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Abstract— The aim of this paper is to propose an exploratory study on simple, accurate and 19 

computationally efficient movement classification technique for prosthetic hand application.  The 20 

surface myoelectric signals were acquired from 2 muscles – Flexor Carpi Ulnaris and Extensor Carpi 21 

Radialis of 4 normal-limb subjects. These signals were segmented and the features extracted using a 22 

new combined time-domain method of feature extraction. The fuzzy C-mean clustering method and 23 

scatter plots were used to evaluate the performance of the proposed multi-feature versus other 24 

accurate multi-features. Finally, the movements were classified using the adaptive neuro-fuzzy 25 

inference system (ANFIS) and the artificial neural network. Comparison results indicate that ANFIS 26 

not only displays higher classification accuracy (88.90%) than the artificial neural network, but it also 27 

improves computation time significantly. 28 

 29 

 30 
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 32 

1. INTRODUCTION 33 

Despite the significant development of the prosthetic hand industry over the past decade, 34 

high-accuracy commercial prosthetic hands are still quite expensive (Ottobock, 2013). In 35 

fact, the complicated control algorithm and exclusive hardware that are incorporated into 36 

hand prostheses render them unaffordable for amputees, most of whom are from the working 37 

class of society or from below middle-class. Moreover, available cheap prostheses are either 38 
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not accurate enough or are slow to perform control actions. Thus, an affordable prosthetic 39 

hand should be developed in consideration of the tradeoff between accuracy and price.  40 

The first step is designing an effective yet simple control system for prosthetic devices. The 41 

desired system should be capable of performing the essential movements efficiently in terms 42 

of both movement classification accuracy and computational time. It should also be simple 43 

enough for non-exclusive and cheap real-time implementation. Over the past decade, the 44 

concept of integrating human body signals into designed prosthetic control system devices as 45 

a control mechanism has attracted much interest (Ajiboye & Weir, 2005; Clement, Bugler, & 46 

Oliver, 2011; Favieiro & Balbinot, 2011; Guangying, 2007; Losier, Englehart, & Hudgins, 47 

2007), especially the brain waves detected in electroencephalograms and the muscle activity 48 

detected in electromyograms (EMGs).  49 

In myoelectric control systems (MCSs), myoelectric signals (from EMGs) are acquired to 50 

operate external devices, such as prosthetic or orthotic devices for people who have been 51 

subject to some level of limb amputation (Castellini & van der Smagt, 2009). Myoelectric 52 

control typically uses a pattern recognition scheme (Liu & Yu, 2005). This approach 53 

recognizes one of several predetermined classes, which represent certain motions including 54 

elbow flexion and extension. The pattern recognition approach either defines a specific 55 

motion that is relative to the current position or an entire range of motion to be performed. 56 

Once it is activated, it cannot be altered. Figure 1 depicts the different steps in pattern 57 

recognition-based MCS. 58 

To improve the functionality of the prosthesis control system, two important factors should 59 

be considered in development: feature extraction accuracy and classification performance. 60 

Several feature extraction approaches are specifically relevant to EMG data [16]. In line with 61 

the main objective of the current research, which is to develop a simple and accurate MCS for 62 

affordable prosthetic hands, time-domain (TD) features are applied.  63 
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 64 

Figure 1. A pattern-recognition based myoelectric control system for prosthesis from (Asghari Oskoei 65 

& Hu, 2007) . 66 

The time-domain methods to extract features have mainly simple implementation and 67 

efficient calculation because in these features, despite the frequency-domain, no 68 

transformation is needed, and are analyzed based on raw EMG time series. This makes them 69 

to have good potential for real-time feature extraction (Hudgins, Parker, & Scott, 1993; A 70 

Rezaee Jordehi, 2014; Oskoei & Hu, 2008; Tkach, Huang, & Kuiken, 2010). 71 

A considerable amount of literature has been published on soft computing techniques 72 

especially fuzzy logic systems and neural networks for bio-signal classification in many 73 

biomedical applications (Ajiboye & Weir, 2005; Khushaba, Al-Ani, & Al-Jumaily, 2010; 74 

