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Abstract The geological record at rifts and margins worldwide often reveals considerable along-strike
variations in volumes of extruded and intruded igneous rocks. These variations may be the result of
asthenospheric heterogeneity, variations in rate, and timing of extension; alternatively, preexisting plate
architecture and/or the evolving kinematics of extension during breakup may exert first-order control

on magmatism. The Main Ethiopian Rift (MER) in East Africa provides an excellent opportunity to address
this dichotomy: it exposes, along strike, several sectors of asynchronous rift development from continental
rifting in the south to incipient oceanic spreading in the north. Here we perform studies of volcanic
cone density and rift obliquity along strike in the MER. By synthesizing these new data in light of existing
geophysical, geochemical, and petrological constraints on magma generation and emplacement, we are
able to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly
forming magmatic rifted margin. The timing of rift sector development, the three-dimensional focusing
of melt, and the ponding of plume material where the rift dramatically narrows each influence igneous
intrusion and volcanism along the MER. However, rifting obliquity plays an important role in localizing
intrusion into the crust beneath en echelon volcanic segments. Along-strike variations in volumes and
types of igneous rocks found at rifted margins thus likely carry information about the development of
strain during rifting, as well as the physical state of the convecting mantle at the time of breakup.

1. Introduction

Continental rifts display significant along-strike variations in volumes of magmatism that ultimately causes a
heterogeneous igneous record along ancient rifted continental margins. However, there is no consensus
on the reasons for spatially variable magmatism during rifting. Increased volumes of magma intrusion have
previously been attributed to enhanced melting of the mantle caused by elevated potential temperature
[e.g., White and McKenzie, 1989; White et al., 2008], anomalous volatile content in the asthenosphere [e.g., Lizarralde
et al., 2007; Shillington et al., 2009], or higher extension rate [Bown and White, 1995]. Others favor lithospheric
hypotheses such as enhanced melting caused by occurrence of some degree of extension and lithospheric
thinning prior to arrival of a thermal anomaly [e.g., Armitage et al., 2010] or melt migration along the
lithosphere-asthenosphere boundary (LAB), with melt focusing greatest where the LAB has steepest gradients
[e.g., Shillington et al., 2009]. Rifting kinematics has also been suggested to influence the temporal development
of melting and locus of intrusion, with oblique extension causing accelerated localization of deformation
to a narrow axial zone and facilitating more localized plate thinning [e.g., Corti et al., 2003].

The Miocene-Recent Main Ethiopian Rift (MER) accommodates extension between the Nubian and Somalian
Plates, constituting the northern part of the East African rift system, and forms the youngest arm of the
rift-rift-rift triple junction currently positioned in central Afar (Figure 1) [e.g., Tesfaye et al., 2003; Wolfenden
et al.,, 2004; Ayele et al., 2007]. Plate kinematic models, constrained by GPS data and plate kinematic indicators,
indicate extension since at least ~3 Ma has been oriented N95-100°E and occurs at an average rate of ~6 mm/yr
(Figure 1) [e.g., Chu and Gordon, 1999; Stamps et al., 2008; Kogan et al., 2012]. Ethiopia offers a unique
opportunity to address controls on magma generation and intrusion because from south to north, several
stages of rift sector development are exposed, ranging from continental rifting in the south to incipient
oceanic spreading in Afar to the north (Figure 1) [e.g., Hayward and Ebinger, 1996; Keir et al., 2013]. Ongoing
seismic and tectonic deformation in the MER [e.g., Biggs et al., 2011; Keir et al., 2009; Pagli et al., 2014] and
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Figure 1. Fault pattern of the Main Ethiopian Rift (MER; modified from Agostini et al. [2011a]) superimposed on a digital
elevation model (Shuttle Radar Topography Mission data). Inset: the location of the three main rift sectors (Northern, Central,
and Southern MER, labeled NMER, CMER, and SMER, respectively). WFB: Wonji Fault Belt, SDFZ: Silti-Debre Zeit Fault Zone.
Black arrows show the extension direction [Kogan et al., 2012]. The extent of Quaternary-Recent volcanic rocks is taken from
Abebe et al. [2007]. Letters denote the main volcanic complexes as follows: Al, Aluto; Ay-Am, Ayelu-Amoissa; BB, Bora-Bericha;
Bi, Bilate river field; Bo, Boset; Co, Corbetti; Do, Dofen; EZ, East Ziway; Fe, Fentale; Ge, Gedemsa; Ha, Haledebi; and Ko, Kone.
White dotted lines show subdivision between SMER, CMER, and NMER.

a plethora of geoscientific constraints from the recent Ethiopia Afar Geoscientific Lithospheric Experiment
(see, e.g., Bastow et al. [2011] and Corti [2009] for reviews) make the region an ideal study locale for
continental rifting processes. Crucially, recent work in the MER has provided considerable support for
the hypothesis that magmatism plays a fundamental role in achieving extension, without marked crustal
thinning, prior to the formation of new ocean basins [Mackenzie et al., 2005; Keir, 2014].

