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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES

Ocean and Earth Science

Doctor of Philosophy

EXPLORING FRONTOGENESIS PROCESSES IN NEW SATELLITE SEA SURFACE
TEMPERATURE DATA SETS

Mounir Lekouara

This PhD thesis is about understanding some aspects of the dynamics of the
ocean surface mixed layer by means of satellite Sea Surface Temperature (SST)
measurements. The focus is on surface density fronts which are used as a
measure of the dynamical activity at the meso- and submesoscale. A review of
the current knowledge on the non-linear physical mechanisms that occur in the
vicinity of fronts is presented in Chapter 2. Chapter 3 characterizes the ability
of two algorithms for detecting fronts of various sizes and strengths that are
embedded in a complex turbulent flow and sampled on noisy two-dimensional
images. Chapter 4 explores and compares the performances of several new
multi-sensor Level-4 SST products in resolving the small scale gradients. These
Group for High Resolution Sea Surface Temperature (GHRSST) data sets offer
an unprecedented spatial and temporal SST coverage. Their production
however involves a variable and partially unknown level of smoothing which
“hides” some of the small scale variability. In Chapter 5, a robust, flexible,
automatic and optimized Matlab-based methodology for detecting fronts on
SST images and calculating a frontal index is presented. A basic frontal index
capturing the frontal length and strength is exploited to quantify the spatial
scales present in the various Level-4 SST products. More advanced frontal
indexes based on physical oceanography results by others are constructed in
order to estimate vertical exchanges occurring at fronts from their signature
on the SST. These new frontal indexes, which characterize fronts according to
their dynamical significance, allow the quantification of the upwelling,

subduction and restratification associated with frontal submesoscale



processes. Finally, the spatial and temporal variability of ocean fronts is

explored in order to determine their sensitivity to climatic signals.
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Dynamics of Ocean Fronts

1. Chapter 1: Introduction

1.1 General introduction

1.1.1 Climate science context

Most of the analyses performed to explore changes in the Earth’s climate
involve data that were averaged over a large region, such as the entire globe
or the tropics. The IPCC Fourth Assessment Report details studies which look
for trends in the time series of Sea Surface Temperature (SST) anomalies, ocean
heat content, precipitations, sea-ice extent, salinity, sea level and basin-scale
ocean circulation patterns (Pachauri & Reisinger 2007). Temperature increase
is a very straightforward signature of the shift in the climate system as a
consequence of increasing anthropogenic emissions of CO,. Satellite and in-
situ measurements of SST as well as in-situ deep temperatures have been
compiled into long Climate Data Records (CDR) from which regional and global
rates of increase have been quantified. For instance the global ocean
temperature was shown to have risen by 0.10°C averaged from surface to a
depth of 700 m over the period 1961 to 2003 (Bindoff et al. 2007).

Satellite sensors however have the potential to resolve quite fine horizontal
details of SST. Cloud free very high-resolution SST images have revealed
ubiquitous complex flow structures at the surface of the oceans, which are the
signature of a wide range of underlying dynamical processes. A new
generation of global, multi-sensor, high-resolution SST products is being
produced in the framework of the Global Ocean Data Assimilation Experiment
(GODAE) High-resolution Sea Surface Temperature (GHRSST) project (Donlon

et al. 2002). These products advantageously combine the high-resolution and
high accuracy infrared measurements with the high coverage of the microwave
sensors through an optimal interpolation method. They are the results of an
optimized combination of the strengths of the different components of the SST
observing systems. They have the potential to resolve small-scale dynamical
activity at the surface of the ocean, globally and daily over a long period of

time (up to 25 years).

This study’s underlying motivation is to examine potential climate signals in

satellite SST data at finer spatial detail than the regional averages of SST
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Chapter 2

anomalies which have been measured so far. To facilitate this, the information
extraction from SST data has been pushed to its limits in order to explore local
and transient small-scale processes and their spatial and temporal variability.
The broad idea is to quantify these processes by frontal analysis of satellite
SST data in order to generate global, spatially-detailed time series that have
the potential to be analysed for climatic signals. This is in agreement with the
U.S. Climate Change Science Program (Karl et al. 2006) recommendations to
make better use of observational data and to develop data sets for a range of
variables other than large-scale temperature, capable of supporting climate
quality analysis. By constructing estimates of the changes in the internal
dynamical variables of the ocean, the aim eventually is to build a better
comprehension of the climate system. This is intended both to explain with a
higher confidence the observed changes in the Earth system and to improve
the characterization of small-scale ocean dynamics, and ultimately their
parameterization, in numerical climate models, which would work towards

better predictions of future climate evolutions.

1.1.2 Rationale for the small scales exploration

This focus on oceanic small-scale processes was driven by recent research
efforts which are starting to unfold the importance of these processes in ocean
surface dynamics. It is now accepted that local mesoscale (10-100 km) and
submesoscale (1-10 km) processes in the surface mixed layer have a
significant integrated impact on the ocean’s primary production budget and on
the carbon fluxes between the atmosphere and the ocean. Theoretical studies
in geophysical fluid dynamics, mesoscale ocean general circulation and
biogeochemical models, regional sub-mesoscale physical and bio-physical
models, mesoscale in-situ measurements and satellite observations have
considerably advanced the understanding of the small-scale dynamics in the
last 20 years. They have shown that a substantial proportion of upwelling,
subduction, stratification and lateral stirring in the upper-ocean occurs at the

small scales.

Physical oceanographers started focusing on these small-scales dynamics
when it became clear that the analytical and numerical studies of large-scale
dynamics cannot account for all the variance of observed parameters in the

mixed layer. The questions raised by this discrepancy are challenging because
2



Dynamics of Ocean Fronts

these processes are embedded in a larger and energetic flow and hence are
difficult to resolve from non-synoptic measurements. At these scales, the
Rossby number is close to 1, therefore the geostrophic balance is lost and
ageostrophic non-linear 3-dimensional turbulence tends to dominate. This
makes these dynamics very difficult to simulate in numerical models.
Nevertheless it is fundamental to understand the vertical motions associated
with small-scale upper ocean dynamics because they play an important role in
the global carbon cycle. Indeed, they are involved in the transport of deep
nutrients into the euphotic zone, which enables primary production to occur.
They also convey heat, salt and momentum fluxes below the mixed layer, as
well as affecting the exchanges of gases between the ocean and the
atmosphere. Since satellite capabilities and computing power available to
scientists have recently considerably improved, it is a good time to combine
the up-to-date satellite datasets with the most advanced results on the small-

scale dynamics obtained from very high-resolution numerical simulations.

1.1.3 Focus on surface density fronts

In order to observe and quantify the mesoscale and sub-mesoscale processes
of the mixed layer, we have chosen to use sea surface density fronts. They are
defined as regions of enhanced horizontal gradient of density. The choice of
surface density fronts was easy because they are observable on SST satellite
images and because they are a signature of upper-ocean dynamics. Generally
speaking, if a surface density front is present, it means that two water masses
of different density are side by side. This situation can be the consequence of
either internal dynamics of the mixed layer (i.e. horizontal advection, straining,
upwelling, etc. ) or inhomogeneous external forcing (wind-induced mixing,
irregular solar heating due to clouds, etc. ). Once two water masses of
different density are made to coexist side by side, a pressure gradient force is
exerted between them. The pressure gradient pushes the denser water
underneath the lighter water, and when this slumping happens vertical mixing
and restratification are in effect generated locally at the front. If the pressure
gradient is countered by the Coriolis effect of a down-front flow in a

geostrophic balance, the front can be maintained. The occurrence of a front
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implies that some sort of dynamical activity is present on its surrounding

waters.

Conversely, when dynamical activity occurs in the upper-ocean, it has a
signature at the surface in the form of density fronts. If the ocean was
perfectly stratified with a mixed-layer of globally uniform density, horizontal
advection would have no effect on the surface density, because water masses
of equal densities would be mixed. However, the real ocean is more complex,
and its mixed layer is under the effect of heterogeneous forcing: meridionally
variable solar heating, currents, storms, fresh water discharges and so on. As a
result of this, the surface density is not homogeneous at the mesoscale and
below, which makes it a good tracer of surface dynamics. Indeed, for instance,
when water is advected horizontally by western-boundary currents and
strained by eddies and turbulence, it comes into contact with different water
masses which are likely to be of different density. In effect, the large-scale
background density gradient from the latitudinally varying solar heating is
enhanced in areas where energetic horizontal flows converge. On top of this,
various mesoscale processes such as eddies and wind-induced coastal
upwellings transport water from below the mixed-layer which is denser and
colder, and this also generates surface density fronts. Surface density fronts
are therefore a good indicator of mesoscale and submesoscale activity in the

mixed layer.

Obviously, this view has an important limitation: the density fronts are
associated with very diverse physical processes. Thus their effect on the mixed
layer, and ultimately on the climate system, are variable as well. It will be
shown that different processes can have similar signatures in term of density
fronts. Our approach tackles this issue from two directions. Firstly, although in
this work the exploration of fronts has been centred on measuring fronts
revealed in SST data fields, we choose to make the most of additional
knowledge and parameters in a combined approach to push the resolving of
the dynamical features as far as possible. Secondly, only processes that are
inherent to the presence of a front are considered. We focus more on dynamics
induced by the presence of a front in its environment and less on the
processes that have generated the front. The scope of this thesis is not to
measure the variability of the vertical circulations generated at the mesoscale

by eddy-pumping fluxes, wind-induced coastal upwelling or wind-induced
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mixing. It is rather to focus on the smaller scale processes occurring at fronts,
whether these fronts are those marking the boundary of a strong jet or those
defining an eddy. The raw indices of detected fronts certainly include the
larger scale processes, and the spatial and temporal variability and trends of
these indices are an important result of this thesis. However, the dynamical
parameters of the small-scale activity generated at the fronts recovered by our
novel techniques are independent from the processes initiating these fronts
(eddy, jet, upwelling...), because each front, may it be marking the border of
an eddy, is simply treated as a front subject to an external forcing (straining,

wind stress...).

1.1.4 From SST images to surface density fronts

SST images have the potential to resolve the 2-dimensional structure of the
ocean surface dynamics. Like surface density, surface temperature can be used
as a tracer to detect small-scale activity. However one needs the surface
density to understand and quantify the underlying dynamics involved. The
pressure gradient at a front is proportional to the horizontal gradient of
density (or buoyancy), and the same is true for the potential energy stored in
the front that is available for a forward energy cascade. It will be shown that
several dynamical parameters can be inferred from the information of the

surface horizontal density gradient.

However one needs to take into consideration the limits of the SST data.
Firstly, it will be shown that multi-sensor satellite products have the advantage
of the best conceivable coverage, but they are the result of an averaging of
nhon-synoptic measurements and an optimal interpolation in space or time to
fill gaps where data are not available. For this an autocorrelation matrix is
applied in the production process which has the effect of smoothing to some
extent the resulting SST field. In these conditions the capacity of these
products to reveal mesoscale and submesoscale frontal variability needs to be
assessed and accounted for in the interpretation of the results. Secondly, the
satellite sensors measure the temperature of the top few millimetres of the
ocean surface. When relating this temperature to the mixed-layer dynamics,

one needs to make sure that this temperature is dominated by the temperature
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of the mixed-layer rather than the temperature of the atmosphere. Thirdly,
there is often a degree of compensation between the salinity and the
temperature at the fronts. This happens when the temperature gradient is
partly (or almost completely) counteracted by the salinity gradient in its effect
on density. Effectively, this means that when translating a temperature
gradient into a density gradient, while assuming the salinity to be constant,
one may overestimate the density gradient, because the salinity is often
slightly correlated to the temperature in the mixed-layer. Steps must be taken
to minimize the errors induced by these three limitations. Similarly, a density
front can be completely dominated by the salinity, with little or no thermal
signature. In this case the density gradient is underestimated when calculated
from the SST alone. It should be stressed that this work does not contribute to

the understanding of this type of front.

1.1.5 Scope of the research

The first objective of the research activity presented in this thesis is to
develop, test and validate front detection algorithms and software tools
suitable for the new multi-sensor SST data sets. Strengths and weaknesses of
the various existing algorithms and data sets are analysed and discussed, in
order to propose a methodology for measuring and monitoring oceanic frontal
variability, adapted to the future generation of SST data sets. To compare the
ability of various algorithms and data sets to detect temperature fronts, a
qguantitative frontal index is defined based on the strength and the length of
the detected fronts. This simple index is a first-level proxy to measure small-
scale upper ocean dynamics. The work on the detection algorithm is based on
existing techniques but it pushes them further as it validates them and rates
their performances. The aspect on using the multi-sensor SST data sets is
innovative as it is the first attempt to quantify the ability of such products to
resolve small-scale features. The achievement of this first objective constitutes
a substantial body of new work with the potential for publication in the
literature on image analysis techniques. At the same time it has delivered
analytical techniques enabling more penetrative research on dynamical
applications and climate change indicators which are the ultimate goals of the

thesis.
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The second objective is to critically assess recent results of theoretical
research by others on frontal dynamics, in the light of the observations that
can be made from SST images. The idea is to derive information about
oceanographic dynamical parameters from observations of the surface SST
frontal field. This effort is based on a large and recent fluid dynamics literature
(analytical and numerical), and additional parameters from other satellite
sensors (altimeters for the background straining mesoscale field) and
climatologies (salinity, mixed-layer depth) that are used in synergy with the
SST. The intended outcome is first to conceive, and then to create,
observational dynamical indices derived from SST fields in this synergetic
context. The focus is mainly on frontogenesis mechanisms and their
theoretical effects in term of vertical mixing and restratification. Observations
of external forcing such as the surface ocean current field are combined with
the SST to calculate consequences of these fronts in the upper ocean
dynamics. These dynamical indices are intended to provide a more advanced
insight into the ocean system than the first-level frontal indices because they
quantify dynamical processes such as vertical transport or restratification,

rather than simply quantifying fronts at the surface.

The final objective is to apply these methods to long time series of satellite
measurements. These methods have the potential, not only to contribute to
numerous oceanographic debates about the present state of the oceans, but
also to improve predictions of the future state of the ocean in a changing
climate. The first reason is that they can allow a better characterization of the
small-scale dynamics variability in the climate models. The second reason is
that the sensitivity of these new frontal dynamical indices to climatic signals
can be explored, and conclusions may be drawn about the likely evolution of

the ocean small-scale dynamics.

An additional underlying motivation of this work is to demonstrate that more
can be done with satellite observations to comprehend oceanic processes.
Although parts of the study strongly rely on analytical and numerical fluid
dynamics results based on idealized situations as well as on detailed physical
observations of a localized phenomenon, an approach has been developed
which is systematic, objective and global. The new methodology is intended to
be applied to global datasets, and to make use of additional parameters in an

objective manner in order to produce a set of physical indices that are
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consistent in both time and space. Regional peculiarities and heterogeneities in
the data are dealt with as much as possible by the algorithms so that the
resulting indices are robust in time and space, allowing comparison of their

values on reliable maps or time series.

Ultimately, the question must be faced as to whether these indices meet
climate accuracy and stability requirements so that they can be used as climate
change indicators. This study is a step towards the creation of such climate
change indicators based on the frontal dynamics as observed from SST satellite
images, in synergy with other measurements. This is consistent with the spirit
of the on-going ESA Initiative in Support of Climate Change, which defines
Essential Climate Variables (ECV) to be processed from regionally averaged

satellite measurement.

1.1.6 Summary of the objectives

The logical flow of the thesis can be summarized in a few questions, each one

of them constitutes the objective of a chapter.

Q1. What front detection algorithm is most suited to identify fronts on
SST images?

Q2. Which SST dataset is the most effective for front detection on a
global scale?

Q3. What aspects of the mixed-layer dynamics can be identified from
the fronts detected on SST data fields?

Q4. What is the spatial and temporal variability of the frontal quantities?
How does it evolve on a climatic time scale?

1.2 The scientific context

1.2.1 Generalities about ocean fronts

Ocean fronts have always attracted the attention of fishermen who noticed
much higher concentrations of pelagic species in their vicinity which marked
them out as a preferred location for fishing. Fronts have also been searched
for and mapped by the naval military forces as submarines hide behind them
to avoid being detected by sonars. They have always been of strong interest to

oceanographers who have observed them over a large range of scales: from
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100m to 10,000 km along-front; from 10 m to 100 km across-front; from 1 m
to 1 km down-front; their lifetime varies from hours to millions of years (Belkin
2002). A picture of a homogeneous surface mixed-layer with narrow zones of
enhanced gradients of water properties has emerged. Fronts have been the
subject of a large and multi-disciplinary research effort and are now
understood to be a "pathway" between large scale 2-dimensional horizontal
oceanic/atmospheric forces and small-scale 3-dimensional vertical phenomena.
The dynamic tendency for the large-scale flow in frontal zones to lose its
geostrophic balance and become hydrodynamically unstable allows the
transfer of energy from large scales to small scales and enhances the vertical
exchanges between the ocean interior and the surface layer. This section
reviews the current knowledge on the dynamics associated with the oceanic

surface fronts and their consequences for the biological and climate systems.

A sustained front is generally associated with a current, in which the Coriolis
acceleration balances the pressure gradient created by the difference in
density between either side of the front. The fronts are zones of high vertical
shear coupled with the strong horizontal density gradient that marks them.
This coupling is known as the thermal wind and is a fundamental
manifestation of the geostrophic balance. The current flows along the contours
of density, and may not destroy nor deform the frontal structure (Olson et al.
1994). The detailed structure of geostrophically balanced fronts is thoroughly
described in Robinson (2010). Fronts that are sustained long enough to reach
geostrophic balance fill the ocean over a wide range of scales. On the large
scale (up to thousands of kilometres), fronts are encountered on the frontal
flows of the major ocean currents such as the Gulf Stream in the Atlantic
Ocean, the Kuroshio in the Pacific and the Antarctic circumpolar current
around the Southern Ocean. On a smaller spatial and temporal scale,
mesoscale turbulence of the ocean stirs large-scale density gradients into
transient concentrated filaments and fronts (Mann & Lazier 2006, Robinson
2010).

This basic ideal view represents the first order of steady state dynamical
description of a front. A front interacts with destabilising environmental forces
such as mesoscale current strain and wind. This triggers its intrinsic dynamics
and causes departures from balance and an evolution in time. For example,

oscillations and baroclinic instabilities can arise along a front undergoing an
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adjustment after its creation. This can result in an active restratification of the
mixed layer through an energy cascade from the mesoscale to the sub-
mesoscale. Also mesoscale strain on some parts of the front can have a
frontogenetic effect and develop localized strong upwelling/subduction of
water masses. As the geostrophic balance is lost, non-linear small-scale
secondary flows are created that work towards recovering the lost balance,
sometimes by mixing and destroying the front, other times by developing
large lateral oscillations and breaking the flow into meanders and eddies.
Because these effects have a significant integrated impact on the dynamics of
the mixed layer and the biological activity, it is fundamental to understand
how fronts are created, how they are destroyed, how they evolve under
different forcing and what physical phenomena are associated with their

presence.

A more substantial review of recent theoretical studies of frontal processes is

provided in Chapter 2.

1.2.2 Satellite observations of fronts

Most of the time, ocean fronts have a signature at the surface on the
temperature field. SST datasets have been searched for fronts ever since the
first datasets were released, they have shown to be capable of resolving
spatial scales and temperature differences necessary to observe mesoscale
fronts. In the 1980s, during the early stages of satellite SST acquisitions,
temperature fronts were detected and monitored manually by operators. This
was done in the context of fisheries, submarine military applications or
weather prediction. In order to reduce the subjectivity in the front detection
introduced by a human operator, objective automatic front detection methods
were introduced. The design of such methods is a challenging task as fronts
consist of complex horizontal structures embedded in the turbulence of the
flow, and exhibit a wide variety of space and time scales. The instrument
acquisition errors increase the complexity of the automatic detection algorithm
which should be robust to noise, cloud-induced missing data and errors

introduced by the atmospheric correction.
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The issue of edge detection on SST was tackled in a variety of ways (see
Hopkins et al. 2010 for a detailed review). Some algorithms based on image
processing techniques were suggested, they rely on the computation of the
temperature gradient. A high SST gradient is a sighature of a sharp transition
between water masses of different temperatures. Applying a gradient operator
(Prewitt, Sobel etc...) on a SST image reveals the areas of transitions that mark
the fronts (Simpson 1990). Fronts can then be mapped by setting a SST
gradient magnitude threshold (Belkin & Gordon 1996). The precise location of
fronts can be obtained following the method suggested by Canny (1986),
which locates the fronts on the crests of the SST gradient, in other words on
the local maxima of SST gradient in the gradient direction. The derivative-
based edge detection methods present the advantage to relate the fronts it
detects to a simple definition in terms of horizontal temperature gradient,
which can subsequently be linked to dynamics of the mixed layer. On the
other hand, the gradient computation is very sensitive to noise in the data, and
these methods generally apply a preliminary smoothing filter to the data,
which blurs away the fine features and underestimates the absolute value of

horizontal SST gradient.

Other edge detection methods have been designed specifically for front
detection on SST data suffering from noise and missing data. These methods
divide the SST image into windows and apply statistical analysis on the pixels
they contain to determine the presence of a front. The main algorithm
following this approach is the histogram-based single-image edge detector
(SIED) of Cayula and Cornillon (1992, 1995). This method was proven to be
fairly robust to noise and missing data. However, it needs to be subjectively
tuned and detects fronts that are strongly dependent on the chosen
parameters. Yet, the SIED’s advantages are widely recognized and this
algorithm was used to detect fronts in numerous studies. Regional
climatologies of SST fronts detected with the SIED on AVHRR time series were
produced by Belkin and Cornillon (2003, 2004, 2005). It was also applied to
detect satellite-derived chlorophyll a concentration fronts in the Long Island
(Stegmann & Ullman 2004), and to examine fronts of normalized water-leaving
radiance in the South Atlantic Bight (Bontempi & Yoder 2004). Miller (2004)

built five-days composite SST, chlorophyll and sediment maps of fronts with
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the SIED method, and combined them to derive statistics on the relationship

between these properties.

Several studies explored the temporal variability of frontal indexes. Belkin and
Cornillon (2005) detected fronts on Level-2 Pathfinder satellite fields between
1985 and 1996 using the Cayula method over the Bering Sea. Time-series of
frontal frequencies were computed for each pixel which allowed the authors to
explore the fronts’ spatial structure and seasonal and inter-annual variability.
The frontal probability index they defined exhibited a very strong seasonal
variability, with a ten-fold increase from spring to summer and an abrupt drop
in September. The annual mean monthly frontal index increased approximately
50% from 1985 through 1996, apparently signalling a concomitant
intensification of some yet unidentified frontogenetic processes. Ullman et al.
(2007) have explored the spatial and temporal variability of subtropical fronts
in the subtropical frontal zone (STCZ). They used a modified version of the
multi-image method described by Cayula and Cornillon (1996) to detect the
fronts. They also found that the variability of the front probability is
dominated by the seasonal cycle. They observed that the western part of the
STCZ region has the largest seasonal variation with maximum probability in
the spring, while the eastern part of the region has a more intermittent
seasonal signal with peak probability during early summer. Cornillon and
Obenour (talk, 2012) have explored the long-term temporal trends of fronts
detected with the Cayula algorithm on the AATSR re-processing for climate
dataset (ARC) and on the AVHRR Pathfinder one. The authors reported an
increase of their frontal index of 0.47% per year with the day SST and 0.59%
per year with the night data between 45°S and 45°N despite a global negative

trend of temperature gradient magnitude of 0.4% per year.

All the methods mentioned above produce maps of fronts, and as they are
applied to a time sequence of SST images over which the turbulence evolves,
different fronts are detected in different places. Another family of front
detection techniques was developed to study a single permanent front and
observe how it moves and changes strength over time. Shaw and Vennell
(2001) use a surface fitting technique to follow an ocean front on SST. Their
algorithm records not only the position of the front’s steepest gradient but
also its width and the temperature difference across the front. Time series of

the parameters of a front can therefore be constructed from a series of SST
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images. This approach is suitable for the study of a specific front which should
be permanent, as is the Southland front in New Zealand coastal waters. In this
context the method was shown to be extremely useful since it allows one to
explore the evolving history of a front and relate the frontal parameters to
oceanographic quantities such as large scale forcing or local primary
production. Hopkins et al. (2010) subsequently suggest a weighted local
likelihood approach that is robust to noise and missing data and estimates the

uncertainty associated with each parameter.

1.2.3 Previous efforts to combine observations with theory

Very few studies derive quantitative estimates of dynamical parameters of the
mixed-layer from satellite observations. Most studies with this objective
combine satellite observations with in-situ observations from an
oceanographic campaign or a numerical model that assimilates them. Altimetry
products are notorious for allowing relative values of horizontal geostrophic

currents and eddy kinetic energy to be derived.

However most studies based on satellite data sets are either built on statistics
of the measured parameters, which are not linked to dynamics, or draw only
qualitative conclusions on the dynamics observed. This is especially true for
what concerns vertical exchanges and small-scale physics. This section
presents the handful of studies that attempt to bridge the satellite

oceanography community to that of physical oceanography.

Siegel et al. (1999) paved the way in this domain by calculating the
contribution of eddy pumping to the vertical flux of nutrients in the Sargasso
Sea with satellite altimetry. Altimetry products are limited by their spatial and
temporal resolutions, so they are unable to resolve small-scale dynamics.
Nevertheless Klein et al. (2009) show that the Surface Quasi-Geostrophy (SQG -
see section 2.2.4) framework should be efficient at diagnosing the vertical
velocities in the upper ocean once the high resolution sea surface height

product become available.
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SST data appear to be more suited to the diagnosis of small-scale vertical
circulation. For example Lehahn et al. (2007) make use of the parameterization
of vertical velocity circulation at horizontal density gradients suggested by
Legal et al. (2007). This parameterization is applied on submesoscale filaments
stirred by eddies observed on SST images of the North-East Atlantic. The
authors calculate a vertical velocity in the range of 25 m/day that corresponds
to an energetic vertical cell capable of nutrient upwelling. In the meantime
researches are being conducted to derive the full 3-dimensional circulation
from surface temperature under the SQG assumption (Isern-Fontanet et al.
2008 and LaCasce and Mahadevan 2006). According to SQG, the 3D stream
function can be well approximated, at least on some regions and under
appropriate conditions, by a dominant mode obtained after assuming constant
stratification and vanishing relative potential vorticity at surface (Turiel et al.
2008). In spite of the coarse simplification, SQG velocity fields derived from
microwave SST images have been shown to acceptably describe the surface
horizontal velocity field (as derived from altimetry maps), at least over open
sea areas and for regions of strong SST gradients (Isern-Fontanet et al. 2006).
Turiel et al. (2008) show that, under more relaxed, self-consistently verifiable
conditions it is possible to describe surface streamlines at any location and
time from microwave SST. Fox-Kemper and Ferrari (2008) study the climate
implication of the parameterization suggested by Fox-Kemper et al. (2008)
which relates horizontal buoyancy gradients and mixed layer depth to the
restratification by MLIs that develop from baroclinic instabilities of ocean
fronts. The mixed layer depth is estimated from a climatology, and the
buoyancy gradients from altimetry. The choice of altimetry for estimation of
the buoyancy gradient is made by the authors out of fear of an overestimation
of the density gradient calculated from temperature gradients alone, because
of the possible presence of compensated fronts. The result is that the

restratification by MLIs is a leading mechanism in the upper ocean.
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1.3 Outline of the thesis content

1.3.1 The approach: bridging between scientific communities

This study should be seen as an attempt to bridge two oceanographic
disciplines. On one side, the physical oceanography community has achieved
tremendous advancements on the understanding of submesoscale dynamics.
On the other side, the satellite oceanography community has managed to build
new observation products that maximize both quality and availability. The
underlying objective of this thesis is to send a message to both communities.
We would like to convince the physical oceanography and climate science
communities that the satellite data sets have reached a level of maturity that
allows one to answer dynamical questions on the small-scale activity of the
real ocean. We would also like to demonstrate to the satellite oceanography
community that recent dynamical results make it possible to relate remote
surface measurements to the underlying dynamics of the mixed layer, when an

appropriate methodology is applied.

As recognized by Chapron et al. (2010), “research efforts are highly needed to
better understand the different sensor physics and capabilities, to demonstrate
and explore in more details the combined uses of the different observations,
to propose and test improved dynamical and statistical integration strategies
to be used to guide the developments for innovative, efficient and
thematically-driven data-mining methodologies”. This study is a step toward
the development of a new generation of algorithms that combine various
satellite products with in-situ climatologies in a way that is consistent with the
current knowledge of the small-scale dynamics in order to extract
oceanographic dynamical variables. It is the belief of the author of this thesis
that this approach is original in the sense that it is systematic, objective and
global. The intention is to provide a methodology for optimal and automatic
use of satellite data, recovering as much information as possible, in a way that
would allow the construction of long time series of the recovered parameters,
which means that the calculated indexes should be coherent in both space and

time.

This study is also new with regard to the SST datasets on which it is based on.
Indeed the newly available multi-sensor Global High Resolution SST products
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(GHRSST) offer an unprecedented high spatial and temporal coverage. However
the ability of these blended data sets to reveal small-scale features has not
hitherto been explored and quantified. The methodology that is proposed in
this thesis therefore seeks to assess the characteristics of the input data from
which the algorithms extract the information. This study also includes the
innovative inter-comparison of existing front detection methods and

qguantification of their ability to detect frontal features in various conditions.

An important objective of this study is to bring forward a new generation of
frontal indexes that are dynamically more meaningful than the historical ones.
The suggested frontal indicators should facilitate new applications of satellite
products with potential for answering questions related to the influence of
small-scale frontal dynamics on the vertical exchanges in the mixed layer.
Finally, the ground is set for a potential use of frontal indexes as a climate

change indicator, which is something completely new.

1.3.2 Road map for the thesis

This thesis is organized in six further chapters, each of the substantive
chapters 3 to 6 being aimed at answering one question from the list in 1.1.6.
Chapter 2 provides a review of physical oceanography knowledge of fronts
and is an essential input for addressing Q3. Chapter 3 explores which front
detection algorithm is the most suited to the satellite SST images (Q1). It
describes and discusses several existing front detection techniques and edge
detection algorithms based on the image processing literature. The different
methods are compared and their performances are quantified, as a function of
the characteristics of the SST data used as an input. Chapter 4 asks the
question of which SST product is the most efficient for the detection of fronts
on the global scale (Q2). It assesses the ability of different global SST products
to resolve fronts at various scales. Chapter 5 presents an automatic and
optimized methodology to detect fronts on SST datasets. It builds on the
dynamical results presented in chapter 2, and discusses their practical
implementation. The outcome of this chapter, in response to Q3, is a set of
frontal indexes based on the physical understanding of the dynamics

associated with fronts and a methodology to compute them. In chapter 6, the
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spatial and temporal variability of some of the basic frontal indexes is
explored and characterized in response to Q4. Long time series of the indexes
are constructed and analysed with a climate perspective. Finally, Chapter 7

summarises the achievements and identifies ways to take the work forward.
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2. Chapter 2. Dynamics of ocean fronts

This chapter presents a review of the current understanding of mesoscale
and sub-mesoscale fluid dynamics in the vicinity of ocean surface fronts. It
penetrates further into the theoretical study of frontal dynamics than the rest
of the thesis, the primary focus of which is to develop methodologies for
extracting information about frontal conditions from observational data. That
being the case it may not be strictly essential to read this chapter in order to
follow in general the methods and achievements of the work described in
subsequent chapters. Nonetheless, the motivation of the thesis is to develop
data analysis tools that eventually will become useful to provide observational
evidence that can validate or challenge theoretical models of frontal processes.
Thus the formulation of tools such as frontal indexes should, as far as
possible, be informed by the current concerns of ocean frontal dynamicists.
The author of this thesis also believes that it is important for remote sensing
specialists to get acquainted with the results of dynamicists on the frontal
dynamics presented here. Therefore a chapter like this, which explores the
state-of-the-art of the underpinning dynamical theory, is considered to be an
essential element to ground the thesis in its oceanographic context. In places
throughout the chapter cross-references are made to later chapters to identify
particular elements of frontal theory which have informed some of the design
choices for the data analysis methods that comprise the main substance of the

thesis.

2.1 Fronts within the wider context of upper ocean

processes

The oceanic mixed layer was long characterized in terms of small-scale
vertical processes that reduce the vertical gradients of tracers and momentum,
and large-scale horizontal motions that stir and mix the lateral gradients. In
this characterization, 3-dimensional processes are thought to occur only at the

very small-scale (0.1m to 100m). For instance, Langmuir cells driven by wind
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and convection cells driven by surface buoyancy fluxes have been investigated
for their contribution to mixing and energy dissipation. At the other end of the
scale spectrum, (10km to 100km), large scale ocean currents and mesoscale
eddies have been studied extensively and are believed to dominate the
horizontal stirring and the lateral transport of heat, momentum and tracers
(Boccaletti et al. 2007). Dynamics at scales between 100 m and 10 km
(submesoscales) are assumed to be subdominant. However recent
observational (Ferrari & Rudnick 2000), modelling and analytical studies (Capet
et al. 2008b, Lévy et al. 2001, Spall 1997) have challenged this view: motions
in this intermediate range of scales are often leading order in the vertical flux
of mass, buoyancy and tracers in the upper ocean. In addition, they are
thought to be instrumental in transferring energy and properties from the
largely adiabatic mesoscale flow field, to a scale where mixing can occur
(Thomas et al. 2008).

These recent studies have been motivated by the crucial search for missed
physical mechanisms that could close the budget of phytoplankton production
through additional nutrient supply. There is a debate on the spatial and
temporal scales involved in the physical supply of nutrients in the euphotic
layer through vertical mixing. It is understood that on the global/annual scale,
nutrients are controlled by the thermohaline circulation and the wind mixing.
Yet the geochemical estimates of new production surpass this rate of nutrient
supply by a factor of two. Nutrient supply by mesoscale eddies is estimated to
account for 20-30% of the global annual primary production budget
(McGillicuddy et al. 1998, McGillicuddy Jr et al. 2003). The most likely
mechanism which is able to explain this discrepancy seems to be related to the
underestimation of the dynamics at small scales because of the lack of
resolution of both the models and the in-situ measurements. Indeed very high
resolution Ocean Colour satellite images have revealed that submesoscales can
account for approximately 50% of the total resolved variance of Chlorophyll
(Glover et al. 2008). This highlights the issue of nutrient distribution at small

scales.

The biogeochemical studies on the vertical exchange of tracers are divided
into two conceptual views. The first view assumes that the vertical exchanges
occur principally in the interior of mesoscale eddies, and relate the time

evolution of the eddy anomaly to the vertical transport through a linear
19



Chapter 2

relationship. This view includes the eddy pumping paradigm (McGillicuddy

et al. 1998). Observed and modelled submesoscale structures are usually
interpreted in terms of horizontal dispersion driven by the two-dimensional
turbulence dynamics, therefore having no impact on the vertical exchanges.
This conceptual view has contributed to significant advances for the
estimation of the vertical exchanges due to mesoscale eddies, but it is based
on two questionable assumptions. First, it implicitly assumes that nutrients or
tracers are well mixed on isopycnals. Second, it assumes that the space
between the mesoscale eddies is a dynamical desert in term of the vertical
pump (Klein et al. 2008). On the other hand, the second view allows the
possibility of vertical exchanges directly at small scales, within the
submesoscale structures, through frontal and ageostrophic processes. In this
scenario, eddies contribute in an indirect way to the vertical transport because
submesoscale structures are produced by the mesoscale eddy-eddy
interactions and straining of the mesoscale current. This study focuses on
dynamics inherent to fronts, hence it is based on the scientific literature
related to the second view. The eddy-pumping mechanism is not taken into
account by the developed indices, eddies are rather seen as fronts in their

radial direction.

Ocean surface fronts are ubiquitous across the ocean, and are found at
scales varying from the mesoscale to the submesoscale. Whether fronts are
large or small, submesoscale dynamics can be triggered by their presence.
This chapter reviews the proposed mechanisms for the development of
submesoscale structure and vertical circulation in the presence of horizontal

density gradients. They can be classified into three main groups of dynamics:

1. The theory of frontogenesis driven by lateral strain (Hoskins &
Bretherton 1972).

2. The occurrence of unforced submesoscale baroclinic instabilities on
fronts losing their geostrophic balance, which has the potential to
restratify the mixed-layer (Boccaletti et al. 2007).

3. The generation of intense downwelling at fronts by down-front wind
stress due to cross-front Ekman transport at the surface (Thomas &
Lee 2005).

The rest of this chapter gives an overview of the present understanding of
the dynamics that occur at surface fronts. It summarizes the observational

studies, the analytical models based on a variety of assumptions, and the
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results from numerical models of increasing complexity and resolution. It aims
to give the reader a first understanding of the parameters involved in these
dynamics. In particular, it will be noticeable how the value of the horizontal
gradient of density emerges as a recurrent and important parameter in the
quantification of the dynamics involved at front. This is the primary link
between theoretical models of frontal processes and the capacity of satellite

remote sensing of SST to detect and measure those processes.

Section 2.2 reviews theories of frontogenesis driven by the straining field of
a larger scale phenomenon. Section 2.3 explores the role of frontal
instabilities in re-stratifying the mixed layer, and section 2.4 considers basin-
wide numerical models capable of simulating mesoscale frontal dynamics.
Finally section 2.5 seeks to identify some of the current questions being asked
by ocean dynamicists, and to which satellite-retrieved SST fields may have a
contribution to make. It should be noted that some of the theoretical ideas
described in this chapter are picked up again in Chapter 5 which explores in
greater detail the existing parameterisations for submesoscale processes that
attempt to capture their contribution to vertical velocities and restratification

at fronts. Such cases are cross-referenced later in this chapter.

2.2 Frontogenesis

The understanding of fronts has been the subject of a long-standing scientific
effort. Physicists have explored the dynamics of turbulent fields for decades to
gain insights on the mechanisms that are involved in the creation, sustaining,
intensification and destruction of large horizontal buoyancy gradients in the
troposphere and in the ocean surface layer. The rotation of the Earth is
understood to be instrumental in the presence of the fronts, as they are
approximately in a geostrophic balance. The understanding of oceanic
turbulence is a difficult task and it remains one of the main sources of
uncertainty within climate models. Indeed, the turbulence is the result of a mix
of physical mechanisms interacting at a variety of scales. There are different
ways to investigate the turbulence. Oceanographers can perform in-situ
measurements, but they can sample only punctual stations at sea. They often
run a transect through the region of interest, but the non-synopticity of the
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measurements combined with the low resolution of the transect limit their
conclusions on fast evolving phenomena (Allen et al. 2001). Also the features
of interest are often embedded in a larger and more energetic flow, which
makes it difficult to measure them. Faced with these difficulties, dynamicists
have confronted the issue with purely theoretical and mathematical
approaches. As early as in 1928, physicists designed analytical models to
describe the formation of fronts in the atmosphere (Bergeron 1928). The
analytical models of turbulence require assumptions and approximations
concerning the physics at play. This is usually done by assuming that in
particular conditions, certain scales and forces are dominant and the
phenomena not taken into account are considered negligible. This allows the
turbulent field to be modelled by a set of assumptions and equations, called a

regime, and conclusions to be drawn from the consequences of the equations.

Obviously the realism of these analytical models is limited by the
representativeness of the approximations they are based upon. Different
approximations lead to different results and part of the remaining uncertainty
is due to questions on the applicability of these regimes. Nevertheless the
analytical models have tremendously advanced the understanding of the
atmospheric and oceanic turbulence. As computer capabilities advanced from
the 1980s, two-dimensional simplified numerical models of fronts were
developed to explore their time evolution. Later three-dimensional numerical
models based on less restrictive approximations gave more insights on the
interaction of scales and mechanisms in the ocean mixed-layer. It has been
possible for the last ten years to run basin-wide simulations of oceanic
turbulence based on Primitive Equations (PE). The PE imply no assumption on
the balance of forces involved, the only limitation being the resolution of the
simulation. Dynamicists are making some great progress by pushing the
resolution of these models to a computational limit (about 1km for a basin-
wide simulation), which reveals non-linear behaviour associated with sub-
mesoscale activity. Because fewer assumptions are made in the design of PE
models, more realistic results are obtained. However the interpretation of
these results remains a tricky task as it is not always clear to what extent a

particular mechanism is responsible for an observation.
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221 Time evolution of the horizontal density gradient

Although much of the interesting theory about frontogenesis is concerned with
nonlinear feedback, it is useful to consider the density as a passive tracer
conserved in the Lagrangian sense. Lapeyre et al. (2006) show that the
evolution of frontogenesis (frontolysis), which is the process that leads to
formation (destruction) of the horizontal density gradient is governed by the

following equation:

DVyup T dp
D - —(Vyt) Vﬂp—g Vuw 2-1)

Where 4 = (u, v,w) is the velocity. u and v are the horizontal components of the
velocity and w is the vertical one. (V44)7 is the transposed velocity horizontal

gradient tensor.

The first term on the rhs of (2-1) is the straining of the density field by the
horizontal velocity field, whereas the second term is the flattening (or
steepening) of the isopycnals by the vertical velocity that develops in
response. As eddies stir, fold and stretch the fronts, the density gradient
evolution is driven by the competition between the strain, which can
“compress” the density gradient, and the vertical velocity, which can modify
the slope of the isopycnals. The two terms on the rhs are linked by the fact
that the density is not exactly a passive tracer, and non-linear effects are
generated as a front is being strained. This is developed in the next

paragraphs.

2.2.2 The theory of strain driven frontogenesis in the Quasi-

Geostrophic (QG) regime

Many studies have explored the mesoscale eddies and submesoscale
turbulence within the framework of quasi-geostrophic theory (QG) based on a
small Rossby number approximation (Charney 1948). The Rossby number can
be defined as the RMS value of the relative vorticity divided by the Coriolis
parameter £ This regime which accurately describes the mesoscale
phenomena associated with eddies, predicts vertical velocities (w) of the order

of 1-10 m/day. The typical w distribution in the QG approximation is a
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multipolar structure with alternate upwellings and downwellings along
meandering fronts (with upwelling occurring downstream of the trough and
downwelling occurring downstream of the ridge) (Woods 1988). These
patterns, which extend vertically down to the zero-crossing of the first
baroclinic mode (i.e. approximately 1000m), are induced by the curvature and

by eddy-eddy interactions (Lévy et al. 2001).
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Figure 2-1: Schematic configuration for an intensifying straight horizontal
density front with f > 0. The front is close to the geostrophic balance. Also
shown is the ageostrophic circulation that develops in response to
strengthening of the front. The lines are isopycnals, the black arrows
correspond to the ageostrophic circulation, the blue arrows correspond to the
down-front flow. Light fluid is on the right of the figure and dense fluid is on
the left. Adapted from Lapeyre et al. (2006), Capet et al. (2008b) and Williams
and Follows (2003).

24



Dynamics of Ocean Fronts

The theory of frontogenesis aims at explaining how fronts are formed and
intensified by two-dimensional turbulence and identifying the mechanisms
triggered when this happens. The main papers describing the way cross-front
density gradient intensifies are Stone (1966), Hoskins and Bretherton (1972)
(hereby HB72) and Hoskins (1982) (hereafter H82). The mechanism described
by the authors is an initiation by larger-scale straining (performed by
mesoscale eddies, a meandering jet or wind-induced straining), which disrupts
the geostrophic balance for the along-front flow and generates an
ageostrophic secondary circulation in the cross-front plane. The secondary
circulation acts to restore geostrophic balance by advectively tilting isopycnals
towards the horizontal, which is equivalent to restratifying the front and
accelerating the geostrophic flow, hence resisting horizontal density gradient
strengthening (Capet et al. 2008b). The geostrophic flow is accelerated by

means of an horizontal ageostrophic circulation, whose divergence on each
side of the jet explains the large values of J,W observed near the surface

(where w=0) (See Figure 2-1). This divergence has the effect to increase the
magnitude of the relative vorticity (Spall 1995). The ageostrophic circulation
that develops on each side of the density front has a systematic bias that
favours the upwelling (downwelling) of light (dense) fluid to release the
potential energy associated with the front (Hakim et al. 2002). This argument
is not only valid at the scale of the large-scale front but, more importantly, at
the scale of the sub-mesoscale density gradients that are present in large

number in the mixed-layer (Lapeyre et al. 2006).

This circulation was observed at sea by Pollard and Regier (1992), and
explained in the following way: as the convergence in the flow intensifies the
surveyed front, the high strain rates generate large shear and high vorticity. As
water moves toward the front on the anticyclonic side, its absolute vorticity
decreases, and the thickness between pairs of isopycnals must also decrease
to conserve potential vorticity (PV). Since the surface cannot rise or fall, a
vertically upward velocity must result. The presence of a boundary, such as
the ocean surface, is instrumental in the process of frontogenesis. Similarly, on
the cyclonic side of the front, the velocity must be downward. The magnitude
of the velocity must increase with depth from zero at the surface. Below some
level the confluence decreases and the vertical velocities also decrease. A
closed ageostrophic circulation results, in which water from the anticyclonic
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side of the front crosses toward the cyclonic side near the surface, with a

deeper return flow (see Figure 2-2).

Figure 2-2: Overall confluence A moves water into an area of increasing

— 3 confluence
N

A
-«
S

frontal
jet

Depth

T
|
|
|
|
|
|

T
|
I
s |
I
|
!
I

e ———

“

IR
o M

f+( increases
Ap increases

f+ g decreases
Ap decreases

Depth
-—

(decreasing) vorticity on the cyclonic (anticyclonic) flank of a front B causing
the separation of isopycnals to increase (decrease). Since the surface is fixed, a

vertical circulation Dis set up in the sense shown. From Pollard and Regier

(1992).

Hoskins et al. (1978) (hereafter H78) derived the now famous QG “omega”

equation in its Q-vector formulation:

VE(N?w) + f?

22w 2g
9z2 Po VH Qgs

(2-2)

where w is the vertical velocity, f is the Coriolis frequency and N is the Brunt-

Viisala (or buoyancy) frequency,
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N2= g dp

po 0z (2'3)
N? is assumed to be constant across the front.

The Q-vector is defined as

o N\T o1 on
Qg = (VHug) Vup = (a_:'va'a_;'VHp) = (Qig'Qiq), (2-4)
Following the QG theory, the flow is decomposed into geostrophic and

ageostrophic components i = i, + i, , where the geostrophic velocity is
g = k x Vyup/f, p is the pressure and k is the unitary vertical vector. We have

by definition i, = (ug,v,,0) and i, = (ug, vg,w).

The Q-vector is a measure of the rate of increase for the horizontal density
gradient arising from the straining by the horizontal geostrophic velocity field.
Equation (2-2) relates the velocity divergence and vertical velocity fields to the
frontogenesis of the geostrophic velocity field. It states that the vertical
velocity field is triggered by the creation of a density gradient by the straining
action of the eddies, through the Q-vector that intervenes in (2-1). Its net effect
is to oppose the creation of density gradients in (2-1). In this consequence of
the QG assumption, the role of the ageostrophic vertical velocity w is to
maintain thermal wind balance, as the geostrophic velocity field acting

through the Q-vector attempts to destroy it.

The QG omega equation is a representation of the balanced dynamics
associated with fronts and it is valid in most situations, even with high Rossby

number (Klein & Lapeyre 2009). The QG omega equation can be solved in w by

defining an ageostrophic stream function such that (u,, w) = (—Z—f,g—f) where

u, is the ageostrophic flow in the x direction, and giving suitable boundaries
conditions (w = 0 at the surface and at a given depth). Significant further
simplifications can be made by assuming the ageostrophic circulation to be
purely two-dimensional in the cross-front plane. This leads to the following
equation (Hoskins 1982):

0%y %Y 29 Hg
N2 —+ f?2—=-°207,
f POQZ

dx2 0z2

(2-5)
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The solution for the stream-function is elliptic. This methodology is employed
in the majority of the oceanic field studies to derive the vertical velocity, which
is difficult to measure, from the high resolution hydrographic and velocity
observations in the upper ocean (Pollard & Regier 1992), (Allen et al. 2001),
(Martin & Richards 2001). Figure 2-3 presents the derived ageostrophic
circulation at a front surveyed with ADCP during the FASINEX experiment,
using the omega equation (Pollard & Regier 1992). Vertical velocities of up to
40 m/day at 200 m are found.
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Figure 2-3: Ageostrophic streamfunctions y for two legs across a surveyed
front. Regions of negative values are stippled. Arrows indicate the sense of
circulation, such that high values of ¥ are on the left of the direction of travel.
From Pollard and Regier (1992).

These studies assume that the geostrophic forcing dominates the creation of
ageostrophic circulation. This means that vertically varying frictional forces or

laterally varying buoyancy sources and sinks are supposed not to disrupt the
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thermal-wind balance, which would drive ageostrophic circulation to restore it.
The validity of these assumptions comes into question for submesoscale
flows, especially if the flow is exposed to atmospheric forcing (Thomas &
Ferrari 2008). Mahadevan and Tandon (2006) use a high-resolution numerical
simulation that generates Rossby numbers of the order of 1 to show that the
QG omega equation misdiagnoses the position and sign of the most intense
vertical velocities near the surface. It is able to explain the mesoscale vertical
motion at depth (50-100 m), but not the submesoscale motions closer to the
surface (0-50 m). The authors suggest that unbalanced dynamics and
ageostrophic instabilities may have a role in the submesoscale up- and
downwelling observed in the model. The fact that important frictional effects
near the surface are not represented in the omega equation could also explain
the discrepancy between the model and the omega equation. Finally this
equation does not allow variations of stratification, nor does it integrate the
advection of geostrophic momentum by the ageostrophic motion. The semi-
geostrophic (SG) form of the omega equation relaxes these last two

restrictions.