Khushaba, Al-Jumaily, & Al-Ani, 2007). The Artificial Neural Network (ANN) was 75 

presented as the signal classifier in numerous works (Y.-C. Du, Lin, Shyu, & Chen, 2010; 76 

Jordehi; Ahmad Rezaee Jordehi, 2014; Wojtczak, Amaral, Dias, Wolczowski, & Kurzynski, 77 

2009). Their main advantage is the ability to learn linear and nonlinear relationships directly 78 
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from the data and to adapt to real-time implementations. One of the pioneers of the 79 

development of real-time multifunction myoelectric control, Hudgins’ group implemented an 80 

ANN to classify four different limb motions with an average accuracy of around 90% 81 

(Englehart & Hudgins, 2003; Hudgins et al., 1993) .On their way to develop a new generation 82 

of prosthetic arm/hand, a group of researchers from John Hopkins University employed feed-83 

forward ANN to decode movements of the hand (Soares, Andrade, Lamounier, & Carrijo, 84 

2003). Other works utilized ANN of classifiers to identify limb movements produced by the 85 

subjects (Al-Assaf & Al-Nashash, 2005; Au & Kirsch, 2000; Luo, Wang, & Ma, 2006; 86 

Rezaee Jordehi & Jasni, 2013). 87 

 Fuzzy logic can also be applied to improve the MCS system classification algorithm given 88 

the contradictory nature of bio-signals, the linguistic characteristics of fuzzy systems, and 89 

their reasoning style. In other words, adding fuzzy logic to ANN can cause classification 90 

approaches to be capable of tolerating imprecision, partial truth, and uncertainty, as well as of 91 

obtaining robust, low-cost, and precise solutions for problem classification (Asghari Oskoei 92 

& Hu, 2007). 93 

With regard to the combination of fuzzy logic and ANN in EMG systems, a neuro-fuzzy 94 

modifier was proposed by Khushaba et al. (Khushaba et al., 2010) to realize proper elbow 95 

motion. In addition to the high classification accuracy, this neuro-fuzzy approach also 96 

significantly improved the robustness and stability of the algorithm. Moreover, Khezri and 97 

Jahed (Khezri & Jahed, 2007, 2009) developed an exploratory robust MCS that uses an 98 

adaptive neuro-fuzzy inference system (ANFIS) as a classifier and compounds FD features to 99 

improve feature extraction. (Favieiro & Balbinot, 2011) contributed a MCS for a 100 

multifunctional prosthesis. This system employs the ANFIS Sugeno-type inference system as 101 

a classification technique. 102 
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As for other soft computing methods for MCS, Rasheed et al. (Rasheed, Stashuk, & Kamel, 103 

2006) also introduced an adaptive fuzzy k-nearest neighbor (k-NN) classifier for EMG 104 

decomposition. This classifier significantly outperformed adaptive certainty classifiers. The 105 

same researchers also presented another approach that uses fuzzy logic and k-NN in 106 

(Rasheed, Stashuk, & Kamel, 2008) and developed a MATLAB-based software program that 107 

can be applied as a potential motor unit classifier. Kim et al. (Kim, Choi, Moon, & Mun, 108 

2011) compared k-NN with linear discriminant analysis (LDA) and quadratic discriminant 109 

analysis (QDA). They concluded that classification improved significantly with k-NN; 110 

however, the classification performance of the neuro-fuzzy approach was superior to other 111 

soft computing methods, such as k-NN (Rasheed et al., 2006), LDA, and QDA (Khushaba et 112 

al., 2010; Kiguchi & Hayashi, 2011; Phinyomark et al., 2013).  113 

 114 

Nonetheless, fuzzy logic does not always improve ANN classification performance, 115 

according to the comparative studies conducted by (Karlik, Osman Tokhi, & Alci, 2003) and 116 

(Ren, Huang, & Deng, 2009). As per the research presented by (Ren et al., 2009) on MCS 117 

classification accuracy with ANN, conic section function NN, and new fuzzy clustering NNs 118 