In this contribution we analyze volcanic vent density to monitor volumes of upper crustal magma intrusion
and volcanism along the MER; we also constrain rift obliquity in the Southern Main Ethiopian Rift (SMER),
Central Main Ethiopian Rift (CMER), and Northern Main Ethiopian Rift (NMER) sectors in order to explore
its influence on magmatic strain localization. A priori constraints on subsurface rift structure and magma
intrusion volumes in the MER from controlled-source [e.g., Keranen et al, 2004; Maguire et al,, 2006] and
passive-source [e.g., Daly et al,, 2008; Kim et al., 2012] seismic studies, and from gravity surveys [e.g., Cornwell
et al.,, 2006], when combined with our new data, provide a clear understanding of lithospheric controls on
melt intrusion and volcanism along strike in the MER. Seismological [e.g., Bastow et al., 2005, 2008] and
petrological/geochemical [e.g., Rooney et al., 2012a, 2012b] studies constraining the thermochemical
state of the Ethiopian mantle then enable us to study the influence of the convecting asthenosphere on
the MER's developing igneous geological record.
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2. Tectonics, Volcanism, and Mantle Structure

The MER comprises two distinct systems of normal faults: (1) mid-Miocene border faults and (2) a set of Quaternary-
Recent in-rift faults, often referred to as the Woniji Fault Belt (WFB) which mostly developed since ~2 Ma
(Figure 1) [Mohr, 1967; Boccaletti et al., 1998; Ebinger and Casey, 2001]. The border faults are typically ~50 km
long, have a low density of <1km™", and are characterized by large vertical offset (>>500 m). Slip on these faults
accommodated basin subsidence and gave rise to the prominent escarpments that separate the rift floor from
the surrounding plateaus today. In contrast, the younger WFB faults are relatively short (typically <20 km long),
closely spaced with a fault density up to >2km™", and typically exhibit minor vertical throws of <100 m.

Along the MER, Quaternary-Recent volcanism is dominated by rhyolites, ignimbrites, pyroclastic deposits,
and subordinate basalts [WoldeGabriel et al., 1990; Gasparon et al., 1993; Boccaletti et al., 1998; Trua et al., 1999;
Peccerillo et al., 2003; Rooney et al., 2012¢; Giordano et al., 2014]. Magmatic activity is focused along the
WFB and the rift marginal Silti-Debre Zeit Fault Zone (SDFZ) and Akaki belts [e.g., Rooney et al., 2007, 201443;
Maccaferri et al., 2013] (Figure 1). Mafic volcanism along the WFB and SDFZ has taken the form of hundreds of
monogenetic basaltic vents consisting of spatter cones, scoria cones, and maars [e.g., Mazzarini et al., 2013a].
Analysis of earthquake and vent density shows that the zone of seismicity is generally around 20-30 km wide,
while the zone of vents is narrower and centered on the zone of seismicity [Mazzarini et al., 2013b]. Intense
faulting and a well-developed magma plumbing system (magmas fractionate in the upper ~5 km) characterize
the WFB [Rooney et al., 2007, 2011]. In contrast, the SDFZ lacks significant surface faulting and is associated
with a less well-evolved magmatic system in which magmas fractionate throughout the crust [e.g., Rooney et al.,
2007, 2011; Rooney, 2010; Mazzarini et al., 2013a].

The MER comprises three main sectors that have developed asynchronously: the southern, central, and
northern MER (Figure 1; the SMER, CMER, and NMER, respectively) [Abebe et al., 2010]. The onset of each
sector’s development is constrained by stratigraphy exposed at the rift margins. In the SMER (Figure 1: south
of ~7.5°N), faulting was well established by ~18 Ma [WoldeGabriel et al., 1990; Ebinger et al., 1993]. In the CMER
(Figure 1: 7.5-9.5°N), dating of synrift growth of sedimentary and volcanic sequences, and fission track
thermochronology on exposed basement rocks, indicates rapid growth of border faults began between 6
and 11 Ma, somewhat later than in the SMER [Ukstins et al., 2002; Wolfenden et al., 2004; Bonini et al., 2005;
Abebe et al., 2010]. The western rift shoulder of the CMER is intersected at ~9°N by the Yerer-Tullu Wellel
Volcanotectonic Lineament (YTVL), which is thought to be a reactivated Precambrian lineament [e.g., Abebe
et al.,, 1998]. The YTVL has experienced volcanism since ~12 Ma [Abebe et al., 1998; Wolfenden et al., 2004]
and lies close to several rift marginal volcanic fields (e.g., SDFZ and Akaki belt) [Rooney et al., 2014a].
Low-velocity anomalies in mantle seismic tomographic models at ~75 km depth beneath the YTVL contrast
with faster wave speed plateau lithospheric structure to the north and south [e.g., Bastow et al., 2005].

