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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES 

Ocean and Earth Science 

Doctor of Philosophy 

 

EXPLORING FRONTOGENESIS PROCESSES IN NEW SATELLITE SEA SURFACE 

TEMPERATURE DATA SETS 

Mounir Lekouara 

 

This PhD thesis is about understanding some aspects of the dynamics of the 

ocean surface mixed layer by means of satellite Sea Surface Temperature (SST) 

measurements. The focus is on surface density fronts which are used as a 

measure of the dynamical activity at the meso- and submesoscale. A review of 

the current knowledge on the non-linear physical mechanisms that occur in the 

vicinity of fronts is presented in Chapter 2. Chapter 3 characterizes the ability 

of two algorithms for detecting fronts of various sizes and strengths that are 

embedded in a complex turbulent flow and sampled on noisy two-dimensional 

images. Chapter 4 explores and compares the performances of several new 

multi-sensor Level-4 SST products in resolving the small scale gradients. These 

Group for High Resolution Sea Surface Temperature (GHRSST) data sets offer 

an unprecedented spatial and temporal SST coverage. Their production 

however involves a variable and partially unknown level of smoothing which 

“hides” some of the small scale variability. In Chapter 5, a robust, flexible, 

automatic and optimized Matlab-based methodology for detecting fronts on 

SST images and calculating a frontal index is presented. A basic frontal index 

capturing the frontal length and strength is exploited to quantify the spatial 

scales present in the various Level-4 SST products. More advanced frontal 

indexes based on physical oceanography results by others are constructed in 

order to estimate vertical exchanges occurring at fronts from their signature 

on the SST. These new frontal indexes, which characterize fronts according to 

their dynamical significance, allow the quantification of the upwelling, 

subduction and restratification associated with frontal submesoscale 



 

 

processes. Finally, the spatial and temporal variability of ocean fronts is 

explored in order to determine their sensitivity to climatic signals. 
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1. Chapter 1: Introduction 

1.1 General introduction 

1.1.1 Climate science context 

Most of the analyses performed to explore changes in the Earth’s climate 

involve data that were averaged over a large region, such as the entire globe 

or the tropics. The IPCC Fourth Assessment Report details studies which look 

for trends in the time series of Sea Surface Temperature (SST) anomalies, ocean 

heat content, precipitations, sea-ice extent, salinity, sea level and basin-scale 

ocean circulation patterns (Pachauri & Reisinger 2007). Temperature increase 

is a very straightforward signature of the shift in the climate system as a 

consequence of increasing anthropogenic emissions of CO2. Satellite and in-

situ measurements of SST as well as in-situ deep temperatures have been 

compiled into long Climate Data Records (CDR) from which regional and global 

rates of increase have been quantified. For instance the global ocean 

temperature was shown to have risen by 0.10°C averaged from surface to a 

depth of 700 m over the period 1961 to 2003 (Bindoff et al. 2007). 

Satellite sensors however have the potential to resolve quite fine horizontal 

details of SST. Cloud free very high-resolution SST images have revealed 

ubiquitous complex flow structures at the surface of the oceans, which are the 

signature of a wide range of underlying dynamical processes. A new 

generation of global, multi-sensor, high-resolution SST products is being 

produced in the framework of the Global Ocean Data Assimilation Experiment 

(GODAE) High-resolution Sea Surface Temperature (GHRSST) project (Donlon 

et al. 2002). These products advantageously combine the high-resolution and 

high accuracy infrared measurements with the high coverage of the microwave 

sensors through an optimal interpolation method. They are the results of an 

optimized combination of the strengths of the different components of the SST 

observing systems. They have the potential to resolve small-scale dynamical 

activity at the surface of the ocean, globally and daily over a long period of 

time (up to 25 years). 

This study’s underlying motivation is to examine potential climate signals in 

satellite SST data at finer spatial detail than the regional averages of SST 
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anomalies which have been measured so far. To facilitate this, the information 

extraction from SST data has been pushed to its limits in order to explore local 

and transient small-scale processes and their spatial and temporal variability. 

The broad idea is to quantify these processes by frontal analysis of satellite 

SST data in order to generate global, spatially-detailed time series that have 

the potential to be analysed for climatic signals. This is in agreement with the 

U.S. Climate Change Science Program (Karl et al. 2006) recommendations to 

make better use of observational data and to develop data sets for a range of 

variables other than large-scale temperature, capable of supporting climate 

quality analysis. By constructing estimates of the changes in the internal 

dynamical variables of the ocean, the aim eventually is to build a better 

comprehension of the climate system. This is intended both to explain with a 

higher confidence the observed changes in the Earth system and to improve 

the characterization of small-scale ocean dynamics, and ultimately their 

parameterization, in numerical climate models, which would work towards 

better predictions of future climate evolutions. 

1.1.2 Rationale for the small scales exploration 

This focus on oceanic small-scale processes was driven by recent research 

efforts which are starting to unfold the importance of these processes in ocean 

surface dynamics. It is now accepted that local mesoscale (10-100 km) and 

submesoscale (1-10 km) processes in the surface mixed layer have a 

significant integrated impact on the ocean’s primary production budget and on 

the carbon fluxes between the atmosphere and the ocean. Theoretical studies 

in geophysical fluid dynamics, mesoscale ocean general circulation and 

biogeochemical models, regional sub-mesoscale physical and bio-physical 

models, mesoscale in-situ measurements and satellite observations have 

considerably advanced the understanding of the small-scale dynamics in the 

last 20 years. They have shown that a substantial proportion of upwelling, 

subduction, stratification and lateral stirring in the upper-ocean occurs at the 

small scales.  

Physical oceanographers started focusing on these small-scales dynamics 

when it became clear that the analytical and numerical studies of large-scale 

dynamics cannot account for all the variance of observed parameters in the 

mixed layer. The questions raised by this discrepancy are challenging because 
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these processes are embedded in a larger and energetic flow and hence are 

difficult to resolve from non-synoptic measurements. At these scales, the 

Rossby number is close to 1, therefore the geostrophic balance is lost and 

ageostrophic non-linear 3-dimensional turbulence tends to dominate. This 

makes these dynamics very difficult to simulate in numerical models. 

Nevertheless it is fundamental to understand the vertical motions associated 

with small-scale upper ocean dynamics because they play an important role in 

the global carbon cycle. Indeed, they are involved in the transport of deep 

nutrients into the euphotic zone, which enables primary production to occur. 

They also convey heat, salt and momentum fluxes below the mixed layer, as 

well as affecting the exchanges of gases between the ocean and the 

atmosphere. Since satellite capabilities and computing power available to 

scientists have recently considerably improved, it is a good time to combine 

the up-to-date satellite datasets with the most advanced results on the small-

scale dynamics obtained from very high-resolution numerical simulations. 

 

1.1.3 Focus on surface density fronts 

In order to observe and quantify the mesoscale and sub-mesoscale processes 

of the mixed layer, we have chosen to use sea surface density fronts. They are 

defined as regions of enhanced horizontal gradient of density. The choice of 

surface density fronts was easy because they are observable on SST satellite 

images and because they are a signature of upper-ocean dynamics. Generally 

speaking, if a surface density front is present, it means that two water masses 

of different density are side by side. This situation can be the consequence of 

either internal dynamics of the mixed layer (i.e. horizontal advection, straining, 

upwelling, etc. ) or inhomogeneous external forcing (wind-induced mixing, 

irregular solar heating due to clouds, etc. ). Once two water masses of 

different density are made to coexist side by side, a pressure gradient force is 

exerted between them. The pressure gradient pushes the denser water 

underneath the lighter water, and when this slumping happens vertical mixing 

and restratification are in effect generated locally at the front. If the pressure 

gradient is countered by the Coriolis effect of a down-front flow in a 

geostrophic balance, the front can be maintained. The occurrence of a front 
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implies that some sort of dynamical activity is present on its surrounding 

waters.  

Conversely, when dynamical activity occurs in the upper-ocean, it has a 

signature at the surface in the form of density fronts. If the ocean was 

perfectly stratified with a mixed-layer of globally uniform density, horizontal 

advection would have no effect on the surface density, because water masses 

of equal densities would be mixed. However, the real ocean is more complex, 

and its mixed layer is under the effect of heterogeneous forcing: meridionally 

variable solar heating, currents, storms, fresh water discharges and so on. As a 

result of this, the surface density is not homogeneous at the mesoscale and 

below, which makes it a good tracer of surface dynamics. Indeed, for instance, 

when water is advected horizontally by western-boundary currents and 

strained by eddies and turbulence, it comes into contact with different water 

masses which are likely to be of different density. In effect, the large-scale 

background density gradient from the latitudinally varying solar heating is 

enhanced in areas where energetic horizontal flows converge. On top of this, 

various mesoscale processes such as eddies and wind-induced coastal 

upwellings transport water from below the mixed-layer which is denser and 

colder, and this also generates surface density fronts. Surface density fronts 

are therefore a good indicator of mesoscale and submesoscale activity in the 

mixed layer. 

Obviously, this view has an important limitation: the density fronts are 

associated with very diverse physical processes. Thus their effect on the mixed 

layer, and ultimately on the climate system, are variable as well. It will be 

shown that different processes can have similar signatures in term of density 

fronts. Our approach tackles this issue from two directions. Firstly, although in 

this work the exploration of fronts has been centred on measuring fronts 

revealed in SST data fields, we choose to make the most of additional 

knowledge and parameters in a combined approach to push the resolving of 

the dynamical features as far as possible. Secondly, only processes that are 

inherent to the presence of a front are considered. We focus more on dynamics 

induced by the presence of a front in its environment and less on the 

processes that have generated the front. The scope of this thesis is not to 

measure the variability of the vertical circulations generated at the mesoscale 

by eddy-pumping fluxes, wind-induced coastal upwelling or wind-induced 
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mixing. It is rather to focus on the smaller scale processes occurring at fronts, 

whether these fronts are those marking the boundary of a strong jet or those 

defining an eddy. The raw indices of detected fronts certainly include the 

larger scale processes, and the spatial and temporal variability and trends of 

these indices are an important result of this thesis. However, the dynamical 

parameters of the small-scale activity generated at the fronts recovered by our 

novel techniques are independent from the processes initiating these fronts 

(eddy, jet, upwelling…), because each front, may it be marking the border of 

an eddy, is simply treated as a front subject to an external forcing (straining, 

wind stress…). 

 

1.1.4 From SST images to surface density fronts 

SST images have the potential to resolve the 2-dimensional structure of the 

ocean surface dynamics. Like surface density, surface temperature can be used 

as a tracer to detect small-scale activity. However one needs the surface 

density to understand and quantify the underlying dynamics involved. The 

pressure gradient at a front is proportional to the horizontal gradient of 

density (or buoyancy), and the same is true for the potential energy stored in 

the front that is available for a forward energy cascade. It will be shown that 

several dynamical parameters can be inferred from the information of the 

surface horizontal density gradient. 

However one needs to take into consideration the limits of the SST data. 

Firstly, it will be shown that multi-sensor satellite products have the advantage 

of the best conceivable coverage, but they are the result of an averaging of 

non-synoptic measurements and an optimal interpolation in space or time to 

fill gaps where data are not available. For this an autocorrelation matrix is 

applied in the production process which has the effect of smoothing to some 

extent the resulting SST field. In these conditions the capacity of these 

products to reveal mesoscale and submesoscale frontal variability needs to be 

assessed and accounted for in the interpretation of the results. Secondly, the 

satellite sensors measure the temperature of the top few millimetres of the 

ocean surface. When relating this temperature to the mixed-layer dynamics, 

one needs to make sure that this temperature is dominated by the temperature 
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of the mixed-layer rather than the temperature of the atmosphere. Thirdly, 

there is often a degree of compensation between the salinity and the 

temperature at the fronts. This happens when the temperature gradient is 

partly (or almost completely) counteracted by the salinity gradient in its effect 

on density. Effectively, this means that when translating a temperature 

gradient into a density gradient, while assuming the salinity to be constant, 

one may overestimate the density gradient, because the salinity is often 

slightly correlated to the temperature in the mixed-layer. Steps must be taken 

to minimize the errors induced by these three limitations. Similarly, a density 

front can be completely dominated by the salinity, with little or no thermal 

signature. In this case the density gradient is underestimated when calculated 

from the SST alone. It should be stressed that this work does not contribute to 

the understanding of this type of front. 

 

1.1.5 Scope of the research 

The first objective of the research activity presented in this thesis is to 

develop, test and validate front detection algorithms and software tools 

suitable for the new multi-sensor SST data sets. Strengths and weaknesses of 

the various existing algorithms and data sets are analysed and discussed, in 

order to propose a methodology for measuring and monitoring oceanic frontal 

variability, adapted to the future generation of SST data sets. To compare the 

ability of various algorithms and data sets to detect temperature fronts, a 

quantitative frontal index is defined based on the strength and the length of 

the detected fronts. This simple index is a first-level proxy to measure small-

scale upper ocean dynamics. The work on the detection algorithm is based on 

existing techniques but it pushes them further as it validates them and rates 

their performances. The aspect on using the multi-sensor SST data sets is 

innovative as it is the first attempt to quantify the ability of such products to 

resolve small-scale features. The achievement of this first objective constitutes 

a substantial body of new work with the potential for publication in the 

literature on image analysis techniques. At the same time it has delivered 

analytical techniques enabling more penetrative research on dynamical 

applications and climate change indicators which are the ultimate goals of the 

thesis. 
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The second objective is to critically assess recent results of theoretical 

research by others on frontal dynamics, in the light of the observations that 

can be made from SST images. The idea is to derive information about 

oceanographic dynamical parameters from observations of the surface SST 

frontal field. This effort is based on a large and recent fluid dynamics literature 

(analytical and numerical), and additional parameters from other satellite 

sensors (altimeters for the background straining mesoscale field) and 

climatologies (salinity, mixed-layer depth) that are used in synergy with the 

SST.  The intended outcome is first to conceive, and then to create, 

observational dynamical indices derived from SST fields in this synergetic 

context. The focus is mainly on frontogenesis mechanisms and their 

theoretical effects in term of vertical mixing and restratification. Observations 

of external forcing such as the surface ocean current field are combined with 

the SST to calculate consequences of these fronts in the upper ocean 

dynamics. These dynamical indices are intended to provide a more advanced 

insight into the ocean system than the first-level frontal indices because they 

quantify dynamical processes such as vertical transport or restratification, 

rather than simply quantifying fronts at the surface. 

The final objective is to apply these methods to long time series of satellite 

measurements. These methods have the potential, not only to contribute to 

numerous oceanographic debates about the present state of the oceans, but 

also to improve predictions of the future state of the ocean in a changing 

climate. The first reason is that they can allow a better characterization of the 

small-scale dynamics variability in the climate models. The second reason is 

that the sensitivity of these new frontal dynamical indices to climatic signals 

can be explored, and conclusions may be drawn about the likely evolution of 

the ocean small-scale dynamics. 

An additional underlying motivation of this work is to demonstrate that more 

can be done with satellite observations to comprehend oceanic processes. 

Although parts of the study strongly rely on analytical and numerical fluid 

dynamics results based on idealized situations as well as on detailed physical 

observations of a localized phenomenon, an approach has been developed 

which is systematic, objective and global. The new methodology is intended to 

be applied to global datasets, and to make use of additional parameters in an 

objective manner in order to produce a set of physical indices that are 
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consistent in both time and space. Regional peculiarities and heterogeneities in 

the data are dealt with as much as possible by the algorithms so that the 

resulting indices are robust in time and space, allowing comparison of their 

values on reliable maps or time series.  

Ultimately, the question must be faced as to whether these indices meet 

climate accuracy and stability requirements so that they can be used as climate 

change indicators. This study is a step towards the creation of such climate 

change indicators based on the frontal dynamics as observed from SST satellite 

images, in synergy with other measurements. This is consistent with the spirit 

of the on-going ESA Initiative in Support of Climate Change, which defines 

Essential Climate Variables (ECV) to be processed from regionally averaged 

satellite measurement. 

 

1.1.6 Summary of the objectives 

The logical flow of the thesis can be summarized in a few questions, each one 

of them constitutes the objective of a chapter.  

Q1. What front detection algorithm is most suited to identify fronts on 
SST images? 

Q2. Which SST dataset is the most effective for front detection on a 
global scale? 

Q3.  What aspects of the mixed-layer dynamics can be identified from 
the fronts detected on SST data fields? 

Q4.  What is the spatial and temporal variability of the frontal quantities? 
How does it evolve on a climatic time scale? 

 

1.2 The scientific context 

1.2.1 Generalities about ocean fronts 

Ocean fronts have always attracted the attention of fishermen who noticed 

much higher concentrations of pelagic species in their vicinity which marked 

them out as a preferred location for fishing. Fronts have also been searched 

for and mapped by the naval military forces as submarines hide behind them 

to avoid being detected by sonars. They have always been of strong interest to 

oceanographers who have observed them over a large range of scales: from 
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100m to 10,000 km along-front; from 10 m to 100 km across-front; from 1 m 

to 1 km down-front; their lifetime varies from hours to millions of years (Belkin 

2002). A picture of a homogeneous surface mixed-layer with narrow zones of 

enhanced gradients of water properties has emerged. Fronts have been the 

subject of a large and multi-disciplinary research effort and are now 

understood to be a "pathway" between large scale 2-dimensional horizontal 

oceanic/atmospheric forces and small-scale 3-dimensional vertical phenomena. 

The dynamic tendency for the large-scale flow in frontal zones to lose its 

geostrophic balance and become hydrodynamically unstable allows the 

transfer of energy from large scales to small scales and enhances the vertical 

exchanges between the ocean interior and the surface layer. This section 

reviews the current knowledge on the dynamics associated with the oceanic 

surface fronts and their consequences for the biological and climate systems. 

A sustained front is generally associated with a current, in which the Coriolis 

acceleration balances the pressure gradient created by the difference in 

density between either side of the front. The fronts are zones of high vertical 

shear coupled with the strong horizontal density gradient that marks them. 

This coupling is known as the thermal wind and is a fundamental 

manifestation of the geostrophic balance. The current flows along the contours 

of density, and may not destroy nor deform the frontal structure (Olson et al. 

1994). The detailed structure of geostrophically balanced fronts is thoroughly 

described in Robinson (2010). Fronts that are sustained long enough to reach 

geostrophic balance fill the ocean over a wide range of scales. On the large 

scale (up to thousands of kilometres), fronts are encountered on the frontal 

flows of the major ocean currents such as the Gulf Stream in the Atlantic 

Ocean, the Kuroshio in the Pacific and the Antarctic circumpolar current 

around the Southern Ocean. On a smaller spatial and temporal scale, 

mesoscale turbulence of the ocean stirs large-scale density gradients into 

transient concentrated filaments and fronts (Mann & Lazier 2006, Robinson 

2010). 

This basic ideal view represents the first order of steady state dynamical 

description of a front. A front interacts with destabilising environmental forces 

such as mesoscale current strain and wind. This triggers its intrinsic dynamics 

and causes departures from balance and an evolution in time. For example, 

oscillations and baroclinic instabilities can arise along a front undergoing an 
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adjustment after its creation. This can result in an active restratification of the 

mixed layer through an energy cascade from the mesoscale to the sub-

mesoscale. Also mesoscale strain on some parts of the front can have a 

frontogenetic effect and develop localized strong upwelling/subduction of 

water masses. As the geostrophic balance is lost, non-linear small-scale 

secondary flows are created that work towards recovering the lost balance, 

sometimes by mixing and destroying the front, other times by developing 

large lateral oscillations and breaking the flow into meanders and eddies. 

Because these effects have a significant integrated impact on the dynamics of 

the mixed layer and the biological activity, it is fundamental to understand 

how fronts are created, how they are destroyed, how they evolve under 

different forcing and what physical phenomena are associated with their 

presence. 

A more substantial review of recent theoretical studies of frontal processes is 

provided in Chapter 2. 

 

1.2.2 Satellite observations of fronts 

Most of the time, ocean fronts have a signature at the surface on the 

temperature field. SST datasets have been searched for fronts ever since the 

first datasets were released, they have shown to be capable of resolving 

spatial scales and temperature differences necessary to observe mesoscale 

fronts. In the 1980s, during the early stages of satellite SST acquisitions, 

temperature fronts were detected and monitored manually by operators. This 

was done in the context of fisheries, submarine military applications or 

weather prediction. In order to reduce the subjectivity in the front detection 

introduced by a human operator, objective automatic front detection methods 

were introduced. The design of such methods is a challenging task as fronts 

consist of complex horizontal structures embedded in the turbulence of the 

flow, and exhibit a wide variety of space and time scales. The instrument 

acquisition errors increase the complexity of the automatic detection algorithm 

which should be robust to noise, cloud-induced missing data and errors 

introduced by the atmospheric correction. 
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The issue of edge detection on SST was tackled in a variety of ways (see 

Hopkins et al. 2010 for a detailed review). Some algorithms based on image 

processing techniques were suggested, they rely on the computation of the 

temperature gradient. A high SST gradient is a signature of a sharp transition 

between water masses of different temperatures. Applying a gradient operator 

(Prewitt, Sobel etc…) on a SST image reveals the areas of transitions that mark 

the fronts (Simpson 1990). Fronts can then be mapped by setting a SST 

gradient magnitude threshold (Belkin & Gordon 1996). The precise location of 

fronts can be obtained following the method suggested by Canny (1986), 

which locates the fronts on the crests of the SST gradient, in other words on 

the local maxima of SST gradient in the gradient direction. The derivative-

based edge detection methods present the advantage to relate the fronts it 

detects to a simple definition in terms of horizontal temperature gradient, 

which can subsequently be linked to dynamics of the mixed layer. On the 

other hand, the gradient computation is very sensitive to noise in the data, and 

these methods generally apply a preliminary smoothing filter to the data, 

which blurs away the fine features and underestimates the absolute value of 

horizontal SST gradient. 

Other edge detection methods have been designed specifically for front 

detection on SST data suffering from noise and missing data. These methods 

divide the SST image into windows and apply statistical analysis on the pixels 

they contain to determine the presence of a front. The main algorithm 

following this approach is the histogram-based single-image edge detector 

(SIED) of Cayula and Cornillon (1992, 1995). This method was proven to be 

fairly robust to noise and missing data. However, it needs to be subjectively 

tuned and detects fronts that are strongly dependent on the chosen 

parameters. Yet, the SIED’s advantages are widely recognized and this 

algorithm was used to detect fronts in numerous studies. Regional 

climatologies of SST fronts detected with the SIED on AVHRR time series were 

produced by Belkin and Cornillon (2003, 2004, 2005). It was also applied to 

detect satellite-derived chlorophyll a concentration fronts in the Long Island 

(Stegmann & Ullman 2004), and to examine fronts of normalized water-leaving 

radiance in the South Atlantic Bight (Bontempi & Yoder 2004). Miller (2004) 

built five-days composite SST, chlorophyll and sediment maps of fronts with 
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the SIED method, and combined them to derive statistics on the relationship 

between these properties. 

Several studies explored the temporal variability of frontal indexes. Belkin and 

Cornillon (2005) detected fronts on Level-2 Pathfinder satellite fields between 

1985 and 1996 using the Cayula method over the Bering Sea. Time-series of 

frontal frequencies were computed for each pixel which allowed the authors to 

explore the fronts’ spatial structure and seasonal and inter-annual variability. 

The frontal probability index they defined exhibited a very strong seasonal 

variability, with a ten-fold increase from spring to summer and an abrupt drop 

in September. The annual mean monthly frontal index increased approximately 

50% from 1985 through 1996, apparently signalling a concomitant 

intensification of some yet unidentified frontogenetic processes. Ullman et al. 

(2007) have explored the spatial and temporal variability of subtropical fronts 

in the subtropical frontal zone (STCZ). They used a modified version of the 

multi-image method described by Cayula and Cornillon (1996) to detect the 

fronts. They also found that the variability of the front probability is 

dominated by the seasonal cycle. They observed that the western part of the 

STCZ region has the largest seasonal variation with maximum probability in 

the spring, while the eastern part of the region has a more intermittent 

seasonal signal with peak probability during early summer. Cornillon and 

Obenour (talk, 2012) have explored the long-term temporal trends of fronts 

detected with the Cayula algorithm on the AATSR re-processing for climate 

dataset (ARC) and on the AVHRR Pathfinder one. The authors reported an 

increase of their frontal index of 0.47% per year with the day SST and 0.59% 

per year with the night data between 45ºS and 45ºN despite a global negative 

trend of temperature gradient magnitude of 0.4% per year. 

All the methods mentioned above produce maps of fronts, and as they are 

applied to a time sequence of SST images over which the turbulence evolves, 

different fronts are detected in different places. Another family of front 

detection techniques was developed to study a single permanent front and 

observe how it moves and changes strength over time. Shaw and Vennell 

(2001) use a surface fitting technique to follow an ocean front on SST. Their 

algorithm records not only the position of the front’s steepest gradient but 

also its width and the temperature difference across the front. Time series of 

the parameters of a front can therefore be constructed from a series of SST 
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images. This approach is suitable for the study of a specific front which should 

be permanent, as is the Southland front in New Zealand coastal waters. In this 

context the method was shown to be extremely useful since it allows one to 

explore the evolving history of a front and relate the frontal parameters to 

oceanographic quantities such as large scale forcing or local primary 

production. Hopkins et al. (2010) subsequently suggest a weighted local 

likelihood approach that is robust to noise and missing data and estimates the 

uncertainty associated with each parameter. 

 

 

1.2.3 Previous efforts to combine observations with theory 

Very few studies derive quantitative estimates of dynamical parameters of the 

mixed-layer from satellite observations. Most studies with this objective 

combine satellite observations with in-situ observations from an 

oceanographic campaign or a numerical model that assimilates them. Altimetry 

products are notorious for allowing relative values of horizontal geostrophic 

currents and eddy kinetic energy to be derived. 

However most studies based on satellite data sets are either built on statistics 

of the measured parameters, which are not linked to dynamics, or draw only 

qualitative conclusions on the dynamics observed. This is especially true for 

what concerns vertical exchanges and small-scale physics. This section 

presents the handful of studies that attempt to bridge the satellite 

oceanography community to that of physical oceanography. 