(FCNNs), the fuzzy clustering approach improved EMG decomposition accuracy and 119 

processing time but did not affect the classification performance of NNs. Thus, ANN 120 

outperforms FCNN in terms of classification accuracy. Based on previous literature and 121 

given the theoretical advantages of ANN and fuzzy logic over other recent approaches, 122 

neuro-fuzzy- and ANN-based classifiers are potential solutions for establishing simple and 123 

accurate MCS given their high accuracy and short processing times. Nonetheless, their 124 

application requires further investigation and analysis. 125 

This study, intends to propose a comparative pattern-recognition approach for the 126 

classification of hand movements in a manner in which the functionality and accuracy of a 127 
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myoelectric prosthetic hand control system can be improved. Investigation and evaluation are 128 

first conducted on the feature extraction methods for the proposed simple and accurate multi-129 

feature(Hudgins et al., 1993). An optimal multi-feature method through doing a comparative 130 

study using scatter plots and Fuzzy C-mean clustering will be investigated. These features are 131 

then inputted into ANFIS and ANN classifiers. Furthermore, the classification outcome is 132 

evaluated based on classification accuracy, learning time, and classification time. The 133 

superior classifier is determined and confirmed by a statistical analysis using T-test. Finally, a 134 

simple, computationally efficient MCS for a multifunctional prosthetic hand is 135 

recommended. Figure 2 shows the methodology scheme of this research. 136 

2. METHODS AND MATERIALS 137 

2.1 Subjects and data acquisition 138 

       The EMG datasets applied in this work were obtained from the University of 139 

Southampton, UK (Ahmad, 2009). This investigation focused on wrist muscles, and 140 

participants were asked to perform movements related to these particular muscles. The 141 

surface EMG (SEMG) signals were obtained with Noraxon Ag/AgC1 dual electrodes 142 

(diameter 15 mm; center spacing 20 mm). These electrodes were placed on the forearm above 143 

the flexor carpi ulnaris (FCU) and the extensor carpi radialis (ECR). A reference electrode 144 

was positioned at the elbow. The SEMG data were recorded during the performance of four 145 

tasks, namely, wrist flexion, wrist extension, co-contraction, and isometric contraction. One 146 

trial was conducted for each movement at a speed of 60 bpm (beat per minute), as controlled 147 

by a metronome. 148 
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 149 

Figure 2. Pattern recognition methodology scheme applied in this study. 150 

In this study, data were gathered from four normal-limb subjects. Two SEMG channels were 151 

used to discriminate four hand movements from each subject.   152 

2.2 Data Segmentation 153 

Prior to feature extraction, data should be handled such that accuracy and response time are 154 

improved because the use of data as feature extractor inputs is impractical. Therefore, these 155 

data are segmented. Two methods of segmentation have been established: Adjacent and 156 

overlapping (Figure 3). Given real-time constraints (Ren et al., 2009), the segment length is 157 

200 points (140 ms) when overlapping segmentation is employed. Furthermore, the 158 

overlapping time should be less than the segment length and greater than the processing time 159 
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because the processor must compute the feature set and generate a decision before the next 160 

segment arrives. The processing time for most microprocessors is less than 50 ms; thus, the 161 

increment time should be 70 ms to meet this requirement. 162 

 163 

Figure 3. Overlapping segmentation of data (Asghari Oskoei & Hu, 2007). 164 

2.3 Feature Extraction 165 

For a classifier to be computationally efficient, it must employ a feature extraction method 166 

that quantifies large datasets into a small number of features that optimally distinguish a 167 

certain set of data from other sets. A classifier can then group that dataset with related ones. 168 

A wide spectrum of features has been introduced in literature for myoelectric classification. 169 

These features fall into one of three categories: TD, FD, and time-scale (time–frequency) 170 

domain (Zecca, Micera, Carrozza, & Dario, 2002). The TD feature extraction method was 171 

chosen as the main feature extraction method for this research, and the multi-feature was 172 

modified slightly by adding mean frequency (MNF). The objective of this study is to 173 

investigate a simple and accurate multi-feature using a TD-based feature extraction method 174 

and to evaluate the extraction performance in comparison with the Hudgins multi-feature, 175 

which is the best-known one (Hudgins et al., 1993). According to (Asghari Oskoei & Hu, 176 
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2007), the results for classification accuracy and computational simplicity obtained by 177 

combining TD features may compete with those derived from FD features. The proposed 178 

multi-feature consists of mean absolute value (MAV), zero crossing (ZC), slope sign change 179 