North of 9.5°N the NNE trending NMER is set within the Afar depression (Figure 1). Rifting initiated in the
southern Red Sea at ~30 Ma [e.g., Wolfenden et al., 2005; Ayalew et al., 2006] and at ~35 Ma along the full
length of the Gulf of Aden (Figure 1) [e.g., Leroy et al., 2010]. The NMER therefore bisects lithosphere already
extended during ~20 Ma of earlier approximately NE oriented African-Arabian Plate separation [e.g., Wolfenden
et al.,, 2004; Keir et al., 2011al.

The thermochemical African superplume dominates the mantle structure beneath East Africa in the majority of
global tomographic models [e.g., Li et al., 2008; Ritsema et al., 2011; Schaeffer and Lebedev, 2013]. Regional
seismic tomographic models also indicate that the MER is underlain by anomalously slow wave speed mantle
(see, e.g., Fishwick and Bastow [2011] for a review). Mantle wave speeds in Ethiopia are, in fact, amongst the
slowest worldwide [Bastow et al., 2005, 2008], consistent with the view that the Ethiopian mantle differs
markedly from ambient asthenosphere [e.g., Rooney et al., 2012a; Ferguson et al., 2013]. The low wave speed
structure of the Ethiopian mantle is due, at least in part, to elevated mantle potential temperatures of up to
~1490°C [Rooney et al,, 2012a]. However, the presence of residual melt retained throughout the regional mantle
equally plays an important role in the inferred slow seismic wave speeds, which cannot be explained by
temperature alone [Rooney et al., 2012a].

3. Quantitative Analysis of Rift Kinematics, Vent Density, and Volcanism

In our data analysis, we quantify the relationship between rift kinematics and amount of upper crustal diking
and resultant development of aligned cone fields.
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Figure 2. Along-axis variation of geological and geophysical properties in the MER. The position of profile A-A’ is labeled on
Figure 1. (a) Orange circles are measurements of rift obliquity, and red circles are measurements of vent density. (b) Crustal
seismic anisotropy along the MER [Keir et al.,, 2011a, 2011b] and a selection of locally representative focal mechanisms.
(c) Along-axis variation in SKS splitting delay times with measurements 25 km either side of the middle of the rift axis
projected onto the profile [Kendall et al., 2005]. (d) Topographic profile along the rift axis (top) and P wave velocity model of
Maguire et al. [2006] (bottom). Labels are uc: upper crust, l.c: lower crust, M: Mohorovicic discontinuity, and L: mid-Lithosphere
reflector. Stars are locations of shot points. Earthquake hypocenters 25 km either side of the center of the rift axis are
projected onto the section.

3.1. Rift Kinematics

Rift obliquity (o), the angle between rift extension direction and the direction perpendicular to rift trend,
provides a useful measure to describe along-strike variations in MER kinematics. The obliquity angle a has
been calculated at 50 km intervals along the MER between 6.5°N and 10.5°N (Figure 2a). For these calculations,
the rift trend has been defined as the average orientation of the rift margins, whereas the extension direction
has been assumed N100°E trending, based on the available GPS constraints (see above section 1). The SMER
extends by approximately pure orthogonal rifting, whereas the CMER extends by low-to-moderate obliquity
extension [e.g., Agostini et al., 2011a].

3.2. Vent Density

Monogenetic vents are directly linked to feeder dikes [e.g., Tibaldi, 1995; Connor and Conway, 2000; Mazzarini
et al., 2013b], and their density can be used as an estimation of the degree of diking in the upper crust. To
this end, we mapped more than 800 monogenetic vents between 6.5°N and 10.5°N along the MER (Figure 1).
Vent separation (nearest neighbor distance) is in the range 0.02-18.7 km, with an average of 0.9 km and
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Table 1. Compilation of Obliquity, Vent Density, and Age of the Three Primary Sectors of the Ethiopian Rift

Rift Sector Latitude (°N) Obliquity (Deg) Vent Density (kmz) Rift Age (Myr)
SMER <7.5 0-15 290-480 11-20
CMER 7.5-9.5 30-45 800-1500 6-11
NMER 9.5-11 15 130-320 30

standard deviation of 1.6 km. To establish the variations in frequency of near-surface diking, we analyzed the
density of volcanic vents using a two-dimensional symmetric Gaussian kernel density estimate [Connor and
Hill, 1995; Kiyosugi et al., 2012]:

a2
i

1 N T2
AMX)=—-=)» e 7i 1
) 27 Nh? 2’21 M

where d; is the distance between location x and the N vents, and h; is the smoothing bandwidth for vent . In
this way, the frequency distribution of “neighbor” samples is inferred. Distance values between neighbor
samples larger than h; have a small weight in the computation of the density estimate. We used a variable h
value, consisting of the half value of the distance between each sample and its nearest sixth neighbor
[Favalli et al,, 2012]. In addition, we computed the area defined by isodensity (vents/km?) contours and
computed the area that contains more than 90% of sampled vents, assuming these areas are proxy for the
diking along the MER. We count the vented areas in 50 km wide windows oriented normal to the NE-SW rift
trend. For each scan window the dike intensity is thus expressed as an area (km?). The wider the vented
area, the wider the portion of rift’s crust affected by diking. We then project results along a ~400 km long,
NE-SW trending along-rift crustal profile (Figure 2a).