Siegel et al. (1999) paved the way in this domain by calculating the 

contribution of eddy pumping to the vertical flux of nutrients in the Sargasso 

Sea with satellite altimetry. Altimetry products are limited by their spatial and 

temporal resolutions, so they are unable to resolve small-scale dynamics. 

Nevertheless Klein et al. (2009) show that the Surface Quasi-Geostrophy (SQG – 

see section 2.2.4) framework should be efficient at diagnosing the vertical 

velocities in the upper ocean once the high resolution sea surface height 

product become available. 
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SST data appear to be more suited to the diagnosis of small-scale vertical 

circulation. For example Lehahn et al. (2007) make use of the parameterization 

of vertical velocity circulation at horizontal density gradients suggested by 

Legal et al. (2007). This parameterization is applied on submesoscale filaments 

stirred by eddies observed on SST images of the North-East Atlantic. The 

authors calculate a vertical velocity in the range of 25 m/day that corresponds 

to an energetic vertical cell capable of nutrient upwelling. In the meantime 

researches are being conducted to derive the full 3-dimensional circulation 

from surface temperature under the SQG assumption (Isern-Fontanet et al. 

2008 and LaCasce and Mahadevan 2006). According to SQG, the 3D stream 

function can be well approximated, at least on some regions and under 

appropriate conditions, by a dominant mode obtained after assuming constant 

stratification and vanishing relative potential vorticity at surface (Turiel et al. 

2008). In spite of the coarse simplification, SQG velocity fields derived from 

microwave SST images have been shown to acceptably describe the surface 

horizontal velocity field (as derived from altimetry maps), at least over open 

sea areas and for regions of strong SST gradients (Isern-Fontanet et al. 2006). 

Turiel et al. (2008) show that, under more relaxed, self-consistently verifiable 

conditions it is possible to describe surface streamlines at any location and 

time from microwave SST. Fox-Kemper and Ferrari (2008) study the climate 

implication of the parameterization suggested by Fox-Kemper et al. (2008) 

which relates horizontal buoyancy gradients and mixed layer depth to the 

restratification by MLIs that develop from baroclinic instabilities of ocean 

fronts. The mixed layer depth is estimated from a climatology, and the 

buoyancy gradients from altimetry. The choice of altimetry for estimation of 

the buoyancy gradient is made by the authors out of fear of an overestimation 

of the density gradient calculated from temperature gradients alone, because 

of the possible presence of compensated fronts. The result is that the 

restratification by MLIs is a leading mechanism in the upper ocean. 

 



  Dynamics of Ocean Fronts 

 15  

1.3 Outline of the thesis content 

1.3.1 The approach: bridging between scientific communities 

This study should be seen as an attempt to bridge two oceanographic 

disciplines. On one side, the physical oceanography community has achieved 

tremendous advancements on the understanding of submesoscale dynamics. 

On the other side, the satellite oceanography community has managed to build 

new observation products that maximize both quality and availability. The 

underlying objective of this thesis is to send a message to both communities. 

We would like to convince the physical oceanography and climate science 

communities that the satellite data sets have reached a level of maturity that 

allows one to answer dynamical questions on the small-scale activity of the 

real ocean. We would also like to demonstrate to the satellite oceanography 

community that recent dynamical results make it possible to relate remote 

surface measurements to the underlying dynamics of the mixed layer, when an 

appropriate methodology is applied. 

As recognized by Chapron et al. (2010), “research efforts are highly needed to 

better understand the different sensor physics and capabilities, to demonstrate 

and explore in more details the combined uses of the different observations, 

to propose and test improved dynamical and statistical integration strategies 

to be used to guide the developments for innovative, efficient and 

thematically-driven data-mining methodologies”. This study is a step toward 

the development of a new generation of algorithms that combine various 

satellite products with in-situ climatologies in a way that is consistent with the 

current knowledge of the small-scale dynamics in order to extract 

oceanographic dynamical variables. It is the belief of the author of this thesis 

that this approach is original in the sense that it is systematic, objective and 

global. The intention is to provide a methodology for optimal and automatic 

use of satellite data, recovering as much information as possible, in a way that 

would allow the construction of long time series of the recovered parameters, 

which means that the calculated indexes should be coherent in both space and 

time.  

This study is also new with regard to the SST datasets on which it is based on. 

Indeed the newly available multi-sensor Global High Resolution SST products 
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(GHRSST) offer an unprecedented high spatial and temporal coverage. However 

the ability of these blended data sets to reveal small-scale features has not 

hitherto been explored and quantified. The methodology that is proposed in 

this thesis therefore seeks to assess the characteristics of the input data from 

which the algorithms extract the information. This study also includes the 

innovative inter-comparison of existing front detection methods and 

quantification of their ability to detect frontal features in various conditions. 

An important objective of this study is to bring forward a new generation of 

frontal indexes that are dynamically more meaningful than the historical ones. 

The suggested frontal indicators should facilitate new applications of satellite 

products with potential for answering questions related to the influence of 

small-scale frontal dynamics on the vertical exchanges in the mixed layer. 

Finally, the ground is set for a potential use of frontal indexes as a climate 

change indicator, which is something completely new. 

 

1.3.2 Road map for the thesis 

This thesis is organized in six further chapters, each of the substantive 

chapters 3 to 6 being aimed at answering one question from the list in 1.1.6. 

Chapter 2 provides a review of physical oceanography knowledge of fronts 

and is an essential input for addressing Q3. Chapter 3 explores which front 

detection algorithm is the most suited to the satellite SST images (Q1). It 

describes and discusses several existing front detection techniques and edge 

detection algorithms based on the image processing literature. The different 

methods are compared and their performances are quantified, as a function of 

the characteristics of the SST data used as an input. Chapter 4 asks the 

question of which SST product is the most efficient for the detection of fronts 

on the global scale (Q2). It assesses the ability of different global SST products 

to resolve fronts at various scales. Chapter 5 presents an automatic and 

optimized methodology to detect fronts on SST datasets. It builds on the 

dynamical results presented in chapter 2, and discusses their practical 

implementation. The outcome of this chapter, in response to Q3, is a set of 

frontal indexes based on the physical understanding of the dynamics 

associated with fronts and a methodology to compute them. In chapter 6, the 
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spatial and temporal variability of some of the basic frontal indexes is 

explored and characterized in response to Q4. Long time series of the indexes 

are constructed and analysed with a climate perspective. Finally, Chapter 7 

summarises the achievements and identifies ways to take the work forward. 
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2. Chapter 2: Dynamics of ocean fronts 

This chapter presents a review of the current understanding of mesoscale 

and sub-mesoscale fluid dynamics  in the vicinity of ocean surface fronts. It 

penetrates further into the theoretical study of frontal dynamics than the rest 

of the thesis, the primary focus of which is to develop methodologies for 

extracting information about frontal conditions from observational data.  That 

being the case it may not be strictly essential to read this chapter in order to 

follow in general the methods and achievements of the work described in 

subsequent chapters.  Nonetheless, the motivation of the thesis is to develop 

data analysis tools that eventually will become useful to provide observational 

evidence that can validate or challenge theoretical models of frontal processes.  

Thus the formulation of tools such as frontal indexes should, as far as 

possible, be informed by the current concerns of ocean frontal dynamicists.  

The author of this thesis also believes that it is important for remote sensing 

specialists to get acquainted with the results of dynamicists on the frontal 

dynamics presented here.  Therefore a chapter like this, which explores the 

state-of-the-art of the underpinning dynamical theory, is considered to be an 

essential element to ground the thesis in its oceanographic context.  In places 

throughout the chapter cross-references are made to later chapters to identify 

particular elements of frontal theory which have informed some of the design 

choices for the data analysis methods that comprise the main substance of the 

thesis.  

 

2.1 Fronts within the wider context of upper ocean 

processes 

The oceanic mixed layer was long characterized in terms of small-scale 

vertical processes that reduce the vertical gradients of tracers and momentum, 

and large-scale horizontal motions that stir and mix the lateral gradients. In 

this characterization, 3-dimensional processes are thought to occur only at the 

very small-scale (0.1m to 100m). For instance, Langmuir cells driven by wind 
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and convection cells driven by surface buoyancy fluxes have been investigated 

for their contribution to mixing and energy dissipation. At the other end of the 

scale spectrum, (10km to 100km), large scale ocean currents and mesoscale 

eddies have been studied extensively and are believed to dominate the 

horizontal stirring and the lateral transport of heat, momentum and tracers 

(Boccaletti et al. 2007). Dynamics at scales between 100 m and 10 km 

(submesoscales) are assumed to be subdominant. However recent 

observational (Ferrari & Rudnick 2000), modelling and analytical studies (Capet 

et al. 2008b, Lévy et al. 2001, Spall 1997) have challenged this view: motions 

in this intermediate range of scales are often leading order in the vertical flux 

of mass, buoyancy and tracers in the upper ocean. In addition, they are 

thought to be instrumental in transferring energy and properties from the 

largely adiabatic mesoscale flow field, to a scale where mixing can occur 

(Thomas et al. 2008). 

These recent studies have been motivated by the crucial search for missed 

physical mechanisms that could close the budget of phytoplankton production 

through additional nutrient supply. There is a debate on the spatial and 

temporal scales involved in the physical supply of nutrients in the euphotic 

layer through vertical mixing. It is understood that on the global/annual scale, 

nutrients are controlled by the thermohaline circulation and the wind mixing. 

Yet the geochemical estimates of new production surpass this rate of nutrient 

supply by a factor of two. Nutrient supply by mesoscale eddies is estimated to 

account for 20-30% of the global annual primary production budget 

(McGillicuddy et al. 1998, McGillicuddy Jr et al. 2003). The most likely 

mechanism which is able to explain this discrepancy seems to be related to the 

underestimation of the dynamics at small scales because of the lack of 

resolution of both the models and the in-situ measurements. Indeed very high 

resolution Ocean Colour satellite images have revealed that submesoscales can 

account for approximately 50% of the total resolved variance of Chlorophyll 

(Glover et al. 2008). This highlights the issue of nutrient distribution at small 

scales. 

The biogeochemical studies on the vertical exchange of tracers are divided 

into two conceptual views. The first view assumes that the vertical exchanges 

occur principally in the interior of mesoscale eddies, and relate the time 

evolution of the eddy anomaly to the vertical transport through a linear 
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relationship. This view includes the eddy pumping paradigm (McGillicuddy 

et al. 1998). Observed and modelled submesoscale structures are usually 

interpreted in terms of horizontal dispersion driven by the two-dimensional 

turbulence dynamics, therefore having no impact on the vertical exchanges. 

This conceptual view has contributed to significant advances for the 

estimation of the vertical exchanges due to mesoscale eddies, but it is based 

on two questionable assumptions. First, it implicitly assumes that nutrients or 

tracers are well mixed on isopycnals. Second, it assumes that the space 

between the mesoscale eddies is a dynamical desert in term of the vertical 

pump (Klein et al. 2008). On the other hand, the second view allows the 

possibility of vertical exchanges directly at small scales, within the 

submesoscale structures, through frontal and ageostrophic processes. In this 

scenario, eddies contribute in an indirect way to the vertical transport because 

submesoscale structures are produced by the mesoscale eddy-eddy 

interactions and straining of the mesoscale current. This study focuses on 

dynamics inherent to fronts, hence it is based on the scientific literature 

related to the second view. The eddy-pumping mechanism is not taken into 

account by the developed indices, eddies are rather seen as fronts in their 

radial direction. 

Ocean surface fronts are ubiquitous across the ocean, and are found at 

scales varying from the mesoscale to the submesoscale. Whether fronts are 

large or small, submesoscale dynamics can be triggered by their presence. 

This chapter reviews the proposed mechanisms for the development of 

submesoscale structure and vertical circulation in the presence of horizontal 

density gradients. They can be classified into three main groups of dynamics: 

1. The theory of frontogenesis driven by lateral strain (Hoskins & 
Bretherton 1972). 

2. The occurrence of unforced submesoscale baroclinic instabilities on 
fronts losing their geostrophic balance, which has the potential to 
restratify the mixed-layer (Boccaletti et al. 2007). 

3. The generation of intense downwelling at fronts by down-front wind 
stress due to cross-front Ekman transport at the surface (Thomas & 
Lee 2005). 

 

The rest of this chapter gives an overview of the present understanding of 

the dynamics that occur at surface fronts. It summarizes the observational 

studies, the analytical models based on a variety of assumptions, and the 
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results from numerical models of increasing complexity and resolution. It aims 

to give the reader a first understanding of the parameters involved in these 

dynamics. In particular, it will be noticeable how the value of the horizontal 

gradient of density emerges as a recurrent and important parameter in the 

quantification of the dynamics involved at front. This is the primary link 

between theoretical models of frontal processes and the capacity of satellite 

remote sensing of SST to detect and measure those processes.   

Section 2.2 reviews theories of frontogenesis driven by the straining field of 

a larger scale phenomenon.  Section 2.3 explores the role of frontal 

instabilities in re-stratifying the mixed layer, and section 2.4 considers basin-

wide numerical models capable of simulating mesoscale frontal dynamics.  

Finally section 2.5 seeks to identify some of the current questions being asked 

by ocean dynamicists, and to which satellite-retrieved SST fields may have a 

contribution to make.  It should be noted that some of the theoretical ideas 

described in this chapter are picked up again in Chapter 5 which explores in 

greater detail the existing parameterisations for submesoscale processes that 

attempt to capture their contribution to vertical velocities and restratification 

at fronts. Such cases are cross-referenced later in this chapter. 

 

2.2 Frontogenesis 

The understanding of fronts has been the subject of a long-standing scientific 

effort. Physicists have explored the dynamics of turbulent fields for decades to 

gain insights on the mechanisms that are involved in the creation, sustaining, 

intensification and destruction of large horizontal buoyancy gradients in the 

troposphere and in the ocean surface layer. The rotation of the Earth is 

understood to be instrumental in the presence of the fronts, as they are 

approximately in a geostrophic balance. The understanding of oceanic 

turbulence is a difficult task and it remains one of the main sources of 

uncertainty within climate models. Indeed, the turbulence is the result of a mix 

of physical mechanisms interacting at a variety of scales. There are different 

ways to investigate the turbulence. Oceanographers can perform in-situ 

measurements, but they can sample only punctual stations at sea. They often 

run a transect through the region of interest, but the non-synopticity of the 
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measurements combined with the low resolution of the transect limit their 

conclusions on fast evolving phenomena (Allen et al. 2001). Also the features 

of interest are often embedded in a larger and more energetic flow, which 

makes it difficult to measure them. Faced with these difficulties, dynamicists 

have confronted the issue with purely theoretical and mathematical 

approaches. As early as in 1928, physicists designed analytical models to 

describe the formation of fronts in the atmosphere (Bergeron 1928). The 

analytical models of turbulence require assumptions and approximations 

concerning the physics at play. This is usually done by assuming that in 

particular conditions, certain scales and forces are dominant and the 

phenomena not taken into account are considered negligible. This allows the 

turbulent field to be modelled by a set of assumptions and equations, called a 

regime, and conclusions to be drawn from the consequences of the equations.  

Obviously the realism of these analytical models is limited by the 

representativeness of the approximations they are based upon. Different 

approximations lead to different results and part of the remaining uncertainty 

is due to questions on the applicability of these regimes. Nevertheless the 

analytical models have tremendously advanced the understanding of the 

atmospheric and oceanic turbulence. As computer capabilities advanced from 

the 1980s, two-dimensional simplified numerical models of fronts were 

developed to explore their time evolution. Later three-dimensional numerical 

models based on less restrictive approximations gave more insights on the 

interaction of scales and mechanisms in the ocean mixed-layer. It has been 

possible for the last ten years to run basin-wide simulations of oceanic 

turbulence based on Primitive Equations (PE). The PE imply no assumption on 

the balance of forces involved, the only limitation being the resolution of the 

simulation. Dynamicists are making some great progress by pushing the 

resolution of these models to a computational limit (about 1km for a basin-

wide simulation), which reveals non-linear behaviour associated with sub-

mesoscale activity. Because fewer assumptions are made in the design of PE 

models, more realistic results are obtained. However the interpretation of 

these results remains a tricky task as it is not always clear to what extent a 

particular mechanism is responsible for an observation. 
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2.2.1 Time evolution of the horizontal density gradient 

Although much of the interesting theory about frontogenesis is concerned with 

nonlinear feedback, it is useful to consider the density as a passive tracer 

conserved in the Lagrangian sense. Lapeyre et al. (2006) show that the 

evolution of frontogenesis (frontolysis), which is the process that leads to 

formation (destruction) of the horizontal density gradient is governed by the 

following equation: 
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Where ݑሬԦ ൌ ሺݑ, ,ݒ  are the horizontal components of the ݒ and ݑ .ሻ is the velocityݓ

velocity and ݓ is the vertical one. ሺ׏ுݑሬԦሻ் is the transposed velocity horizontal 

gradient tensor. 

The first term on the rhs of (2-1) is the straining of the density field by the 

horizontal velocity field, whereas the second term is the flattening (or 

steepening) of the isopycnals by the vertical velocity that develops in 

response. As eddies stir, fold and stretch the fronts, the density gradient 

evolution is driven by the competition between the strain, which can 

“compress” the density gradient, and the vertical velocity, which can modify 

the slope of the isopycnals. The two terms on the rhs are linked by the fact 

that the density is not exactly a passive tracer, and non-linear effects are 

generated as a front is being strained. This is developed in the next 

paragraphs. 

 

2.2.2 The theory of strain driven frontogenesis in the Quasi-

Geostrophic (QG) regime 

Many studies have explored the mesoscale eddies and submesoscale 

turbulence within the framework of quasi-geostrophic theory (QG) based on a 

small Rossby number approximation (Charney 1948). The Rossby number can 

be defined as the RMS value of the relative vorticity divided by the Coriolis 

parameter f. This regime which accurately describes the mesoscale 

phenomena associated with eddies, predicts vertical velocities (ݓ) of the order 

of 1-10 m/day. The typical ݓ distribution in the QG approximation is a 
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multipolar structure with alternate upwellings and downwellings along 

meandering fronts (with upwelling occurring downstream of the trough and 

downwelling occurring downstream of the ridge) (Woods 1988). These 

patterns, which extend vertically down to the zero-crossing of the first 

baroclinic mode (i.e. approximately 1000m), are induced by the curvature and 

by eddy-eddy interactions (Lévy et al. 2001). 

 

 

 

Figure 2-1: Schematic configuration for an intensifying straight horizontal 
density front with ݂ ൐ 0. The front is close to the geostrophic balance. Also 
shown is the ageostrophic circulation that develops in response to 
strengthening of the front. The lines are isopycnals, the black arrows 
correspond to the ageostrophic circulation, the blue arrows correspond to the 
down-front flow. Light fluid is on the right of the figure and dense fluid is on 
the left. Adapted from Lapeyre et al. (2006), Capet et al. (2008b) and Williams 
and Follows (2003). 
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The theory of frontogenesis aims at explaining how fronts are formed and 

intensified by two-dimensional turbulence and identifying the mechanisms 

triggered when this happens. The main papers describing the way cross-front 

density gradient intensifies are Stone (1966), Hoskins and Bretherton (1972) 

(hereby HB72) and Hoskins (1982) (hereafter H82). The mechanism described 

by the authors is an initiation by larger-scale straining (performed by 

mesoscale eddies, a meandering jet or wind-induced straining), which disrupts 

the geostrophic balance for the along-front flow and generates an 

ageostrophic secondary circulation in the cross-front plane. The secondary 

circulation acts to restore geostrophic balance by advectively tilting isopycnals 

towards the horizontal, which is equivalent to restratifying the front and 

accelerating the geostrophic flow, hence resisting horizontal density gradient 

strengthening (Capet et al. 2008b). The geostrophic flow is accelerated by 

means of an horizontal ageostrophic circulation, whose divergence on each 

side of the jet explains the large values of observed near the surface 

(where ) (See Figure 2-1). This divergence has the effect to increase the 

magnitude of the relative vorticity (Spall 1995). The ageostrophic circulation 

that develops on each side of the density front has a systematic bias that 

favours the upwelling (downwelling) of light (dense) fluid to release the 

potential energy associated with the front (Hakim et al. 2002). This argument 

is not only valid at the scale of the large-scale front but, more importantly, at 

the scale of the sub-mesoscale density gradients that are present in large 

number in the mixed-layer (Lapeyre et al. 2006). 

This circulation was observed at sea by Pollard and Regier (1992), and 

explained in the following way: as the convergence in the flow intensifies the 

surveyed front, the high strain rates generate large shear and high vorticity. As 

water moves toward the front on the anticyclonic side, its absolute vorticity 

decreases, and the thickness between pairs of isopycnals must also decrease 

to conserve potential vorticity (PV). Since the surface cannot rise or fall, a 

vertically upward velocity must result. The presence of a boundary, such as 

the ocean surface, is instrumental in the process of frontogenesis. Similarly, on 

the cyclonic side of the front, the velocity must be downward. The magnitude 

of the velocity must increase with depth from zero at the surface. Below some 

level the confluence decreases and the vertical velocities also decrease. A 

closed ageostrophic circulation results, in which water from the anticyclonic 

wz

0w
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side of the front crosses toward the cyclonic side near the surface, with a 

deeper return flow (see Figure 2-2). 

 

 

Figure 2-2: Overall confluence A moves water into an area of increasing 
(decreasing) vorticity on the cyclonic (anticyclonic) flank of a front B causing 
the separation of isopycnals to increase (decrease). Since the surface is fixed, a 
vertical circulation D is set up in the sense shown. From Pollard and Regier 
(1992). 

 

Hoskins et al. (1978) (hereafter H78) derived the now famous QG “omega” 

equation in its Q-vector formulation: 
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where ݓ is the vertical velocity, ݂ is the Coriolis frequency  and ܰ is the Brunt-

Väisälä (or buoyancy) frequency, 
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ܰଶ is assumed to be constant across the front. 

The Q-vector is defined as 
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Following the QG theory, the flow is decomposed into geostrophic and 

ageostrophic components ݑሬԦ ൌ ሬԦ௚ݑ ൅  ሬԦ௔ , where the geostrophic velocity isݑ

ሬԦ௚ݑ ≡ ሬ݇Ԧ ൈ  is the pressure and ሬ݇Ԧ  is the unitary vertical vector. We have ݌ ,݂/ߩு׏

by definition ݑሬԦ௚ ൌ ൫ݑ௚, ,௚ݒ 0൯  and ݑሬԦ௔ ൌ ሺݑ௔, ,௔ݒ  .ሻݓ

The Q-vector is a measure of the rate of increase for the horizontal density 

gradient arising from the straining by the horizontal geostrophic velocity field. 

Equation (2-2) relates the velocity divergence and vertical velocity fields to the 

frontogenesis of the geostrophic velocity field. It states that the vertical 

velocity field is triggered by the creation of a density gradient by the straining 

action of the eddies, through the Q-vector that intervenes in (2-1). Its net effect 

is to oppose the creation of density gradients in (2-1). In this consequence of 

the QG assumption, the role of the ageostrophic vertical velocity ݓ is to 

maintain thermal wind balance, as the geostrophic velocity field acting 

through the Q-vector attempts to destroy it. 

The QG omega equation is a representation of the balanced dynamics 

associated with fronts and it is valid in most situations, even with high Rossby 

number (Klein & Lapeyre 2009). The QG omega equation can be solved in ݓ by 

defining an ageostrophic stream function such that ሺݑ௔, ሻݓ ൌ ቀെ
డట

డ௭
,
డట

డ௫
ቁ  where  

 direction, and giving suitable boundaries ݔ ௔ is the ageostrophic flow in theݑ

conditions (ݓ ൌ 0 at the surface and at a given depth). Significant further 

simplifications can be made by assuming the ageostrophic circulation to be 

purely two-dimensional in the cross-front plane. This leads to the following 

equation (Hoskins 1982): 
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The solution for the stream-function is elliptic. This methodology is employed 

in the majority of the oceanic field studies to derive the vertical velocity, which 

is difficult to measure, from the high resolution hydrographic and velocity 

observations in the upper ocean (Pollard & Regier 1992),  (Allen et al. 2001), 

(Martin & Richards 2001). Figure 2-3 presents the derived ageostrophic 

circulation at a front surveyed with ADCP during the FASINEX experiment, 

using the omega equation (Pollard & Regier 1992). Vertical velocities of up to 

40 m/day at 200 m are found. 

 

 

Figure 2-3: Ageostrophic streamfunctions ѱ for two legs across a surveyed 
front. Regions of negative values are stippled. Arrows indicate the sense of 
circulation, such that high values of ߰ are on the left of the direction of travel. 
From Pollard and Regier (1992). 

 

These studies assume that the geostrophic forcing dominates the creation of 

ageostrophic circulation. This means that vertically varying frictional forces or 

laterally varying buoyancy sources and sinks are supposed not to disrupt the 
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thermal-wind balance, which would drive ageostrophic circulation to restore it. 

The validity of these assumptions comes into question for submesoscale 

flows, especially if the flow is exposed to atmospheric forcing (Thomas & 

Ferrari 2008). Mahadevan and Tandon (2006) use a high-resolution numerical 

simulation that generates Rossby numbers of the order of 1 to show that the 

QG omega equation misdiagnoses the position and sign of the most intense 

vertical velocities near the surface. It is able to explain the mesoscale vertical 

motion at depth (50-100 m), but not the submesoscale motions closer to the 

surface (0-50 m). The authors suggest that unbalanced dynamics and 

ageostrophic instabilities may have a role in the submesoscale up- and 

downwelling observed in the model. The fact that important frictional effects 

near the surface are not represented in the omega equation could also explain 

the discrepancy between the model and the omega equation. Finally this 

equation does not allow variations of stratification, nor does it integrate the 

advection of geostrophic momentum by the ageostrophic motion. The semi-

geostrophic (SG) form of the omega equation relaxes these last two 

restrictions. 

