(2015) Carbon nanotube (CNT) composite surfaces for electrical contact interfaces. IeMRC 9th Annual Conference, United Kingdom. 17 Feb 2015.
Abstract
MEMS relays boast numerous advantages over PIN diode and FET devices, for example: lower on-resistance, higher isolation and cut-off frequency. There are two common implementations of MEMS switches: capacitively coupled and metal-contacting. Whilst the use of capacitive switches at low frequencies is limited, they tend to be capable of surviving high numbers (>500,000,000) of switching cycles without showing any signs of mechanical failure. For metal-contacting switches, the electrical contacts are mechanically brought into contact without the presence of a dielectric layer on the contacts, consequently enabling the transmission of DC to high frequency signals. A combination of electrical and mechanical factors result in degradation of the contact surfaces over consecutive opening and closing processes which ultimately result in switch failure.
The use of gold-coated multi-walled carbon nanotube (Au/MWCNT) bilayer composites have been investigated as a method for improving the reliability of switch contacts. Using a gold-coated MEMS cantilever beam to test the composite contacts. With a load current of 50 mA (load voltage 4 V), the use of a composites contact resulted in a switching lifetime in excess of 44,000,000 hot switching cycles. With a load current of 10 mA, the lifetime is in excess of 500,000,000 cycles. The use of Au/MWCNT composites offer a promising solution to enhance the lifetime of MEMS switches.
More information
Identifiers
Catalogue record
Export record
Contributors
University divisions
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg)
- Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Mechanical Engineering (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering > Mechanical Engineering (pre 2018 reorg)
Mechanical Engineering > Mechanical Engineering (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Mechanical Engineering (pre 2018 reorg) > Mechatronics (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering > Mechanical Engineering (pre 2018 reorg) > Mechatronics (pre 2018 reorg)
Mechanical Engineering > Mechanical Engineering (pre 2018 reorg) > Mechatronics (pre 2018 reorg) - Faculties (pre 2018 reorg) > Faculty of Engineering and the Environment (pre 2018 reorg) > Mechanical Engineering (pre 2018 reorg) > Engineering Mats & Surface Engineerg Gp (pre 2018 reorg)
Current Faculties > Faculty of Engineering and Physical Sciences > School of Engineering > Mechanical Engineering > Mechanical Engineering (pre 2018 reorg) > Engineering Mats & Surface Engineerg Gp (pre 2018 reorg)
Mechanical Engineering > Mechanical Engineering (pre 2018 reorg) > Engineering Mats & Surface Engineerg Gp (pre 2018 reorg)
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.