4. Results
4.1. Rift Obliquity and Vent Density

The MER shows significant variations in & between the three sectors of the MER (Figure 2). SMER border faults
trend ~N10°-25°E, yielding an obliquity of a=0-15°. Axial deformation is not well developed but, where
present, is localized to ~N10°-15°E trending normal faults (Figure 1) [Hayward and Ebinger, 1996; Agostini
et al, 2011a; Corti et al., 2013]. Diking intensity in the SMER is 290-480 km? (Figure 2).

The CMER trends ~N30°-50°E and a = 30-45° with respect to the Nubia-Somalia vector. Miocene border faults trend
~N30°-40°E, but Quaternary-Recent WFB axial faults trend ~N15°-20°E [e.g., Agostini et al,, 2011a]. The oblique

extension in the CMER means that the WFB defines a series of right-stepping, en echelon volcanic segments. These
are oblique to the rift axis and Miocene border faults but roughly orthogonal to the regional extension direction.

In the CMER, near-surface deformation is concentrated in the WFB and SDFZ, two subparallel belts of focused
tectonic-magmatic activity (Figure 1) [e.g., WoldeGabriel et al., 1990; Rooney et al., 2007, 2011]. Vent density
peaks in the CMER at 8001500 km?, largely due to increased volcanism along the WFB compared to the
SMER and NMER and due to the volcanic chains of the SDFZ near the western rift margin (Figure 2 and Table 1).
The increased vent density in the CMER also corresponds to an increase in the surface area of Quaternary-
Recent volcanic rocks in this sector of the rift [Abebe et al., 2007] (Figure 1).

Quantifying rift obliquity in the NMER is more challenging than in the CMER and SMER, since the Oligocene
border faults that define the Afar Depression are mutually perpendicular. We thus instead use the ~N25°-30°E
orientation of Late Miocene-to-Pliocene age border faults to define a. The WFB strikes ~N15°-20°E and defines
a series of Quaternary-Recent volcanic segments that are mostly colinear except for one major rift-stepping
offset at 10°N. Diking intensity in the NMER is 130-320 km? (Figure 2 and Table 1). In summary, diking
intensity and, by inference, magmatic intrusion within the upper crust are higher by a factor of ~3 in the
CMER than in the NMER and SMER. The peak in diking intensity corresponds to a peak in rift obliquity of
0.=35-40° (Figure 2).

4.2, Along-Rift Variations in Seismicity

Along-rift variations in seismicity are well resolved using the dense distribution of seismic stations deployed
in the MER during the period 2001-2003 (Figures 2 and 3). In the SMER, earthquakes are distributed across a
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Figure 3. Main geological structures of the Main Ethiopian Rift
(MER) plotted on topography. Miocene border faults that bound
the rift valley are solid black line. Dashed black lines show prominent
off-axis volcanic lineaments: the Debre Zeit Volcanic Lineament
(DZVL) and the Yerrer Tulu-Wellel Volcanic Lineament (YTVL). Red
lines indicate Quaternary-Recent volcanic segments from Ebinger
and Casey [2001]; AG: Aluto Gedemsa segment, BK: Boset-Kone
segment, and FD: Fentale-Dofen segment. White triangles are
major rift volcanoes. The ~N100°E extension direction is shown by
black arrows. Profile A-A' in Figure 2 is marked by dashed line along
the axis of the rift. Note that the profile is segmented to capture
topography along the central axis of the rift. (top) Seismicity (black
dots) recorded during October 2001 to February 2003 with the
catalog complete above magnitude 2.1 [Keir et al., 2006]. (bottom)
White arrows show percent seismic anisotropy measured from local
earthquakes [Keir et al., 2011b]. Arrows parallel to fast polarization
direction of the S waves; their lengths are scaled according to
percent S wave anisotropy. Earthquake focal mechanisms are
computed from local seismic stations [Keir et al., 2006] and from
regional/global data [Foster and Jackson, 1998; Ayele, 2000].