 

2.2.3 The theory of strain driven frontogenesis in the Semi-

Geostrophic (SG) regime 

The QG theory places severe restrictions on the Rossby and Richardson 

numbers. It assumes that ܴ଴ ≪ 1 and 1/ܴ௜ ≪ 1, consequently it is not designed 

to accurately describe the dynamics of submesoscale phenomena. High-

resolution numerical models of the mixed-layer based on the PE have shown 

that high strain is associated with large relative vorticity and large vertical 

velocity. However the regions where vertical velocities are triggered by strain 

are also regions of a high Rossby number (Mahadevan & Tandon 2006). 

Therefore the QG approximation is not valid in these areas where 

submesoscale dynamics occur. [HB72] have produced a frontogenesis theory 

that is less restrictive than QG theory and that includes ageostrophic effects 

highlighted in the previous paragraph. The SG regime is a more complex set of 

equations and scaling assumptions, which take into account critical nonlinear 

interactions with large Rossby numbers. These nonlinear interactions involve 

advection of the geostrophic quantities not only by the geostrophic motions 
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but also by ageostrophic motions, which is not allowed by the QG theory 

(Klein et al. 2008). The inviscid and adiabatic frontal model of HB72 describes 

the manner in which a confluent geostrophic flow (for example on the large 

scale a collision of western boundary currents at gyre boundaries or, on the 

mesoscale a confluence by eddy circulations) intensifies an initially weak 

baroclinic zone via its horizontal deformation field. This process involves the 

formation of an ageostrophic secondary circulation (ASC) whose convergent 

flow augments the confluence and leads to the formation of an infinitely 

strong front in a finite time. In this representation, the ASC is responsible for 

both vertical exchanges and frontogenesis. ASCs arise at fronts to keep the 

along-front flow in geostrophic balance as is required by the SG approximation 

(Hoskins 1982). The advection of density and momentum by confluent flow 

tends to push the jet out of thermal-wind balance and hence induces an ASC 

whose spatial structure is governed by the omega equation (H78). Like 

confluent flow, redistribution of momentum or buoyancy by small-scale 

turbulent mixing disrupts the geostrophic balance and, therefore, drives a 

geostrophy-restoring ASC (Thomas & Lee 2005). The QG omega equation (2-2) 

is still valid in the SG regime, but the forcing appearing in the Q-vector is not 

assumed to be the result of geostrophic flow only. Indeed the strain is 

generated by both geostrophic and ageostrophic velocities. Numerical models 

of meandering fronts have proven the QG omega equation to be very accurate 

in predicting the vertical velocity (Pinot et al. 1996, Strass 1994). However in 

the particular case of strong fronts or submesoscale fronts, where the Rossby 

number becomes high, the Semi-Geostrophic (SG) “omega” equation describes 

the ageostrophic circulation more accurately (Naveira Gabarato et al. 2001). 

Hoskins and Draghici (1977) express the SG “omega” equation in the same 

terms as its QG counterpart (density and horizontal geostrophic velocity), but 

the authors do so in the geostrophic coordinate system, following a 

transformation. Naveira Gabarato et al. (2001) use this equation to derive 

ageostrophic vertical circulations from hydrographic and ADCP in-situ 

measurements at the Antarctic Polar Front. 

Following Eliassen (1948), Thomas et al. (2008) considers a front in the y-z 

plane, with no density gradient along-front and an along-front velocity purely 

geostrophic ൫ݑ ൌ  .௚൯  and in thermal wind balanceݑ
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The two-dimensional ageostrophic circulation can be described by an across-

front overturning stream function ߰ where ሺݒ௔, ሻݓ ൌ ቀ
డట

డ௭
, െ

డట

డ௬
ቁ. 

The SG equivalent of (2-5) is derived by Thomas et al. (2008): 

ଶܨ 
ଶ డ

మట

డ௭మ
൅ 2	ܵଶ

ଶ డమట

డ௭డ௬
൅ ܰଶ డ

మట

డ௬మ
ൌ െ

ଶ௚

ఘబ
ܳଶ
௚, (2-6) 

ܳଶ
௚, the y-component of the Q-vector, is defined by (2-4). 

 ܵଶ
ଶ ൌ െ

௚

ఘబ

డఘ

డ௬
ൌ ݂

డ௨೒
డ௭

 and ܨଶ
ଶ ൌ ݂ ቀ݂ െ

డ௨೒
డ௬
ቁ. Under the assumptions that these 

coefficients and are constant, Thomas et al. (2008) were able to solve (2-6). 

The solution for the ageostrophic function is elliptic, as in the QG 

approximation. Figure 2-4 illustrates one solution for (2-6).  

 

 

Figure 2-4: Ageostrophic circulation driven by a negative point-source 
Q-vector, ࡽ૛

ࢍ ൏ ૙, at ࢟ ൌ ࢠ and ࢅ ൌ  Isopycnals (gray contours) slant upward to .ࢆ
the North due to a southward buoyancy gradient. For this frontogenetic 
forcing, ࢍࡽ ∙ સ࢈ࢎ ൐ ૙, where ܾ is the buoyancy, the circulation is thermally 
direct and tends to restratify the fluid. From Thomas et al. (2008). 

 

The vertical velocity associated with the stream function is given by 

2N
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ݓ  ൌ െ
ிమ
ర
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with 
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ுమ , (2-8) 

and where 

ௌீܮ  ൌ ܪ
ඥ௙௤మವ
ிమ
మ  is the SG Rossby radius of deformation, ܪ is a characteristic 

vertical lengthscale of the flow, and ݍଶ஽ ൌ
ଵ

௙
ሺܨଶ

ଶܰଶ െ ܵଶ
ସሻ  is the potential 

vorticity (PV) of the two-dimensional geostrophic flow. One can deduce from 

this that at depth ݖ ൌ ܼ one finds 
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. 
(2-9) 

Under the assumption that ݂ and ܪ are constant in the vicinity of the front, one 

can say that the SG assumption leads to a vertical velocity which is 

proportional to the value of A (on the rhs of (2-9)). If one further assumes that 

ܰଶ and 
డ௨೒
డ௬

  are constant on a side of the front, ݓ becomes a direct function of 

డఘ

డ௬
 , the density gradient across the front. It is clear that the absolute value of 

the vertical velocity anywhere at the front is increasing as a function of the 

density gradient. There is no such simple conclusion when considering 
డ௨೒
డ௬

, 

instead the effect of an increase of this term on the vertical velocity depends 

on the magnitude of the horizontal density gradient. This is coherent with the 

omega equation (2-2), which stresses that the vertical velocity depends on the 

configuration of the horizontal geostrophic strain with regard to the 

orientation of the front. 

The SG analytical model of HB72 showed that a barotropic external 

deformation field applied to a uniform density gradient causes a finite 

discontinuity to develop at the surface in a finite time. This result is in contrast 

to a purely QG model in which the surface discontinuity forms as time goes to 

infinity. HB72 explains that, in reality, mixing or friction and three-dimensional 
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effects, which are ignored in the model, would eventually take over to smooth 

out discontinuities. Intense submesoscale structures can be described by the 

dynamics contained in the PE or the SG regime. Associated with the strong 

submesoscale vorticity gradients, the vertical velocities are one order of 

magnitude stronger than the vertical velocities of QG dynamics (Pollard & 

Regier 1992), (Spall 1997). Numerical simulations suggest that submesoscale 

vertical velocities are maximum at around 100 m depth where they overtake 

mesoscale QG vertical velocities, which are maximum at around 1000 m depth 

(Lévy et al. 2001). 

 

2.2.4 The theory of frontogenesis in the SQG regime 

Another set of dynamics, the Surface Quasi Geostrophic regime (SQG), has 

been suggested to describe the oceanic eddy field in the surface layers 

(Blumen 1978). The SQG system involves the same assumptions as the QG 

system. In particular, the Rossby number is assumed to be small. In addition, 

the SQG regime considers a nonzero surface density anomaly and assumes a 

uniform potential vorticity (PV) in the interior. Essentially, the surface density 

is a Dirac delta of potential vorticity, as first recognized by Bretherton (1966). 

Mesoscale eddies stir the nonzero surface density anomalies, which leads to a 

cascade of energy to small scales and strong density gradients at 

submesoscale, through the process of frontogenesis. The consequence is that 

the three-dimensional dynamics, and in particular the vertical structure of 

surface fronts, are entirely driven by the time evolution of the density at the 

surface. 

Like the QG approximation, the SQG regime is used by ocean and atmosphere 

dynamicists to study the properties of the turbulence, because it facilitates the 

computations of the simulations. Indeed, in contrast to the Primitive Equation 

models, SQG models have only two dimensions, which makes it possible to 

run a numerical model with a much higher spatial resolution. The SQG regime 

is the counterpart of the regime of interior QG turbulence, which assumes that 

motions are not influenced by vertical boundary conditions on the stream-

function and behaves as though these conditions were homogeneous. 

Consequently, the interior QG regime assumes surface density anomalies to be 
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zero (Klein & Lapeyre 2009). The interior QG regime exhibits a steep velocity 

spectrum (close to k-3 or k-4), and its turbulence does not produce small-scale 

features, independently from the spatial resolution of the simulation. In this 

regime, the vertical velocity field is located mostly with the mesoscale eddies 

because large vorticity amplitudes are found principally in the eddy cores. In 

contrast, the SQG regime involves a shallow surface velocity spectrum (k-5/3), 

with more energetic small scales, identical to the density spectrum (Klein et al. 

2008). The vertical pump in this regime is essentially at small scales and 

appears to be evenly partitioned between mesoscale eddies and small-scale 

elongated filaments between the eddies (Lapeyre & Klein 2006a). 

These authors have used PE simulations to show that the ocean dynamics can 

be decomposed in terms of a solution forced by the potential vorticity in the 

interior (QG mode) and a competing solution forced by the surface density 

(SQG mode). One of their results was the dominance of the latter mode in the 

first 500 meters. As a consequence, the dynamics in these layers can be 

recovered with analytical relations. Using SQG equations, a complete 

determination of the stream-function in the upper-layer of the ocean can be 

obtained from a unique snapshot of the surface density anomaly. This follows 

Held (1995) and Hakim (2002), who deduced winds associated with 

temperature anomalies in the tropopause, using the SQG assumptions. Lapeyre 

and Klein (2006) have shown that the SQG model allows one to reconstruct the 

3-D dynamics of submesoscale and mesoscale from just the horizontal surface 

density field using a constant Brunt-Väisälä frequency. LaCasce and Mahadevan 

(2006) have also demonstrated the relevance of this model for the upper 

oceanic layers using in-situ data and comparing with SQG reconstruction using 

SST. Isern-Fontanet et al. (2006) explored the potential use of microwave SST 

for the estimation of ocean currents. The authors showed a good correlation 

between the horizontal current recovered from the SST by the SQG model and 

the current obtained from altimetric measurements.  

Isern-Fontanet et al. (2008) showed that an effective version of SQG (eSQG) is 

quite successful in reconstructing the velocity field at the ocean surface for 

scales between 30 and 300 km. Their approach consists of inverting the QG 

potential vorticity generated by surface density only, assuming that 

temperature anomalies fully represent surface density anomalies. This method 

only requires a single snapshot of SST and two parameters: the mean Brunt-
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Väisälä frequency and a parameter that determines the energy level at the 

ocean surface. They tested the performance of the approach using an Ocean 

General Circulation Model simulation representing the North Atlantic in Winter. 

They concluded that results are reasonably good in the first 500 m and that 

the success of the method mainly depends on the quality of the SST as a proxy 

of the density anomaly at the base of the mixed layer. The ideal situation for 

the application of this method is after strong wind events, because the mixed 

layer is deep. 

 

2.2.5 Scaling of the Omega equation 

The SQG model is very energetic in the small scales, and filaments are created 

and stirred by the straining action of eddies. These filaments are bounded by 

fronts, which are strengthened whenever the filaments are elongated. The 

resulting thermal-wind imbalance generates vertical motions that are governed 

by the omega equation. Lapeyre and Klein (2006) calculate a scaling of this 

equation, based on SQG regime characteristics.  They obtain 

ሻݖሺݓ  ൌ
௚ఙ

ேమ
∆ఘ

ఘబ

௭

஽
exp ቀ	

௭

஽
ቁ, 

(2-10)

where ߪ is a scale for the surface large-scale strain field, with a classical value 

ߪ ൌ 2.5 ൈ 10ି଺	ିݏଵ. ∆ߩ is the density variation across the fronts that bound the 

filament. ܦ ൌ  is the vertical length scale to which the density decays ܰ/ܮ݂

exponentially, which is a SQG consequence. ܮ is the width scale of the 

filament. 

This parameterization of the vertical velocity is a function of the stratification, 

the width of the filament, the magnitude of the strain applied to it and the 

density difference across the fronts bounding the filament. The authors 

calculate an average ݓሺ100݉ሻ ൎ 0.85	݉. ݀ିଵ at filaments produced by a typical 

fully turbulent eddy field in free decay simulation. This parameterization is 

adapted to be used on satellite SST and altimetry in section 5.4. 

Legal et al. (2007) derive another parameterization of the vertical velocity from 

a scaling of the omega equation: 
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The authors apply this formula to the appropriate values related to an in-situ 

high resolution survey in a region of the northeast Atlantic Ocean 

characterized by a large number of strongly interacting eddies. Equation (2-11) 

translates into 

ݓ  ൎ െ250∆(2-12) ,ߩ 

where ݓ is in meters per day and ∆ߩ is in ݇݃/݉ଷ . 

This linear relationship is checked by calculating the correlation between the 

small-scale density anomalies across the field (after removing the large-scale 

meridional density gradient) and the diagnosed vertical velocities obtained 

using in-situ SeaSoar data combined with the analysis of altimeter data. The 

anticorrelation between the two quantities is remarkable, and the regression 

calculation leads to a factor of -300, a value close to the estimation (-250) 

deduced from the scaling (2-12). Thus, the strong anticorrelation between the 

vertical velocity field and the small-scale density anomalies is easily explained 

by the elongation of the small-scale density filaments by the large-scale strain 

field, whose effects are described by the omega equation. 

 

2.3 Restratification effect of frontal submesoscale 

instabilities 

The previous section shows how a large scale straining field acting to intensify 

a front can trigger ageostrophic vertical circulations which counteract the 

frontogenesis so that the thermal wind balance is maintained. This mechanism 

was explored under the perspective of the vertical exchanges occurring in the 

vicinity of fronts. The principal objective behind these studies is to improve 

the understanding of vertical exchange of properties between the atmosphere 

and the ocean, as well as the upwelling of nutrients from the deep, the 

subduction of plankton under the thermocline and their effects on the oceanic 

carbon pump. Another class of studies has emerged in the last decade which 

focuses on how the front affects the mixed layer stratification. Horizontal 

buoyancy gradients store available potential energy, which gets released 
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whenever the fronts become unstable and slump. As a front slumps, the 

density gradient is rotated from the vertical to the horizontal, and the 

consequence is an increase of the stratification. It is now understood that 

unforced submesoscale baroclinic frontal instabilities play a leading role in the 

release of frontal potential energy. They currently focus the attention of 

dynamicists who seek to parameterize their contribution to the restratification 

for use in coarse resolution ocean models. 

Traditionally, the processes affecting the stratification and the mixed layer 

depth (MLD) were seen as purely one-dimensional. In this view, the 

stratification is reduced (MLD deepens) through turbulent mixing produced by 

winds or cooling and evaporation at the surface, which makes surface water 

denser. Conversely, the stratification is increased (MLD gets shallower) when 

heating and precipitation reduce the surface density. This view is now 

challenged and the role of lateral instabilities in the restratification of the 

mixed layer was proven to be significant whenever there are horizontal 

density gradients (Boccaletti et al. 2007). The authors illustrate their theory 

with the following scenario. A winter storm hits the open ocean, mixing the 

top 100 m of the water column over a patch of a few hundred square 

kilometres. Once subsided, the storm leaves behind a homogenized layer in 

which horizontal variations of salinity and temperature have survived, yet 

vertical variations have been virtually erased by vertical mixing. The horizontal 

gradient of density is the surface signature of nearly vertical isopycnals 

produced by localized mixing. After the storm, a dynamical adjustment 

process begins that restratifies the surface layer by slumping of the fronts. 

This slumping, initially a simple gravitational overturning, is subsequently 

modified by rotation leading to a geostrophic adjustment. This geostrophic 

adjustment limits the release of energy and prevents further slumping where a 

Coriolis force develops with an along-front flow to balance a cross-front 

pressure gradient. Tandon and Garrett (1995) predicted that this adjustment 

takes a few day during which the initially vertical isopycnals oscillate around 

the geostrophically adjusted state with 

 ܰଶ ൌ ቀడ௕
డ௬
ቁ
ଶ
/݂ଶ, (2-13)
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where డ௕
డ௬

 is the cross-front buoyancy gradient. This formula was validated by 

Boccaletti et al. (2007) with a high-resolution numerical model of a front 

undergoing dynamical adjustment. However Boccaletti et al. (2007) show that 

the geostrophically adjusted state can be further unstable to submesoscale 

baroclinic instabilities that continue restratification. Their simulation 

demonstrates that the bulk of the restratification happens after the baroclinic 

instabilities set in. These instabilities, which are referred to as mixed layer 

instabilities (MLI), differ from instabilities in the ocean interior because of the 

weak surface stratification. They have a small vertical scale, are submesoscale 

in the horizontal (of the order of 1-10 km), and a growth time scale of the 

order of a day. 
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Figure 2-5: Development of mixed layer baroclinic instabilities along a 
temperature front undergoing geostrophic adjustment. (a) The initial 
configuration consists of a lateral temperature front in a well-mixed surface 
layer on top of stable density stratification. (b) After 10 days the front has 
tilted from the vertical to the horizontal and wavelike disturbances appear 
along the front. The tilt of the wave disturbances in the along-channel 
direction is such as to release the potential energy stored in the horizontal 
stratification much like in the Eady problem. (c) By day 12 the disturbances are 
fully nonlinear and start growing in scale as a result of an inverse cascade of 
energy. (d) At day 17 the disturbances have wrapped up into eddies and 
frontogenesis develops along the rim of the eddies. The colour bar is in 
degrees Celsius, and the contour interval is 0.25°C. From Boccaletti et al. 
(2007). 
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Figure 2-6: Increase in domain-averaged buoyancy frequency ࡺ૛ as a result of 
slumping of the mixed layer front shown in Figure 2-5. The initial vertical 
stratification is 0. The insets show snapshots of the various stages of the 
along-channel average of buoyancy. The initial slumping oscillates on the 
inertial period (h 0–24). It is followed by a restratification due primarily to the 
growth of baroclinic MLIs (days 2–10) and then by the eddies resulting from 
the nonlinear interaction of the MLIs (day 10 onward). MLI perturbations are 
infinitesimal until day 10 and thus ࡺ૛ is seen to simply oscillate around the 
geostrophic adjusted state. Only once MLIs reach finite amplitude does the 
increase in ࡺ૛ become significant. From Boccaletti et al. (2007). 

 

Figure 2-5 presents a series of 3D snapshots of the front during the 

adjustment, and Figure 2-6 displays the stratification of the scene against time. 

Tandon and Garrett (1994) argue that mesoscale restratification acts on time 

scales too slow to compete with vertical mixing, hence its role in the mixed 

layer restratification should be ignored. Boccaletti et al. (2007), on the 
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contrary, show that MLIs develop at the mesoscale and are fast enough to 

restratify between mixing events. MLIs inject high potential vorticity 

thermocline waters into the mixed layer and drive substantial restratification 

despite the action of vertical mixing. They constitute a leading-order process 

in the mixed layer heat budget for fronts stronger than about 1 ൈ 10ିଷ	ܭ/݇݉ 

and play an important role in determining the depth, temperature and salinity 

of the mixed layer. MLIs have been observed and proven ubiquitous by a few 

observational studies such as Flament et al. (1985) and Munk et al. (2000). 

Fox-Kemper and Ferrari (2008) note that ocean models that do not resolve the 

submesoscale, which require a grid of the order of 100m, have a bias toward 

weak near-surface stratification. This is a consequence of the fact that they 

typically ignore dynamical restratification by slumping of horizontal density 

gradients within the mixed layer. They propose a parameterization for the 

restratification driven by finite-amplitude baroclinic instabilities of the mixed 

layer in term of an overturning streamfunction that tilts isopycnals from the 

vertical to the horizontal. The streamfunction (߰௘) is proportional to the 

product of the horizontal buoyancy gradient ቀడ௕
డ௬

ഥ
ቁ the mixed layer depth ሺܪሻ 

squared, and the inertial period ሺ݂ሻ: 

 ߰௘ ൎ 0.06 ∙ ଶܪ డ௕

డ௬

ഥ
/݂. (2-14)

Where the overbar denotes an average along-front. Therefore, restratification 

proceeds faster at strong fronts in deep mixed layers with a weak latitude 

dependence. Fox-Kemper and Ferrari (2008) compare the parameterization 

with submesoscale-resolving simulations and estimate the importance of MLI 

restratification from data. Fox-Kemper et al. (2010) explore the numerical 

implementation of the parameterization and its effect in realistic global 

simulations. This parameterization is tested on satellite SST data in section 

5.6. 

Questions remain on the interaction between mesoscale eddies ands MLI and 

how they affect the restratification. Lapeyre et al. (2006) suggest that 

mesoscale instabilities can also act to restratify the upper ocean through 

frontogenesis. However that study used coarse-resolution numerical 

simulations that do not allow for the development of MLIs. Boccaletti et al. 

(2007) speculate that mesoscale eddies dominate in regions of strong 
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convergence, where MLIs are suppressed according to Spall (1997), while MLIs 

compete and often dominate over mesoscale restratification elsewhere. 

Another question under investigation is the role of wind above fronts in the 

restratification. Depending on the orientation of the wind with regard to the 

front, its consequence can be an intensification or a destruction of the 

stratification. When the wind stress has a component up front, the surface 

Ekman flow will advect lighter water over denser, thereby restratifying the 

mixed layer. On the other hand, down-front winds advect denser water over 

lighter, giving rise to an ageostrophic circulation which destroys the mixed 

layer stratification and leads to the intensification of the front. The latter 

mechanism was described by Thomas and Lee (2005). Thomas and Ferrari 

(2008) show that restratification ensuing from frontogenesis can be of 

comparable magnitude with the wind destruction of stratification, which 

means that the latter can easily overcome the former. Mahadevan et al. (2010) 

study the competition between down-front wind action to maintain the 

isopycnals vertical at the front and the enhancement of the stratification by the 

MLIs. An equilibrium between the two processes can be found over long 

periods, where the potential energy input by the wind is extracted by 

strengthened MLIs. The authors suggest a scaling diagnostic to determine 

whether the effect of MLIs or wind dominates under different conditions. 

ݎ  ൌ ߬଴/ ቀ0.06ܪߩଶ డ௕

డ௬

ഥ
ቁ, (2-15) 

where ߬଴ is the along-front wind stress. Their simulations show that though the 

cross-front transport of buoyancy induced by the down-front component of the 

wind opposes restratification by MLIs, it becomes diminished as the eddies 

and growth of the frontal instability disrupt alignment between the wind and 

frontal axis. 

 

2.4 Basin-wide models combining several mechanisms 

The previous sections have presented researches on frontal dynamics based 

on analytical equations and numerical models of a single front. The models 

have increased in complexity over the past 30 years, starting from two-
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dimensional simplified simulations to three-dimensional high-resolution non-

linear numerical simulations of one front undergoing the forcing from 

mesoscale strain and wind. This evolution was made possible by the 

continuous improvement in computer performances. Since the 2000s, 

scientists have started to use the most advanced super-computers, which were 

more commonly used to perform global climate models runs, to simulate 

mixed layer dynamics at the regional/basin scale, over a long time scale, and 

with a spatial resolution high enough to resolve the submesoscale. Biophysical 

models of eddy fields showed consequent increases of primary productivity 

(PP) as the resolution of the models was increased. 

Mahadevan and Archer (2000) explored the range of resolution from 40 to 

10km in a model representing an area of the ocean where PP is limited by the 

availability of nutrients. They observed an increase of a factor of three of PP as 

a consequence of the appearance of small-scale fronts at high resolution. 

Similarly, Levy et al. (2001) reported a factor 2 change in PP when changing 

the resolution from 10 to 2 km. The latter resolution allowed the model to 

resolve small fronts surrounding or ejected by the eddies. Intense vertical 

velocities of up to 40 m/day were observed in the vicinity of the fronts. Capet 

et al. (2008b) continued this work and simulated an idealized subtropical 

eastern boundary upwelling current system similar to the California Current 

(about 700 by 700 km). They observe that pushing the resolution to O(1 km) 

creates a complex flow structure with mesoscale eddies and fronts. In 

addition, instabilities arise along the wind-driven alongshore currents and 

significant energy is transferred into submesoscale fronts and vortices in the 

upper ocean (see Figure 2-7). 
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Figure 2-7: Simulated instantaneous surface temperature field. Note the string 
of meanders and filaments in 17˚-19˚C water with wavelength ≈50 km 
running along the edges of the offshore eddies (MLIs). From Capet et al. 
(2008b). 

 

The submesoscale arises through surface frontogenesis growing off upwelled 

cold filaments that are pulled offshore and strained in between the mesoscale 

eddies. In turn, some submesoscale fronts become unstable and develop 

submesoscale meanders and fragment into roll-up vortices. Associated with 

this phenomenon are a large vertical velocity (up to 50 m/day) and Rossby 

number and a large vertical buoyancy flux acting to restratify the upper ocean. 

The authors developed a combination of composite averaging and separation 

of distinctive subregions of the flow in order to analyse the submesoscale 

fronts from a phenomenological and dynamical perspective. To investigate the 

frontogenesis driven by the horizontal strain, they used 
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ௌܨ  ൌ ܳௌ ∙ (2-16) ,ߩு׏
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(2-17)

 ௌ is a measure of the rate of increase for the horizontal density gradientܨ

arising from the straining by the horizontal velocity field. ܨௌ is computed from 

satellite SST data and altimetry in section 5.5. Note that equation (2-17) is 

close to the Q-vector defined in (2-4) except for the sign and the fact that it 

represents the straining from the total horizontal field, rather than only its 

geostrophic component in (2-4). Hoskins (1982) states 

 ஽|׏ಹఘ|మ

஽௧
ൌ (18-2) ,ܨ

where ܨ is the addition of the straining by the horizontal density field (ܨௌ) with 

the straining deformation by vertical velocity, the vertical mixing and the 

horizontal diffusion. Typical horizontal patterns of the frontally concentrated 

quantities |׏௛ݓ ,ݓ ,|ߩ′′ܶ′′  and ܨௌ are shown in Figure 2-8. (Herein ′′ refers to a 

spatial and temporal high-pass filtering). These quantities are mutually related 

in a way that is suggestive of on-going frontogenesis. As predicted by Hoskins 

and Bretherton (1972), the extrema of vertical velocity and vertical flux of 

temperature are localized in regions where the velocity field is conducive to 

frontogenesis, that is, where ܨௌ is large.  
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Figure 2-8: Instantaneous horizontal patterns for frontal quantities simulated 
at t=160 days and 10-m depth in a 270 km × 300 km subdomain: (a) 
|સ࣋ࢎ|	ሺ૚૙ି૞ି࢓.ࢍ࢑૝ሻ, (b) |࢝|	ሺ૚૙ି૝࢓. ࢙ି૚ሻ, (c) ࡿࡲ	ሺ૚૙ି૚૝ࢍ࢑૛ି࢓ૡ࢙ି૚ሻ, and (d) 
࢝ᇱᇱࢀᇱᇱሺ૚૙ି૞࢓. .ܥ° ࢙ି૚ሻ. From Capet et al. (2008b). 

 

The authors also process composite vertical profiles of these quantities over 

frontal regions within the domain and from 50 independent times. These 

profiles clearly show a general positive tendency of SF  in the top 20 meters. 

Upward velocities on the light side of fronts reach 20 m/day at 10 meters 

depth, whereas the maximum downward velocities on the heavy side are -50 

m/day at the same depth. 

These series of three publications are remarkable in the sense that they are the 

first to simulate such a large region while resolving such small features. The 

authors observed mesoscale jets, submesoscale fronts, frontogenesis, 

ageostrophic secondary circulation, frontal instability across a range of scales 

and coherent vortices, which typically occur simultaneously. The flow remains 
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close to satisfying a geostrophic or gradient-wind force balance most of the 

time. The main departure from balance are found in the vicinity of both stable 

and unstable fronts, and the unbalance patterns most strongly reflect the 

ageostrophic secondary circulation (ASC) associated with frontogenesis. These 

ASCs are confined to the surface boundary layer and efficiently release 

potential energy and effectively act to restratify the upper ocean, even though 

only a small fraction of the domain is actively frontal at any given time.  

The results from Levy et al. (2010) suggest that submesoscale dynamics have 

an impact on the large scale circulation. Their simulation took advantage of 

one of the most advanced super computers to compute 100 years duration of 

a dynamic scene characteristic of mid-latitude oceanic gyres. As the resolution 

of the model is increased from 1/9to 1/54 (about 2 km), major changes on 

the circulation occur with submesoscale physics having an integrated and 

cumulative effect on the large-scale oceanic circulation. These changes ensue 

from the emergence of a denser and more energetic vortex population at 

1/54, occupying most of the basin and sustained by submesoscale physics. 

Non-linear effects of this turbulence strongly intensify the jet that separates 

the two gyres, and a regime of energetic secondary zonal jets emerges, 

associated with complex recirculation. In parallel, submesoscales restratify 

both the seasonal and main thermocline, inducing a particular reduction of 

deep convection and the modification of the water masses involved in the 

meridional overturning circulation. This suggests that submesoscale processes 

play an important role on the mean circulation and the mean transports at the 

scale of oceanic basins. 

 

2.5 Questions that are left to be answered 

The oceanographic community is putting a lot of efforts into understanding 

the dynamics associated with ocean surface fronts. It is now clear that the 

vertical exchanges that occur in their vicinity play a major role in the transfer 

of momentum, heat and tracers between the mixed layer and the atmosphere 

on one side, and the deep water on the other side. Therefore the presence of 

fronts is instrumental in the setting of the mixed layer stratification and 

composition. The general processes and interactions that happen at the fronts 
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and their consequences in term of vertical velocity or restratification are fairly 

well understood from a qualitative perspective. They were indeed predicted by 

analytical studies, linked to atmospheric science, several decades ago. Since 

these early publications, numerous in-situ observations and constantly 

improving numerical models have confirmed these predictions. 

The issue of the quantification and prediction of the dynamics associated with 

fronts is being tackled. Significant conclusions were reached in the previous 

decade, and further important results should be published in the coming one. 

The challenge is to improve the understanding of the physical processes at 

fronts, how fronts are created, destroyed or maintained and how they interact 

with their environment. The main focus point at the moment is the role of the 

submesoscale within these processes. The objective of the dynamicists 

involved in these studies is eventually to be able to parameterize the small-

scale physics occurring at fronts. This would dramatically improve the quality 

of the prediction of the ocean global circulation models (OGCM), which do not 

resolve the submesoscales and will most probably not do so for a very long 

time. 

It is the opinion of the author of this thesis that satellite observations of the 

ocean are being underestimated in this context, whereas they have the 

potential to bring answers to some of the questions the dynamicists are asking 

themselves. Similarly, dynamical research is being overlooked by the satellite 

oceanography community when it provides results that have the power to 

increase the oceanographic observation capabilities of satellites.  This section 

presents currently open dynamical questions for which satellite observations 

have the potential to provide answers or at least advance the understanding. 

Some of these questions will be tackled by this thesis, the others will be left 

open but could benefit from the methodology established here. 

The main question is the issue of the frequency of the fronts on the ocean. 

Many dynamical studies derive values of subduction, upwelling or 

restratification, expressed as a vertical flux of heat, occurring in the vicinity of 

a front under certain conditions. However a greater understanding of the 

frequency of such features in the ocean surface is required to estimate the 

integrated, cumulative, overall impact on the mixed layer dynamics and on the 

global ocean properties. Spall (1995, 1997) and Boccaletti (2007) recognize the 
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need for such analyses. Global data sets of SST have the capability to quantify 

the occurrence and variability of the fronts that respect certain conditions 

assumed in the physical studies. 

The frontal statistics hidden in the SST data sets can be refined if one uses in 

synergy other observational data sets such as the mesoscale geostrophic 

straining field (from altimetry), the wind stress (from scatterometers) or the 

mixed layer depth (from Argo floats). A methodology integrating the various 

observation data sets while making the most up to date of dynamical 

knowledge could lead to a comprehensive description of some surface 

dynamics at the global scale. Moreover, parameterization of small-scale 

dynamics have been suggested (Fox-Kemper et al. 2008, Mahadevan et al. 

2010) for use in global ocean circulation models but are believed by the author 

of this thesis to be also useful when applied on real satellite data. The frontal 

statistics, eventually combining several parameters, have also the potential to 

assess the quality of the numerical simulations with respect to observations. 

As was discussed in the previous sections, the main driver for front creation, 

also called frontogenesis, is horizontal convergence. A mesoscale convergence 

under the form of strain can intensify a weak meridional gradient of 

temperature by pushing different water masses toward each other. It was 

shown that ageostrophic secondary circulations respond to the intensification 

of a front by strain in order to maintain the thermal-wind balance. These ASCs, 

in turn, have a frontogenetic effect due to their divergence at the surface 

boundary. Other studies have demonstrated that a front can be destroyed, a 

process called frontolysis, if it goes baroclinically unstable, meanders and the 

isopycnals slump toward the horizontal. The mixed layer instabilities (MLI) 

develop along the front and act to destroy the front and restratify the mixed 

layer. However, little is known about the competition between instability and 

active frontogenesis in a baroclinic flow (Capet et al. 2008b). Spall (1997) 

observed in numerical simulations that frontogenesis provided by the 

deformation field counteracts the frontolysis of the baroclinic instabilities such 

that strong coherent time-dependent meandering jets are maintained for as 

long as the deformation field persists. Satellite data sets are suitable to explore 

this competition and to provide answers since high resolution SST products 

resolve the frontal instabilities while altimetry products provide a good insight 

into the straining field applied to the surface fronts. 
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Turbulence research has achieved major results, and the phenomenology and 

physical mechanisms of the separate regimes of two- and three-dimensional, 

geostrophic, stratified, gravity-wave, and boundary-layer are now fairly well 

established (see Muller et al. 2005, Ferrari and Wunsch 2009, Ferrari and 

Wunsch 2010 for a review on these studies). These regimes describe well the 

nature of geophysical turbulence at various space and time scales and at 

various locations on the ocean. However a fundamental question remains: how 

do these regimes of turbulence coexist and connect in the ocean? It is not fully 

understood how the energy of the general circulation, generated at the large 

climatic scale, cascades to the small scales where most of it is dissipated. In 

particular, scientists are trying to explain the dynamical transition from the 

anisotropic, overwhelmingly two-dimensional, large-scale geostrophic to the 

more isotropic, 3D-like, small-scale (Müller et al. 2005). 

Submesoscale processes in the vicinity of fronts are understood to play an 

important role in the energy budget of the ocean. For instance, when a front is 

created by a large scale horizontal straining, it stores available potential 

energy in the baroclinic current it forms. This energy is dissipated in small-

scale three-dimensional kinetic energy as the MLIs set in, slump the front and 

act to restratify the mixed layer. The energy distribution in the mixed layer is 

often characterized in terms of length scale by the power spectrum of kinetic 

energy. General three-dimensional turbulence spectra show a 

characteristic -5/3 power law, which means a -5/3 slope of spectral density of 

variance plotted against wave number in log-log scale, and a cascade of 

energy to smaller scales. On the other hand geostrophic mesoscale flow 

spectra have a -3 slope and a reverse energy cascade (Thomas et al. 2008). 

Little energy is found at small scales in this regime. Capet et al. (2008b) 

observed that the spectrum slope of their primitive equation model depends 

on its spatial resolution, it is -3 for a resolution resolving mesoscales and -2 

for the resolution resolving submesoscales. Boccaletti et al. (2007) and Fox-

Kemper and Ferrari (2008) show that the energy peak triggered by MLIs is 

transferred to both larger and smaller scales. The reverse cascade occurs as 

MLIs evolve and merge into mesoscale eddies. The forward cascade is 

intimately tied to frontogenesis and frontal instabilities, especially through the 

advection by the horizontally divergent, ageostrophic component of the flow 

(Capet et al. 2008c). Today, global satellite observations of SST resolve fine 
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spatial scales (up to 1km for AATSR) and the combination of various sensors 

resolve a temporal scale of one day. This is sufficient to answer questions on 

the validity of the different turbulence regime and how they interact with each 

other. Spectrums of currents derived by altimetry products and chlorophyll 

content from ocean colour instruments have been measured and compared 

(see Levy and Klein 2004 for a review). However the author of this thesis is not 

aware of any such study based on SST datasets with a global, systematic 

perspective. 
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3. Chapter 3: SATELLITE-BASED FRONT 

DETECTION TECHNIQUES 

 

This chapter focuses on front detection algorithms that can be applied to a 

spatial field of SST to extract frontal quantities.  Two recently developed 

automated front detection techniques are reviewed. The details of the 

algorithms as suggested by their respective authors are explored, and practical 

implementations of each approach, adapted to the objectives of this thesis, are 

described. 

These automated front detection techniques have significantly improved the 

study of ocean fronts on satellite images. They offer objectivity in the 

quantitative analysis of ocean fronts that was out of reach when detection was 

performed subjectively by human operators. Large quantities of satellite data 

can now be processed and the results can be analysed with spatial and 

temporal consistency. The fact that the algorithms can deal with 2-dimensional 

snapshots of SST allows composites of front maps to be created from a time 

series of individual frontal maps from high-resolution SST images. These 

composites are different from the result when the front detection algorithm is 

applied to the composite of SST images over the same period, because any 

high spatial and temporal variability of mesoscale and submesoscale frontal 

activity is already blurred and reduced in the averaged SST image before any 

frontal analysis is performed. When an operator observes a map of SST and 

marks fronts on it, the operation is tedious and the result is not objective. The 

same SST map analysed twice by an operator may produce different front 

positions depending on the operator’s instantaneous mood, not to mention 

inconsistencies between the results of two different operators! If one wants to 

analyse the variation of frontal quantities in time and space, it is absolutely 

necessary to apply an automatic computational method. The two algorithms 

presented in this chapter comply with this requirement. 

However, what is missing in the scientific literature is an understanding of the 

performance of these techniques. These techniques can so far be compared to 

black boxes which return consistent results in the sense that they seem to 
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detect fronts and deliver the same results when provided with the same 

inputs. However, if the objective is to derive physical parameters from the 

detected fronts, as in the context of this thesis, it is necessary to explicitly 

quantify the relation between the input scenes and the fronts detected by the 

algorithms. One should be able to predict which fronts are detected and which 

are not in order to carry out a dynamical interpretation of the detected fronts. 

The last objective of this chapter is to evaluate and compare the performances 

of the two algorithms, which are required to function in a wide range of 

conditions. Indeed, these algorithms should detect fronts of various scales and 

intensity that are embedded in a complex turbulent flow. They should be able 

to do so from satellite data which suffer from limitations in term of data 

availability, resolution, noise and atmospheric artefacts. This chapter will lead 

to the appropriate selection, in chapters 5 and 6, of an algorithm and its 

associated parameters in relation to the characteristics of the data field on 

which the fronts are detected. 

It should be noted that this chapter does not explicitly consider the capacity 

for front detection of SST fields derived from different data sources, an issue 

which is explored in the subsequent chapter. Chapter 4 will show that satellite 

SST observations and products have the potential to resolve density fronts in 

the mesoscale (10-100 km) and sometimes in the sub-mesoscale (1-10 km). It 

will also present a study on the ability of various SST data sets to resolve 

density fronts.  

 

3.1 Front detection methods based on local statistics of 

the SST field 

When looking at a SST image, fronts appear as the boundary between water 

masses of different temperatures around eddies, jets, upwellings or other 

mesoscale features. It is possible to enhance them by applying a filter to the 

image that would show where the SST is changing rapidly in space. Simple 

filters based on local statistics of the SST field are competent for this task: 

these are the operators that compute the spatial variance, the skewness, the 

gradient and the Laplacian (second spatial derivative) (Cornillon & Watts 1987). 
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Figure 3-1 shows how SST gradient processed by Burls and Reason (2006) 

from interpolated microwave data in the South Atlantic can resolve frontal 

features. It reveals high frontal activity around the Antarctic Circumpolar 

Current (ACC), the retroflection of the Agulhas Current and at the convergence 

zone where the Brazil Current meets the Malvinas Current. Strong fronts are 

encountered, with magnitudes of SST gradient reaching over 0.035 K/km. It is 

notable that even rather coarse daily SST images (resolution of 25 km) can 

reveal some mesoscale variability in the meanderings of the ACC jets. The 

authors measured a substantial inter-annual variability in the strength and 

latitudinal location of the Northern and Southern Subtropical Front, simply by 

taking meridional transects in the SST gradient. 

 

 

Figure 3-1: Daily SST gradient for January 1, April 1, July 1 and October 1, 
2003, derived from a 25 km resolution Optimal Interpolation of Microwave SST 
dataset. Isotherms are overlaid in black. From Burls and Reason (2006). 

 

Improved methods also exist that take advantage of new image processing 

techniques to enhance edges (Holyer & Peckinpaugh 1989). These methods 

have the advantage of being simple to apply to satellite images, but are very 

sensitive to noise. The way to deal with this limitation is initially to filter the 

data to eliminate the spatial noise, although this makes it more difficult to 

detect finer-scale frontal features in the end.  
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3.2 The Canny method 

Figure 3-1 shows that calculating the SST gradient is a good way to enhance 

fronts and to make them obvious to a human eye. One can define a front as a 

region where the SST gradient is higher than a defined threshold as Belkin and 

Gordon (1996) did. This is an objective and automated method to detect 

fronts. It isolates fronts from the rest of the SST values but does not extract 

them in the form of vector structures. Detected fronts should however be 

defined as individual spatially defined objects that can be integrated 

temporally rather than as a block of flagged pixels in a raster image of a 

geophysical parameter in order to record and analyse the fronts consistently in 

terms of characteristics such as their length or their strength (Shimada et al. 

2005). 

The precise location and length of the fronts can be obtained following the 

method suggested by Canny (1986), which locates the fronts on the crests of 

the SST gradient. The Canny algorithm first estimates the gradient magnitude 

and searches for local maxima of gradient in the gradient direction. It then 

looks for pixels with gradient magnitude larger than a threshold ଶܶ. These 

pixels are flagged as frontal pixels. Finally the algorithm tracks along the front 

crests, i.e. perpendicularly to the gradient, flagging pixels as frontal pixels 

until the gradient magnitude falls below a smaller threshold ଵܶ. It does not, in 

its native form, link the flagged pixels together as a vector-defined 

independent object. The Canny algorithm was developed for automatic edge 

detection in the field of image processing, but Castelao et al. (2006) had the 

idea to apply it on SST data for front detection. The authors applied this 

technique on geostationary infrared SST data (GOES-10) over the California 

Current system, with the following thresholds: ଶܶ ൌ and  ଵܶ ݉݇/ܭ	0.006 ൌ

 .݉݇/ܭ	0.0015

 



  Front detection techniques 

 57  

3.2.1 A new implementation of the Canny method 

To support the analytical work in subsequent chapters of this thesis a new 

implementation was coded in Matlab of an algorithm based on the Canny 

concept to detect fronts on SST data. It was possible to take advantage of a 

built-in Matlab Canny function for image processing. The core of this function 

was extracted because it is coded in a very optimized way, but it was adapted 

so that it can set thresholds with meaningful geophysical values of SST 

gradient instead of using image processing generic thresholds based on 

relative image brightness values. The main difficulty was to code a realistic 

estimation of the 2-dimensional gradient of an SST image. A simplistic way of 

estimating the SST gradient is to divide the SST increment of adjacent pixels by 

the horizontal distance that separates them as: 

,ሺ݅ܶܵܵ׏  ݆ሻ ൎ ൮

ܵܵܶሺ݅ ൅ 1, ݆ሻ െ ܵܵܶሺ݅, ݆ሻ
݀௜

ܵܵܶሺ݅, ݆ ൅ 1ሻ െ ܵܵܶሺ݅, ݆ሻ
௝݀

൲ (3-1)

where ݀௜ and ௝݀ are the zonal and meridional distances in km between 2 pixels 

in the SST image, respectively.  

This is the first order SST gradient; it is only an estimation since the gradient 

of a discrete image does not exist mathematically speaking. It is in practice 

defined as the gradient of a continuous underlying function. The underlying 

function is the interpolation of the discrete image, hence it is not unique. 

There are several ways of interpolating the discrete SST data and therefore the 

SST gradient can only be an estimation. Of course, the higher the resolution of 

the SST data, the better quality the estimation of the SST, and hence of the SST 

gradient, will be. The first order SST gradient detailed above is in fact the 

gradient of a very coarse interpolation of the SST field: the interval between 

each pixel is filled uni-dimensionally by interpolating linearly the SST. This 

gradient estimation is not the most accurate if the SST is not considered to 

vary linearly, it is also extremely sensitive to spatial noise. Due to 

measurement noise, very high gradient values can be estimated in regions of 

low actual SST variations. This limitation can be overcome by estimating the 

second order SST gradient.  
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The second order SST gradient is obtained by convoluting the SST image with 

the derivative of the Gaussian function. The second order gradient presents 

the advantage of being more robust to measurements containing spatial noise, 

but it is based on some smoothing of the data, which implies a loss of high 

frequency spatial variability. In fact this process is strictly equivalent to the 

initial smoothing of the SST by a running Gaussian mean, followed by the 

estimation of the first order SST gradient. The level of smoothing applied 

depends on the shape of the smoothing filter. The smoothing filter applied in 

this thesis is a two-dimensional Gaussian filter parameterized by a 

characteristic length scale, its standard deviation ߪ௦ given in km. 

 ݃ሺݔ, ሻݕ ൌ
1

௦ଶߪߨ2
݁
ି
௫మା௬మ

ଶఙೞమ  (3-2) 

Where ݔ and ݕ are the zonal and meridional distances in km from the origin of 

the filter. Note that the expression “standard deviation” is not completely 

accurate as there is no statistical distribution involved. However the Gaussian 

filter is similar in shape to a zero-mean Gaussian distribution of standard 

deviation ߪ௦. The derivative of ݃ሺݔ,  ሻ against each direction is convoluted onݕ

the SST image to estimate the zonal and meridional SST gradient. When dealing 

with SST data, care has to be taken to account for the geographical projection 

on which the data are provided. Global SST products are usually given on a 

grid whose steps in latitude and longitude are constant. This projection is 

called cylindrical. In this projection meridians are mapped to equally spaced 

vertical lines and circles of latitude (parallels) are mapped to horizontal lines. 

By the geometry of its construction, the projection stretches distances East-

West. The amount of stretch is the same at any chosen latitude and increases 

towards the Poles. If the Earth is approximated to a sphere, the relationship 

between a step in latitude (at constant longitude) and the distance in km is 

constant. It is 

௠௘௥௜ௗ௜௢௡௔௟ܦ  ൌ 111.12 ∗  (3-3) ݐ݈ܽ∆

Where ܦ௠௘௥௜ௗ௜௢௡௔௟ is the distance in km equivalent to a shift in latitude of ∆݈ܽݐ in 

degrees at constant longitude. Conversely, the relationship between a step in 

longitude (at constant latitude) and the distance in km is a function of latitude: 
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௭௢௡௔௟ܦ  ൌ 111.12 ∗ cosሺ݈ܽݐሻ ∗ (4-3) ݊݋݈∆

where ܦ௭௢௡௔௟ is the distance in km equivalent to a shift in longitude of  ∆݈݊݋ in 

degrees at a constant latitude ݈ܽݐ. Therefore a SST image projected on a 

cylindrical projection is distorted and its pixels have varying horizontal (zonal) 

sizes in km depending on their latitude. Yet, the filter needs to be be circular 

when projected onto the ground, i.e. it should be circular in term of distance 

but not on the SST grid. If this is not ensured, the data are smoothed unevenly 

and anisotropically, which would introduce smoothing filter artefacts.  To 

correct this effect it was decided to define a well-chosen shape to the running 

Gaussian derivative, as a function of the pixels ܦ௭௢௡௔௟/ܦ௠௘௥௜ௗ௜௢௡௔௟ ratio. The SST 

data are then convoluted with a filter whose shape is changing for every 

latitude row. The Gaussian filter was also normalized with care to obtain 

correct values of SST gradient even over the high latitudes where the pixels are 

not square in kilometres.  

 



Chapter 3 

 60

 

Figure 3-2: Canny front detection algorithm applied to an OSTIA SST image 
(31/12/2008). The initial resolution is 0.05°. A gradient is estimated to a first 
order, taking into account only adjacent pixels (top) and by convoluting the 
derivative of a Gaussian function whose standard deviation is 10 km (bottom). 
The fronts are displayed in black and the SST gradient magnitude is mapped 
on the background. 

 

Four examples of fronts detected by the Canny method over the Agulhas 

Retroflection are presented in Figure 3-2. The SST data are extracted from a 

Level 4 product, the OSTIA dataset (SST data sets are discussed in Chapter 4). 

Two parameters have been varied in the examples shown: the SST gradient 

magnitude thresholds ଵܶ and ଶܶ along with the smoothing filter length scale ߪ௦. 

The plots show the detected fronts on the local maxima of SST gradient in the 

gradient direction. This shows that the quantity and shape of fronts detected is 

strongly dependent on the choice of parameters used in the Canny algorithm. 

A minimum level of smoothing seems necessary to avoid getting fronts that 

are meandering unrealistically as shown on the top (unfiltered) row of Figure 

3-2. The level of the thresholds defines what fronts are detected and how far 
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they expand. It is worth noting also that the SST gradient magnitude is 

lowered by the application of a smoothing filter. 

To summarise, this modified implementation of the Canny method relies on 

the preliminary definition of the following parameters that control the way the 

algorithm detects fronts: 

 The SST gradient magnitude thresholds ࢀ૚ and ࢀ૛. 

 The standard deviation ࢙࣌ (in km) of the Gaussian filter 

applied, if any, for the smoothing of the input SST scene for the 

estimation of the SST gradient magnitude. If no filter is applied 

as in the top row of Figure 3-2, ߪ௦ is set to 0 km. 

 An optional minimum front length ࢔࢏࢓ࡸ in km, to avoid 

extremely small fronts. 

 

3.3 The Cayula method 

Front detection algorithms based on the computation of the gradient suffer 

from a high-sensitivity to noise. Hence an initial step of smoothing is required 

to reduce the amount of noise, which also removes high spatial frequencies 

and fades fine-scale features. Another limitation of these filters is that they do 

not behave well when some data are missing, in general due to cloud cover 

which prevents infrared radiometers from sampling the SST. Of course no front 

detection technique can work on a large missing patch of the SST image. 

However level-2 (single sensor snapshot) images are sometimes corrupted by 

patchy clouds which prevent unobstructed views over wide areas even though 

only a few percent of pixels are flagged as cloud. In these conditions it is still 

possible for a human operator to detect visually a front but the gradient 

cannot be estimated in the vicinity of missing data.  This implies that there is a 

need for a better automatic method able to deal with a small percentage of 

missing data.  This was the rationale for developing the Cayula approach. 
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3.3.1 Description of the Cayula method 

Cayula and Cornillon (1992) developed an edge detection algorithm (also 

called the histogram method or the SIED: Single Image Edge Detector) that is 

able to deal advantageously with fine features, noise and missing data due to 

cloud cover, but which is also objective and automatic, and returns fronts as 

geometric vectors. This approach was new in the way it defined the 

temperature fronts as the (usually thin) region of separation between two 

regions of largely uniform temperature. This algorithm works at 2 different 

spatial levels: the window and the image levels. The image is first segmented 

into overlapping windows (32x32 pixels for images of 1 or 2 km resolution). 