223 The theory of strain driven frontogenesis in the Semi-

Geostrophic (SG) regime

The QG theory places severe restrictions on the Rossby and Richardson
numbers. It assumes that R, « 1 and 1/R; < 1, consequently it is not designed
to accurately describe the dynamics of submesoscale phenomena. High-
resolution numerical models of the mixed-layer based on the PE have shown
that high strain is associated with large relative vorticity and large vertical
velocity. However the regions where vertical velocities are triggered by strain
are also regions of a high Rossby number (Mahadevan & Tandon 2006).
Therefore the QG approximation is not valid in these areas where
submesoscale dynamics occur. [HB72] have produced a frontogenesis theory
that is less restrictive than QG theory and that includes ageostrophic effects
highlighted in the previous paragraph. The SG regime is a more complex set of
equations and scaling assumptions, which take into account critical nonlinear
interactions with large Rossby numbers. These nonlinear interactions involve

advection of the geostrophic quantities not only by the geostrophic motions
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but also by ageostrophic motions, which is not allowed by the QG theory
(Klein et al. 2008). The inviscid and adiabatic frontal model of HB72 describes
the manner in which a confluent geostrophic flow (for example on the large
scale a collision of western boundary currents at gyre boundaries or, on the
mesoscale a confluence by eddy circulations) intensifies an initially weak
baroclinic zone via its horizontal deformation field. This process involves the
formation of an ageostrophic secondary circulation (ASC) whose convergent
flow augments the confluence and leads to the formation of an infinitely
strong front in a finite time. In this representation, the ASC is responsible for
both vertical exchanges and frontogenesis. ASCs arise at fronts to keep the
along-front flow in geostrophic balance as is required by the SG approximation
(Hoskins 1982). The advection of density and momentum by confluent flow
tends to push the jet out of thermal-wind balance and hence induces an ASC
whose spatial structure is governed by the omega equation (H78). Like
confluent flow, redistribution of momentum or buoyancy by small-scale
turbulent mixing disrupts the geostrophic balance and, therefore, drives a
geostrophy-restoring ASC (Thomas & Lee 2005). The QG omega equation (2-2)
is still valid in the SG regime, but the forcing appearing in the Q-vector is not
assumed to be the result of geostrophic flow only. Indeed the strain is
generated by both geostrophic and ageostrophic velocities. Numerical models
of meandering fronts have proven the QG omega equation to be very accurate
in predicting the vertical velocity (Pinot et al. 1996, Strass 1994). However in
the particular case of strong fronts or submesoscale fronts, where the Rossby
number becomes high, the Semi-Geostrophic (SG) “omega” equation describes
the ageostrophic circulation more accurately (Naveira Gabarato et al. 2001).
Hoskins and Draghici (1977) express the SG “omega” equation in the same
terms as its QG counterpart (density and horizontal geostrophic velocity), but
the authors do so in the geostrophic coordinate system, following a
transformation. Naveira Gabarato et al. (2001) use this equation to derive
ageostrophic vertical circulations from hydrographic and ADCP in-situ

measurements at the Antarctic Polar Front.

Following Eliassen (1948), Thomas et al. (2008) considers a front in the y-z
plane, with no density gradient along-front and an along-front velocity purely

geostrophic (u = u,) and in thermal wind balance.
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The two-dimensional ageostrophic circulation can be described by an across-

2 o)

front overturning stream function ¥ where (v, w) = (az i

The SG equivalent of (2-5) is derived by Thomas et al. (2008):

2 2 2
F22¥+252M+N2M=—2—g@29,
0z Po

(2-6)
Q7, the y-component of the Q-vector, is defined by (2-4).

2_ _ 90 _ (0% 2 _ _ 9y i
Sy = oy = f, and Ff = f(f 3 ) Under the assumptions that these

coefficients and N?are constant, Thomas et al. (2008) were able to solve (2-6).
The solution for the ageostrophic function is elliptic, as in the QG

approximation. Figure 2-4 illustrates one solution for (2-6).
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Figure 2-4: Ageostrophic circulation driven by a negative point-source
Q-vector, Qg < 0,aty =Y and z = Z. Isopycnals (gray contours) slant upward to
the North due to a southward buoyancy gradient. For this frontogenetic
forcing, Q9 -V,b > 0, where b is the buoyancy, the circulation is thermally
direct and tends to restratify the fluid. From Thomas et al. (2008).

The vertical velocity associated with the stream function is given by
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W= — B -Y)
2n(fqzp)3/2H? Arg’ 2-7)
with
_lon-@-2s3/F8]° | (z-2)?
A9=TE T 2-8)
and where

Lsg = H—VquZZD is the SG Rossby radius of deformation, H is a characteristic
2
vertical lengthscale of the flow, and q,, = %(FZZN2 —S3) is the potential

vorticity (PV) of the two-dimensional geostrophic flow. One can deduce from
this that at depth z = Z one finds

_6& 2N2
1 1
= T 2nfH? -v) au( 2 ay) a2\
(%) w-(22)") 2-9)
A

Under the assumption that f and H are constant in the vicinity of the front, one
can say that the SG assumption leads to a vertical velocity which is

proportional to the value of A (on the rhs of (2-9)). If one further assumes that

a . . .
N? and aiyg are constant on a side of the front, w becomes a direct function of

Z—f} , the density gradient across the front. It is clear that the absolute value of

the vertical velocity anywhere at the front is increasing as a function of the
. . . . . . @
density gradient. There is no such simple conclusion when considering %};",

instead the effect of an increase of this term on the vertical velocity depends
on the magnitude of the horizontal density gradient. This is coherent with the
omega equation (2-2), which stresses that the vertical velocity depends on the
configuration of the horizontal geostrophic strain with regard to the

orientation of the front.

The SG analytical model of HB72 showed that a barotropic external
deformation field applied to a uniform density gradient causes a finite
discontinuity to develop at the surface in a finite time. This result is in contrast
to a purely QG model in which the surface discontinuity forms as time goes to

infinity. HB72 explains that, in reality, mixing or friction and three-dimensional
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effects, which are ignored in the model, would eventually take over to smooth
out discontinuities. Intense submesoscale structures can be described by the
dynamics contained in the PE or the SG regime. Associated with the strong
submesoscale vorticity gradients, the vertical velocities are one order of
magnitude stronger than the vertical velocities of QG dynamics (Pollard &
Regier 1992), (Spall 1997). Numerical simulations suggest that submesoscale
vertical velocities are maximum at around 100 m depth where they overtake
mesoscale QG vertical velocities, which are maximum at around 1000 m depth
(Lévy et al. 2001).

224 The theory of frontogenesis in the SQG regime

Another set of dynamics, the Surface Quasi Geostrophic regime (SQG), has
been suggested to describe the oceanic eddy field in the surface layers
(Blumen 1978). The SQG system involves the same assumptions as the QG
system. In particular, the Rossby number is assumed to be small. In addition,
the SQG regime considers a nonzero surface density anomaly and assumes a
uniform potential vorticity (PV) in the interior. Essentially, the surface density

is a Dirac delta of potential vorticity, as first recognized by Bretherton (1966).

Mesoscale eddies stir the nonzero surface density anomalies, which leads to a
cascade of energy to small scales and strong density gradients at
submesoscale, through the process of frontogenesis. The consequence is that
the three-dimensional dynamics, and in particular the vertical structure of
surface fronts, are entirely driven by the time evolution of the density at the

surface.

Like the QG approximation, the SQG regime is used by ocean and atmosphere
dynamicists to study the properties of the turbulence, because it facilitates the
computations of the simulations. Indeed, in contrast to the Primitive Equation
models, SQG models have only two dimensions, which makes it possible to
run a numerical model with a much higher spatial resolution. The SQG regime
is the counterpart of the regime of interior QG turbulence, which assumes that
motions are not influenced by vertical boundary conditions on the stream-
function and behaves as though these conditions were homogeneous.

Consequently, the interior QG regime assumes surface density anomalies to be
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zero (Klein & Lapeyre 2009). The interior QG regime exhibits a steep velocity
spectrum (close to k3 or k*), and its turbulence does not produce small-scale
features, independently from the spatial resolution of the simulation. In this
regime, the vertical velocity field is located mostly with the mesoscale eddies
because large vorticity amplitudes are found principally in the eddy cores. In
contrast, the SQG regime involves a shallow surface velocity spectrum (k*/3),
with more energetic small scales, identical to the density spectrum (Klein et al.
2008). The vertical pump in this regime is essentially at small scales and
appears to be evenly partitioned between mesoscale eddies and small-scale

elongated filaments between the eddies (Lapeyre & Klein 2006a).

These authors have used PE simulations to show that the ocean dynamics can
be decomposed in terms of a solution forced by the potential vorticity in the
interior (QG mode) and a competing solution forced by the surface density
(SQG mode). One of their results was the dominance of the latter mode in the
first 500 meters. As a consequence, the dynamics in these layers can be
recovered with analytical relations. Using SQG equations, a complete
determination of the stream-function in the upper-layer of the ocean can be
obtained from a unique snapshot of the surface density anomaly. This follows
Held (1995) and Hakim (2002), who deduced winds associated with
temperature anomalies in the tropopause, using the SQG assumptions. Lapeyre
and Klein (2006) have shown that the SQG model allows one to reconstruct the
3-D dynamics of submesoscale and mesoscale from just the horizontal surface
density field using a constant Brunt-Vaisala frequency. LaCasce and Mahadevan
(2006) have also demonstrated the relevance of this model for the upper
oceanic layers using in-situ data and comparing with SQG reconstruction using
SST. Isern-Fontanet et al. (2006) explored the potential use of microwave SST
for the estimation of ocean currents. The authors showed a good correlation
between the horizontal current recovered from the SST by the SQG model and

the current obtained from altimetric measurements.

Isern-Fontanet et al. (2008) showed that an effective version of SQG (eSQQG) is
quite successful in reconstructing the velocity field at the ocean surface for
scales between 30 and 300 km. Their approach consists of inverting the QG
potential vorticity generated by surface density only, assuming that
temperature anomalies fully represent surface density anomalies. This method

only requires a single snapshot of SST and two parameters: the mean Brunt-
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Vdisala frequency and a parameter that determines the energy level at the
ocean surface. They tested the performance of the approach using an Ocean
General Circulation Model simulation representing the North Atlantic in Winter.
They concluded that results are reasonably good in the first 500 m and that
the success of the method mainly depends on the quality of the SST as a proxy
of the density anomaly at the base of the mixed layer. The ideal situation for
the application of this method is after strong wind events, because the mixed

layer is deep.

225 Scaling of the Omega equation

The SQG model is very energetic in the small scales, and filaments are created
and stirred by the straining action of eddies. These filaments are bounded by
fronts, which are strengthened whenever the filaments are elongated. The
resulting thermal-wind imbalance generates vertical motions that are governed
by the omega equation. Lapeyre and Klein (2006) calculate a scaling of this
equation, based on SQG regime characteristics. They obtain

Ap

poge"p(g)’ (2-10)

go
w(z) = NZ

where ¢ is a scale for the surface large-scale strain field, with a classical value
o =25x10"%s"1. Ap is the density variation across the fronts that bound the
filament. D = fL/N is the vertical length scale to which the density decays
exponentially, which is a SQG consequence. L is the width scale of the

filament.

This parameterization of the vertical velocity is a function of the stratification,
the width of the filament, the magnitude of the strain applied to it and the
density difference across the fronts bounding the filament. The authors
calculate an average w(100m) =~ 0.85 m.d™?! at filaments produced by a typical
fully turbulent eddy field in free decay simulation. This parameterization is

adapted to be used on satellite SST and altimetry in section 5.4.

Legal et al. (2007) derive another parameterization of the vertical velocity from

a scaling of the omega equation:

35



Chapter 2

N2Dp? gD?
(1 +W)W=—2 S olp,

(2-11)

The authors apply this formula to the appropriate values related to an in-situ
high resolution survey in a region of the northeast Atlantic Ocean
characterized by a large number of strongly interacting eddies. Equation (2-11)

translates into

w = —250Ap, 2-12)

where w is in meters per day and Ap is in kg/m?3 .

This linear relationship is checked by calculating the correlation between the
small-scale density anomalies across the field (after removing the large-scale
meridional density gradient) and the diagnosed vertical velocities obtained
using in-situ SeaSoar data combined with the analysis of altimeter data. The
anticorrelation between the two quantities is remarkable, and the regression
calculation leads to a factor of -300, a value close to the estimation (-250)
deduced from the scaling (2-12). Thus, the strong anticorrelation between the
vertical velocity field and the small-scale density anomalies is easily explained
by the elongation of the small-scale density filaments by the large-scale strain

field, whose effects are described by the omega equation.

2.3 Restratification effect of frontal submesoscale

instabilities

The previous section shows how a large scale straining field acting to intensify
a front can trigger ageostrophic vertical circulations which counteract the
frontogenesis so that the thermal wind balance is maintained. This mechanism
was explored under the perspective of the vertical exchanges occurring in the
vicinity of fronts. The principal objective behind these studies is to improve
the understanding of vertical exchange of properties between the atmosphere
and the ocean, as well as the upwelling of nutrients from the deep, the
subduction of plankton under the thermocline and their effects on the oceanic
carbon pump. Another class of studies has emerged in the last decade which
focuses on how the front affects the mixed layer stratification. Horizontal

buoyancy gradients store available potential energy, which gets released
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whenever the fronts become unstable and slump. As a front slumps, the
density gradient is rotated from the vertical to the horizontal, and the
consequence is an increase of the stratification. It is now understood that
unforced submesoscale baroclinic frontal instabilities play a leading role in the
release of frontal potential energy. They currently focus the attention of
dynamicists who seek to parameterize their contribution to the restratification

for use in coarse resolution ocean models.

Traditionally, the processes affecting the stratification and the mixed layer
depth (MLD) were seen as purely one-dimensional. In this view, the
stratification is reduced (MLD deepens) through turbulent mixing produced by
winds or cooling and evaporation at the surface, which makes surface water
denser. Conversely, the stratification is increased (MLD gets shallower) when
heating and precipitation reduce the surface density. This view is how
challenged and the role of lateral instabilities in the restratification of the
mixed layer was proven to be significant whenever there are horizontal
density gradients (Boccaletti et al. 2007). The authors illustrate their theory
with the following scenario. A winter storm hits the open ocean, mixing the
top 100 m of the water column over a patch of a few hundred square
kilometres. Once subsided, the storm leaves behind a homogenized layer in
which horizontal variations of salinity and temperature have survived, yet
vertical variations have been virtually erased by vertical mixing. The horizontal
gradient of density is the surface signature of nearly vertical isopycnals
produced by localized mixing. After the storm, a dynamical adjustment
process begins that restratifies the surface layer by slumping of the fronts.
This slumping, initially a simple gravitational overturning, is subsequently
modified by rotation leading to a geostrophic adjustment. This geostrophic
adjustment limits the release of energy and prevents further slumping where a
Coriolis force develops with an along-front flow to balance a cross-front
pressure gradient. Tandon and Garrett (1995) predicted that this adjustment
takes a few day during which the initially vertical isopycnals oscillate around

the geostrophically adjusted state with

N? = (g—i)z/fz' (2-13)
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where g—z is the cross-front buoyancy gradient. This formula was validated by

Boccaletti et al. (2007) with a high-resolution numerical model of a front
undergoing dynamical adjustment. However Boccaletti et al. (2007) show that
the geostrophically adjusted state can be further unstable to submesoscale
baroclinic instabilities that continue restratification. Their simulation
demonstrates that the bulk of the restratification happens after the baroclinic
instabilities set in. These instabilities, which are referred to as mixed layer
instabilities (MLI), differ from instabilities in the ocean interior because of the
weak surface stratification. They have a small vertical scale, are submesoscale
in the horizontal (of the order of 1-10 km), and a growth time scale of the

order of a day.

38



Dynamics of Ocean Fronts

z(m)

a) y (km) x (km) b) y (km) x (km)

IZ(!Tl)

c) y (km) x (km) d) ¥ (km) x (km)

Figure 2-5: Development of mixed layer baroclinic instabilities along a
temperature front undergoing geostrophic adjustment. (a) The initial
configuration consists of a lateral temperature front in a well-mixed surface
layer on top of stable density stratification. (b) After 10 days the front has
tilted from the vertical to the horizontal and wavelike disturbances appear
along the front. The tilt of the wave disturbances in the along-channel
direction is such as to release the potential energy stored in the horizontal
stratification much like in the Eady problem. (c) By day 12 the disturbances are
fully nonlinear and start growing in scale as a result of an inverse cascade of
energy. (d) At day 17 the disturbances have wrapped up into eddies and
frontogenesis develops along the rim of the eddies. The colour bar is in
degrees Celsius, and the contour interval is 0.25°C. From Boccaletti et al.
(2007).
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Figure 2-6: Increase in domain-averaged buoyancy frequency N? as a result of
slumping of the mixed layer front shown in Figure 2-5. The initial vertical
stratification is 0. The insets show snapshots of the various stages of the
along-channel average of buoyancy. The initial slumping oscillates on the
inertial period (h 0-24). It is followed by a restratification due primarily to the
growth of baroclinic MLIs (days 2-10) and then by the eddies resulting from
the nonlinear interaction of the MLIs (day 10 onward). MLI perturbations are
infinitesimal until day 10 and thus N? is seen to simply oscillate around the
geostrophic adjusted state. Only once MLIs reach finite amplitude does the
increase in N2 become significant. From Boccaletti et al. (2007).

Figure 2-5 presents a series of 3D snapshots of the front during the
adjustment, and Figure 2-6 displays the stratification of the scene against time.
Tandon and Garrett (1994) argue that mesoscale restratification acts on time
scales too slow to compete with vertical mixing, hence its role in the mixed

layer restratification should be ignored. Boccaletti et al. (2007), on the
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contrary, show that MLIs develop at the mesoscale and are fast enough to
restratify between mixing events. MLIs inject high potential vorticity
thermocline waters into the mixed layer and drive substantial restratification
despite the action of vertical mixing. They constitute a leading-order process
in the mixed layer heat budget for fronts stronger than about 1 x 1073 K /km
and play an important role in determining the depth, temperature and salinity
of the mixed layer. MLIs have been observed and proven ubiquitous by a few

observational studies such as Flament et al. (1985) and Munk et al. (2000).

Fox-Kemper and Ferrari (2008) note that ocean models that do not resolve the
submesoscale, which require a grid of the order of 100m, have a bias toward
weak near-surface stratification. This is a consequence of the fact that they
typically ignore dynamical restratification by slumping of horizontal density
gradients within the mixed layer. They propose a parameterization for the
restratification driven by finite-amplitude baroclinic instabilities of the mixed
layer in term of an overturning streamfunction that tilts isopycnals from the
vertical to the horizontal. The streamfunction (y,) is proportional to the

product of the horizontal buoyancy gradient (Z—i) the mixed layer depth (H)

squared, and the inertial period (f):

W, ~ 0.06 - Hzg—s/f. 2-14)
Where the overbar denotes an average along-front. Therefore, restratification
proceeds faster at strong fronts in deep mixed layers with a weak latitude
dependence. Fox-Kemper and Ferrari (2008) compare the parameterization
with submesoscale-resolving simulations and estimate the importance of MLI
restratification from data. Fox-Kemper et al. (2010) explore the numerical
implementation of the parameterization and its effect in realistic global
simulations. This parameterization is tested on satellite SST data in section
5.6.

Questions remain on the interaction between mesoscale eddies ands MLI and
how they affect the restratification. Lapeyre et al. (2006) suggest that
mesoscale instabilities can also act to restratify the upper ocean through
frontogenesis. However that study used coarse-resolution numerical
simulations that do not allow for the development of MLIs. Boccaletti et al.

(2007) speculate that mesoscale eddies dominate in regions of strong
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convergence, where MLIs are suppressed according to Spall (1997), while MLIs

compete and often dominate over mesoscale restratification elsewhere.

Another question under investigation is the role of wind above fronts in the
restratification. Depending on the orientation of the wind with regard to the
front, its consequence can be an intensification or a destruction of the
stratification. When the wind stress has a component up front, the surface
Ekman flow will advect lighter water over denser, thereby restratifying the
mixed layer. On the other hand, down-front winds advect denser water over
lighter, giving rise to an ageostrophic circulation which destroys the mixed
layer stratification and leads to the intensification of the front. The latter
mechanism was described by Thomas and Lee (2005). Thomas and Ferrari
(2008) show that restratification ensuing from frontogenesis can be of
comparable magnitude with the wind destruction of stratification, which
means that the latter can easily overcome the former. Mahadevan et al. (2010)
study the competition between down-front wind action to maintain the
isopycnals vertical at the front and the enhancement of the stratification by the
MLIs. An equilibrium between the two processes can be found over long
periods, where the potential energy input by the wind is extracted by
strengthened MLIs. The authors suggest a scaling diagnostic to determine
whether the effect of MLIs or wind dominates under different conditions.
=1,/ (O.O6pH2 a_b),

ay (2-15)

where 7, is the along-front wind stress. Their simulations show that though the
cross-front transport of buoyancy induced by the down-front component of the
wind opposes restratification by MLIs, it becomes diminished as the eddies
and growth of the frontal instability disrupt alignment between the wind and

frontal axis.

2.4 Basin-wide models combining several mechanisms

The previous sections have presented researches on frontal dynamics based
on analytical equations and numerical models of a single front. The models

have increased in complexity over the past 30 years, starting from two-
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dimensional simplified simulations to three-dimensional high-resolution non-
linear numerical simulations of one front undergoing the forcing from
mesoscale strain and wind. This evolution was made possible by the
continuous improvement in computer performances. Since the 2000s,
scientists have started to use the most advanced super-computers, which were
more commonly used to perform global climate models runs, to simulate
mixed layer dynamics at the regional/basin scale, over a long time scale, and
with a spatial resolution high enough to resolve the submesoscale. Biophysical
models of eddy fields showed consequent increases of primary productivity

(PP) as the resolution of the models was increased.

Mahadevan and Archer (2000) explored the range of resolution from 40 to
10km in a model representing an area of the ocean where PP is limited by the
availability of nutrients. They observed an increase of a factor of three of PP as
a consequence of the appearance of small-scale fronts at high resolution.
Similarly, Levy et al. (2001) reported a factor 2 change in PP when changing
the resolution from 10 to 2 km. The latter resolution allowed the model to
resolve small fronts surrounding or ejected by the eddies. Intense vertical
velocities of up to 40 m/day were observed in the vicinity of the fronts. Capet
et al. (2008b) continued this work and simulated an idealized subtropical
eastern boundary upwelling current system similar to the California Current
(about 700 by 700 km). They observe that pushing the resolution to O(1 km)
creates a complex flow structure with mesoscale eddies and fronts. In
addition, instabilities arise along the wind-driven alongshore currents and
significant energy is transferred into submesoscale fronts and vortices in the

upper ocean (see Figure 2-7).
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Figure 2-7: Simulated instantaneous surface temperature field. Note the string
of meanders and filaments in 17°-19°C water with wavelength =50 km
running along the edges of the offshore eddies (MLIs). From Capet et al.
(2008b).

The submesoscale arises through surface frontogenesis growing off upwelled
cold filaments that are pulled offshore and strained in between the mesoscale
eddies. In turn, some submesoscale fronts become unstable and develop
submesoscale meanders and fragment into roll-up vortices. Associated with
this phenomenon are a large vertical velocity (up to 50 m/day) and Rossby
number and a large vertical buoyancy flux acting to restratify the upper ocean.
The authors developed a combination of composite averaging and separation
of distinctive subregions of the flow in order to analyse the submesoscale
fronts from a phenomenological and dynamical perspective. To investigate the

frontogenesis driven by the horizontal strain, they used
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Fs = Qs Vup, (2-16)
where
_ _(2udp , 0vop oudp  ovop
Qs = (6x6x+6x6y’6y6x+6yay)’ (2-17)

Fs is a measure of the rate of increase for the horizontal density gradient
arising from the straining by the horizontal velocity field. Fs is computed from
satellite SST data and altimetry in section 5.5. Note that equation (2-17) is
close to the Q-vector defined in (2-4) except for the sign and the fact that it
represents the straining from the total horizontal field, rather than only its
geostrophic component in (2-4). Hoskins (1982) states
2

k= F, (2-18)
where F is the addition of the straining by the horizontal density field (F;) with
the straining deformation by vertical velocity, the vertical mixing and the
horizontal diffusion. Typical horizontal patterns of the frontally concentrated
quantities |V,p|, w, w'T" and Fg are shown in Figure 2-8. (Herein " refers to a
spatial and temporal high-pass filtering). These quantities are mutually related
in a way that is suggestive of on-going frontogenesis. As predicted by Hoskins
and Bretherton (1972), the extrema of vertical velocity and vertical flux of
temperature are localized in regions where the velocity field is conducive to

frontogenesis, that is, where Fs is large.
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Figure 2-8: Instantaneous horizontal patterns for frontal quantities simulated
at t=160 days and 10-m depth in a 270 km x 300 km subdomain: (a)

Vel (107 5kg.m™*), (b) lw| (10~*m.s™1), (c) Fs (10~ *kg?m=8s~1), and (d)
w'T"(1075m.°C.s~1). From Capet et al. (2008b).

The authors also process composite vertical profiles of these quantities over

frontal regions within the domain and from 50 independent times. These
profiles clearly show a general positive tendency of Fg in the top 20 meters.

Upward velocities on the light side of fronts reach 20 m/day at 10 meters
depth, whereas the maximum downward velocities on the heavy side are -50

m/day at the same depth.

These series of three publications are remarkable in the sense that they are the

first to simulate such a large region while resolving such small features. The

authors observed mesoscale jets, submesoscale fronts, frontogenesis,

ageostrophic secondary circulation, frontal instability across a range of scales

and coherent vortices, which typically occur simultaneously. The flow remains
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close to satisfying a geostrophic or gradient-wind force balance most of the
time. The main departure from balance are found in the vicinity of both stable
and unstable fronts, and the unbalance patterns most strongly reflect the
ageostrophic secondary circulation (ASC) associated with frontogenesis. These
ASCs are confined to the surface boundary layer and efficiently release
potential energy and effectively act to restratify the upper ocean, even though

only a small fraction of the domain is actively frontal at any given time.

The results from Levy et al. (2010) suggest that submesoscale dynamics have
an impact on the large scale circulation. Their simulation took advantage of
one of the most advanced super computers to compute 100 years duration of
a dynamic scene characteristic of mid-latitude oceanic gyres. As the resolution
of the model is increased from 1/9°to 1/54° (about 2 km), major changes on
the circulation occur with submesoscale physics having an integrated and
cumulative effect on the large-scale oceanic circulation. These changes ensue
from the emergence of a denser and more energetic vortex population at
1/54°, occupying most of the basin and sustained by submesoscale physics.
Non-linear effects of this turbulence strongly intensify the jet that separates
the two gyres, and a regime of energetic secondary zonal jets emerges,
associated with complex recirculation. In parallel, submesoscales restratify
both the seasonal and main thermocline, inducing a particular reduction of
deep convection and the modification of the water masses involved in the
meridional overturning circulation. This suggests that submesoscale processes
play an important role on the mean circulation and the mean transports at the

scale of oceanic basins.

2.5 Questions that are left to be answered

The oceanographic community is putting a lot of efforts into understanding
the dynamics associated with ocean surface fronts. It is now clear that the
vertical exchanges that occur in their vicinity play a major role in the transfer
of momentum, heat and tracers between the mixed layer and the atmosphere
on one side, and the deep water on the other side. Therefore the presence of
fronts is instrumental in the setting of the mixed layer stratification and

composition. The general processes and interactions that happen at the fronts
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and their consequences in term of vertical velocity or restratification are fairly
well understood from a qualitative perspective. They were indeed predicted by
analytical studies, linked to atmospheric science, several decades ago. Since
these early publications, numerous in-situ observations and constantly

improving numerical models have confirmed these predictions.

The issue of the quantification and prediction of the dynamics associated with
fronts is being tackled. Significant conclusions were reached in the previous
decade, and further important results should be published in the coming one.
The challenge is to improve the understanding of the physical processes at
fronts, how fronts are created, destroyed or maintained and how they interact
with their environment. The main focus point at the moment is the role of the
submesoscale within these processes. The objective of the dynamicists
involved in these studies is eventually to be able to parameterize the small-
scale physics occurring at fronts. This would dramatically improve the quality
of the prediction of the ocean global circulation models (OGCM), which do not
resolve the submesoscales and will most probably not do so for a very long

time.

It is the opinion of the author of this thesis that satellite observations of the
ocean are being underestimated in this context, whereas they have the
potential to bring answers to some of the questions the dynamicists are asking
themselves. Similarly, dynamical research is being overlooked by the satellite
oceanography community when it provides results that have the power to
increase the oceanographic observation capabilities of satellites. This section
presents currently open dynamical questions for which satellite observations
have the potential to provide answers or at least advance the understanding.
Some of these questions will be tackled by this thesis, the others will be left

open but could benefit from the methodology established here.

The main question is the issue of the frequency of the fronts on the ocean.
Many dynamical studies derive values of subduction, upwelling or
restratification, expressed as a vertical flux of heat, occurring in the vicinity of
a front under certain conditions. However a greater understanding of the
frequency of such features in the ocean surface is required to estimate the
integrated, cumulative, overall impact on the mixed layer dynamics and on the

global ocean properties. Spall (1995, 1997) and Boccaletti (2007) recognize the
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need for such analyses. Global data sets of SST have the capability to quantify
the occurrence and variability of the fronts that respect certain conditions

assumed in the physical studies.

The frontal statistics hidden in the SST data sets can be refined if one uses in
synergy other observational data sets such as the mesoscale geostrophic
straining field (from altimetry), the wind stress (from scatterometers) or the
mixed layer depth (from Argo floats). A methodology integrating the various
observation data sets while making the most up to date of dynamical
knowledge could lead to a comprehensive description of some surface
dynamics at the global scale. Moreover, parameterization of small-scale
dynamics have been suggested (Fox-Kemper et al. 2008, Mahadevan et al.
2010) for use in global ocean circulation models but are believed by the author
of this thesis to be also useful when applied on real satellite data. The frontal
statistics, eventually combining several parameters, have also the potential to

assess the quality of the numerical simulations with respect to observations.

As was discussed in the previous sections, the main driver for front creation,
also called frontogenesis, is horizontal convergence. A mesoscale convergence
under the form of strain can intensify a weak meridional gradient of
temperature by pushing different water masses toward each other. It was
shown that ageostrophic secondary circulations respond to the intensification
of a front by strain in order to maintain the thermal-wind balance. These ASCs,
in turn, have a frontogenetic effect due to their divergence at the surface
boundary. Other studies have demonstrated that a front can be destroyed, a
process called frontolysis, if it goes baroclinically unstable, meanders and the
isopycnals slump toward the horizontal. The mixed layer instabilities (MLI)
develop along the front and act to destroy the front and restratify the mixed
layer. However, little is known about the competition between instability and
active frontogenesis in a baroclinic flow (Capet et al. 2008b). Spall (1997)
observed in numerical simulations that frontogenesis provided by the
deformation field counteracts the frontolysis of the baroclinic instabilities such
that strong coherent time-dependent meandering jets are maintained for as
long as the deformation field persists. Satellite data sets are suitable to explore
this competition and to provide answers since high resolution SST products
resolve the frontal instabilities while altimetry products provide a good insight

into the straining field applied to the surface fronts.
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Turbulence research has achieved major results, and the phenomenology and
physical mechanisms of the separate regimes of two- and three-dimensional,
geostrophic, stratified, gravity-wave, and boundary-layer are now fairly well
established (see Muller et al. 2005, Ferrari and Wunsch 2009, Ferrari and
Wunsch 2010 for a review on these studies). These regimes describe well the
nature of geophysical turbulence at various space and time scales and at
various locations on the ocean. However a fundamental question remains: how
do these regimes of turbulence coexist and connect in the ocean? It is not fully
understood how the energy of the general circulation, generated at the large
climatic scale, cascades to the small scales where most of it is dissipated. In
particular, scientists are trying to explain the dynamical transition from the
anisotropic, overwhelmingly two-dimensional, large-scale geostrophic to the

more isotropic, 3D-like, small-scale (Miiller et al. 2005).

Submesoscale processes in the vicinity of fronts are understood to play an
important role in the energy budget of the ocean. For instance, when a front is
created by a large scale horizontal straining, it stores available potential
energy in the baroclinic current it forms. This energy is dissipated in small-
scale three-dimensional kinetic energy as the MLIs set in, slump the front and
act to restratify the mixed layer. The energy distribution in the mixed layer is
often characterized in terms of length scale by the power spectrum of kinetic
energy. General three-dimensional turbulence spectra show a

characteristic -5/3 power law, which means a -5/3 slope of spectral density of
variance plotted against wave number in log-log scale, and a cascade of
energy to smaller scales. On the other hand geostrophic mesoscale flow
spectra have a -3 slope and a reverse energy cascade (Thomas et al. 2008).
Little energy is found at small scales in this regime. Capet et al. (2008b)
observed that the spectrum slope of their primitive equation model depends
on its spatial resolution, it is -3 for a resolution resolving mesoscales and -2
for the resolution resolving submesoscales. Boccaletti et al. (2007) and Fox-
Kemper and Ferrari (2008) show that the energy peak triggered by MLIs is
transferred to both larger and smaller scales. The reverse cascade occurs as
MLIs evolve and merge into mesoscale eddies. The forward cascade is
intimately tied to frontogenesis and frontal instabilities, especially through the
advection by the horizontally divergent, ageostrophic component of the flow

(Capet et al. 2008c). Today, global satellite observations of SST resolve fine
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spatial scales (up to 1km for AATSR) and the combination of various sensors
resolve a temporal scale of one day. This is sufficient to answer questions on
the validity of the different turbulence regime and how they interact with each
other. Spectrums of currents derived by altimetry products and chlorophyll
content from ocean colour instruments have been measured and compared
(see Levy and Klein 2004 for a review). However the author of this thesis is not
aware of any such study based on SST datasets with a global, systematic

perspective.
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3. Chapter 3: SATELLITE-BASED FRONT
DETECTION TECHNIQUES

This chapter focuses on front detection algorithms that can be applied to a
spatial field of SST to extract frontal quantities. Two recently developed
automated front detection techniques are reviewed. The details of the
algorithms as suggested by their respective authors are explored, and practical
implementations of each approach, adapted to the objectives of this thesis, are

described.

These automated front detection techniques have significantly improved the
study of ocean fronts on satellite images. They offer objectivity in the
quantitative analysis of ocean fronts that was out of reach when detection was
performed subjectively by human operators. Large quantities of satellite data
can now be processed and the results can be analysed with spatial and
temporal consistency. The fact that the algorithms can deal with 2-dimensional
snapshots of SST allows composites of front maps to be created from a time
series of individual frontal maps from high-resolution SST images. These
composites are different from the result when the front detection algorithm is
applied to the composite of SST images over the same period, because any
high spatial and temporal variability of mesoscale and submesoscale frontal
activity is already blurred and reduced in the averaged SST image before any
frontal analysis is performed. When an operator observes a map of SST and
marks fronts on it, the operation is tedious and the result is not objective. The
same SST map analysed twice by an operator may produce different front
positions depending on the operator’s instantaneous mood, not to mention
inconsistencies between the results of two different operators! If one wants to
analyse the variation of frontal quantities in time and space, it is absolutely
necessary to apply an automatic computational method. The two algorithms

presented in this chapter comply with this requirement.

However, what is missing in the scientific literature is an understanding of the
performance of these techniques. These techniques can so far be compared to

black boxes which return consistent results in the sense that they seem to
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detect fronts and deliver the same results when provided with the same
inputs. However, if the objective is to derive physical parameters from the
detected fronts, as in the context of this thesis, it is necessary to explicitly
quantify the relation between the input scenes and the fronts detected by the
algorithms. One should be able to predict which fronts are detected and which

are not in order to carry out a dynamical interpretation of the detected fronts.

The last objective of this chapter is to evaluate and compare the performances
of the two algorithms, which are required to function in a wide range of
conditions. Indeed, these algorithms should detect fronts of various scales and
intensity that are embedded in a complex turbulent flow. They should be able
to do so from satellite data which suffer from limitations in term of data
availability, resolution, noise and atmospheric artefacts. This chapter will lead
to the appropriate selection, in chapters 5 and 6, of an algorithm and its
associated parameters in relation to the characteristics of the data field on

which the fronts are detected.

It should be noted that this chapter does not explicitly consider the capacity
for front detection of SST fields derived from different data sources, an issue
which is explored in the subsequent chapter. Chapter 4 will show that satellite
SST observations and products have the potential to resolve density fronts in
the mesoscale (10-100 km) and sometimes in the sub-mesoscale (1-10 km). It
will also present a study on the ability of various SST data sets to resolve

density fronts.

3.1 Front detection methods based on local statistics of
the SST field

When looking at a SST image, fronts appear as the boundary between water
masses of different temperatures around eddies, jets, upwellings or other
mesoscale features. It is possible to enhance them by applying a filter to the
image that would show where the SST is changing rapidly in space. Simple
filters based on local statistics of the SST field are competent for this task:
these are the operators that compute the spatial variance, the skewness, the

gradient and the Laplacian (second spatial derivative) (Cornillon & Watts 1987).
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Figure 3-1 shows how SST gradient processed by Burls and Reason (2006)
from interpolated microwave data in the South Atlantic can resolve frontal
features. It reveals high frontal activity around the Antarctic Circumpolar
Current (ACC), the retroflection of the Agulhas Current and at the convergence
zone where the Brazil Current meets the Malvinas Current. Strong fronts are
encountered, with magnitudes of SST gradient reaching over 0.035 K/km. It is
notable that even rather coarse daily SST images (resolution of 25 km) can
reveal some mesoscale variability in the meanderings of the ACC jets. The
authors measured a substantial inter-annual variability in the strength and
latitudinal location of the Northern and Southern Subtropical Front, simply by

taking meridional transects in the SST gradient.
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Figure 3-1: Daily SST gradient for January 1, April 1, July 1 and October 1,
2003, derived from a 25 km resolution Optimal Interpolation of Microwave SST
dataset. Isotherms are overlaid in black. From Burls and Reason (2006).

Improved methods also exist that take advantage of new image processing
techniques to enhance edges (Holyer & Peckinpaugh 1989). These methods
have the advantage of being simple to apply to satellite images, but are very
sensitive to noise. The way to deal with this limitation is initially to filter the
data to eliminate the spatial noise, although this makes it more difficult to

detect finer-scale frontal features in the end.
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3.2 The Canny method

Figure 3-1 shows that calculating the SST gradient is a good way to enhance
fronts and to make them obvious to a human eye. One can define a front as a
region where the SST gradient is higher than a defined threshold as Belkin and
Gordon (1996) did. This is an objective and automated method to detect
fronts. It isolates fronts from the rest of the SST values but does not extract
them in the form of vector structures. Detected fronts should however be
defined as individual spatially defined objects that can be integrated
temporally rather than as a block of flagged pixels in a raster image of a
geophysical parameter in order to record and analyse the fronts consistently in
terms of characteristics such as their length or their strength (Shimada et al.
2005).

The precise location and length of the fronts can be obtained following the
method suggested by Canny (1986), which locates the fronts on the crests of
the SST gradient. The Canny algorithm first estimates the gradient magnitude
and searches for local maxima of gradient in the gradient direction. It then
looks for pixels with gradient magnitude larger than a threshold T,. These
pixels are flagged as frontal pixels. Finally the algorithm tracks along the front
crests, i.e. perpendicularly to the gradient, flagging pixels as frontal pixels
until the gradient magnitude falls below a smaller threshold T;. It does not, in
its native form, link the flagged pixels together as a vector-defined
independent object. The Canny algorithm was developed for automatic edge
detection in the field of image processing, but Castelao et al. (2006) had the
idea to apply it on SST data for front detection. The authors applied this
technique on geostationary infrared SST data (GOES-10) over the California
Current system, with the following thresholds: T, = 0.006 K/km and T, =
0.0015 K /km.
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3.2.1 A new implementation of the Canny method

To support the analytical work in subsequent chapters of this thesis a new
implementation was coded in Matlab of an algorithm based on the Canny
concept to detect fronts on SST data. It was possible to take advantage of a
built-in Matlab Canny function for image processing. The core of this function
was extracted because it is coded in a very optimized way, but it was adapted
so that it can set thresholds with meaningful geophysical values of SST
gradient instead of using image processing generic thresholds based on
relative image brightness values. The main difficulty was to code a realistic
estimation of the 2-dimensional gradient of an SST image. A simplistic way of
estimating the SST gradient is to divide the SST increment of adjacent pixels by

the horizontal distance that separates them as:

SST(i+1,j) —SST(,j)
i

SST(i,j + 1) — SST(i, ) (3-1)
d;

VSST(i, j) ~

where d; and d; are the zonal and meridional distances in km between 2 pixels

in the SST image, respectively.

This is the first order SST gradient; it is only an estimation since the gradient
of a discrete image does not exist mathematically speaking. It is in practice
defined as the gradient of a continuous underlying function. The underlying
function is the interpolation of the discrete image, hence it is not unique.
There are several ways of interpolating the discrete SST data and therefore the
SST gradient can only be an estimation. Of course, the higher the resolution of
the SST data, the better quality the estimation of the SST, and hence of the SST
gradient, will be. The first order SST gradient detailed above is in fact the
gradient of a very coarse interpolation of the SST field: the interval between
each pixel is filled uni-dimensionally by interpolating linearly the SST. This
gradient estimation is not the most accurate if the SST is not considered to
vary linearly, it is also extremely sensitive to spatial noise. Due to
measurement noise, very high gradient values can be estimated in regions of
low actual SST variations. This limitation can be overcome by estimating the

second order SST gradient.
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The second order SST gradient is obtained by convoluting the SST image with
the derivative of the Gaussian function. The second order gradient presents
the advantage of being more robust to measurements containing spatial noise,
but it is based on some smoothing of the data, which implies a loss of high
frequency spatial variability. In fact this process is strictly equivalent to the
initial smoothing of the SST by a running Gaussian mean, followed by the
estimation of the first order SST gradient. The level of smoothing applied
depends on the shape of the smoothing filter. The smoothing filter applied in
this thesis is a two-dimensional Gaussian filter parameterized by a
characteristic length scale, its standard deviation a5 given in km.

_x2+y?
e 20s%

2102 (3-2)

glx,y) =

Where x and y are the zonal and meridional distances in km from the origin of
the filter. Note that the expression “standard deviation” is not completely
accurate as there is no statistical distribution involved. However the Gaussian
filter is similar in shape to a zero-mean Gaussian distribution of standard
deviation g,. The derivative of g(x,y) against each direction is convoluted on
the SST image to estimate the zonal and meridional SST gradient. When dealing
with SST data, care has to be taken to account for the geographical projection
on which the data are provided. Global SST products are usually given on a
grid whose steps in latitude and longitude are constant. This projection is
called cylindrical. In this projection meridians are mapped to equally spaced
vertical lines and circles of latitude (parallels) are mapped to horizontal lines.
By the geometry of its construction, the projection stretches distances East-
West. The amount of stretch is the same at any chosen latitude and increases
towards the Poles. If the Earth is approximated to a sphere, the relationship
between a step in latitude (at constant longitude) and the distance in km is

constant. It is

Dieridgionar = 111.12 = Alat (3-3)

Where D,,.rigiona: 1S the distance in km equivalent to a shift in latitude of Alat in

degrees at constant longitude. Conversely, the relationship between a step in

longitude (at constant latitude) and the distance in km is a function of latitude:
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D,onar = 111.12 x cos(lat) = Alon (3-4)

where D,,,,; is the distance in km equivalent to a shift in longitude of Alon in
degrees at a constant latitude lat. Therefore a SST image projected on a
cylindrical projection is distorted and its pixels have varying horizontal (zonal)
sizes in km depending on their latitude. Yet, the filter needs to be be circular
when projected onto the ground, i.e. it should be circular in term of distance
but not on the SST grid. If this is not ensured, the data are smoothed unevenly
and anisotropically, which would introduce smoothing filter artefacts. To
correct this effect it was decided to define a well-chosen shape to the running
Gaussian derivative, as a function of the pixels D,y,41/Dmeridiona fatio. The SST
data are then convoluted with a filter whose shape is changing for every
latitude row. The Gaussian filter was also normalized with care to obtain
correct values of SST gradient even over the high latitudes where the pixels are

hot square in kilometres.
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Canny T1=0.0015 C/km [2=0.006 C/km — si T1=0.03 C/km — T2=0.03 C/km — sigma gradient 10 km

SST gradient in Kikm

Figure 3-2: Canny front detection algorithm applied to an OSTIA SST image
(31/12/2008). The initial resolution is 0.05°. A gradient is estimated to a first
order, taking into account only adjacent pixels (top) and by convoluting the
derivative of a Gaussian function whose standard deviation is 10 km (bottom).
The fronts are displayed in black and the SST gradient magnitude is mapped
on the background.

Four examples of fronts detected by the Canny method over the Agulhas
Retroflection are presented in Figure 3-2. The SST data are extracted from a
Level 4 product, the OSTIA dataset (SST data sets are discussed in Chapter 4).
Two parameters have been varied in the examples shown: the SST gradient
magnitude thresholds T, and T, along with the smoothing filter length scale o;.
The plots show the detected fronts on the local maxima of SST gradient in the
gradient direction. This shows that the quantity and shape of fronts detected is
strongly dependent on the choice of parameters used in the Canny algorithm.
A minimum level of smoothing seems necessary to avoid getting fronts that
are meandering unrealistically as shown on the top (unfiltered) row of Figure

3-2. The level of the thresholds defines what fronts are detected and how far
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they expand. It is worth noting also that the SST gradient magnitude is

lowered by the application of a smoothing filter.

To summarise, this modified implementation of the Canny method relies on
the preliminary definition of the following parameters that control the way the

algorithm detects fronts:
e The SST gradient magnitude thresholds T, and T,.

e The standard deviation o, (in km) of the Gaussian filter
applied, if any, for the smoothing of the input SST scene for the
estimation of the SST gradient magnitude. If no filter is applied

as in the top row of Figure 3-2, o is set to 0 km.

e An optional minimum front length L,,;, in km, to avoid

extremely small fronts.

3.3 The Cayula method

Front detection algorithms based on the computation of the gradient suffer
from a high-sensitivity to noise. Hence an initial step of smoothing is required
to reduce the amount of noise, which also removes high spatial frequencies
and fades fine-scale features. Another limitation of these filters is that they do
nhot behave well when some data are missing, in general due to cloud cover
which prevents infrared radiometers from sampling the SST. Of course no front
detection technique can work on a large missing patch of the SST image.
However level-2 (single sensor snapshot) images are sometimes corrupted by
patchy clouds which prevent unobstructed views over wide areas even though
only a few percent of pixels are flagged as cloud. In these conditions it is still
possible for a human operator to detect visually a front but the gradient
cannot be estimated in the vicinity of missing data. This implies that there is a
need for a better automatic method able to deal with a small percentage of

missing data. This was the rationale for developing the Cayula approach.
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3.3.1 Description of the Cayula method

Cayula and Cornillon (1992) developed an edge detection algorithm (also
called the histogram method or the S/ED: Single Image Edge Detector) that is
able to deal advantageously with fine features, noise and missing data due to
cloud cover, but which is also objective and automatic, and returns fronts as
geometric vectors. This approach was new in the way it defined the
temperature fronts as the (usually thin) region of separation between two
regions of largely uniform temperature. This algorithm works at 2 different
spatial levels: the window and the image levels. The image is first segmented

into overlapping windows (32x32 pixels for images of 1 or 2 km resolution).

At the window level, for each of those windows a statistical test decides the
existence or not of two distinct populations through a histogram analysis of
the SST values of the window pixels. For each temperature threshold 7, two

populations of pixels within the window are identified:

e P, is the ensemble of pixels whose SST is lower than t
e P, is the ensemble of pixels whose SST is higher than

The optimal threshold z,,, is computed such that J,(7), the contribution to the
total variance resulting from the separation in two clusters P, and P,, is

maximized.

Where

N; N
Jo(@) = m[m(ﬂ — 1 ()] (3-5)

Where N, is the number of pixels in P;, and N, is the number of pixels in P,, and

u; (1) is the mean of P;, and pu,(7) is the mean of P,.

The segmentation is considered sufficient if the proportion of the total

variance due to the separation between clusters is high enough, i.e.:

62



Front detection techniques

Jo(Topt) S (3-6)
=>0.7
]b (Topt) +]e (Topt)

Where J. (1) represents the sum of the variances within each of the two

populations.

Nl NZ (3_7)
NN, ! ™+ NN, Q)

]e(T) =

Where S, (7) is the variance of P;, and S,(7) is the variance of P,.

Another statistical test which, in contrast to the segmentation phase, takes
into account the spatial distribution, assesses the compactness of these two
populations. The populations are considered as compact when the three

following inequalities are fulfilled:

C, =—>090 (3-8)

C, = R > 0.90
Ty (3-9)

_R1+R2>092
T +T, T (3-10)

Where T, (T,) is the total number of neighbour pairs between pixels belonging

to P, (P,) and neighbour pixels belonging to either population:
T, = {(x,y),such thaty € [N(x) N X],Vx € P}

T, = |{(x,y),such thaty € [N(x) N X],Vx € P,}|
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X is the population of pixels in the window: X = P, U P,.
| |is defined as the cardinality of the set.

For reasons of computational economy and simplicity, only the first

neighbours of a given pixel are used to evaluate the cohesion:

(3-11)

N (xi ;) = {0 j1s X jo1s Xign jp Xioa j )

R; (R,) is the total number of neighbour pairs between pixels belonging to P,

(P,) and neighbour pixels belonging to P, (P,) too.
Ry = |{(x,y),such thaty € [N(x) N P;],V x € P}|

R, = l{(x,y),such thaty € [N(x) NP,],V x € P,}|

If the populations are compact, and not scattered, the pixels that are
neighbour to one of the other population’s pixels are flagged as potential

frontal pixels.

The algorithm then shifts to the image level to link the independent flagged
pixels so that they form continuous frontal structures, trying to follow the
isotherms and eliminating very short fronts (e.g. less than 15 pixels in length).
This method allows the control of many parameters during the process and
also offers as an output the full frontal structure with information on the
length or the strength of these fronts. It is also an improvement because it is
not based on the absolute strength of the front, but on the relative strength
depending on the context, thus making the edge detection temperature-scale
invariant. Figure 3-3 illustrates an output of the histogram method from an

infrared satellite SST scene.
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Figure 3-3: AVHRR/2 SST fields with clouds zeroed and detected edges
overlaid in white. From Cayula and Cornillon (1992).