50 km wide zone that includes the eastern rift
flank border fault. This pattern of strain is
consistent with the broad zone of collapse
calderas and faults observed at the surface
[e.g. Le Turdu et al., 1999; Agostini et al., 2011b;
Corti et al., 2013]. Seismicity in the CMER
and NMER is generally characterized by
earthquakes on the normal fault networks of
the WFB, with the volcanic centers themselves
being relatively aseismic. In the Fentale-Dofen
volcanic segment at 9-9.5°N, for example,
seismicity along the rift axis is concentrated
at 9-14 km depth within a narrower (30 km
wide) axial graben that is coincident with the
20-30 km wide zone of mafic intrusion [Keir
et al., 2009]. Most earthquakes are normal
dip slip on NNE striking, axial parallel faults.
Vertical P axes and T axes parallel to the
extension direction (Figures 2 and 3) are
consistent with the style of faulting. In the
Boset-Kone volcanic segment at 9-9.5°N, low
seismicity and the absence of earthquakes
deeper than ~10km (Figures 2 and 3) are
indicative of elevated heat flow suppressing
brittle deformation [e.g., Beutel et al., 2010;
Daniels et al., 2014]. Focal mechanisms in
the CMER include strike-slip earthquakes
with rift-parallel P axes and T axes that
parallel rift opening (Figures 2 and 3). This is
controlled by the obliquity of the CMER, with
normal faulting within volcanic segments
and strike-slip faulting in the transfer zones
connecting them.

4.3. Geophysical Indicators of Along-Rift
Variations in Melt Emplacement
and Production

Wide-angle seismic experiments reveal a
~35-40 km thick crust in the SMER (Figure 2),
which is ~10 km thinner than beneath the
adjacent plateaus [Mackenzie et al., 2005;
Maguire et al., 2006; Keranen et al., 2009]. The
crust thins to ~28 km between 8 and 9.5°N
in the CMER, but there is little evidence for
further crustal thinning in the NMER (Figure 2)
[Maguire et al., 2006]. P wave speeds (V,) in
the lower crust range from 6.6 to 7.2 km/s,
peaking at 7.1-7.2 km/s in the lowermost crust
between Gedemsa and Fentale volcanoes in
the CMER (Figure 2). Elevated wave speeds of
>6.8 km/s have been interpreted as evidence
for gabbroic crustal intrusions [e.g., Keranen
et al.,, 2004; Mackenzie et al., 2005]. In the upper
crust, 3-D controlled-source tomography
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shows significant variation in V,, with
discrete high V), (>6.4 km/s) zones beneath
the volcanic segments. Anomaly amplitudes
peak beneath the Boset-Kone segment in
the CMER [Keranen et al., 2004].

Broadband seismological studies constrain
the distribution and orientation of melt
production, percolation, and intrusion
into the mantle lithosphere and into the
crust. Studies of mantle seismic anisotropy
demonstrate that across the MER, fast
polarization directions () mirror the ~30°
difference in strike between MER border
faults and axial volcanic segments [Kendall
et al., 2005] (Figure 4). This was interpreted
as melt intrusion localized through the
lithosphere since the Quaternary [Kendall
et al., 2005]. However, the magnitude of
anisotropy is highest beneath the border
faults, an observation interpreted as
enhanced melt extraction and flow along the
steeply dipping lithosphere-asthenosphere
boundary (LAB) [Kendall et al., 2005].
Evidence for an extension-related control
on mantle seismic anisotropy beneath
the MER also comes from back azimuthal
variations in Sy, and Sy, derived from
dispersion analysis of Rayleigh and Love
waves, respectively. These data point
strongly toward an oriented melt pocket
mechanism of seismic anisotropy, with the
implication that elongate melt intrusions

Figure 4. (a) P wave velocity structure beneath the Ethiopian Rift (MER), characterize the MER lithosphere between
adjacent plateaus, and southern Afar at 75 km depth from the study 20 and 75 km depth [Kendall et al., 2006;

of Bastow et al. [2008]. Mid-Miocene border faults of the MER and pre-  Bastow et al., 2010].

Miocene border faults of the Red Sea and Aden Rifts (black and white iy - .

lines) define the primary topographic expression of the rift. Volcanically Within the MER, SKS splitting delay times (4t)
active Quaternary-Recent rift segments define the axis of the central  increase northward from 5t=1-1.5s in the
northern MER. (b) Direction and magnitude of S wave anisotropy SMER to ~2.5 s in the CMER (Figures 2 and 4).
measured using SKS splitting [Kendall et al., 2005]. Arrow direction is  |n the NMER, ot falls to ~1.5s, remaining
parallel to fast polarization direction, and arrow length is scaled to
amount of splitting. Border faults and segments are as in Figure 4a.

-15 -1.0 -05 0.0 05 1.0 15

P-wave % velocity anomaly

relatively constant into central Afar and
Djibouti [Ayele et al., 2004; Kendall et al., 2006;
Gao et al., 2011; Hammond et al., 2014].
Seismic anisotropy peaks in the CMER, consistent with the view that MER melt volumes are highest there.
Studies of crustal seismic anisotropy tell a similar story, with shear wave splitting delay times from ~6 to

10 km deep local earthquakes higher at 6t =0.24 s (6% anisotropy) in the CMER than in the SMER and NMER
where Jt=0.1-0.15s, ~3% anisotropy [Keir et al., 2011b] (Figures 2 and 4).