 At the window level, for each of those windows a statistical test decides the 

existence or not of two distinct populations through a histogram analysis of 

the SST values of the window pixels. For each temperature threshold ߬, two 

populations of pixels within the window are identified: 

 ଵܲ is the ensemble of pixels whose SST is lower than ߬ 
 ଶܲ is the ensemble of pixels whose SST is higher than ߬ 

 
The optimal threshold ߬௢௣௧ is computed such that ܬ௕ሺ߬ሻ, the contribution to the 

total variance resulting from the separation in two clusters ܲ1 and ܲ2, is 

maximized. 

Where 

 

	

௕ሺ߬ሻܬ ൌ
ଵܰ ଶܰ

ሺ ଵܰ൅ ଶܰሻଶ
ሾߤଵሺ߬ሻ െ  ଶሺ߬ሻሿଶ (3-5)ߤ

 

Where ଵܰ	is the number of pixels in ଵܲ, and ଶܰ	is the number of pixels in ଶܲ, and 

 .ଶሺ߬ሻ is the mean of ଶܲߤ ଵሺ߬ሻ is the mean of ଵܲ, andߤ

The segmentation is considered sufficient if the proportion of the total 

variance due to the separation between clusters is high enough, i.e.: 
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௕൫߬௢௣௧൯ܬ 

௕൫߬௢௣௧൯ܬ ൅ ௘൫߬௢௣௧൯ܬ
൒ 0.7 (3-6)

 

 

Where ܬ௘ሺ߬ሻ represents the sum of the variances within each of the two 

populations. 

 

	

௘ሺ߬ሻܬ ൌ
ଵܰ

ଵܰ൅ ଶܰ
ଵܵሺ߬ሻ ൅

ଶܰ

ଵܰ൅ ଶܰ
ܵଶሺ߬ሻ (3-7)

 

Where ଵܵሺ߬ሻ is the variance of ଵܲ, and ܵଶሺ߬ሻ is the variance of ଶܲ. 

Another statistical test which, in contrast  to the segmentation phase, takes 

into account the spatial distribution, assesses the compactness of these two 

populations. The populations are considered as compact when the three 

following inequalities are fulfilled: 

 
ଵܥ ൌ

ܴଵ
ଵܶ
൒ 0.90 (3-8) 

ଶܥ  ൌ
ܴଶ
ଶܶ
൒ 0.90 

(3-9) 

ܥ  ൌ
ܴଵ ൅ ܴଶ
ଵܶ ൅ ଶܶ

൒ 0.92 (3-10)

Where ଵܶ ሺ ଶܶሻ is the total number of neighbour pairs between pixels belonging 

to ଵܲ ሺ ଶܲሻ and neighbour pixels belonging to either population: 

ଵܶ ൌ |ሼሺݔ, ,ሻݕ 	ݕ	ݐ݄ܽݐ	݄ܿݑݏ ∈ ሾࣨሺݔሻ ∩ ࣲሿ, ݔ	∀ ∈ 	 ଵܲሽ| 

ଶܶ ൌ |ሼሺݔ, ,ሻݕ 	ݕ	ݐ݄ܽݐ	݄ܿݑݏ ∈ ሾࣨሺݔሻ ∩ ࣲሿ, ݔ	∀ ∈ 	 ଶܲሽ| 
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ࣲ is the population of pixels in the window: ࣲ ൌ ଵܲ ∪ ଶܲ. 

| | is defined as the cardinality of the set. 

For reasons of computational economy and simplicity, only the first 

neighbours of a given pixel are used to evaluate the cohesion: 

 
	

ࣨ൫ݔ௜,௝൯ ൌ ൛ݔ௜,௝ାଵ, ,௜,௝ିଵݔ ,௜ାଵ,௝ݔ  ௜ିଵ,௝ൟ (3-11)ݔ

 

ܴଵ ሺܴଶሻ is the total number of neighbour pairs between pixels belonging to ଵܲ 

ሺ ଶܲሻ and neighbour pixels belonging to ଵܲ ሺ ଶܲሻ too. 

ܴଵ ൌ |ሼሺݔ, ,ሻݕ 	ݕ	ݐ݄ܽݐ	݄ܿݑݏ ∈ ሾࣨሺݔሻ ∩ ଵܲሿ, ݔ	∀ ∈ 	 ଵܲሽ| 

ܴଶ ൌ |ሼሺݔ, ,ሻݕ 	ݕ	ݐ݄ܽݐ	݄ܿݑݏ ∈ ሾࣨሺݔሻ ∩ ଶܲሿ, ݔ	∀ ∈ 	 ଶܲሽ| 

 

If the populations are compact, and not scattered, the pixels that are 

neighbour to one of the other population’s pixels are flagged as potential 

frontal pixels. 

The algorithm then shifts to the image level to link the independent flagged 

pixels so that they form continuous frontal structures, trying to follow the 

isotherms and eliminating very short fronts (e.g. less than 15 pixels in length). 

This method allows the control of many parameters during the process and 

also offers as an output the full frontal structure with information on the 

length or the strength of these fronts. It is also an improvement because it is 

not based on the absolute strength of the front, but on the relative strength 

depending on the context, thus making the edge detection temperature-scale 

invariant. Figure 3-3 illustrates an output of the histogram method from an 

infrared satellite SST scene. 
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Figure 3-3: AVHRR/2 SST fields with clouds zeroed and detected edges 
overlaid in white. From Cayula and Cornillon (1992). 

 

The Cayula method was later upgraded to a multi-image edge detection that is 

able to measure temporal behaviours of the detected fronts such as their 

persistence (Cayula & Cornillon 1995). The histogram method has been 

validated against in-situ front measurements, showing an error rate of 14% 

instead of 29% for a simple SST gradient threshold algorithm (Ullman & 

Cornillon 2000). Several studies have applied the histogram method for 

producing regional climatologies of fronts from SST data (Level-2 AVHRR) time 

series: Belkin and Cornillon (2003, 2004, 2005). 

 

3.3.2 Implementation of the Cayula method 

A new implementation has been coded in Matlab of the Cayula method for 

edge detection, adapted for the work in this thesis.  The principles by which it 

operates are illustrated in Figure 3-4 and Figure 3-5. It is a complex algorithm 

whose implementation is made difficult when adapting it so that it can 

efficiently detect fronts on global high resolution SST maps. The process of 
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linking the frontal pixels together into a coherent and continuous vector front 

(step f to step g in Figure 3-5) is very demanding in terms of computational 

power and memory because it has to be implemented by iteration: for each 

frontal pixel detected the routine must search through its neighbours for other 

frontal pixels, while trying to follow isotherms. The choice was made to divide 

the input SST scene into 10° by 10° boxes to ease this process, and the 

algorithm was adapted to make it link to the fronts detected on the borders of 

the boxes, in order not to create artefacts on the sides of the selected 10° 

boxes or else many detected fronts would end right at the window grid lines. 
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Figure 3-4: Illustration of the different levels in the Cayula algorithm. a) the 
initial OSTIA SST data, over the ACC South of Africa. b) transect of the SST and 
the SST gradient over the path displayed on the original data. c) SST over the 
red dashed box, with the window level grid overlaid. d) SST values of the 
32x32 pixels window. e) histogram of the SST values of the window pixels, 
with the result of the segmentation overlaid as a red dashed line. 
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Figure 3-5: Illustration of the different levels in the Cayula algorithm. f) the 
window is divided into two populations of pixels following the result of the 
segmentation. g) the resulting detected fronts over the area after the window 
level and the local level processing are accomplished. 

 

This implementation of the histogram method requires the assignment of 

several arbitrary input parameters that control the algorithm processes and 

hence the resulting detected fronts: 

 The standard deviation ࢙࣌ (in km) of the Gaussian filter applied, if 

any, for the smoothing of the input SST scene for the estimation of the 

SST gradient magnitude. Alternatively the median smoothing filter 

size can be set. 

 The window size (WS), in pixels, in the segmentation operation 

(Figure 3-4.c).   This parameter is fundamental for the whole 

algorithm. The histogram method will only detect a front if a portion 
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of it is found to divide, one of the windows into 2 coherent groups of 

pixels of different SST. The routine that is applied on every window 

(Figure 3-4.e) searches which SST value, if any, is dividing the 

distribution of the window pixels SST values into two distinct 

distributions, whose individual variances explain a large part of the 

total distribution variance. This analysis only allows the detection of 

one front or none for each window. Consequently, on one hand, if the 

size of the windows is too big, the risk is to miss complex frontal 

features when two fronts are present on the window. The statistical 

test detects in this case only one front or sometimes no front at all. 

On the other hand, if the window is too small, the risk is to detect the 

same front several times in different windows. In that case, one 

window may not cover the whole width of a front, so it will detect a 

front over its slope, but the adjacent windows and the overlapping 

ones will also detect the same front, simply translated by a few pixels. 

This phenomenon is clearly visible on Figure 3-5.g: strong fronts 

surrounding the ACC jets are detected twice, and most of them are 

drawn with double lines. In this example the fronts were detected 

with a window size of 32 pixels (i.e. 1.6°), it seems that this parameter 

is too low for this region characterized by very strong and wide 

fronts. 

 The grid on which the input SST scene is projected. The algorithm 

is able to resample the SST on a lower resolution grid, which has the 

effect of simplifying the frontal detection but also hides the fine front 

features. It can resample the data on a regular grid (also called equal-

area grid, or local sinusoidal grid, or Mercator equal-area projection) 

too, where the resolution is not in degrees of latitude/longitude but in 

kilometres. This is particularly important over high-latitudes where 1° 

in latitude is much larger than 1° in longitude. The front detection 

method must not be biased by a strong asymmetry of the pixels 

shape when projected onto the ground. The regular grid can only be 

constructed locally to avoid direction biases and this complicates the 

coding of the whole algorithm. 
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 A minimum temperature difference ∆࢔࢏࢓ࢀ : Ullman and Cornillon 

(2000) and Miller (2009) improved the histogram method statistical 

test by introducing a temperature difference threshold (between the 

SST means of the two populations at the window level) under which a 

front is not flagged, even if the segmentation process has succeeded. 

Those authors chose ∆ ௠ܶ௜௡ ൌ  with a window size 32 pixels of) ܭ	0.375

1.2 km) and ∆ ௠ܶ௜௡ ൌ  respectively to limit false detections caused ܭ	0.4

by sensor noise inherent to standard level-2 SST fields. The 

implementation developed here allows the utilization of such a 

threshold. 

 A minimum front length	࢔࢏࢓ࡸ. The fact that the fronts are constructed 

as vectors (as opposed to a raster of front pixels) makes possible the 

definition of a minimum threshold on the frontal length. Once all the 

fronts have been detected, a routine measures the length of the fronts 

and keeps only fronts longer than this threshold. This is to avoid the 

proliferation of very small fronts. 

 

3.4 Definition of simple Frontal Indexes 

After the fronts are detected by one of the two front detection algorithms, it is 

helpful to convert the geographical locations of the list of points that 

constitute a front position into a numerical value. For the qualitative analysis 

of frontal variability, spatial and temporal frontal indexes based on various 

characteristics of the fronts are defined: 

 The total frontal length index (FLI) in km that takes into account 

only the length of the fronts. This is a measure of the cumulated 

length of the fronts detected in a given area, it is therefore normalised 

by the area in which it is integrated. Its units are km/km2 or km-1. 

 The frontal strength index (FSI): this is a measure of both the length 

and strength of the fronts. An estimation of the magnitude of the 

front is integrated over the whole length of the fronts. The frontal 

strength can be estimated in several ways. It can be defined as the 

mean SST difference (|ܵܵ ଵܶതതതതതത െ ܵܵ ଶܶതതതതതത|) between the means of the two 
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populations of pixels dividing a window in the first steps of the 

Cayula algorithm. This index is called Frontal Temperature 

Difference Index (FTDI), its unit is km.K/km2. The frontal strength 

can also be estimated by the SST gradient magnitude on the front, 

which is a local maximum in the gradient direction when the front is 

detected by the Canny method. This index is called the Frontal 

Gradient Index (FGI), its unit is (K/km).km/km2 =K/km2. It should be 

stressed that the Canny algorithm is only able to return the FGI while 

the Cayula method can return either the FTDI or the FGI. 

Any of these Frontal Indexes can be processed from a global daily SST scene. 

They can be plotted as the result of a single day’s processing (Figure 3-6), 

integrated over different regions and plotted against time, or averaged over 

time and plotted as a map (Figure 3-7). The latter was obtained by adding daily 

frontal position maps of the California Current system and dividing the sum by 

the number of days processed to get a monthly Probability of Detecting a 

Front (PDF). The PDF is the time-averaged frontal position, it is presented on a 

map like Figure 3-7, while the FTDI is the time series of the geographically 

averaged frontal length and strength. 

This kind of analysis can resolve the seasonal variability of many mesoscale 

features to a significant extent. For instance, over the California Current 

System, fronts reveal the coastal upwellings within about 50 km of the coast 

during spring and fall. In September, the upwelling jet appears to be 

separating from the coast at 42° N for a few hundred kilometres. In December, 

the frontal features are shifted offshore with long filaments occurring at 33° N 

that separate the California Current System from warmer subtropical water. 

During the winter the frontal activity is sharply decreasing, probably because 

of a weakening of upwelling favourable winds. These results are consistent 

with the thermal fronts analysis of Castelao et al. (2006). 
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Figure 3-6: a) OSTIA SST data on 22 March 2007, East Atlantic next to West-
Africa, with the fronts detected by the Cayula algorithm superimposed. b) the 
frontal strength FTDI of the fronts detected by the Cayula algorithm. The 
frontal strength is calculated as the difference between the mean SST of the 
two populations separated at the window level. The window size is 32 pixels 
(1.6°). 
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Figure 3-7: Probability of detecting a front (PDF) over the California Current 
System averaged monthly over March, June, September and December 2007. 
Fronts are detected following the algorithm detailed in Cayula and Cornillon 
(1992), with a window size of 32 pixels (1.6°), on OSTIA products. 

 

3.5 A critical analysis of frontal detection techniques 

The advantages of the automatic front detection methods over a human-based 

front detection process are obvious: they are faster and objective. They are 

objective because each of them will detect the same fronts every time when 

applied to the same SST scene, and their outputs are qualitatively comparable. 

For example it is relevant to compare the fronts detected by the same 
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technique over the same region but from different dates. However, it is not a 

simple task to compare frontal indexes processed by two different methods, 

because the detected fronts are the resulting combination of both the initial 

SST scene and the methodologies inherent in the algorithms. The earlier 

sections of this chapter describe the methodology adopted by the two frontal 

detection techniques. In order to interpret the detected fronts in a dynamical 

context and to compare results obtained by the two methods, it is necessary 

to explicitly quantify their behaviours. It is not enough to know what 

processing is applied to the input SST field, because it is complex, but one 

should be able to “characterise” what fronts will be detected as a function of 

their size or strength and with which accuracy. Published studies making use 

of these algorithms have used them as “black boxes” that can be applied over 

a time-series of SST products and whose resulting variability gives an 

indication of the frontal variability. This section aims at “opening the black 

boxes” and shedding light on the relationship between the inputs and the 

outputs of these algorithms. It is easy to express in simple words the 

definition of a front as implied by the Canny method, especially if ଵܶ ൌ ଶܶ (that 

is the fronts are the locations of local maximum of SST gradient magnitude in 

the SST gradient direction, where the SST gradient magnitude is larger than ଵܶ). 

However the smoothing filter initially applied to reduce the effect of noise on 

the gradient estimation has an effect on small scales that can be quantified. In 

the case of the Cayula method, it is not obvious how to describe quantitatively 

the effect on the output frontal indexes of the decomposition into windows in 

the first steps of the algorithm and the statistical test applied to estimate the 

segmentation and cohesion within the windows.  

 

3.5.1 Characterization of the Canny algorithm 

The limitations of the Canny algorithm are inherent to the data it uses as input. 

The fronts it returns are of course restricted to those present in the SST image. 

Depending on the resolution of the SST image, small fronts are or are not 

detectable. This statement is true for any method as no algorithm can detect 

features that are not present in the input image. The high sensitivity to noise 

of the gradient computation also limits the minimum scale that can be 

resolved by the Canny algorithm. It is absolutely necessary to eliminate spatial 
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noise in the data before the calculation of the gradient can be performed. If the 

noise is not smoothed out, very high values of SST gradient will be observed 

that have no link to the underlying mixed layer SST field that is an indicator of 

upper ocean dynamics. The elimination of spatial noise is achieved by means 

of spatial filters, which are in effect low-pass filters: they cancel small scale 

variations. The two filters considered in this study are the following: 

 The running Gaussian filter: 

ܵܵ ௙ܶ௜௟௧ሺݔ௜, ௜ሻݕ ൌ ෍ ෍ ܵܵܶሺ

ெ

௠ୀିெ

ே

௡ୀିே

௜ݔ ൅ ݊, ௜ݕ ൅ ݉ሻ ∙ Nఙೞሺ݊ ∙ ݉,௫ߜ ∙  ௬ሻߜ

Where ܵܵ ௙ܶ௜௟௧ሺݔ௜,  and column	௜ݔ ௜ሻ is the value of the filtered SST image on rowݕ

 ௜. Nఙ is the two-dimensional Normal function of zero mean and standardݕ

deviation ߪ in km. 

Nఙሺݔ, ሻݕ ൌ 	
1

ଶߪߨ2
݁ି

௫మା௬మ

ଶఙమ  

 ௬ are the resolutions of the grid in the row and column directionsߜ ௫ andߜ

respectively. ܯ and ܰ are the sizes of the Gaussian filter in the row and 

column directions respectively. 

 

 The running mean filter: 

ܵܵ ௙ܶ௜௟௧ሺݔ௜, ௜ሻݕ ൌ ෍ ෍ ܵܵܶሺ

ெ

௠ୀିெ

ே

௡ୀିே

௜ݔ ൅ ݊, ௜ݕ ൅ ݉ሻ ∙
1

ሺ2ܰ ൅ 1ሻሺ2ܯ ൅ 1ሻ
 

These two filters are applied for each pixel of the SST image, this is done by 

convolution of the two-dimensional filter. 

The gradient in the x direction, in the case of the Gaussian filter, is calculated 

the following way: 

௫ܵܵ׏  ௙ܶ௜௟௧ሺݔ௜, ௜ሻݕ ൌ 	
1
௫ߜ
ቀܵܵ ௙ܶ௜௟௧ሺݔ௜ ൅ 1, ௜ሻݕ െ ܵܵ ௙ܶ௜௟௧ሺݔ௜, ௜ሻቁ (3-12)ݕ

One can show that 
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௫ܵܵ׏  ௙ܶ௜௟௧ሺݔ௜, ௜ሻݕ ൌ 	 ෍ ෍ ௫ܵܵܶሺ׏

ெ

௠ୀିெ

ே

௡ୀே

௜ݔ ൅ ݊, ௜ݕ ൅ ݉ሻ ∙ Nఙೞሺ݊ ∙ ݉,௫ߜ ∙  ௬ሻ (3-13)ߜ

Which means that the gradient of the filtered SST is the filtered gradient of the 

SST. 

The effect of a running Gaussian filter on a front is shown on Figure 3-8. One 

can see that as the standard deviation of the filter increases, so does the 

extent of the front, which decreases the gradient in the middle of the front. 

The effect on the gradient is shown on Figure 3-9. It is noticeable that the 

gradient of a front whose width is smaller than 3ߪ௦ is significantly reduced by 

the application of the filter.  

 

 

Figure 3-8: Smoothing effect of Gaussian filters on a simple front. In blue is 
the profile of an initial front which is modelled by a SST gradient of 0.05 K/km 
over 20 km. Running Gaussian Filters of various standard deviations are 
applied to the SST scene before the profile is taken. A filter of 0 standard 
deviation is by convention returning the input data. 

 



  Front detection techniques 

 77  

 

Figure 3-9: Smoothing effect of Gaussian filters on the Gradient on a simple 
front. In blue is the profile of an initial front which is modelled by a SST 
gradient of 0.05 K/km over 20 km. Running Gaussian Filters of various 
standard deviations are applied to the SST scene before the gradient is 
calculated and the profile is taken. A filter of 0 standard deviation is by 
convention returning the input data. 

 

The reduction of the gradient can be deduced in the following manner: 

Firstly, let us notice that the maximum gradient is at ݔ଴, , the middle of the 

front. In the case where the front is along the x-axis, we can simplify the 

calculations by looking at the front profile in one dimension. We have 

௫ܵܵ׏  ௙ܶ௜௟௧ሺݔ଴ሻ ൌ ෍ ௫ܵܵܶሺ׏

ே

௡ୀିே

௜ݔ ൅ ݊ሻ ∙ Nఙೞሺ݊ ∙ ௫ሻ (3-14)ߜ

௫ܵܵ׏  ௙ܶ௜௟௧ሺݔ଴ሻ ൌ ଴ሻݔ௫ܵܵܶሺ׏ ∙  ܣ
(3-15)

Where 
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 ܣ ൌ ݂ݎ݁ ቀ
ଵ

ଶ√ଶ
∙
஽

ఙೞ
ቁ in the case of the running Gaussian filter 

with erfሺݔሻ ൌ ଶ

√గ
׬ ݁ି௧

మ
ݐ݀

௫
଴  is the error function. ܦ is the width of the 

front, in the case of Figure 3-8 and Figure 3-9, ܦ ൌ 20	km. 

 

 ܣ ൌ ቊ
஽

ௗ
ܦ	݂݅	 ൏ ݀

ܦ	݂݅	1 ൐ ݀
 in the case of the running Mean filter.	݀ ൌ ሺ2ܰ ൅ 1ሻߜ௫ is 

the size in km of the running mean filter. 

 

This shows that the effect of the smoothing filters on the fronts is a direct 

function of the ratio between the width of the fronts and the length-scale of 

the filter: 

ܴ௚௔௨௦௦ ൌ
ܦ
ߪ

 

ܴ௠௘௔௡ ൌ
ܦ
݀

 

Figure 3-10 and Figure 3-11 display the scaling factor ܣ as a function of these 

ratios. This quantifies the scaling of the gradient on all fronts by the 

smoothing filters applied in the Canny method. 
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Figure 3-10: In the case of the Gaussian filter, scaling factor of the front 
maximum gradient as a function of ࢙࢙࢛ࢇࢍࡾ 

 

 

Figure 3-11: In the case of the running mean filter, scaling factor of the front 
maximum gradient as a function of ࢔ࢇࢋ࢓ࡾ 
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One can see that the smaller the	ܴ௚௔௨௦௦ or ܴ௠௘௔௡ ratio, i.e. the larger the filter 

and/or the smaller the gradient scale, the more the gradient is reduced by the 

filter. These filters are in effect low-pass filters, they erase small scale spatial 

variability. This filtering step is necessary when it is assumed that the high-

frequency part of the SST spectrum is not trustworthy, because it contains 

more measurement noise and atmospheric artefacts than actual surface 

temperature variations. The more smoothing is applied, i.e. the larger the 

filter, the more noise is cancelled out. However, the filter is not only taking out 

noise but also real small scale variability in the SST. In order to optimize the 

algorithm, one should choose a filter size that is the smallest one able to 

cancel the noise in order to leave the biggest part of the spectrum resolvable 

by the algorithm. The choice of filter size to use for the frontal analyses 

presented in the rest of this thesis is made by exploring results of the Canny 

method applied with different smoothing filter and retaining the one that 

resolves the smallest scales without appearing to detect fronts that are 

meandering unrealistically or in a way that seems not linked to the dynamics 

of the scene. This is illustrated on Figure 3-2. The size of the filter depends on 

the characteristics of the input product in terms of spatial noise. 

Chapter 5 will discuss a methodology that makes a-priori assumptions on the 

SST spatial spectrum to estimate and recover the amount of actual SST small 

scale gradient smoothed out by a spatial filter or by a sampling at low 

resolution. This methodology relies on this SST spectrum assumption and on 

the larger scale gradient measured after the application of the filter. 

 

3.5.2 Characterization of the Cayula algorithm 

The Cayula algorithm is always taken as a black box. The author of this thesis 

is not aware of any publication describing its behaviour and predicting what 

type of fronts it detects. The parameters of this algorithm, listed in section 

2.3.2, are not mathematically related to the outputs of the processing in a 

theoretical way. In other words, the Cayula algorithm is used as a black box 

which detects fronts automatically. The uncertainty inherent in the Cayula 

method, but not always appreciated, lies in the statistical tests applied at the 

window level. These steps are the measurement of the segmentation, i.e. the 
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division of the window pixels values into two distinct populations, and the 

cohesion, which is the compactness of these two populations. The Cayula 

algorithm can be applied with or without an initial smoothing of the SST data. 

The following subsections within 3.5.2 characterise the Cayula algorithm 

behaviour without any consideration of initial smoothing: section 3.5.2.1 

assumes a noise-free input SST scene while section 3.5.2.2 considers a noisy 

image. They deal only with the steps of the Cayula algorithm that occur after 

any potential initial smoothing.  The amount of noise present on the input 

scenes analysed in section 3.5.2.2 can be thought of either as the original 

noise on the SST image, in the case where no initial smoothing filter is applied, 

or as the remaining noise after pre-filtering.  In the case where pre-smoothing 

is performed, the overall assessment of the Cayula method for detecting fronts 

must combine both the analysis in section 3.5.2.2 and the impact of pre-

smoothing (using a running mean or Gaussian filter) as already explored in 

3.5.1. The full Cayula algorithm including the initial filtering is characterized in 

section 3.5.3.1. 

