Secrecy transmit beamforming for heterogeneous networks
Secrecy transmit beamforming for heterogeneous networks
In this paper, we pioneer the study of physical-layer security in heterogeneous networks (HetNets). We investigate secure communications in a two-tier downlink HetNet, which comprises one macrocell and several femtocells. Each cell has multiple users and an eavesdropper attempts to wiretap the intended macrocell user. First, we consider an orthogonal spectrum allocation strategy to eliminate co-channel interference, and propose the secrecy transmit beamforming only operating in the macrocell (STB-OM) as a partial solution for secure communication in HetNet. Next, we consider a secrecy-oriented non-orthogonal spectrum allocation strategy and propose two cooperative STBs which rely on the collaboration amongst the macrocell base station (MBS) and the adjacent femtocell base stations (FBSs). Our first cooperative STB is the STB sequentially operating in the macrocell and femtocells (STB-SMF), where the cooperative FBSs individually design their STB matrices and then feed their performance metrics to the MBS for guiding the STB in the macrocell. Aiming to improve the performance of STB-SMF, we further propose the STB jointly designed in the macrocell and femtocells (STB-JMF), where all cooperative FBSs feed channel state information to the MBS for designing the joint STB. Unlike conventional STBs conceived for broadcasting or interference channels, the three proposed STB schemes all entail relatively sophisticated optimizations due to QoS constraints of the legitimate users. To efficiently use these STB schemes, the original optimization problems are reformulated and convex optimization techniques, such as second-order cone programming and semidefinite programming, are invoked to obtain the optimal solutions. Numerical results demonstrate that the proposed STB schemes are highly effective in improving the secrecy rate performance of HetNet.
Beamforming, femtocell, nonconvex optimization, heterogeneous network, physical-layer security, semidefinite
programming (SDP).
1154-1170
Lv, Tiejun
fb465673-1068-4cae-bb94-93ab1dd63f4d
Gao, Hui
d1b095e6-df29-4eb6-b7fb-efa6baf8e162
Yang, Shaoshi
df1e6c38-ff3b-473e-b36b-4820db908e60
27 March 2015
Lv, Tiejun
fb465673-1068-4cae-bb94-93ab1dd63f4d
Gao, Hui
d1b095e6-df29-4eb6-b7fb-efa6baf8e162
Yang, Shaoshi
df1e6c38-ff3b-473e-b36b-4820db908e60
Lv, Tiejun, Gao, Hui and Yang, Shaoshi
(2015)
Secrecy transmit beamforming for heterogeneous networks.
[in special issue: on Recent Advances in Heterogeneous Cellular Networks]
IEEE Journal on Selected Areas in Communications, 33 (6), .
(doi:10.1109/JSAC.2015.2416984).
Abstract
In this paper, we pioneer the study of physical-layer security in heterogeneous networks (HetNets). We investigate secure communications in a two-tier downlink HetNet, which comprises one macrocell and several femtocells. Each cell has multiple users and an eavesdropper attempts to wiretap the intended macrocell user. First, we consider an orthogonal spectrum allocation strategy to eliminate co-channel interference, and propose the secrecy transmit beamforming only operating in the macrocell (STB-OM) as a partial solution for secure communication in HetNet. Next, we consider a secrecy-oriented non-orthogonal spectrum allocation strategy and propose two cooperative STBs which rely on the collaboration amongst the macrocell base station (MBS) and the adjacent femtocell base stations (FBSs). Our first cooperative STB is the STB sequentially operating in the macrocell and femtocells (STB-SMF), where the cooperative FBSs individually design their STB matrices and then feed their performance metrics to the MBS for guiding the STB in the macrocell. Aiming to improve the performance of STB-SMF, we further propose the STB jointly designed in the macrocell and femtocells (STB-JMF), where all cooperative FBSs feed channel state information to the MBS for designing the joint STB. Unlike conventional STBs conceived for broadcasting or interference channels, the three proposed STB schemes all entail relatively sophisticated optimizations due to QoS constraints of the legitimate users. To efficiently use these STB schemes, the original optimization problems are reformulated and convex optimization techniques, such as second-order cone programming and semidefinite programming, are invoked to obtain the optimal solutions. Numerical results demonstrate that the proposed STB schemes are highly effective in improving the secrecy rate performance of HetNet.
Text
JSAC2416984_Part1.pdf
- Accepted Manuscript
More information
Published date: 27 March 2015
Keywords:
Beamforming, femtocell, nonconvex optimization, heterogeneous network, physical-layer security, semidefinite
programming (SDP).
Organisations:
Southampton Wireless Group
Identifiers
Local EPrints ID: 374550
URI: http://eprints.soton.ac.uk/id/eprint/374550
PURE UUID: d2f638fd-8e2c-4c1c-a774-df2aa6ce5117
Catalogue record
Date deposited: 20 Feb 2015 14:14
Last modified: 14 Mar 2024 19:09
Export record
Altmetrics
Contributors
Author:
Tiejun Lv
Author:
Hui Gao
Author:
Shaoshi Yang
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics