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In this paper, we investigate the hyperelastic tensile behaviour of single layer graphene sheets

(SLGSs). A one-term incompressible Ogden-type hyperelastic model is chosen to describe the

mechanical response of C-C bonds. By establishing equality between the Ogden strain-energy and

the variation of the Tersoff-Brenner interatomic potential, three different geometries of SLGSs are

studied under tensile loading. We compute the Young’s modulus, the finite-deformation Poisson’s

ratio, ultimate strains, total reactions, and the variation of the potential energy per carbon atom for

large strains. Numerical simulations are compared with results obtained by molecular mechanics

and molecular dynamics simulations, finite elements, continuum mechanics theory, and

experiments. Our predictions are validated, revealing the potential predictive capabilities of the

present hyperelastic framework for the analysis of graphene in the context of infinitesimal and large

deformations. The good agreement found between our calculations and the published data suggests

that graphene may be described as a hyperelastic material. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4908119]

Over the past decade, the investigation of single layer

graphene sheets (SLGSs) has brought substantial progress,

particularly in the understanding of their mechanical behav-

iour by means of computational predictive simulations. In

the context of numerical methods, the finite element (FE)

based lattice approach, or atomistic FE method, is a promis-

ing technique to analyse the mechanical response of complex

nanostructures.1

The atomistic FE method establishes an equivalence

between structural and molecular mechanics (MM) at the

C-C bond level, representing a versatile procedure to model

atomic bonds by means of beam-type elements in conven-

tional FE analyses.

Due to its mathematical simplicity and potential adapta-

bility to describe the response of several materials within the

regime of large strains, an Ogden hyperelastic isotropic mate-

rial model2 is chosen for the non-linear mechanical descrip-

tion of C-C bonds. We note that a hyperelastic behavior of

SLGSs has been observed recently.3 Experimental evidence

of the non-linear effects in SLGSs has also been reported.4

A generic finite hyperelastic model is characterised by

the existence of a strain energy density function W which is

determined uniquely by a tensor describing the deformation

of the material. If this deformation is defined by the principal

stretches ki (with i¼ 1, 2, 3) or eigenvalues of the right (and

left) stretch tensor,2 the constitutive equation for the princi-

pal Kirchhoff stresses can be written as2

si ¼ �pþ ki
@W
@ki

: (1)

Here, perfect incompressibility has been assumed. The scalar

p in Eq. (1) is identified as a hydrostatic pressure and may be

determined only from equilibrium equations and the bound-

ary conditions.

In this work, a one-term incompressible version of the

Ogden strain-energy density function is adopted. This can be

expressed as

W ¼ 2v
a2

k1ð Þa þ k2ð Þa þ
1

k1k2ð Þa � 3

� �
: (2)

We note that in the above equation, the volumetric constraint

k1k2k3 ¼ 1 has been adopted. The parameters v and a are

material constants and are obtained by fitting Eq. (2) accord-

ing to the variation of the Tersoff-Brenner interatomic

potential.5,6 By adopting an equivalent beam element for each

C-C bond, with circular cross-section of diameter 0.147 nm

and equilibrium bond length of 0.142 nm,7 the above fitting

procedure results in the following material constants:

v ¼ 1166:18 GPa and a ¼ �10:0; (3)

for those C-C bonds under longitudinal shortening, and

v ¼ 2332:36 GPa and a ¼ �14:0; (4)

for those bonds under longitudinal stretching.

We use the commercial software ABAQUS (Ref. 8) and

we analyse three arbitrary geometries with initial dimensions

of 4.67 nm � 4.11 nm, 3.44 nm � 1.99 nm, and 1.48 nm

� 1.56 nm, in the X and Y (in-plane) directions, respectively.

For the first SLGS, the corresponding FE mesh consists of

780 nodes and 1131 beam elements. The second mesh con-

tains 290 nodes and 411 elements, and the third mesh, 104
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nodes and 142 elements. We select the two-noded hybrid

beam element, type B31H, which is compatible with the

adoption of a hyperelastic Ogden model.8 Transverse shear

strains are considered in the beam element formulation.

Non-linear kinematics (and the non-linear response of the

material under a large strains regime) is considered in the

modelling. Although Timoshenko B31H beams can be sub-

jected to large non-linear axial strains, their transverse shear

behavior is assumed to be linear elastic with a fixed modulus.

Vertical displacements (along the Y direction) are set to zero

on the nodes located at Y¼ 0 (bottom edge). Horizontal dis-

placements (along the X direction) are also set to zero at

lower and upper left nodes. Prescribed displacements in the

vertical direction are imposed on the upper edge, and

increase from zero up to the onset of the breakage of the C-C

bonds. Refer to Figure 1 for details.

In order to validate the present model, we compute the

Young’s modulus for the three cases analysed. The numeri-

cal predictions presented here are obtained from the linear-

ised elastic constants of our model. After straightforward

mathematical procedures,9 the value of the constant v in

Eq. (2) can be related to the linear elastic shear modulus G,

through the condition v ¼ G.10,11 In the limit of incompressi-

bility, the shear modulus becomes E=3 in isotropic solids.