 

3.5.2.1 The Cayula algorithm at the window level on a noise-free scene 

Let us consider the segmentation test on a zero noise window SST scene. If the 

window is seeing a perfectly uniform scene, i.e. no front is present, no 

segmentation is detected by the segmentation test. There are two simplified 

configurations under which a window can observe a front as illustrated in 

Figure 3-12. Depending on the width of the front and the size of the window, 

the whole front can be captured by a window (case 1), or a fraction of it only 

can be seen by a window (case 2). In both cases, if a front is present, even 

though it is extremely low in intensity, tests showed that a segmentation is 

detected within the window. This means that two distinct populations are 

detected in the window, and the difference between their average 

temperatures is calculated. This difference is the basis of the FTDI (Frontal 

Temperature Difference Index), it is a measure of the intensity of a detected 

front. When a front is detected, this temperature difference is used in the 

Cayula algorithm in two instances. Firstly, it is compared to the parameter 

 the minimum temperature difference for a front to be retained. If the , ࢔࢏࢓ࢀ∆

front is too weak, the difference between the average temperatures of the two 
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populations is lower than ∆࢔࢏࢓ࢀ and the algorithm concludes that there is no 

front over the window being explored. Secondly, if the temperature difference 

is greater than ∆࢔࢏࢓ࢀ , the segmentation test is fully successful and the 

algorithm continues by assessing the cohesion. If the detected front is 

compact enough and, once reconstructed at the image level, long enough to 

be kept, i.e. longer than ࢔࢏࢓ࡸ, it will be accounted within the frontal index 

FTDI. The contribution of the front to the FTDI index is equal to its strength 

integrated along the whole length of the front. The strength is measured in 

this case by the temperature difference at the window level. The temperature 

difference calculated by the Cayula algorithm at the window level during the 

segmentation test is thus a fundamental quantity that is instrumental in the 

decision to keep a detected front or not and in the way its strength is stored in 

the frontal index.  

 

 

Figure 3-12: Two simplified configurations under which a window of the 
Cayula algorithm can see a front. Transects across the front and the size of the 
window are plotted. In case 1, the totality of the front is captured by the 
window, whereas in case 2, a portion of the front only is captured. 

 

To characterize the Cayula algorithm, one needs to understand the relationship 

between the properties of a front and this temperature difference at the 

window level. Tests showed that, in the idealized case of very sharp fronts 

with no noise, that are so sharp that the window is seeing two populations of 

homogeneous temperature, the measured temperature difference is by design 

equal to the real temperature step across the front. This situation is a 
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particular situation under case 1 in Figure 3-12. Let us now consider a very 

large front with a constant temperature gradient across it. The window is 

seeing only a portion of it, as in case 2 of Figure 3-12. In this situation, a 

segmentation is always detected and the temperature difference is a linear 

function of the temperature gradient on the front. Figure 3-13 shows the 

temperature difference measured as a function of the gradient on the front, in 

the case of a window size of 32 pixels of 0.05° resolution. 

 

 

Figure 3-13: Temperature difference measured by the Cayula algorithm at the 
window level during the segmentation test, in case 2, as a function of the 
gradient on the front. 

 

This function is linear: 

∆ܶ ൌ 89 ∗  ܶܵܵ׏

With ∆ܶ in K and ܶܵܵ׏ in K/km. The total temperature step across the window 

is equal to 

 ∆ ௧ܶ௢௧ ൌ ܹܵ ∗ (3-16) ܶܵܵ׏

With ܹܵ the size of the window in km. In this case 
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∆ ௧ܶ௢௧ ൌ 178 ∗  ܶܵܵ׏

Hence 

 ∆ܶ ൌ ∆ ௧ܶ௢௧/2 (3-17) 

This means that the recovered temperature difference across a front within a 

window is equal to half the total temperature variation across the whole 

window in the case 2. 

This result is important as it allows one to choose the appropriate value for 

parameter ∆࢔࢏࢓ࢀ , so that unwanted fronts are not detected. For example, the 

Cayula algorithm tends to detect fronts in most of the windows when run with 

the ∆࢔࢏࢓ࢀ ൌ ૙	ࡷ. This is due to the presence of low background temperature 

gradient, mostly meridional, everywhere on the ocean surface. As a 

consequence weak fronts are detected all over the ocean with a regular step 

due to the window decomposition grid of the Cayula algorithm. The Figure 3-5 

shows an example of this effect. For this reason, scientists have introduced the 

parameter ∆࢔࢏࢓ࢀ to limit the detection of weak fronts on this background 

gradient which is not fundamentally linked to the mesoscale dynamics. 

However no justification was provided to explain the choice of the the 

parameter ∆࢔࢏࢓ࢀ . Equation (3-16) allows one to set the parameter ∆࢔࢏࢓ࢀ as a 

function of the minimum background gradient to be detected and the size of 

the window. 

This result also helps to understand the measured strength of a front. One can 

see that the way the strength of a front is recovered depends on its width 

when compared to the window size. For a very sharp front, the whole 

temperature step across it is added up in the FTDI. For a front larger than the 

window, only half of the temperature step across the window is measured. 

However in this case, the front is likely to be detected several time by adjacent 

windows, hence the recovered frontal strength will add up when integrated in 

the index. 
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3.5.2.2 The Cayula algorithm at the window level on a noisy scene 

The previous section describes the behaviour of the Cayula algorithm in the 

idealized situations of case 1 and case 2 (Figure 3-12) when the SST scene is 

noise-free. In reality, the window decomposition of the algorithm isolates 

fronts of all scales and intensities. Noise is present on the SST image due to 

measurement errors and atmospheric effects on the ocean surface. Moreover, 

the fronts do not appear perfectly because of the turbulence, which mixes 

temperature variations of all scales. So the fronts observed are embedded in a 

complex turbulent flow which tends to blur it. Noise affects the stages of 

segmentation test and cohesion test, since it tends to blur a front. This makes 

a noisy front less likely to be detected. In order to quantify this effect, the 

Cayula algorithm window level stages were tested on a wide range of scenes. 

Synthetic SST gradient scenes were simulated and parameterized through their 

gradients and their temperature differences. A gradual amount of noise was 

then added to the scenes. These scenes were used as inputs to the Cayula 

algorithm at the window level so that both the segmentation and the cohesion 

were tested. When no noise was added to the scenes, even for very low non-

zero gradients, a front was always detected between two segmented and 

coherent populations. As the noise was increased, the fronts needed to be 

sharper (greater temperature difference and steeper gradient) to be detected. 

Figure 3-14 presents the maximum noise that is allowed on the synthetic 

scenes for the segmentation and cohesion tests to be positive, for a window of 

32 pixels with a typical resolution of 0.05°. One can see that, as most of the 

ocean fronts lie over a gradient of less than 0.05K/km, for a temperature 

difference of less than 3K, the segmentation and the cohesion is positive over 

the fronts if the spatial noise is less than 0.5K. Note that the spatial noise 

modelled here is a Gaussian and added for each pixel, this is a simplified 

model of the different types of noise mentioned above. 
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Figure 3-14: Maximum noise (in K) allowed on top of synthetic SST frontal 
scenes (parameterized through their gradients and the temperature 
differences) for both the segmentation and cohesion tests to be positive in the 
histogram algorithm. Window size is 32 pixels and the resolution is 0.05°, the 
minimum temperature difference is set to 0K. 

 

3.5.3 Cross-comparisons of the front detection techniques 

The previous sections have characterized separately the behaviour of the 

Canny and Cayula algorithms in relation to the features that are specific to 

each of them. The theoretical effect of the smoothing filters on the small scale 

in the Canny method was calculated and the behaviour and the robustness to 

noise of the Cayula algorithm at the window level was assessed. This section 

aims to compare the performances of these algorithms in various practical 

situations, as they are applied on imperfect images representative of the 

variety of fronts present on the ocean surface. Large synthetic images are 

generated and subjected to both algorithms in order to compare the detected 

fronts against common criteria. 
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3.5.3.1 Detection of fronts of all scales and strength on potentially noisy 

images 

An ideal front detection method should be able to detect fronts of all scales 

and strength generated by the turbulent flow at the surface. It should also be 

able to do so on satellite SST images that suffer from noise.  These capabilities 

are assessed for the Canny and Cayula algorithms by generating a large 

volume of synthetic scenes on which they are applied. Each synthetic scene is 

characterized by the presence of a single front that is parameterized by a 

temperature difference and an average gradient across it. The profile of the 

front is generated following a fitted Sinusoid function. The position of the front 

on the scene is recorded for the assessment of the front detection results. A 

random Gaussian noise is also added on each pixel, characterized by its 

standard deviation ߪ௡ expressed in K. This noise is a simplification that 

accounts for measurement noise, small-scale atmospheric effects and small-

scale turbulence which tends to blur fronts on SST images by creating 

meanders along them. 

After the synthetic scenes are produced, the detection algorithms are applied 

on them. Frontal position and strength are estimated by the algorithms. The 

algorithm performances are rated against two success criteria: 

 The accurate resolution of the actual front length 

 The accurate resolution of the actual front strength 

The first criteria is compared directly from each method, the second criteria is 

assessed theoretically and discussed as it is calculated via different indexes on 

each algorithm. 

To allow a fair comparison between the two front detection algorithms, both 

of them are tested after the same amount of smoothing is applied: the 

smoothing is achieved by the convolution of a running Gaussian filter whose 

standard deviation is ࢙࣌ ൌ  Figure 3-24 and Figure 3-25 show .݉݇	20	ݎ݋	10	ݎ݋	5

the performances of the Cayula algorithm after a 3 by 3  and 9 by 9 pixels 

median filter is applied to lower the noise, since this is commonly used in 

reported implementations of Cayula. 
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3.5.3.1.1 Resolution of front length on noise-free images 

Figure 3-15 shows the relative front length detected by the Canny algorithm 

with various parameters, for a wide range of fronts, on noise-free scenes. The 

relative front length is the ratio of the length of fronts (FLI) detected with the 

actual length of fronts present on the scene. Ideally, this ratio should be equal 

to 1. One can observe that as the parameters T1 and T2 are set to higher 

values, fewer fronts of small gradient or small temperature difference are 

detected. Small scale fronts are characterized by a high gradient and/or a 

small temperature difference. Moreover, it was also found that the detected 

fronts are always at the right position, this means that the Canny method is 

efficient at locating the front on a noise-free image. Figure 3-15 also shows 

that the larger the smoothing filter, the stronger the fronts need to be in order 

to be detected by the Canny algorithm. This result is consistent with the 

explanation that the smoothing lowers the gradient at small scales. When the 

gradient on a front is lowered below the detection thresholds the front is not 

detected. One can conclude from this that the Canny algorithm with low 

threshold parameters and little smoothing is very suitable for detecting fronts 

on a noise-free scene. 
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Figure 3-15: Relative Front Length (FLIdetected/FLIactual) of the Canny algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for three values of ࢙࣌ and for three 
values of T1=T2. The gradient is calculated after the SST is convoluted with a 
running Gaussian filter. The synthetic SST images are noise-free. 

 

Figure 3-16 shows the results of the same experience with the Cayula 

algorithm. It displays the relative front length detected on a noise-free scene, 

with the minimum temperature difference set to 0 K or 0.4K. Apart from very 

small and very sharp fronts, most of the fronts are detected. However the 

length is not resolved properly as most fronts are detected twice, and the very 

wide ones are even detected up to five times. This is due to the window 

decomposition in the Cayula method, when several windows see the same 

front at several places across it. Setting the minimum temperature difference 

(∆ ௠ܶ௜௡) to 0.4K reduces the number of fronts detected on an original wide 
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front, but it also prevents the detection of fronts whose temperature step is 

lower than ∆ ௠ܶ௜௡. In this case of noise-free inputs, increasing the smoothing 

does not affect the number of detected fronts, contrary to the Canny case 

discussed before. 

 

 

Figure 3-16: Relative Front Length (FLIdetected/FLIactual) of the Cayula algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for three values of ࢙࣌ and for two 
minimum temperature difference ∆ ௠ܶ௜௡. The gradient is calculated after the SST 
is convoluted with a running Gaussian filter. The synthetic SST images are 
noise-free. 
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3.5.3.1.2 Resolution of front length on noisy images 

The situation with no noise present is not a realistic one. In practice, the 

detection method has to perform with some level of noise present on the 

image. Figure 3-17, Figure 3-18 and Figure 3-19 present the relative front 

length detected on SST scenes suffering from a noise of 0.1K, 0.2K and 0.3K 

respectively.  Each shows the response to the same combinations of 

parameters as shown in Figure 3-15 for the noise-free Canny behaviour. It is 

striking that the parameters suited to the noise-free images (ߪ௦=5 km and low 

T1=T2=0.015 K/km) are not suitable for noisy situations. As illustrated in 

Figure 3-20, if the scene is not smoothed enough by the filter and if the 

detection thresholds are set too low, fronts are detected all over the image, 

whether or not there is an actual front. This results in high relative front length 

of up to 16 with a noise of 0.3K. 

From Figure 3-17, Figure 3-18 and Figure 3-19, one can deduce that two sets 

of parameters for the Canny method seem to be capable of detecting fronts of 

a wide range of scales and to do so with a relative front length close to 1: 

a) ߪ௦=5 km and T1=T2=0.03 K/km 

b)  ߪ௦=10 km and low T1=T2=0.015 K/km 

Parameter set b is able to detect fronts of smaller scale and is more robust to 

noise. Its relative front length stays close to 1 even for a noise of 0.3K, while 

parameter set a behaves less well at 0.3K noise. Figure 3-19 indeed shows that 

it detects 2 to 3 times too many fronts when the input images feature low 

gradient fronts with a high temperature step (i.e. wide fronts) and a 0.3 K 

noise. Although set a detects more noise-induced fronts, it will be shown in 

the next section that this set of parameters is better at resolving the frontal 

strength because the smoothing filter is narrower. 

Figure 3-21, Figure 3-22, and Figure 3-23 show the performances of the 

Cayula algorithm when facing an increasing noise contamination. It is 

noticeable that, as noise increases, the small scale fronts are less detected. 

This is due to the fact that the segmentation and cohesion tests fail in those 

cases for which the noise is too high with regard to the temperature step 

measurable at the window level. 
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Comparing the performances of the Canny parameter set b with the Cayula 

method, one can conclude that the Canny algorithm is superior to the Cayula 

one for accurately resolving the frontal length, even in the presence of noise. 

The Canny method detects the right amount of fronts in the well-defined 

ensemble of fronts that it is able to detect. Conversely, the comparison of 

Figure 3-21, Figure 3-22, and Figure 3-23 shows that, for a given set of 

parameters (initial smoothing and minimum temperature difference), an 

increase in the input noise results in a decrease of the number of detected 

fronts. The Cayula algorithm is more sensitive to the image noise. This 

dependency is also observed on Figure 3-24 which shows the effect of an 

increasing input noise with a fixed 3 x 3 pixels median filter. Figure 3-25 

shows the results of the same analysis but with a 9 x 9 pixels median filter. 

One can notice that the dependency on noise is reduced as the filtering stage 

is able to reduce it to a larger extent. As a consequence more weak fronts are 

detected but the detected frontal length remains less accurate than with the 

Canny.  

It is striking on Figure 3-16, Figure 3-21, Figure 3-22, Figure 3-23, Figure 

3-24 and Figure 3-25 that the Cayula algorithm detects fronts down to much 

lower gradients and temperature differences than Canny. However due to the 

overlapping window approach, Cayula detects most fronts twice, and some at 

the limit of the detectability are detected up to 5 times their actual length. So it 

is clear that the choice of algorithm involves a trade-off of more reliable 

detection against a wider range of detectability. 
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Figure 3-17: Relative Front Length (FLIdetected/FLIactual) of the Canny algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for three ࢙࣌ and for three T1=T2. 
The gradient is calculated with a running gaussian filter. The synthetic SST 
suffer from a Gaussian noise of ࣌࢔ ൌ ૙. ૚ࡷ. 
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Figure 3-18: Relative Front Length (FLIdetected/FLIactual) of the Canny algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for three ࢙࣌ and for three T1=T2. 
The gradient is calculated with a running gaussian filter. The synthetic SST 
suffer from a Gaussian noise of ࣌࢔ ൌ ૙. ૛ࡷ. 
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Figure 3-19: Relative Front Length (FLIdetected/FLIactual) of the Canny algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for three ࢙࣌ and for three T1=T2. 
The gradient is calculated with a running gaussian filter. The synthetic SST 
suffer from a Gaussian noise of ࣌࢔ ൌ ૙. ૜ࡷ. 
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Figure 3-20: Example of the Canny algorithm detecting too many fronts 
because of the presence of noise.  The original front is defined by a 
temperature step of 1.5 K and a North-South temperature gradient of 0.05 
K/km. On top of it, the source image suffers from a Gaussian noise of 0.2K. Its 
resolution is 0.05 °. The fronts are detected with the Canny algorithm whose 
parameters are set to: ࢙࣌ ൌ ૞	࢓࢑ and ࢀ૚ ൌ ૛ࢀ ൌ ૙. ૙૚૞	࢓࢑/ࡷ. 
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Figure 3-21: Relative Front Length (FLIdetected/FLIactual) of the Cayula algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for three values of ࢙࣌ and for two 
minimum temperature difference ∆࢔࢏࢓ࢀ. Synthetic SST scenes suffer from a 
Gaussian noise ࣌࢔ ൌ ૙. ૚	ࡷ. 
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Figure 3-22: Relative Front Length (FLIdetected/FLIactual) of the Cayula algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for three values of ࢙࣌ and for two 
minimum temperature difference ∆࢔࢏࢓ࢀ. Synthetic SST scenes suffer from a 
Gaussian noise ࣌࢔ ൌ ૙. ૛	ࡷ. 
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Figure 3-23: Relative Front Length (FLIdetected/FLIactual) of the Cayula algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for three values of ࢙࣌ and for two 
minimum temperature difference ∆࢔࢏࢓ࢀ. Synthetic SST scenes suffer from a 
Gaussian noise ࣌࢔ ൌ ૙. ૜	ࡷ. 
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Figure 3-24: Relative Front Length (FLIdetected/FLIactual) of the Cayula algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for four values of ࣌࢔ (Gaussian 
noise) and for two minimum temperature difference ∆࢔࢏࢓ࢀ. The synthetic SST 
scenes are filtered by a 3 by 3 pixels median filter. 
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Figure 3-25: Relative Front Length (FLIdetected/FLIactual) of the Cayula algorithm. 
The input SST scene resolution is 0.05°. The latitude is 0 and the front is 
oriented zonally. The results are presented for four values of ࣌࢔ (Gaussian 
noise) and for two minimum temperature difference ∆࢔࢏࢓ࢀ. The synthetic SST 
scenes are filtered by a 9 by 9 pixels median filter. 

 

3.5.3.1.3 Resolution of front strength on noise-free images 

On noise-free images, the Canny algorithm can be applied with low ߪ௦ and low 

T1 and T2. In this situation the algorithm potentially resolves the gradient at 

the fronts perfectly. The returned frontal strength is the SST gradient 

magnitude integrated along the fronts which are detected along the crests of 

SST gradient magnitude. It is important to note that the frontal strength index 

is not linked to the front width. This is a limit of the Canny algorithm, because 

it does not differentiate fronts according to their width but only to their 

maximum gradient magnitude at their centre. 

Section 3.5.2 describes the behaviour of the Cayula algorithm at the window 

level. It is relevant here because the front strength is estimated by the 
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temperature difference between the two populations of pixels on each side of 

the front within one window. If the front width is very small, this value 

corresponds to the temperature step across the front. If the front’s width 

covers a significant portion of the window (case 1 of Figure 3-12), the 

temperature step across the front is underestimated by the measured 

temperature difference. If the front width is larger than the window size (case 

2 of Figure 3-12), the actual temperature step is even more underestimated. 

However, in case 1 the front may be detected several times and this may 

compensate to some extent the underestimation of the temperature step.  

A fundamental difference between the two algorithms is the way each 

estimates the frontal strength. The Canny algorithm estimates the FGI (Frontal 

Gradient Index), which is a measure of the gradient magnitude at the front’s 

centre. Conversely, the Cayula algorithm estimates the FTDI (Frontal 

Temperature Difference Index), which is a measure of the temperature step 

across the front. These two indexes are linked, but their relationship depends 

on the front’s width as shown in Figure 3-26. The Canny method estimates 

perfectly the FGI on noise-free images, while the FTDI is imperfectly measured 

by the Cayula algorithm even on noise-free scenes. On the other hand, the FGI 

estimation is very much impacted by the presence of noise when the FTDI is 

more robust to it, provided a front is detected. 

It should be stressed that the Cayula method is also able to estimate the FGI. 

Indeed it is possible to estimate the SST gradient magnitude and return it at 

the locations where the Cayula algorithm detects fronts. Of course, the 

estimation of the gradient is what is challenging in the Canny method. In this 

case the performances are equivalent, except that the Cayula method detects 

fewer fronts as shown in section 3.5.3.1.2. 
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Figure 3-26: Front Width as a function of the front’s gradient and temperature 
difference. 

 

3.5.3.1.4 Resolution of front strength on noisy images 

When dealing with noisy scenes input to the Canny algorithm, a trade-off is 

needed between the ability to detect small fronts, and the ability to resolve the 

frontal strength. It is a trade-off between an accurate recovered frontal length 

and an accurate recovered frontal strength. For instance, parameter set b 

 introduced above is better than set a (௦=10 km and low T1=T2=0.015 K/kmߪ)

 because it detects smaller fronts by (௦=5 km and T1=T2=0.03 K/kmߪ)

smoothing the noise more and it detects them only once (as seen in Figure 

3-17, Figure 3-18 and Figure 3-19). However set b has a larger smoothing 

filter, whose consequence is to underestimate the gradient at small scales. 

This effect is described and characterized in section 3.5.1. For a gradient to be 

retrieved with a 90% accuracy after a Gaussian filter, it should be 3.29 times 

larger than the smoothing filter standard deviation (ߪ௦ሻ. This is illustrated in 

Figure 3-10. Thus the set of parameters a is able to estimate with precision the 

FGI on fronts of width larger than 16.45 km. The set B is able to do so on 

fronts wider than 32.9 km. 
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The level of smoothing necessary to resolve the frontal length depends on the 

properties of the SST data used as input. It is difficult to have a precise 

estimation of the noise present on the images. The preferred approach 

adopted in this thesis is to test the behaviour of the Canny method on a 

particular SST dataset with a variety of ߪ௦ and judge which is the minimum 

amount of smoothing necessary to avoid detecting fronts linked to noise. This 

step may be considered as being subjective, in that it depends on the 

scientist’s eye. However it is unavoidable and its effect is well characterized, 

so that it is well understood what scales are recovered. Obviously, the same 

filter should be applied across space and time so that consistent indexes can 

be constructed. Keeping the level of smoothing minimum is important to allow 

the accurate recovery of the frontal strength. 

 

3.5.3.2 Detection of intricate fronts and fronts of high sinuosity 

The scale of the fronts detected by the Cayula method is strongly dependent 

on the chosen window size (WS) parameter. It was shown that if the window 

size is too small with regard to the front’s width, the same front can be 

detected several times. On the other hand, if WS is too large, small fronts and 

intricate fronts may not be detected. It is worth recalling that a front is 

detected by the Cayula algorithm if and only if it divides one of the windows 

into two populations of pixels whose average temperatures are significantly 

different and that are compact enough. It is important to note that the Cayula 

method is not able to detect two fronts or more within one window. The 

presence of two or more fronts in a window generally fails the tests of 

segmentation and cohesion, which ends up with no front at all being detected.  

Figure 3-27 illustrates this limit by showing the results of detection tests on 

synthetic fronts of varying sinuosity. The sinuosity is a measure of the 

deviation of a path between two points (the front) from the shortest path (a 

line) between the extremities. It is given by the ratio of the actual front length 

to the shortest path length. For a sinuosity of 5, the window size is still small 

enough to detect the front everywhere. As the sinuosity is increased to 8, the 

window is never able to see a unique front and no front is detected at all. This 

shows that the Cayula algorithm is very dependent on the parameterized size 
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of the window, as its ability to detect fronts is limited by their sinuosity and 

the length scale of the sinuous pattern relative to the window size. 

Conversely, even though the Canny algorithm is limited in the small scales due 

to the initial step of smoothing, it is able to detect fronts of all scales. It is an 

important advantage of the Canny algorithm that it is able to detect fronts of a 

wide range of scales, provided the noise has been smoothed out. 

 

 

Figure 3-27: Example of the Cayula algorithm not being able to detect a front 
whose sinuosity is too high.  The background is a noise-free synthetic scene of 
a meandering front, with a low sinuosity (left) and a high sinuosity (right). The 
top row shows the front detected by the Cayula algorithm. A black line is 
plotted where a front is found. No front is detected over the front of high 
sinuosity by the Cayula algorithm (top right). A Cayula window is displayed for 
indication. On the contrary, the Canny algorithm is able to detect the fronts of 
low (bottom left) or high (bottom right) sinuosity. 

 

3.5.3.3 Detection of fronts of all orientations 

An ideal front detection method should detect equally fronts of all 

orientations. This is necessary in order not to introduce systematic biases in 

the detected frontal indexes based on the orientation of the front. One can 

assume that the fronts are isotropic in the open ocean, however strong fronts 

linked to jets tend to follow the direction of the current, hence they will have a 

preferred direction in some parts of the world. Fronts associated with 
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upwellings tend to be parallel to the coast, and they ought to be detected with 

the same accuracy as fronts along the ACC which tend to be more zonal. 

Figure 3-28 presents a case where the Cayula algorithm behaves very 

differently when presented with the same front but rotated at different angles. 

When the front is at 45º, it is not detected at all, whereas at 70º it is detected 

on average 4 times. Conversely, the Canny algorithm is very robust to the 

front orientation and the relative front length stays close to 1 whatever the 

front orientation. 

The reason for which the Cayula algorithm appears inconsistent for different 

front orientation is the limited ability of the cohesion test to perform uniformly 

and independently of the front orientation. As illustrated in Figure 3-29, the 

conditions (3-8) and (3-9) are harder to meet in case the front is oriented in 

diagonal with regard to the pixel grid (case b of Figure 3-29) because ܴଵ and 

ܴଶ are lower than in the case where the front is aligned to the grid (case a of 

Figure 3-29). Indeed, the pixels at the border between the populations have 

only 2 neighbours within their population in the case b, when they have 3 of 

them in case a. One could think of a potential improvement of the Cayula 

algorithm which would be to calculate the neighbouring pairs to include the 

“diagonal neighbours” by replacing (3-11) by (3-18): 

 
	

௜ࣨ௠௣௥௢௩௘ௗ൫ݔ௜,௝൯ ൌ ൛ݔ௜,௝ାଵ, ,௜,௝ିଵݔ ,௜ାଵ,௝ݔ ,௜ିଵ,௝ݔ ,࢐ା૚,ା૚࢏࢞ ,࢐ି૚,૚ି࢏࢞ ,࢐ି૚,ା૚࢏࢞  ࢐ା૚ൟ (3-18),૚ି࢏࢞

This potential improvement would be implemented at the expense of 

computation time. The author believes that it could improve the robustness of 

the Cayula algorithm against front orientation. This suggested improvement 

was not tested nor implemented in the scope of this thesis. 
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Figure 3-28: Detected relative front length as a function of the orientation of 
the front, for the Cayula algorithm (top) and the Canny algorithm (bottom). The 
synthetic front is characterized by a gradient of 0.01 K/km and a temperature 
difference of 1 K. Both algorithms are run after the same 20 km running 
Gaussian filter is applied to the temperature images. 
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Figure 3-29: Two frontal orientations with non-similar cohesion as assessed 
by the Cayula algorithm. The pixels of the window (non-representative window 
size of 6 pixels) are divided into two populations following the segmentation 
step depending on the orientation of the underlying front with regard to the 
grid. The dotted pixels are the ones which cause the cohesion step to return 
different results in a) and b). The red arrows show the neighbouring pairs 
involving one of the dotted pixels at the border between the populations. 