The correlation shown between the peak in SKS delay times and intensity of upper crustal intrusions provides
strong evidence that variations in melt generation in the mantle and transport in the deep lithosphere are
broadly responsible for along-rift variations in intrusion and volcanism. Such an inference is consistent
with regional-scale relative arrival time mantle tomographic inversions [e.g., Bastow et al., 2005, 2008] that
demonstrate that the lowest wave speeds in the uppermost mantle beneath the MER are lowest beneath the
CMER (Figure 4). However, the lowest wave speeds do not lie directly beneath the present-day locus of strain,
the WFB, and are instead offset toward the rift flanks and mirroring the half-graben rift morphology that

KEIR ET AL.

©2015. The Authors. 470



@AG U Tectonics 10.1002/2014TC003698

characterized the early mechanical stages of MER development in Miocene times (Figure 4). As mentioned
earlier, preexisting base of lithosphere topography is also thought to play a role in governing melt migration
beneath the region [e.g., Bastow et al., 2005, 2008].

The lowest uppermost mantle wave speeds beneath the CMER lie beneath the intersection of the YTVL and
CMER, not beneath the rift axial Quaternary magmatic segments. Segmentation of the mantle low wave
speed anomalies is also on longer length scale (~150 km) than the ~60 km long crustal segments above them
[Bastow et al., 2005, 2008]. These observations suggest that a first-order connection between crust and
mantle magmatic processes in the MER does not exist, in contrast to the ocean basins where mantle anomalies
reflect segmentation along the spreading ridges [e.g., Wang et al., 2009]. Processes such as lateral melt
migration are thus required to transport melt generated in the mantle toward the rift axis [Bastow et al., 2005].

5. Discussion

Global variations in the amount of magma intrusion and volcanism during the transition between continental
rifting and initial seafloor spreading are commonly attributed to increased melt production caused by elevated
asthenospheric potential temperature [White et al., 2008], mantle composition [Lizarralde et al., 2007], active
upwelling [Holbrook et al., 2001], and increased extension rate or shorter duration of rifting [Bown and White,
1995]. We have established, using analysis of variations in volcanic cone distribution, clear evidence for along-
rift variations in volcanism and crustal magma intrusion that correlate spatially with geophysical indicators

of increased melt intrusion in the deeper lithosphere and enhanced melt production in the asthenosphere.
However, there exists a wide array of processes that may impact these observations. In the discussion below we
explore these processes and examine whether mantle geodynamic and/or plate tectonic processes provide
clearest answers for the observed variations in melt production and intrusion in the MER.

5.1. Controls on Along-Rift Variations in Magma Generation

Observations of variations in the volume of magma intrusion into the continental lithosphere could, to first
order, be explained by heterogeneity in the generation of magmas along a continental rift. Fundamentally,
the variable supply of such magma could reflect in the degree of magma intrusion into the continental
lithosphere—much in the same manner as at an oceanic spreading center. Below we examine the potential
mechanisms that could promote variable along-rift magma production in the MER.

5.1.1. The Afar Plume and Mantle Potential Temperature

Quaternary-Recent basalts erupted in the Gulf of Aden, Afar, and the MER preserve details of the mantle
reservoirs that currently contribute to melt generation in the region. Studies of these magmas have revealed
that their geochemical characteristics may be described in terms of mixing between the ambient depleted
upper mantle, the African lithosphere, and the Afar plume [Hart et al., 1989; Schilling et al., 1992; Deniel et al,
1994; Furman et al., 2006; Rooney et al., 2012b]. Elevated mantle potential temperatures associated with the Afar
plume could result in variable degrees of magma generation within the region as mixing between the plume,
depleted mantle, and lithospheric reservoirs is variable both in a spatial [Schilling et al., 1992; Rooney et al.,
2012b] and temporal sense [Rooney et al., 2013] and could result in along-rift changes in magma production.

The isotopic characteristics of primitive basalts erupted in the WFB and SDFZ in the central and northern MER
show the clear influence of the “C" mantle reservoir, interpreted as representing contribution of the Afar
plume to magma generation [e.g., Furman et al., 2006; Rooney et al., 2012b]. Anomalously hot and buoyant
plume material may flow along channels of thin lithosphere [e.g., Sleep, 2008], such as beneath the MER, and
regions of preexisting lithospheric thinning like the YTVL. Previous studies have raised the possibility of such
processes controlling magmatism throughout the African continent [Ebinger and Sleep, 1998]. In particular,
there is clear evidence that the flow of channelized plume material is a first-order control on magmatism in
the Gulf of Aden [Schilling et al., 1992; Leroy et al., 2010] and MER [Rooney et al., 2012b, 2013]. The influence
of this plume component on magmatism broadly decreases southward along the rift [Rooney et al., 2012b].
However, the distribution of recent rift magmatism does not correlate with a simple model of a southward
decrease in the Afar plume component.