The Cayula method was later upgraded to a multi-image edge detection that is
able to measure temporal behaviours of the detected fronts such as their
persistence (Cayula & Cornillon 1995). The histogram method has been
validated against in-situ front measurements, showing an error rate of 14%
instead of 29% for a simple SST gradient threshold algorithm (Ullman &
Cornillon 2000). Several studies have applied the histogram method for
producing regional climatologies of fronts from SST data (Level-2 AVHRR) time
series: Belkin and Cornillon (2003, 2004, 2005).

3.3.2 Implementation of the Cayula method

A new implementation has been coded in Matlab of the Cayula method for
edge detection, adapted for the work in this thesis. The principles by which it
operates are illustrated in Figure 3-4 and Figure 3-5. It is a complex algorithm
whose implementation is made difficult when adapting it so that it can

efficiently detect fronts on global high resolution SST maps. The process of
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linking the frontal pixels together into a coherent and continuous vector front
(step fto step gin Figure 3-5) is very demanding in terms of computational
power and memory because it has to be implemented by iteration: for each
frontal pixel detected the routine must search through its neighbours for other
frontal pixels, while trying to follow isotherms. The choice was made to divide
the input SST scene into 10" by 10° boxes to ease this process, and the
algorithm was adapted to make it link to the fronts detected on the borders of
the boxes, in order not to create artefacts on the sides of the selected 10°

boxes or else many detected fronts would end right at the window grid lines.
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OSTIA SST (C) on 1/1/2008

transect on OSTIA SST on 1/1/2008
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Figure 3-4: lllustration of the different levels in the Cayula algorithm. a) the
initial OSTIA SST data, over the ACC South of Africa. b) transect of the SST and
the SST gradient over the path displayed on the original data. c) SST over the
red dashed box, with the window level grid overlaid. d) SST values of the
32x32 pixels window. e) histogram of the SST values of the window pixels,
with the result of the segmentation overlaid as a red dashed line.
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limit temperature: 10.83 C

Figure 3-5: lllustration of the different levels in the Cayula algorithm. f) the
window is divided into two populations of pixels following the result of the
segmentation. g) the resulting detected fronts over the area after the window
level and the local level processing are accomplished.

This implementation of the histogram method requires the assignment of
several arbitrary input parameters that control the algorithm processes and

hence the resulting detected fronts:

e The standard deviation o, (in km) of the Gaussian filter applied, if
any, for the smoothing of the input SST scene for the estimation of the
SST gradient magnitude. Alternatively the median smoothing filter

size can be set.

e The window size (WS), in pixels, in the segmentation operation
(Figure 3-4.c). This parameter is fundamental for the whole

algorithm. The histogram method will only detect a front if a portion
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of it is found to divide, one of the windows into 2 coherent groups of
pixels of different SST. The routine that is applied on every window
(Figure 3-4.e) searches which SST value, if any, is dividing the
distribution of the window pixels SST values into two distinct
distributions, whose individual variances explain a large part of the
total distribution variance. This analysis only allows the detection of
one front or none for each window. Consequently, on one hand, if the
size of the windows is too big, the risk is to miss complex frontal
features when two fronts are present on the window. The statistical
test detects in this case only one front or sometimes no front at all.
On the other hand, if the window is too small, the risk is to detect the
same front several times in different windows. In that case, one
window may not cover the whole width of a front, so it will detect a
front over its slope, but the adjacent windows and the overlapping
ones will also detect the same front, simply translated by a few pixels.
This phenomenon is clearly visible on Figure 3-5.g: strong fronts
surrounding the ACC jets are detected twice, and most of them are
drawn with double lines. In this example the fronts were detected
with a window size of 32 pixels (i.e. 1.6°), it seems that this parameter
is too low for this region characterized by very strong and wide

fronts.

The grid on which the input SST scene is projected. The algorithm
is able to resample the SST on a lower resolution grid, which has the
effect of simplifying the frontal detection but also hides the fine front
features. It can resample the data on a regular grid (also called equal-
area grid, or local sinusoidal grid, or Mercator equal-area projection)
too, where the resolution is not in degrees of latitude/longitude but in
kilometres. This is particularly important over high-latitudes where 1°
in latitude is much larger than 1° in longitude. The front detection
method must not be biased by a strong asymmetry of the pixels
shape when projected onto the ground. The regular grid can only be
constructed locally to avoid direction biases and this complicates the

coding of the whole algorithm.
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A minimum temperature difference AT,,;,, : Ullman and Cornillon
(2000) and Miller (2009) improved the histogram method statistical
test by introducing a temperature difference threshold (between the
SST means of the two populations at the window level) under which a
front is not flagged, even if the segmentation process has succeeded.
Those authors chose AT,,;;, = 0.375 K (with a window size 32 pixels of
1.2 km) and AT,,;,, = 0.4 K respectively to limit false detections caused
by sensor noise inherent to standard level-2 SST fields. The
implementation developed here allows the utilization of such a
threshold.

A minimum front length L,,;,,. The fact that the fronts are constructed
as vectors (as opposed to a raster of front pixels) makes possible the
definition of a minimum threshold on the frontal length. Once all the
fronts have been detected, a routine measures the length of the fronts
and keeps only fronts longer than this threshold. This is to avoid the

proliferation of very small fronts.

3.4 Definition of simple Frontal Indexes

After the fronts are detected by one of the two front detection algorithms, it is

helpful to convert the geographical locations of the list of points that

constitute a front position into a numerical value. For the qualitative analysis

of frontal variability, spatial and temporal frontal indexes based on various

characteristics of the fronts are defined:

The total frontal length index (FLI) in km that takes into account
only the length of the fronts. This is a measure of the cumulated
length of the fronts detected in a given area, it is therefore normalised

by the area in which it is integrated. Its units are km/km? or km™'.

The frontal strength index (FSI): this is a measure of both the length
and strength of the fronts. An estimation of the magnitude of the
front is integrated over the whole length of the fronts. The frontal
strength can be estimated in several ways. It can be defined as the

mean SST difference (|SST, — SST,|) between the means of the two
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populations of pixels dividing a window in the first steps of the
Cayula algorithm. This index is called Frontal Temperature
Difference Index (FTDI), its unit is km.K/km?. The frontal strength
can also be estimated by the SST gradient magnitude on the front,
which is a local maximum in the gradient direction when the front is
detected by the Canny method. This index is called the Frontal
Gradient Index (FGI), its unit is (K/km).km/km? =K/km?. It should be
stressed that the Canny algorithm is only able to return the FGI while

the Cayula method can return either the FTDI or the FGI.

Any of these Frontal Indexes can be processed from a global daily SST scene.
They can be plotted as the result of a single day’s processing (Figure 3-6),
integrated over different regions and plotted against time, or averaged over
time and plotted as a map (Figure 3-7). The latter was obtained by adding daily
frontal position maps of the California Current system and dividing the sum by
the number of days processed to get a monthly Probability of Detecting a
Front (PDF). The PDF is the time-averaged frontal position, it is presented on a
map like Figure 3-7, while the FTDI is the time series of the geographically

averaged frontal length and strength.

This kind of analysis can resolve the seasonal variability of many mesoscale
features to a significant extent. For instance, over the California Current
System, fronts reveal the coastal upwellings within about 50 km of the coast
during spring and fall. In September, the upwelling jet appears to be
separating from the coast at 42° N for a few hundred kilometres. In December,
the frontal features are shifted offshore with long filaments occurring at 33" N
that separate the California Current System from warmer subtropical water.
During the winter the frontal activity is sharply decreasing, probably because
of a weakening of upwelling favourable winds. These results are consistent

with the thermal fronts analysis of Castelao et al. (2006).
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OSTIA SST frontal strength detected by Cayula algonithm in 22032007
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Figure 3-6: a) OSTIA SST data on 22 March 2007, East Atlantic next to West-
Africa, with the fronts detected by the Cayula algorithm superimposed. b) the
frontal strength FTDI of the fronts detected by the Cayula algorithm. The
frontal strength is calculated as the difference between the mean SST of the
two populations separated at the window level. The window size is 32 pixels
(1.6%).
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Figure 3-7: Probability of detecting a front (PDF) over the California Current
System averaged monthly over March, June, September and December 2007.
Fronts are detected following the algorithm detailed in Cayula and Cornillon
(1992), with a window size of 32 pixels (1.6°), on OSTIA products.

3.5 A critical analysis of frontal detection techniques

The advantages of the automatic front detection methods over a human-based
front detection process are obvious: they are faster and objective. They are
objective because each of them will detect the same fronts every time when
applied to the same SST scene, and their outputs are qualitatively comparable.

For example it is relevant to compare the fronts detected by the same
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technique over the same region but from different dates. However, it is not a
simple task to compare frontal indexes processed by two different methods,
because the detected fronts are the resulting combination of both the initial
SST scene and the methodologies inherent in the algorithms. The earlier
sections of this chapter describe the methodology adopted by the two frontal
detection techniques. In order to interpret the detected fronts in a dynamical
context and to compare results obtained by the two methods, it is necessary
to explicitly quantify their behaviours. It is not enough to know what
processing is applied to the input SST field, because it is complex, but one
should be able to “characterise” what fronts will be detected as a function of
their size or strength and with which accuracy. Published studies making use
of these algorithms have used them as “black boxes” that can be applied over
a time-series of SST products and whose resulting variability gives an
indication of the frontal variability. This section aims at “opening the black
boxes” and shedding light on the relationship between the inputs and the
outputs of these algorithms. It is easy to express in simple words the
definition of a front as implied by the Canny method, especially if T; = T, (that
is the fronts are the locations of local maximum of SST gradient magnitude in
the SST gradient direction, where the SST gradient magnitude is larger than T;).
However the smoothing filter initially applied to reduce the effect of noise on
the gradient estimation has an effect on small scales that can be quantified. In
the case of the Cayula method, it is not obvious how to describe quantitatively
the effect on the output frontal indexes of the decomposition into windows in
the first steps of the algorithm and the statistical test applied to estimate the

segmentation and cohesion within the windows.

3.5.1 Characterization of the Canny algorithm

The limitations of the Canny algorithm are inherent to the data it uses as input.
The fronts it returns are of course restricted to those present in the SST image.
Depending on the resolution of the SST image, small fronts are or are not
detectable. This statement is true for any method as no algorithm can detect
features that are not present in the input image. The high sensitivity to noise
of the gradient computation also limits the minimum scale that can be

resolved by the Canny algorithm. It is absolutely necessary to eliminate spatial
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noise in the data before the calculation of the gradient can be performed. If the
noise is not smoothed out, very high values of SST gradient will be observed
that have no link to the underlying mixed layer SST field that is an indicator of
upper ocean dynamics. The elimination of spatial noise is achieved by means
of spatial filters, which are in effect low-pass filters: they cancel small scale

variations. The two filters considered in this study are the following:

e The running Gaussian filter:

N M
SSTrie (xi,yi) = Z 2 SST(x; +n,y; +m) Ny (n- 8, m-§))
n=—N m=—-M
Where SSTy;(x;,y;) is the value of the filtered SST image on row x; and column
y;. N, is the two-dimensional Normal function of zero mean and standard
deviation ¢ in km.

1 x4y

e 202
2mo?

Na(x: Y) =

8, and &, are the resolutions of the grid in the row and column directions
respectively. M and N are the sizes of the Gaussian filter in the row and

column directions respectively.

e The running mean filter:

N M
1

SSTrue (i, yi) = Z Z SSTCat+ny+m) o o+ 1

n=—Nm=-M

These two filters are applied for each pixel of the SST image, this is done by

convolution of the two-dimensional filter.

The gradient in the x direction, in the case of the Gaussian filter, is calculated

the following way:

Vo SSTrue (X, yi) = (SSTfilt(xi +1,y) - SSTfilt(xiJYi)) (3-12)

1
Ox

One can show that
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N M
Vo SSTrine (xi, yi) = Z Z Vi SST(x; +n,y; +m) Ny (n: 6, m-6,) (3-13)
n=N m=—-M
Which means that the gradient of the filtered SST is the filtered gradient of the
SST.

The effect of a running Gaussian filter on a front is shown on Figure 3-8. One
can see that as the standard deviation of the filter increases, so does the
extent of the front, which decreases the gradient in the middle of the front.
The effect on the gradient is shown on Figure 3-9. It is noticeable that the
gradient of a front whose width is smaller than 3g; is significantly reduced by

the application of the filter.
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Figure 3-8: Smoothing effect of Gaussian filters on a simple front. In blue is
the profile of an initial front which is modelled by a SST gradient of 0.05 K/km
over 20 km. Running Gaussian Filters of various standard deviations are
applied to the SST scene before the profile is taken. A filter of 0 standard
deviation is by convention returning the input data.
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Front SST gradient profile
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Figure 3-9: Smoothing effect of Gaussian filters on the Gradient on a simple
front. In blue is the profile of an initial front which is modelled by a SST
gradient of 0.05 K/km over 20 km. Running Gaussian Filters of various
standard deviations are applied to the SST scene before the gradient is
calculated and the profile is taken. A filter of O standard deviation is by
convention returning the input data.

The reduction of the gradient can be deduced in the following manner:

Firstly, let us notice that the maximum gradient is at x,, , the middle of the
front. In the case where the front is along the x-axis, we can simplify the

calculations by looking at the front profile in one dimension. We have

N
Vo SST e (o) = Z V,SST(x; +1) - Ny (n - 8) (3-14)

n=-N

Vi SSTrip(x9) = VySST(x0) - A (3-15)

Where
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1 DY . . . .
e A=erf (ﬁa_s) in the case of the running Gaussian filter

with erf(x) = %fo"e‘tzdt is the error function. D is the width of the

front, in the case of Figure 3-8 and Figure 3-9, D = 20 km.

D .
. AZ{ELfD<d
1if D>d

the size in km of the running mean filter.

in the case of the running Mean filter.d = (2N + 1)é, is

This shows that the effect of the smoothing filters on the fronts is a direct
function of the ratio between the width of the fronts and the length-scale of
the filter:

D
Rgauss =—
D
Rpmean = E

Figure 3-10 and Figure 3-11 display the scaling factor 4 as a function of these
ratios. This quantifies the scaling of the gradient on all fronts by the

smoothing filters applied in the Canny method.
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Running Gaussian scaling effect on small frants
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Figure 3-10: In the case of the Gaussian filter, scaling factor of the front
maximum gradient as a function of Ry

Running kMean scaling effect on small fronts

Figure 3-11: In the case of the running mean filter, scaling factor of the front
maximum gradient as a function of R,,.q4n
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One can see that the smaller the Ry4,55 OF Ryeqn ratio, i.e. the larger the filter
and/or the smaller the gradient scale, the more the gradient is reduced by the
filter. These filters are in effect low-pass filters, they erase small scale spatial
variability. This filtering step is necessary when it is assumed that the high-
frequency part of the SST spectrum is not trustworthy, because it contains
more measurement noise and atmospheric artefacts than actual surface
temperature variations. The more smoothing is applied, i.e. the larger the
filter, the more noise is cancelled out. However, the filter is not only taking out
noise but also real small scale variability in the SST. In order to optimize the
algorithm, one should choose a filter size that is the smallest one able to
cancel the noise in order to leave the biggest part of the spectrum resolvable
by the algorithm. The choice of filter size to use for the frontal analyses
presented in the rest of this thesis is made by exploring results of the Canny
method applied with different smoothing filter and retaining the one that
resolves the smallest scales without appearing to detect fronts that are
meandering unrealistically or in a way that seems not linked to the dynamics
of the scene. This is illustrated on Figure 3-2. The size of the filter depends on

the characteristics of the input product in terms of spatial noise.

Chapter 5 will discuss a methodology that makes a-priori assumptions on the
SST spatial spectrum to estimate and recover the amount of actual SST small
scale gradient smoothed out by a spatial filter or by a sampling at low
resolution. This methodology relies on this SST spectrum assumption and on

the larger scale gradient measured after the application of the filter.

3.5.2 Characterization of the Cayula algorithm

The Cayula algorithm is always taken as a black box. The author of this thesis
is not aware of any publication describing its behaviour and predicting what
type of fronts it detects. The parameters of this algorithm, listed in section
2.3.2, are not mathematically related to the outputs of the processing in a
theoretical way. In other words, the Cayula algorithm is used as a black box
which detects fronts automatically. The uncertainty inherent in the Cayula
method, but not always appreciated, lies in the statistical tests applied at the

window level. These steps are the measurement of the segmentation, i.e. the

80



Front detection techniques

division of the window pixels values into two distinct populations, and the
cohesion, which is the compactness of these two populations. The Cayula
algorithm can be applied with or without an initial smoothing of the SST data.
The following subsections within 3.5.2 characterise the Cayula algorithm
behaviour without any consideration of initial smoothing: section 3.5.2.1
assumes a noise-free input SST scene while section 3.5.2.2 considers a noisy
image. They deal only with the steps of the Cayula algorithm that occur after
any potential initial smoothing. The amount of noise present on the input
scenes analysed in section 3.5.2.2 can be thought of either as the original
noise on the SST image, in the case where no initial smoothing filter is applied,
or as the remaining noise after pre-filtering. In the case where pre-smoothing
is performed, the overall assessment of the Cayula method for detecting fronts
must combine both the analysis in section 3.5.2.2 and the impact of pre-
smoothing (using a running mean or Gaussian filter) as already explored in
3.5.1. The full Cayula algorithm including the initial filtering is characterized in

section 3.5.3.1.

3.5.2.1 The Cayula algorithm at the window level on a noise-free scene

Let us consider the segmentation test on a zero noise window SST scene. If the
window is seeing a perfectly uniform scene, i.e. no front is present, no
segmentation is detected by the segmentation test. There are two simplified
configurations under which a window can observe a front as illustrated in
Figure 3-12. Depending on the width of the front and the size of the window,
the whole front can be captured by a window (case 1), or a fraction of it only
can be seen by a window (case 2). In both cases, if a front is present, even
though it is extremely low in intensity, tests showed that a segmentation is
detected within the window. This means that two distinct populations are
detected in the window, and the difference between their average
temperatures is calculated. This difference is the basis of the FTDI (Frontal
Temperature Difference Index), it is a measure of the intensity of a detected
front. When a front is detected, this temperature difference is used in the
Cayula algorithm in two instances. Firstly, it is compared to the parameter
AT 1in » the minimum temperature difference for a front to be retained. If the

front is too weak, the difference between the average temperatures of the two
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populations is lower than AT,,;,, and the algorithm concludes that there is no
front over the window being explored. Secondly, if the temperature difference
is greater than AT,,;, , the segmentation test is fully successful and the
algorithm continues by assessing the cohesion. If the detected front is
compact enough and, once reconstructed at the image level, long enough to
be kept, i.e. longer than L,,;,, it will be accounted within the frontal index
FTDI. The contribution of the front to the FTDI index is equal to its strength
integrated along the whole length of the front. The strength is measured in
this case by the temperature difference at the window level. The temperature
difference calculated by the Cayula algorithm at the window level during the
segmentation test is thus a fundamental quantity that is instrumental in the
decision to keep a detected front or not and in the way its strength is stored in

the frontal index.

Case 1 Case 2

window window
size size

distance distance

SST
SST

v

v

Figure 3-12: Two simplified configurations under which a window of the
Cayula algorithm can see a front. Transects across the front and the size of the
window are plotted. In case 1, the totality of the front is captured by the
window, whereas in case 2, a portion of the front only is captured.

To characterize the Cayula algorithm, one needs to understand the relationship
between the properties of a front and this temperature difference at the
window level. Tests showed that, in the idealized case of very sharp fronts
with no noise, that are so sharp that the window is seeing two populations of
homogeneous temperature, the measured temperature difference is by design

equal to the real temperature step across the front. This situation is a
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particular situation under case 1 in Figure 3-12. Let us now consider a very
large front with a constant temperature gradient across it. The window is
seeing only a portion of it, as in case 2 of Figure 3-12. In this situation, a
segmentation is always detected and the temperature difference is a linear
function of the temperature gradient on the front. Figure 3-13 shows the
temperature difference measured as a function of the gradient on the front, in

the case of a window size of 32 pixels of 0.05" resolution.

Cayula - WS=32 pixels - resolution is .05 deg/pixel
k] T T T T T T T T

w = wn o ~
T T T T T
1 1 1 1 1

detected Temperature Difference in K

r
T
1

o I I I L I I 1
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
background gradient in Kifkm

Figure 3-13: Temperature difference measured by the Cayula algorithm at the
window level during the segmentation test, in case 2, as a function of the
gradient on the front.

This function is linear:
AT = 89 = VSST

With AT in K and VSST in K/km. The total temperature step across the window

is equal to
ATtOt = WS * VSST (3_] 6)
With WS the size of the window in km. In this case
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Hence

AT = ATtOt/Z (3_] 7)

This means that the recovered temperature difference across a front within a
window is equal to half the total temperature variation across the whole

window in the case 2.

This result is important as it allows one to choose the appropriate value for
parameter AT,,;, , SO that unwanted fronts are not detected. For example, the
Cayula algorithm tends to detect fronts in most of the windows when run with
the AT,,;, = 0 K. This is due to the presence of low background temperature
gradient, mostly meridional, everywhere on the ocean surface. As a
consequence weak fronts are detected all over the ocean with a regular step
due to the window decomposition grid of the Cayula algorithm. The Figure 3-5
shows an example of this effect. For this reason, scientists have introduced the
parameter AT,,;, to limit the detection of weak fronts on this background
gradient which is not fundamentally linked to the mesoscale dynamics.
However no justification was provided to explain the choice of the the
parameter AT,,;, - Equation (3-16) allows one to set the parameter AT,;;, as a
function of the minimum background gradient to be detected and the size of

the window.

This result also helps to understand the measured strength of a front. One can
see that the way the strength of a front is recovered depends on its width
when compared to the window size. For a very sharp front, the whole
temperature step across it is added up in the FTDI. For a front larger than the
window, only half of the temperature step across the window is measured.
However in this case, the front is likely to be detected several time by adjacent
windows, hence the recovered frontal strength will add up when integrated in

the index.
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3.5.2.2 The Cayula algorithm at the window level on a noisy scene

The previous section describes the behaviour of the Cayula algorithm in the
idealized situations of case 1 and case 2 (Figure 3-12) when the SST scene is
noise-free. In reality, the window decomposition of the algorithm isolates
fronts of all scales and intensities. Noise is present on the SST image due to
measurement errors and atmospheric effects on the ocean surface. Moreover,
the fronts do not appear perfectly because of the turbulence, which mixes
temperature variations of all scales. So the fronts observed are embedded in a
complex turbulent flow which tends to blur it. Noise affects the stages of
segmentation test and cohesion test, since it tends to blur a front. This makes
a noisy front less likely to be detected. In order to quantify this effect, the

Cayula algorithm window level stages were tested on a wide range of scenes.

Synthetic SST gradient scenes were simulated and parameterized through their
gradients and their temperature differences. A gradual amount of noise was
then added to the scenes. These scenes were used as inputs to the Cayula
algorithm at the window level so that both the segmentation and the cohesion
were tested. When no noise was added to the scenes, even for very low non-
zero gradients, a front was always detected between two segmented and
coherent populations. As the noise was increased, the fronts needed to be
sharper (greater temperature difference and steeper gradient) to be detected.
Figure 3-14 presents the maximum noise that is allowed on the synthetic
scenes for the segmentation and cohesion tests to be positive, for a window of
32 pixels with a typical resolution of 0.05°. One can see that, as most of the
ocean fronts lie over a gradient of less than 0.05K/km, for a temperature
difference of less than 3K, the segmentation and the cohesion is positive over
the fronts if the spatial noise is less than 0.5K. Note that the spatial noise
modelled here is a Gaussian and added for each pixel, this is a simplified

model of the different types of noise mentioned above.
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maximum noise (in K) for 90% of the fronts to be detected by segmentation and cohesion
lat = 0 | orientation = 0

gradient (C/km)

0 1 2 3 4 5 6 7 8 9 10
temperature difference

Figure 3-14: Maximum noise (in K) allowed on top of synthetic SST frontal
scenes (parameterized through their gradients and the temperature
differences) for both the segmentation and cohesion tests to be positive in the
histogram algorithm. Window size is 32 pixels and the resolution is 0.05°, the
minimum temperature difference is set to OK.

3.5.3 Cross-comparisons of the front detection techniques

The previous sections have characterized separately the behaviour of the
Canny and Cayula algorithms in relation to the features that are specific to
each of them. The theoretical effect of the smoothing filters on the small scale
in the Canny method was calculated and the behaviour and the robustness to
noise of the Cayula algorithm at the window level was assessed. This section
aims to compare the performances of these algorithms in various practical
situations, as they are applied on imperfect images representative of the
variety of fronts present on the ocean surface. Large synthetic images are
generated and subjected to both algorithms in order to compare the detected

fronts against common criteria.
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3.5.3.1 Detection of fronts of all scales and strength on potentially noisy
images

An ideal front detection method should be able to detect fronts of all scales
and strength generated by the turbulent flow at the surface. It should also be
able to do so on satellite SST images that suffer from noise. These capabilities
are assessed for the Canny and Cayula algorithms by generating a large
volume of synthetic scenes on which they are applied. Each synthetic scene is
characterized by the presence of a single front that is parameterized by a
temperature difference and an average gradient across it. The profile of the
front is generated following a fitted Sinusoid function. The position of the front
on the scene is recorded for the assessment of the front detection results. A
random Gaussian noise is also added on each pixel, characterized by its
standard deviation g, expressed in K. This noise is a simplification that
accounts for measurement noise, small-scale atmospheric effects and small-
scale turbulence which tends to blur fronts on SST images by creating

meanders along them.

After the synthetic scenes are produced, the detection algorithms are applied
on them. Frontal position and strength are estimated by the algorithms. The

algorithm performances are rated against two success criteria:
e The accurate resolution of the actual front length
e The accurate resolution of the actual front strength

The first criteria is compared directly from each method, the second criteria is
assessed theoretically and discussed as it is calculated via different indexes on

each algorithm.

To allow a fair comparison between the two front detection algorithms, both
of them are tested after the same amount of smoothing is applied: the
smoothing is achieved by the convolution of a running Gaussian filter whose
standard deviation is a4 = 5 or 10 or 20 km. Figure 3-24 and Figure 3-25 show
the performances of the Cayula algorithm after a 3 by 3 and 9 by 9 pixels
median filter is applied to lower the noise, since this is commonly used in

reported implementations of Cayula.
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3.5.3.1.1 Resolution of front length on noise-free images

Figure 3-15 shows the relative front length detected by the Canny algorithm
with various parameters, for a wide range of fronts, on noise-free scenes. The
relative front length is the ratio of the length of fronts (FLI) detected with the
actual length of fronts present on the scene. Ideally, this ratio should be equal
to 1. One can observe that as the parameters T1 and T2 are set to higher
values, fewer fronts of small gradient or small temperature difference are
detected. Small scale fronts are characterized by a high gradient and/or a
small temperature difference. Moreover, it was also found that the detected
fronts are always at the right position, this means that the Canny method is
efficient at locating the front on a noise-free image. Figure 3-15 also shows
that the larger the smoothing filter, the stronger the fronts need to be in order
to be detected by the Canny algorithm. This result is consistent with the
explanation that the smoothing lowers the gradient at small scales. When the
gradient on a front is lowered below the detection thresholds the front is not
detected. One can conclude from this that the Canny algorithm with low
threshold parameters and little smoothing is very suitable for detecting fronts

on a noise-free scene.
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Figure 3-15: Relative Front Length (FLlgetected/FLIacwwat) Of the Canny algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for three values of a, and for three
values of T1=T2. The gradient is calculated after the SST is convoluted with a
running Gaussian filter. The synthetic SST images are noise-free.

Figure 3-16 shows the results of the same experience with the Cayula
algorithm. It displays the relative front length detected on a noise-free scene,
with the minimum temperature difference set to 0 K or 0.4K. Apart from very
small and very sharp fronts, most of the fronts are detected. However the
length is not resolved properly as most fronts are detected twice, and the very
wide ones are even detected up to five times. This is due to the window
decomposition in the Cayula method, when several windows see the same
front at several places across it. Setting the minimum temperature difference
(AT,,i7) to 0.4K reduces the number of fronts detected on an original wide
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front, but it also prevents the detection of fronts whose temperature step is
lower than AT,,;,. In this case of noise-free inputs, increasing the smoothing
does not affect the number of detected fronts, contrary to the Canny case

discussed before.
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Figure 3-16: Relative Front Length (FLlgetectea/FLIactar) Of the Cayula algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for three values of a and for two
minimum temperature difference AT,,;,. The gradient is calculated after the SST
is convoluted with a running Gaussian filter. The synthetic SST images are
noise-free.
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3.5.3.1.2 Resolution of front length on noisy images

The situation with no noise present is not a realistic one. In practice, the
detection method has to perform with some level of noise present on the
image. Figure 3-17, Figure 3-18 and Figure 3-19 present the relative front
length detected on SST scenes suffering from a noise of 0.1K, 0.2K and 0.3K
respectively. Each shows the response to the same combinations of
parameters as shown in Figure 3-15 for the noise-free Canny behaviour. It is
striking that the parameters suited to the noise-free images (g,=5 km and low
T1=T2=0.015 K/km) are not suitable for noisy situations. As illustrated in
Figure 3-20, if the scene is not smoothed enough by the filter and if the
detection thresholds are set too low, fronts are detected all over the image,
whether or not there is an actual front. This results in high relative front length

of up to 16 with a noise of 0.3K.

From Figure 3-17, Figure 3-18 and Figure 3-19, one can deduce that two sets
of parameters for the Canny method seem to be capable of detecting fronts of

a wide range of scales and to do so with a relative front length close to 1:
a) o0,=5 km and T1=T2=0.03 K/km
b) ¢,=10 km and low T1=T2=0.015 K/km

Parameter set b is able to detect fronts of smaller scale and is more robust to
noise. Its relative front length stays close to 1 even for a noise of 0.3K, while
parameter set a behaves less well at 0.3K noise. Figure 3-19 indeed shows that
it detects 2 to 3 times too many fronts when the input images feature low
gradient fronts with a high temperature step (i.e. wide fronts) and a 0.3 K
noise. Although set a detects more noise-induced fronts, it will be shown in
the next section that this set of parameters is better at resolving the frontal

strength because the smoothing filter is narrower.

Figure 3-21, Figure 3-22, and Figure 3-23 show the performances of the
Cayula algorithm when facing an increasing noise contamination. It is
noticeable that, as noise increases, the small scale fronts are less detected.
This is due to the fact that the segmentation and cohesion tests fail in those
cases for which the noise is too high with regard to the temperature step

measurable at the window level.
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Comparing the performances of the Canny parameter set b with the Cayula
method, one can conclude that the Canny algorithm is superior to the Cayula
one for accurately resolving the frontal length, even in the presence of noise.
The Canny method detects the right amount of fronts in the well-defined
ensemble of fronts that it is able to detect. Conversely, the comparison of
Figure 3-21, Figure 3-22, and Figure 3-23 shows that, for a given set of
parameters (initial smoothing and minimum temperature difference), an
increase in the input noise results in a decrease of the number of detected
fronts. The Cayula algorithm is more sensitive to the image noise. This
dependency is also observed on Figure 3-24 which shows the effect of an
increasing input noise with a fixed 3 x 3 pixels median filter. Figure 3-25
shows the results of the same analysis but with a 9 x 9 pixels median filter.
One can notice that the dependency on noise is reduced as the filtering stage
is able to reduce it to a larger extent. As a consequence more weak fronts are
detected but the detected frontal length remains less accurate than with the

Canny.

It is striking on Figure 3-16, Figure 3-21, Figure 3-22, Figure 3-23, Figure
3-24 and Figure 3-25 that the Cayula algorithm detects fronts down to much
lower gradients and temperature differences than Canny. However due to the
overlapping window approach, Cayula detects most fronts twice, and some at
the limit of the detectability are detected up to 5 times their actual length. So it
is clear that the choice of algorithm involves a trade-off of more reliable

detection against a wider range of detectability.
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Figure 3-17: Relative Front Length (FLlgetected/FLIsctual) Of the Canny algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for three o, and for three T1=T2.
The gradient is calculated with a running gaussian filter. The synthetic SST
suffer from a Gaussian noise of ¢,, = 0.1K.
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Figure 3-18: Relative Front Length (FLlgetectea/FLIactuat) Of the Canny algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for three o, and for three T1=T2.
The gradient is calculated with a running gaussian filter. The synthetic SST
suffer from a Gaussian noise of o, = 0.2K.
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Figure 3-19: Relative Front Length (FLlgetected/FLlactua) Of the Canny algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for three o, and for three T1=T2.
The gradient is calculated with a running gaussian filter. The synthetic SST

suffer from a Gaussian noise of o, = 0.3K.
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Figure 3-20: Example of the Canny algorithm detecting too many fronts
because of the presence of noise. The original front is defined by a
temperature step of 1.5 K and a North-South temperature gradient of 0.05
K/km. On top of it, the source image suffers from a Gaussian noise of 0.2K. Its
resolution is 0.05 °. The fronts are detected with the Canny algorithm whose
parameters are set to: 6, =5kmand T, =T, = 0.015 K/km.
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Figure 3-21: Relative Front Length (FLlgetectea/FLIactuar) Of the Cayula algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for three values of o5 and for two
minimum temperature difference AT,,;,. Synthetic SST scenes suffer from a
Gaussian noise g, = 0.1 K.

97



Chapter 3

6,=0.2K
AT=0K AT, =0.4K
0.1 - 0.1
E oo 0.08 JE‘
2 006 0.06 Uy
£ 1l
% 0.04 0.04 o
o
0.02 0.02
0.5 1 15 2 25
0.1
3 0.08 0.08 £
o
2 0.06 =1
5 I
-E 0.04 o'
o
0.02
0.1
E : 0.08 _g
o
2 0.06 ™
E 1]
3 0.04 o
g
0.02
0.5 1 15 2 25 0.5 1 15 2 25
temperature difference (K) temperature difference (K)

0.5 1 1.5 3 . 4 4.5

Figure 3-22: Relative Front Length (FLlgetected/FLlacwar) Of the Cayula algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for three values of a, and for two
minimum temperature difference AT,,;,. Synthetic SST scenes suffer from a
Gaussian noise 6, = 0.2 K.
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Figure 3-23: Relative Front Length (FLlgetected/FLlacwar) Of the Cayula algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for three values of a5 and for two
minimum temperature difference AT,,;,. Synthetic SST scenes suffer from a
Gaussian noise g, = 0.3 K.
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Figure 3-24: Relative Front Length (FLIgetected/FLIactua)) Of the Cayula algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for four values of a,, (Gaussian
noise) and for two minimum temperature difference AT,,;,,- The synthetic SST
scenes are filtered by a 3 by 3 pixels median filter.
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Figure 3-25: Relative Front Length (FLlgetected/FLIactual) Of the Cayula algorithm.
The input SST scene resolution is 0.05°. The latitude is 0 and the front is
oriented zonally. The results are presented for four values of g, (Gaussian
noise) and for two minimum temperature difference AT,,;,.- The synthetic SST
scenes are filtered by a 9 by 9 pixels median filter.

3.5.3.1.3 Resolution of front strength on noise-free images

On noise-free images, the Canny algorithm can be applied with low o and low
T1 and T2. In this situation the algorithm potentially resolves the gradient at
the fronts perfectly. The returned frontal strength is the SST gradient
magnitude integrated along the fronts which are detected along the crests of
SST gradient magnitude. It is important to note that the frontal strength index
is not linked to the front width. This is a limit of the Canny algorithm, because
it does not differentiate fronts according to their width but only to their

maximum gradient magnitude at their centre.

Section 3.5.2 describes the behaviour of the Cayula algorithm at the window

level. It is relevant here because the front strength is estimated by the
101



Chapter 3

temperature difference between the two populations of pixels on each side of
the front within one window. If the front width is very small, this value
corresponds to the temperature step across the front. If the front’s width
covers a significant portion of the window (case 1 of Figure 3-12), the
temperature step across the front is underestimated by the measured
temperature difference. If the front width is larger than the window size (case
2 of Figure 3-12), the actual temperature step is even more underestimated.
However, in case 1 the front may be detected several times and this may

compensate to some extent the underestimation of the temperature step.

A fundamental difference between the two algorithms is the way each
estimates the frontal strength. The Canny algorithm estimates the FGI (Frontal
Gradient Index), which is a measure of the gradient magnitude at the front’s
centre. Conversely, the Cayula algorithm estimates the FTDI (Frontal
Temperature Difference Index), which is a measure of the temperature step
across the front. These two indexes are linked, but their relationship depends
on the front’s width as shown in Figure 3-26. The Canny method estimates
perfectly the FGI on noise-free images, while the FTDI is imperfectly measured
by the Cayula algorithm even on noise-free scenes. On the other hand, the FGI
estimation is very much impacted by the presence of noise when the FTDI is

more robust to it, provided a front is detected.

It should be stressed that the Cayula method is also able to estimate the FGI.
Indeed it is possible to estimate the SST gradient magnitude and return it at
the locations where the Cayula algorithm detects fronts. Of course, the
estimation of the gradient is what is challenging in the Canny method. In this
case the performances are equivalent, except that the Cayula method detects

fewer fronts as shown in section 3.5.3.1.2.
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Figure 3-26: Front Width as a function of the front’s gradient and temperature
difference.

3.5.3.1.4 Resolution of front strength on noisy images

When dealing with noisy scenes input to the Canny algorithm, a trade-off is
needed between the ability to detect small fronts, and the ability to resolve the
frontal strength. It is a trade-off between an accurate recovered frontal length
and an accurate recovered frontal strength. For instance, parameter set b
(0,=10 km and low T1=T2=0.015 K/km) introduced above is better than set a
(0,=5 km and T1=T2=0.03 K/km) because it detects smaller fronts by
smoothing the noise more and it detects them only once (as seen in Figure
3-17, Figure 3-18 and Figure 3-19). However set b has a larger smoothing
filter, whose consequence is to underestimate the gradient at small scales.
This effect is described and characterized in section 3.5.1. For a gradient to be
retrieved with a 90% accuracy after a Gaussian filter, it should be 3.29 times
larger than the smoothing filter standard deviation (gy). This is illustrated in
Figure 3-10. Thus the set of parameters a is able to estimate with precision the
FGI on fronts of width larger than 16.45 km. The set B is able to do so on
fronts wider than 32.9 km.
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The level of smoothing necessary to resolve the frontal length depends on the
properties of the SST data used as input. It is difficult to have a precise
estimation of the noise present on the images. The preferred approach
adopted in this thesis is to test the behaviour of the Canny method on a
particular SST dataset with a variety of o5 and judge which is the minimum
amount of smoothing necessary to avoid detecting fronts linked to noise. This
step may be considered as being subjective, in that it depends on the
scientist’s eye. However it is unavoidable and its effect is well characterized,
so that it is well understood what scales are recovered. Obviously, the same
filter should be applied across space and time so that consistent indexes can
be constructed. Keeping the level of smoothing minimum is important to allow

the accurate recovery of the frontal strength.

3.5.3.2 Detection of intricate fronts and fronts of high sinuosity

The scale of the fronts detected by the Cayula method is strongly dependent
on the chosen window size (WS) parameter. It was shown that if the window
size is too small with regard to the front’s width, the same front can be
detected several times. On the other hand, if WS is too large, small fronts and
intricate fronts may not be detected. It is worth recalling that a front is
detected by the Cayula algorithm if and only if it divides one of the windows
into two populations of pixels whose average temperatures are significantly
different and that are compact enough. It is important to note that the Cayula
method is not able to detect two fronts or more within one window. The
presence of two or more fronts in a window generally fails the tests of

segmentation and cohesion, which ends up with no front at all being detected.

Figure 3-27 illustrates this limit by showing the results of detection tests on
synthetic fronts of varying sinuosity. The sinuosity is a measure of the
deviation of a path between two points (the front) from the shortest path (a
line) between the extremities. It is given by the ratio of the actual front length
to the shortest path length. For a sinuosity of 5, the window size is still small
enough to detect the front everywhere. As the sinuosity is increased to 8, the
window is never able to see a unique front and no front is detected at all. This

shows that the Cayula algorithm is very dependent on the parameterized size
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of the window, as its ability to detect fronts is limited by their sinuosity and

the length scale of the sinuous pattern relative to the window size.

Conversely, even though the Canny algorithm is limited in the small scales due
to the initial step of smoothing, it is able to detect fronts of all scales. It is an
important advantage of the Canny algorithm that it is able to detect fronts of a

wide range of scales, provided the noise has been smoothed out.

=" i n o S
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Figure 3-27: Example of the Cayula algorithm not being able to detect a front
whose sinuosity is too high. The background is a noise-free synthetic scene of
a meandering front, with a low sinuosity (left) and a high sinuosity (right). The
top row shows the front detected by the Cayula algorithm. A black line is
plotted where a front is found. No front is detected over the front of high
sinuosity by the Cayula algorithm (top right). A Cayula window is displayed for
indication. On the contrary, the Canny algorithm is able to detect the fronts of
low (bottom left) or high (bottom right) sinuosity.

3.5.3.3 Detection of fronts of all orientations

An ideal front detection method should detect equally fronts of all
orientations. This is necessary in order not to introduce systematic biases in
the detected frontal indexes based on the orientation of the front. One can
assume that the fronts are isotropic in the open ocean, however strong fronts
linked to jets tend to follow the direction of the current, hence they will have a

preferred direction in some parts of the world. Fronts associated with
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upwellings tend to be parallel to the coast, and they ought to be detected with
the same accuracy as fronts along the ACC which tend to be more zonal.
Figure 3-28 presents a case where the Cayula algorithm behaves very
differently when presented with the same front but rotated at different angles.
When the front is at 459, it is not detected at all, whereas at 70° it is detected
on average 4 times. Conversely, the Canny algorithm is very robust to the
front orientation and the relative front length stays close to 1 whatever the

front orientation.

The reason for which the Cayula algorithm appears inconsistent for different
front orientation is the limited ability of the cohesion test to perform uniformly
and independently of the front orientation. As illustrated in Figure 3-29, the
conditions (3-8) and (3-9) are harder to meet in case the front is oriented in
diagonal with regard to the pixel grid (case b of Figure 3-29) because R; and
R, are lower than in the case where the front is aligned to the grid (case a of
Figure 3-29). Indeed, the pixels at the border between the populations have
only 2 neighbours within their population in the case b, when they have 3 of
them in case a. One could think of a potential improvement of the Cayula
algorithm which would be to calculate the neighbouring pairs to include the

“diagonal neighbours” by replacing (3-11) by (3-18):

(3-18)

Nimprovea (Xij) = X1 j41 X1, j1, Xi1,jo Xio1,j Xir1j41 Xim1,j— 10 Xit1,j—1> Xi—1,j+1 )

This potential improvement would be implemented at the expense of
computation time. The author believes that it could improve the robustness of
the Cayula algorithm against front orientation. This suggested improvement

was not tested nor implemented in the scope of this thesis.
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Figure 3-28: Detected relative front length as a function of the orientation of
the front, for the Cayula algorithm (top) and the Canny algorithm (bottom). The
synthetic front is characterized by a gradient of 0.01 K/km and a temperature
difference of 1 K. Both algorithms are run after the same 20 km running
Gaussian filter is applied to the temperature images.
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Figure 3-29: Two frontal orientations with non-similar cohesion as assessed
by the Cayula algorithm. The pixels of the window (non-representative window
size of 6 pixels) are divided into two populations following the segmentation
step depending on the orientation of the underlying front with regard to the
grid. The dotted pixels are the ones which cause the cohesion step to return
different results in a) and b). The red arrows show the neighbouring pairs
involving one of the dotted pixels at the border between the populations.

3.5.3.4 Detection of fronts on images that suffer from missing pixels

Level-2 SST data are single-sensor products. They generally suffer from a
certain extent of missing samples. Data are missing wherever the sensor is not
able to make an accurate measurement. For infrared sensors, this happens
over cloudy areas, whereas for microwave instruments it occurs over rainy
spots and close to land. When a large patch of data is unavailable because of
such a situation, no algorithm is able to detect anything. However the clouds
are often scattered and cover a small portion of the overall scene integration.
A front detection adapted to Level-2 products should be able to deal with a
small amount of missing data, disseminated over the image. Figure 3-30
shows that the Cayula algorithm (applied without initial filtering) is much
better at detecting the front than the Canny one in these conditions. The
reason why the Canny method fails is that the application of the smoothing
filter enlarges each missing data spot by the size of the filter. In the case of
Figure 3-30, each original missing pixel is about 5.5 km wide, but after the

smoothing filter is applied the missing patch grows to 3 times o, : 30 km (not
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shown in the figure). The smoothing filter strategy is that if one of the pixels is
missing, every pixel that shall be smoothed taking into account the missing
pixel ends up as missing too. One way to deal with this issue is to interpolate
first on the missing samples, and this is what is done in Level-4 SST products.
However the interpolation can result in the underestimation of a gradient and

it could be preferable to just ignore a missing spot.

The Cayula algorithm was developed for this very reason and it is extremely
efficient in dealing with small missing patches, as seen in Figure 3-30. The
segmentation and cohesion tests are not affected by a few missing pixels

within a window.
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Figure 3-30: Example of the Canny algorithm being strongly impacted by
missing data. A synthetic image of a front is created and 1000 pixel values are
removed at random locations before the detection techniques are applied. The
detected fronts by the Cayula (top) and the Canny (bottom) algorithms are
shown as a black line. On the top panel, the Cayula algorithm is able to detect
the front along its whole length despite the missing values in the input data
(shown as white pixels). In contrast, the Canny algorithm is only able to detect
very small portions of the front due to the missing pixels.
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3.5.3.5 Detection of fronts on images projected on a cylindrical

projection

Global SST products are usually provided on a cylindrical geographical
projection. This means that a square image pixel is shorter in kilometres from
east to west than north to south. It gets shorter as one gets closer to the pole,
whereas the north-south size of a pixel remains uniform with latitude. One

needs to ensure that this does not introduce biases in the detected fronts.
The Canny algorithm can deal with it by

a) Applying a meridionally varying smoothing filter size, so that it
always remains the same size in kilometres in the North-South and

East-West directions, whatever the latitude.

b) Accounting for the varying pixel size in kilometres when calculating

the gradient.

These two steps ensure that no bias is introduced by the cylindrical projection

in the detected fronts.

The Cayula algorithm needs to project the data on a latitude-dependent
sinusoidal projection so that it can be applied on an image whose pixels are
square in kilometres. This step is complex because the sinusoidal projection is
only valid locally. This means that a global scene cannot be processed in one
go; it needs first to be decomposed into local regions where the data are re-
interpolated on an equal-area grid. The fronts are then detected on each region
and care must be taken to ensure that the fronts laying at the intersection of
two regions are linked properly on both sides. The Cayula method is much

more complex to properly implement on a global scene.

3.5.3.6 Robustness to arbitrary parameters

One ambition of this chapter is to characterize the front techniques and adapt
them so that they can be used in a way that carries a dynamical meaning. Its
strategy is to shed light on the “black box” aspects of the algorithms by
describing the relationship between the inputs (front and image properties)

and the outputs (detected front length and strength). For this, the effect of
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each parameter of the algorithms must be understood. The parameters that
have a significant impact on the result should have their effect characterized
so that it can be avoided, corrected or accounted for in the physical
interpretation. If a parameter is shown to have no impact on the result, it may

be chosen in a subjective manner.

An important parameter is the resolution of the grid onto which the image is
projected. Of course, the higher the resolution, the smaller the scale
potentially resolved on the image. However, the choice of the resolution is a
subjective one, and different resolutions can also show exactly the same thing.
In this case, a front detection algorithm should return the same results when
fed with one resolution or the other. The Canny algorithm is able to do so, and
it is not affected by the input data resolution at all. Obviously, this is true as
long as the frontal structures are not at a length scale smaller than or

comparable to the resolution of the image.

For the Cayula algorithm, this is not the case. It was shown that the choice of
the size of the window is instrumental in deciding the scales of the detected
fronts. WS (the window size) is parameterised in pixels, but its physical value
is in kilometres. It is very important to keep WS constant in kilometres on the
ground across the image, between images and between products. If two SST
products are provided with different resolutions, then the size of WS in pixels
should be adapted so that WS stays constant in kilometres. This is needed in
order to compare with consistency the detected fronts on the two products.
However, this impacts the behaviour of the Cayula algorithm as shown in
Figure 3-31. The Cayula algorithm was presented with strictly the same scene,
at three different resolutions, and applied with a constant WS in kilometres. No
spatial filtering was applied prior to frontal detection. The results were
different depending on the input resolution, even for a noise-free scene. This is
due to the cohesion test, which is less likely to succeed when presented with a
small number of pixels. In the case of the scene at 0.2° resolution, the WS is
180 km and 8 pixels. The exact same scene at 0.1° resolution, with a WS of
180 km and 16 pixels is considered compact. This means that it is important
to apply the Cayula algorithm on scenes of equal resolution when comparing
detected fronts of different SST products. For the characterization of the
Cayula algorithm described above to be valid, WS should be 32 by 32 pixels. If

one wishes to apply the Cayula method on various scales, it is recommended
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to resample the input data so that WS can be user-defined in kilometres and

remain 32 pixels wide.

prebability that the SST scene is segmented | AT=0.5 K| V35T 0,05 K.km : | incl=45"
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Figure 3-31: Comparison of the performances of the Cayula algorithm when
dealing with the same scene, but input at different resolutions. An initial scene
is produced at 0.2° resolution, and resampled to 0.1° and 0.05° by nearest
neighbour interpolation. 0.2°corresponds to resampling 1, 0.1° to resampling
0.5 and 0.05° to resampling 0.25. The window size is kept constant to 180 km
and is adapted in pixel number. The top panel is the probability that the SST
scene is segmented and the bottom panel shows the probability that the SST
scene is coherent. The studied front is defined by a temperature step of 0.5 K,
a temperature gradient of 0.05 K/km and an inclination of 45° over the image.
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There is one more parameter used in the Cayula algorithm, but not by Canny,
the effect of which must be characterized. This is the origin of the grid that
decomposes the SST scene into windows. Its origin is purely subjective but it
could have an influence on the result. Usually this grid starts at the first row
and first column of the SST image and is constructed from there following a
step equal to the window size. Tests were run on real regional SST scenes on
which fronts were detected by the Cayula algorithm but with decomposition
grids slightly shifted from each other. Fronts were detected at slightly different
places, but the frontal indexes (FLI and FTDI) were only modified by less than
0.5%. This is in fact natural because the window grid is composed of two
overlapping grids. As a consequence, fronts are spatially well covered by
overlapping windows and a window that does not see a front after the shift of
the grid origin is likely to be compensated by one of the windows that are
overlapping and seeing the involved region. The Cayula algorithm is hence

robust to the origin of the decomposition grid.