(SSC), waveform length (WL), root mean square (RMS), and MNF.  180 

2.3.1 Mean Absolute Value (MAV) 181 

       MAV feature is an average of absolute value of the EMG signal amplitude in a segment, 182 

which can be defined as (Hudgins et al., 1993)                      183 

MAV =  
1

N
 ∑ |xi|

N
i=1        (1) 184 

 185 

2.3.2 Zero Crossing (ZC) 186 

       Zero crossing (ZC) is a measure of frequency information of the EMG signal that is 187 

defined in time domain (Hudgins et al., 1993); the calculation is defined as 188 

ZC =  ∑  [ sgn (xi  × xi+1)  ∩ |xi – xi+1|]  ≥ thresholdN−1
i=1    (2) 189 

sgn (x) =  {
1 ,             if x ≥ threshold
0 ,                         otherwise

                    (3) 190 

 191 

2.3.3 Slope Sign Change (SSC) 192 

It is defined as the number of times slope of the EMG signal changes sign.  There is a 193 

threshold for avoiding the background noise. 194 

 195 

𝑆𝑆𝐶 =  ∑ 𝑓[(𝑥𝑖 − 𝑥𝑖−1) × (𝑥𝑖 − 𝑥𝑖+1)]𝑁−1
𝑖=2            (4) 196 

𝑓(𝑥) =  {
1 ,       𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0 ,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

                        (5) 197 

 198 

2.3.4 Waveform Length (WL) 199 
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It is expressed as cumulative length of the EMG waveform over the time segment (Hudgins et 200 

al., 1993). 201 

𝑊𝐿 =  ∑ |xi+1 −  xi|
N−1
i=1                                         (6) 202 

 203 

2.3.5 Root Mean Square (RMS) 204 

Root mean square   is again a well-known feature analysis regarding EMG signal (Boostani 205 

& Moradi, 2003; Kim et al., 2011). It is also alike to the standard deviation method. The 206 

mathematical definition of RMS feature can be expressed as: 207 

RMS =  √
1

N
 ∑ xi

2N
i=1                                             (7) 208 

 209 

2.3.6 Mean Frequency (MNF) 210 

Mean Frequency (MNF) is an average frequency which is calculated as sum of the product of 211 

the EMG power spectrum and the frequency divided by the total sum of the spectrum 212 

intensity e.g. (Oskoei & Hu, 2008). Central frequency (fc) and spectral center of gravity are 213 

other calling names of the MNF feature (S. Du & Vuskovic, 2004). It can be calculated as 214 

𝑀𝑁𝐹 =  
∑ 𝑓𝑗𝑃𝑗

𝑀
𝑗=1

∑  𝑃𝑗
𝑀
𝑗=1

⁄                                  (8) 215 

2.4 Fuzzy C-mean Clustering Method 216 

       Fuzzy c-means (FCM) is an iterative data clustering technique in which a dataset is 217 

grouped into n clusters with every data point in the dataset belonging to every cluster to a 218 

certain degree. This iteration is based on minimizing an objective function that represents the 219 

distance from any given data point to a cluster centre weighted by that data point's 220 

membership grade. It starts with an initial guess for the cluster centers, and then FCM 221 

iteratively moves the cluster centers to the right location within a data (Figure 4). Formally, 222 
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clustering an unlabeled data X = {x1, x2, … , xN} ⊂ R h, where N represents the number of 223 

data vectors and h the dimension of each data vector, is the assignment c of partition labels to 224 

the vectors in X. c-Partition of X constitutes sets of (c . N) membership values that can be 225 

conveniently arranged as a ( c . N) matrix U = [uik].  226 

The problem of fuzzy clustering is to find the optimum membership matrix U  (Karlik et al., 227 