Evidence of the interaction between channelized plume flow and lithospheric structure along the Gulf of
Aden and MER [e.g., Rooney et al., 2007; Leroy et al., 2010] suggests that while the plume material influences
melt generation, the precise mechanisms of melt generation are more complex. Previous studies have
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highlighted the role of segmentation and discontinuities in the Gulf of Aden spreading axis leading to
disruption of axial flow and the formation of off-axis magmatism [Leroy et al., 2010]. In the MER, southward
thickening of the lithosphere occurs in the CMER where magmatism is particularly focused [Bonini et al., 2005;
Rooney et al., 2007] (Figure 2). The geochemistry of the volcanic rocks in this region is consistent with the
southward increase in LAB depth acting as an obstruction to the southward flow of plume material, with
potential application to understanding the spatial pattern of magma generation and intrusion.

5.1.2. Volatile Enrichment of the Mantle

Heterogeneity in melt production can be facilitated by selective hydration of the mantle. However, the
sublithospheric reservoirs contributing the magma generation in Afar (i.e., the depleted mantle and Afar
plume) are not notably enriched in volatiles. Specifically, the East African depleted mantle is not impacted by
modern subduction, and mantle plumes such as the Afar plume are not notably hydrated [e.g., Dixon et al.,
2002]. Hydrous phases do, however, exist within the Ethiopian subcontinental lithospheric mantle [Ferrando
et al., 2008; Frezzotti et al., 2010]. Melt generation through thermobaric perturbation of such phases may
result in melt production [Rooney et al., 2014b], but the absence of the unusual isotopic and trace element
values that typify ancient hydrated domains in Quaternary rift basalts argues against such hydration as a
primary control on magma generation along the rift.

5.1.3. Along-Rift Variations in Extension Rate

Geodynamic models indicate that increased extension rate causes increased melt production [Bown and
White, 1995], with the implication that along-strike changes in extension rate could cause along-rift variations
in melting. However, in the sectors of the MER we analyze, both current and past plate motions predicted
from plate kinematic models show no significant variations in extension rate nor amount of extension, for
at least the last ~3 Ma [e.g., Chu and Gordon, 1999; Stamps et al., 2008]. Neither variation in amount or rate of
extension explains variations in magmatism.

5.1.4. Asynchronous Rift Sector Development

The MER is the youngest rift of the Afar triple junction with plate reconstructions constrained with geochronology
and structural data suggesting that the NMER within the Afar depression overprints lithosphere stretched by
~19 Ma pre-MER extension forming the Red Sea and Gulf of Aden [e.g., Tesfaye et al., 2003; Wolfenden et al.,
2004] (Figure 1). This stepped along-rift variability in duration of lithospheric stretching where the MER emerges
into Afar explains spatially coincident stepped thinning of the crust and mantle lithosphere [Maguire et al.,
2006] (Figure 2). Extension is also thought to have been initiated earlier at ~10-20 Ma in the SMER than in
the central MER at ~6-11 Ma [WoldeGabriel et al., 1990; Ebinger et al., 1993; Bonini et al., 2005]. Therefore,
available constraints suggest that the CMER has a younger history of rifting than elsewhere in the MER, with
the implication that the thermal anomaly created by upwelling asthenosphere in this sector of the rift has not
yet cooled to that of the surrounding material [Bastow et al., 2005, 2008] (Figure 4). A younger history of plate
stretching may therefore contribute to increase magma production in the CMER. The younger age of the
CMER would also mean that there has been less time for magmas to be extracted from the mantle, which
would also explain the lower mantle velocities there.

5.2. Mechanisms That Facilitate Heterogeneity in Magma Intrusion Into the Continental Lithosphere

We have noted that asynchronous rift sector development and the obstruction to southward flow of plume
material at the CMER are potential controls on causing heterogeneities in along-rift melt production. Next
we examine the impact that rift architecture and kinematics has on melt emplacement in the lithosphere and
its resulting impact on the degree and distribution of intrusion and volcanism.

5.2.1. Melt Focusing by Steep Gradients on the LAB

The spatial coincidence of along-axis lithospheric thinning in the CMER with the peaks in crustal and mantle
anisotropy (Figures 2), and the zone of lowest wave speeds beneath the MER [Bastow et al., 2008] (Figure 4),
suggests a causative link. The elevated SKS splitting delay times at the flanks of the MER supports a mechanism
of enhanced melt production and melt migration along steep gradients on the LAB beneath the margins of
the MER [Kendall et al., 2005; Holtzman and Kendall, 2010]. The along-rift peak in SKS splitting in the CMER,
coincident with along-rift thinning of the lithosphere, suggests that three-dimensional (3-D) variations in LAB
topography may also be important in focusing melt supply (Figure 5). In addition, in the CMER, the orientation
of the low seismic velocity anomaly at 75 km is beneath and parallel to the YTVL. However, the SKS splitting
fast directions are orthogonal to that and rift parallel, supporting the assertion of melt intrusion once in the
lithosphere is controlled by the regional tectonic stresses [Rooney et al., 2014a].
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Figure 5. Conceptual model for the creation of enhanced magma production and supply beneath the MER. (left) Cross-rift
section illustrating enhanced melting along the lithosphere-asthenosphere boundary (LAB) beneath the margins of the
MER. Melt is predominantly focused at shallower depths to the rift axis following strain gradients and intruding the crust as
dense mafic sills and dikes. Some melt is also supplied to rift margin magmatic systems. (right) Along-rift section displaying
enhanced melt production from the presence of along-axis thinning of the MER as the rift valley opens into the Afar
depression stretched by prior extension of the southern Red Sea and western Aden Rifts.