3.5.3.7 Computational efficiency

The Canny method is much more efficient in term of computational efficiency.
It was possible to implement it by making use of compiled Matlab libraries that
need to be called in a specific way in order to be geophysically meaningful.
The smoothing filter and gradient computation can also be optimized with
Matlab built-in functions. The step that requires the most processing time is
the linking of the potential frontal pixels. This step is long because it is
incremental, pixel by pixel and front by front until all the pixels are linked to

each other.

This step of frontal construction from potential frontal pixels is also necessary
in the Cayula method. The latter algorithm is also very demanding in its
previous stages. The detection of potential frontal pixels by the statistical tests
at the window level is very incremental. For each window, the segmentation is
tested by running a statistical test at a series of increasing temperatures. The
temperature that divides the window in two populations in the clearest way is
potentially retained. This processing cannot be optimized and had to be coded

in Matlab with the use of many loops. The Cayula detection method is
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therefore not as optimized as the Canny and demands more computation

power.

3.6 Algorithm selection in relation to ocean dynamics

objectives

To build frontal indexes that have a dynamical meaning, it is important to use
a method that is well understood and that returns measurements that are
related to ocean dynamics. It was shown that the Canny algorithm is much
more accurate for detecting the right amount of fronts. It is also more
consistent against noise since its behaviour is not as dependent on the noise
of the input data as compared to the Cayula. However, it should also be
recognised that Cayula does allow the detection of weaker fronts than Canny,

which may be an important criterion for other studies.

It was also shown that the Canny algorithm is more mathematically precise.
One can say that the fronts that the Canny algorithm returns are the locations
where the SST gradient magnitude is higher than a user-defined threshold. In
contrast, the frontal temperature difference index (FTDI) returned by the
Cayula method is linked to the gradient at the front in a slightly uncertain way

because it depends on the width of the front

Moreover, the first chapter shows that if surface density gradients can be
estimated from satellite SST fields they may be used to parameterize
dynamical processes occurring at fronts. Retrieval of density gradients implies
that reliable estimates of frontal temperature gradient are required rather than
simply whether or not a front is present. For this reason the precision and
robustness of the Canny algorithm, as explored and discussed in this chapter,
makes it the preferred frontal analysis method, provided the image noise level

and the amount of unbroken coverage allows its use.
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4. Chapter 4: SST datasets for front detection

The broad objective of this thesis, as discussed in chapter 1, is to explore the
knowledge of ocean dynamics that can be derived from observations of sea
surface temperature fields. Having considered methods for detecting fronts on
satellite SST images, our attention turns now to review and assess the various
SST products available today, and to analyse their capacity for resolving frontal
features. The underlying objective is to develop a more informed
understanding of the types of useable ocean information that can be obtained
when the various frontal detection methods explored and developed in chapter
3 are applied to the different classes of observed SST datasets to be discussed

in this chapter.

SST datasets have a wide span of applications which range from Numerical
Weather Prediction (NWP) (Chelton & Wentz 2005) to the estimation of flux of
heat, momentum and gases between the ocean and the atmosphere. SST is
also an essential climate variable because its absolute time series can reveal
the role of the ocean in short and long term climate variability (Reynolds et al.
2002). Different applications imply different requirements on the SST datasets.
For instance, the NWPs need a mesoscale temperature field with no missing
data, whereas the priority of the climate time-series inputs is the absolute
accuracy and the availability of well-defined error estimates associated to each
measurement. In the context of front detection, the requirement on SST inputs
is not so much on absolute accuracy but on the ability to resolve gradients of
all scales. The ideal SST dataset for front detection hence should be able to
resolve small scale and large scale gradients. It was shown in chapter 3 that a
low level of noise is also critical for the precise detection of small scale
features which are often associated with a weak signal. This ideal dataset
should also resolve high time frequencies by being produced on a daily basis.
In order to build meaningful statistics of temperature fronts and their
associated dynamics, it is important that the SST dataset offers a good spatial
coverage. The temporal coverage of as many years as possible is also
desirable since this allows conclusions to be drawn about climatic scales.

Finally, to be consistent with the objectives of this thesis, the SST products
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from which fronts are to be extracted should broadly reflect the temperature
of the mixed layer rather than the atmosphere temperature and the ocean skin

temperature dynamics.

4.1 Introduction to the SST products

4.1.1 Level-2 SST

In order to detect fronts over a certain region at a certain time, the best one
can hope for is a clear-sky high-resolution infrared SST image. This scene is
ideally acquired by a very accurate satellite infrared radiometer such as AATSR.
The AATSR (Advanced Along-Track Scanning Radiometer) is the last of the
ATSR class of sensors flown on near-polar orbits by ESA. ATSR, ATSR-2 and
AATSR were flown respectively on ERS-1 (1991-1996), ERS-2 (1995-2008) and
Envisat (2002-2012). These sensors operate in the infrared and scan conically,
making two independent observations of each part of the sea surface within
the narrow swath, through different atmospheric path lengths. For each pixel
viewed at night, 6 independent measurements of brightness temperature are
made with the double-view, and with two spectral windows within the 10.0-
12.5 ym atmospheric window plus another centred on 3.7 ym. During the day,
the 3.7 um channel cannot be used so 4 independent measurements are made
over each pixel. The extra channels from the dual view yield additional
information about atmospheric transmission effects leading to an improved
atmospheric correction procedure. This allows the ATSR sensors to be robust
to the effect of water vapour and atmospheric aerosols (Robinson et al. 2012).
These sensors were designed to provide SST observations to the levels of
accuracy (close to 0.3 K), coverage and stability required for climate research.
On top of this positive attributes, AATSR offers the finest satellite SST
resolution of 1 km at nadir. AATSR’s major weakness is however its narrow
swath width of 512 km which limits its coverage. AATSR suffers from a
minimum 3 days revisit time at the Equator, which is typically increased by the
cloud contamination inherent to infrared acquisitions. ESA is developing a
follow-up instrument with a somewhat wider swath called the Sea and Land

Surface Temperature Radiometer (SLSTR) as part of the European Global
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Monitoring for Environment and Security (GMES or Copernicus) initiative. SLSTR
will fly aboard the first GMES satellite expected in 2014 (Aguirre et al. 2009)
and will continue the dual view capability which has given the ATSR class of

sensors their improved capacity for atmospheric correction.

The Advanced Very High Resolution Radiometer (AVHRR) is another class of
SST sensors that follows a meteorological mission, with a lower absolute
accuracy but a higher coverage. AVHRR is a National Oceanographic and
Atmospheric Administration (NOAA) instrument. It is a six channel scanning
radiometer with three channels in the visible/near infrared region and three
thermal infrared channels. NOAA has maintained two polar orbiting satellites
in complementary near polar orbits since 1983 (with morning and afternoon
Equator crossing times) providing day and night global coverage by each
satellite. The instrument swath width is approximately 2500 km and the
Instantaneous Field Of View (IFOV) at nadir is 1.1 km (Donlon et al. 2012). The
AVHRR instrument also flies on the MetOp series of satellites that are part of
the EUMETSAT Polar System. See Goodwin et al. (2000) for a complete

description of the instrument.

Infrared SST is also acquired by geostationary missions such as Meteosat
Second Generation (MSG) and Geostastionary Operational Environment
Satellites (GOES). The Spinning Enhanced Visible and Infrared Radiometer
(SEVIRI) is the imaging radiometer that operates on the Meteosat 8 (MSG-1)
located at 3.8°W. SEVIRI uses 11 and 12 pm channels for SST retrieval with an
IFOV of about 3 km at nadir (Aminou 2002). Full disk images are acquired
every 15 minutes. The United-States operate several GOES that monitor North-
America and the Pacific Ocean. These satellites are equipped with a thermal
imager that has 3 channels for SST: 3.9, 11, and 12 um. Its spatial resolution at

nadir is 4 km.

Whereas infrared SST instruments are hindered by the presence of clouds,
passive satellite microwave radiometry is achievable in all weather conditions
except heavy rainfall. The brightness temperature measured at 6-10 GHz
depends primarily on the SST and surface roughness of the ocean. The
roughness effect is largely removed from the measured signal using
information in both the horizontally and vertically polarized channels

providing a unique relation between the measured brightness temperature and
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SST. At 6-10 GHz microwave radiation penetrates clouds with little attenuation
and is insensitive to atmospheric water vapour and aerosols (Donlon et al.
2012). The Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI)
is a NASA and JAXA joint mission. It was launched in November 1997 and is
still operating today. It measures SST with the 10.7 GHz frequency, providing
25 km gridded data based on an oversampled IFOV of about 55 km. TMI is on
a circular low earth orbit with a coverage between 40°S and 40°N. TMI SST
retrievals are sometimes of poor quality close at the northern and southern
limits of its coverage because the sensitivity of the channel 10.7 GHz to SST is
lost for SST below 12 "C. TMI suffers from side-lobe contamination when
islands or coastline reach into the antenna footprint and during rainfall events.
Data within 100 km of land and during rainfall are removed from the measured
record (Donlon et al. 2012). NASA’s Earth Observing System (EOS) Aqua
mission was launched in May 2002 and carries the Advanced Microwave
Scanning Radiometer for EOS (AMSRE) provided by JAXA. AMSRE extends
passive microwave SST capability into high latitudes using a 6.9 GHz channel.
Its very large swath width (1445 km) ensures a near global daily coverage at
25 km grid resolution (based on an oversampled IFOV of about 76 km). As for
TMI, side-lobe contamination is a problem for AMSRE SST retrievals in coastal
areas and regions less than 100 km from shore are excluded (Donlon et al.
2012). AMSR ceased to function on October 2011 due to a faulty mechanism

on its rotating antenna.
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Figure 4-1: Typical example of the daily coverage of SST from six different SST
data products, at different spatial resolutions, all from the same day. From
Robinson et al. (2012).

Figure 4-1 presents the typical daily coverage of some of the above-mentioned
satellite SST sensors. It highlights how infrared measurements are impaired by
clouds. Geostationary infrared instruments can offer an increased coverage
because they observe the same area every 30 minutes and the chances to see
a cloud-free pixel at least once in the day are higher. On the other hand they
offer a lower spatial resolution and are limited to a fixed region, visible by the
satellite in its geostationary orbit. It is worth stressing that AATSR suffers
from both a cloud contamination and a narrow swath and offers a very limited

coverage each day.

To detect fronts on AATSR data, a solution could be to construct a level-3
AATSR product. This consists of a time-composite of AATSR data created by

averaging acquisitions made on several consecutive days or weeks. The
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rational is to increase the spatial coverage by reducing the temporal
resolution. Missing cloudy data and the long revisit time of AATSR can be
balanced by the averaging over a longer time period, for instance 10 days or a
month. While this strategy improves the spatial coverage, it compromises the
accuracy and spatial coherence of the scene. Indeed, the association of non-
syhoptic patches in a mosaic of SST scenes from different days representing a
dynamic region in different states leads to spatially inconsistent SST images. If
the SST samples are averaged rather than mosaicked the risk is to oversample
a dynamic region which results in fuzziness and smoothing of the fine
features. This is due to the fact that high frequencies in space and time are
linked, so a low-pass filter in time results in a low-pass filter in space as well.
The trade-off between the coverage and the accuracy is a difficult one in this
case because some regions in the Tropics and at mid-latitudes suffer from a
seasonal cloud coverage, and very few infrared measurements are available

during the cloud season.

Figure 4-2 shows the averaged percentage of coverage one can hope for with
3-day Level-3 composites of AMSRE and AVHRR. AMSRE composite covers
nearly the whole oceans, to the exception of the regions close to shore and
tropical regions that suffer from persistent rainfalls. The figure also shows that
a 3-day composite is far from being sufficient to achieve a global AVHRR
coverage, because of persistent cloud coverage in the Tropics and at mid-
latitudes. Reynolds et al. (2007) partitioned the oceans in 1/4° grid boxes and
measured the proportion of the boxes with at least one acquisition of AMSRE
and AVHRR independently. They show that the average day and night
operational AVHRR coverage is 8%, while it is 40% and 46% for AMSRE day and
night measurements respectively. If day and night are combined, the
operational AVHRR and AMSRE coverage increases to 16% and 86%

respectively.

The inability of infrared satellite measurements to penetrate clouds severely
limits their temporal and spatial continuity and the study of important
mesoscale dynamics. On top of this, cloudy regions are often associated with
strong ocean frontal boundaries and substantially enhanced cloud presence
probabilities are found on the downwind side of Gulf Stream warm core rings

(Park et al. 2006). Enhanced convection and clouds are often found at
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mesoscale frontal boundaries which limit infrared sensors’ ability to sample
fronts. Clouds may also be overestimated and falsely detected above SST
fronts because some cloud filters are based on a threshold for SST gradient.
Figure 4-3 illustrates this issue, while AATSR is able to resolve very fine scale
temperature features, some fronts are hidden by thin clouds possibly due to
erroneous cloud flagging. In contrast, Figure 4-4 shows the microwave
acquisition over the same day and same region by AMSR-E. It is striking how
much information is lost when sampling the SST at 0.25° resolution. In
addition, one can also notice that a lot of information is lost within 100 km of

the coast.
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Figure 4-2: Percent coverage of SST measurements from (top) the AMSRE and
(bottom) the AVHRR in 3-day composite average maps during the 12-month
period Oct 2002 through Sep 2003. From Chelton and Wentz (2005).
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Figure 4-3: Example of an AATSR swath SST plotted at full resolution (1 km)
off the coast of Lybia on 01 January 2010.
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Figure 4-4: AMSR-E SST plotted at 0.25° resolution off the coast of Lybia on 01
January 2010.
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4.1.2 Level-4 SST

In 2000 the Global Ocean Data Assimilation Experiment (GODAE) recognized
that no SST measurements available at that time could meet the stringent
accuracy, timeliness and spatial-temporal coverage criteria required for
operational ocean prediction (Smith & Koblinsky 2001). The GODAE High-
Resolution SST Pilot Project (GHRSST-PP) was initiated to address this need and
has been superseded by the Group for High Resolution SST (Donlon et al.
2007). GHRSST achievements are the development and coordination of a
highly successful framework in which satellite SST measurements are
exchanged in a common format with uncertainty estimates and supporting
ancillary fields used to control the quality of the data (Donlon et al. 2002).
GHRSST now presents the user community with an unprecedented choice of
SST products from a wide variety of complementary sensors. GHRSST products
are delivered in an operational near-real time (NRT) context, in a common
format for all data sets, which greatly facilitates their exploitation by the users
(Donlon et al. 2012). For instance, all the Level-2 SST products mentioned in
the previous section are distributed on FTP servers. Any user is now able to
download the archive or the NRT SST products from the wide range of
international agencies producing them, in L2P format. This common format

consists in NetCDF files with the same fields for each product.

On top of this, GHRSST coordinated the development, creation and
dissemination of Level-4 SST products, also called SST analysis products. These
are multi-sensor gap-free SST products that result from the combination of
measurements from a variety of instruments and some level of interpolation in
space and time to fill in the gaps. SST analyses are designed to produce the
best estimates of SST for a given time and location, over a regular grid based
on irregularly gridded sparse measurement data sets. GHRSST SST analyses are
derived from statistical methods rather than the assimilation of SST
measurements into a numerical ocean model. The analysis products are based
on Optimum Interpolation (Ol) techniques, which were initially developed for
meteorology in the 1960s. The Ol was introduced in the SST context by
Reynolds and Smith (1994) who produced analysis products based on AVHRR
and in-situ data from ships and buoys. The analyses are performed weekly on

a 1° spatial grid from November 1981 to present by Ol with a separate step to
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correct any large-scale satellite biases relative to the in-situ data. At the time
this technique was developed, only AVHRR was available, thus the spatial
scales of the Ol were designed conservatively. However, since the late 1990s,
more satellite SST datasets have become available and this has allowed the

development of analysis products with improved spatial and temporal scales.

GHRSST Level-4 SST products exploit the complementary nature of the
different Level-2 SST datasets, and combine them in a way that offsets the
strengths and weaknesses of each system against the others to produce a
more complete, frequent and accurate SST analysis. The strategy is to take
advantage of both the spatial and radiometric accuracy of infrared radiometers
and the spatial and temporal coverage of the microwave sensors in the same
product. The Ol is fed by a selection of SST data from near-polar or
geostationary satellites together with in-situ measurements. It is designed to
calculate the best estimate of SST over regions that are sampled by several
instruments, based on quality information associated to each measurement or
on a pre-defined priority order of the input data sets. In this way, where high
spatial resolution high accuracy infrared measurements in cloud-free
conditions are available, the output Level-4 SST can reflect the observed
infrared fine features. Where the cloud cover dominates, the available
microwave measurements at a coarser resolution govern the output of the SST
analysis. Regions where no satellite measurement is available for the given day
are filled by spatial interpolation if measurements are present close enough or
by temporal interpolation if data are available from not too long ago during
the previous days at the same location. In the case that no observation has
been available for some time, the analysis decays back to a climatological

mean reference field after a certain period defined by the analysis design.

GHRSST Level-4 SST products are being produced by a variety of organizations
in multiple ways. The details of the design of each analysis vary as a function
of their objectives. Analyses designed for the exploration of SST anomaly on
climatic scales require as input excellent absolute accuracy satellite SST data
sets, most probably from well calibrated and bias-corrected infrared
radiometers. Conversely, analyses used as boundary layer in NWP require the
best coverage achievable, hence need as input as many Level-2 SST products
as possible. In the first example, little or no interpolation is acceptable, as

climate analysis is based on measured samples only. In the second example, a
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gap-free image is needed every day, for the NWP model to function. In this
case it is better to interpolate in space and time, or even to relax gradually to a

climatology.

The design of an analysis involves a series of choices that are driven by the
priorities assigned to it. The first choice is whether the analysis is covering the
whole globe or just a region of interest. Another important choice is which SST
data should be used in the analysis procedure and this decision constrains the
achievable temporal coverage of the analysis data set. Then choices have to be
made on the spatial grid spacing and the update frequency. The GHRSST Level-
4 SST analyses are produced daily, at a resolution of 1/20° or coarser (6 km at
the Equator) for the global products and 1 km for the regional ones. The bias
correction scheme varies among the various products, and so do other
analysis parameters such as the temporal and spatial error correlation scales.
The speed at which an analysis should relax to a climatology when no data are
available is also an important decision. Reynolds and Chelton (2010) show that
these and other choices that must be considered in the design of an analysis

procedure may lead to very different results.

The main motivation behind the development of analysis products is the
improved coverage achieved by combining several SST Level-2 data sets. Many
analyses use as many input files as possible to obtain the most accurate
product at a given time (Kawai et al. 2006). However, this choice complicates
the analysis procedure as the integrated SST system is very dynamic. Each
system is prone to errors that vary across time and space. Infrared satellite
data suffer from poor cloud clearing which is the biggest source of error in
most infrared satellite SST retrievals, poor pre-launch characterization, sensor
degradation and failure of SST retrieval algorithms under anomalous
atmospheric conditions, aerosol contamination following a major volcanic
eruption, or seasonal aerosol events such as the Saharan aerosol plumes. In
the case of microwave sensors, errors are caused by poor rain flagging,
ambiguity in surface emissivity due to incomplete knowledge of the surface
wind vector, radio frequency interferences and side lobe contamination. On
top of these error sources, all satellite measurements are subject to unforeseen
problems related to instrument anomalies, spacecraft manoeuvres and
spacecraft operations. In-situ SST data are affected by measurement sensor

drift over time, poor pre-deployment characterization and calibration, physical
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damage at sea and biological obstruction by birds and algae. Ship observations
are subject to sensor warming due to poor sensor installation and lack of
metadata describing the depth of observation (Donlon et al. 2012). As a
consequence, all measurements suffer from random errors and systematic

biases.

The Ol is able to cope with the random errors in an efficient way. Indeed, a
common technique is to weight the inputs with the known errors that
characterize them, so that the measurements in which one has more
confidence in are more influential in the estimation of the SST. Also, the errors
from the various sources are often independent, so the weighted mean
achieves a lower error than the input errors. However, the Ol is unable to deal
with the global and regional systematic biases of the input data. The blending
of several SST datasets with non-uniform and different systematic bias can
lead to spatial patchiness at the frontier of the input products on the analysis
SST. This spatial patchiness is illustrated in Figure 4-5 which shows the
consequence of the discrepancies in the SST biases in the resulting analysis
output. It is important to point out that this spatial patchiness is an artefact
that has severe consequences on the analysis SST gradient. Even small jumps
in SST can create unwanted strong gradients because they occur over short
distances. This effect would significantly depreciate the ability of Level-4 SST
products to resolve fronts accurately if it is not corrected. Fortunately, the
GHRSST analysis procedures include bias adjustment schemes. Before being
fed to the Ol, the input Level-2 SST images are automatically adjusted for
systematic errors. This is done by comparing each of them to a common
reference dataset, which can be in-situ measurements or a Level-2 product.
AATSR is useful for this task because it is designed to minimize bias and
sensitivity to atmospheric aerosols (Merchant & Harris 1999, Merchant et al.
1999). The reader is invited to refer to Leborgne et al. (2012) for a discussion

on the optimization of the multi-sensor bias correction.
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s

Figure 4-5: Results of collating SST data (scale units are °C) with the ODYSSEA
analysis, (a) when no bias correction is applied (upper panel) and (b) when bias
correction to AATSR as a reference standard is applied over a 5-day window
(lower panel). From Robinson et al. (2012).

Merging several SST Level-2 data sets in the same product is challenging
because the satellite sensors do not all measure the same parameters. Sea
Surface Temperature is a general concept, and its definition depends on what
one actually means by “Surface”. The top few meters of the ocean surface do
not have a vertically uniform temperature. In low wind conditions solar
radiation tends to heat the top few meters of the sea during the day, but this
stratification disappears at night as the surface loses heat, promoting
gravitationally driven vertical mixing. This phenomenon is called diurnal
warming. There is also a thin surface layer of water a few tens of microns thick
that is cooler than the water beneath (Robinson & Donlon 2003). GHRSST

130



SST datasets for front detection

introduced definitions for the different measurements achieved by the SST

sensors:

e The skin SST: the temperature in the upper 10 um of the surface water

as measured by the infrared radiometers.

e The sub-skin SST: the average temperature across a depth of a few mm

as measured by microwave radiometers.

e The foundation SST: the temperature at the base of the diurnal

thermocline, free of diurnal variability, if present (Donlon et al. 2007).

At dawn, if the diurnal thermocline from the previous day has collapsed during
the night, the foundation SST is the same as the sub-skin SST. The GHRSST
Level-4 analysis SST product approach is to deliver the estimation of the
foundation SST. The Level-2 input SST images need to be “converted” to
foundation SST before their ingestion in the Ol. Since models of diurnal
variability are still uncertain (Merchant et al. 2008), ancillary data are used to
flag and then reject SST data with a high probability of being affected by the
diurnal thermocline. In effect, this concerns daytime low wind situations.
Additionally, a simple correction of the cool skin effect is applied on infrared
data, this is done by adding 0.17 K to the SST measurements with a wind
speed above 6 m/s (Donlon et al. 2002). This approach is well suited to the
exploration of dynamics at fronts since the foundation SST broadly
corresponds to the temperature of the ocean’s upper mixed layer (Robinson

et al. 2012). It is important to base the physical analysis on the temperature of
the mixed layer because it is closely linked to the dynamics we are interested
in. Diurnal variations in the top few millimetres are mostly controlled by solar
heating and changes in the wind stress, and have little impact in the vertical
circulation events. In the context of this thesis, diurnal variability of the

surface temperature is an artefact that should be avoided.

Another attribute of the GHRSST products that makes them very useful for
frontal detection is the fact that each analysis value should be accompanied by
an uncertainty estimate. The uncertainty estimate is calculated with different
techniques in the different products. These techniques are complex and allow
the uncertainty estimate to reflect both the uncertainties in the input Level-2
data and the amount of interpolation involved at each grid point. Grid points
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where reliable data were averaged and little interpolation was necessary to
obtain a value are given low uncertainty estimates. Users of a Level-4 product
are free to decide which quality threshold is needed for their study, and this

results from a trade-off between the coverage and the confidence in the data.

Table 4-1 summarizes the Level-4 and Level-3 products mentioned in this
thesis. Additional multi-sensor SST products are listed on

http://www.nodc.noaa.gov/SatelliteData/ghrsst/accessdata.html and

https://www.ghrsst.org/data/data-descriptions/

The attributes of different L4 SST products, and particularly how these may
impact on the detection of fronts, are discussed individually in the following

subsections.
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Product Instruments Data Source Spatial Temporal Coverage Time Series Parameter
Agency res. res.
Level 4
OSTIA AVHRR, AMSRE, UK Met Office 6 km daily global April 2006 - SST foundation
TMI, AATSR, present
SEVIRI, in situ
OSTIA AVHRR, ATSR, UK Met Office 6 km daily global 1985 - 2007 SST foundation
reanalysis AATSR

ODYSSEA  AVHRR, AMSRE, CNES / Ifremer 12 km daily global October 2007 —  SST foundation

TMI, AATSR, December 2009
SEVIRI, GOES
REMSS_MW  AMSRE, TMI, Remote Sensing 25 km daily global June 2002 - daily minimum
WindSAT Systems present SST

REMSS_MW_IR TMI, AMSR-E, Remote Sensing 9 km daily global 2006 - present  daily minimum

WindSAT, Systems SST
MODIS
AVHRR- only AVHRR NCDC 25 km daily global 1981 — present SST
AMSR+ AMSR, AVHRR NCDC 25 km daily global June 2002 - SST
AVHRR present
Level 3

ODYSSEA  AVHRR, AMSRE, CNES / Ifremer 12 km daily global October 2007 — SST foundation
TMI, AATSR, December 2009
SEVIRI, GOES

Table 4-1: summary of the GHRSST Level-4 and Level-3 products mentioned in
this thesis.

4.1.2.1 The Operational Sea Surface Temperature and Sea lce Analysis
(OSTIA)

OSTIA is a GHRSST Level-4 analysis produced by the Met Office as part of the
GMES MyOcean project. It is produced operationally, daily, on a global 1/20°
grid, using in-situ, AVHRR, AMSR, TMI, AATSR and SEVIRI data. The analysis is
run with data from a 36-h period, using two error correlation scales, 10 km
and 100 km, which vary depending on the region. All satellite data are
adjusted for bias errors in comparison with a “background SST estimate” based
on a combination of AATSR data and in-situ measurements from drifting

buoys. Data are filtered, based on surface wind speed data, to remove diurnal
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variability and AATSR data are adjusted to represent the SST at the same depth
as drifting buoy measurements (0.2 to 1 m). OSTIA is designed for ocean
prediction and NWP, it is used operationally as a boundary condition for all
weather forecast models at the Met Office and European Centre for Medium-
range Weather Forecasting (ECMWF). OSTIA was shown to have a zero bias and
an accuracy of ~0.57 K when compared to in-situ measurements. It positively
impacts the accuracy of the Met Office NWP model (Donlon et al. 2012). In
addition, an OSTIA re-analysis was produced by the Met-Office that uses the
same procedure as operational OSTIA. It is based on Pathfinder from 1981 and
reprocessed (A)ATSR data from 1991, bias corrected and quality controlled in-
situ data. The OSTIA reanalysis is based on fewer input products than
operational OSTIA but offers a long and consistent long time series of more
than 20 years that allows the exploration of seasonal and decadal variability.
This dataset provides the input for the study of climatological variability of

fronts presented in chapter 6.

4.1.2.2 The Ocean Data Analysis System for MERSEA (ODYSSEA) analysis

ODYSSEA is another real-time global analysis developed within the Marine
Environment and Security for the European Area (MERSEA) project within
IFREMER (Autret & Piollé 2007). It merges AVHRR, AMSR, TMI, AATSR, GOES
and SEVIRI data into a daily 1/10° grid. All the Level-2 data sets are inter-
calibrated by the correction of the large-scale daily bias between themselves
and the AATSR dataset used as reference. The analysis procedure of ODYSSEA
is different from that of OSTIA. One important difference is the creation of the
intermediate multi-sensor composite product. Each day, a global multi-sensor
gridded product is computed by mosaicking data from inter-calibrated single-
sensor composite products. Each pixel of the multi-sensor product is filled
with the best SST measurement available on its location in a 3 days window
centred on the estimation time of the analysis. The best observation is
selected depending on the acquisition time (data closer to the centre time are
given higher priority), the SST retrieval conditions such as SST range, wind,
aerosols, sea ice, cloud proximity. The choice of the best measurement is also
based on a classification of the respective sensor errors under each class of

these criteria. Typically, a clear-sky night-time AATSR measurement obtained
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during the right day will always be selected. Microwave data are used to fill in
the gaps where persistent cloud coverage has prevented infrared
measurements or where the infrared measurements are suspected to be
contaminated by atmospheric artefacts. The multi-sensor composite product is
produced at the same resolution as the analysis Level-4 output, i.e. 1/10°. It
suffers from gaps but is only filled with real observations. It is named a Level-3
SST product and constitutes both an intermediate product for the ODYSSEA
Level-4 analysis and an output product of the ODYSSEA processing chain. The
last step of the ODYSSEA analysis processing chain is the estimation of the
Level-4 SST output by Ol, from the Level-3 SST and previous days of Level-4
SST. The covariance of the field is specified by a structure function modelled
by the sum of two Gaussian functions each associated with specific time and
space scales. The spatial length scales are isotropic and taken to 80 km and
the Rossby radius (bounded by 20 km and 80 km) for the two functions
respectively. The time length scales are set to 2 days and 1 day respectively,
with a relaxation on the Pathfinder Version 5 climatology when no data are
available at all. The ODYSSEA returns the foundation SST. It also runs
regionally on a 1 km resolution for the Mediterranean Sea, the North West
European Seas, the Galapagos region, Brazil, South-Africa and Australia. The
regional ODYSSEA data sets are produced and distributed by Ifremer in the
frame of the ESA Medspiration project.

4.1.2.3 The Remote Sensing Systems (RSS or REMSS) Microwave analysis

The REMSS MW analysis is computed daily on a 25 km grid using AMSR and
TMI data. Before the ingestion of the data in the Ol, the TMI’'s emissive Antenna
correction is applied. The diurnal warming is also estimated and removed. All
observations are adjusted to remove any diurnal signal based on the local time
of day and wind speed. Using a diurnal model, all microwave SSTs are
'normalized' to a daily minimum SST, defined to occur at approximately 8 AM,
local time (Gentemann et al. 2003). The measurement bias is corrected using
in-situ data, and the errors associated to the single-sensor acquisitions are
characterized. Then the SST samples are blended together using the Ol scheme
described in Reynolds and Smith (1994). A first-guess field, the previous day's

Ol SST, is employed to calculate data increments, which are all nearby data
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minus the first-guess field. The new SST estimate is formed by a weighted sum
of increments, with the weights calculated by the Ol method, added to the first
guess data. Correlation scales of 4 days and 100 km are used in determining
the weights used in the REMSS methodology. Details on this analysis can be

found at http://www.remss.com/sst/microwave oi sst data description.html.

The particularity of the SST analysis is to be based on microwave
measurements only; hence it is extremely useful for comparison when

discussing the contribution of infrared sensors in global Level-4 SST products.

4.1.2.4 The NOAA’s National Climatic Data Center (NCDC) AVHRR-only
and AMSR+AVHRR analyses

NCDC is producing two daily analyses on a %° grid following the same
procedure, as described by Reynolds et al. (2007). AVHRR-only uses in-situ and
AVHRR data, while AMSR+AVHRR adds AMSR data. Large-scale bias is corrected
using in-situ data from ships and buoys, separately during day-time and night-
time. Then the in-situ and corrected satellite data are fed into an Ol procedure,
which uses error correlation scales that range from 50 to 200 km with smaller
scales at higher latitudes, especially in western boundary current regions, and
larger scales in the tropics. This analysis applies some temporal smoothing by
using 3 consecutive days of data, with the middle day weighted higher than
the other two days. Further smoothing is also caused by the temporal
smoothing of the bias corrections. Additionally, the ship SSTs are corrected
relative to buoy SSTs by subtracting 0.14°C from all ship observations before
they are used to bias correct the satellite data. Thus, all observations are bias
corrected with respect to buoy SSTs and there is no attempt made to adjust to

foundation temperature (Reynolds & Chelton 2010).

4.1.3 Level-3 SST

As mentioned in the previous section, IFREMER produces the ODYSSEA Level-3
multi-sensor SST product daily on a 1/10° grid. This product shares some
advantages with the Level-4 analysis products such as the spatial and temporal

coverage, the bias correction, the adjustment to foundation SST and quality
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estimates associated to each pixel. The high spatial and temporal coverage is
achieved by the blending of AVHRR, AMSR, TMI, AATSR, GOES and SEVIRI data
into a daily 1/10° grid. However the blending procedure is different from those
involved in the production of Level-4 analysis products. In the case of Level-3,
each output pixel comes from a real measurement of a unique instrument
selected for its quality and proximity to the selected date. Because the Level-3
grid resolution is 1/10°, the several infrared independent samples of the
chosen instrument that are made within a Level-3 pixel are averaged. Infrared
Level-2 products are in effect down-sampled to construct Level-3 products.
Level-3 products are produced by mosaicking Level-2 measurements of various
sensors depending on their quality and availability at different places and
times. Absolutely no interpolation is involved in the Level-3 products, each
pixel’s value coming from an actual SST measurement of one of the systems. In
addition, there is no relaxation to a climatology in the case that no information
is available for some time over a region. As a consequence, Level-3 products
are not gap-free and do not cover the whole oceans, even though the high
number of observing systems used in these products ensures a near-total
coverage, especially because they are selected from a 3-days window. Another
difference compared with Level-4 products is that Level-3 products provide the
source SST instrument for each grid pixel and the time the acquisition was
made as auxiliary data (Autret & Piollé 2007). Figure 4-6 presents a day of
global Level-3 ODYSSEA SST, the time of the acquisition and the satellite source

for each pixel.
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Figure 4-6: Example of Level-3 multi-sensor ODYSSEA product for
15/10/2007. Top: foundation SST. Middle: time difference. Bottom: sources of
SST. From Autret and Piollé (2007)
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4.2 Limitations of the Level-4 SST for front detection

4.2.1 General considerations

Level-4 analysis products are an important breakthrough in the field of SST
because they pave the way to smarter and complementary uses of
independent single-sensor Level-2 data sets. Many SST applications were
previously limited by the restricted and intermittent coverage of individual SST
sensors, or by the low resolution and accuracy of microwave ones. These
limitations are tackled by the GHRRST Level-4 analyses. Hence the scientific
potential of individual products is widened by their merging provided it is
done properly. A lot of efforts were put by the GHRSST international science
team in order to overcome challenges inherent to the combination of
independent and irregular SST measurements in a way that minimizes the
errors of the resulting SST field (Le Borgne et al. 2012, Robinson et al. 2012).
Errors of the analysis field originate both from the errors of the input Level-2
data sets and the errors introduced by the analysis procedure. The estimation
of SST from several single-sensor datasets is a very complex problem, and the
GHRSST analyses are imperfect solutions to it. The procedures are statistical
methods but they have to rely on a set of assumptions in order to deal with
excesses and lacks of input data. The excess of data is dealt with by averaging
or selection of data, the lack of data is tackled by interpolation in space and
time that relies on assumptions of oceanic spatial and temporal variability. The
Ol is a complex statistical algorithm that requires a certain number of steps to
converge and find a solution fitting best the possibly contradictive inputs it is
fed with. It is also a very computationally demanding step of the processing
chain, and the number of iterations allowed is generally bounded to limit the
processing time. In some cases this results in a non-converged solution which
can be far from the true SST. This is illustrated by Figure 4-7 which shows a
very rare occurrence of an obvious artefact introduced by a probable faulty
cloud detection in an infrared input of the ODYSSEA chain. This section
explores some issues of the Level-4 analyses that limit their ability to reveal

frontal variability.
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ODYSSEA SST on 01/07/2008
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Figure 4-7: Example of an error in the ODYSSEA output. Note that this error is
a rare occurrence and has been properly tackled by IFREMER.

4.2.2 Level-4 analyses are spatially smoothed

When searching for fronts in the data, the main drawback of Level-4 SST
products is that they do not resolve very small scales. Even when a scene is
spatially resolved by high resolution infrared sensors, the corresponding Level-
4 analysis are much smoother than the Level-2 input images. All the Ol
schemes introduce a level of spatial smoothing which is governed by the
specification of the background error covariances and the correlation length
scales chosen in the analysis design (Donlon et al. 2012). The level of
smoothing varies amongst the various Level-4 SST analyses. It is necessary to
reduce the noise of the output SST image. As was explained in chapter 3,
spatial smoothing reduces spatial noise in the data at the expense of actual
small scale features. The level of smoothing and the resulting minimum
resolved feature resolution that characterize an analysis product depend on
the aims of each analysis and the signal-to-noise ratios (SNR) of the input data.
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An analysis that applies little smoothing benefits from high resolution features
and an increased signal at small-scales, it suffers however from a greater
susceptibility to noise. The analysis procedures apply spatial smoothing to
remove residual error of the bias correction and ensure a smooth transition
between the pixels originating from different data sets. Also the Ol is fed with
SST acquisitions at different times in a day, even though there is a correction
of the diurnal variability achieved through the foundation SST, there is a
residual error to it plus there are other effects than solar warming that can
change the SST at frequencies higher than once per day. These effects include
the tidal advection of strong horizontal temperature gradients. The spatial
smoothing is also intended to minimize these high temporal frequency
variations of SST because they can make non-synoptic measurement spatially
inconsistent. It is important to distinguish between the grid spacing and the
feature resolution of an SST analysis. The grid spacing defines the smallest
possible features that could be resolved in the analysis. It will be shown that
OSTIA’s feature resolution is coarser than the one of OSYSSEA, even though

OSTIA’s grid spacing is twice as fine.

The Ol also introduces smoothing as it interpolates over patches of missing
data. Spatial interpolation is a very simple way to fill a gap in the data while
making little assumption on the estimated field. When a gap in the available
input data is filled by interpolation, a smooth transition is created between
available measurements. This gives a false impression of a region with little
energy at small scales, whereas small-scale variability may have been present
in reality. If one applies a front detection algorithm on a Level-4 SST image
where some spatial interpolation was necessary, no front may be detected
over the interpolated patches when a front may have been present. This effect
would tend to underestimate the presence of fronts if not appropriately dealt
with. Interpolation in time also smoothes the data because high frequencies in
time and space are often linked. Hence the averaging of samples from different
dates over a highly varying scene ends up in a scene on which high spatial
frequencies have been reduced. Following the same principle, SST
climatologies, which are produced by averaging a very large number of
observations, are very flat. Therefore, when the Ol decays back to a
climatology, small scales are absent from the result and the occurrence of

fronts is underestimated.
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Figure 4-8 shows a regional example SST gradient magnitude of 4 different
products: OSTIA, ODYSSEA, ODYSSEA L3 and REMSS MW. Because gradients are
computed from spatial differences, they are useful in showing how well
analyses can resolve strong coherent features such as the Agulhas Retro-
flexion Currents. Figure 4-8 shows that the SST gradient magnitude is the
highest in the Level-3 image because no smoothing was applied to it. Note that
the Level-3 pixels that are associated with microwave measurements are filled
at the original resolution of 25 km (see Figure 4-9) with many pixels in
between being left with missing data. The gradient cannot be calculated over
missing samples therefore the missing regions of Figure 4-9 are expanded in
Figure 4-8 over their neighbouring pixels. This phenomenon also occurs near
land and its intensity increases with the size of the smoothing filter. As
explained in chapter 3, whenever a pixel is missing, all the pixels that require
the missing pixel’s value in order to be smoothed are turned into missing
values in the smoothed scene. The Level-3 image shows the finest details but
suffers from the cloud coverage, microwave values being discarded by the
gradient computation. It is notable also that ODYSSEA seems to resolve finer
features than OSTIA. There also seems to be more energy at small and meso-
scales in the ODYSSEA because the gradient magnitude is larger than OSTIA’s.
Both OSTIA and ODYSSEA resolve finer scale than REMSS MW which is based on
microwave data only. REMSS MW is also unable to resolve SST gradient near

land because microwave side-lobe contamination.

Figure 4-9 presents the fronts detected by the Canny algorithm on the same
SST images. The original SST of the 4 products for which the gradient
magnitude was displayed on Figure 4-8 is plotted on Figure 4-9, with the
detected fronts overlaid. Note that the fronts were detected with a smoothing
running Gaussian filter of 6,=20km. The smoothing filter reduces the small
scales of each product, bringing them closer to each other. Still, more fronts
were detected on ODYSSEA than on OSTIA (FLI is larger) and they were
stronger on ODYSSEA (FGl is larger). A very comparable amount of fronts were
detected on REMSS MW and OSTIA, both in term of length and strength.
However, OSTIA is able to resolve fronts close to land, such as the important
Benguela upwelling front, whereas the microwave SST is unable to do so.

Level-3 ODYSSEA data shows little amount of fronts because of the missing
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pixels over microwave patches that prevent the Canny algorithm from

functioning properly.
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Figure 4-8: SST gradient magnitude of 4 GHRSST products (from top to
bottom): OSTIA Level-4, ODYSSEA Level-4, ODYSSEA Level-3 and REMSS MV
Level-4. The data are taken over the Agulhas region on 12/06/2008. The
gradient is computed with no initial smoothing applied (o,=0 km).
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Figure 4-9: Detected fronts on 4 GHRSST products (from top to bottom) :
OSTIA Level-4, ODYSSEA Level-4, ODYSSEA Level-3 and REMSS MV Level-4. The
data are taken over the Agulhas region on 12/06/2008. The fronts are
detected with the Canny algorithm, with the threshold parameters T1=0.01
K/km and T2=0.02 K/km and the smoothing running Gaussian of ¢,=20 km.

4.2.3 Level-4 analysis smoothing scales vary spatially

Not only do the Level-4 analyses introduce some smoothing in the SST data,

but they do not do so uniformly. The level of smoothing applied by an analysis
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procedure is a complex combination of several factors. One of these factors is
the error correlation scale. It is a parameter of the Ol that controls the size of
the smoothing filter and how far alternative measurements are looked for to
substitute a missing one. The error correlation should be set carefully, if it is
too small, the analysis can be too noisy where there is data and may decay too
quickly to a climatology where there is none. If the error correlation scale is
too large, the small gradients are unnecessary reduced. The error correlation
scale is split into spatial and temporal components. It is involved in the
systematic trade-off between interpolation in space, or in time, or a decay to a
climatology. In some analyses, the three strategies may occur at the same
time, with relative weights that are governed by the Ol parameters and the
quality and coverage of the input data sets. The REMSS MW analysis relies on
isotropic error correlation scales of 100 km and 4 days. Other analyses allow
the error correlation scale to vary with location so that the feature resolution
of the analysis fits the local dominant scale of variability. The rationale of this
approach is to increase the confidence in the results by means of physical
assumptions in the generation of the product. In areas where small scales
dominate, the smoothing and interpolation in space are reduced so that the Ol
result contains more energy at small scales. On the opposite, in areas where
the larger scales dominate, it is possible to search for data a bit further to
improve spatial coverage and diminish noise and yet still be confident about
the result. Where it is assumed that larger scales are dominant, the analysis do
not generate unrealistic small-scale features, even if some are present in the

input data.

The OSTIA analysis is built on two error correlation length scales of 10 km, to
account for mesoscale variability, and of 100 km to capture larger scale
variations introduced by synoptic features in the atmosphere. These scales are
derived from the output of a 3-year integration of the Met Office Forecasting
Ocean Assimilation Model (FOAM, (Bell et al. 2003, Bell et al. 2000) . Spatially
varying error variances derived from the FOAM run and associated with these
scales are input to the analysis procedure and define the effective correlation
scale (Figure 4-10). The effective correlation scale applied in the ODYSSEA
procedure is governed by two isotropic length scales. The first scale is equal
to 80 km. The second is set to Rossby Radius of Deformation, bounded by 20

km and 80 km, calculated on a 1° grid using the 1998 Levitus climatology.
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This scale is presented on Figure 4-11, it is quite different from the one of
OSTIA. The NCDC error correlation scales are not exactly isotropic, as shown
on Figure 4-12. They have been calculated by Reynolds et al. (2007) on AVHRR
and AMSR data sets by spatial lagged correlations following Reynolds and
Smith (1994).

The spatially varying error correlation length scales used in the analysis
procedures limit the spatial consistency of the frontal results that are derived
from them. It was shown in chapter 3 that the frontal detection is strongly
linked to spatial variability. The amount of fronts detected on the SST images
depends on the amount of smoothing that was applied on the image. Spatial
variability of the smoothing filter complicates the spatial comparison of frontal
results. Therefore it is important to know whether a different quantity of
detected fronts in two different locations is due to different local
characteristics or simply different amount of smoothing. The analysis products
that apply spatially variable filters do so with a scientific rational that derives
either from a temporal averaging of observed correlation length scale or from
a temporal averaging of a model output. This approach offers confidence in
the fact that the smoothing is making the output realistic, so the observed
spatial variations of scales are close to the real ocean ones. One can argue that
the methodologies to calculate the scales are prone to errors. The validity of
the OSTIA scale assumption is limited by the precision of the FOAM model,
which is unequal and suffers from the scarcity of FOAM input observations in
some regions. One should therefore account for the uncertainties in the error
correlation assumptions in the interpretation of the front detection results. In
addition, even if these assumptions were completely realistic, they are based
on temporal averages and constrain the presence of small scales in a way that
is constant in time. Hence an actual temporal signal in the amount of small
scale would not propagate fully to the results. The design of these analysis
procedures limits the exploration of such temporal variability in the presence

of small scales, in some regions.
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Synoptic scale (100km) Background Error Std. Dev.

Figure 4-10: OSTIA background error standard deviation for (left) 10 km
mesoscale and (right) 100 km synoptic scale features derived from three years
of daily FOAM ocean model outputs. From Donlon et al. (2012).
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Figure 4-11: ODYSSEA spatial correlation length scale for the mesoscale. From
Autret and Piollé (2007).
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Figure 4-12: NCDC AMSR +AVHRR and AVHRR-only zonal and meridional error
correlation scales. From Reynolds et al. (2007).

The error correlation length scales are described and implemented in different
ways in the Level-4 analyses mentioned in this thesis. Other steps of the
analysis procedures also introduce an unknown quantity of smoothing.
Another way to compare the spatial smoothing applied by each procedure is to
compare directly the autocorrelation length scales of the output images. The
autocorrelation length scale was calculated on one day of OSTIA, ODYSSEA and
REMSS MW. For this, the SST anomaly was computed and a high-pass filter with
a cut-off frequency of 100 km was applied. This filter is critical since
variations in the absolute SST value increases the autocorrelation. The

autocorrelation was processed on a 1° grid. The autocorrelation function was
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processed locally by shifting in every direction the filtered SST anomaly field
and getting the correlation with the non-shifted field. When the shift is zero,
the correlation is equal to one. As the shift increases, the correlation
decreases. The correlation decreases faster when the studied field is varying
quickly in space. The autocorrelation length scale is defined as the distance
over which the autocorrelation drops below 0.5, following Isaaks and
Srivastava (1989). The calculated autocorrelation length scales of the three
analyses mentioned above are shown on Figure 4-13. It shall be stressed that
the measured scales depend on the combination of the real oceanic scales and
of the scale filtering applied by the analyses. In addition, the next section
shows that the scales present on Level-4 SST images is also governed by the
type of SST data used as input. It is still interesting to compare the three maps
on Figure 4-13 because they estimate in different ways the same real scene.
Hence the differences presented on Figure 4-14 depend on the differences in
the analysis procedures only. The autocorrelation length scale on OSTIA vary
from 30 to 80 km, with larger scales on and around the Gulf Stream, the
tropical and equatorial East Pacific and around the Antarctic Circumpolar
Current (ACC). ODYSSEA scales are distributed less evenly than OSTIA’s. They
are large everywhere between the Tropics, as well as on the Gulf Stream, the
Kuroshio Current and the ACC but on narrower regions than on OSTIA. In
contrast, mid- and high-latitude regions are characterized by a very small
autocorrelation length scale of about 30 km. Figure 4-14 shows a clear pattern
in the differences between OSTIA and OSYSSEA scales. The ODYSSEA scales of
Figure 4-13 correspond closely to the theoretical spatial correlation length
scale applied by ODYSSEA and shown on Figure 4-11. The larger scales
observed on the ACC on ODYSSEA relative to its surroundings can be
attributed to the scales of the real surface temperature since the theoretical
ODYSSEA spatial correlation length scale do not vary in the involved region.
The scales displayed on the REMSS MW dataset are assumed to be close to
reality, however they are confined to scales that the microwave resolution can
resolve. The rectification of microwave measurements on an oversampled grid
is not straightforward but it does not result in a spatially varying amount of
smoothing applied. It is striking that the autocorrelation length scale of the
microwave-only product is not significantly larger than that of analyses which
make use of high-resolution infrared data. REMSS MW show larger scales on

the Kuroshio Current, the Gulf Stream and the ACC. However the Tropical
149



Chapter 4

regions are not characterized by larger scales, except on a narrow Equatorial
band in the Pacific. This comparative analysis is based on a single day used as
an example; it is not sufficient to draw general conclusions about the genuine
autocorrelation scales on the ocean. It is however a good illustration of the
different scales produced by the Level-4 SST analyses when estimating the

same scene.
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OSTIA radial correlation length scale (km) on 01/01/2008 - corr<0.5 = high pass filter 100 km
80

60

40
20
0

-150 -100 -50 0 50 100 150

REMSSMW radial correlation length scale (km) on 01/01/2008 - corr<0.5 - high pass filter 100 km
80

V]
40
20

0

Figure 4-13: Radial correlation length scale in km, calculated for
OSTIA/ODYSSEA/REMSS MW on 01/01/2008. The length scale is defined by the
scale at which the autocorrelation drops below 0.5. A high pass filter of 100
km is applied before the autocorrelation is processed.
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Figure 4-14: Ratios of the autocorrelation length scales shown on Figure 4-13.
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4.2.4 Level-4 analysis smoothing scales vary in time

The previous section showed that some Level-4 analyses products are
designed to return SST images whose feature resolution varies in space. When
detecting fronts on these images, this effect should be accounted for in order
not to misinterpret the portion of the spatial variability of fronts which is an
artefact of the analysis procedure. A good understanding of the smoothing
added by the Ol and its variation in space helps to mitigate this limitation. The
problem gets more complicated when the feature resolution varies also in time
over the same location if it is due to processing artefacts rather than a natural
signal. Changes in satellite SST instruments used as input to the analyses over
time can impact the resulting feature resolution. These changes can be due to
a variable cloud coverage which eliminate infrared measurements or rain
events which also contaminate microwave inputs. They can also be the
consequence of adding a newly available satellite instrument or terminating an
old instrument. These changes can lead to artificial abrupt jumps in the
resolution of the analyses (Reynolds et al. 2007). Consider, for example, an
analysis product that blends infrared and microwave data sets. Cloud-free
regions benefit from high-resolution infrared sampling as well as microwave
sampling. If the analysis inherent smoothing is low enough, high-resolution
features are transmitted to the output SST when infrared data are available.
Suppose, now, that on a later day a persistent cloud cover appears on the
same area. In these conditions, the analysis can only estimate the SST from
low resolution microwave data sets. The resulting SST field feature resolution
is bounded by the low resolution of the microwave images used as input. This
example shows that an analysis that blends microwave and infrared data runs
the risk that changes in infrared coverage because of cloud cover or narrow
swath generate apparent temporal inhomogeneity in the small-scale variance.
To explore this effect it is useful to consider analysis products that follow the
same procedure but on different input data sets. Reynolds et al. (2007) discuss
3 products based on the same procedure. NCDC AVHRR that is based on
infrared data only, NCDC AMSR that is based on microwave data only, and
NCDC AMSR&AVHRR that blends infrared and microwave data. To quantify the
cloud cover effect on small scales, the authors define a gradient index on the
Gulf Stream region whose cloud coverage is characterized by a strong seasonal

variability. They found that differences between the gradient index of AMSR
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and AMSR and AVHRR combined Ol are very small. This result can be the
consequence of either the large smoothing and infrared spatial binning
involved in the NCDC procedure or of the limitation of the gradient index as a
small-scale quantification. The gradient index calculated by the authors could
be too coarse to give a larger weight to small scales but it should also be
stressed that a gradient magnitude is not directly proportional to the presence
of small scales. Especially on highly dynamic jets like the Gulf Stream, the
temperature gradient is very large even at scales resolved by the microwave.
Reynolds and Chelton (2010) show by exploring the zonal wavenumber
spectra of the SST of various products at various locations and times that
AMSR data can degrade the combined AMSR and AVHRR resolution in cloud-
free regions. This conclusion seems at first unnatural because, as illustrated in
Table 4-2, the two products both benefit from high-resolution infrared data as
input in clear-sky conditions. Yet, the NCDC Ol is based on averaging available
input data, hence the inclusion of the coarse 50-km resolution AMSR data at a
time of prevalent AVHRR data results in a smoothing of the SST field that
would otherwise be obtained from the 25-km (after spatial binning) AVHRR
data alone. This observation clearly means that the NCDC AMSR&AVHRR
product feature resolution is dependent on the cloud coverage and the
availability of infrared data. This effect is likely to be accentuated in the OSTIA
and ODYSSEA products because they rely on less smoothing and, at least in the
case of OSTIA, make use of infrared data more effectively than NCDC Ol
(Reynolds & Chelton 2010).