2003). 228 

2.5 Neural network clustering 229 

The nctool in MATLAB© is employed to solve a clustering problem using a self-organizing 230 

map. The map generates a compressed representation of the input space, thus reflecting the 231 

relative density of the input vectors in that space. It also provides a two-dimensional 232 

compressed representation of the input-space topology. 233 

2.6 Classification of Hand Movement 234 

To recognize four hand movements, the output of FCM is inputted into the ANFIS. In parallel, 235 

NN clustering and ANN are employed as the second and comparative classifiers, respectively.   236 

2.6.1 ANFIS  237 

ANFIS was first introduced by (Jang, 1993). It is composed of three abstract components: a 238 

fuzzy rule base that includes a set of fuzzy if–then rules, a database that identifies the 239 

membership functions used in the fuzzy rules, and a reasoning mechanism that conducts an 240 

inference procedure on the rules to obtain a reasonable output or conclusion (Kandel, 1992). 241 

The ANFIS applies a Sugeno-type inference system. A typical rule in Sugeno is expressed in 242 

the form: 243 

 R1: IF x1 is MF1 AND x2 is MF2 AND … xj is MFj                                244 

                                              245 

               THEN      z1 =  s0 1  + s1 1x1 + s2 1x2 + … + sj1xj .            (9) 246 
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In this work, we chose the generalized bell function as the membership function. This 247 

function depends on three parameters, namely, a, b, and c, as given in: 248 

MF(x) =
1

1+|x−c
a

|2b
        . (10) 249 

The basic problem of fuzzy system involves adjusting the membership function parameters, 250 

the output of each fuzzy rule, and estimating the minimum number of rules that should be 251 

adequately precise. Given a training fuzzy system, ANFIS employs the 252 

back propagation (BP) scheme and the least mean square (LMS) estimation (hybrid method) 253 

for the parameters associated with the output membership functions. 254 

 255 

Figure 4. Flowchart of the fuzzy C-mean clustering process. 256 

According to the cross-validation information presented in (Braga-Neto & Dougherty, 2004) 257 

for this research, threefold cross validation was applied to examine ARTMAP networks, 258 

LDA, and k-NN classifiers because the dataset is large enough. Moreover, the potential 259 

computational time is minimized. ANFIS is implemented with four subjects. Furthermore, a 260 

subtractive clustering method is employed to determine the number of fuzzy system rules. BP 261 

and LMS algorithms are also utilized for membership function parameters and rule outputs, 262 
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respectively. Nine fuzzy rules are set for the recognition system that is designed with 263 

compound features. As shown in Equation (9), this system is an order 2 Sugeno-type system; 264 

that is, two SEMG channels are considered inputs for each subject. In addition, the output for 265 

each rule is determined using the LMS method.  266 

2.6.2 Design of the ANN Classifier 267 

ANNs were first studied by Rosenblatt, who applied single-layer perceptrons to pattern 268 

classification learning (Rosenblatt, 1962). A typical ANN is also known as a multi-layer 269 

perceptron neural network (MLPNN) and has been presented as a signal classifier in 270 

numerous works. Its main advantage lies in its capabilities to model (learn) linear and 271 

nonlinear relationships directly from the data and to adapt to real-time implementations. The 272 

use of a NN as a classifier aims to divide a feature space into different regions according to 273 

the various classes. Given a set of features from an unknown sample as an input, the output of 274 

the NN determines the class to which the sample belongs. 275 

An ANN paradigm consists of a structure, a training algorithm, and an activation function. 276 

The structure describes the connectivity and functionality among neurons, and the training 277 

algorithm indicates the method used to determine the weights associated with each link. BP is 278 

one of the most commonly used algorithms to implement this training (Fielding, 2007). A BP 279 