Thus, we obtain the relationship E ¼ 3v, which is used to

perform our computational simulations under small displace-

ment theory and an infinitesimal strain regime.

In Table I, our numerical predictions are compared with

published data, taking into account several theoretical tech-

niques, such as FE simulations,12–14 molecular dynamics

(MD),15 and density functional theory (DFT).16,17 In order to

be consistent with these data, our calculations considered an

equivalent thickness of 0.34 nm. It is also interesting to com-

pare our values with the experimental measures of 1.0 TPa

(Refs. 4 and 18) and 0.5 TPa (Ref. 20) (AFM). An experi-

mental value of 1.0 TPa was also reported for pyrolytic

graphite.19 In the context of carbon nanotubes, Yu et al.21

measured values between 0.32 TPa and 1.47 TPa. Ding

et al.22 determined values between 0.62 and 1.2 TPa (SEM).

We must note that, in spite of having a relatively good agree-

ment with those values less than 0.85 TPa, our predicted

results are smaller than those values next to 1 TPa.

From Table I, we also observe a size-dependence that

our model is able to predict. Size-dependent elastic proper-

ties of graphene have been previously reported.23,24 For

instance, Jing et al.24 reported that the Young’s modulus of

graphene increases from 0.7 TPa up to a saturated value of

1.1 TPa as the size of the graphene samples increases.

Importantly, the same increasing trend can be observed in

our numerical predictions up to a saturated value of 0.836

TPa (simulation not shown here) as the length of the sample

increases.

We note that the small differences found in the mechani-

cal properties of SLGSs are due to the fact that graphene

sheets are non-homogeneous materials and therefore their

properties are dependent on the choice of their dimensions.

The ability of our model to capture these differences, and

therefore the discrete nature of graphene, represents one of

the main advantages of the present approach when compared

to continuum mechanics-based models, which normally fail

to reproduce these effects.

We also validate our hyperelastic model by comparing

the total Ogden strain-energy obtained from straining each

SLGS and then dividing by the total number of nodes with

the variation of the interatomic potential energy per carbon

atom obtained from several sources.25–28 Figure 2 shows this

comparison. In this graph, ey refers to the overall strain of

the graphene sheets along the Y-direction and is defined as

ey ¼ Ly=Loy � 1, with Ly and Loy the current and initial

lengths in the Y-direction, respectively. The corresponding

curves show a good agreement up to 0.16 strain between our

numerical predictions and the results reported in Ref. 25

(atom-based cell model), and in Refs. 26 and 27 (MD), and

those results reported in Ref. 28 (MM), obtained for GNRs

with widths (W) of 1.2 and 2.5 nm.

In order to introduce a failure criterion, several cut-off

distances have been adopted in the literature, with no signifi-

cant changes in the critical bond-breaking force for values

ranging from 0.17 nm to 0.19 nm.29 In this study, we adopt a

value of 0.19 nm, which is interpreted physically as the onset

of the breakage of the C-C bonds under stretching. Here, we
FIG. 1. Typical FE mesh of a SLGS with initial dimensions of 4.67 nm �
4.11 nm, along the horizontal (X) and vertical (Y) directions, respectively.

TABLE I. Comparison between published values for the Young’s modulus

and our numerical predictions.

Value (TPa) Comments References

0.722 FE simulations 12

0.74 FE simulations 13

1.0 FE simulations 14

0.72 MD simulations 15

0.82 DFT 16

1.05 DFT 17

1.0 Experiments 4, 18, 19

0.5 Experiments 20

0.32–1.47 Experiments 21

0.62–1.2 Experiments 22

0.822 4.67 nm � 4.11 nm SLGS Present model

0.81 3.44 nm � 1.99 nm SLGS Present model

0.80 1.48 nm � 1.56 nm SLGS Present model

061901-2 Saavedra Flores et al. Appl. Phys. Lett. 106, 061901 (2015)
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assume that the failure of at least one C-C bond implies the

failure of the whole SLGS.

Table II shows our numerical predictions for the ulti-

mate strains of SLGSs and some values found in the litera-

ture. The comparison again shows a good agreement with

those values published in Refs. 12 and 30 (FE), in Ref. 28

(MM), and Ref. 4 (experiments).

The total vertical reaction at the bottom line of nodes of

the three SLGSs is plotted as a function of the maximum

interatomic extension of C-C bonds in Figure 3. Here, we

can note that the three mechanical responses show an almost

linear variation, with a slight decrease in the slope of the

curves at about 0.03 strain. For larger strains, over 0.15, a

slight increase of the slope can be observed, which is attrib-

uted to the beginning of the geometric alignment of the C-C

bonding elements along the loading direction. This effect is

possible to observe since large strains/displacements have

been taken into account in our computational simulations.

Here, the maximum overall strain in each of the graphene

sheets is 0.29 along the Y-direction. A second reason for this

effect is the use of the Tersoff-Brenner formulation as the

interatomic potential, which provides a stiffer mechanical

response compared to other standard potentials, such as the

Morse formulation.31 In Figure 3, the maximum interatomic

extension of the C-C bonds increases up to the failure of the

SLGS, at 0.19 strain.