 

3.5.3.4 Detection of fronts on images that suffer from missing pixels 

Level-2 SST data are single-sensor products. They generally suffer from a 

certain extent of missing samples. Data are missing wherever the sensor is not 

able to make an accurate measurement. For infrared sensors, this happens 

over cloudy areas, whereas for microwave instruments it occurs over rainy 

spots and close to land. When a large patch of data is unavailable because of 

such a situation, no algorithm is able to detect anything. However the clouds 

are often scattered and cover a small portion of the overall scene integration. 

A front detection adapted to Level-2 products should be able to deal with a 

small amount of missing data, disseminated over the image. Figure 3-30 

shows that the Cayula algorithm (applied without initial filtering) is much 

better at detecting the front than the Canny one in these conditions. The 

reason why the Canny method fails is that the application of the smoothing 

filter enlarges each missing data spot by the size of the filter. In the case of 

Figure 3-30, each original missing pixel is about 5.5 km wide, but after the 

smoothing filter is applied the missing patch grows to 3 times ߪ௦ : 30 km (not 
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shown in the figure). The smoothing filter strategy is that if one of the pixels is 

missing, every pixel that shall be smoothed taking into account the missing 

pixel ends up as missing too. One way to deal with this issue is to interpolate 

first on the missing samples, and this is what is done in Level-4 SST products. 

However the interpolation can result in the underestimation of a gradient and 

it could be preferable to just ignore a missing spot. 

The Cayula algorithm was developed for this very reason and it is extremely 

efficient in dealing with small missing patches, as seen in Figure 3-30. The 

segmentation and cohesion tests are not affected by a few missing pixels 

within a window. 
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Figure 3-30: Example of the Canny algorithm being strongly impacted by 
missing data. A synthetic image of a front is created and 1000 pixel values are 
removed at random locations before the detection techniques are applied. The 
detected fronts by the Cayula (top) and the Canny (bottom) algorithms are 
shown as a black line. On the top panel, the Cayula algorithm is able to detect 
the front along its whole length despite the missing values in the input data 
(shown as white pixels). In contrast, the Canny algorithm is only able to detect 
very small portions of the front due to the missing pixels. 
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3.5.3.5 Detection of fronts on images projected on a cylindrical 

projection 

Global SST products are usually provided on a cylindrical geographical 

projection. This means that a square image pixel is shorter in kilometres from 

east to west than north to south.  It gets shorter as one gets closer to the pole, 

whereas the north-south size of a pixel remains uniform with latitude. One 

needs to ensure that this does not introduce biases in the detected fronts. 

The Canny algorithm can deal with it by 

a) Applying a meridionally varying smoothing filter size, so that it 

always remains the same size in kilometres in the North-South and 

East-West directions, whatever the latitude. 

b) Accounting for the varying pixel size in kilometres when calculating 

the gradient. 

These two steps ensure that no bias is introduced by the cylindrical projection 

in the detected fronts. 

The Cayula algorithm needs to project the data on a latitude-dependent 

sinusoidal projection so that it can be applied on an image whose pixels are 

square in kilometres. This step is complex because the sinusoidal projection is 

only valid locally. This means that a global scene cannot be processed in one 

go; it needs first to be decomposed into local regions where the data are re-

interpolated on an equal-area grid. The fronts are then detected on each region 

and care must be taken to ensure that the fronts laying at the intersection of 

two regions are linked properly on both sides. The Cayula method is much 

more complex to properly implement on a global scene. 

 

3.5.3.6 Robustness to arbitrary parameters 

One ambition of this chapter is to characterize the front techniques and adapt 

them so that they can be used in a way that carries a dynamical meaning. Its 

strategy is to shed light on the “black box” aspects of the algorithms by 

describing the relationship between the inputs (front and image properties) 

and the outputs (detected front length and strength). For this, the effect of 
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each parameter of the algorithms must be understood. The parameters that 

have a significant impact on the result should have their effect characterized 

so that it can be avoided, corrected or accounted for in the physical 

interpretation. If a parameter is shown to have no impact on the result, it may 

be chosen in a subjective manner. 

An important parameter is the resolution of the grid onto which the image is 

projected.  Of course, the higher the resolution, the smaller the scale 

potentially resolved on the image. However, the choice of the resolution is a 

subjective one, and different resolutions can also show exactly the same thing. 

In this case, a front detection algorithm should return the same results when 

fed with one resolution or the other. The Canny algorithm is able to do so, and 

it is not affected by the input data resolution at all. Obviously, this is true as 

long as the frontal structures are not at a length scale smaller than or 

comparable to the resolution of the image. 

For the Cayula algorithm, this is not the case. It was shown that the choice of 

the size of the window is instrumental in deciding the scales of the detected 

fronts. WS (the window size) is parameterised in pixels, but its physical value 

is in kilometres. It is very important to keep WS constant in kilometres on the 

ground across the image, between images and between products. If two SST 

products are provided with different resolutions, then the size of WS in pixels 

should be adapted so that WS stays constant in kilometres. This is needed in 

order to compare with consistency the detected fronts on the two products. 

However, this impacts the behaviour of the Cayula algorithm as shown in 

Figure 3-31. The Cayula algorithm was presented with strictly the same scene, 

at three different resolutions, and applied with a constant WS in kilometres. No 

spatial filtering was applied prior to frontal detection. The results were 

different depending on the input resolution, even for a noise-free scene. This is 

due to the cohesion test, which is less likely to succeed when presented with a 

small number of pixels. In the case of the scene at 0.2° resolution, the WS is 

180 km and 8 pixels. The exact same scene at 0.1° resolution, with a WS of 

180 km and 16 pixels is considered compact. This means that it is important 

to apply the Cayula algorithm on scenes of equal resolution when comparing 

detected fronts of different SST products. For the characterization of the 

Cayula algorithm described above to be valid, WS should be 32 by 32 pixels. If 

one wishes to apply the Cayula method on various scales, it is recommended 
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to resample the input data so that WS can be user-defined in kilometres and 

remain 32 pixels wide. 

 

Figure 3-31: Comparison of the performances of the Cayula algorithm when 
dealing with the same scene, but input at different resolutions. An initial scene 
is produced at 0.2° resolution, and resampled to 0.1° and 0.05° by nearest 
neighbour interpolation. 0.2°corresponds to resampling 1, 0.1° to resampling 
0.5 and 0.05° to resampling 0.25. The window size is kept constant to 180 km 
and is adapted in pixel number. The top panel is the probability that the SST 
scene is segmented and the bottom panel shows the probability that the SST 
scene is coherent. The studied front is defined by a temperature step of 0.5 K, 
a temperature gradient of 0.05 K/km and an inclination of 45° over the image. 
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There is one more parameter used in the Cayula algorithm, but not by Canny, 

the effect of which must be characterized.  This is the origin of the grid that 

decomposes the SST scene into windows. Its origin is purely subjective but it 

could have an influence on the result. Usually this grid starts at the first row 

and first column of the SST image and is constructed from there following a 

step equal to the window size. Tests were run on real regional SST scenes on 

which fronts were detected by the Cayula algorithm but with decomposition 

grids slightly shifted from each other. Fronts were detected at slightly different 

places, but the frontal indexes (FLI and FTDI) were only modified by less than 

0.5%. This is in fact natural because the window grid is composed of two 

overlapping grids. As a consequence, fronts are spatially well covered by 

overlapping windows and a window that does not see a front after the shift of 

the grid origin is likely to be compensated by one of the windows that are 

overlapping and seeing the involved region. The Cayula algorithm is hence 

robust to the origin of the decomposition grid. 

 

3.5.3.7 Computational efficiency 

The Canny method is much more efficient in term of computational efficiency. 

It was possible to implement it by making use of compiled Matlab libraries that 

need to be called in a specific way in order to be geophysically meaningful. 

The smoothing filter and gradient computation can also be optimized with 

Matlab built-in functions. The step that requires the most processing time is 

the linking of the potential frontal pixels. This step is long because it is 

incremental, pixel by pixel and front by front until all the pixels are linked to 

each other. 

This step of frontal construction from potential frontal pixels is also necessary 

in the Cayula method. The latter algorithm is also very demanding in its 

previous stages. The detection of potential frontal pixels by the statistical tests 

at the window level is very incremental. For each window, the segmentation is 

tested by running a statistical test at a series of increasing temperatures. The 

temperature that divides the window in two populations in the clearest way is 

potentially retained. This processing cannot be optimized and had to be coded 

in Matlab with the use of many loops. The Cayula detection method is 



  Front detection techniques 

 115  

therefore not as optimized as the Canny and demands more computation 

power. 

 

3.6 Algorithm selection in relation to ocean dynamics 

objectives 

To build frontal indexes that have a dynamical meaning, it is important to use 

a method that is well understood and that returns measurements that are 

related to ocean dynamics. It was shown that the Canny algorithm is much 

more accurate for detecting the right amount of fronts. It is also more 

consistent against noise since its behaviour is not as dependent on the noise 

of the input data as compared to the Cayula. However, it should also be 

recognised that Cayula does allow the detection of weaker fronts than Canny, 

which may be an important criterion for other studies. 

It was also shown that the Canny algorithm is more mathematically precise. 

One can say that the fronts that the Canny algorithm returns are the locations 

where the SST gradient magnitude is higher than a user-defined threshold. In 

contrast, the frontal temperature difference index (FTDI) returned by the 

Cayula method is linked to the gradient at the front in a slightly uncertain way 

because it depends on the width of the front 

Moreover, the first chapter shows that if surface density gradients can be 

estimated from satellite SST fields they may be used to parameterize 

dynamical processes occurring at fronts. Retrieval of density gradients implies 

that reliable estimates of frontal temperature gradient are required rather than 

simply whether or not a front is present. For this reason the precision and 

robustness of the Canny algorithm, as explored and discussed in this chapter, 

makes it the preferred frontal analysis method, provided the image noise level 

and the amount of unbroken coverage allows its use. 
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4. Chapter 4: SST datasets for front detection 

 

The broad objective of this thesis, as discussed in chapter 1, is to explore the 

knowledge of ocean dynamics that can be derived from observations of sea 

surface temperature fields.  Having considered methods for detecting fronts on 

satellite SST images, our attention turns now to review and assess the various 

SST products available today, and to analyse their capacity for resolving frontal 

features.  The underlying objective is to develop a more informed 

understanding of the types of useable ocean information that can be obtained 

when the various frontal detection methods explored and developed in chapter 

3 are applied to the different classes of observed SST datasets to be discussed 

in this chapter.  

SST datasets have a wide span of applications which range from Numerical 

Weather Prediction (NWP) (Chelton & Wentz 2005) to the estimation of flux of 

heat, momentum and gases between the ocean and the atmosphere. SST is 

also an essential climate variable because its absolute time series can reveal 

the role of the ocean in short and long term climate variability (Reynolds et al. 

2002). Different applications imply different requirements on the SST datasets. 

For instance, the NWPs need a mesoscale temperature field with no missing 

data, whereas the priority of the climate time-series inputs is the absolute 

accuracy and the availability of well-defined error estimates associated to each 

measurement. In the context of front detection, the requirement on SST inputs 

is not so much on absolute accuracy but on the ability to resolve gradients of 

all scales. The ideal SST dataset for front detection hence should be able to 

resolve small scale and large scale gradients. It was shown in chapter 3 that a 

low level of noise is also critical for the precise detection of small scale 

features which are often associated with a weak signal. This ideal dataset 

should also resolve high time frequencies by being produced on a daily basis. 

In order to build meaningful statistics of temperature fronts and their 

associated dynamics, it is important that the SST dataset offers a good spatial 

coverage. The temporal coverage of as many years as possible is also 

desirable since this allows conclusions to be drawn about climatic scales. 

Finally, to be consistent with the objectives of this thesis, the SST products 
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from which fronts are to be extracted should broadly reflect the temperature 

of the mixed layer rather than the atmosphere temperature and the ocean skin 

temperature dynamics. 

 

4.1 Introduction to the SST products 

4.1.1 Level-2 SST 

In order to detect fronts over a certain region at a certain time, the best one 

can hope for is a clear-sky high-resolution infrared SST image. This scene is 

ideally acquired by a very accurate satellite infrared radiometer such as AATSR. 

The AATSR (Advanced Along-Track Scanning Radiometer) is the last of the 

ATSR class of sensors flown on near-polar orbits by ESA. ATSR, ATSR-2 and 

AATSR were flown respectively on ERS-1 (1991-1996), ERS-2 (1995-2008) and 

Envisat (2002-2012). These sensors operate in the infrared and scan conically, 

making two independent observations of each part of the sea surface within 

the narrow swath, through different atmospheric path lengths. For each pixel 

viewed at night, 6 independent measurements of brightness temperature are 

made with the double-view, and with two spectral windows within the 10.0-

12.5 μm atmospheric window plus another centred on 3.7 μm. During the day, 

the 3.7 μm channel cannot be used so 4 independent measurements are made 

over each pixel. The extra channels from the dual view yield additional 

information about atmospheric transmission effects leading to an improved 

atmospheric correction procedure. This allows the ATSR sensors to be robust 

to the effect of water vapour and atmospheric aerosols (Robinson et al. 2012). 

These sensors were designed to provide SST observations to the levels of 

accuracy (close to 0.3 K), coverage and stability required for climate research. 

On top of this positive attributes, AATSR offers the finest satellite SST 

resolution of 1 km at nadir. AATSR’s major weakness is however its narrow 

swath width of 512 km which limits its coverage. AATSR suffers from a 

minimum 3 days revisit time at the Equator, which is typically increased by the 

cloud contamination inherent to infrared acquisitions. ESA is developing a 

follow-up instrument with a somewhat wider swath called the Sea and Land 

Surface Temperature Radiometer (SLSTR) as part of the European Global 
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Monitoring for Environment and Security (GMES or Copernicus) initiative. SLSTR 

will fly aboard the first GMES satellite expected in 2014 (Aguirre et al. 2009) 

and will continue the dual view capability which has given the ATSR class of 

sensors their improved capacity for atmospheric correction. 

 The Advanced Very High Resolution Radiometer (AVHRR) is another class of 

SST sensors that follows a meteorological mission, with a lower absolute 

accuracy but a higher coverage. AVHRR is a National Oceanographic and 

Atmospheric Administration (NOAA) instrument. It is a six channel scanning 

radiometer with three channels in the visible/near infrared region and three 

thermal infrared channels. NOAA has maintained two polar orbiting satellites 

in complementary near polar orbits since 1983 (with morning and afternoon 

Equator crossing times) providing day and night global coverage by each 

satellite.  The instrument swath width is approximately 2500 km and the 

Instantaneous Field Of View (IFOV) at nadir is 1.1 km (Donlon et al. 2012). The 

AVHRR instrument also flies on the MetOp series of satellites that are part of 

the EUMETSAT Polar System. See Goodwin et al. (2000) for a complete 

description of the instrument. 

Infrared SST is also acquired by geostationary missions such as Meteosat 

Second Generation (MSG) and Geostastionary Operational Environment 

Satellites (GOES). The Spinning Enhanced Visible and Infrared Radiometer 

(SEVIRI) is the imaging radiometer that operates on the Meteosat 8 (MSG-1) 

located at 3.8°W. SEVIRI uses 11 and 12 μm channels for SST retrieval with an 

IFOV of about 3 km at nadir (Aminou 2002). Full disk images are acquired 

every 15 minutes. The United-States operate several GOES that monitor North-

America and the Pacific Ocean. These satellites are equipped with a thermal 

imager that has 3 channels for SST: 3.9, 11, and 12 μm. Its spatial resolution at 

nadir is 4 km. 

Whereas infrared SST instruments are hindered by the presence of clouds, 

passive satellite microwave radiometry is achievable in all weather conditions 

except heavy rainfall. The brightness temperature measured at 6-10 GHz 

depends primarily on the SST and surface roughness of the ocean. The 

roughness effect is largely removed from the measured signal using 

information in both the horizontally and vertically polarized channels 

providing a unique relation between the measured brightness temperature and 
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SST. At 6-10 GHz microwave radiation penetrates clouds with little attenuation 

and is insensitive to atmospheric water vapour and aerosols (Donlon et al. 

2012). The Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) 

is a NASA and JAXA joint mission. It was launched in November 1997 and is 

still operating today. It measures SST with the 10.7 GHz frequency, providing 

25 km gridded data based on an oversampled IFOV of about 55 km. TMI is on 

a circular low earth orbit with a coverage between 40°S and 40°N. TMI SST 

retrievals are sometimes of poor quality close at the northern and southern 

limits of its coverage because the sensitivity of the channel 10.7 GHz to SST is 

lost for SST below 12 °C. TMI suffers from side-lobe contamination when 

islands or coastline reach into the antenna footprint and during rainfall events. 

Data within 100 km of land and during rainfall are removed from the measured 

record (Donlon et al. 2012). NASA’s Earth Observing System (EOS) Aqua 

mission was launched in May 2002 and carries the Advanced Microwave 

Scanning Radiometer for EOS (AMSRE) provided by JAXA. AMSRE extends 

passive microwave SST capability into high latitudes using a 6.9 GHz channel. 

Its very large swath width (1445 km) ensures a near global daily coverage at 

25 km grid resolution (based on an oversampled IFOV of about 76 km). As for 

TMI, side-lobe contamination is a problem for AMSRE SST retrievals in coastal 

areas and regions less than 100 km from shore are excluded (Donlon et al. 

2012). AMSR ceased to function on October 2011 due to a faulty mechanism 

on its rotating antenna. 
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Figure 4-1: Typical example of the daily coverage of SST from six different SST 
data products, at different spatial resolutions, all from the same day. From 
Robinson et al. (2012). 

 

Figure 4-1 presents the typical daily coverage of some of the above-mentioned 

satellite SST sensors. It highlights how infrared measurements are impaired by 

clouds. Geostationary infrared instruments can offer an increased coverage 

because they observe the same area every 30 minutes and the chances to see 

a cloud-free pixel at least once in the day are higher. On the other hand they 

offer a lower spatial resolution and are limited to a fixed region, visible by the 

satellite in its geostationary orbit.  It is worth stressing that AATSR suffers 

from both a cloud contamination and a narrow swath and offers a very limited 

coverage each day. 

To detect fronts on AATSR data, a solution could be to construct a level-3 

AATSR product. This consists of a time-composite of AATSR data created by 

averaging acquisitions made on several consecutive days or weeks. The 
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rational is to increase the spatial coverage by reducing the temporal 

resolution. Missing cloudy data and the long revisit time of AATSR can be 

balanced by the averaging over a longer time period, for instance 10 days or a 

month. While this strategy improves the spatial coverage, it compromises the 

accuracy and spatial coherence of the scene. Indeed, the association of non-

synoptic patches in a mosaic of SST scenes from different days representing a 

dynamic region in different states leads to spatially inconsistent SST images. If 

the SST samples are averaged rather than mosaicked the risk is to oversample 

a dynamic region which results in fuzziness and smoothing of the fine 

features. This is due to the fact that high frequencies in space and time are 

linked, so a low-pass filter in time results in a low-pass filter in space as well. 

The trade-off between the coverage and the accuracy is a difficult one in this 

case because some regions in the Tropics and at mid-latitudes suffer from a 

seasonal cloud coverage, and very few infrared measurements are available 

during the cloud season. 

Figure 4-2 shows the averaged percentage of coverage one can hope for with 

3-day Level-3 composites of AMSRE and AVHRR. AMSRE composite covers 

nearly the whole oceans, to the exception of the regions close to shore and 

tropical regions that suffer from persistent rainfalls. The figure also shows that 

a 3-day composite is far from being sufficient to achieve a global AVHRR 

coverage, because of persistent cloud coverage in the Tropics and at mid-

latitudes. Reynolds et al. (2007) partitioned the oceans in 1/4 grid boxes and 

measured the proportion of the boxes with at least one acquisition of AMSRE 

and AVHRR independently. They show that the average day and night 

operational AVHRR coverage is 8%, while it is 40% and 46% for AMSRE day and 

night measurements respectively. If day and night are combined, the 

operational AVHRR and AMSRE coverage increases to 16% and 86% 

respectively. 

The inability of infrared satellite measurements to penetrate clouds severely 

limits their temporal and spatial continuity and the study of important 

mesoscale dynamics. On top of this, cloudy regions are often associated with 

strong ocean frontal boundaries and substantially enhanced cloud presence 

probabilities are found on the downwind side of Gulf Stream warm core rings 

(Park et al. 2006). Enhanced convection and clouds are often found at 
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mesoscale frontal boundaries which limit infrared sensors’ ability to sample 

fronts. Clouds may also be overestimated and falsely detected above SST 

fronts because some cloud filters are based on a threshold for SST gradient. 

Figure 4-3 illustrates this issue, while AATSR is able to resolve very fine scale 

temperature features, some fronts are hidden by thin clouds possibly due to 

erroneous cloud flagging. In contrast, Figure 4-4 shows the microwave 

acquisition over the same day and same region by AMSR-E. It is striking how 

much information is lost when sampling the SST at 0.25° resolution. In 

addition, one can also notice that a lot of information is lost within 100 km of 

the coast. 
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Figure 4-2: Percent coverage of SST measurements from (top) the AMSRE and 
(bottom) the AVHRR in 3-day composite average maps during the 12-month 
period Oct 2002 through Sep 2003. From Chelton and Wentz (2005). 
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Figure 4-3: Example of an AATSR swath SST plotted at full resolution (1 km) 
off the coast of Lybia on 01 January 2010. 

 

 

Figure 4-4: AMSR-E SST plotted at 0.25° resolution off the coast of Lybia on 01 
January 2010. 
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4.1.2 Level-4 SST 

In 2000 the Global Ocean Data Assimilation Experiment (GODAE) recognized 

that no SST measurements available at that time could meet the stringent 

accuracy, timeliness and spatial-temporal coverage criteria required for 

operational ocean prediction (Smith & Koblinsky 2001). The GODAE High-

Resolution SST Pilot Project (GHRSST-PP) was initiated to address this need and 

has been superseded by the Group for High Resolution SST (Donlon et al. 

2007).  GHRSST achievements are the development and coordination of a 

highly successful framework in which satellite SST measurements are 

exchanged in a common format with uncertainty estimates and supporting 

ancillary fields used to control the quality of the data (Donlon et al. 2002). 

GHRSST now presents the user community with an unprecedented choice of 

SST products from a wide variety of complementary sensors. GHRSST products 

are delivered in an operational near-real time (NRT) context, in a common 

format for all data sets, which greatly facilitates their exploitation by the users 

(Donlon et al. 2012). For instance, all the Level-2 SST products mentioned in 

the previous section are distributed on FTP servers. Any user is now able to 

download the archive or the NRT SST products from the wide range of 

international agencies producing them, in L2P format. This common format 

consists in NetCDF files with the same fields for each product. 

On top of this, GHRSST coordinated the development, creation and 

dissemination of Level-4 SST products, also called SST analysis products. These 

are multi-sensor gap-free SST products that result from the combination of 

measurements from a variety of instruments and some level of interpolation in 

space and time to fill in the gaps. SST analyses are designed to produce the 

best estimates of SST for a given time and location, over a regular grid based 

on irregularly gridded sparse measurement data sets. GHRSST SST analyses are 

derived from statistical methods rather than the assimilation of SST 

measurements into a numerical ocean model. The analysis products are based 

on Optimum Interpolation (OI) techniques, which were initially developed for 

meteorology in the 1960s. The OI was introduced in the SST context by 

Reynolds and Smith (1994) who produced analysis products based on AVHRR 

and in-situ data from ships and buoys. The analyses are performed weekly on 

a 1 spatial grid from November 1981 to present by OI with a separate step to 
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correct any large-scale satellite biases relative to the in-situ data. At the time 

this technique was developed, only AVHRR was available, thus the spatial 

scales of the OI were designed conservatively. However, since the late 1990s, 

more satellite SST datasets have become available and this has allowed the 

development of analysis products with improved spatial and temporal scales. 

GHRSST Level-4 SST products exploit the complementary nature of the 

different Level-2 SST datasets, and combine them in a way that offsets the 

strengths and weaknesses of each system against the others to produce a 

more complete, frequent and accurate SST analysis. The strategy is to take 

advantage of both the spatial and radiometric accuracy of infrared radiometers 

and the spatial and temporal coverage of the microwave sensors in the same 

product. The OI is fed by a selection of SST data from near-polar or 

geostationary satellites together with in-situ measurements. It is designed to 

calculate the best estimate of SST over regions that are sampled by several 

instruments, based on quality information associated to each measurement or 

on a pre-defined priority order of the input data sets. In this way, where high 

spatial resolution high accuracy infrared measurements in cloud-free 

conditions are available, the output Level-4 SST can reflect the observed 

infrared fine features. Where the cloud cover dominates, the available 

microwave measurements at a coarser resolution govern the output of the SST 

analysis. Regions where no satellite measurement is available for the given day 

are filled by spatial interpolation if measurements are present close enough or 

by temporal interpolation if data are available from not too long ago during 

the previous days at the same location. In the case that no observation has 

been available for some time, the analysis decays back to a climatological 

mean reference field after a certain period defined by the analysis design. 