Table 4-2 also shows that in case of persistent cloud cover, the NCDC AVHRR
analysis product has no other alternative but to apply spatial and temporal
interpolation, or to decay to a climatology. This can result in the absence of 50
km scales that are resolved by the microwave. Reynolds et al. (2007) establish
that AMSR data significantly improve the resolution of the AMSR&AVHRR
product under cloud-cover conditions when compared with AVHRR-only
analysis. This effect is particularly important over the Gulf Stream region
because of the seasonal cloud cover. The authors found that the gradient
index of AMSR&AVHRR is nearly equivalent in the summer to that of AVHRR-
only but is almost double in winter. This stresses the importance of microwave

data in multi-sensor Level-4 products and raises questions about the
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consequences of the failure of AMSR in October 2011 on the mid and high

latitude winter Level-4 data since then.

NCDC L4 SST Icrll'ic?ritc?lg?grf Micgc;l/\;ave Infrared data
AVHRR X
Clear sky AMSR X
AMSR&AVHRR X X
AVHRR X
Cloud cover AMSR X
AMSR&AVHRR X

Table 4-2: type of SST input data available for the 3 NCDC Level-4 SST
products as a function of the cloud conditions.

4.3 Qualitative comparisons of the gradients

Another way to compare Level-4 SST products is to compare their gradient
magnitude. Gradient magnitude is both a relevant dynamical index as shown
in chapter 2 and a qualitative indicator, although not perfect, of how the small-
scale are resolved by each product. If looking at the gradient of various
products does not allow one to conclude which one is closest to reality, it
nonetheless sheds light on processing artefacts and differences between the
products. Figure 4-15 displays the gradient magnitude calculated on a single
day of OSTIA, ODYSSEA and REMSS MW SST, with no smoothing applied (c=0
km). The SST gradient magnitude reveals a great deal of mesoscale activity on
the ocean surface. In the three products, the gradient resolves the western
boundary currents and the activity in their surroundings, the ACC, Tropical
Instability Waves in the East Pacific, coastal upwellings and smaller scale
activity. A first glance gives the same impression on the three SST gradient
maps of a higher gradient magnitude at mid-latitudes along the strong surface
currents and a lower gradient in the Equatorial and Tropical regions. Yet it
seems that OSTIA SST gradient drops quicker below the Gulf Stream where

REMSS MW gradient is present and even going further to the South towards the
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Equator. ODYSSEA seems to have a higher gradient than OSTIA where the
gradient is low, but a lower gradient than REMSS MW. The later analysis
resolves the stronger gradient in regions of low gradient but one can easily
detect artefacts of the data merging as passes of AMSR seem to be
characterized by a stronger gradient than the surrounding areas. It is
important to add that these artefacts are a substantial obstacle for the front
detection because they would trigger frontal detection on the edges of the

passes.

This impression is confirmed by Figure 4-16 and Figure 4-17 which compare
the gradient magnitude on the three products with regional and monthly
ratios. The gradient magnitude was calculated for each day of the January
2008 for each of the three products, with no smoothing involved (c=0 km).
The monthly average gradient magnitude for each region shown on Figure
4-16 was calculated so that the ratios OSTIA/ODYSSEA, OSTIA/REMSS MW and
ODYSSEA/ REMSS MW could be computed. Figure 4-16 and Figure 4-17 show
that ODYSSEA gradient is everywhere higher than OSTIA gradient, especially in
the 20°S-40°S and 20°N-40°N latitude regions. REMSS MW gradient is much
stronger than OSTIA between 40°S and 40°N and much stronger than ODYSSEA
between 20°S and 20°N. Note that REMSS MW seems to have both smaller
scales and larger gradient than OSTIA and ODYSSEA in the Equatorial and
Tropical regions. However it has a gradient equal to ODYSSEA at mid-latitudes
but scales larger than ODYSSEA in these regions (Figure 4-14). Similarly,
ODYSSEA has a higher gradient than OSTIA everywhere, but it has a larger
feature resolution than OSTIA between 20°S and 20°N and a smaller elsewhere.
This shows that the autocorrelation length scale and the gradient magnitude at

o=0 km are two different concepts which are not always correlated.

Figure 4-18 shows that the differences between the gradient magnitude of the
products decreases as ¢ increases. This demonstrates that the differences
between the products are at the small scales. As the scales grow bigger
because the smoothing increases, the gradient magnitudes come closer to
each other. It is a natural and expected result that the products agree on the
very large scales, because they are fairly stationary and very well resolved by

all the inputs.
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Figure 4-15: Gradient magnitude of OSTIA, ODYSSEA and REMSS MW Level-4
analysis SST products, on 01/01/2009. The gradient is calculated with a
simple gradient operator, without any smoothing applied.
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Figure 4-16: Regional ratios of monthly average SST gradient over the month
of January 2008 for the OSTIA, ODYSSEA and REMSS MW analysis SST products.
Note that the regions are split every 10° latitude in each ocean and that the

average gradient is computed by averaging the gradient calculated on each
day of the month, with no smoothing involved (c=0 km).
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Figure 4-17: Monthly zonal average SST gradient and ratios (green) over the
month of January 2008 for the OSTIA, ODYSSEA and REMSS MW analysis SST
products. Note that the average gradient is computed by averaging the
gradient calculated on each day of the month, with no smoothing involved
(0,=0 km).
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Figure 4-18: Monthly zonal average SST gradient ratios over the month of
January 2008 for the OSTIA, ODYSSEA and REMSS MW analysis SST products.
Note that the average gradient is computed by averaging the gradient
calculated on each day of the month, with varying smoothing involved (o,=0 to
100 km).
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4.4 Qualitative comparison of detected fronts

The differences in feature resolution and gradient magnitude of the products
described in the previous sections result in different fronts being detected.
Figure 4-19 shows the frontal indexes detected over 5 days of OSTIA, ODYSSEA
and REMSS MW with the Cayula method and a window size of 180 km. The
analyses presented in this section are based on the Cayula algorithm despite
the recommendation made in section 3.6 to rather use the Canny algorithm.
The reason for this is the fact that at the time these analyses were performed,
the Cayula algorithm was the baseline for achieving this thesis. It was however
the practical implementation and exploitation of the Cayula algorithm which
made the author of this thesis aware of some of the issues associated with it.
The Canny algorithm was subsequently implemented and explored as a result

of this scientific development.

As explained in chapter 3, because the Cayula algorithm is parameterized with
AT, = 0 K, fronts are detected all over the ocean and the FLI is uniformly
distributed. The index of frontal strength FTDI however resolves the mesoscale
activity in similar places as the gradient index does on Figure 4-15. The maps
of the indices do not allow one to spot obvious differences between the three
products. This can be done by calculating the ratio of regional averages of the
frontal indexes as presented on Figure 4-20 and Figure 4-21. The frontal
length is fairly close on the three products, while ODYSSEA frontal strength is
everywhere larger than that of OSTIA. Despite the differences in feature
resolution and gradient magnitude of ODYSSEA and REMSS MW, the frontal
indexes detected on these two products are very close. This is likely due to the
fact that the mentioned differences involve small scales and that the latter do
not affect the Cayula algorithm with a window size of 180 km. Figure 4-21
shows that OSTIA FTDI is between 0% and 20% lower than ODYSSEA FTDI,
whereas ODYSSEA FTDI lays within 85% and 115% of REMSS MW FTDI. The
Frontal Gradient Index, calculated from the gradient magnitude (¢ = 0 km) on
the fronts, is plotted on Figure 4-22. It is more variable amongst the three
products, OSTIA FGI is within 0% and 35% lower than ODYSSEA FGI and
ODYSSEA FCGl lies within 65% and 140% of REMSS MW FGI. This illustrates that
the index based on the gradient magnitude is obviously more sensitive to the

small scales differences in the gradient magnitude than the index representing

161



Chapter 4

the difference in temperature on both sides of the front as detected by the

Cayula algorithm.
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Figure 4-19: Front Length Index (FLI, left) and Front Temperature Difference
Index (FTDI, right) of OSTIA, ODYSSEA and REMSS MW between 01/01/2008
and 05/01/2008. Fronts were detected with the Cayula algorithm, with a
window size WS=180 km, and no minimum temperature difference:

AT pin = 0 K.
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Figure 4-20: Front Length Index (FLI, left) and Front Temperature Difference
Index (FTDI, right) ratios of OSTIA, ODYSSEA and REMSS MW between
01/01/2008 and 05/01/2008. Fronts were detected with the Cayula algorithm,
with a window size WS=180 km, and no minimum temperature difference:

AT pin = 0 K.
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Figure 4-21: Zonally averaged Front Length Index (FLI, left) and Front
Temperature Difference Index (FTDI, right) and ratios of OSTIA, ODYSSEA and
REMSS MW between 01/01/2008 and 05/01/2008. Fronts were detected with
the Cayula algorithm, with a window size WS=180 km, and no minimum
temperature difference: AT,,;, = 0 K.
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Figure 4-22: Zonally averaged Front Length Index (FLI, left) and Front Gradient
Index (FGI, right) and ratios of OSTIA, ODYSSEA and REMSS MW between
01/01/2008 and 05/01/2008. Fronts were detected with the Cayula algorithm,
with a window size WS=180 km, and no minimum temperature difference :

AT pin = O K.
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4.5 From temperature gradient to density gradient

Chapter 2 showed that resolving the density gradient in the mixed layer allows
one to quantify dynamical properties of the vertical exchanges occurring at
density fronts in certain conditions. In this thesis the temperature gradient in
the mixed layer is used as a proxy for the density gradient, assuming the
salinity constant over the front. This strategy is valid if and only if the
temperature change dominates the salinity change in the equation of state
which relates the temperature and salinity to the density. Where it is not the
case, the density gradient cannot be estimated from the temperature gradient
alone. Doing so indeed results in the underestimation of the density gradient
in the case of a front warm and fresh on one side and cool and salty on the
other or in the extreme case of a salinity front with constant temperature.
Conversely, the density gradient is overestimated where the front is warm and
salty on one side and cool and fresh on the other, the worst case being the
exact cancelation of temperature and salinity gradients effects on density. This
phenomenon is called compensation because temperature and salinity
compensate in their effect on density. It has been known for some time for
certain fronts at scales of a few tens to one hundred kilometres (Roden 1975).
Compensation was also measured at horizontal scales as small as 10 km
(Ferrari & Rudnick 2000). The correlation between thermohaline gradients is
often quantified in terms of the ratio of the relative effect of potential

temperature and salinity on density, the density ratio,

_a-AG
R_ﬁ-AS (4-1)

where 6 is the temperature, and S is the salinity, and p the density, and
a=—-p~1(dp/030) and B = p~1(dp/3S) are the expansion coefficients of
temperature and salinity. Although the density ratio has been used vertically to
characterize thermohaline structure from vertical profiles, it is applied on
horizontal spatial differences in this thesis. The relative error in the density
gradient calculated under the assumption that the salinity is constant is

Apreat — (1 _ %)’

Apestimated

(4-2)

where Apgstimatea = —a - A8. Compensated fronts have a density ratio of 1, they

are characterized by a temperature gradient but a constant density. In this
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configuration a non-real density gradient is detected on SST. A front where the
effect of temperature on density is opposed to but twice that of salinity has a
density ratio of 2. In this later case the density gradient is overestimated by
100% from SST. Fronts where the effect of temperature on density dominates
that of salinity have a density ratio |R| » 1. The higher |R]| is, and the more
accurate is the estimation of the density gradient from the temperature

gradient alone.

The existence of compensated fronts can be explained in the following way:
assume that atmospheric forcing, mesoscale stirring and entrainment of
thermocline waters create random distributions of temperature and salinity in
the mixed layer. Regions will exist in which the horizontal gradients of
temperature and salinity will happen to compensate in their effect of density,
whereas in other regions they will create horizontal density gradients. The
horizontal density gradients at small scale will slump under the action of
gravity and restratify the mixed layer. Any subsequent strong vertical mixing
results in a weakening of the horizontal density gradients. The thermohaline
gradients that are compensated do not slump and do not experience
horizontal dispersion and therefore persist (Ferrari & Rudnick 2000). At larger
scales, slumping can occur, as due to baroclinic instability, but density
gradients can persist in geostrophic balance. The phenomenon of
compensation should thus be most prominent at scales smaller than about 10
km (Rudnick & Martin 2002). The most exhaustive study of the compensation
in the world’s ocean is presented by Rudnick and Martin (2002). The authors
based their investigations on 15 years of towed instrument (SeaSoar) in-situ
campaigns in the Pacific, Atlantic and Indian Ocean. They found compensation
in all oceans, on 3-4 km horizontal scales, when the mixed layer is deep and
significant thermohaline variability exists. The tendency for compensation is
stronger as mixed layer depth increases and for mixed layer deeper than 75 m,
a density ratio near 1 is typical. Conversely, compensation is not typical in
shallow mixed layers, or when thermohaline variability is weak. Regions such
as the subtropical gyres where the variability in salinity is low at small and
meso-scales do not experience significant compensation. At moderate mixed-
layer depths between 25 and 75 m, the density ratio is poorly defined. At the
smallest mixed layer depths, temperature dominates density variability (R is

large). The authors speculate that horizontal density gradients exist in all
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conditions, in the deep winter mixed layer depth or in the shallow summer
one, but they are confined to frontal regions while most of the ocean has

compensated thermohaline variability.

The consequence of these findings for this thesis is that the estimation of the
density gradient from the temperature gradient in the mixed layer is
considered reliable for shallow mixed layer depths. One should be confident in
the dynamical frontal indexes based on parameterizations that estimate the
dynamics as a function of the horizontal density gradient only when the mixed
layer depth is shallower than 75 m. This is a fundamental limitation of the
usage of SST for vertical circulation parameterization over fronts. It should be
stressed however that the need for such parameterization is more stringent
over the shallow mixed layer depth regions because when the mixed layer is
deep, vertical circulation is dominated by the wind stress induced mixing. In
addition, surface temperature can be used as a passive tracer to measure
turbulence in compensated and non-compensated situations. The simple
frontal indexes are thus a valid way to observe turbulence in all conditions,
while the dynamical indexes are restricted to the shallow mixed layer regions.
Improvements in the understanding of the density ratio in the deep mixed
layer or new systems for high resolution salinity satellite acquisition could

overcome this limitation.

4.6 Conclusion on the dataset/method to use

It is not possible to study the small scales and benefit from a high temporal
coverage on the same SST dataset. It was therefore necessary to adopt two
parallel strategies with regard to the input SST data on which the fronts are

searched for. They are summarised in Table 4-3.

The first strategy takes advantage of the spatial and temporal coverage of
some of the GHRSST Level-4 product. The selected product is OSTIA and OSTIA
reanalysis because they offer the longest time span. The following chapter
explores in more details the seasonal variability in the presence of small scales

within several Level-4 SST products. In the two following chapters it will be
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discussed whether these products should be smoothed before the fronts are

detected to avoid artefact variability generated by the cloud coverage.

The fronts are detected with the Canny algorithm because it is more easily

linked to the dynamics as explained in chapter 3.

The second strategy focuses on the small scale variability. Since it is not
resolved by the Level-4 SST products, the ODYSSEA Level-3 super-collated

products are chosen. The pixels that originate from microwave acquisitions are

discarded and only infrared ones are kept in order to keep the spatial

resolution consistency. No smoothing is applied to preserve all the small scale

activity. The Canny algorithm is also selected because of its relevance in the

geophysical studies, despite its reduced ability to detect fronts in the vicinity

of missing data.

smoothing
Focus SST dataset method time span
filter
time and OSTIA + Various levels
space OSTIA of smoothing Canny 1985-today
coverage reanalysis +none
ODYSSEA October 2007-
small scale
Level-3 none Canny December
variability
infrared only 2009

Table 4-3: summary of the two stages of frontal exploration.
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5. Chapter 5: Frontal Indices

5.1 Introduction

This chapter deals with the practical implementation of the principles and
results presented in the first three chapters. The description of the dynamics
of the mixed-layer associated with surface density fronts (chapter 2) is
combined with the discussion on the frontal detection algorithms (chapter 3)
and the exploration of multi-sensor SST datasets (chapter 4) to produce a novel
set of frontal indices which attempt to capture physical parameters of the
mixed-layer. The objective of this chapter is to demonstrate that the physics
presented in the first chapter can be applied in practice on satellite images of
surface temperature. A methodology is presented to compute maps and time
series of physically meaningful frontal indexes. This methodology relies
mostly on three parameters: the level of smoothing applied on the SST image
before the fronts are searched, the minimum strength of the fronts that shall
be retained and composited in the indexes, and in some cases the assumed
width of the fronts. These input parameters are chosen based on the literature
and practical deductions. The sensitivity of the results to these parameters is
discussed when no objective choice was possible. Some of the indexes provide
objective results that can be compared to the literature; others need to be
calibrated through the optimal choice of parameter values to return results
comparable to independent estimates in the literature of the physical
parameter. In both cases, the construction of the indexes allows the robust
assessment of the outcomes of the first three chapters as well as some

assumptions made in some physical oceanography publications.

The common characteristics of the calculated frontal indexes are presented
first. The computational aspects are then exposed. The conversion of the SST
to surface density is described, including a discussion on how to minimize the
error due to frontal compensation of salinity and temperature. In the remaining
subsections of the chapter several indexes are presented and discussed, in
order of increasing complexity. Each of them is applied to a specific scientific

case and is explored from both a qualitative and quantitative perspective.
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5.1.1 General aspects of the frontal indexes

The frontal indexes presented in this thesis are quantitative values of a frontal
property that are calculated per surface area and per time span. They are
stored on three-dimensional maps with latitude, longitude and time as
dimensions. The maps are all consistent in both space and time so that their
values for various places and dates can be combined or compared. In order to
explore their spatial and temporal variability while minimizing the disk space
necessary to store them, they are always created in two versions

simultaneously:

a) The High Spatial Resolution (HSR): this version provides a high
spatial resolution of 0.1° but a low temporal resolution of 1

month.

b) The High Temporal Resolution (HTR): this version provides a low

spatial resolution of 1° but a high temporal resolution of 1 day.

It would be very memory consuming to store the frontal indexes at both a high
spatial resolution and temporal resolution. Hence, even though the indexes are
initially calculated daily over the original SST resolution (typically 0.1°), they
are integrated in space in the HTR index file and in time in the HSR one. This
allows one to drastically optimize the storage space required as the fronts are
calculated on regional to global space scales and annual to decadal time
scales. The HSR index allows the display of monthly composite maps of the
frontal indexes. On the other hand the HTR index permits the plotting of the
spatially averaged frontal indexes over a user-defined region against time.
Every time an index is calculated, it is stored in monthly HSR files and a single
HTR file.

Each frontal index is stored in a Matlab object file which contains:

a) Metadata associated with the frontal index: the name,
description of the run, the type (HSR or HTR), the spatial and
temporal resolution, the creation date, last update date, a
modification log and the complete configuration parameters

used as input to the run that has created the index.
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b) Auxiliary data: the latitude, longitude and time associated to the
index three-dimensional grid, the days that were processed, the
name of the input SST files ingested and the surface area (in km?)

of ocean in each pixel.

c) Available SST surface: reported for each pixel (in km?). This is
equal to the ocean surface in the case of the interpolated Level-4
products but is reduced on the Level-2 and Level-3 products
when less or no data are available over some regions, generally
due to cloud coverage or satellite repeat cycle. This information
is recorded over the same spatial and temporal resolution as the
frontal indexes as this allows spatial averages per unit of surface

to be calculated.

d) The frontal indexes themselves: the frontal index object stores
two indexes, a Frontal Length Index (FLI) and an index that is
specific to the run. The FLI keeps track of the total length of the
fronts (in km) while the second index is generally linked to the
strength of these fronts as the next sections will explain. Each of
these two indexes is accompanied by metadata that is composed

of a name, a description and units.

The frontal object was designed in the frame of this thesis to support the
processes of generating and exploring the frontal information. The metadata
and auxiliary data associated to the object allow the user to keep track of the
processing performed to create the object, they avoid manipulation errors and
allow the parallel processing described below. The Matlab frontal object also
includes a set of functions that allow the display of the index in space or time.
The plotting functions make use of the metadata to calculate in a statistically
meaningful way the temporal or spatial averages for display. The metadata is
also automatically displayed on the plots and the units are converted when
needed. While the rationale behind this strategy is to offer simplicity to non-

expert users of the front detection routines, it has proven to be very valuable
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also to the author of this thesis given the high number of runs that were

needed.

5.1.2 Computational aspects

The calculation of the frontal index results is achieved with Matlab routines.
The generic approach to compute the frontal indexes on one day over a

defined region is the following:

a) Ingestion of SST data from the selected day over the defined
region. When needed, SSH data and climatologies of MLD (mixed

layer depth) and SSS (sea surface salinity) are also ingested.
b) If needed the SST is converted to surface density.

c) If requested, the SST or density field is resampled and/or
filtered.

d) Fronts are detected with the Cayula or Canny methods.
e) Vector fronts are transferred to frontal indexes.

f) Results are stored in the frontal indexes Matlab object described
in5.1.1.

The design of the Matlab routines was driven by the characteristics of the
processing involved and the needs related to their usage. To calculate a frontal

index, one requires:
- The processing of a large number of input files.
- The setting of a large number of parameters.
- Alarge number of operations to be computed by the routines.

These requirements have driven the design of the processing methodology in

different ways. This is described in the following sub-sub-sections.
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5.1.2.1 Approach to handle a large number of files

In order to explore the temporal variability of frontal indexes, one needs to
calculate them for a time series which should be as long as possible. A global
input SST file is needed for each day on which the frontal index is calculated.
The approach that was followed is to maximize the time span of the frontal
indexes by downloading the complete data sets of SST products presented in
Table 4-1. This resulted in above 20000 high-resolution SST files and 6000
altimetry images. This database takes 190 Gb when the files are compressed.
The compression factor being close to 10 on average, the approach is to keep
only the compressed files. The routines are developed such that they are able
to locate the required compressed file and un-compress it before the data are
ingested. The un-compression being much faster than the compression, the
files are not compressed back after being used. Instead, the compressed file is

never removed and the un-compressed file is simply deleted after reading.

5.1.2.2 Approach to handle a large number of parameters

The methodology presented in this thesis to calculate frontal indexes is based
on a large number of parameters. Also many runs were needed to obtain the
results, each of these runs being defined by a precise set of parameters. In
order to keep the set of routines user-friendly and to avoid manipulation
errors, the whole software was coded with configuration control. This means
that all the parameters were identified, classified and gathered in configuration
files. The user simply has to create, or copy and modify, the set of
configuration files before starting a processing run. These parameter files are
loaded by the routines and parsed through each function that requires run-
specific parameterization. The consistency within the parameters is checked to
avoid processing errors, and the configuration parameters are stored together
with the frontal index results to allow the user to keep track of the settings
applied. The set of parameters that the user is invited to define is summarized
in Table 5-1.
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Table 5-1: Set of parameters for the detection of fronts and the calculation of
frontal indexes with the routines developed in the context of this thesis.

mode

e.g. "Frontalindex" for frontal index calculation

run_name

reference of the run

run_description

description of the run

parallel processing
parameters

1 for parallel processing, 0

arallel -
P otherwise

to continue a run started

reset_variables
- before or to start a new one

to ensure each parallel process

generic loadFilesDuringAllocatedTimeSlots | is loading the files at a
parameters different time
to pause the processing during
pauseDuringWorkHours the day not to overload a
shared workstation
time management to stop the run at a defined
9 stopProcessingAt time even if the run is not
finished
restartMatlabEvery to restart Matlab regularly and
avoid memory leakage
id user name
hame name of the SST dataset to detect fronts on (e.g. "OSTIA", "ODYSSEA"
)
Dataset . .
parameters returnOnlyInfraRedFromL3 to discard microwave measurements from Level-3 products
continueOSTIA_RANwithOSTIA | to build a long time series with OSTIA_RAN and OSTIA
regionName full name of the region
lats latitude bounds of the selected region
gzgiﬁ'lneters lons longitude bounds of the selected region
HighTemporalResolution temporal resolution of HTR
HighSpatialResolution spatial resolution of HSR
startDate first day of the time series to process
;LT:meters endDate last day of the time series to process
datelncrement increment of the time series to process
name method name ("Cayula” or "Canny")
detectsFrontsOn "temperature” or "density"
initialResampling to resample the image
resampling
interpMethod interpolation technique
filterimage to filter the image before fronts are
9 detected
Front filter "mean” or "gaussian”
:lnettethidon filtering filterSize size of the filter in km
etho
parameters fastFilter to apply a faster approximation filter
highPassFilter to remove low spatial frequencies

minimumFrontLength

minimum length in km of the fronts to be retained

divideGrid

if needed, resolution of the division grid to process the original
image in bits

Cayula method

to resample the image on a sinusoidal

regularResampling equal-area grid

width of the pixels of the sinusoidal

regularResamplingPixelSize grid
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. . size in pixels of the Cayula window
windowSize i
decomposition
minimumTempDiff minimum temperature difference in K
P within the Cayula window
outbutFronts value to keep as frontal strength:
P "temp_diff" or "gradient”
Canny method thresholds T1 and T2 thresholds of the Canny
method
Frontal name name of the frontal index to calculate based on the detected fronts
Index (e.g. "FGI" or "Spall95_Subduction")
construction ) . . ) )
parameters FrontalWidth frontal width assumed in the calculation of some frontal indexes

5.1.2.3 Approach to handle a very large processing load

Detecting fronts on many high-resolution SST images requires a large number
of operations. It was necessary to optimize the processing to keep the run
computation time realistic. An important action towards achieving this was to
implement the algorithms with matrix operations rather than iterative loops
which are very much slower. Whenever possible, compiled in-built Matlab
functions were exploited to speed-up the processing. Image processing Matlab
library provided efficient functions that had to be used in a specific way to
retain the geophysical meaning of the processing. The GSW library that was
used for the sea water equation of state was optimized so that it could be
applied on large two-dimensional data sets. One part of the frontal detection
algorithms could not be implemented with matrix operations. This consists of
the front-following step that links potential frontal pixels into front vectors.
This is an iterative process with a non-linear memory usage which can be
optimized by processing the SST images chunk by chunk. The SST image is
divided into typically 10° chunks and the frontal index is calculated per chunk.
The prior spatial filtering step is also computationally heavy due to the
geographical projection of the data. As explained in chapter 3, to keep a filter
width that is fixed in km, one should adapt its size in pixels depending on the
latitude as the conversion from longitude increment to km is not constant. As
a consequence, one needs a different filter shape for each line of latitude in
the SST image. This is not implementable with the Image Processing Matlab
functions so it was decided to apply a fixed filter shape per chunk which
allowed the use of the fast in-built Matlab functions. This approximation was

investigated and showed to generate a negligible level of error in the filtering.

In order to further speed-up the processing, parallel processing functionalities

were introduced in the developed routines. This allows launching the
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computation of a run on several processors of the same workstation and on
several workstations simultaneously. The advantage is to multiply the
processing power available and divide the processing time by the number of
processors running. Obviously, the parallel processing capability brings
additional complexity to the implementation of the algorithms. The jobs of the
processors running simultaneously need to be orchestrated so that the
workload is efficiently distributed across the processing resources. The
processors communicate with each-other with the help of common files that
allow keeping track of the processing progress and ensuring two processors
are not doing the same thing twice. The parallelization is achieved at the level
of the choice of the SST image. This means that each processor takes the
responsibility to process a particular product that corresponds to a day on
which the run is asked to detect fronts. The resulting frontal index files are
common to the mobilized processors and each processor is saving its results
on them. Care is taken so that several instances of Matlab distributed on
different processors do not read or write these common files simultaneously
since this would result in file corruption. The configuration parameters are
compared to the ones attached to the frontal index files to avoid human

manipulation errors and guarantee consistency of the results within one file.

Despite the various optimization strategies implemented in the routines,
getting the frontal index results requires very long processing runs. With 4
processors running in parallel some runs may take up to a week to complete.
Hence, the software had to be designed in a way that it offers autonomy and
robustness. The capability to automatically quit and restart Matlab and
continue the processing every hour was added in order to contain the Matlab-
typical memory leakages that slow the processing after a few hours of
continuous computations. The powerful workstations that these routines run
on are shared with other users and are regularly serviced by the IT support.
Consequently, the processing run should be robust to regular breaks in order
to free the machine to another user or allow a reboot of the workstation after
an update. This process becomes very time-consuming for the user of the
routines if the latter are not robust and autonomous enough. This is the reason
why they were implemented such that they may be stopped or killed at any
point and restarted at a later stage by a simple and unique command. The

restarted routines are able to continue the processing where it was stopped
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without any major user intervention. This strategy also demonstrated its utility
during the development stages as it allows easy recovery from crashes. The
thorough logging across the processing is part of this strategy as it allows the

user to keep track of the processing progress.

Figure 5-1 presents the architecture of the routines and the data flow between
the Matlab functions. The function computeFrontallndexParallel.m is in charge
of the orchestration, the parallel distribution of the work and the saving of the
results. It interacts with the processing status files which are run-specific but
shared between processors, and the results data bank. For each day from
which the processor is required to detect fronts, it calls
computefrontallndexOneDay.m which returns the frontal indexes over the
defined region on the day that is parsed through. The latter function is in
charge of the data ingestion and the SST grid division into chunks. For each
chunk it calls computeEdges.m which returns the frontal index over the parsed
chunk of data. The latter filters and resamples the SST data and converts it to
sea surface density if required. It also computes the gradient and applies the
front detection algorithm that is parameterized in the configuration files
(Canny or Cayula). It then calls computeFrontalindexFromEdges.m which
inputs detected frontal vectors and returns the frontal index over the chunk as

defined in the configuration files.
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Configuration files

- run name and description

- computational parameters (parallel processing, hours
when processing shall stop/pause etc...)

- SST dataset

- region

- spatial and temporal resolution of results

- dates

- filtering (mean or gaussian, filter size...) and
resampling

- front detection method (Canny or Cayula) and
associated parameters (thresholds, window size,
minimum front length...)

- SST or density

- size of imagettes

- frontal index (FGI, Spall95, Fox-Kemper etc...) and
frontal width.

A

computeFrontalindexParallel.m

- orchestration
- allocation of the jobs to parallel processors
- synchronization of the common files reading

for each day

Processing status files
- for work distribution
between processors

- for synchronization of
common result files reading

Results Data Bank

HSR and HTR files

- result files creation and updates
- logging

Frontal quantities
Available SST area
on image

Day to process

!

computeFrontalindexOneDay.m

Compressed input
image data bank

- SST images uncompressing and deleting

with config

Sea SurfaceTemperature
Sea Surface Height

for each
imagette

- SST data ingestion
- grid preparation
- grid division in imagettes

Frontal quantities

climatologies data bank

Mixed Layer Depth
Sea Surface Salinity

Log files

>
for monitoring
advancement

S.ST data of Available SST area
imagette 3
on imagette
» computeEdges.m
- filtering
- resampling

- density conversion
- gradient computation
- Cayula or Canny frontal detection

Frontal vectors
SST or density and

their gradient
on imagette

Frontal quantities
Available SST area
on imagette

computeFrontalindexFromEdges.m

> frontal index computation
- spatial integration on HSR and HTR grids

Figure 5-1: General architecture of the frontal detection routines developed in

the context of the thesis
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5.1.3 Density gradient calculation

As explained in chapters 2 and 4, the density gradient is calculated from the
SST images before the fronts are detected, in a geophysically meaningful way.
To do so, after an initial resampling and filtering of the SST image, the SST
gradient is calculated. The SST gradient is translated into a density gradient,

assuming a constant salinity across the front with the formula:

dp a0
ox **Po ox

(5-1)

Where 6 is the temperature, p is the density, p, is the reference density, and

a =—p~1(dp/00) is the expansion coefficient of temperature.

a is dependent both on temperature and salinity. It is calculated with the
function gsw_alpha.m of the Gibbs-SeaWater (GSW) Oceanographic Toolbox

(http://www.teos-10.org/software.htm). This function uses the

computationally-efficient 48-term expression for density in terms of salinity,
conservative temperature and pressure (McDougall et al. 2010). In order not to
create artificial jumps in the surface density gradient, a monthly salinity
climatology is ingested and smoothed to the resolution of the SST. This
climatology is the monthly 1° World Ocean Atlas (WOA) 2009 (Antonov et al.
2006).

Equation (5-1) assumes that the salinity is constant across the front. Section
4.5 showed that this assumption is not always valid, and the salinity variations
may complicate the relation between temperature and density. The principal
risk is to overestimate the density gradient when the front is compensated.
The compensation is less likely to occur when the mixed-layer depth (MLD) is
shallower than 75m. Therefore the temperature-based mixed-layer depth
climatology of de Boyer Montegut et al. (2004) is used to identify the times
and locations where the typical mixed-layer depth is deeper than 75m within
the three dimensional frontal index data sets. One solution could be to discard
any frontal measurements performed over the regions where the MLD is
deeper than 75 m at the time of the measurement. Then the time series of
frontal quantities would be built by averaging in space the pixels of shallow
MLD on each day. This solution was not retained because it would have

introduced seasonal biases caused by the seasonal patterns of the MLD.
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Instead it was chosen to combine pixels of all MLD in the spatial averaging but
to flag the times when the frontal quantity is based on more than 50% of pixels
with a deep MLD. The flagged times are displayed in red in the frontal index
time series and identify the periods when the confidence in the frontal index is
lower due to possible compensation. Figure 5-2 illustrates the regions in the

North Atlantic that are affected by a deep MLD across the seasons.

18-Jun 2000 BoyerMontegut MLD
zo0r
no fitering

17-hiar- 2000 Bayerhiomogut MLD
o0

g
MLD inm

=W

21.Dec 2008 Boyerhontegut MLD
200"

e fitering

Figure 5-2: De Boyer Montegut et al. (2004) climatology for mixed-layer depth
on the North Atlantic for March (top left), June (top right), September (bottom
left) and December (bottom right). Depth 75 m is plotted on the black contour.

5.2 Frontal Gradient Index

This section presents the basic Frontal Length Index (FLI) and Frontal Gradient
Index (FGI) introduced in Chapter 3. FLI is the total length of the detected

fronts in a defined region and over a defined span of time:
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FLI = fronts dx (5 - 2)

daysin inregion

time span
Where x is the direction following the frontal paths. FGl is the integration of
the frontal strength along the detected fronts. The frontal strength is

measured as the horizontal density gradient magnitude on the front locations.

. (5-3)
FGI = Z fronts |[Vypl - dx
daysin inregion
time span

When the fronts are detected with the Canny method, they are located on the
surface density gradient crests, which means that they lie on local maxima of

surface density gradient in the gradient direction. In these conditions:

FGI = % d
- Z fronts @‘ x (5-4)
daysin inregion
time span
d
FGI = ‘—p| - FLI (5-5)
dy
Where y is the direction orthogonal to the front orientation; and |a—S| is the

average gradient magnitude on the detected fronts.

These indices are a first order indicator of stirring and mixing processes. When
the fronts are detected with the Canny algorithm, which is the case in this
chapter, the FLI indicates the length of the elongated crests that lie on a
gradient whose magnitude is greater than a selected threshold. It should be
noted that the FLI carries some information about the strength of the fronts
because it is a measure of how many fronts there are that are stronger than
the threshold. The FGI is complementary to the FLI because it is also
dependent on the average strength of the fronts above the threshold. Equation
(5-5) is true for each spatial and temporal pixel of the frontal index separately,

FGI and FLI are not proportional for any time and location because the
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distribution of the gradient magnitude on the detected fronts is not constant in

space and time.

It should be recalled that although these frontal indexes represent averages or
integrations of frontal parameters over a defined region and time span, they
are calculated on single high-resolution two-dimensional surface density
snapshots. Quantitative values of frontal index are calculated per day in a way
that is consistent in time so that these values can be compared at different
times. However the indexes are processed on each day from the density map
of the selected date, with no consideration of the density at the day before or
after. This approach is different than that of Miller (2009), who suggested a
frontal index that combines the location, strength and persistence of the fronts
detected over several days into a single map. This index is efficient to produce
a synoptic view of the dynamics over a few days without blurring the changing
patterns as occurs when time averaging cloud-affected sequences of SST
images. Miller’s (2009) frontal index provides qualitative frontal maps that
allow intuitive interpretation of mesoscale features. The author of this thesis
was not able to develop a reliable methodology to associate fronts detected on
one day to those detected on the next, with a quantitative geophysical

meaning.

The computation of FLI and FGI relies on two main parameters: the smoothing
filter applied on the density scenes before the front detection and the
thresholds T, and T, of the Canny front detection algorithm. Chapter 4
describes how daily variability in the cloud coverage can compromise the
temporal and spatial consistency of the spatial scales present in a Level-4 SST
product. One way of ensuring this consistency is to apply a low-pass spatial
filter on the density field and remove the portion of the spatial spectrum that
is dependent on the cloud coverage. This filters out the small scales in which
one is not totally confident, either because it is considered as noise, or
because it is suspected to carry artefact signals generated by the variability in
the availability of infrared SST products. The consequence of the low-pass filter
is to modify the spatial spectrum of the density field over which the fronts are
detected. This means that the smoothing filter determines which part of the
spectrum is explored for fronts. When no filtering is applied or when a small
amount of smoothing is involved, the smallest scales of the density field are

retained and the fronts are detected on fine features. Conversely, when a
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larger amount of smoothing is applied on an image, one can be more
confident in the spatial and temporal consistency of the detected fronts but
the small scale features are ignored. Therefore the decision on the required
amount of smoothing is the result of a trade-off between the confidence in the

scale consistency and the ability to resolve small scale frontal features.

The Canny thresholds T, and T, are set to an equal value:
T=T,=T, (5-6)

This simplifies the geophysical interpretation of the detected fronts as one can
conclude that the fronts are detected on the crests of the density gradient

magnitude where the gradient magnitude is greater than T.

Chapter 3 shows that applying a smoothing filter on an image reduces the
gradient magnitude on the fronts whose width is of the same order of
magnitude or smaller than the smoothing filter size. The decision was taken to
apply running mean filters rather than Gaussian ones because the effect of the
former on the spectrum is simpler to interpret. The smoothing effect of the
running mean filter is equivalent to a spatial sampling at a lower resolution.
The gradient reduction depends on the size of the running mean filter and on
the width of the fronts. Once a field has been down-sampled or smoothed, the
information about the small scales is lost. The width of small fronts is then
unknown even though the smoothing filter is known. One can recover the
spectrum at the small scales from the larger scale spectrum if the surface
density spectrum slope is known. Fox-Kemper et al. (2011) show that if the
buoyancy spectral slope is assumed to be locally k?, the horizontal buoyancy

gradient can be scaled so that it is independent from the resolution of a model

grid. The average (|VHF|2A5/Lf) , over a scale L, » As » Ly is approximately
independent of As, where V,b? is the depth-average of the horizontal buoyancy
gradient over the mixed layer. As is the model grid-scale dimension in Fox-
Kemper et al. (2011). L; is an estimate of the typical local width of mixed layer
fronts. In this thesis we assume that V,b? = Vb at the surface. This
approximation is developed to account for the small-scales that are not
resolved by numerical model resolutions. It was adapted in the context of this
thesis to scale the gradient magnitude of datasets with different resolutions in
order to allow their inter-comparison. The autocorrelation filter applied in the
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optimal interpolation (Ol) in the creation of the SST Level-4 products has an
effect on small scales similar to the smoothing applied in the front detection
process or to a sampling at a coarser resolution. Hence As is chosen per SST
product as an approximation of the feature resolution, which is the smallest
scale resolved within the image. The feature resolution is greater than or equal
to the actual product resolution, but it is also dependent on the smoothing
involved both in the creation of the product and in the front detection. It
should be noted that this scaling is an approximation of the energy at small
scales, but only at the scales that are not resolved by a particular product and
smoothing. The aim of this study is to push the spatial scales of the SST
products to their finest limits; however these limits are different for each
product. So this scaling is applied to allow the application of a consistent

Canny threshold amongst the products.

The horizontal wavenumber spectrum of near-surface density variance has
been shown to scale with k2 by a number of studies. Ferrari and Rudnick
(2000) used SeaSoar observations to sample the temperature and salinity of
the mid-Pacific near-surface ocean over horizontal length scales ranging from
100 m to 100 km. They confirmed this scaling which is consistent with the
numerical model with ubiquitous fronts of Capet et al. (2008a). Altimetric
velocities also display a near k? rolloff at high wavenumbers despite a strong

noise contamination (LeTraon et al., 2008).

If the density variance is assumed to be locally equal to B(k) = B, x k=2, the PSD
(power spectral density) of the horizontal density gradient is By, qgient (k) = B,.
The scaling recovers the energy at scales in [As, Lf] based on the energy
present at scales in [Ly, As] in a linear function of the scales. It assumes that the
PSD of the horizontal density scales to k=2 in the missing part of the spectrum
([As, Lg]) but also in the part of the spectrum present in the original image

([Lp, As]). Unfortunately, the level-4 products PSD do not always scale with k=2,
as is shown by Reynolds and Chelton (2010), who have calculated an average
zonal wavenumber spectrum in several regions. For instance, they showed
that the wavenumber dependence of the OSTIA images ranges from k=% to k=>.
In such a case the scaling will not bring back all the energy present at scales

[As, L¢] (@and not resolved by the product) because the energy at scales [Ly,As] is
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underestimated by OSTIA in the first place. The following analyses in section

5.2 explore the consequences of this spectrum in terms of frontal content.

An important issue is which Canny threshold to retain. The FGI index attempts
to capture the fronts associated with vertical exchanges. The thresholds are
extracted from the literature and numerical studies that explore these
dynamics at fronts. Capet et al. (2008b) define the fronts as the regions
satisfying the inequality |V,p| > 1.2 X 10~*kg m™* in their numerical model.
Strong frontogenesis conducive of vertical velocities is observed in the model
over those regions. However, this density gradient magnitude is observed on
none of the Level-4 products, even with no smoothing involved. The scaling
described above can be applied to scale the density observed in the Capet et
al. (2008b) model to the density calculated from the SST products. The real

density gradient would be measured if As = L;. Hence:

As
IVupreatl = |Vupmeasureal * |7 (5-7)

Ly
The equation (5-7) is valid for the measured density gradient both on the
numerical model of Capet et al. (2008b) and on the density gradient calculated

from the SST. Assuming that L; is equal on both scenes, this leads to:

ASCapet (5 _8)
Asssr

|VHpmeas_SST| = |VHpmeas_Capet| '

Where Ascgper = 0.75 km is the grid-scale of the numerical model. Taking for
instance Asggr = 50 km as the approximate feature resolution of OSTIA and

Vi Pmeas caper| > 1.2 X 10*kg m™*. One gets

V4 Pmeas_sst| > 147 x 1072kg m~3km~* as the Canny threshold. This density
gradient magnitude is observed in the California Current region, although the
fronts detected are very sparse and do not cover 2.5% of the domain area as
occurs in the numerical model of Capet et al. (2008b). Therefore the threshold

suggested by Capet et al. (2008b) is not retained.

Spall (1995) used a nonlinear isopycnal primitive equation model to

demonstrate how baroclinic instability and the resulting frontogenesis force
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the subduction of parcels below and across the fronts. The initial configuration

of the front is a variation of 0.3 kg m~3 across 16 km, which corresponds to:.
|Vypspau| = 1.875 x 10~kg m™* = 1.875 x 10~2kg m~3 km™* (5-9)

This threshold is retained in this thesis for the calculation of FLI and FGI, it is
scaled for each SST dataset following Equation (5-7). The following sub-
sections present the FLI and FGI averaged over the North-Atlantic and plotted

against time, while varying the following parameters:
e The SST dataset.

e d is the size of the running mean filter applied to the density

image before the fronts are detected.
e L is an estimate of the typical local width of mixed layer fronts.

e As is an estimate of the feature resolution of a SST product after
the smoothing stage which depends on the spatial sampling
(resolution), the size of the autocorrelation filter applied in the
optimal interpolation stage for Level-4 products and the

smoothing applied on the image before the fronts are detected.

L
T = |vaSpall| \/% (5-10)

The Figure 5-3 displays the area that defines the North Atlantic region, and

The Canny threshold is set to

Figure 5-4 shows the percentage of it that has a mixed layer depth shallower
than 75 m against time, as calculated from the Boyer-Montegut MLD

climatology.
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North Atlantic
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Figure 5-3: North Atlantic region.
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Figure 5-4: Percentage of the area of the North Atlantic region that has a
mixed layer depth shallower than 75 m.

5.2.1 FLI and FGI from OSTIA

Figure 5-5 and Figure 5-6 show the FLI and FGI over the North Atlantic region,
with d = 0 km, Ly = 0.5 km, and As = 25 km on OSTIA. This configuration does
not smooth the OSTIA SST images, converts them to surface density gradient
and detects fronts with the Canny method and the threshold as defined in
Equation (5-10). This methodology ignores the potential artefact small-scale
variability in OSTIA which is described in Chapter 4, and applies no low-pass
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filter on the SST image to remove it. The scaling function assumes that the
feature resolution of the smoothed SST is 25 km, and that the fronts are 0.5
km wide over the region. The profiles of FLI and FGI are very similar and it is
even difficult to distinguish them, as was explained previously yet they carry
slightly different information about the dynamics. A strong seasonal signal is
present in the time series, with minimum of the indexes between March and
April and maximum in August. In this time span of 6 years, one can observe
inter-annual variability, with a higher annual average in 2006 and higher
annual minima in March 2006, March 2007 and March 2010. Periods of deep
MLD which are the times when the confidence in the calculated density

gradient magnitude is reduced correspond to sharp decreases of the indexes.

FLI (Km.Km™2.day™)
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD, 3 STD filter

X 10'3 run: Run15 OSTIA daily NorthAtl NoFilt ( all OSTIA daily on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 5-5: Front Length Index (FLI) in km km~%day~! processed on daily
OSTIA over the North Atlantic region with d = 0 km, Ly = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.
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FGI (Kg.m®.Km?2.day™)
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Gradient Index
Fronts of all MLD, 3 STD filter, index scaled by 7.0711
M 10" run: Run15 OSTIA daily NorthAtl NoFilt ( all OSTIA daily on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 5-6: Front Gradient Index (FGI) in kg m™3 km~2day~! processed on
daily OSTIA over the North Atlantic region with d = 0 km, Ly = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-7 and Figure 5-8 present the same indexes but calculated on a weekly
basis. The functions appear less noisy because the daily variability is reduced
however the signal is equivalent. This shows that weekly indexes are sufficient
when dealing with a time span as large as 6 years to explore the seasonal and
inter-annual variability. This result is important in practice because a weekly

index is in effect seven times quicker to process than the same on a daily
frequency.