We also explore in this paper that the variation of the

finite-deformation Poisson’s ratio, �, in each of the SLGSs.

This parameter is defined as the ratio between the in-plane

lateral contraction (along the X-direction) and the in-plane

extension parallel to the loading direction (along the

Y-axis), that is, � ¼ �ex=ey.17 Therefore, the term “finite-

deformation Poisson’s ratio” refers here to a measure of the

overall change in the dimensions of the graphene sheet, but

not to a property of the material itself. We note that in the

modelling of the C-C bonds, we have assumed a value of 0.5

for the Poisson’s ratio of the equivalent material as a conse-

quence of adopting the perfect incompressibility constraint

k1k2k3 ¼ 1 in Eq. (2).

Figure 4 shows the variation of the finite-deformation

Poisson’s ratio in each of the three SLGSs as the strain ey

increases up to total failure. At small strains, the three curves

approach a Poisson’s ratio of 0.41, approximately. This value

agrees with the Poisson’s ratio of 0.412 (Ref. 32) (finite defor-

mation continuum theory), the value of 0.416 (Ref. 33) (con-

tinuum mechanics approach), the value of 0.413 (Ref. 34)

(MD), and 0.398 (Ref. 35) (nonlinear continuum mechanics).

FIG. 2. Potential energy per carbon atom as a function of the overall strain

ey for different geometries under uniaxial tension,25–28 along with the total

Ogden strain-energy obtained from our numerical simulations.

TABLE II. Summary of values published for the ultimate strains of SLGSs

and our numerical predictions.

Value Comments References

0.28 FE simulations 12

0.25 FE simulations 30

0.25 Experiments 4

0.29 MM simulations 28

0.291 4.67 nm � 4.11 nm SLGS Present model

0.294 3.44 nm � 1.99 nm SLGS Present model

0.295 1.48 nm � 1.56 nm SLGS Present model

FIG. 3. Total vertical reaction at the bottom line of nodes as a function of

the maximum interatomic extension of the C-C bonds for the three SLGSs.

FIG. 4. Variation of the finite-deformation Poisson’s ratio in each of the

three SLGSs as the overall strain ey increases.
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However, our predicted Poisson’s ratio is larger than the value

of 0.149 (Ref. 36) (ab initio models), the value of 0.227 (Ref.

37) (empirical force-constant calculations), and 0.186 (Ref.

17) (DFT). Furthermore, our predicted Poisson’s ratio tends

to be constant as the strain increases up to 10%. After 15%

strain, the Poissons ratio begins to increase slightly (from

0.41 to 0.46, approximately). This behaviour is in contrast

with the decreasing trends reported by Liu et al.17 and

Kalosakas et al.38 These discrepancies may be attributed to

the specific boundary conditions adopted in each case. We

note that when constraining the horizontal displacements on

the top and bottom edges of the SLGS (but keeping the left

and right edges free to contract due to Poisson effects), our

model predicts a slightly decreasing Poisson’s ratio as the

strain increases (simulation not shown here), with the same

decreasing rate reported by Zhou et al.39 Furthermore, the

boundary conditions applied to the sheet’s edges may affect

further the lateral contraction depending on the size of the

SLGS. For instance, Liu et al.17 adopted a four-atom unit cell

to perform their simulations. This small size might imply a

very different behaviour when compared to the analysis of

larger specimens (which is our case). Unfortunately, Liu et al.
gave little details on how they apply the boundary conditions

(they only specify that the lateral edges are free to move to

allow Poisson contraction but did not give details on the spe-

cific boundary conditions applied to the other two edges). In

addition, the theoretical treatment adopted for the analyses

may also affect the behaviour of the Poisson’s ratio. Liu

et al.17 performed DFT simulations, and our analyses consid-

ered the Tersoff–Brenner interatomic potential. It is important

to note here that most of the values of Poisson’s ratio calcu-

lated by MM/MD tend to be significantly higher than those

determined by DFT.40

The advantages in computational efficiency of FE-based

approaches with respect to atomistic simulations (e.g., MM,

MD, and conjugate gradient) have been previously

reported.41–43 We note that the computing times reported by

Liu et al.41 are almost identical to those for our FE simulations

for the same number of atoms/nodes and similar computer

hardware. Table III summarises the CPU times involved in the

computational simulations of four SLGSs. The dimensions cho-

sen for this study are 10 nm � 10 nm, 25 nm � 25 nm, 45 nm

� 45 nm, and 70 nm � 70 nm. For all these cases, a uniform

tensile strain of 5% is applied with the boundary conditions

shown in Figure 1. The computing times obtained in our simu-

lations are in contrast with other methods, such as the standard

conjugate gradient method, whose CPU times are almost two

order of magnitude larger (refer to Ref. 41 for further details).

In conclusion, the present study demonstrates the

potential capabilities of using an atomistic FE approach in

conjunction with a hyperelasticity-based framework to inves-

tigate the mechanical behaviour of SLGSs. The simulations

have been validated over a wide range of deformations, up to

the onset of the breakage of the C-C bonds. It appears that

the present approach could be exploited further in order to

explore the mechanical behaviour of carbon nanostructures

for a range of loading and boundary conditions.
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