 

 273 

Matrix regulation of the host immune response to TB has widespread implications, but the role of the 274 

matrix in TB tends not to be considered [4, 6, 27].  We demonstrated that collagen increased survival 275 

of cells infected with Mtb, whereas gelatin did not, showing that intact collagen fibrils are required.  276 

The extracellular matrix has numerous components, such as fibronectin, elastin, laminin, other 277 

collagen subtypes, proteoglycans and hyaluronan [28], and similarly these molecules may modulate 278 

the host-pathogen interaction in TB [29].  Such cell-matrix interactions can be predicted to affect 279 

multiple key processes in the immune response to TB.  For example, the extracellular matrix can 280 

modulate phagolysosomal fusion [30], pro-inflammatory cytokine secretion [31], autophagy [32] and 281 

immune cell activation [29].  Furthermore, cell-matrix interactions regulate cell survival [33], which 282 
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is central to the host-pathogen interaction in TB [34].  In epithelial cells, integrin-dependent activation 283 

of intracellular signalling pathways via the EGF receptor regulate cellular survival [25, 35] and in 284 

monocytes matrix adhesion modulates gene expression profiles via integrins [36].  However, in TB 285 

the in vitro experiments dissecting intracellular signalling pathways have almost entirely been 286 

performed in the absence of extracellular matrix.   287 

 288 

Certain transgenic mouse models of TB may develop large regions of tissue destruction in the context 289 

of very high mycobacterial loads [15].  Lesions are marked by pronounced neutrophil infiltration, and 290 

therefore matrix destruction may be driven by MMP-8 (neutrophil collagenase), since neutrophils are 291 

the only cells that contain pre-synthesised MMPs. Therefore, different proteases from diverse cell 292 

types may drive pathology at different stages of TB disease.  We focused on MMP-1, since unbiased 293 

analysis of MMPs in TB suggest that this is a dominant collagenase [26, 37, 38], but at late stages of 294 

infection neutrophil-derived MMP-8 is also likely to drive collagen destruction [39]. Similarly, 295 

stromal cells such as epithelial cells and fibroblasts may be key sources of MMPs in inflammatory 296 

foci [40].  Our data suggest that macrophage-derived MMP-1 causes initial collagen destruction 297 

within the granuloma, leading to reduced cell survival.  The standard laboratory strain, Mtb H37Rv, 298 

did not cause caseous necrosis nor multinucleate giant cell formation in infected mice, whereas these 299 

pathologies were observed after infection with a recently isolated clinical strain of TB.  This implies 300 

that the prolonged laboratory culture of H37Rv since its isolation from a patient in 1905 [41] has 301 

resulted in loss of currently unidentified factors that cause giant cell formation and caseous necrosis 302 

despite being able to proliferate rapidly.    303 

 304 

The process of caseation is likely to involve additional pathological processes that cannot be dissected 305 

our in vitro model.  Diverse animal models demonstrate that TB granulomas are hypoxic [42] and in 306 

man, vascular supply to areas of TB infection are occluded [43].  Hypoxia and inflammation have a 307 

complex interplay, and hypoxia can augment MMP release [44].  The bioelectrospray model currently 308 
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incorporates peripheral blood mononuclear cells, and so cannot investigate the role of neutrophils or 309 

stromal cells, which all contribute to TB pathogenesis [39, 45].   More advanced ex vivo organ culture, 310 

or in vivo experiments in an animal model where pathology reflects disease in man, will be required to 311 

fully dissect the interplay of matrix destruction, hypoxia and intercellular signalling. 312 

 313 

A central role for matrix breakdown in TB pathology is supported by unbiased approaches.  For 314 

example, a study comparing the macrophage gene expression profile from patients with pulmonary 315 

TB to latently infected individuals identified MMP-1 as the most divergently regulated gene [46], 316 

suggesting that excessive matrix destruction predisposes to developing TB.  Similarly, MMP-1 is one 317 

of the most highly up-regulated genes in infected human lung tissue [37].  A recent aptamer-based 318 

approach identified protease-anti-protease balance and tissue remodelling as two key pathways that 319 

change during TB treatment, whereas cytokine pathways were not highly represented [47].   All TB 320 

treatments in the pre-antibiotic era, such as artificial pneumothorax, plombage and thoracoplasty, 321 

centred on cavity collapse, and these had a cure rate of up to 70% [48], demonstrating that 322 

macroscopic stabilisation of the extracellular matrix can improve host control of Mtb infection. 323 