FLI {Km Km".day"}
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD, 3 STD filter
%10 a run: Run® OSTIA weekly NorthAtl NeFilt | all OSTIA weekly on North Atlantic, Canny of Spallas scaling 0.5/25, no smoathing )
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Figure 5-7: Front Length Index (FLI) in km km~2day~! processed on weekly
OSTIA over the North Atlantic region with d = 0 km, Ly =0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.
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FGI (Kg.m® Km2.day™)

calculated on NorthAtlantic, plotted for North Atlantic
Frontal Gradient Index

Fronts of all MLD, 3 STD filter, index scaled by 7.0711

M 10'4 run: Run9 OSTIA weekly NorthAtl NoFilt ( all OSTIA weekly on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 5-8: Front Gradient Index (FGI) in kg m™3 km~2day~! processed on
weekly OSTIA over the North Atlantic region with d = 0 km, L = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-9 displays maps of monthly averages of FGI for August 2006 when
the index was the highest according to Figure 5-6, August 2007 when the
index was at an inter-annual low for a summer time and for April 2008 when
FGI was the lowest. Comparing August 2006 and August 2007, it is possible to
explain the higher average during the first month by what seems to be a more
stretched Gulf Stream on the West and stronger fronts on the western coasts of
Europe. The comparison with the maps of April 2008 is striking, much less
frontal index is detected around the Gulf Stream which appears much

narrower, and barely any front is detected along the East American coastline
and on the Western European seas.
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FGI (Kg.m>.KmZ.day )
Frontal Gradient Index
OSTIA, index scaled by 7.0711
MEAN over August 2006
run: Run15 OSTIA daily NorthAtl NoFilt
( all OSTIA daily on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )

FGI (Kg.m°.KmZ.day )
Frontal Gradient Index
OSTIA, index scaled by 7.0711
MEAN over August 2007
rur: Run15 OSTIA daily NorthAtl NoFilt
( all OSTIA daily on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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FGI (Kg.m>.KmZ.day )
Frontal Gradient Index
OSTIA, index scaled by 7.0711
MEAN over April 2008
run: Run15 OSTIA daily NorthAtl NoFilt
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Figure 5-9: Maps of average monthly Front Gradient Index (FGI) in
kgm=3 km~%day~! processed on daily OSTIA over the North Atlantic region
with d = 0 km, L; = 0.5 km, and As = 25 km. Top: August 2006, middle: August

2007, bottom: April 2008.
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Figure 5-10 displays the daily percentage of cloud coverage over the North
Atlantic. One can notice a seasonal variability in this temporal signal, with a
low cloud coverage of about 50 % during the summer and a high of nearly 65
% in the winter. It was explained in Chapter 4 how the temporal variability in
clouds affects the feature resolution of Level-4 analysis SST products. This is
due to variations in the quantity of infrared measurements available for the
construction of the products and to the fact that the OSTIA spatial
autocorrelation filter gets coarser when less high-resolution data are available
around a particular day. This effect may explain part of the seasonal signal in
the frontal indexes which would be an artefact of the construction process of
OSTIA products.
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Figure 5-10: NOAA NCEP reanalysis daily percentage of cloud coverage over
the North Atlantic.

Figure 5-11 and Figure 5-12 present the FLI and FGI over the North Atlantic
region, with d = 0 km, Ly = 0.5 km, and As = 50 km on OSTIA. The difference
with the previous figures is that the feature resolution As is assumed to be
twice as large. As a consequence the Canny threshold is reduced to account
for a higher estimated smoothing in the production of the dataset. It is not
surprising that about twice as many fronts are detected, with a FLI reaching
0.02 km km~2day~1. What is less intuitive is that both FLI and FGI seem to be
nearly proportional when considering As = 25 km and As = 50 km. This tends to
show that the variation of the amount of fronts between the two Canny
thresholds is linear in OSTIA.
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Figure 5-11: Front Length Index (FLI) in km km~2day~! processed on weekly
OSTIA over the North Atlantic region with d = 0 km, Ly =0.5km, and

As = 50 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.
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Figure 5-12: Front Gradient Index (FGI) in kg m™3 km 2day™! processed on
weekly OSTIA over the North Atlantic region with d = 0 km, Ly = 0.5 km, and

As = 50 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-13 and Figure 5-14 present the FLI and FGI over the North Atlantic
region, with d = 25 km, Ly = 0.5 km, and As = 25 km on OSTIA. This
methodology assumes that the artefact small-scale variability which is
potentially present in OSTIA, as described in Chapter 4, is removed by the 25
km low-pass smoothing filter. Then the scaling function assumes that the
feature resolution of the smoothed SST is 25 km, and that the fronts are 0.5

km wide over the region. Comparing Figure 5-14 with Figure 5-8 which is the
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equivalent run without the 25 km running mean filter, one can see that in the
smoothed run, there is less inter-annual variability, especially on year 2006
which does not have the highest mean FGI over the North Atlantic. Instead it is
2009 that has the highest mean. However there are still similarities between
the two runs. For instance, in both cases, March 2007 and March 2010 have
higher annual minima than the other years of the time span. It can be added
that the FLI and FGI index are more than twice as small on the smoothed
dataset, which is logical as the scaling is equal in both runs. This result clearly
shows that there is a non-negligible amount of frontal energy at scales finer
than 25 km in the OSTIA products across the seasons.
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Figure 5-13: Front Length Index (FLI) in km km~2day™! processed on weekly
OSTIA over the North Atlantic region with d = 25 km, Ly = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.
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Figure 5-14: Front Gradient Index (FGI) in kg m=3 km~2day~! processed on
weekly OSTIA over the North Atlantic region with d = 25 km, Ly = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-15 and Figure 5-16 present the FLI and FGI over the North Atlantic
region, with d = 50 km, Ly = 0.5 km, and As = 50 km on OSTIA. On this run the
OSTIA dataset is smoothed with a low-pass 50 km filter and the gradient is
scaled for an assumed 50 km feature resolution. FLI and FGI have a
comparable range to those of the run with 25 km smoothing (Figure 5-13 and
Figure 5-14). This tends to show that the scaling assumption is valid, and the
spatial density spectrum between 50 km and 25 km is close to k2. However
the seasonal cycle is less pronounced on the 50 km smoothing case due to
additional minima in August 2007 and August 2010. One can consider that
these frontal indexes do not suffer from artefact seasonal variability due to the
cloud coverage thanks to the initial 50 km low-pass filtering of OSTIA images.
Indeed this filtering removes the fine features that are present on infrared
observations but absent from the microwave ones. As the spatial coverage of
microwave sensors is nearly global each day, it is fair to assume that no
artefact temporal variability of small scales presence in OSTIA images remains

above 50 km.
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Figure 5-15: Front Length Index (FLI) in km km~2day~! processed on weekly
OSTIA over the North Atlantic region with d = 50 km, L = 0.5 km, and

As = 50 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

FaGl (Kg.m ™ km® day")
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Gradient Index
Fronts of all MLD, index scaled by 10
6)‘ 10 o run: Run? OSTIA weekly NorthAtl 50km | all OSTIA weekly on North Aflantic, Canny of Spall85 scaling 0.5/50, 50km mean smoathing )
14

e
1.4 '
| 1
13-
Y
12"
1.1}
v

1

" w B = =@ o @ a =& 8 8 &8 = = = = & wm
BB EEEEEEEEDEEE D EEEEEEEEEE
= 3 6 a = 3 @ a = 3 o a = 3 6 a = =3 4 a6 F O3 6 oa = 3

Figure 5-16: Front Gradient Index (FGI) in kg m™3 km™2day~! processed on
weekly OSTIA over the North Atlantic region with d = 50 km, Ly = 0.5 km, and

As = 50 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-17 and Figure 5-18 present the FLI and FGI over the North Atlantic
region, with d = 25 km, Ly = 1 km, and As = 25 km on OSTIA. The difference with
Figure 5-13 and Figure 5-14 is that the front width is assumed to be 1 km
rather than 0.5 km. It is logical that half the frontal index is detected because
assuming that the fronts are twice as wide implies that the scaling for a 25 km
low-pass filter is less intense hence the scaled horizontal density gradient
magnitude is lower and fewer fronts are detected on it. It is also worth noting

that the FLI and FGI variability is very similar to that of the above-mentioned
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run with Ly = 0.5 km. Therefore it seems that the frontal width parameter has

an effect on the magnitude of the indexes but their variability appears robust
to it.
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Figure 5-17: Front Length Index (FLI) in km km~2day~! processed on weekly
OSTIA over the North Atlantic region with d = 25 km, Ly =1km, and As =

25 km. Times when more than 50% of the area MLD is deeper than 75 m are
plotted in red.
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Figure 5-18: Front Gradient Index (FGI) in kg m™3 km™2day~! processed on
weekly OSTIA over the North Atlantic region with d = 25 km, Ly = 1 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-19 and Figure 5-20 present the FLI and FGI over the North Atlantic
region, with d = 0 km, Ly = 1 km, and As = 25 km on OSTIA. The difference with

the previous run is that no smoothing is applied on the OSTIA images. This run
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is to be compared to Figure 5-7 and Figure 5-8, which are based on the same
parameters except an assumed frontal width twice as large. It presents a FLI of
half the size, which means that half the number of fronts are detected. FGI is
smaller by a factor of 2. This example also shows that the indexes variability is
very comparable when the fronts are assumed to be 0.5 km or 1 km wide over
the region. However the absolute values of FGI depend on the assumed frontal

width as it is involved in the density gradient magnitude scaling following
Equation (5-7).
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Figure 5-19: Front Length Index (FLI) in km km~2day~! processed on weekly
OSTIA over the North Atlantic region with d = 0 km, Ly = 1 km, and As = 25 km.

Times when more than 50% of the area MLD is deeper than 75 m are plotted in
red.
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Figure 5-20: Front Gradient Index (FGI) in kg m™3 km™2day~! processed on
weekly OSTIA over the North Atlantic region with d = 0 km, Ly = 1 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m

are plotted in red.
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The general pattern of seasonal frontal variability is robust to the parameters
of the front detection method. It features a lowest frontal activity around April
in the North Atlantic and a highest one around August. It is important to
explore this variability and assess to what extent it is the consequence of
artefacts of the Level-4 SST production. Chapter 4 showed that Level-4
products may suffer from a time-varying amount of small-scale activity due to
a seasonal signal in the cloud coverage. One way of looking at the question is
to explore the temporal variability of the SST and the SST gradient magnitude.
Figure 5-21 presents the average OSTIA SST over the North Atlantic. It is close
to an annual sinusoidal cycle with a low in March and a high in August, similar
to the FLI and FGI indexes. Figure 5-22 to Figure 5-25 show the un-scaled
OSTIA SST gradient magnitude but on different parts of its spectrum. Figure
5-22 is the un-scaled SST gradient over its complete spectrum, since the SST is
not filtered. It exhibits an annual cycle with a low in August and a high in
February, almost in anti-phase to the SST average and the FLI and FGI indexes.
Figure 5-23 is similar except that the SST was smoothed with a low-pass filter
of 50 km prior to the gradient computation. The magnitude of the gradient of
the smoothed OSTIA is obviously lower than that of the original OSTIA images.
The gradient magnitude is reduced by 12% after the scales smaller than 50 km
are removed. According to the scaling (5-7), this would mean that the original
OSTIA images have an average feature resolution of 39 km over the North
Atlantic. It was shown above that OSTIA images include a non-negligible
amount of frontal energy at scales lower than 25 km. This would tend to show
that the feature resolution, whose average is 39 km over the region, is varying
in space or in time providing the k? assumption is correct. Since the basin
average of the gradient magnitude of the original OSTIA appears to be
proportional to the 50 km smoothed OSTIA with a constant ratio in time, it can
be inferred that the feature resolution is close to constant in time but varying

in space.

Figure 5-24 shows the un-scaled gradient magnitude calculated on OSTIA
images that are filtered by a 50 km high-pass filter. This ensures that the large
scale meridional temperature gradient is not taken into account. The seasonal
variability is reduced but still present in the small scale part of the gradient

magnitude spectrum. The cycle is the same as for the larger scale gradient, in
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anti-phase from the FLI and FGI. In Figure 5-25, which is the un-scaled gradient
magnitude of 100 km high-pass filtered OSTIA images, one can see that the
seasonal variability is increased by the presence of larger spatial scales. The
difference between the frontal index and the index of average gradient of high-
pass filtered images makes the case for the frontal indexes. Indeed FLI and FGI
show something other than simply the gradient of the small scale temperature.
Due to the Canny methodology, fronts characterize regions where the gradient
is intensified in a local maxima. This analysis demonstrates that the periods
when the gradient of the small scales is high are not simultaneous with those
when the frontal indexes are high. Chapter 2 showed that it is relevant to
quantify the frontal zones where the horizontal buoyancy gradient is enhanced

rather than simply averaging the gradient over the region.
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Figure 5-21: Average OSTIA SST over the North Atlantic.
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Figure 5-22: Average OSTIA SST un-scaled gradient magnitude over the North
Atlantic.
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Figure 5-23: Average OSTIA SST un-scaled gradient magnitude over the North

Atlantic. The SST images are smoothed by a low-pass 50 km filter before the
gradient is calculated.
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Figure 5-24: Average OSTIA SST un-scaled gradient magnitude over the North

Atlantic. The SST images are convoluted by a high-pass 50 km filter before the
gradient is calculated.

SST gradient (K.Km™")
calculated on North Atlantic, plotted for North Atlantic
average SST gradient
Pixels of all MLD, 3 STD filter
run: Run35 OSTIA SSTandGradient North Atlantic HighPass100Km
3 ( North Atlantic SST average and SST gradient average (no smoothing, 100 Km High Pass) on OSTIA)

%)

el
E
.

© 8 B @ = & kK @ @ ®m o® @ @ 2 @ e © © °o = - - = o
T 2 % % 8§ 8 % % 8 8 % % %8 Z§E 3T Y S E B 3 E E B % R %

= 3 L] = @ = =2 @ - 4 = o = =] @ 2 =2 =3 = =)
= = w o = S W o = S W (=1 = = wn o = = [ o = = [ =1 = =

Figure 5-25: Average OSTIA SST un-scaled gradient magnitude over the North

Atlantic. The SST images are convoluted by a high-pass 100 km filter before
the gradient is calculated.

5.2.2 FLI and FGI from ODYSSEA

Another way to assess the amount of artefact signal introduced by
inconsistencies of the Level-4 production into the frontal indexes is to compare
the results obtained from various datasets. In this section, the frontal indexes
calculated on ODYSSEA (version 2.0) are presented. As described in chapter 4,
ODYSSEA products are produced through a different methodology than that of
OSTIA. The discrepancy between the frontal indexes calculated from different

SST products, that are estimations of the same real but unknown scene, gives
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an indication of the contribution of the source Level-4 image error to the

frontal error.

Figure 5-26 and Figure 5-27 present the FLI and FGI over the North Atlantic
region, with d = 0 km, Ly = 0.5 km, and As = 25 km on ODYSSEA (version 2.0).
They can be directly compared to Figure 5-5 and Figure 5-6 which are the
same indexes computed with the same parameters on OSTIA. These runs
feature no smoothing prior to the frontal detection, hence the finest features
present in the source SST images are retained. It is striking that the ODYSSEA
FLI is about 30% lower than the OSTIA FLI, which means that a significant
proportion of fronts are detected on OSTIA but not on ODYSSEA. Meanwhile,
the annual range of ODYSSEA FGl is very close to that of OSTIA FGI. It can be
concluded that less fronts are detected on the raw ODYSSEA images but that
the ones that are detected are significantly stronger that the ones on OSTIA,
leading to a FCGI of the same magnitude. Although the ODYSSEA indexes exhibit
a clear seasonal variability, their inter-annual signal is different from that of
OSTIA. For example the annual averages of FLI and FGIl on OSTIA are
significantly higher in 2006. However some common patterns are seen
between the results of the two datasets. For instance the annual frontal
indexes minima in 2007 and 2010 were higher than those in the other years
on both datasets. Besides, ODYSSEA frontal indexes appear to be noisier in
time, especially in 2009. This could be due either to a stronger temporal
smoothing in the OSTIA production which would smooth out high temporal
variability or to a higher error in the ODYSSEA images. It should be added that
the ODYSSEA dataset was only available until end of 2010.

The processing of the frontal indexes reveals some variability in the fine scale
content of the source dataset that is sometimes unlikely to be natural, such as
the sudden drop in FLI and FGI around beginning of October 2010, or
sometimes clearly an artefact of the SST product like the multiplication by a
factor 10 of the indexes at the end of December 2007 (filtered out on Figure
5-26 and Figure 5-27). The second example is an indication of a sudden
massive divergence in the optimal interpolation process at these dates which
produced completely unrealistic maps of SST for a few days on ODYSSEA. The
first example was investigated by plotting the ODYSSEA gradient magnitude

over the month of October 2010 over the North Atlantic. It can be observed on
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Figure 5-28 that the fine features evolve from one day to another until October
the 10™ 2010, at which point the dynamics seem to freeze and gradually
smoothen in space until October the 14" when the scene appears unusually
smooth. From October the 15" onward the fine features reappear and change
from day to day. It can be assumed that the cause of the strong event is that
no input Level-2 data were ingested in the ODYSSEA optimal interpolation for 5
days and that the autocorrelation spatial filter consequently became larger as

the confidence in the small scale features extracted from previous days was
reduced more and more.

Figure 5-29 and Figure 5-30 present the FLI and FGI over the North Atlantic
region, with d = 50 km, Ly = 0.5 km, and As = 50 km on ODYSSEA. They can be
directly compared to Figure 5-15 and Figure 5-16 which are the same indexes
computed with the same parameters on OSTIA. Both FLI and FGI are much
larger on ODYSSEA than on OSTIA after the source images are smoothed with a
50 km low pass filter. Similarly to the previous run, ODYSSEA frontal indexes
exhibit a larger variability from one day to the next, and artefacts of the
ODYSSEA production are seen in the indexes.
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Figure 5-26: Front Length Index (FLI) in km km~2day~! processed on daily
ODYSSEA over the North Atlantic region with d = 0 km, Ly = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.
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Frontal Gradient Index
Fronts of all MLD, 3 STD filter, index scaled by 7.0711
run: Run29 ODYSSEA daily NorthAtl NoFilt
( all ODYSSEA daily on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 5-27: Front Gradient Index (FGI) in kg m™3 km~2day~! processed on
daily ODYSSEA over the North Atlantic region with d = 0 km, Ly = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.
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Figure 5-28: Sequence of un-scaled ODYSSEA SST gradient magnitude from
09/10/2010 to 16/10/2010, from left to right and top to bottom
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FLI (Km.Km™2.day ")
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD, 3 STD filter
run: Run33 ODYSSEA weekly NorthAtl 50KmFilt
x10° ( all ODYSSEA weekly on North Atlantic, Canny of Spall95 scaling 0.5/50, 50 Km smoothing )
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Figure 5-29: Front Length Index (FLI) in km km~2day~! processed on weekly
ODYSSEA over the North Atlantic region with d = 50 km, L =0.5km, and

As = 50 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

FGI (Kg.m®.Km?2.day™)
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Gradient Index
Fronts of all MLD, 3 STD filter, index scaled by 10
run: Run33 ODYSSEA weekly NorthAtl 50KmFilt

X 10" ( all ODYSSEA weekly on North Atlantic, Canny of Spall95 scaling 0.5/50, 50 Km smoothing )
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Figure 5-30: Front Gradient Index (FGI) in kg m™3 km™?day™! processed on
daily ODYSSEA over the North Atlantic region with d = 50 km, Ly = 0.5 km, and

As = 50 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-31 shows the un-scaled gradient magnitude of the raw ODYSSEA
images averaged over the North-Atlantic. Comparing with Figure 5-22 which
presents the equivalent results for the OSTIA product, one can see that the
gradient magnitude of the raw ODYSSEA images is about 15% higher than on
OSTIA. Another difference worth noting is the inter-annual trend observable in
each datasets. While the annual average of OSTIA gradient magnitude is stable
between 2007 and 2009, there is a clear negative trend on ODYSSEA. Figure
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5-32 shows the un-scaled gradient magnitude of the 50 km low-pass filtered

ODYSSEA images averaged over the North-Atlantic. The variations are similar

to those seen on Figure 5-31, with less noise and an average reduced by about

15%. The reduction of daily noise is more obvious between Figure 5-31 and
Figure 5-32 than between Figure 5-22 and Figure 5-23. This indicated that a lot
of noise in the daily ODYSSEA gradient magnitude lays in the scales shorter

than 50 km. It should also be stressed that the gradient magnitude with 50 km
smoothing is about 15% higher on ODYSSEA than on OSTIA. This means that
there is still more dynamics above 50 km on ODYSSEA.

SST gradient (K.Km™)
calculated on North Atlantic, plotted for North Atlantic
average SST gradient
Pixels of all MLD, 3 STD filter
run: Run31 ODYSSEA SSTandGradient North Atlantic

( daily North Atlantic SST average and SST gradient average {no smoothing) on ODYSSEA )
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Figure 5-32: Average un-scaled ODYSSEA SST gradient

North Atlantic. The SST images are smoothed by a low-pass 50 km filter before
the gradient is calculated.
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Figure 5-33 and Figure 5-34 illustrate the difference in the scales that are
present in OSTIA and ODYSSEA products. It is clear that ODYSSEA images retain
much more energy at the small scales and OSTIA gradient magnitude appears
to be a smoothed version of ODYSSEA gradient magnitude. There is however
more confidence in the spatial consistency of the presence of the small scales
in OSTIA images. One can indeed observe moving patterns of smoother areas
in sequences of ODYSSEA gradient magnitude maps that are likely to be due to

evolving cloud coverage.

211



Chapter 5

10-Oct-2010 OSTIA

0.05°
no filtering
0.2
0.18
0.16
r 1014
r 012

=
VSSTin® C/Km

0.06

0.04

Figure 5-33: Un-scaled OSTIA SST gradient magnitude on 10/10/2010.
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Figure 5-34: Un-scaled ODYSSEA SST gradient magnitude on 10/10/2010.
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5.2.3 FLI and FGI from REMSS_MW

Figure 5-35 to Figure 5-38 present the FLI and FGI calculated on the
microwave-only product REMSS_MW, with d = 0 Km, Ly = 0.5 Km, As =25Km
and 50 Km. The first thing to note is that there is an obvious seasonal
variability in the microwave Level-4 product. Comparing Figure 5-35 and
Figure 5-37, one can say that the seasonal variability of the FLI is increased by
searching for weaker fronts. As for the other products, the frontal indexes
reach their annual minimum around March and their annual maximum around
September. Since REMSS does not include any infrared data, the scales present
in it are not affected by the cloud coverage. Hence the seasonal variability
observed in the frontal indexes can be described as natural. Even though the
REMSS_MW images are produced from spatially consistent input source
images, the microwave acquisitions from various sensors are merged by
means of an optimal interpolation (Ol) which is prone to errors. A few
REMSS_MW images have returned unnaturally high frontal indexes (not shown
on the figures), and investigations have exposed errors in the outputs of the
Ol. Indeed, a close look at the gradient magnitude of the REMSS_MW across the
periods when errors are suspected show that the feature resolution of the
product suddenly gets sharper for a day before going back to normal on the
hext day. This behaviour is difficult to spot by eye, however the frontal and
the gradient indexes are able to act as diagnostic tools to detect it. Comparing
Figure 5-35 with Figure 5-7, one can observe that more than twice as many
fronts are detected on OSTIA than on REMSS_MW. This can be due either to the
fact that OSTIA ingests high resolution infrared SST or to a higher smoothing in
the production of REMSS_MW data. Comparing Figure 5-37 with Figure 5-15,
one can say that 40% more fronts are detected on REMSS_MW than on OSTIA
when the latter is smoothed by a 50 km low pass filter. However, when this
smoothing is reduced to 25 km as on Figure 5-13, the frontal indexes are very
close between smoothed OSTIA and raw REMSS_MW (Figure 5-35). REMSS_MW
products feature a slightly higher gradient index than OSTIA, both when taken
raw (Figure 5-39 and Figure 5-22) and when smoothed by a 50 km running
mean (Figure 5-40 and Figure 5-23). Note that Figure 5-39 and Figure 5-40

exhibit the errors in the optimal interpolation previously mentioned.
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FLI (Km.Km™ day ™"y
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD, 3 STD filter
run: Run12 REMSS MW weekly NorthAtl NoFilt

X 10'3 ( all REMSS MW weekly on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 5-35: Front Length Index (FLI) in km km~2day~! processed on weekly
REMSS_MW over the North Atlantic region with d = 0 km, Ly = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

FGI (Kg.m® Km?2.day™)
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Gradient Index
Fronts of all MLD, 3 STD filter, index scaled by 7.0711
run: Run12 REMSS MW weekly NorthAtl NoFilt
-4

x10 (all REMSS MW weekly on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 5-36: Front Gradient Index (FGI) in kg m™3 km 2day~! processed on
weekly REMSS_MW over the North Atlantic region with d = 0 km, Ly = 0.5 km,

and As = 25 km. Times when more than 50% of the area MLD is deeper than 75
m are plotted in red.
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FLI (Km.Km™2.day™")
calculated on North Atlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD, 3 STD filter
run: Run10 REMSS MW weekly NorthAtl NoFilt

X 10'3 ( all REMSS MW weekly on North Atlantic, Canny of Spall95 scaling 0.5/50, no smoothing )
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Figure 5-37: Front Length Index (FLI) in km km~2day~! processed on weekly
REMSS_MW over the North Atlantic region with d = 0 km, Ly = 0.5 km, and

As = 50 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

FGI (Kg.m® Km2.day™)
calculated on North Atlantic, plotted for North Atlantic
Frontal Gradient Index
Fronts of all MLD, 3 STD filter, index scaled by 10
run: Run10 REMSS MW weekly NorthAtl NoFilt

X 10" ( all REMSS MW weekly on North Atlantic, Canny of Spall95 scaling 0.5/50, no smoothing )
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Figure 5-38: Front Gradient Index (FGI) in kg m™3 km2day~! processed on
weekly REMSS_MW over the North Atlantic region with d = 0 km, Ly = 0.5 km,

and As = 50 km. Times when more than 50% of the area MLD is deeper than 75
m are plotted in red.
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SST gradient [K.Km"J
calculated on Morth Atlantic, plotted for North Atlantic
average SST gradient
Pixels of all MLD
run: Aun38 REMSS MW SSTandGradient North Atlantic

{ Nerth Atlantic daily SST average and SST gradient average (no smoothing) on REMSS MW )
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Figure 5-39: Average un-scaled REMSS_MW SST gradient magnitude over the
North Atlantic.

SST gradient (K.Km™)
calculated on North Atlantic, plotted for North Atlantic
average SST gradient
Pixels of all MLD
run: Run39 REMSS MW SSTandGradient North Atlantic
( North Atlantic daily SST average and SST gradient average (50 Km smoothing) on REMSS MW )
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Figure 5-40: Average un-scaled REMSS_MW SST gradient magnitude over the

North Atlantic. The SST images are smoothed by a low-pass 50 km filter before
the gradient is calculated.

5.2.4 FLI and FGI from IFREMER_L3_IR

Figure 5-41 to Figure 5-46 present the FLI and FGI calculated on the product
IFREMER_L3 from which infrared-only pixels are extracted (therefore called
IFREMER_L3_IR) with d = 0 Km, Ly = 0.5Km, As =0Km,25Km and 50 Km. One
can note that the seasonal variability observed on the other SST datasets is
present on each of these frontal indexes. This seasonal variability is entirely
natural since the creation of IFREMER_L3_IR data does not involve any
interpolation and the scales present are consistent in time and space. Figure
5-47 and Figure 5-48 present the same indexes as shown on Figure 5-41 and

Figure 5-42 but averaged over the NAT region which is a small area in the
216



Frontal indexes

middle of the Sargasso sea ( 30 "N<latitude<35 "N and 45 "W<longitude<40 "W).
The seasonal variability is present in the time series of the frontal indexes
averaged over NAT. This indicates that the seasonal variability observed in the
North Atlantic averages is not an artefact of the spatial and temporal patterns
in the cloud coverage which may force the averaging over different areas of

different frontal densities during different seasons.

The FLI is higher on Figure 5-41 than on Figure 5-5 which is calculated with
OSTIA SST. This indicates that the assumption underlying Figure 5-5 is not
valid and that the feature resolution of OSTIA is higher than 25 km. The
IFREMER_L3_IR feature resolution is only limited by the spatial sampling of 10
km. Conversely, Figure 5-41 shows a comparable FLI range with Figure 5-11
which is the OSTIA FLI over the same region with an assumed feature
resolution of 50 km. This shows that the assumption of As = 50 Km for OSTIA
is closer to reality. However Figure 5-42 exhibits a FGI that is 35% higher than
the FGI shown on Figure 5-12 calculated with the same assumption. This
discrepancy can be interpreted as follows: whereas the scaling of the density
gradient magnitude allows correcting for the coarser OSTIA feature resolution
effect on the amount of detected fronts, it is not sufficient to retrieve the exact
gradient magnitude at the crest of the front. One can make the hypothesis that
the enhanced slope of the density at the front’s centre is underestimated by
the k2 density assumption. This point supports the case for the use of high

resolution non-smoothed SST data.
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FLI (Km.Km™.day”}
calculated on MorthAtlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD
run: Run13 IFREMER L3 weekly NorthAtl NeFilt
{ IR IFREMER L3 weekly on North Atlantic, Canny of Spalld5 scaling 0.5/10, no smeothing }

0.016 )
ol

0.014

0012 #t

0.01

0.008

0.008
v 2 2 w5 5 3 o o®m o2 2 o m @ 2 @ 8 2 2 9 = - o = w™mow
T § %8 2 2 2 T 8 2 g 8 7 T §E % % T T Zz ¥ = E
2 35 9 z =5 @ 2 = @ 2 5 @ ‘“308“‘303“‘3
= 5% w o = S5 w oo = S5 w oo = S5 ®w oo =E O 0 oo = 5 w o oa = S5

Figure 5-41: Front Length Index (FLI) in km km~2day~! processed on weekly
IFREMER_L3_IR over the North Atlantic region with d = 0 km, Ly = 0.5 km, and

As = 10 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

FGI (Kg.m™ Km™? day”)
calculated on MorthAtlantic, plotted for North Atlantic
Frontal Gradient Index
Frents of all MLD, index scaled by 4.4721
run: Run13 IFREMER L3 weekly NorthAtl NoFilt

ci10® { IR IFREMER L3 weekly on North Atlantic, Canny of Spall9s scaling 0.5/10, no smoothing §
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Figure 5-42: Front Gradient Index (FGI) in kg m™3 kday=! processed on weekly
IFREMER_L3_IR over the North Atlantic region with d = 0 km, Ly =0.5km, and

As = 10 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-43 and Figure 5-44 present the FLI and FGI calculated after an initial
smoothing of the IFREMER_L3_IR data of d = 25 km and an assumed feature
resolution of As = 25 km for the gradient scaling. They compare very well in
range to Figure 5-41 and Figure 5-42, showing that the scaling is performing
between 10 km and 25 km. The signal however seems noisier on the
smoothed IFREMER_L3_IR data. This can be attributed to the reduction of the

amount of SST available after the smoothing close to coastlines or cloud
edges.
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FLI (Km.Km® day )
calculated on MorthAtlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD
run: Rund2 IFREMER L3 weekly NorthAtl 25Km

{ IR IFREMER L3 weekly on North Atlantic, Canny of Spalld5 scaling 0.5/25, 25 Km smoaothing )
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Figure 5-43: Front Length Index (FLI) in km km~2day~! processed on weekly
IFREMER_L3_IR over the North Atlantic region with d = 25 km, Ly = 0.5 km, and

As = 25 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

FGI (Kg.m ™ Km™ day)
calculated on MorthAtlantic, plotted for Morth Atlantic
Frontal Gradient Index
Fronts of all MLD, index scaled by 7.0711
run: Rund2 IFREMER L3 weekly NorthAtl 25Km

w10t { IR IFREMER L3 weekly on North Atlantic, Canny of Spall9s scaling 0.5/25, 25 Km smoothing
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Figure 5-44: Front Gradient Index (FGI) in kg m™3 km2day~! processed on
weekly IFREMER_L3_IR over the North Atlantic region with d = 25 km,

Ly = 0.5 km, and As = 25 km. Times when more than 50% of the area MLD is
deeper than 75 m are plotted in red.

Figure 5-45 and Figure 5-46 present the FLI and FGI calculated after an initial
smoothing of the IFREMER_L3_IR data of d = 50 km and an assumed feature
resolution of As = 50 km for the gradient scaling. Compared to Figure 5-41 and
Figure 5-42 where the density field was not smoothed, both FLI and FGI are
50% lower on the smoothed and scaled field. This clearly demonstrates that
the k2 scaling does not bring back all the fronts when the features finer than

50 km are lost. This again stresses the need for high-resolution SST products
of at least 25 km for accurate front detection.
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FLI (Km.Km™ day)
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD
run: Run43 IFREMER L3 weekly NorthAtl 50Km

X 10'3 (IR IFREMER L3 weekly on North Atlantic, Canny of Spall95 scaling 0.5/50, 50 Km smoothing )
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Figure 5-45: Front Length Index (FLI) in km km~2day~! processed on weekly
IFREMER_L3_IR over the North Atlantic region with d = 50 km, Ly = 0.5 km, and

As = 50 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

FGI (Kg.m®.Km?2.day™)
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Gradient Index
Fronts of all MLD, index scaled by 10
run: Run43 IFREMER L3 weekly NorthAtl 50Km

X 10'4 (IR IFREMER L3 weekly on North Atlantic, Canny of Spall95 scaling 0.5/50, 50 Km smoothing )
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Figure 5-46: Front Gradient Index (FGI) in kg m=3 km~2day~! processed on
weekly IFREMER_L3_IR over the North Atlantic region with d = 50 km,

Ly = 0.5 km, and As = 50 km. Times when more than 50% of the area MLD is
deeper than 75 m are plotted in red.
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FLI (Km.Km™2.day™)
calculated on NorthAtlantic, plotted for NA‘
Frontal Length Index
Fronts of all MLD
run: Run13 IFREMER L3 weekly NorthAtl NoFilt
(IR IFREMER L3 weekly on North Atlantic, Canny of Spall95 scaling 0.5/10, no smoothing )
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Figure 5-47: Front Length Index (FLI) in km km~2day~! processed on weekly
IFREMER_L3_IR over the NAT region with d = 0 km, Ly = 0.5 km, and As =

10 km. Times when more than 50% of the area MLD is deeper than 75 m are
plotted in red.

FGI (Kg.m Km™ day™)
calculated on MorthAtlantic, plotted for NA‘
Frontal Gradient Index
Fronts of all MLD, index scaled by 4.4721
run: Runi3 IFREMER L3 weekly NorthAtl NoFilt

X 10 { IR IFREMER L2 weekly on North Adantic, Canny of Spall35 scaling 0.5/10, no smocthing )
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Figure 5-48: Front Gradient Index (FGI) in kg m=3 km~2day~! processed on
weekly IFREMER_L3_IR over the NAI region with d = 0 km, L =0.5km, and

As = 10 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.

Figure 5-49 and Figure 5-50 present the average North-Atlantic IFREMER_L3_IR
gradient magnitude from raw data and 50 km low-pass filtered data. As the
feature resolution of the raw IFREMER_L3_IR SST (10 km) and of the filtered
IFREMER_L3_IR SST (50 km) are well known, the k2 assumption from which the

density magnitude gradient scaling is derived can be assessed. Following (5-7),
one can derive:
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50
V401300 | = ViP5 | * [Tg % [ViPLIG01m] - 22 (5-11)

Where p;5  is the raw density derived from IFREMER_L3_IR data, whereas
PL3so, 1S SMOoOthed with a 50 km low-pass filter. It should be noted that the
assumption of a constant salinity across the fronts allows one to replace
density with temperature in (5-11). The ratio of the time average of the

measured gradient magnitudes shown on Figure 5-49 and Figure 5-50 is equal
to:

v
LA (5-12)

|V4PL35010m

Therefore the SST observations of IFREMER_L3_IR over the North Atlantic

strongly confirm the k2 assumption between the scales of 10 km and 50 km.

SST gradient (K.Km™)
calculated on North Atlantic, plotted for North Atlantic
average SST gradient
Pixels of all MLD, 3 STD filter
tun: Run46 IFREMER L3 SSTandCradient North Atlantic

( North Atlantic daily SST average and SST gradient average (no smoothing) on IFREMER L3 )
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Figure 5-49: Average un-scaled IFREMER_L3_IR SST gradient magnitude over
the North Atlantic.
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SST gradient (K.Km™)
calculated on North Atlantic, plotted for North Atlantic
average SST gradient
Pixels of all MLD, 3 STD filter
run: Run47 IFREMER L3 SSTandGradient North Atlantic 5S0Km
( North Atlantic daily SST average and SST gradient average (50 Km smoothing) on IFREMER L3 )
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Figure 5-50: Average un-scaled IFREMER_L3_IR SST gradient magnitude over
the North Atlantic. The SST images are smoothed by a low-pass 50 km filter
before the gradient is calculated.

5.3 Spall (1995) Index Of Subduction

This index is a first order estimation of the subduction at upper ocean fronts
driven by internal instabilities. As discussed in section 2.2.2, Spall (1995)
estimated the total permanent subduction rate to be 20 m/year, for a region
representative of the North Atlantic Subtropical Convergence Zone, using a
nonlinear isopycnal primitive equation mode, although local and temporary
subduction can be much larger. Here, an evaluation of the Spall index is built
on the FLI index in a simple way: wherever a front is detected on a SST image,
it is assumed that the phenomenon modelled by Spall (1995) is occurring. The
strength of the subduction is constant for all fronts detected above the
threshold of Spall (1995) and with the scaling described in section 5.2 to
compensate for the low feature resolution of the source images. A simple
scaling is applied to estimate the subduction generated by each kilometre of
front, it is calculated from the parameters of Spall (1995): 300 km of front in a
300 x 300 km domain leads to an average of 20 m/year permanent subduction
rate over the domain 25 days after the front was initialised and left to evolve
under the action of baroclinic instability. This leads to a volume of

permanently subducted water per kilometre of front of:

Vspan = 1.644 x 107 m3day tkm™! (5-13)
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Equation (5-13) allows a total length of detected fronts (FLI) to be related to a
volume and a rate of permanently subducted water at fronts. As the
Spall95_Subduction index is calculated proportionally to FLI, it has the same
variability. Figure 5-51 shows the permanent subduction calculated on OSTIA
with d = 0 km, Ly = 0.5 km, As =25 km over the North Atlantic. This run
assumes the fronts to be 0.5 km wide and the raw OSTIA images to have a
feature resolution of 25 km. The average permanent rate of subduction at
fronts varies between 25 m/year and 60 m/year with annual lows around
March/April. This is of the same order of magnitude as estimates of
subduction due to large-scale variations in atmospheric forcing, which are
typically 50-100 m/year (Spall 1995). Spatial maps of monthly average
permanent subduction calculated with this index are shown on Figure 5-52 for
two typical maximum months (August 2006 and August 2007) and for a
typical minimum month (April 2008). They show a strong spatial variability
with an intensive permanent subduction in the Gulf Stream region, the
Mediterranean Sea, the North Sea and on Moroccan Coasts around August.
Conversely, the permanent subduction at fronts appears extremely low over
the Sub-Tropical gyre of the North Atlantic. Around April, there is less
subduction on average over the North-Atlantic, especially around the Gulf
Stream but also over the Mediterranean Sea. There is however an increased

subduction over the Sub Tropical gyre.

Figure 5-53 presents the same subduction index calculated with an assumed
frontal width of L, = 1 km. The variability is not changed although the
magnitude of the subduction is largely reduced as it varies between 12 m/year
and 31 m/year. This run is closer to the 20 m/year subduction estimated by
Spall (1995). This illustrates the sensitivity of the permanent subduction rate

index to the assumed frontal width.

The results of this parameterization should be interpreted with caution over
the shelf seas where the fronts are controlled by rather different dynamics.

Moreover these regions are often unstratified.
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Spallgs Subduetion (m.year ')
calculated on MorthAtlantic, plotted for Narth Atlantic
Frontal Length Index
Fronts of all MLD, 3 STD filter
run: Run® OSTIA weekly NorthAtl NaFilt
{ all OSTIA weekly on North Atlantic, Canny of Spalld5 scaling 0.5/25, no smoothing )
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Figure 5-51: Spall (1995) index of permanent subduction (Spall95_Subduction)
in m year~! processed on weekly OSTIA over the North Atlantic region with
d=0km, Ly = 0.5 km, and As = 25 km. Times when more than 50% of the area
MLD is deeper than 75 m are plotted in red.
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Spall95 Subduction (m.year'w)
Index of Permanent Subduction at fronts based on Spall(1995) scaling
OSTIA
August 2006
run: Run15 OSTIA daily NorthAtl NoFilt ( all OSTIA daily on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Spall95 Subduction (m.year'])
Index of Permanent Subduction at fronts based on Spall(1995) scaling
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run: Run15 OSTIA daily NorthAtl NoFilt ( all OSTIA daily on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Index of Permanent Subduction at fronts based on Spall(1995) scaling
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Figure 5-52: Maps of average monthly Spall95_Subduction index in m year!
processed on daily OSTIA over the North Atlantic region with d = 0 km,

Ly = 0.5 km, and As = 25 km. Top: August 2006, middle: August 2007, bottom:
April 2008.
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Spall95 Subduction (m. year")
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Length Index
Fronts of all MLD, 3 STD filter
run: Run17 OSTIA weekly NorthAtl NoFilt

( all OSTIA weekly on North Atlantic, Canny of Spall95 scaling 1/25, no smoothing )
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Figure 5-53: Spall (1995) index of permanent subduction (Spall95_Subduction)
in myear~! processed on weekly OSTIA over the North Atlantic region with
d=0km, Ly =1 km, and As = 25 km. Times when more than 50% of the area
MLD is deeper than 75 m are plotted in red.

5.4 Lapeyre and Klein (2006) index of vertical velocity

The Lapeyre_Klein index aims at capturing the vertical velocity generated by
frontogenesis when a background straining field stirs a filament as described
by Lapeyre and Klein (2006). These filaments are bounded by fronts, which are
strengthened whenever the fronts are elongated (see section 2.2.5). The
resulting thermal-wind imbalance generates vertical motions that are governed
by the Omega equation. The authors calculate a scaling of this equation, based

on SQG regime characteristics, they obtain:

w(z) =%ﬁ—f%exp(z/D) (5-14)

Where z is the depth, w is the vertical velocity generated by frontogenesis, o is
a scale for the surface large-scale strain field, D is a scale for the vertical decay
of density, N? is the Brunt-Vaisala frequency:

g

N2=—% 20 (5-15)

Ap is the density variation across the fronts that bound the filament. D is the

vertical length scale to which the density decays exponentially.
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The vertical profile of w(z) is maximum at z = D, where

Wmax =w(D) =——e (5-16)

The Lapeyre_Klein index developed in the context of this thesis is a measure of
the upwelling across the depth D at small scale fronts. Fronts are detected with
the Canny algorithm and the maximum vertical velocity generated by

frontogenesis is evaluated as follows:

e The surface large scale strain field ¢ is calculated following
Johnston et al. (2011):

)

x and y are the horizontal coordinates and u and v are horizontal velocities,

which are positive eastward and northward. o is calculated from gridded
altimetry products of absolute geostrophic velocities. The altimeter products
were produced by Ssalto/Duacs and distributed by Aviso, with support from

Cnes (http://www.aviso.oceanobs.com/duacs/).

e The Brunt-Vaisala frequency is scaled following Lapeyre and

Klein (2006) for small scale filaments: N = 62.5 f.

e Apis calculated from the density gradient magnitude measured
by the Canny algorithm over the crest of the fronts and the
assumed front width.

As for the previously mentioned indexes, the Lapeyre_Klein index depends on
four parameters: the SST dataset, d the size of the smoothing filter, Lf an

estimate of the typical local width of fronts, and As an estimate of the feature

resolution of the SST product after the smoothing stage.

The parameter L; influences the index in three independent ways:

e As with the previously mentioned indexes, it is used for the

scaling of the density following Equation (5-7).
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e ltis also used in the calculation of Ap from the density gradient
magnitude measured by the Canny algorithm over the crest of

the fronts.

e Finally, it is accounted for in the integration of the vertical
velocity calculated on the crests of the fronts into a vertical
transport over the surface of the fronts. The underlying
assumption is that the upwelling occurs with the same strength
across the width of the front and that it is not present further
away from the crest than half the width of the fronts on each

side.

The sensitivity of the frontal index to L, is a competition between opposite
effects. When it increases, the scaling of the density is reduced. Conversely,
when L, increases Ap increases which results in a higher vertical velocity wy,q,
estimated on the crest of the fronts. In addition, the calculated vertical velocity

is integrated over a larger frontal width.

Because the index targets the small scale fronts, it is calculated on IFREMER
Level-3 SST products, from which the infrared measurements are extracted. No
smoothing being applied in the production of these products, the feature
resolution is equal to the images grid resolution As = 10 km. Neither is
smoothing applied before the fronts are detected: d = 0 km. The Canny
threshold is setto T = 1073 kg m™3 km™1, which is a very low value allowing the

capture of the highest number of fronts, even the weakest ones.

The index is first calculated over the Sargasso Sea, the region in the gyre in the
middle of the North Atlantic. The definition of the Sargasso region is presented
as a red dotted rectangle in Figure 5-56. It is of interest as it is believed to be a
region of low dynamical activity in an oligotrophic balance. As discussed in

Chapter 2, it is suspected that the vertical nutrient flux budget could be closed

by the vertical exchanges at fronts.

Figure 5-54 presents the Frontal Length Index (FLI) integrated over the

Sargasso region defined in Figure 5-56. It is detected on the infrared IFREMER

Level 3 products, with no smoothing involved at all (apart from the down-

sampling of the Level-2 single-sensor SST datasets from about 1 km to 10 km,

the final resolution of the Level-3). The seasonal cycle is visible with a lower
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FLI during winter and a higher one during summer. The frontogenesis-induced
upwelling at fronts as estimated following Lapeyre and Klein (2006) scaling is
averaged over the Sargasso Sea region into the Lapeyre_Klein_SSH index
shown on Figure 5-55. This index also exhibits a seasonal variability with a
higher upwelling during summer. However it also features an inter-annual
signal under the form of a higher summer maximum during 2010 than during
2009 or 2008.

The temporal average upwelling rate due to vertical circulation at fronts is
0.15 m/day. This value is comparable in magnitude with the value estimated
by Lapeyre and Klein (2006) of about 0.85 m/day. The discrepancy may be a
consequence of the difference in dynamical activity between the region
numerically simulated by Lapeyre and Klein and the Sargasso region. Indeed
the authors base their analysis on a turbulent eddy field which is more
energetic than the Sargasso region. Another reason could be a wrong
assumption about the fronts width followed by the author of this thesis.
Ignoring the sensitivity of the frontal detection process to the parameterized
frontal width, which is due to the density scaling, the Lapeyre_Klein_SSH index
calculated with two different frontal width would be purely proportional.
Indeed,

W(Lf =xkm) = W(Lf =1km)-x3/? (5-18)

where w(L; = x km) is the Lapeyre_Klein_SSH index of upwelling calculated
while assuming a frontal width L; = x km. Hence, while the assumption

Ly =1 Km leads to a temporal average upwelling rate due to vertical circulation
at fronts of w(L; = 1 km) = 0.15m/day , assuming Ly = 0.5 km would have led
to w(Ls = 0.5 km) = 0.05m/day. Conversely, a larger assumed frontal width
would lead to a higher estimated frontal upwelling: W(Lf =2 km) = 0.43 m/day
and w(L; = 5 km) = 1.68 m/day.
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FLI (Km.Km™ day™"}
calculated on Sargasso, plotted for Sargasso Small
Frontal Length Index
Fronts of all MLD
run: Run62 IFREMER L3 daily Sargasso Lapeyre Klein SSH FW1
( All IFREMER L3 on Sargasso, frontal width 1 Km, Canny of 0.001, no smoothing )
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Figure 5-54: Front Length Index (FLI) in km km~2day~! processed on daily
IFREMER_L3_IR over the Sargasso Sea region with d = 0 km, Ly =1 km,

As =10 km, and T = 1073 kg m~3 km~1. Times when more than 50% of the area
MLD is deeper than 75 m are plotted in red.

Lapeyre Klein SSH (m. day")
calculated on Sargasso, plotted for Sargasso Small
Lapeyre and Klein (2006) scaling for upwelling rate
Fronts of all MLD
run: Runé2 IFREMER L3 daily Sargasso Lapeyre Klein SSH FW1
( All IFREMER L3 on Sargasso, frontal width 1 Km, Canny of 0.001, no smoothing )
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Figure 5-55: Lapeyre_Klein_SSH index of frontogenesis induced upwelling in
m.day~! processed on daily IFREMER_L3_IR over the Sargasso Sea region with
d=0km, Lf=1km, As =10km, and T = 1073 kg m™3 km™. Times when more
than 50% of the area MLD is deeper than 75 m are plotted in red.

Although the quantitative measure of the small scale frontal upwelling due to
large scale strain requires a more precise understanding of the frontal width,
the spatial and temporal variability is independent from it and conclusions can
be drawn based upon them. The monthly composite of the index over the
Sargasso region is mapped on Figure 5-56. It shows that the upwelling occurs
mainly over the Gulf Stream region, this is not surprising as it is known to be a
dynamic area. However one can observe scattered and very localized frontal

areas where the vertical transport is taking place at a lower rate even at places
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where not much vertical activity is expected at small scales. This measured
activity has a non-negligible effect on the vertical transport once averaged

over the Sargasso Sea as shown on Figure 5-55.

Lapeyre Klein SSH (mS.Km'Z.day'w)
Lapeyre and Klein (2006) scaling for upwelling rate
IFREMER L3
MEAN over June 2010
run: Runé2 IFREMER L3 daily Sargasso Lapeyre Klein SSH FW1
( Al IFREMER L3 on Sargasso, frontal width 1 Km, Canny of 0.001, no smoothing )

Figure 5-56: Monthly composite of the Lapeyre_Klein_SSH index of
frontogenesis induced upwelling in June 2010 processed on daily
IFREMER_L3_IR over the Sargasso Sea region (shown by the red dotted line)
withd =0km, Ly = 1km, As =10 km, and T = 1073 kgm™3 km™1.