Three-dimensional focusing of melt is an important process at mid-ocean ridges, where melts are generated
over a relatively broad region in the mantle, but magmatic addition to the crust occurs primarily at the
ridge axis due to melt migration along the base of the lithosphere [e.g., Magde and Sparks, 19971. Such

a mechanism not only accounts for across-rift variation in magmatism but can also explain enhanced
magmatism beneath segment centers where the lithosphere is locally thinned [e.g., Dunn et al., 2005]. Locally
enhanced magma production along steep gradients of the LAB also explains the abrupt transition from
magma-rich to magma-poor rifting during continental breakup in the eastern Black Sea [Shillington et al.,
20091. In this setting, migration of melts occurs subvertically from the base of the melting zone to the LAB,
with the addition of lateral vector caused by melt migration along the steeply inclined LAB. Migration of
melt along the LAB focuses crustal magmatic accretion to a relatively short, narrow zone in the rift axis that
eventually evolves into volcanic segments in an incipient seafloor spreading system. Such a mechanism
of along- and across-rift thinning of the lithosphere in the CMER likely plays an important role in melt
migration and emplacement (Figure 5).

5.2.2. Localized Extension due to Oblique Rifting

While the peak in magmatism in the CMER can be broadly explained by variable melt supply caused by
asynchronous rift sector development, 3-D melt focusing, and ponding of plume material, the specific location
and length scales of mantle anomalies show anticorrelation with the crustal zones of magmatism in the
WEFB [Bastow et al., 2005, 2008]. Instead, an increase in crustal intrusions and volcanism appears to peak
coincidently with variations in rift obliquity and lie directly beneath the surface expression of the Quaternary-
Recent volcanic segments (Figures 1 and 2).

Both numerical [van Wijk, 2005] and analogue models [Corti, 2008; Agostini et al., 2009] of lithospheric thinning
for rifts at varying obliquity demonstrate that after an initial phase of boundary fault activity localized thinning
of the lithosphere occurs in axial pockets oriented roughly perpendicular to extension. For the same amount
of bulk extension and similar amounts of lithospheric thinning, the degree of strain localization from border
faults to rift axis increases with increasing obliquity [e.g., Agostini et al., 2009]. In the CMER, higher rift obliquity
favors early abandonment of boundary faults and early shift to localized faulting in the WFB within the rift
floor. This in turn should correspond to a more localized thinning of the plate with the implication that
decompression melting could be more focused beneath rifts undergoing low-to-moderate obliquity extension
than beneath orthogonal rifts. Numerical models of low-obliquity volcanic ocean ridges support this hypothesis,
where the segmented and localized upwelling and mantle melting help explain increased volcanism at
some ridges such as the Mohns and Reykjanes ridges [van Wijk and Blackman, 2007].
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In addition, recent numerical models of continental breakup [Brune et al., 2012; Heine and Brune, 2014] suggest
that oblique extension facilitates rifting and breakup at lower forces than for orthogonal extension, with a
fundamental implication that oblique rifting occurs more rapidly [Ebinger and van Wijk, 2013] with resultant
increased melting from faster plate thinning [Bown and White, 1995]. Additionally, rapid and localized faulting
and fracturing of the crust induced by oblique extension are likely to aid transport and intrusion of melt
into the upper crust and eventual eruption at the WFB.

6. Conclusions

Along-strike variations in geological geophysical properties of the MER provide a unique 3-D snapshot of
deformation and magma production beneath a developing magmatic rift. Ethiopia’s widespread, voluminous
magmatism is the result of continental breakup above a thermochemically anomalous mantle. Along-strike
variations in magma intrusion and volcanism are broadly explained by variations in melt production caused
by asynchronous rift sector development. Additionally, where the rift dramatically narrows, ponding of
southward flowing plume material from Afar may enhance melting, and 3-D migration of melt along steep
gradients of the LAB likely focuses magma supply into the plate. Our analysis also indicates that rifting
obliquity likely aids localizing crustal intrusion beneath en echelon volcanic segments during rifting. Along-rift
variations in magmatism are unlikely due to variations in mantle potential temperature, water content, and
extension rate. Therefore, along-strike variations in volumes and types of igneous rocks found at rifted margins may
thus carry considerable information concerning history and architecture of the rift, as well as the thermochemical
state of the convecting mantle at the time of breakup.
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