MLPNN is an adaptive network whose nodes (neurons) perform the same function on 280 

incoming signals. The typical activation functions are nonlinear, and a hyperbolic tangent 281 

sigmoid transfer function was applied in this study. 282 

The MLPNN was designed with a combination of features: the MAV, ZC, WL, SSC, RMS, 283 

and MNF of EMG signals were integrated into the input layer, and the output layer consisted 284 

of the outcome of NN clustering. The training procedure started with a hidden node in the 285 

hidden layer, followed by the training of the training data (600 distinct datasets), and then by 286 
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the testing of the test data (600 distinct datasets) to determine the prediction performance of 287 

the network. The same procedure was repeated each time the network was expanded by 288 

adding another node to the hidden layer until the ideal architecture and set of connection 289 

weights were obtained. The optimal network was selected by monitoring the variation in the 290 

mean squared error of the network. This error represents the mean of the squared deviations 291 

of the MLPNN solution (output) from the true (target) values for both the training and test 292 

sets, and it is used to determine the optimal network. 293 

3. RESULTS AND DISCUSSION 294 

3.1 Evaluation of Feature Extraction Methods  295 

The previous section describes the features employed in this research. As mentioned in the 296 

Introduction section, the purpose of this research is to investigate a necessary, efficient, and 297 

easily implemented feature extraction method for hand movement classification. Thus, an 298 

evaluation method should be developed to compare the proposed multi-feature against the 299 

Hudgins multi-feature. This study mainly discusses how separable and distinct the former can 300 

be from the latter considering the discrimination performance of multi-features and according 301 

to the scatter plot observations in Figures 5 and 6. The proposed multi-feature consists of 302 

MAV, ZC, WL, SSC, RMS, and MNF, whereas the Hudgins multi-feature includes MAV, 303 

ZC, WL, and SSC (Hudgins et al., 1993). The proposed multi-feature outperforms the 304 

Hudgins multi-feature in terms of discriminating patterns between class#1 and class#3; in the 305 

proposed multi-feature (Figure 5), these two classes are separate from each other whereas 306 

they overlap in the Hudgins multi-feature (Figure 6), based on a close examination of the 307 

borders of class#1, class#2, and class#3. In addition, the Hudgins multi-feature erroneously 308 

discriminates class#3 and clusters it near class#1, whereas the proposed multi-feature method 309 

discriminates class#3 in the vicinity of an almost similar neighborhood. In conclusion, 310 
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clustering and scatter plots are both useful as visual techniques to evaluate feature 311 

performance. They also suggest the superiority of the proposed multi-feature over the 312 

Hudgins multi-feature. 313 

3.2 Evaluation of Classification Performance 314 

Signal processing was implemented in MATLAB, and the accuracy of the system was 315 

verified for four distinct movements, namely, wrist flexion, wrist extension, co-contraction 316 

and isometric contraction. All four subjects participated in the threefold cross-validation 317 

process. To validate the proposed ANFIS classification method, the same database was used 318 

to build a NN clustering classifier and then a MLPNN classifier in parallel for comparison 319 

with ANFIS.  320 

 321 

 322 

Figure 5. Scatter plots of the proposed multi-feature as a feature extractor for one subject and two 323 

channels in consideration of all four movements (classes). 324 
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Based on the results summarized in Tables 1 and 2, the average recognition rates for ANFIS 325 

and ANN are 88.90% (STD = 0.92) and 84.31% (STD = 2.21), respectively. Moreover, a 326 

time-measurement test was conducted on an unoptimized MATLAB prototyping code, which 327 

is executed on a Pentium 4 processor, to compare the speed of these two algorithms in both 328 

learning and classification. The time measurement results are depicted in Table 3. The 329 

ANFIS algorithm based on FCM clustering is more successful than the classical NN 330 

approach. In addition, the ANFIS algorithm is approximately five times faster than the NN 331 

approach in terms of learning and classification. Specifically, the classification and learning 332 

times for ANFIS are 121.5 and 82.2 ms, respectively, whereas those for ANN are 561.9 and 333 

349.4 ms. 334 

The results indicated above are clearly superior to ones achieved with similar classification 335 

algorithms under different control systems in (Ajiboye & Weir, 2005), (Khushaba et al., 336 