Figure 5-57 and Figure 5-58 present the temporal variability of the FLI and
Lapeyre_Klein indexes over the Mediterranean Sea. They are calculated in the
same way as over the Sargasso Sea except for the mesoscale strain which is
estimated from the Mediterranean MADT AVISO product. Both the FLI and the
Lapeyre_Klein indexes exhibit seasonal variability with a low in winter and a
high in summer. It is interesting to note that the two indexes show different
annual signal and that the Lapeyre_Klein index seasonal variability is more
pronounced. The Lapeyre_Klein index over the Mediterranean Sea is about
twice as high as that of Lapeyre_Klein_SSH over the Sargasso Sea. It should be
added that assuming the mesoscale strain to be constant at ¢ = 2.5-107°s71,
following the classical value related to small-scale filaments taken by Lapeyre

and Klein (2006), leads to the underestimation of the Lapeyre_Klein_SSH by a
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factor of two. Finally, there is no clear inter-annual signal in the Lapeyre_Klein

index over the Mediterranean Sea over the years when IFREMER Level-3 data
are available.

FLI (Km.Km2.day™")
calculated on Med, plotted for Mediterranean
Frontal Length Index
Fronts of all MLD
run: Runé8 IFREMER L3 daily Med Lapeyre Klein FW1
( AllIFREMER L3 on Med, MADTmed, frontal width 1 Km, Canny of 0.001, no smoothing )
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Figure 5-57: Front Length Index (FLI) in km km~2day~! processed on daily
IFREMER_L3_IR over the Mediterranean Sea region with d = 0 km, Ly =1 km,

As =10 km, and T = 1073 kg m=3 km~1. Times when more than 50% of the area
MLD is deeper than 75 m are plotted in red.

Lapeyre Klein SSH (m.day")
calculated on Med, plotted for Mediterranean
Lapeyre and Klein (2006) scaling for upwelling rate
Fronts of all MLD
run: Runé8 IFREMER L3 daily Med Lapeyre Klein FW1
( AllIFREMER L3 on Med, MADTmed, frontal width 1 Km, Canny of 0.001, no smoothing )
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Figure 5-58: Lapeyre_Klein index of frontogenesis induced upwelling in
m.day~! processed on daily IFREMER_L3_IR over the Mediterranean Sea region
withd =0km, Ly = 1km, As =10 km, and T = 1073 kg m™3 km™'. Times when
more than 50% of the area MLD is deeper than 75 m are plotted in red.

Figure 5-59 presents the average spatial variability of the Lapeyre_Klein index
over the Mediterranean Sea during the month of September 2010. As for

Figure 5-56, higher upwelling rates are observed in the vicinity of strong fronts
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and eddies, although a non-negligible portion of it occurs in less dynamical

regions.

Lapeyre Klein SSH [mg.!(m E.da\uI 1]
Lapeyre and Klein (2006) scaling for upwelling rate
IFREMER L3
September 2010
tun&g IFREMER L3 daily Med Lapeyre Klein FW1 ( All IFREMER L3 on Med, MADTmed, frontal width 1 Km, Canny of 0.001, gqgﬁoming )
_ ] 10

Figure 5-59: Monthly composite of the Lapeyre_Klein index of frontogenesis
induced upwelling in September 2010 processed on daily IFREMER_L3_IR over
the Mediterranean Sea region with d = 0 km, Ly = 1 km, As =10 km, and

T=103kgm=3 km™.

5.5 Capet et al. (2008) index of frontogenesis

This section presents the exploration of the frontogenesis driven by the
horizontal strain following analytical and numerical results of Capet et al.
(2008b) through satellite observations. Section 2.4 introduces the
frontogenesis function defined by Capet et al. (2008b):

Fs = Qs Vyp (5-19)

Where

(5-20)

_ (au dp Odvdp dudp OJv ap)
ST \oxox ' dxdy'dyodx  dydy

x and y are the horizontal coordinates and u and v are horizontal velocities,

which are positive eastward and northward.
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Fs is a measure of the rate of increase of the horizontal density gradient arising

from the straining by the horizontal velocity field. Hoskins (1982) states:

2
sz (5-21)

Dt

Where F is the addition of the straining by the horizontal density field (Fs), the
straining deformation by vertical velocity, the vertical mixing and the

horizontal diffusion.

A frontal index is constructed that is a quantitative measure of F; over the
detected fronts. The author of this thesis is not aware of any direct analytical
link between this function and the rate of vertical velocity at fronts. However
Capet et al. (2008b) show a very strong correlation between Fs and vertical
circulation at small scale. Fs is then considered as a valuable indicator of

vertical exchanges at fronts driven by frontogenesis.

As done in the previous section, the horizontal surface velocity field is
approximated to its mesoscale geostrophic component. It is taken from
satellite AVISO altimetry measurements. As opposed to the Lapeyre_Klein_SSH
index presented in the previous section, the Capet_Fs index accounts for the

relative orientations of the surface fronts and the surrounding mesoscale field.

Figure 5-60 displays a fairly cloud-free Level-3 SST map of the California
upwelling that Capet et al. (2008b) attempted to model. This image features
small scale frontal instabilities along the upwelling which are comparable to
the ones present on Capet et al. model output shown on Figure 2-7. The model
output benefits from a finer spatial resolution (0.75 km) than the Level-3 SST
image (0.1 7). The horizontal surface density gradient magnitude is shown on
Figure 5-61. It can be compared to the model output on Figure 2-8.a. Note that
the density on Figure 5-61 is scaled following (5-7) and an assumed front
width of 0.5 km. Scaling the model output density gradient to account for its
resolution in the same way would require the multiplication of the model
output density gradient by 1.22. The scaled maximum density gradient

observed on the model is

Vo lmaxmoder = 12.2 x 107° kg.m™* (5-22)
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Whereas the scaled maximum observed on the Level-3 SST image (after a few

high pixels are discarded) is
|Vhp|max’557~ =15 % 10_5 kg.m_4 (5'23)

Section 5.2 shows that the OSTIA SST products do not allow one to measure
the high density gradient magnitude that Capet et al. (2008b) model is
claiming to occur over the California Current system, even after the scaling to
account for their reduced feature resolution is applied. Conversely, Equations
(5-22) and (5-23) demonstrate that the IFREMER Level-3 SST products feature

such high density gradient magnitude once they are scaled.

Figure 5-62 displays Fs calculated from the SST shown on Figure 5-60 and the
AVISO altimetry product. Comparing to Figure 2-8.c, the spatial distribution of
Fg appears similar from the model and as calculated from satellite
observations. It generally follows the patterns of high density gradient with an
added effect originating from the position of the fronts within the straining
field. Most of the strong frontal regions on Figure 5-62 feature a frontogenesis
function Fg above 3 x 107 kg?m~8s~1. The model output features most fronts
above 6 x 107 kg?m=8s~1, which is twice as high. This discrepency is most
probably due to the low resolution of the altimetry data compared to the
model horizontal velocities and to the fact that the ageostrophic circulation

effect on local strain is ignored in the calculations leading to Figure 5-62.

The Capet_Fs index is based on the frontogenesis function F; as defined above
but integrated only on the front crests. It is therefore a measure of the amount
of fronts and the frontogenetic forcing of the mesoscale straining field on
them. This is illustrated on Figure 5-65 which represents the map of Capet_Fs
on one day. The time series of the geographically-averaged Capet_Fs index is
shown on Figure 5-67 while the FLI based on the same parameters is shown on
Figure 5-66. These two indices are calculated with d = 25 km, L = 0.5 km, and
As = 25 km on OSTIA. It is worth noting that the MLD is constantly shallower

than 75 m in the California Current region.

The seasonal variability is obvious in these two signals, whereas the cloud
coverage shown on Figure 5-64 does not feature any clear seasonal variability.
This indicates that the seasonal variability observed in OSTIA fronts over this

region is not an artefact of the data introduced by the seasonal variability of
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the cloud coverage. As for the Lapeyre_Klein_SSH index, it should be stressed
that, although the FLI and Capet_Fs feature a common seasonal variability,
they are not proportional and a signal is clearly added within Capet_Fs by the
frontogenesis function. Comparing the two indexes around March 2007, one
can notice a difference in the indexes shapes. On March 2007 both indexes
reach an annual minimum, but the Capet_Fs index remains low much longer
than the FLI. One can conclude that not only the FLI is low at that period but
also the frontogenesis function. A low frontogenesis function can be caused
either by a low density gradient magnitude, which also results in a lower FLI,
or a low Qg, or a low projection of Qs on the density gradient. The fact that the
Capet_Fs index remains low longer than FLI indicates that the straining of the
mesoscale field is reduced around March. Figure 5-68 illustrate the difference
between the simple FLI and the Capet_Fs index embedding the configuration of
the flow with regard to the fronts. In August 2009 fronts are detected nearly
evenly over the California Current region, however the frontogenesis appears
to occur with more strength close to the coastline at 40°N. Other areas are
populated with many fronts but do not seem to host strong frontogenesis

action of the mesoscale flow as resolved by the altimetry products.
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Figure 5-60: IFREMER Level-3 SST image of the California Current upwelling on
01/09/2008.
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Figure 5-61: Density gradient magnitude on 01/09/2008 calculated from the
SST shown on Figure 5-60.
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Figure 5-62: Frontogenesis function Fg in kg?m=8s~1 calculated from the
density gradient magnitude shown on Figure 5-61 and altimetry data on
01/09/2008.
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Figure 5-63: California Current region over which the frontal indexes are
calculated on Figure 5-66 and Figure 5-67.
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Figure 5-64: Percentage of cloud coverage over the California Current region
from NOAA.
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Figure 5-65: Frontogenesis funtion Fg in kg?m=8s™1 calculated on OSTIA of
27/07/2008 in the California Current Region, plotted on the fronts detected
with d = 25 km, Ly = 0.5 km, and As = 25 km. Black arrows are the altimetry
AVISO MADT horizontal velocities on the same day, used in the calculation of

Fs.
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( all OSTIA daily on California Current, frontal width 0.5 Km, Canny of Spall95 scaling 0.5/25, 25 Km mean smoothing )

N R N
% "!: L ¥
2 L S
0
w o o® B ® R M~ R o®m B D @ & & @ @ o o O
2 £ 8 38 8 g 5 88§ 3 ¢ ¢ g g ¢z g 3
5 @ = 5 & = 5 & = 5 @ 2 5 &
= = o a = = W o = = [ (=1 = = u [=] = = W

Figure 5-66: Front Length Index (FLI) in km km~2day~?!

Mar11
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Dec10

processed on daily

OSTIA over the California Current region with d = 25 km, Ly =0.5km, and

As = 25 km. The MLD is constantly shallower than 75 m.
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Capet Fs (ng.m'7.s".Km'2.day")

calculated on CalCur, plotted for California Current
Capet et al. (2006) frontogenesis function (Fs)
Fronts of all MLD
run: Run51 OSTIA daily CalCur 25KmFilt CapetFs FW0.5
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Figure 5-67: Capet_Fs index of frontogenesis in kg?m~7"s 1km2day!
calculated on daily OSTIA SST images over the California Current region with
d =25km, Ly = 0.5 km, and As = 25 km. The MLD is constantly shallower than
75 m.
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Figure 5-68: Monthly-averaged FLI and Capet_Fs index calculated on
OSTIA with d = 25 km, Ly = 0.5 km, and As = 25 km, shown on August

2009 and January 2010.
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5.6 Fox-Kemper and Ferrari (2008) index of

restratification at fronts

This section presents the Fox_Kemper frontal index that attempts to capture
the restratification by mixed layer eddies (MLE) that develop from baroclinic
instabilities of ocean fronts. MLE effects on stratification are described in
section 2.3. This frontal index is based on the parameterization of the MLE
restratification suggested by Fox-Kemper and Ferrari (2008) (hereafter referred
to as F-KF). The equivalent vertical heat flux due to MLE restratification is
estimated as a function of the horizontal buoyancy gradient, the mixed layer

depth and the inertial period:

=, 2 2
P Ce|VD?| H (5-24)
ga  |f]

cppw'T' =

Where c, is the water specific heat, a is the thermal expansion coefficient,

C, = 0.06 is the stirring efficiency coefficient estimated by F-KF, H is the mixed
layer depth. VbZ is the horizontal buoyancy gradient averaged vertically over
the mixed layer. The buoyancy is defined by b = —gp/p,. The double overline
indicates horizontal averaging onto the grid of the coarse numerical model this
parameterization is developed for, and primes denote submesoscale

perturbations from the coarsened averages.

MLE fluxes are a rearrangement of buoyancy and not a source, but F-KF
convert the flux to heat flux units in order to allow ready comparison of the

MLE restratifying fluxes to air-sea heat fluxes.

This parameterization is intended to improve coarse resolution OGCM that do
not resolve the submesoscale by having them account for the restratification
produced by horizontal buoyancy gradients which occurs at small scales.
However F-KF estimate the climate implications of this parameterization by
applying the restratification scaling to satellite observations. They estimate the
mixed layer depth from the de Boyer Montegut et al. (2004) climatology and
use a constant a; = 2-107*K 1. They claim that estimating the horizontal
buoyancy gradient from SST satellite data leads to unrealistically high values of
vertical fluxes that would quickly restratify the mixed layer worldwide. Their

interpretation is that the SST overestimates the buoyancy gradient because of
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temperature-salinity compensation at the surface. Alternatively, they estimate
the horizontal buoyancy gradients from satellite altimetry. They calculate the
vertical fluxes to be comparable to monthly mean air-sea fluxes in large areas
of the ocean which suggests that restratification by mixed layer eddies is a

leading order process in the upper ocean.

The index implemented in the context of this thesis relies on preliminary
frontal detection on the surface density fields derived from SST images. The
parameterization is applied only at the fronts and across their width. This
strategy allows minimizing the bias created by the compensation, as does the
flagging of the estimations relying on a majority of pixels with a mixed layer
depth deeper than 75 m. As for the Lapeyre_Klein frontal index, the
Fox_Kemper index relies on the assumed frontal width L. This parameter
affects the calculation of the index in the scaling of the density gradient
magnitude to account for the limited feature resolution of the SST images.
Independently, it is also used in the calculation of the surface over which the
estimated flux is integrated (along the detected front length and across the
assumed front width) for the calculation of spatial averages. The mixed layer
depth is again extracted from the de Boyer Montegut et al. (2004) climatology.
The thermal expansion coefficient is not taken to be constant as assumed by F-
KF but is estimated from the SST and the WOA climatology for SSS with the
GSW toolbox. The estimation of the horizontal buoyancy gradient from the SST
rather than from satellite altimetry obviously permits the observation of much
finer spatial and temporal scales (0(10 km) and 0(1 day) versus 0(100 km) and
(30 days) ).

The time series of the geographically-averaged Fox_Kemper index is shown on
Figure 5-70 while the FLI based on the same parameters is shown on Figure
5-69. These two indices are calculated with d = 0 km, Ly = 0.5 km, and

As = 10 km on IFREMER_L3_IR over the North-Atlantic region. The FLI index
features a seasonal variability described above with a low in winter and a high
in summer. Conversely, the Fox_Kemper index features an opposite seasonal
variability. This is due to the strong influence of the mixed layer depth in this
index. The mixed layer depth contributes to the Fox_Kemper signal with more
strength than the quantity of detected fronts. The former is extracted from a

monthly climatology which explains small discontinuities in the Fox_Kemper
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temporal signal. The variability of Fox_Kemper within one month hence is
entirely due to the variability of detected fronts and their strength. This shows

that the frontal signal is not negligible in the Fox_Kemper index.

The North-Atlantic average of MLE-induced restratifying flux varies from 1 W.m
2 in the summer to 15 W.m? in the winter when the MLD is large. It should be
recalled that the winter values are associated with a lower confidence since the

phenomenon of compensation is more likely to introduce a bias.

Figure 5-71 presents the spatial distribution over the world ocean of the
monthly average of MLE-induced restratifying flux in February 2010 and
August 2010. It compares fairly well with the heat flux calculated by F-KF from
altimetry shown on Figure 5-72. In February, the F-KF heat flux is slightly
higher on the Gulf Stream West of 30°W and nearly zero elsewhere. The flux
shown on Figure 5-71 is lower however more spread around over the ocean,
with non-negligible values south of the Gulf Stream and north of the Antarctic
Circumpolar Current in the South Atlantic. The restratifying flux is also twice
as high as calculated by F-KF on the Mediterranean Sea. Similarly to F-KF
results, a high restratifying flux is observed in regions which are crucial for
communication between the atmosphere and ocean such as deep water
formation regions. F-KF compared the restratifying flux to the Grist and Josey
(2003) air-sea heat flux dataset and found that the flux they calculated is most
of the time comparable to the air-sea heat flux. During active convection
events in times of extreme heat fluxes, MLE fluxes are overwhelmed by air-sea
fluxes, although they are comparable to the monthly mean fluxes and will

restratify after cooling events (F-KF).

The Fox_Kemper index was also calculated with an assumed front width of

Ly = 1 km. Far fewer fronts were detected although the surface over which the
flux is integrated is increased and the resulting restratifying flux is very close
in absolute value to the one shown on Figure 5-70. This shows that this index

has a low sensitivity to Ly.
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Figure 5-69: Front Length Index (FLI) in km km~2day~! processed on daily
IFREMER_L3_IR over the North Atlantic region with d = 0 km, L =0.5km, and

As = 10 km. Times when more than 50% of the area MLD is deeper than 75 m
are plotted in red.
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Figure 5-70: Fox_kemper index of restratification at fronts in W.m™2
processed on daily IFREMER_L3_IR over the North Atlantic region with d =

0 km, Ly = 0.5 km, and As = 10 km. Times when more than 50% of the area
MLD is deeper than 75 m are plotted in red.
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Figure 5-71: Monthly average of Fox_kemper index of restratification at fronts
in W.m~2 processed on daily IFREMER_L3_IR with d = 0 km, Ly = 0.5 km, and
As = 10 km. February 2010 (top) and August 2010 (bottom).
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Figure 5-72: Equivalent vertical heat flux due to submesoscale restratification
of the mixed layer as estimated by Fox-Kemper and Ferrari (2008). February
(top) and August (bottom).
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5.7 Conclusion

This chapter has built on the combination of results from the first three
chapters. Dynamical studies presented in chapter 2 which allow surface
horizontal density gradients to be related to vertical exchanges were used in
synergy with the critical understanding of frontal detection methods and of
analysis SST products presented in chapter 3 and 4 respectively. A
methodology for the processing of frontal indexes was developed (see section
5.1.2) that allows a large number of adjustable parameters to be handled. The
combinations of these can potentially specify a very large amount of
operations. This methodology relies on a Matlab-based software that was
developed by the author of this thesis in order to produce the results
discussed in the rest of the chapter. This software is a very important
achievement of the study as it was proved capable of dealing with the
complexity involved in the frontal detection within high resolution SST data
and over long time series. It also demonstrated the necessary flexibility to
adapt to many different input data and frontal calculations. Finally its
robustness permitted massive data crunching exercises that led to the

diversity of results presented in this chapter and the next.

The approach used for scaling of the horizontal gradient based on the k2
assumption to account for the resolution and the feature resolution of the
input dataset was investigated and shown to be performing well between 10
and 50 km (see section 5.2.1). This scaling performs well at estimating the
effect of smoothing on spatial averages of the temperature gradient but does
not precisely reconstruct the SST gradient at the front crests. The highest
resolution SST data are therefore still needed for optimized frontal exploration.
The errors associated with this scaling are two-fold: first the SST images may
not have a wavenumber spectrum scaled to k2 (in particular when the product
is very smooth like OSTIA), and second because the k? is good at
approximating the gradient average over a large region but not as accurate for
reconstructing the gradient at the front crest where the Canny algorithm

assesses the frontal strength.

A strategy was implemented in section 5.1.3 to minimize the errors introduced
by temperature-salinity compensation at fronts, by flagging results associated

to a mixed-layer depth larger than 75 m. This approach is an attempt to make
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the most of currently available results by others on temperature/salinity
compensation in the mixed layer, although these results are not fully
conclusive. Therefore the flagging of potential compensation in this thesis
should be interpreted with care. A great deal of additional confidence would
be attached to the results of this thesis if a better understanding were reached
on the phenomenon of compensation. A methodology to calculate density
gradient from temperature gradient with a climatology of surface salinity was
also described, assuming a constant salinity across the fronts (i.e. no

compensation).

The frontal detection methodology as presented (see section 5.2) relies
strongly on three parameters: the estimated finer spatial scale present in the
ingested SST images, the minimum strength of the fronts that are retained and
composited in the indexes, and in some cases the assumed width of the
fronts. It was considered important to select the most appropriate values for
these parameters for each study cases as they have a combined effect on the
amount of detected fronts and on their estimated strength. The threshold on
the minimum strength of fronts to retain is important as it is understood that
the combined effect of weak fronts can be a significant contributor in some
geophysical budgets. Little was found in the dynamical studies on the
minimum strength at which a front has an impact on regional budgets. A
threshold suggested by Capet el a. (2008b) was discarded as it was not
observed in the Level-4 SST images. The choice was made to retain a threshold
based on the results presented by Spall (1995) as it appeared to return an
appropriate quantity of fronts when used in combination with the SST gradient
scaling. The frontal width was taken as 0.5 km but the variability of the results

was conserved when assuming a frontal width of T km.

Future theoretical or analytical studies could largely improve the selection of
these parameters and therefore provide more confidence in the absolute
frontal indexes. In-situ measurements of temperature and salinity by ferry-
boxes on research ships or opportunity ships have the potential to provide
surface density profiles with a spatial resolution sufficiently fine to explore the
frontal width spatial and temporal variability. Satellite SST images could be
used in synergy to account for the angle between the ship track and the
considered fronts. Infrared Sea Surface Temperature Autonomous Radiometer

(ISAR) acquisitions on ships of opportunity also provide this potential for sea
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surface temperature (Donlon et al. 2008). The drawback of such
measurements is their low spatial and temporal coverage limited to the ship
tracks and position at any given time. High-resolution satellite Level-2 SST data
such as AATSR could be used in a complementary approach which would take
advantage of their global coverage (despite cloud hindering) for fronts of

width larger than 1 km.

The estimation of the amount of small scales present in the SST images is an
important factor in the quantitative frontal results. The resolved scales are well
understood for Level-2 and Level-3 products, but it was explained that they are
not easily estimated on Level-4 SST products. Absolute care must be taken
when detecting fronts on Level-4 SST products as this detection relies on small
scale variations. Yet the scales resolved by a particular Level-4 SST product
may vary in space and time as a result of available SST data and the complex
behaviour of the Optimal Interpolation. For the time being, very little
information is provided to the users of such products regarding the smoothing
involved in its production. It is a strong recommendation concluding this
thesis that more visibility on this aspect should be provided to the users by
the Level-4 SST producers. This information is however not straightforward to
obtain, even for the engineers and scientists in charge of the Level-4 SST
production. This is why a large effort and an important outcome of this thesis
is the in-depth analysis of the scales present in the various Level-4 SST
products by means of their frontal content. This analysis was required to gain
confidence in the geophysical results of this thesis but will also be an

independent assessment of great interest to the Level-4 SST producers.

The basic frontal indexes of frontal length (FLI) and strength (FGI) were
introduced in section 5.2 and were shown to be useful indicators in the study
of the scales and artefacts present within the Level-4 analysis SST products. It
was shown that OSTIA data have an average feature resolution of about 40 km
over the North Atlantic with a significant portion below 25 km. The analyses
showed that this feature resolution varies in space but most probably not in
time. The frontal indexes could also be used for inter-comparisons between
the various available Level-4 SST products. The difference between OSTIA and
ODYSSEA is interesting as fewer fronts are detected on ODYSSEA but those that
are detected are stronger than OSTIA. ODYSSEA was shown to retain more

energy at small scales although it appears to be more inconsistent in time with
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regard to the presence of these small scales. REMSS_MW contains a similar
quantity of fronts as OSTIA after the latter is filtered by a 25 km low-pass
filter. ODYSSEA and REMSS are generally noisier than OSTIA. Several instances
of production artefacts were detected by means of the frontal indexes, some
of these artefacts being not easily spottable by eye. The inter-annual variability
of the FGl is different when detected on these various Level-4 products. This
stresses the importance of eliminating the biases introduced by the spatial and
temporal variability of the feature resolution. For inter-annual frontal
exploration, the Level-3 datasets are the most relevant as they have a constant
feature resolution. Since the Level-3 datasets are not available on periods
longer than a few years, the following chapter is constructed on frontal results
obtained from the OSTIA reanalysis product. OSTIA optimal interpolation offers
the best spatial and temporal consistency of the feature resolution of the

Level-4 products.

A seasonal signal with a high frontal index during the summer and a low one
during winter was observed on every product over the North Atlantic. It was

demonstrated to be mostly a natural signal through frontal exploration on un-
smoothed Level-3 SST data. This aspect is explored in more detail in the next

chapter.

Several quantitative indexes of dynamics occurring at fronts were constructed
from the processing of SST images but also in synergy with altimetry data and
climatologies of salinity and mixed layer depth, making use of the published
state of the art of the dynamics occurring at fronts. The Spall_95 index
presented in 5.3 relies on simple scalings of the subduction at fronts based on
Spall (1995). This index does not deliver much more than the FLI index, apart
from attempting to carry quantitative estimates of subduction at fronts. A
limited confidence is associated to it as it relies strongly on the assumption on
the frontal width. It should be regarded as a qualitative scientific index in the
open ocean. In common with the other indexes presented, the author of this

thesis does not believe it to be valid on shelf-sea waters.

The Lapeyre_Klein index, discussed in 5.4, is more advanced, being based on a
scaling of the Omega equation. It relies on the actual strength of the fronts and
on the mesoscale strain calculated from altimetry data. This index also

depends on the assumed frontal width although it was shown that the index
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spatial and temporal variability is independent from it. Still, even if the precise
value is not known, results show that a non-negligible and seasonally variable
vertical transport at small scales due to large scale strain interaction with
fronts is occurring over the Sargasso Sea. Twice as much vertical transport at
fronts is estimated over the Mediterranean. This index is judged to be a useful
scientific indicator of vertical transport at fronts that could be made more
accurate in absolute if a better understanding of the frontal width was

obtained.

The Capet_Fs index developed and exposed in 5.5 attempts to capture the
frontogenesis function discussed by Capet et al. (2008b). This index also
makes use of the altimetry but, contrary to the Lapeyre_Klein index, it
accounts for the relative orientation of the fronts with the mesoscale strain. It
is also dependent on the assumed frontal width and does not provide an
estimation of vertical transport. It is however a valuable scientific indicator of
where frontogenesis is occurring and it provides an important independent
assessment of several aspects of the numerical model used by Capet et al.

(2008b) against observations.

Finally the Fox_Kemper index was presented in 5.6; it attempts to capture the
restratification at fronts by Mixed Layer Eddies based on a parameterization
suggested by Fox-Kemper and Ferrari (2008). This index provides a useful
global distribution of restratification fluxes that compare well with the
estimates made by Fox-Kemper and Ferrari (2008) based on altimetry
measurements. As for the previously mentioned indexes, it relies on the
assumed frontal width. It is however not very sensitive to frontal width
because it is affected by this parameter in several ways that partly compensate
each other. Its limitation is mainly that its high values are associated with a
lower level of confidence since they mostly occur when the mixed layer is

deep and compensation is more likely to introduce a bias.

These novel indexes, based on frontal detection on SST data, show a very
promising potential for retrieving dynamical information on the mixed layer.
Since they are a first attempt to do so, they require more analyses to produce
quantitative values that can be relied on. Such analyses would involve the
accurate selection of input parameters such as the frontal width but also the

understanding of the conditions in which these indexes are valid.
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Nevertheless, the FLI and FGI indexes are in themselves a good first order
measure of stirring and mixing processes and they are based on fewer
assumptions. It is thus worth exploring their qualitative variability across the

globe’s oceans and across several decades as is done in the next chapter.
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6. Chapter 6: Climatic variability of frontal

activity

This chapter presents the exploration of climatic signals in the frontal activity
measured on the ocean surface. It builds on the analytical processes developed
in Chapters 3, 4 and 5 to produce massive three-dimensional datasets of
space-time distribution of ocean thermal fronts. The main difference compared
with the analyses presented in chapter 5 is that the frontal indexes discussed
in this chapter are calculated globally on long time series of satellite-derived
Level-4 SST products. In particular, fronts are detected on the daily global
OSTIA reanalysis (OSTIA_RAN) dataset which covers a time span of 22 years
(1985 to 2007). OSTIA_RAN is, like OSTIA, a daily analysis of the global SST
produced by the UK Met-Office on a 1/20 degree grid. The OSTIA_RAN blends
satellite data provided by the Pathfinder AVHRR project and reprocessed
(A)ATSR together with in-situ observations from the ICOADS dataset (Donlon
et al. 2012, Stark et al. 2007).

Chapter 5 demonstrated that a genuine seasonal signal is present within the
frontal gradient index (FGI) over the North-Atlantic. This chapter sets out to
identify how fronts vary with space and time from an inter-annual perspective.
To achieve this goal, the fronts were calculated globally from OSTIA_RAN
products every 7 days from 1985 to 2007. The methodology applied was
described in chapter 5. The frontal index examined is the FGIl as it is a simple
expression of the frontal dynamics which relies on fewer hypotheses than the
more elaborate indexes presented in chapter 5. The calculation of climate-scale
variability of these complex frontal indexes requires a careful examination of
the hypotheses involved in the index construction and is out of the scope of
this PhD thesis.

This chapter will provide a brief tour of different views that emphasize various
aspects of the spatial and temporal frontal index variability present within the
very large three-dimensional dataset which results from the frontal index
calculation stage. Along the way it is also intended to identify the scientific

potential of visualizing the behaviour of fronts. It should be stressed however
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that the scope of this chapter is limited to providing a critique of this scientific

potential rather than to develop any particular scientific application in detail.

Climate scientists are trying to observe and predict changes in sub-mesoscale
and mesoscale processes. This chapter is aimed at demonstrating the power of
the innovative tools developed in the context of this thesis for finding subtle
change in the small scale processes that are correlated to frontal activity. It is
an invitation for oceanographers to exploit the local weather of the frontal
indexes in synergy with other data in the frame of regional studies. The frontal
index data-cube (two spatial dimensions and one temporal dimension as
introduced in 4.1.1) calculated for this chapter has the potential to provide

new insights on how the ocean actually works.

6.1 Wavenumber spectrum of OSTIA_RAN

As discussed in section 5.2, the surface density wavenumber spectrum is
assumed to locally scale to k? in order to estimate the SST gradient energy un-
resolved by the SST product of feature resolution As. It was also pointed out
that Reynolds and Chelton (2010) have shown a wider range of spectral slopes
present in OSTIA level-4 SST products. Since the OSTIA_RAN product is used in
the rest of this chapter to illustrate climate variability of frontal activity it
seemed important to test whether the k2 assumption is fair for this dataset.
Following the methodology of Reynolds and Chelton (2010), the wavenumber
spectrum was computed from daily OSTIA_RAN SST in January 2007 along
each latitude of grid points within a domain in the Tropical Pacific. These
individual spectra were then ensemble averaged over the latitudes and the 31
days of the month. Figure 6-1 shows a SST wavenumber spectrum which
scales remarkably well to the k slope over the scales present in the images.
This provides some confidence to the scaling of the SST gradient performed in
the following sections that use OSTIA_RAN.
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Figure 6-1: OSTIA_RAN zonal wavenumber spectrum for January 2007 over the
Tropical Pacific (10°S-10°N, 180°W-100°W).

6.2 Global spatial distribution of the FGI

Figure 6-2 presents the global map of the temporally averaged FGI calculated
on OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km. The relationship
between these parameters and the Canny algorithm thresholds are described
in section 4.2. This configuration applies no smoothing on the SST images
prior to the front detection, the thresholds are calculated following Spall’s
(1995) derived values of horizontal density gradient magnitude. The horizontal
density magnitude is scaled assuming a constant frontal width of 0.5 km and a
25 km feature resolution of the SST dataset. This figure shows the long term
average over the period 1985-2005, however it should be stressed that the
fronts were detected on daily global SST images of 0.05 degree resolution,
sub-sampled at a weekly frequency. It displays a strong FGI temporal average
over the main western boundary currents, the Gulf Stream and the Kuroshio,
as well as over the Antarctic Circumpolar Current, the Agulhas retroflection

and the Malvinas/Falklands retroflection. In addition strong FGI average is
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found over some coastal waters where upwelling is occurring such as the
Benguela, California, Morocco and Chile. It is also observed around Australian
coastlines and on the Eastern side of New-Zealand, over the shelf sea waters of
the North Sea, Red Sea and Persian Gulf. A fine line of strong FGI starts from
the Chile upwelling and extends towards the West following the Equator. In
addition, one can notice that the open ocean is divided into regions of very
low FGI and others of medium FGI. Medium FGl is found extending from high
FGI regions whereas very low FGI regions are found in mid-latitudes far from
the coasts and the main currents and South of the ACC. It is not clear whether
the low FGI South of the ACC is genuine or whether it is an artefact of the
OSTIA_RAN dataset. This could be a consequence of poor data coverage where
there is a high cloud coverage reducing the availability of reliable high-
resolution (IR) data input to OSTIA_RAN. It is therefore interesting to note a
circular patch of medium FGI in the North-West Indian Ocean whose diameter

is approximately 20 degrees.

The FGI temporal standard deviation over the same period is shown on Figure
6-3. The spatial distribution of the FGI temporal standard deviation is very

close to that of the FGI temporal mean. The only exception is situated over the
Arctic ocean where the average FGl is rather low but the standard deviation is

higher than that of areas of similar mean FGI.
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FGI (Kg.m”.Km*.day )
Frontal Gradient Index
OSTIA RAN, index scaled by 7.0711
MEAN over 01-Jan-1985 to 31-Dec-2007
Runs: Run11 Run20 Run22 Run23 Run24 Run25 Run26 Run36 Run37 Run77 Run78 Run79

Figure 6-2: Long term (1985 to 2007) mean Front Gradient Index (FGI) in
kg m™3 km~2day~! processed on weekly OSTIA_RAN with d =0 km, L; =
0.5 km, and As = 25 km.

FGI (Kg.m” .KmZ.day )
Frontal Gradient Index
OSTIA RAN, index scaled by 7.0711
STD over 01-Jan-1985 to 31-Dec-2007
Runs: Run11 Run20 Run22 Run23 Run24 Run25 Run26 Run36 Run37 Run?7 Run78 Run79

Figure 6-3: Long term (1985 to 2007) standard deviation Front Gradient Index
(FGI) in kg m=3 km2day~! processed on weekly OSTIA_RAN with d = 0 km,
Ly = 0.5 km, and As = 25 km.
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6.3 Temporal distribution of the FGI

Figure 6-4 presents the temporal variation of the FGI spatially averaged over
the North-Atlantic. The North-Atlantic region is shown in section 4.2. On Figure
6-4, the FGI calculated on OSTIA_RAN is plotted with stars, from 1985 to end
of 2007. The FGI calculated on OSTIA images in January 2008 is plotted with
circles. The OSTIA_RAN version is CF-1.0 and OSTIA’s is vO1-fv02. One can first
observe the same dominant seasonal signal as discussed in chapter 5 with a
low around March and a high around July or August. One can also notice an
inter-annual signal of up to 10 years period. It is worthwhile to mention that
no obvious discontinuity can be seen at the end of 1991 when ATSR images
from ERS-1 became available and start to be combined with the AVHRR ones.
Finally, there seems to be a discontinuity between the OSTIA_RAN FGI and the
OSTIA FGI at the transition between the two datasets at the end of 2007. This

point is explored in more detail below.

< - W -
FGI (Kg.m™ Km™® day”) : ' b |
.y =

calculated on MorthAtlantic, plotted for Narth Atlantic
Frontal Gradient Index

Fronts of all MLD, index scaled by 7.0711
run: Run1i OSTIA RAN weekly MorthAtl NoFilt
4 { all OSTIA RAN weekly on North Adantic, Canny of Spall95 scaling 0.5/25, no smoothing )

Figure 6-4: Front Gradient Index (FGI) in kg m™3 km~2day~! processed on
weekly OSTIA_RAN (stars) and OSTIA (circles) over the North Atlantic region
with d = 0 km, Ly = 0.5 km, and As = 25 km. Times when more than 50% of the
area MLD is deeper than 75 m are plotted in red.

Figure 6-5 displays the FGI from OSTIA_RAN and OSTIA over the Northern part
of the Tropical Atlantic (latitudes from O0°N to 20 "N). Figure 6-6 shows the

same index over a small portion latitudinal band around the Equator over the
Atlantic Ocean (latitudes 10°S to 10°N). These two figures exhibit a dominant

seasonal signal with a lower inter-annual signal. It should be noted that over
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these regions the MLD is never deeper than 75 meters over more than 50% of
the selected area. The amplitude of the seasonal variability is reduced in
comparison to the FGI over the whole North-Atlantic shown on Figure 6-4. The
regular inter-annual behaviour is almost entirely replaced by a more irregular
time variability on Figure 6-7 which displays the FGI over the Southern part of
the Tropical Atlantic Ocean (latitudes from 20°S to 0" N). Instead an inter-
annual harmonic of about 5 to 6 years seems to dominate. A much less noisy
seasonal variability is observed over the South Atlantic FGI, as shown on Figure
6-8. The latter displays both an inter-annual signal in the annual average of FGI
and in the annual range of FGI (difference between maximum and minimum
turning points of FGI each year). One may suspect a discontinuity between the
years 1991 and 1992 at a point in time when ATSR measurements started to
be incorporated in the daily OSTIA_RAN analysis. No discontinuity is however
obvious at the transition between OSTIA_RAN FGI and OSTIA FGI over the
South-Atlantic. The FGI over the Mediterranean Sea is shown on Figure 6-9. The
seasonal signal is very strong over this region, whereas no clear harmonic is
perceivable within the inter-annual variability. It is worth mentioning the rare
jump in annual maximum of Mediterranean FGI between the years 2002 and
2003. It is not clear whether there is a discontinuity between OSTIA_RAN and
OSTIA over the region.

FGI (Kg.m? Km?2.day™) p ’
calculated on EquatorialAtlantic, plotted for Tropical Atlantic North g ‘
Frontal Gradient Index A y
Fronts of all MLD, index scaled by 7.0711
run: Run22 OSTIA RAN weekly EquAtl NoFilt
o 10" ( all OSTIA RAN weekly on Equatorial Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
[ o [ o i [ [ [ [

Figure 6-5: Front Gradient Index (FGI) in kg m™3 km~2day~! processed on
weekly OSTIA_RAN and OSTIA over the Tropical Atlantic North region with
d=0km, Ly = 0.5 km, and As = 25 km. Times when more than 50% of the area
MLD is deeper than 75 m are plotted in red.
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FGI (Kg.m ™ Km® day ™)
calculated on EquatorialAtlantic, plotted for Tropical Atlantic Small
Frontal Gradient Index
Fronts of all MLD, index scaled by 7.0711
run: Runz2 OSTIA RAN weekly EquAtl NaFilt
¥ 10-‘ { all OSTIA RAN weekly on Equatorial Atlantic, Canny of Spalld5 scaling 0.5/25, no smoothing )
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Figure 6-6: Front Gradient Index (FGI) in kg m=3 km~2day~! processed on
weekly OSTIA_RAN and OSTIA over the Equatorial Atlantic region with d =
0 km, Ly = 0.5 km, and As = 25 km. Times when more than 50% of the area
MLD is deeper than 75 m are plotted in red.

FGI (Kg.m® Km?2.day™)
calculated on EquatorialAtlantic, plotted for Tropical Atlantic South
Frontal Gradient Index
Fronts of all MLD, index scaled by 7.0711
run: Run22 OSTIA RAN weekly EquAtl NoFilt
x10 ( all OSTIA RAN weekly on Equatorial Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
L s I I O B

-5

Figure 6-7: Front Gradient Index (FGI) in kg m=3 km~2day~! processed on
weekly OSTIA_RAN and OSTIA over the Tropical Atlantic South region with
d=0km, Ly = 0.5 km, and As = 25 km. Times when more than 50% of the area
MLD is deeper than 75 m are plotted in red.
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FGI (Kg.m.Km?.day™)
calculated on SouthAtlantic, plotted for South Atlantic
Frontal Gradient Index L

Fronts of all MLD, index scaled by 7.0711 | - 2
run: Run20 OSTIA RAN weekly SouthAtl NoFilt - [
( all OSTIA RAN weekly on South Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 6-8: Front Gradient Index (FGI) in kg m™3 km~2day~! processed on
weekly OSTIA_RAN and OSTIA over the South Atlantic region with d = 0 km,
Ly =0.5km, and As = 25 km. Times when more than 50% of the area MLD is

deeper than 75 m are plotted in red.

FGI (Kg.m™ Km™ day "}
calculated on Med, plotted for Mediterranean
Frontal Gradient Index
Fronts of all MLD, index scaled by 7.0711
run: Run23 OSTIA RAN and OSTIA weekly Med MoFilt
- { all OSTIA RAN and OSTIA weekly on Med, Canny of Spalld5 scaling 0.5/25, no smeothing )

Figure 6-9: Front Gradient Index (FGI) in kg m=3 km~2day~! processed on
weekly OSTIA_RAN and OSTIA over the Mediterranean Sea with d = 0 km,
L = 0.5 km, and As = 25 km. Times when more than 50% of the area MLD is

deeper than 75 m are plotted in red.

6.4 Comparison of the OSTIA_RAN FGI with the OSTIA
FGI

Some of the previous figures shown in this chapter hinted at a discrepancy in
the detected fronts between OSTIA_RAN and OSTIA. The discontinuity is more
obvious in Figure 6-10 which shows the FGI over the North-Atlantic processed
on SST images that are smoothed with a spatial 25 km running mean
(d =25km, Ly = 0.5 km, and As = 25 km). It is also the case after a 50 km
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smoothing filter is applied, as shown on Figure 6-11. Figure 6-12 presents the
difference between the annual averages of FGI calculated on OSTIA_RAN and
OSTIA, both from the year 2007 and after a 25 km smoothing. Note that OSTIA
data are available on the year 2007 although it is not shown on Figure 6-4 to
Figure 6-11. The FGI calculated on the OSTIA dataset is consistently and
significantly lower than that of the OSTIA_RAN. Like the OSTIA dataset, the
OSTIA_RAN dataset was produced by the Met-Office, it is however more recent
and its Optimal Interpolation algorithm produces sharper images. This may
explain the discrepancy between the FGI indexes of both datasets. The fact
that this discrepancy remains after a spatial smoothing of 25 km or 50 km
tends to show that the spectra of the data sets are not equivalent at these
scales. It is difficult to explain why this discrepancy is enhanced after the
spatial smoothing. The cause of this phenomenon is probably a combination of
the Optimal Interpolation differences between the two data sets and the
inherent behaviour of the front detection algorithm. Figure 6-13 and Figure
6-14 show the monthly averaged HSR FGI (High Spatial Resolution as described
in 4.1.1) for the month of January 2007 as calculated from OSTIA_RAN and
OSTIA respectively. These two figures present estimations of the frontal
activity based on SST Level-4 images of two distinct data sets which attempt to
capture the same reality. It is striking how the weak fronts are detected on
OSTIA_RAN but not on OSTIA, whereas the strong fronts are present on both
data sets. OSTIA is constructed with input SST images from more satellites
than OSTIA_RAN. For instance OSTIA includes SEVIRI and AMSR-E
measurements while OSTIA_RAN relies on (A)ATSR and AVHRR only. This could
lead to the presence of finer scales in OSTIA whereas the two figures show the
opposite. One can conclude from this that the optimal interpolation scheme of
OSTIA_RAN resolves finer scales than the (older) one of OSTIA.

The consequence of the described discrepancy in the presence of small scales
within OSTIA_RAN and OSTIA is that these two data sets cannot be combined
to obtain a longer and continuous SST dataset for the climatic exploration of
fronts. As seen on Figure 6-4, the FGl is inconsistent across both datasets and
this generates a temporal signal in the FGI time series which is a pure artefact
of the difference in optimal interpolation. In the rest of this chapter,
OSTIA_RAN and OSTIA will not be combined and the statistics will be based on
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OSTIA_RAN fronts only, detected in the 23 years long period between 1985
and 2007.

In this chapter, the OSTIA_RAN SST images are not filtered prior to frontal
detection. This allows one to make use of the finest scales present in the
products. As all the Level-2 images that feed the OSTIA_RAN estimation
process are infrared images, the inconsistencies in the feature resolution can
only originate from the spatially non-uniform autocorrelation length scale or
the effect of the cloud coverage variability. The spatial variability of the
autocorrelation length scale is not considered a major hindrance as it changes
very smoothly in space and does not vary in time. The variability of the feature
resolution as a consequence of the cloud coverage changes is more of a
concern. Yet there exists no spatial cut-off frequency able to remove such bias
from the SST. It was therefore decided not to filter OSTIA_RAN images.

FGI (Kg.m™ Km? day™) g
calculated on NorthAtlantic, plotted for North Atlantic e
Frontal Gradient Index §
Fronts of all MLD, index scaled by 7.0711
run: RundD OSTIA RAN weekly NorthAtl 25Km
{ all OSTIA RAN weekly on North Atlantic, Canny of Spall35 scaling 0.5/25, 25 Km smoothing )

1.8 }

ﬂﬂﬂﬂﬂﬂﬂ

Figure 6-10: Front Gradient Index (FGI) in kg m™3 km~2day~! processed on
weekly OSTIA_RAN (stars) and OSTIA (circles) over the North Atlantic region
with d = 25 km, L =0.5km, and As = 25 km. Times when more than 50% of
the area MLD is deeper than 75 m are plotted in red.
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FGI (Kg.m®.Km2.day™y
calculated on NorthAtlantic, plotted for North Atlantic
Frontal Gradient Index
Fronts of all MLD, index scaled by 10
run: Rund1 OSTIA RAN weekly NorthAtl 50Km
x 10-4 ( all OSTIA RAN weekly on North Atlantic, Canny of Spall95 scaling 0.5/50, 50 Km smoothing )
T
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Figure 6-11: Front Gradient Index (FGI) in kg m=3 km~2day~! processed on
weekly OSTIA_RAN (stars) and OSTIA (circles) over the North Atlantic region
with d = 50 km, Ly = 0.5 km, and As = 25 km. Times when more than 50% of

the area MLD is deeper than 75 m are plotted in red.

Figure 6-12: 2007 annual mean Front Gradient Index (FGI) difference between
OSTIA_RAN and OSTIA inm=3 km~2day~! , both calculated with d = 25 km,
Ly = 0.5 km, and As = 25 km.
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run: Run11 OSTIA RAN weekly MorthAtl NoFilt
[ all OSTIA RAN weekly on North Atlantic, Canny of Spall95 scaling 0.5/25, na smoothing )

0 0, 0 o o

W 50°W 25w 0 25°E

Figure 6-13: High Spatial Resolution monthly mean of Front Gradient Index
(FGI) in kg m™3 km~2day~! processed on weekly OSTIA_RAN with d = 0 km,
Ly = 0.5 km, and As = 25 km on January 2007.

run: Run17? OSTIA weekly NorthAtl NoFilt
( all OSTIA weekly on North Atlantic, Canny of Spall95 scaling 1/25, no smoothing ) -3

Figure 6-14: High Spatial Resolution monthly mean of Front Gradient Index
(FGI) in kg m=3 km~2day~! processed on weekly OSTIA with d = 0 km,
Ly = 0.5 km, and As = 25 km on January 2007.
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6.5 Climatological variability of the FGCI

The typical seasonal pattern can be explored by calculating the FGI
climatological average seasonal cycle from the datacube of FGI as a function of
space and time. Figure 6-15 shows the seasonal cycle of FGI over several
latitudinal bands in the North Atlantic. Between 40°N and 60 "N the seasonal
FGI cycle is very clear with a maximum in August and a minimum in March.
Figure 6-16 and Figure 6-17 display the FGI seasonal cycle for latitudinal
stripes over the Tropical and South Atlantic. The typical seasonal FGI can be
fairly different in regions close to each other. For instance, one can see from
Figure 6-16 that the seasonal cycle between 0°N and 5°N reaches a maximum
in July and a minimum in February. Meanwhile, the FGI averaged between 5°N
and 10°N is highest in March and lowest in November. Figure 6-17 shows that
the FGI features a seasonal variability South of 30°S, with a maximum in

February/March and a minimum around September/October.
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Frontal Gradient Index annual climatology of weekly resolution
Fronts of all MLD, index scaled by 7.0711
run: Run11 OSTIA RAN weekly NorthAtl NoFilt
-4 ( all OSTIA RAN weekly on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 6-15: Climatology of Front Gradient Index (FGI) in kg m™3 km2day!
processed on weekly OSTIA_RAN over the North Atlantic region with d = 0 km,
Ly = 0.5 km, and As = 25 km, for several latitude bands.
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FGI (Kg.m® Km2.day™)
calculated on EquatorialAtlantic, plotted for Tropical Atlanticlat 15 to 20 and lon -180 to 180 OSTIA RAN only
Frontal Gradient Index annual climatology of weekly resolution
Fronts of all MLD, index scaled by 7.0711
run: Run22 OSTIA RAN weekly EquAtl NoFilt
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Figure 6-16: Climatology of Front Gradient Index (FGI) in kg m™3 km?day1!
processed on weekly OSTIA_RAN over the Tropical Atlantic region with
d=0km, Ly = 0.5 km, and As = 25 km, for several latitude bands.

FGI (Kg.m®.Km2 day™)
calculated on SouthAtlantic, plotted for South Atlanticlat -25 to -20 and lon -180 to 180 OSTIA RAN only
Frontal Gradient Index annual climatology of weekly resolution
Fronts of all MLD, index scaled by 7.0711
run: Run20 OSTIA RAN weekly SouthAtl NoFilt

o 10'4 ( all OSTIA RAN weekly on South Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )
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Figure 6-17: Climatology of Front Gradient Index (FGI) in kg m™3 km2day™!
processed on weekly OSTIA_RAN over the South Atlantic region with d = 0 km,
Ly = 0.5 km, and As = 25 km, for several latitude bands.