 324 

Tissue damage is emerging as a central determinant of the outcome of the host-pathogen interaction in 325 

other lung infections, such as bacterial-viral co-infection [49], supporting the hypothesis that 326 

preserving matrix integrity is fundamental to an effective response to infection.  Our data demonstrate 327 

that destruction of the lung extracellular matrix is likely to be an earlier event in the pathogenesis of 328 

TB than previously thought.  Host-directed therapies are emerging as a novel paradigm in TB 329 

treatment [50].  Matrix stabilisation strategies in TB may not only reduce morbidity and mortality, but 330 

may also help restore an efficacious immune response to Mtb infection. 331 

 332 

 333 
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Figure legends   467 

 468 

Figure 1:  Lung matrix destruction and caseous necrosis co-localize in human pulmonary 469 

granulomas.  Lung biopsies from patients under investigation for lung carcinoma but with a final 470 

diagnosis of TB made on histological analysis were stained by Picrosirius red (A, B; collagen fibrils 471 

stain red), and Elastin van Gieson (C, D; elastin fibrils stain blue).   Arrowheads designate areas of 472 

caseous necrosis.  Collagen and elastin fibrils are absent in all regions of caseous necrosis.  Images are 473 

representative of 5 TB patient lung biopsies that were studied.  Scale bars 100μm. 474 

 475 

Figure 2:  Mice expressing human MMP-1 develop regions of caseous necrosis in TB granulomas.  476 

Mice expressing human MMP-1, MMP-9 or wild-type littermates were infected with an Indo-Oceanic 477 

strain of Mtb recently isolated from a patient with pulmonary TB.  Mice were sacrificed 22 weeks after 478 

infection.  (A-C) All mice strains developed multinucleate giant cells in regions of macrophage 479 

infiltration (Arrowheads). (D) No difference in mycobacterial growth was observed between mice 480 

strains.  Horizontal line demonstrates mean with bars SD.  (E)  Mouse weights did not differ between 481 

strains during the course of infection.  Circles denote wild type mice, squares MMP-1 and triangles 482 

MMP-9-expressing mice, plotting mean and bars SD. (F, G)  Infection up-regulated human MMP-1 and 483 

MMP-9 in lung homogenates of the respective transgenic mice.  Mean values +/- SEM are shown.   (H-484 

P)  In the MMP-1 mice, regions of tissue destruction developed (Arrowheads), with amorphous central 485 

material typical of human caseous necrosis (K, L, M), which was not observed in similar granulomas 486 

in wild type (H, I, J) or MMP-9 mice (N, O, P).   The experiment was performed 3 times, with a 487 

minimum of 5 mice per group.  Scale bars 25μm. 488 

 489 

Figure 3:  Cytokine secretion does not differ between MMP-1 and wild type mice, but collagen is 490 

absent in regions of caseous necrosis.  (A-F) Concentrations of TNF-α, IL-1β, IL-12, IFN-γ, MCP-1 491 
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and IP-10 were measured in mouse lung homogenates at 22 weeks after infection by Luminex array.  492 

Mtb infection up-regulated each of these pro-inflammatory mediators in all infected mice, but there 493 

were no significant differences related to the genotype of the mice.  Open bars, uninfected mice, filled 494 

bars Mtb-infected mice.  Mean +/- SEM values are shown.  (G-I) Total collagen was analyzed by 495 

Picrosirius red staining.  In wild type (G) and MMP-9 (I) mice, alveolar wall collagen remained intact 496 

in regions of macrophage infiltration.  However, in MMP-1 mice, collagen was destroyed and co-497 

localized with regions of caseous necrosis (H).  Data are representative of 5 mice per group infected in 498 

3 independent experiments.  Scale bars 50μm. 499 

 500 

Figure 4:  Collagen improves survival of Mtb-infected cells in a 2-dimensional primary human 501 

cell culture system.  Primary human PBMCs were infected with Mtb H37Rv in 24-well tissue culture 502 

plates and observed for 15 days.  (A) Cellular aggregates develop in Mtb-infected wells by day 4.  (B-503 

C) Mtb infection increases secretion of TNF-α and MMP-1 in cell culture supernatants analyzed by 504 

luminex array.   (D)  Aggregates cause pericellular collagen destruction, analyzed by co-culture with 505 

DQ-labelled collagen, which gains fluorescence when cleaved or (E) fluorescent collagen, which loses 506 

fluorescence when degraded.  (F) Addition of collagen to Mtb-infected cells reduces cell death, as 507 

analyzed by LDH release.  (G) In a 3-D model where cells and Mtb are incorporated into an agar matrix 508 

with or without addition of collagen, incorporation of collagen with cells improves cellular survival 509 

after Mtb infection.   Each experiment was performed a minimum of 2 times. Charts demonstrate the 510 