2010), and (Khezri & Jahed, 2009) in terms of the simplicity of the pattern recognition 337 

system when only two EMG channels are applied. Other similar neuro-fuzzy approaches, 338 

such as those in (Khezri & Jahed, 2007) and (Favieiro & Balbinot, 2011), employ at least 339 

four channels. 340 
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 341 

Figure 6. Scatter plot of the Hudgins’s multi-feature as feature extractor for one subject, 2 channels 342 

and considering all 4 movements (classes). 343 

In addition, the four movements that were verified in this study, including wrist 344 

flexion/extension, are more complex than those reported in similar works, such as in 345 

(Favieiro & Balbinot, 2011). In these studies, wrist flexion and extension have been applied 346 

as two separate classes to simplify classification. Furthermore, large data sequences 347 

(normally more than 200 ms) were used in most researches, such as in (Karlik et al., 2003). 348 

However, we utilized a 140 ms data segment to enhance the rigorousness of pattern 349 

classification based on a review conducted by (Asghari Oskoei & Hu, 2007). According to 350 

these comparisons, the ANFIS approach discussed and evaluated in this study can be 351 

employed in a simple, computationally efficient MCS for a prosthetic hand. 352 

 353 

 354 

 355 
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Table 1. Result of EMG classification accuracy using ANFIS as classifier. 356 

Movements Subject#1 Subject#2 Subject#3 Subject#4 Mean STD 

Wrist Flexion/Extension  90.50% 88.50% 89.40% 91.15% 89.89%        0.86 

Finger Flexion/Extension  87.00% 86.65% 88.50% 92.70% 88.71%         1.01 

Co-contraction  88.00% 89.15% 86.00% 90.50% 88.41%         1.25 

Isometric  89.00% 87.50% 88.16% 89.70% 88.59%         1.45 

4 movements average   88.63% 87.95%  88.02% 91.01%    88.90%         0.92 

 357 

Table 2. Result of EMG classification accuracy using ANN as classifier. 358 

Movements Subject#1 Subject#2 Subject#3 Subject#4 Mean STD 

Wrist Flexion/Extension  83% 86.5% 87% 86% 86% 1.56 

Finger Flexion/Extension  82% 85% 89% 83.5% 85% 2.60 

Co-contraction  79% 82.5% 84% 81% 82% 1.85 

Isometric  81% 82%    86.5%  87.5% 84.25% 2.81 

4 movements average 81%    84%  87%  85%  84.31% 2.21 

 359 

Table 3. Final result of classification performance (Accuracy and Computation time): ANFIS vs. 360 

ANN. 361 

Classifier Classification Accuracy (%) Learning Time(ms) Classification 

Time(ms) 

ANN 84.31±2.21 561.9 349.4 

ANFIS 88.90±0.92 121.5 82.2 

 362 

3.3 Statistical Analysis of Classifiers through T-test 363 

In the final step of classifier evaluation, a T-test is conducted to statistically analyze the 364 

difference in the classification accuracies of the proposed algorithms and to validate the 365 

significance of the classifier performance; that is, the superiority of ANFIS over ANN. The 366 

T-test comparison indicated that the ANFIS (M = 84.31, STD = 2.21) classified movements 367 

significantly more accurately (p = 0.0002) than ANN (M = 77.25, STD = 2.18).  368 

 369 
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4. CONCLUSION 370 

This preliminary study examines the significance of employing ANFIS as the pattern 371 

classification method for a MCS. Class separability and distinction are improved in 372 

comparison with those of the Hudgins multi-feature by using only four normal-limb subjects, 373 

two muscles (FCU and ECR), and a new combination of feature extraction methods (ZC, 374 

MAV, SSC, WL, RMS, and MNF) as the multi-feature. As per the results, the performance of 375 

the ANFIS system is superior to ANN in terms of both classification accuracy (88.90% ± 376 

0.92) and speed during training and classification (shorter classification and learning times).  377 

5. FUTURE RESEARCH DIRECTION 378 

The results of this research can be improved by incorporating additional subjects and muscles 379 

and by combining additional features. Future research on prosthetic hand application can 380 

focus on post-processing methods such as heuristic optimization algorithms (A. Rezaee 381 

Jordehi, 2014; Ahmad Rezaee Jordehi, 2014; Jordehi & Jasni, 2011) to improve hand 382 

movement classification performance. 383 
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