These climatological averages of the seasonal cycle not only provide a
temporal cycle but also quantitative information on the FGI, such as the typical
peak-to-peak fluctuation in a year. The previous figures present the seasonal
cycle averaged over a region and based on the 23 years of OSTIA_RAN, but it
can be calculated in the same way for each pixel on the world’s oceans from
the datacube. For each pixel the peak to peak of the climatologically averaged
seasonal cycle is calculated and the result is plotted on Figure 6-18. The
timings of the minimum and maximum of the seasonal cycle for each pixel are

also calculated and shown on Figure 6-19 and Figure 6-20.
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This peak to peak fluctuation of the annual cycle over each location looks very
similar to, although a bit noisier than, the temporal FGI standard deviation on
each pixel (Figure 6-3). This map shows the areas where the variability of FGI
within one year is large in absolute value. This fluctuation is correlated to the

absolute FGI long term mean shown on Figure 6-2.

FGI (Kg.m>.Km°.day ")
Frontal Gradient Index
OSTIA RAN, index scaled by 7.0711
ClimatologyFluctuation over 01-Jan-1985 to 31-Dec-2007
Runs: Run11 Run20 Runz2 Runz3 Runz4 Run25 Runz6 Run36 Run37 Run77 Run78 Run79
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Figure 6-18: Peak to peak of seasonal cycle of Front Gradient Index (FGI) in
kg m—3 km~*day~' processed on weekly OSTIA_RAN with d = 0 km, L; =
0.5 Km, and As = 25 km (1985 to 2007).

The temporal phase of the typical seasonal FGI cycle presented in Figure 6-15
to Figure 6-17 is obtained by averaging large portions of the ocean basins. The
spatial averaging hides details of regional and local variability of the
climatological behaviour. One way to avoid this limitation is to plot on a map
the timing of typical FGI minimum (maximum) as a function of the location as
done on Figure 6-19 (Figure 6-20). These two figures offer a novel view on
how the ocean frontal activity typically changes within the year. The first thing
to remark is the general pattern over both hemispheres where the FGl is
maximum over the summer and minimum around early spring. This general

pattern is consistent with the large geographical averages of Figure 6-15 to
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Figure 6-17. However, the surprising aspect is the spatial variability which
creates numerous yet coherent regions of independent phasing of the FGl
cycle. Figure 6-19 and Figure 6-20 allow one to segregate the oceans into
regions of temporally coherent frontal activity. It is not the scope of this study
to identify the physical mechanisms involved in the generation of the
variability of the frontal activity described in this chapter. The author of this
thesis however expresses the hope that oceanographers will study these
phenomena and advance their understanding. This work contributes to
unveiling some aspects of the frontal phenomenology, it is now up to other

scientists to explain what creates these spatially consistent ocean regions!

One may wonder whether the frontal activity seasonal pattern is correlated to
that of the mixed layer depth (MLD). Indeed a geographically limited mixing
event may generate a strong front only if the mixed layer is strongly stratified.
It seems natural to suggest that the FGI and the mixed layer depth (taken
positive) are anti-correlated. This is explored in Figure 6-21 which maps the
correlation between the FGI and the monthly MLD extracted from the Boyer
Montegut et al. (2004) climatology. These two quantities are anti-correlated at
mid and high-latitudes, with values lower than -0.3 higher than 40°N and
around 40°S. However between 40°S and 40N the correlation is closer to
zero with even small positive values in some regions. The MLD is therefore
able to explain a part of the frontal index seasonality only over mid and high

latitudes.
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Figure 6-19: Date of minimum climatology of Front Gradient Index (FGI)
processed on weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km.
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Figure 6-20: Date of maximum climatology of Front Gradient Index (FGI)
processed on weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km.
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OSTIA RAN
Correlation with MLD over 01-Jan-1985 to 31-Dec-2007
Runs: Run11 Run20 Run22 Run23 Run24 Run25 Run26 Run36 Run37 Run77 Run78 Run79

Figure 6-21: Correlation between Front Gradient Index (FGI) processed on
weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km and monthly
Boyer Montegut et al. (2004) Mixed Layer Depth (resampled on a 1 day
resolution by nearest-neighbour).

6.6 High spatial resolution signal exploration

As was explained in 4.1.1, the frontal index computation routines store the
resulting frontal quantities in two complementary datasets. The first one is the
High Temporal Resolution (HTR) and the second is the High Spatial Resolution
(HSR). The results presented above (except Figure 6-13 and Figure 6-14) are
based on the HTR which features a daily temporal resolution but a low 1°
spatial resolution. In contrast, the HSR features a low temporal resolution of
one month but a high spatial resolution of 0.1°. It should be added that while
the 23 years of OSTIA_RAN were searched for fronts on a global scale to
produce the results shown in this chapter and stored on the HSR and HTR, it
remains possible to generate a spatially limited frontal index datacube with
both a fine temporal and spatial resolution. The latter can only be done on a
limited area due to memory constraints. To achieve this result, the region of
interest should be identified on the HTR or HSR in the first place.

This section aims to illustrate the power of the HSR dataset for resolving small
spatial changes of the frontal activity over time. Figure 6-23 shows the

Hovmoller plot of the FGI on a meridional transect against time. The transect
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location is shown on Figure 6-22, it is a line at longitude 150 E between
latitudes 20N and 50 °N. For each month between 1985 and 2007, the HSR
FGl is extracted over this transect and longitudinally averaged in a 5° window.
The Hovmoller plot hints at a 13 years period North-South oscillation of the
southern edge of the Kuroshio Current which lays on average along 35°N at
150 E. This inter-annual oscillation appears very clearly on the Hovmoller plot
and its amplitude is nearly 3° (333 km). The position of the northern edge of
the Kuroshio also appears to be oscillating on a decadal time scale but it is

seen less clearly as it is blurred by the presence of a strong seasonal signal.

Frontal Gradient Index
OSTIA RAN, index scaled by 7.0711
MEAN over July 2003
Runs: Run77 Run24

60°N

45°N

30°N

15°N

O0

120°E 132°E 144°E 156°E 168°E 180°W

Figure 6-22: July 2003 monthly average Front Gradient Index (FGI) processed
on weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km.
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Figure 6-23: Hovmoller plot of the Front Gradient Index (FGI) processed on
weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km, at longitude
150 E = 2.5 and latitude between 20°N and 50°N (as shown on Figure 6-22).

6.7 Quantitative trends of the FGI

The spatial representations of the signals present in the FGI datacube are
typically presented as averages of a particular aspect over time. Therefore they
mask inter-annual variability of the index. Conversely, the temporal
distributions of the FGI shown in previous sections of this chapter are
averaged over a whole ocean basin and hide details of regional and local
variability of the FGI. Figure 6-24 shows the trend of the FGI over the 23 years
of OSTIA_RAN for each pixel of the HTR grid. It is calculated, for each pixel, as
the slope of the linear least-squares fit of the temporal evolution of the FGI
over the pixel. This figure unveils an aspect of the inter-annual temporal
distribution at the local spatial scale. It reveals coherent regions of the oceans
which evolve in time with the same absolute magnitude. The general pattern
of this map is a positive trend at mid to high latitudes and a negative trend
over some consistent regions of the Equatorial and Tropical latitudes. In

addition, the FGl is increasing in the East Pacific cold tongue, in the
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Mediterranean Sea and along the Morocco upwelling. Adjacent stripes of
positive and negative trends are observed over the Gulf Stream or the ACC.
These are probably due to lateral shifts of the strong fronts associated to these

currents over the explored time period.

Figure 6-25 shows the relative inter-annual trend expressed as a percentage of
the local FGI per year. It can be analysed with an eye on Figure 6-2 which
shows the long term FGl mean. The general pattern is similar on the absolute
and relative trend maps, except some regions such as the Gulf Stream where
the absolute trend is high whereas the relative trend is low because the FGl is
high. Some regions such as the Tropical South Atlantic exhibit a very high

relative annual trend from a very low mean index.

Frontal Gradient Index
OSTIA RAN
Linear fit slope (per day) of anomaly from monthlyClim over 01-Jan-1985 to 31-Dec-2007
Runs: Run11 Runz0 Run22 Run23 Runz4 Run25 Run26 Run36 Run37 Run77 Run78 Run79

Figure 6-24: Daily trend of Front Gradient Index (FGI) in kg m™3 km 2day 2
processed on weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km
calculated over the years 1985 to 2007.
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Frontal Gradient Index
OSTIA RAN
Annual Change in % from Linear fit slope over 01-Jan-1985 to 31-Dec-2007
Runs: Run11 Run20 Run22 Run23 Run24 Run25 Run26 Run36 Run37 Run?7 Run78 Run79
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Figure 6-25: Normalized trend of Front Gradient Index (FGI) in % year~!
processed on weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km
calculated over the years 1985 to 2007.

These maps divide the global oceans into regions of consistent long term
trend. Tools were developed to allow the exploration of inter-annual statistics
over precise areas as a function of the spatial segmentation identified within
any spatial statistical display such as Figure 6-24 and Figure 6-25. These tools
allow the user to easily travel through the FGI datacube by the click of the
mouse. A background map needs first to be selected, for instance the absolute
long term trend shown on Figure 6-24. The user then defines boxes by
drawing them with the mouse (Figure 6-26) and the routines plot inter-annual
statistics as in Figure 6-27 to Figure 6-30. The automatic process involves the
selection of the pixels that lie inside the box and the filtering of the time series
of the mean area FGI by a monthly running filter. Then the annual mean, the
annual minimum and annual maximum FGI are plotted on the top panel
against time. The dates of annual minimum and maximum of the filtered data
are also shown on the middle and bottom panel respectively. These figures
reveal the low frequency temporal evolution of the FGI mean but also of the
annual fluctuation between the annual minimum and the annual maximum.
The top panel contains more information than a simple value of trend, it

discloses the variability from one year to another, cycles of frequency lower
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than a year'. For instance the FGI of the area 2 offshore Mauritania (Figure
6-27) increased by 0.5 kg.m3.km>?.day' over the 23 years period with a sharp
rise around 1991 and a fairly stationary annual mean during the other years
before and after. Conversely, area 4 (Figure 6-28) shows an average decrease
of 1.5 kg.m3.km>?.day' from 1994 to 2007. The area 5 (Figure 6-29) reveals a
strong inter-annual variability of the mean FGI with fast variations from one
year to the next. The annual fluctuation between the annual minimum and
maximum is also varying quickly, for example it is 0.3 kg.m3.km=2.day’ in
2002 and 0.7 kg.m3.km2.day" in 2004.

FGI (Kg.m".Km.day ")
Frontal Gradient Index
OSTIA BAN
Linear fit slope (per day) of ancmaly from monthlyClim over 01-Jan-1985 to 31-Dec-2007
Runs: Run11 Run20 Runz2 Run23 Run24 Run25 Run26 Run36 Run37 Run?77 Run78 Run79

Figure 6-26: Daily trend of Front Gradient Index (FGI) in kg m~3 km~2day~?
processed on weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km

calculated over the years 1985 to 2007. Areas whose inter-annual statistics are
shown below are delimited by the boxes.
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Figure 6-27: Annual mean, annual minimum and annual maximum of FGI (top),
date of annual minimum of FGI (middle) and date of annual maximum OF FGI
(bottom). The FGl is extracted from the box 1 (left) and box 2 (right) shown on
Figure 6-26, it is filtered by a monthly running filter.
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Figure 6-28: As for Figure 6-27 but for box 3 (left) and box 4 (right) on Figure
6-26
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Figure 6-29: As for Figure 6-27 but for box 5 (left) and box 6 (right) on Figure
6-26
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Figure 6-30: As for Figure 6-27 but for box 7 on Figure 6-26

Figure 6-31 shows the time series of the FGI averaged over the whole global
oceans. The higher global FGI was observed in June 1994. The long term trend
on a global scale is negligible (less than -0.03% per year). The global FLI (not
shown) decreases on average by -0.16% per year. Figure 6-32 presents the
time series of the averaged FGI for latitudes between 45°S and 45 "N. There is
a small negative trend over this part of the world’s oceans of -0.12% per year
and -0.25% for the FLI (not shown). The fact that the FLI decreases faster than
the FGI means that, even though fewer fronts are detected on average from
1985 to 2007, the ones which are detected are slightly stronger. This result is
in disagreement with that of Cornillon and Obenour (2012) which reported an
increase of their frontal index of 0.47% per year with the day SST and 0.59%
per year with the night data. Their frontal index is a frontal probability,
therefore it is close to the FLI. Their fronts were detected on the AATSR re-
processing for climate (ARC) with the Cayula front detection method. It was
shown in chapter 3 (section 3.5.3.1) that the Cayula method is sensitive to
noise and detects fewer fronts where the noise is higher. Since the noise level
of the ARC data is decreasing over the period chosen by the authors (1991-

2010), it could be suggested that the long term increase of the frontal
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probability measured by Cornillon and Obenour (2012) is an artefact of the

frontal detection method and of the SST input dataset.

FGI (Kg.m™ Km® day”)
rough global OSTIA RAN only
Frontal Gradient Index
Fronts of all MLD, 3 STD filter, index scaled by 7.0711 trend slope is -5.6447e-08 yaar" (-0.028036 % yaar"l
run: Runil + Run20 + Run22 + Run23 + Run24 + Run25 + Run26 + Run36 + Run37 + Run?7 + Run7a + Run7d
{ all OSTIA RAN weekly on North Atlantic, Canny of Spall95 scaling 0.5/25, no smoothing )

Figure 6-31: Front Gradient Index (FGI) in kg m~3 km~2day~! processed on
weekly OSTIA_RAN and OSTIA over the whole oceans with d = 0 km, Ly =

0.5 km, and As = 25 km. Times when more than 50% of the area MLD is deeper
than 75 m are plotted in red. The long term linear fit is plotted as a dashed
line.

Fal (Kg.m™ Km® day™)
calculated on global, plotted for lat -45 to 45 and lon -180 1o 180 OSTIA RAN only
Frontal Gradient Index
Fronts of all MLD, 3 STD filter, index scaled by 7.0711 trend slope is -2.7091e-07 ynar" (-0.11868 % ylmr":
run: Runl1 + Run20 + Run22 + Run23 + Run24 + Run25 + Run26 + Run36 + Rund7 + Run?7 + Run7a + Run7d
M 10"‘ { all OSTIA RAN weckly on Morth Atlantic, Canny of Spall$5 scaling 0.5/25, no smoothing )

Figure 6-32: Front Gradient Index (FGI) in kg m™3 km~2day~! processed on
weekly OSTIA_RAN and OSTIA for latitudes between 45°S and 45 "N with
d=0km, Ly = 0.5 km, and As = 25 km. Times when more than 50% of the area

MLD is deeper than 75 m are plotted in red. The long term linear fit is plotted
as a dashed line.
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6.8 Correlations with climatic indexes

The FGI datacube spatial and temporal variability was extracted and presented
in a variety of ways in the previous sections. It is striking how much the frontal
activity can change from one year to another over the same region. It is not
clear today what physical changes in the ocean and atmosphere can cause
these variations in the frontal activity. This section explores whether the
temporal variability of the FGI is correlated to some of the regional climate
indexes. Correlation of these quantities would be a hint of a potential causality

between what is captured in the climate index and the frontal activity.

The climate index of interest considered in this section is the El Nifio-Southern
Oscillation (ENSO). It is captured in the NINO 3.4 Index generated by NOAA’s
National Center for Environmental Prediction. NINO 3.4 is the 5-months
running means of SST anomaly in the region 5°N-5°S, 120°W-170"W and
normalized by its standard deviation over the period from 1950 to 1979.
Trenberth (1997) suggests that an El Nifio can be said to occur if NINO 3.4
exceeds 0.4°C for 6 months or more. As seen on Figure 6-33, there was an El
Nifio in 1991-1992 and a very strong one in 1997-1998. In contrast, it is

assumed that La Nifna occurs when ENSO 3.4 is less than -0.4°C.
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Figure 6-33: NINO 3.4 index (in "C) as downloaded from
(http://www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/Data/nino34.long.data)
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For each pixel of the Pacific Ocean, the monthly climatology of FGI was
calculated over the period 1985-2007. It was then subtracted from the daily
temporal FGI signal to obtain the anomaly FGI. This anomaly time series was
then correlated to the NINO 3.4 index with a lag between the two time series
ranging from -90 days to +90 days. The maximum correlation for each pixel is
shown on Figure 6-34 while the lag that is associated with the maximum
correlation is shown on Figure 6-35. One can first notice the large patch of
negative correlation over 10°S-10°N and East of 180 W, which includes the
NINO 3.4 region. This patch correlation is achieved with a negative lag of 60-
80 days, meaning that an increase (decrease) of FGl is in advance of a decrease
(increase) of NINO 3.4. Below are two smaller regions of significant correlation,
the first one is centred on 20°S/150°W, and the other one on 40°S/110°S.
The former is associated to a consistent positive correlation with NINO 3.4
whereas the latter is associated to a negative one. They are however both best
correlated to NINO 3.4 with a positive lag of about 80 days, which means that
the NINO 3.4 index is in advance to the FGI over these regions. Therefore,
these figures tend to show that an El Nifio (La Nifia) event is preceded 60-80
days earlier by a decrease (increase) of the FGI in the Equatorial patch. About
80 days after an El Nifio (La Nifia) event, the FGI increases (decreases) in the

middle patch and decreases (increases) in the Southern patch.

This lagged correlation is confirmed by Figure 6-36 and Figure 6-37 which
show the FGI HSR monthly index for respectively 3 months around the El Nifio
event in December 1997 and 3 months around the La Nifia event in December
1998. Each figure also shows for comparison the corresponding months in
1993-1994 when no particular ENSO event was occurring. These two figures
show a low FGI in the Equatorial patch 2 months before the El Nifio of
December 1997. Conversely the FGI is higher than normal over the Equatorial
patch 2 months before the La Nifia of December 1998. The lagged correlation
in the middle patch and the Southern one are likely to be explained by the shift
of a proportion of the fronts from the Southern patch to the middle one about
3 months after an El Nifio event. The opposite displacement of the frontal

activity occurs 3 months after a La Nifa event.
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OSTIA RAN
monthly anomaly correlation with NINO3.4 (max corrCoef with lag) over 01-Jan-1985 to 31-Dec-2007
Runs: Run77 Runz4 Runz6
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Figure 6-34: Lagged correlation of the monthly anomaly of Front Gradient
Index (FGI) with NINO 3.4 in the period 1985 to 2007. The FGl is processed on
weekly OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km. The maximum
lag allowed is + 90 days. The contour corresponds to an absolute value of the
correlation of 0.2.
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OSTIA RAN
monthly anomaly correlation with NINO3.4 (lag of max corrCoef in days) over 01-Jan-1985 to 31-Dec-2007
Runs: Run?7 Runz4 Runz6
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Figure 6-35: Lag (in days) corresponding to the maximum correlation of the
monthly anomaly of Front Gradient Index (FGI) with NINO 3.4 in the period
1985 to 2007. The FGl is processed on weekly OSTIA_RAN with d = 0 km,

Ly = 0.5 km, and As = 25 km. The maximum lag allowed is = 90 days. The lag
is shown only where the absolute value of the correlation is higher than 0.2.
The lag is positive (negative) where NINO 3.4 is in advance (late) with regard to
the FGI.
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Figure 6-36: Monthly averages of High Spatial Resolution monthly mean of

Front Gradient Index (FGI) in kg m™3 km~2day~! processed on weekly
OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km. The left column shows

three months around the El Nifio event of end of 1997. The right column
shows the corresponding months 4 years earlier when no El Niflo event was

occurring.
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Figure 6-37: Monthly averages of High Spatial Resolution monthly mean of
Front Gradient Index (FGI) in kg m™3 km~2day~! processed on weekly
OSTIA_RAN with d = 0 km, Ly = 0.5 km, and As = 25 km. The left column shows
three months around the La Nifia event of end of 1998. The right column
shows the corresponding months 5 years earlier when no La Nifla event was
occurring.
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Following the same methodology as that described in 5.6, the inter-annual
statistics of four regions shown in Figure 6-38 are shown on Figure 6-39. The
first region lays over the Eastern part of the cold tongue. The El Nifio event of
1997 is clearly visible in the annual average drop of 65% of the FGI over the
same year. In 1997, the annual maximum of the monthly filtered FGI was
reached in January while it occurs on average in July for the other years. The
FGIl annual average also dropped in 1987 during another El Nifno event and
peaked in 1988 during a La Nifia. Note that the date of maximum of the FGI in
1987 is average, while it drops to May in 1988. In the 1998 La Nina, this date
is close to average. The second area is the central part of the cold tongue, its
FGI is lower than on the Eastern part. Its annual statistics present the same
response to the ENSO events as described for the first region. For instance,
during the El Nifio of 1997 the FGl is 3 times lower than average, whereas in
the 1998 La Nina it raises to 3 times the average. Over the Western part of the
cold tongue, captured by the third region, the average FGl is lower. It does
however follow the same pattern by dropping during the El Nifio events and
peaking during La Nina. The fourth region lies over a region of very low FGI
below the central part of the cold tongue. The El Nifio signal is clearly picked
up in the region annual FGI statistics as the annual FGI average sharply
increases in the La Nina years of 1988 and 1998. The El Nifio events are not
seen as the index is very low in the first place. The ENSO can therefore be said
to strongly affect the FGI over these regions, mostly with sharp drops
(increases) when an El Nifo (La Nifia) occurs. No clear pattern can be observed
for what concerns the timing of the annual maximum and minimum when

there is an ENSO event.
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FGI (Kgm®.KmZ.day )
Frontal Gradient Index
OSTIA RAN
MEAN over 01-Jan-1985 to 31-Dec-2007
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Figure 6-38: Long term (1985 to 2007) mean Front Gradient Index (FGI) in
kg m—3 km~*day~' processed on weekly OSTIA_RAN with d = 0 km, L; =
0.5 km, and As = 25 km.
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Figure 6-39: Annual mean, annual minimum and annual maximum of FGI (top),
date of annual minimum of FGI (middle) and date of annual maximum of FGlI
(bottom). The FGl is extracted from the boxes 1 to 4 shown on Figure 6-38, it
is filtered by a monthly running filter.
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6.9 Conclusion

This chapter demonstrates the potential of the front detection routines
described in chapter 5 as they are able to detect fronts with a consistently high
accuracy, at high resolution, on the global scale and at a climatic time scale. In
addition an elaborate set of routines was developed to allow the exploration of
the three-dimensional (latitude, longitude and time) dataset of detected Frontal
Gradient Index (FGI). These routines build on the object oriented programming
of the FGlI files. They offer the means to easily plot and save figures of time
series or maps with a very wide range of statistics applied. This chapter’s
figures were all plotted with these automatic tools, some of them are even
obtained by the click of the mouse. These statistical analysis routines are an
achievement in themselves because they may be used to analyse any other

type of three dimensional dataset.

In this chapter, the typical seasonal pattern of the frontal activity at the surface
of the oceans was described with an unprecedented accuracy. The seasonal
signals were extracted and projected in a variety of ways to deliver a precise

view on how this seasonality varies from one place to another.

Changes in time of the local frontal activity were also studied by means of
local trend calculations. It was shown that the frontal activity changes in
different ways across the globe. The global or regional trends that were
calculated previously and by others lack the kind of details that were revealed
by this study. Moreover the positive trend that was calculated by Cornillon and
Obenour (2012) between 45°S and 45 °N was not confirmed by this study. In
contrast a small negative temporal trend over this region was found instead.
This was suggested to be due to the fact that the Cornillon and Obenour
(2012) methodology is based on the Cayula frontal detection algorithm. The
latter is more sensitive to noise than the methodology used in this thesis,
which is based on the Canny algorithm. Since the noise of the SST product has
been continuously improved since 1985, this could explain why Cornillon and
Obenour (2012) observe a positive trend. This stresses the importance of a
frontal index calculation methodology that is robust to noise or other potential
bias sources. The capacity of the frontal index calculation routines to deliver
both a high temporal resolution (HTR) and a high spatial resolution (HSR)

dataset was also proven useful. The HSR was explored and, by means of a
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projection into a Hovmoller plot, it reveals the North-South oscillation of a part

of the Kuroshio with an amplitude of 270 km and a period of about 13 years.

The calculated frontal index was shown to be linked over the Equatorial and
South Pacific to the NINO 3.4 climate index of the ENSO. Interesting lagged
correlations and changes in the typical frontal pattern before and after El Nifio
or La Nifa events were exposed. This is an important result as this allows the
frontal activity to be linked to a well-studied climate phenomenon. Evolutions
of the frontal activity in some regions have the potential to be predicted based
on the prediction of the climate index they are correlated to. It should be
stressed that caution must be exercised while analysing the correlations
between the fronts and such a major climate index since the ENSO is strongly
linked to the atmosphere dynamics. Biases may be introduced by the cloud
coverage and this was shown in chapter 4 to have a potential effect on the
resolved frontal content of the Level-4 SST products. This stresses the
importance of adding a measure of the smoothing involved as a quality
indicator to the Level-4 SST datasets. Such a measure could be introduced in

the frontal calculation and would improve the confidence in this kind of result.

It should be recalled that this chapter has aimed simply to illustrate potential
rather than attempt a systematic analysis of patterns and trends in the spatial
and temporal variability of the FGI; the datacube explored in this chapter has
many more secrets to reveal. It has demonstrated that the methods to extract
information from global 20-year FGI dataset are developed and ready for a
more penetrating exploitation by the physical oceanography community. More
precise frontal extraction in a defined region, through a more elaborate frontal
index such as those presented in chapter 5, based on a higher resolution
Level-2/3/4 SST dataset and at a higher temporal sampling rate, can be
performed in a user-friendly way using the methods and routines shown in this
thesis. The intended scope of the thesis has been achieved, its author hopes to
have convinced physical oceanographers that their topical and regional studies

could benefit from applying this work!

In the future it would be interesting to also correlate the frontal indexes with
observations of Eddy Kinetic Energy (EKE) and stratification. A deeper insight in
the correlations between the fronts and these parameters would help predict

the likely evolution of frontal activity because EKE and stratification are
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themselves resolved or predicted by the current GCMs. In the case of
stratification, the correlation could be based on monthly datasets of
stratification index from Argo floats. Besides, gridded satellite altimeter
products such as AVISO (Le Traon et al. 1998) can be used to produce global
maps of EKE (Fu et al. 2010). The main issues with the altimetry products are
their temporal and spatial resolution and the noise contamination. Due to the
orbital constraints of the altimeters which produce repeat times of days to
weeks, these products do not resolve the small spatial and temporal scales
(Arbic et al. 2013). The signal to noise ratio in altimetric data is a strong
function of the wavenumber, apparently falling sharply at scales shorter than
about 200 km (Ferrari and Wunsch 2010 and Stammer 1997), which also
prevents the exploration of small scale signals. This is to say that the frontal
variability described in this thesis could not be obtained from altimetry which
do not observe the same quantities nor resolve the same scales as the SST
satellite missions. Nevertheless, the interactions between the small scale
surface fronts and the larger scale EKE field are far from being understood and
the suggested correlation has the potential to shed some light on it, as

discussed in 2.5.
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7. Chapter 7: Conclusion

7.1 Overview of the achievements in a multi-faceted

research landscape

The general objectives stated in section 1.1.6 have broadly been met. Even
though, in some cases, no definitive absolute answer could be provided,
significant results were achieved and the scientific understanding was
improved with regard to many aspects of front detection and interpretation.
The rationale behind this work was to obtain more oceanographic information
from the SST satellite measurements by looking at their mesoscale and
submesoscale variability. This objective drove the research activities from the
beginning to the end of the PhD. The choice was made to focus on surface
fronts because they are linked to intense dynamical activity and can be

observed on SST images.

More information on the dynamics of the mixed layer was extracted from the
SST data by means of two parallel strategies. On one side the characterization
of the spatial and temporal variability of fronts was pushed to a new limit by a
rigorous analysis of the algorithmic techniques to detect them on SST images
and a thorough investigation on the ability of multi-sensor SST products to
resolve these fronts. On the other side a very systematic exploration was
carried out of the parameterizations presented by physicists that relate
dynamics to the surface density gradient. This work permitted the tuning of
frontal detection algorithms such that they identify fronts that are likely to
have an impact in the dynamics of the mixed layer. But most importantly, it
allowed constructing frontal indexes that attempt to quantify physical
phenomena occurring at fronts. The adaptation of dynamical studies to what
can be observed from space is a significant step towards bridging between
recent physical oceanography results and new improvements in SST remote
sensing. These two disciplines have the potential to be used in synergy and to

provide unprecedented information on the dynamics of the mixed layer.

This effort to reach oceanographic dynamical parameters from the detected
surface fronts and additional parameters such as altimetry observations and

climatologies of salinity and MLD is a novel approach and constitutes a
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significant scientific achievement of this thesis. Software tools were developed
to support this conceptual approach. A very large effort given to the design
and implementation of these tools resulted in routines that follow high
software engineering standards. They were made user-friendly, highly
optimized, robust and versatile in order to allow numerous data crunching
exercises on very different SST data sets while following filtering and frontal
detection strategies adapted to the dynamical parameters of interest. These
software tools were instrumental in the application of the conceptual results to
the exploration of frontal dynamics signals globally and over spans of SST data
up to 27 years long. All the figures presented in chapter 5 and chapter 6 that
display the results of the frontal detection runs were also produced by
dedicated visualisation tools which are part of the developed software. Using
these tools it was possible to carry out an independent assessment and inter-
comparison of the scales resolved by the new multi-sensor GHRSST Level-4
products. Interesting oceanographic results were produced by the adaptation
of theoretical physical understanding to the frontal observations on SST
images. These results are discussed and the potential of such methodologies
have been demonstrated. In most cases the quantities are not yet fully reliable
but their variations in space and time reveal new aspects of how the ocean
actually works. So the objective of providing solid dynamical indicators with
an absolute accuracy could not be fully met in the context of this PhD.
However this work brings the oceanography community significantly closer to
the objective because the methodology developed and presented is robust.
Indeed, its processing and input data were systematically characterized and
their limitations were thoroughly described. This work is in good part

methodological; it was conceived and achieved as such.

Being very user-friendly is another achievement of this thesis, the analyses
presented allow other scientists to build on this work. Others can even re-use
the software tools because their versatility and robustness permit their
straightforward adaptation to future breakthroughs on the dynamical side.
This work comes at a good time because fronts are gaining fresh interest and
important improvements are being achieved in the understanding of the
physical phenomena occurring in their vicinity. At the same time rapid
progress is being made in the development, production and distribution of

multi-sensor SST products that offer the resolution and coverage required for
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such studies. The need for new indicators of the ocean dynamics constructed
from satellite observations for monitoring the ocean is widely recognized; this

work is a step in this direction.

7.2 Summary of scientific achievements

721 Objective 1. define a methodology for the detection of fronts on

SST images

The first objective was to understand how best to detect temperature fronts on
SST images. This question was divided into two questions: what is the best
way to detect fronts on a SST image (Q1 of 1.1.6) and what SST dataset is most
suitable for this application (Q2 of 1.1.6). While answering both questions,
care was taken to characterize the performances of the algorithms and dataset

such that physical conclusions can be drawn from the results they return.

The study on the front detection algorithms presented in chapter 3 was the
first piece of work carried out for this thesis. A review of the different
algorithms to extract fronts on two-dimensional images was achieved and two
particular algorithms were identified for their relevance with regard to the
foreseen applications: the Cayula method (also called SIED for Single Image
Edge Detection) and the Canny method. The Cayula algorithm was
implemented in Matlab based on its published description which required a
consequent effort of conceptualization, implementation and optimization to
allow its use on very large images. The Canny algorithm was implemented
based on a compiled Matlab library but required a significant adaptation from
an image processing to a geophysical perspective. The process of
implementing these algorithms into working routines delivered sufficient
expertise and insight to be able to identify their strengths and weaknesses as

well as the assumptions and parameters they rely on.

Although the Cayula method for detecting fronts has been widely used by
oceanographers, it seems to have never been thoroughly characterized. In the
context of this study, since the ultimate goal was to recover physical

parameters from the detected fronts, it was not conceivable to leave part of
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the processing acting as a black box. Therefore a systematic characterization
of the response of the Cayula algorithm to synthetic scenes of fronts of
varying intensity, width and noise was performed (3.5.2). This investigation is
a novel piece of work that unveils the behaviour of the Cayula algorithm. The
same analysis was carried out with the Canny algorithm which proved to be
more predictable and consistent in relation to the frontal characteristics,
sinuosity and orientation (3.5.3). The latter algorithm proved to be better at
detecting fronts of various scales and intensities that are by nature embedded
in a complex turbulent flow. It also does not rely on any arbitrary parameter as
opposed to the Cayula method and seems to be more easily linkable to
dynamical interpretations. This investigation concluded that the Canny
algorithm is the most suitable for the exploration of fronts on Level-3 and
Level-4 SST products. An in-depth quantitative description of the effect of
different smoothing filters to the noise and the small fronts was provided that
allows one to perform the trade-off between the reduction of noise and the
suppression of the genuine small-scale fronts before the Canny algorithm is
executed (3.5.1).

The second important body of work carried out during this PhD project was to
quantify the ability of the SST products to resolve the small scale features that
are targeted by the front detection algorithms (Q2 of 1.1.6). A detailed review
on the Level-2, Level-3 and Level-4 SST was presented in section 4.1. The
selection of the input SST dataset and the spatial filtering that is applied to the
images prior to the frontal detection are an important part of the methodology.
They must both be very carefully decided in order to return frontal results that
are scientifically accurate and consistent, and which are able to capture the
scales of interest. The choice was made to use new Level-3 and Level-4 multi-
sensor SST products because of their advantages in terms of spatial and
temporal coverage. These multi-sensor products have recently achieved a
quality leap in the context of the GHRSST program: this concerted international
effort has made them more accurate and temporally and spatially finer by
improving the statistical methods that produce them and by basing them on a
wider selection of input sources. Nevertheless, these products suffer from
limitations in the context of the exploration of small scale variability. This
study being the first to attempt to achieve the systematic characterization of

mesoscale and submesoscale phenomena using these multi-sensor products, it

300



Conclusion

was essential to first characterize the ability of these data sets to resolve the
fronts at different scales. The strategy to achieve this characterization was
twofold: it tackled the question on one hand in a theoretical context and on
the other hand through an experimental approach. On the theoretical side, a
significant effort was put into understanding the production process of the
Level-4 data and in particular the optimal interpolation. This led to the
description of the theoretical situations in which the scales resolved by a
particular product (also called “feature resolution”) may be limited or even
inconsistent in time or in space as presented in section 4.2. The question of
the feature resolution of the products is very complex since it depends on
assumptions made on the actual scales present in reality across the oceans, on
the cloud coverage, on the availability of infrared and microwave satellite
observations and on the detailed design of the state estimation filter that lays
at the heart of the production of these data sets. Due to the complexity of the
optimal interpolation process, it is not yet clear, even to the engineers and
scientists that are in charge of this production, what level of smoothing or
interpolation is introduced by the optimal interpolation as a function of date
and location. This is why the practical exploration of the feature resolution in
the various Level-4 products was not only fundamental for this thesis but also
equally of great interest to these engineers and scientists. It was a very
delicate task to separate the genuine scale of variability of the ocean from the
variability introduced by the observation and processing chain of the images
that attempt to capture it. This analysis was fundamental because of the dual
objectives of this PhD, namely the validation of the input images in parallel
with the extraction of natural signals from them. This challenge was tackled in
depth by the careful exploration and inter-comparisons of the different
products in terms of gradient (4.3), frontal content (4.4) and spatial
autocorrelations (4.2.3). This was performed in various filtering conditions and
in comparison with results extracted from Level-3 images which are consistent
in scales. This process, which was exposed in chapter 4 and chapter 5,
brought us closer to establishing a measure of confidence in the use of Level-4

OSTIA SST for genuine frontal exploration.
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7.2.2 Objective 2. the derivation of information about oceanographic

dynamical parameters

The second objective of this thesis was to work towards the recovery of
dynamical parameters of the mixed layer from the observation of temperature
fronts at its surface (Q3 of 1.1.6). This particular objective was very ambitious
because it involves the use in synergy of the disciplines of both fluid dynamics
and remote sensing. As explained in section 1.2.3, previous efforts to link
these two disciplines are limited to very specific case studies. This study
attempted to be systematic and to offer a methodology that is automatic and
objective and which can be used globally. It relies on the thorough review of
analytical and numerical studies that provide an understanding of the
dynamics occurring in the vicinity of surface density fronts as presented in
chapter 2. This resulted in an advanced description of the current knowledge
of the frontogenesis, but also of the scientific context that surrounds these
studies, the challenges that they face and the main directions in which physical
oceanographers are trying to shed light on the small scale frontal dynamics.
Based on the understanding of fronts that was acquired by the author carrying
out this review, some of the results and parameterizations, such as the Omega
equation (5.4), were adapted to be applied to the detection of fronts on SST
images. This way, several frontal indexes were defined which provide an
estimate of a dynamical parameter of the mixed layer such as vertical velocity
(5.4) or restratification (5.6) by Mixed Layer Eddies at fronts. These dynamical
indexes were calculated making the most of independent observational data
such as altimetry products and climatologies of surface salinity and MLD.
Because these indexes also rely on assumptions such as the local frontal
width, which is taken constant in this thesis, their exact quantitative estimates
cannot be fully trusted. Nevertheless, their variations can be relied on and they
shed some interesting light on the vertical exchanges at the small scale in the
mixed layer. Moreover, these indexes proved to be valuable independent tools
to critically assess purely theoretical results (5.5). Finally, the potential of these
dynamical frontal indexes for resolving accurate quantitative dynamical
parameters in the future was demonstrated, provided some of the
assumptions they rely on are refined. This study is, in this regard, somewhat
preliminary and more of a precursor; it has built some foundations through its

scientific achievements but more work is required to construct a methodology
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able to recover accurate small scale dynamical parameters of the mixed layer
from SST images. Such additional analyses do not fall in the scope of this PhD

thesis, they are however outlined in section 7.4.

7.2.3 Objective 3: the characterization of the spatial and temporal

variability of the frontal activity

The characterization of the spatial and temporal variability of the frontal
activity was another objective of this thesis (Q4 of 1.1.6). It was achieved by
calculating the basic Frontal Gradient Index (FGI) on several SST products as
shown in section 5.2 and chapter 6. A strong seasonal signal was observed on
all the products with a high frontal index during the summer and a low one in
the winter over the North Atlantic (5.2 and 6.5). The spatial variability was also
described and showed large frontal contents over the main western boundary
currents and some coastal areas (6.2). The oceans were shown to be divided
into regions of low FGI over the mid-latitudes far from the shores and the main
currents and regions of medium FGI extending surprisingly far from the
regions of high FGI. An enormous run was carried out to measure the FGI on
the OSTIA_RAN dataset globally and every 7 days over a time span of 23 years.
Section 6.5 showed how the frontal index resulting from this run allows one to
characterize the typical annual behaviour of the fronts over each ocean pixel.
The phenomenology of the FGI was described by means of global plots of the
dates of annual maximum and minimum of the typical FGI over each pixel. The
typical annual fluctuation, the temporal mean and standard deviation were
also presented. The physical mechanisms that generate the seasonal variability
of the fronts were discussed (6.5). Frontogenesis is linked to the turbulence of
the surface mixed layer, it can be triggered also by atmospheric effects such
as heterogeneous wind mixing or sun heating. It was shown that the FGl is to
some extent anti-correlated to the MLD taken positive from mid to high
latitudes but it is not the case over most of the other areas. The frontogenesis
is controlled by the complex combined effect of these dynamics, but this study
does not conclude on the exact origin of the front seasonal variability it

revealed.

Changes in time of the typical frontal activity were also explored over the 23
years of available global frontal index. It was exposed that the FGI varies

slowly over decadal time scales in different ways over different areas (6.7).
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Frontal activity temporal trends observed by others were not confirmed, and
both positive and negative trends were revealed by this study. Temporal FGI
signals over some regions of the Equatorial Pacific showed to be sensitive or
even correlated to the El Nifio Southern Oscillation index (6.8). Small
meridional displacements of the Kuroshio Current were also revealed by the
FGI calculated at a fine spatial resolution (6.6). These analyses demonstrate the
potential of this methodology for revealing signals in the ocean surface
dynamics by extracting fronts from a series of global high resolution images
and applying statistical methods to project the large three dimensional frontal
dataset into figures that can be plotted and that carry a scientific meaning.
This methodology also allows to point towards many ocean areas that show a
spatially consistent behaviour which should trigger the curiosity of physicists
and the author of this thesis encourages them to explain the frontal variability

exposed.

7.3 Technical achievements

The software tools that were developed during this PhD were not in
themselves a scientific objective, they however were a necessary means to
accomplish those and thus constitute a great achievement of the thesis. This
made the PhD work heavily computational as developing the routines and
running them accounted for a large part of the research effort. The entire

coding was carried out in Matlab.

731 Implementation of the front detection algorithms

The first layer of the software that was developed is the scientific routines. The
Cayula front detection method was implemented based on its theoretical
description that was published in Cayula and Cornillon (1992). This algorithm
is fairly complex and its practical implementation raised numerous issues.
Being extremely incremental, it required a very large amount of memory and
operations in its raw form. As the objective was to run this algorithm on a
large number of huge SST images, it needed to be optimized. This was
achieved by means of strategies that limited both the number of operations
and the required memory. Some of these strategies were based on a divide-
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and-conquer approach which divides the input SST matrix into imagettes and
reconstructs the fronts that lie over several of them. The algorithm was
significantly optimized but the consequence was a sharp increase of the
algorithm detailed design complexity. The Canny algorithm was also
implemented and optimized as much as possible, and so were the spatial

filtering functions.

7.32 Implementation of the geo-physical routines

A second layer of routines was added to make the frontal detection, image
filtering applicable to geo-physical interpretations and to store the results into
meaningful frontal indexes. This layer comprises the calculation of the basic
and more advanced frontal indexes from the detected fronts, all the
techniques related to the different geographical projections, the geo-physical
statistics involved in the calculation of the frontal indexes and in the

production of figures.

7.3.3 Implementation of a software engineering layer

Finally a layer of pure software engineering was added on top of the others
that deals with the input parameters, the configuration control, the
parallelization of the processing across several processors, the access to
satellite products and climatologies and the monitoring and logging of the
progress and the errors. This last layer was necessary to provide the user-
friendliness, the robustness, the optimization and the flexibility which were
absolutely instrumental in the achievement of the scientific results. It
permitted the completion of nearly one hundred runs, each of which was
configured by means of a long and unique list of parameters and involved
heavy data crunching that required up to several weeks of processing time on
one or more workstations. Since the workstations were shared amongst a
group of scientists, strategies were developed and implemented to optimize
the required disk space, memory and processor time and to allow the
automatic stopping and resuming of calculations. A big effort was also
invested in the plotting capabilities of these tools which make the most of
object oriented programming and metadata attached to the frontal indexes in
order to offer a very straightforward and flexible way to explore the results.

The figures are directly produced at a near publication standard which greatly
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eased the exploration of frontal signals exposed in chapter 5 and chapter 6.
While developing these complex yet user-friendly tools, the author also had in
mind their potential use by other scientists. Not only were these tools of great
support to the conceptual approach developed in this work, but being
encapsulated in a finished product fully tested and validated during the
author’s experimentations, they become potentially reusable by others and
therefore even more useful scientifically. It is worth adding that the advanced
plotting library that has been developed could be easily reused by anyone
wishing to explore the variability of a spatial and temporal geo-physical

quantity.

7.4 Where the study can be taken further

This section presents the directions to be followed in order to get more

accurate results or to obtain additional ones from the presented methodology.

7.4.1 Improving the Level-4 products feature resolution knowledge

The main way to improve the confidence in the calculated frontal indexes is to
select more accurately the parameters that have a significant effect in the
detected fronts and in the calculation of the frontal indexes. The first
parameter that could be improved is the assumed feature resolution of a SST
image. When dealing with Level-4 SST products, this scale was estimated based
on analyses of the present scales on a number of images. However the feature
resolution is controlled by the state estimation algorithms that produce the
SST field from Level-2 single-sensor images. It should be feasible for the Level-
4 GHRSST data providers to calculate and record the amount of spatial
smoothing introduced by their algorithms. It is a recommendation of the
author of this thesis that a matrix of the feature resolution, for instance in
kilometres, is attached to the SST as auxiliary data in the GHRSST Level-4
products. The routines developed and presented in this thesis could be easily
adapted to cope with a spatially varying feature resolution. Such information
would help extracting more accurate frontal indexes but would also improve
the interpretation of such results because it would be known with precision
where small scales are resolved or not by the input data set. When the feature
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resolution is known with precision, the effect of the smoothing on the small
scale fronts can be cancelled provided the spatial spectrum slope is known.
The k2 assumption was used in this thesis, it is confirmed to be valid by Autret
(unpublished work) at the submesoscale and it was shown in this thesis to be
valid between 10 and 50 km. Therefore it would be a significant improvement
to use the precise value of smoothing in the frontal detection. However this
would not allow measuring local departures from the average spectrum slope.
This means that datasets with the finest feature resolution should be favoured.
Level-3 SST products were shown to be the ultimate input data for front
detection because they do not involve any kind of smoothing other than the
sampling they are based on. Their feature resolution is perfectly known, and
constantly equal to its minimum achievable: the spatial resolution of the
image. The advantage of Level-3 products over Level-2 ones is their spatial and
temporal coverage. Ideally, the frontal detection routines should be run on
Level-3 time series of SST images. Unfortunately, the Level-3 SST products
available to the science community are fairly limited, and this thesis is a strong
call for the production and distribution of much more of them. It shall be
stressed that the presented methodology and routines are perfectly adapted to
the Level-3 images, even though they present different characteristics than the
Level-4 ones, mostly involving missing data. In order to obtain a constant
feature resolution on Level-3 images, the microwave measurements should be
discarded. Therefore the Level-3 data used as input to detect fronts do not
resolve cloudy regions at all. Care must be taken that this does not introduce

biases in the resulting frontal indexes.

In order to quantify in absolute terms how accurately various Level-4 datasets
resolve the fronts of all scales, one may identify a number of cloud-free Level-2
scenes to be used as control points. The comparison of the fronts detected on
the Level-2 images with those detected on the considered Level-4 images
could provide an estimate of the “frontal accuracy” of the Level-4 products.
This method may introduce a bias as it would only consider cloud-free
configurations. One way to overcome this bias is to generate Level-4 images
from a sub-set of the input Level-2 images that are meant to be ingested in the
Ol process. The fronts from the Level-2 images which are not used in the
generation of the Level-4 SST scenes can be used for comparison with the

Level-4 fronts. This would be equivalent to comparing the fronts from a cloudy
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region of a Level-4 image (where no IR data was available on a particular day)
to the real front distribution over this region on this day. This approach is
complex and would require the cooperation of the institutions in charge of the

production of the Level-4 products.

7.4.2 Improving the knowledge of the frontal width

The other parameter that could be improved is the frontal width as it was
shown that its uncertainty limits the ability of the dynamical frontal indexes to
return values that can be quantitatively relied on. Two directions are
suggested by the author: one could be to simply measure the frontal width
directly on the SST image before using it in the calculation of the frontal index.
This strategy is limited by the resolution of the SST image, for instance
GHRSST Level-3 images provided at the global scale are projected on a grid of
about 5 km resolution. The alternative direction is to estimate the frontal
width by means of external knowledge, this could be by theoretical physical
oceanography, with numerical models or dedicated in-situ measurements. Very
high resolution Level-2 satellite SST could also be used to carry out such

estimations.

7.4.3 Improving the understanding of the density compensation

This work would also greatly benefit from breakthroughs in the understanding
of the phenomenon of compensation in the mixed layer. As the surface density
gradient is estimated from the SST gradient assuming a constant salinity
across the front, potential compensation of temperature and salinity across the
fronts is ignored. The implemented strategy was to flag the cases where the
MLD is deeper than 75 m because it is so far understood that compensation is
more likely to occur in these conditions. Understanding the scales and
conditions at which the compensation occurs, how often this happens and to
which extent, is instrumental for the development of methodologies that allow
recovering physical parameters from satellite SST observations with
confidence. The exploitation of satellite Sea Surface Salinity (SSS)
measurements is a potential solution, it is however strongly limited by the
resolution of the recovered SSS so far (about 50 km spatial resolution for
SMOS).
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7.4.4 Developing the dynamical parameterizations and refining the

assumptions

The dynamical parameterizations may be improved by a better understanding
of the physics associated to fronts. The physicists are making outstanding
progress in this domain, and more precise insights are likely to be published in
the near future. It is the hope of the author that the physicists will continue to
work toward the construction of reliable parameterizations of the mixed layer
dynamics based on the surface density gradient and other quantities that can
also be measured. Additional analyses to identify the conditions under which
these parameterizations are valid or not would also build up the confidence in
the dynamical frontal indexes. It should be added that parameterizations that
are known to be accurate in limited areas and/or periods still have the
potential to answer very important questions when combined with satellite
observations. Section 2.2.4 presented a review of the studies based on the
eSQG assumption which estimate the complete stream-function in the upper-
layer of the ocean from a unique snapshot of the surface density anomaly. This
method has the potential to be combined with satellite observations to recover
surface currents as shown by Isern-Fontanet et al. (2006). This direction was
not explored in this thesis because it is computationally very different from the
implemented methods which rely on the detected fronts. This does not mean
that the eSQG formulations do not present any interest, and the author
recommends them to be analysed in view of their adaptation on systematic
and global algorithms. Finally, it is worth adding that the future high
resolution altimetry measurements will open a great potential for the use in
synergy of high resolution SST and SSH in the context of frontal dynamics

exploration.

745 Using the tools for regional studies

Finally, much more can be done with the tools as they were developed and
presented. They can be taken to regional studies with customized data,
parameters and indexes as a function of the local conditions and
understanding. The extracted index can then be correlated with other local
observational data such as ocean colour, wind or any in-situ measurement of
relevance to gain knowledge on the relationship between the frontal activity

and other phenomena. The question of the links between the fronts and the
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wind may be tackled by means of remote sensing data, even while taking into
account the relative orientation of the wind and the fronts as is done by Capet
et al. (2008b). As discussed in section 7.2, it would be very interesting to
explore the causes of the seasonal and inter-annual variability of the frontal
activity described in chapter 5 and chapter 6. In addition, when more
confidence will be associated to the dynamic frontal indexes thanks to
additional analyses, it will be worth to study them in a climatic perspective as

done in chapter 6 with the FGI.
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