Mean + SEM of a representative experiment performed in triplicate. Scale bars: 100μm (A), 25μm (D, 511 

E). 512 

 513 

Figure 5:  A 3-dimensional bioelectrospray granuloma model demonstrates collagen improves 514 

cellular survival after Mtb-infection.  Alginate microspheres were generated by bioelectrospraying a 515 

mixture of sterile alginate and PBMCs, with or without the incorporation of Mtb H37Rv and / or 516 

collagen into a gelling bath, which crosslinks alginate to form microspheres.  (A) Microspheres imaged 517 
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immediately after bioelectrospraying by light microscopy. (B) Calcein staining of cells immediately 518 

after bioelectrospraying shows even distribution of cells throughout the microsphere.  (C)  Cells within 519 

microspheres phagocytose GFP-expressing Mtb after 4 days.  GFP-expressing TB (green) is 520 

phagocytosed by monocytes (red) in the overlayed image (arrowheads indicate GFP-TB). (D)  Large 521 

multicellular aggregates develop within Mtb-stimulated microspheres after 11 days, imaged after 522 

nuclear staining with DAPI.  (E-F)  IL-8 and MMP-1 progressively accumulate in media surrounding 523 

microspheres containing PBMCs cells infected with Mtb.  (Broken line uninfected, filled line Mtb-524 

infected).  (G) Incorporation of collagen into microspheres improves survival of THP-1 cells after Mtb 525 

infection, analyzed by LDH release.  (H)  Similarly, PBMCs show greater survival when infected in 526 

microspheres containing collagen.  (I)  Collagen improves viability of PBMCs infected with Mtb within 527 

microspheres when analyzed by propidium iodide staining.  (J)  Total cell numbers are increased in 528 

Mtb-infected collagen-containing microspheres, analyzed by ATP released from viable cells.  All 529 

experiments were performed a minimum of 2 times.  For charts, data represent the mean +/- SEM of 530 

experiments performed in triplicate.  Scale bars: 250μm (A, B), 10μm (C), 20μm (D).   531 

 532 

Figure 6:  A novel paradigm of TB pathology.  (A)  The current model of TB pathology proposes 533 

that cell death leads to caseous necrosis, which then causes lung extracellular matrix destruction, 534 

resulting in pulmonary cavitation and transmission.  (B)  Our data suggest that the initial pathological 535 

event is proteolytic destruction of the lung extracellular matrix, which then leads to cell death, resulting 536 

in the accumulation of caseous necrosis and cavitation. 537 

 538 

 539 
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Figure S1:  A, B.  Lung biopsies from patients under investigation for lung carcinoma but with a final 

diagnosis of TB were stained by Masson’s trichrome.  All extracellular matrix stains blue-green.  

Extracellular matrix is absent in all regions of caseous necrosis, which stains deep purple (highlighted 

by white arrowheads).  Images are representative of 5 TB patient lung biopsies that were studied.  

Scale bars 100 m.  C, D.  High magnification images from Figure 1 to demonstrate the areas of 

necrosis at high power.  Collagen (C) and elastin (D) are absent within areas of necrosis.  Scale bars 

25 m. 



Wild type

MMP-1

MMP-9

Figure S2:  Images of the whole lung sections of mice that the higher power magnifications are 

presented in Figure 2H-P.  The entire lung sections are presented from which the high power 

magnifications are taken to demonstrate that total lung inflammation does not differ between the 3 

mouse strains.   



Control                                                                  MMP-1                                                       MMP-9

Figure S3:  Acid fast bacilli (arrows) are present in areas of foamy macrophage infiltration in lungs of 

infected mice on Ziehl-Neelsen staining.  Data are representative of at minimum of 5 mice per group.  

Original magnification x100, scale bar 20 m. 



A

B

C

Figure S4:  Enlarged images of Figure 3, panels G, H and I to demonstrate the microscopic 

differences.  Collagen is absent in areas of caseous necrosis, whereas collagen is present where cells 

maintain normal morphology.  A, wild type, B MMP-1, C MMP-9-expressing mice. 
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Figure S5:  Cytokines progressively accumulate in cell culture supernatant of Mtb-infected PBMCs. 

Broken line, uninfected PBMCs, filled line Mtb-infected PBMCs.  Data are mean + SD of an 

experiment performed in triplicate, and represent an experiment performed on 2 occasions in 

triplicate. 
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