

Carbon Nanotube (CNT) Composite Surfaces for Electrical Contact Interfaces

A. P. Lewis, M. P. Down, J. W. McBride, L. Jiang and S. M. Spearing

{a.p.lewis, mpd2g12, j.w.mcbride, I.jiang, s.m.spearing}@soton.ac.uk, University of Southampton, Southampton, UK, SO17 1BJ

AIMS AND MOTIVATION

- MEMS switches have high isolation, low on-resistance and are low power, but material transfer between switching contact surfaces in MEMS relay switches causes device failure
- Au/MWCNT composites show resilience to switching damage and yield high lifetimes \bullet

Composite technology has been investigated to enable high lifetime MEMS switches \bullet

Study the effect of contact force and surface properties on contact resistance

MEMS relay with $>10^8$ cycles lifetime (load conditions: 4 V >10 mA)

Oscilloscope

hows force and

made

was

in

greater

increase

3. Au penetrates the composite, electrical conduction is through the Au layer

ELECTROMECHANICAL CHARACTERISATION

Electromechanical characterisation using a modified nanoindenter

10 µm

- Integrating a NI data acquisition card and modified indenter tip on a NanoTest Vantage nanoindenter system enabled accurate monitoring of the electrical potential during nanoindentation
- Electromechanical results demonstrate trends similar to those of bulk conducting materials highlighting the influence of the penetration of the Au into the MWCNT composite on the material properties

2.0e-7

1.5e-7

1.0e-7

5.0e-8

0.0

- electrical influence of the MWCNT on the The the composite can be directly properties of Έ observed. Longer MWCNTs allow for deeper Au penetration slightly increasing resistivity
- The observed electrical resistivities of the samples lacksquareare comparable to the more common Au/Si samples

0.012

Thickness Ratio [Au(nm)/MWCNT(nm)]

Au Reduced Resistivity

0.008

.

0.016

Au-coated cantilever beam

Simplified cantilever fabrication steps:

—10 mA

★50 mA

100 150 200 250

Current (mA)

1. Photolithograph to define beam dimensions

2 mm

10 mm

20 µm

Width

50

0

Length

Contact resistance over lifetime

for composites for two values of

load current: 10 and 50 mA

100 200 300 400 500

Switching Cycles (millions)

1E+06

- Thickness
- 2. ICP-RIE of silicon to release cantilever beam
- 3. Au layer [500 nm] sputtered onto cantilever beam

Results

With 50 mA, tests with the composite showed failure after 25–45 million cycles

current

- The experiment at 10 mA, maintained a stable contact for over 500 million hot switched cycles - exceeding the deliverable specification
- SEM analysis of the cantilever beam after 500 million switching cycles showed no visible signed of material transfer

Experimental setup

- Area of failed site related to load

CONCLUSIONS

G

<u>භ</u> 12

- Au/MWCNT composites significantly improve the lifetime of electrical contacts
- Model for describing the effect of load current on lifetime developed \bullet
- Electromechanical performance of composite modelled and experimentally investigated
- Feasibility of use of Au/MWCNT composites to enable MEMS switch technology proven
- MEMS developmental device hot-switched for over 500 million cycles with stable contact resistance

Industrial Engagement

Applied Relay Testing Ltd., Micromaterials Ltd., Nanotechnology Knowledge Transfer Network, National Physical Laboratory and TaiCaan Technologies Ltd.

Southampton

Acknowledgements

This work was supported by the Innovative Electronics Manufacturing Research Centre (IeMRC) and Engineering and Physical Sciences Research Council (EPSRC) under grant number: EP/H03014X/1.

Engineering and Physical Sciences **Research Council**