GHRSST Level-4 SST products are being produced by a variety of organizations 

in multiple ways. The details of the design of each analysis vary as a function 

of their objectives. Analyses designed for the exploration of SST anomaly on 

climatic scales require as input excellent absolute accuracy satellite SST data 

sets, most probably from well calibrated and bias-corrected infrared 

radiometers. Conversely, analyses used as boundary layer in NWP require the 

best coverage achievable, hence need as input as many Level-2 SST products 

as possible. In the first example, little or no interpolation is acceptable, as 

climate analysis is based on measured samples only. In the second example, a 
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gap-free image is needed every day, for the NWP model to function. In this 

case it is better to interpolate in space and time, or even to relax gradually to a 

climatology. 

The design of an analysis involves a series of choices that are driven by the 

priorities assigned to it. The first choice is whether the analysis is covering the 

whole globe or just a region of interest. Another important choice is which SST 

data should be used in the analysis procedure and this decision constrains the 

achievable temporal coverage of the analysis data set. Then choices have to be 

made on the spatial grid spacing and the update frequency. The GHRSST Level-

4 SST analyses are produced daily, at a resolution of 1/20° or coarser (6 km at 

the Equator) for the global products and 1 km for the regional ones. The bias 

correction scheme varies among the various products, and so do other 

analysis parameters such as the temporal and spatial error correlation scales. 

The speed at which an analysis should relax to a climatology when no data are 

available is also an important decision. Reynolds and Chelton (2010) show that 

these and other choices that must be considered in the design of an analysis 

procedure may lead to very different results. 

The main motivation behind the development of analysis products is the 

improved coverage achieved by combining several SST Level-2 data sets. Many 

analyses use as many input files as possible to obtain the most accurate 

product at a given time (Kawai et al. 2006). However, this choice complicates 

the analysis procedure as the integrated SST system is very dynamic. Each 

system is prone to errors that vary across time and space. Infrared satellite 

data suffer from poor cloud clearing which is the biggest source of error in 

most infrared satellite SST retrievals, poor pre-launch characterization, sensor 

degradation and failure of SST retrieval algorithms under anomalous 

atmospheric conditions, aerosol contamination following a major volcanic 

eruption, or seasonal aerosol events such as the Saharan aerosol plumes. In 

the case of microwave sensors, errors are caused by poor rain flagging, 

ambiguity in surface emissivity due to incomplete knowledge of the surface 

wind vector, radio frequency interferences and side lobe contamination. On 

top of these error sources, all satellite measurements are subject to unforeseen 

problems related to instrument anomalies, spacecraft manoeuvres and 

spacecraft operations. In-situ SST data are affected by measurement sensor 

drift over time, poor pre-deployment characterization and calibration, physical 
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damage at sea and biological obstruction by birds and algae. Ship observations 

are subject to sensor warming due to poor sensor installation and lack of 

metadata describing the depth of observation (Donlon et al. 2012). As a 

consequence, all measurements suffer from random errors and systematic 

biases. 

The OI is able to cope with the random errors in an efficient way. Indeed, a 

common technique is to weight the inputs with the known errors that 

characterize them, so that the measurements in which one has more 

confidence in are more influential in the estimation of the SST. Also, the errors 

from the various sources are often independent, so the weighted mean 

achieves a lower error than the input errors. However, the OI is unable to deal 

with the global and regional systematic biases of the input data. The blending 

of several SST datasets with non-uniform and different systematic bias can 

lead to spatial patchiness at the frontier of the input products on the analysis 

SST. This spatial patchiness is illustrated in Figure 4-5 which shows the 

consequence of the discrepancies in the SST biases in the resulting analysis 

output. It is important to point out that this spatial patchiness is an artefact 

that has severe consequences on the analysis SST gradient. Even small jumps 

in SST can create unwanted strong gradients because they occur over short 

distances. This effect would significantly depreciate the ability of Level-4 SST 

products to resolve fronts accurately if it is not corrected. Fortunately, the 

GHRSST analysis procedures include bias adjustment schemes. Before being 

fed to the OI, the input Level-2 SST images are automatically adjusted for 

systematic errors. This is done by comparing each of them to a common 

reference dataset, which can be in-situ measurements or a Level-2 product. 

AATSR is useful for this task because it is designed to minimize bias and 

sensitivity to atmospheric aerosols (Merchant & Harris 1999, Merchant et al. 

1999). The reader is invited to refer to Leborgne et al. (2012) for a discussion 

on the optimization of the multi-sensor bias correction.  
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Figure 4-5: Results of collating SST data (scale units are ºC) with the ODYSSEA 
analysis, (a) when no bias correction is applied (upper panel) and (b) when bias 
correction to AATSR as a reference standard is applied over a 5-day window 
(lower panel). From Robinson et al. (2012). 

 

 Merging several SST Level-2 data sets in the same product is challenging 

because the satellite sensors do not all measure the same parameters. Sea 

Surface Temperature is a general concept, and its definition depends on what 

one actually means by “Surface”. The top few meters of the ocean surface do 

not have a vertically uniform temperature. In low wind conditions solar 

radiation tends to heat the top few meters of the sea during the day, but this 

stratification disappears at night as the surface loses heat, promoting 

gravitationally driven vertical mixing. This phenomenon is called diurnal 

warming. There is also a thin surface layer of water a few tens of microns thick 

that is cooler than the water beneath (Robinson & Donlon 2003).  GHRSST 
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introduced definitions for the different measurements achieved by the SST 

sensors: 

 The skin SST: the temperature in the upper 10 μm of the surface water 

as measured by the infrared radiometers. 

 The sub-skin SST: the average temperature across a depth of a few mm 

as measured by microwave radiometers. 

 The foundation SST: the temperature at the base of the diurnal 

thermocline, free of diurnal variability, if present (Donlon et al. 2007). 

At dawn, if the diurnal thermocline from the previous day has collapsed during 

the night, the foundation SST is the same as the sub-skin SST. The GHRSST 

Level-4 analysis SST product approach is to deliver the estimation of the 

foundation SST. The Level-2 input SST images need to be “converted” to 

foundation SST before their ingestion in the OI. Since models of diurnal 

variability are still uncertain (Merchant et al. 2008), ancillary data are used to 

flag and then reject SST data with a high probability of being affected by the 

diurnal thermocline. In effect, this concerns daytime low wind situations. 

Additionally, a simple correction of the cool skin effect is applied on infrared 

data, this is done by adding 0.17 K to the SST measurements with a wind 

speed above 6 m/s (Donlon et al. 2002). This approach is well suited to the 

exploration of dynamics at fronts since the foundation SST broadly 

corresponds to the temperature of the ocean’s upper mixed layer (Robinson 

et al. 2012). It is important to base the physical analysis on the temperature of 

the mixed layer because it is closely linked to the dynamics we are interested 

in. Diurnal variations in the top few millimetres are mostly controlled by solar 

heating and changes in the wind stress, and have little impact in the vertical 

circulation events. In the context of this thesis, diurnal variability of the 

surface temperature is an artefact that should be avoided. 

Another attribute of the GHRSST products that makes them very useful for 

frontal detection is the fact that each analysis value should be accompanied by 

an uncertainty estimate. The uncertainty estimate is calculated with different 

techniques in the different products. These techniques are complex and allow 

the uncertainty estimate to reflect both the uncertainties in the input Level-2 

data and the amount of interpolation involved at each grid point. Grid points 



Chapter 4 

 132

where reliable data were averaged and little interpolation was necessary to 

obtain a value are given low uncertainty estimates. Users of a Level-4 product 

are free to decide which quality threshold is needed for their study, and this 

results from a trade-off between the coverage and the confidence in the data. 

Table 4-1 summarizes the Level-4 and Level-3 products mentioned in this 

thesis. Additional multi-sensor SST products are listed on 

http://www.nodc.noaa.gov/SatelliteData/ghrsst/accessdata.html and 

https://www.ghrsst.org/data/data-descriptions/ 

The attributes of different L4 SST products, and particularly how these may 

impact on the detection of fronts, are discussed individually in the following 

subsections.  
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Product Instruments Data Source 
Agency 

Spatial 
res. 

Temporal 
res. 

Coverage Time Series Parameter 

Level 4 

OSTIA AVHRR, AMSRE, 
TMI, AATSR, 

SEVIRI, in situ 

UK Met Office 6 km daily global April 2006 - 
present 

SST foundation 

OSTIA 
reanalysis 

AVHRR, ATSR, 
AATSR 

UK Met Office 6 km daily global 1985 - 2007 SST foundation 

ODYSSEA AVHRR, AMSRE, 
TMI, AATSR,  
SEVIRI,  GOES 

CNES / Ifremer 12 km daily global October 2007 – 
December 2009 

SST foundation

REMSS_MW AMSRE, TMI, 
WindSAT 

Remote Sensing 
Systems 

25 km daily global June 2002 - 
present 

daily minimum 
SST 

REMSS_MW_IR TMI, AMSR-E, 
WindSAT, 

MODIS 

Remote Sensing 
Systems 

9 km daily global 2006 - present daily minimum 
SST 

AVHRR- only AVHRR NCDC 25 km daily global 1981 – present SST 

AMSR+ 
AVHRR 

AMSR, AVHRR NCDC 25 km daily global June 2002 - 
present 

SST 

Level 3 

ODYSSEA AVHRR, AMSRE, 
TMI, AATSR, 
SEVIRI, GOES 

CNES / Ifremer 12 km daily global October 2007 – 
December 2009 

SST foundation 

Table 4-1: summary of the GHRSST Level-4 and Level-3 products mentioned in 
this thesis. 

 

4.1.2.1 The Operational Sea Surface Temperature and Sea Ice Analysis 

(OSTIA) 

OSTIA is a GHRSST Level-4 analysis produced by the Met Office as part of the 

GMES MyOcean project. It is produced operationally, daily, on a global 1/20º 

grid, using in-situ, AVHRR, AMSR, TMI, AATSR and SEVIRI data. The analysis is 

run with data from a 36-h period, using two error correlation scales, 10 km 

and 100 km, which vary depending on the region.  All satellite data are 

adjusted for bias errors in comparison with a “background SST estimate” based 

on a combination of AATSR data and in-situ measurements from drifting 

buoys. Data are filtered, based on surface wind speed data, to remove diurnal 
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variability and AATSR data are adjusted to represent the SST at the same depth 

as drifting buoy measurements (0.2 to 1 m). OSTIA is designed for ocean 

prediction and NWP, it is used operationally as a boundary condition for all 

weather forecast models at the Met Office and European Centre for Medium-

range Weather Forecasting (ECMWF). OSTIA was shown to have a zero bias and 

an accuracy of ~0.57 K when compared to in-situ measurements. It positively 

impacts the accuracy of the Met Office NWP model (Donlon et al. 2012). In 

addition, an OSTIA re-analysis was produced by the Met-Office that uses the 

same procedure as operational OSTIA. It is based on Pathfinder from 1981 and 

reprocessed (A)ATSR data from 1991, bias corrected and quality controlled in-

situ data. The OSTIA reanalysis is based on fewer input products than 

operational OSTIA but offers a long and consistent long time series of more 

than 20 years that allows the exploration of seasonal and decadal variability. 

This dataset provides the input for the study of climatological variability of 

fronts presented in chapter 6. 

 

4.1.2.2 The Ocean Data Analysis System for MERSEA (ODYSSEA) analysis 

ODYSSEA is another real-time global analysis developed within the Marine 

Environment and Security for the European Area (MERSEA) project within 

IFREMER (Autret & Piollé 2007).  It merges AVHRR, AMSR, TMI, AATSR, GOES 

and SEVIRI data into a daily 1/10º grid. All the Level-2 data sets are inter-

calibrated by the correction of the large-scale daily bias between themselves 

and the AATSR dataset used as reference. The analysis procedure of ODYSSEA 

is different from that of OSTIA. One important difference is the creation of the 

intermediate multi-sensor composite product. Each day, a global multi-sensor 

gridded product is computed by mosaicking data from inter-calibrated single-

sensor composite products. Each pixel of the multi-sensor product is filled 

with the best SST measurement available on its location in a 3 days window 

centred on the estimation time of the analysis.  The best observation is 

selected depending on the acquisition time (data closer to the centre time are 

given higher priority), the SST retrieval conditions such as SST range, wind, 

aerosols, sea ice, cloud proximity. The choice of the best measurement is also 

based on a classification of the respective sensor errors under each class of 

these criteria. Typically, a clear-sky night-time AATSR measurement obtained 
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during the right day will always be selected. Microwave data are used to fill in 

the gaps where persistent cloud coverage has prevented infrared 

measurements or where the infrared measurements are suspected to be 

contaminated by atmospheric artefacts. The multi-sensor composite product is 

produced at the same resolution as the analysis Level-4 output, i.e. 1/10°. It 

suffers from gaps but is only filled with real observations. It is named a Level-3 

SST product and constitutes both an intermediate product for the ODYSSEA 

Level-4 analysis and an output product of the ODYSSEA processing chain. The 

last step of the ODYSSEA analysis processing chain is the estimation of the 

Level-4 SST output by OI, from the Level-3 SST and previous days of Level-4 

SST. The covariance of the field is specified by a structure function modelled 

by the sum of two Gaussian functions each associated with specific time and 

space scales. The spatial length scales are isotropic and taken to 80 km and 

the Rossby radius (bounded by 20 km and 80 km) for the two functions 

respectively. The time length scales are set to 2 days and 1 day respectively, 

with a relaxation on the Pathfinder Version 5 climatology when no data are 

available at all. The ODYSSEA returns the foundation SST. It also runs 

regionally on a 1 km resolution for the Mediterranean Sea, the North West 

European Seas, the Galapagos region, Brazil, South-Africa and Australia. The 

regional ODYSSEA data sets are produced and distributed by Ifremer in the 

frame of the ESA Medspiration project. 

 

4.1.2.3 The Remote Sensing Systems (RSS or REMSS) Microwave analysis 

The REMSS MW analysis is computed daily on a 25 km grid using AMSR and 

TMI data. Before the ingestion of the data in the OI, the TMI’s emissive Antenna 

correction is applied. The diurnal warming is also estimated and removed. All 

observations are adjusted to remove any diurnal signal based on the local time 

of day and wind speed. Using a diurnal model, all microwave SSTs are 

'normalized' to a daily minimum SST, defined to occur at approximately 8 AM, 

local time (Gentemann et al. 2003). The measurement bias is corrected using 

in-situ data, and the errors associated to the single-sensor acquisitions are 

characterized. Then the SST samples are blended together using the OI scheme 

described in Reynolds and Smith (1994). A first-guess field, the previous day's 

OI SST, is employed to calculate data increments, which are all nearby data 
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minus the first-guess field. The new SST estimate is formed by a weighted sum 

of increments, with the weights calculated by the OI method, added to the first 

guess data. Correlation scales of 4 days and 100 km are used in determining 

the weights used in the REMSS methodology. Details on this analysis can be 

found at http://www.remss.com/sst/microwave_oi_sst_data_description.html. 

The particularity of the SST analysis is to be based on microwave 

measurements only; hence it is extremely useful for comparison when 

discussing the contribution of infrared sensors in global Level-4 SST products. 

 

4.1.2.4 The NOAA’s National Climatic Data Center (NCDC) AVHRR-only 

and AMSR+AVHRR analyses 

NCDC is producing two daily analyses on a ¼º grid following the same 

procedure, as described by Reynolds et al. (2007). AVHRR-only uses in-situ and 

AVHRR data, while AMSR+AVHRR adds AMSR data. Large-scale bias is corrected 

using in-situ data from ships and buoys, separately during day-time and night-

time. Then the in-situ and corrected satellite data are fed into an OI procedure, 

which uses error correlation scales that range from 50 to 200 km with smaller 

scales at higher latitudes, especially in western boundary current regions, and 

larger scales in the tropics. This analysis applies some temporal smoothing by 

using 3 consecutive days of data, with the middle day weighted higher than 

the other two days. Further smoothing is also caused by the temporal 

smoothing of the bias corrections. Additionally, the ship SSTs are corrected 

relative to buoy SSTs by subtracting 0.14ºC from all ship observations before 

they are used to bias correct the satellite data. Thus, all observations are bias 

corrected with respect to buoy SSTs and there is no attempt made to adjust to 

foundation temperature (Reynolds & Chelton 2010). 

  

4.1.3 Level-3 SST 

As mentioned in the previous section, IFREMER produces the ODYSSEA Level-3 

multi-sensor SST product daily on a 1/10 grid. This product shares some 

advantages with the Level-4 analysis products such as the spatial and temporal 

coverage, the bias correction, the adjustment to foundation SST and quality 
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estimates associated to each pixel. The high spatial and temporal coverage is 

achieved by the blending of AVHRR, AMSR, TMI, AATSR, GOES and SEVIRI data 

into a daily 1/10º grid. However the blending procedure is different from those 

involved in the production of Level-4 analysis products. In the case of Level-3, 

each output pixel comes from a real measurement of a unique instrument 

selected for its quality and proximity to the selected date. Because the Level-3 

grid resolution is 1/10, the several infrared independent samples of the 

chosen instrument that are made within a Level-3 pixel are averaged. Infrared 

Level-2 products are in effect down-sampled to construct Level-3 products. 

Level-3 products are produced by mosaicking Level-2 measurements of various 

sensors depending on their quality and availability at different places and 

times. Absolutely no interpolation is involved in the Level-3 products, each 

pixel’s value coming from an actual SST measurement of one of the systems. In 

addition, there is no relaxation to a climatology in the case that no information 

is available for some time over a region. As a consequence, Level-3 products 

are not gap-free and do not cover the whole oceans, even though the high 

number of observing systems used in these products ensures a near-total 

coverage, especially because they are selected from a 3-days window. Another 

difference compared with Level-4 products is that Level-3 products provide the 

source SST instrument for each grid pixel and the time the acquisition was 

made as auxiliary data (Autret & Piollé 2007). Figure 4-6 presents a day of 

global Level-3 ODYSSEA SST, the time of the acquisition and the satellite source 

for each pixel. 
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Figure 4-6: Example of Level-3 multi-sensor ODYSSEA product for 
15/10/2007. Top: foundation SST. Middle: time difference. Bottom: sources of 
SST. From Autret and Piollé (2007) 
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4.2 Limitations of the Level-4 SST for front detection 

4.2.1 General considerations 

Level-4 analysis products are an important breakthrough in the field of SST 

because they pave the way to smarter and complementary uses of 

independent single-sensor Level-2 data sets. Many SST applications were 

previously limited by the restricted and intermittent coverage of individual SST 

sensors, or by the low resolution and accuracy of microwave ones. These 

limitations are tackled by the GHRRST Level-4 analyses. Hence the scientific 

potential of individual products is widened by their merging provided it is 

done properly. A lot of efforts were put by the GHRSST international science 

team in order to overcome challenges inherent to the combination of 

independent and irregular SST measurements in a way that minimizes the 

errors of the resulting SST field (Le Borgne et al. 2012, Robinson et al. 2012). 

Errors of the analysis field originate both from the errors of the input Level-2 

data sets and the errors introduced by the analysis procedure. The estimation 

of SST from several single-sensor datasets is a very complex problem, and the 

GHRSST analyses are imperfect solutions to it. The procedures are statistical 

methods but they have to rely on a set of assumptions in order to deal with 

excesses and lacks of input data. The excess of data is dealt with by averaging 

or selection of data, the lack of data is tackled by interpolation in space and 

time that relies on assumptions of oceanic spatial and temporal variability. The 

OI is a complex statistical algorithm that requires a certain number of steps to 

converge and find a solution fitting best the possibly contradictive inputs it is 

fed with. It is also a very computationally demanding step of the processing 

chain, and the number of iterations allowed is generally bounded to limit the 

processing time. In some cases this results in a non-converged solution which 

can be far from the true SST. This is illustrated by Figure 4-7 which shows a 

very rare occurrence of an obvious artefact introduced by a probable faulty 

cloud detection in an infrared input of the ODYSSEA chain. This section 

explores some issues of the Level-4 analyses that limit their ability to reveal 

frontal variability. 

 



Chapter 4 

 140

 

Figure 4-7: Example of an error in the ODYSSEA output. Note that this error is 
a rare occurrence and has been properly tackled by IFREMER. 

 

4.2.2 Level-4 analyses are spatially smoothed 

When searching for fronts in the data, the main drawback of Level-4 SST 

products is that they do not resolve very small scales. Even when a scene is 

spatially resolved by high resolution infrared sensors, the corresponding Level-

4 analysis are much smoother than the Level-2 input images. All the OI 

schemes introduce a level of spatial smoothing which is governed by the 

specification of the background error covariances and the correlation length 

scales chosen in the analysis design (Donlon et al. 2012). The level of 

smoothing varies amongst the various Level-4 SST analyses. It is necessary to 

reduce the noise of the output SST image. As was explained in chapter 3, 

spatial smoothing reduces spatial noise in the data at the expense of actual 

small scale features. The level of smoothing and the resulting minimum 

resolved feature resolution that characterize an analysis product depend on 

the aims of each analysis and the signal-to-noise ratios (SNR) of the input data. 
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An analysis that applies little smoothing benefits from high resolution features 

and an increased signal at small-scales, it suffers however from a greater 

susceptibility to noise. The analysis procedures apply spatial smoothing to 

remove residual error of the bias correction and ensure a smooth transition 

between the pixels originating from different data sets. Also the OI is fed with 

SST acquisitions at different times in a day, even though there is a correction 

of the diurnal variability achieved through the foundation SST, there is a 

residual error to it plus there are other effects than solar warming that can 

change the SST at frequencies higher than once per day. These effects include 

the tidal advection of strong horizontal temperature gradients. The spatial 

smoothing is also intended to minimize these high temporal frequency 

variations of SST because they can make non-synoptic measurement spatially 

inconsistent. It is important to distinguish between the grid spacing and the 

feature resolution of an SST analysis. The grid spacing defines the smallest 

possible features that could be resolved in the analysis. It will be shown that 

OSTIA’s feature resolution is coarser than the one of OSYSSEA, even though 

OSTIA’s grid spacing is twice as fine. 

The OI also introduces smoothing as it interpolates over patches of missing 

data. Spatial interpolation is a very simple way to fill a gap in the data while 

making little assumption on the estimated field. When a gap in the available 

input data is filled by interpolation, a smooth transition is created between 

available measurements. This gives a false impression of a region with little 

energy at small scales, whereas small-scale variability may have been present 

in reality. If one applies a front detection algorithm on a Level-4 SST image 

where some spatial interpolation was necessary, no front may be detected 

over the interpolated patches when a front may have been present. This effect 

would tend to underestimate the presence of fronts if not appropriately dealt 

with. Interpolation in time also smoothes the data because high frequencies in 

time and space are often linked. Hence the averaging of samples from different 

dates over a highly varying scene ends up in a scene on which high spatial 

frequencies have been reduced. Following the same principle, SST 

climatologies, which are produced by averaging a very large number of 

observations, are very flat. Therefore, when the OI decays back to a 

climatology, small scales are absent from the result and the occurrence of 

fronts is underestimated. 
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Figure 4-8 shows a regional example SST gradient magnitude of 4 different 

products: OSTIA, ODYSSEA, ODYSSEA L3 and REMSS MW. Because gradients are 

computed from spatial differences, they are useful in showing how well 

analyses can resolve strong coherent features such as the Agulhas Retro-

flexion Currents. Figure 4-8 shows that the SST gradient magnitude is the 

highest in the Level-3 image because no smoothing was applied to it. Note that 

the Level-3 pixels that are associated with microwave measurements are filled 

at the original resolution of 25 km (see Figure 4-9) with many pixels in 

between being left with missing data. The gradient cannot be calculated over 

missing samples therefore the missing regions of Figure 4-9 are expanded in 

Figure 4-8 over their neighbouring pixels. This phenomenon also occurs near 

land and its intensity increases with the size of the smoothing filter. As 

explained in chapter 3, whenever a pixel is missing, all the pixels that require 

the missing pixel’s value in order to be smoothed are turned into missing 

values in the smoothed scene. The Level-3 image shows the finest details but 

suffers from the cloud coverage, microwave values being discarded by the 

gradient computation. It is notable also that ODYSSEA seems to resolve finer 

features than OSTIA. There also seems to be more energy at small and meso-

scales in the ODYSSEA because the gradient magnitude is larger than OSTIA’s. 

Both OSTIA and ODYSSEA resolve finer scale than REMSS MW which is based on 

microwave data only. REMSS MW is also unable to resolve SST gradient near 

land because microwave side-lobe contamination. 

Figure 4-9 presents the fronts detected by the Canny algorithm on the same 

SST images. The original SST of the 4 products for which the gradient 

magnitude was displayed on Figure 4-8 is plotted on Figure 4-9, with the 

detected fronts overlaid. Note that the fronts were detected with a smoothing 

running Gaussian filter of ߪ௦=20km. The smoothing filter reduces the small 

scales of each product, bringing them closer to each other. Still, more fronts 

were detected on ODYSSEA than on OSTIA (FLI is larger) and they were 

stronger on ODYSSEA (FGI is larger). A very comparable amount of fronts were 

detected on REMSS MW and OSTIA, both in term of length and strength. 

However, OSTIA is able to resolve fronts close to land, such as the important 

Benguela upwelling front, whereas the microwave SST is unable to do so. 

Level-3 ODYSSEA data shows little amount of fronts because of the missing 
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pixels over microwave patches that prevent the Canny algorithm from 

functioning properly. 

 

 

Figure 4-8: SST gradient magnitude of 4 GHRSST products (from top to 
bottom): OSTIA Level-4, ODYSSEA Level-4, ODYSSEA Level-3 and REMSS MV 
Level-4. The data are taken over the Agulhas region on 12/06/2008. The 
gradient is computed with no initial smoothing applied (ߪ௦=0 km). 
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Figure 4-9: Detected fronts on 4 GHRSST products (from top to bottom) : 
OSTIA Level-4, ODYSSEA Level-4, ODYSSEA Level-3 and REMSS MV Level-4. The 
data are taken over the Agulhas region on 12/06/2008. The fronts are 
detected with the Canny algorithm, with the threshold parameters T1=0.01 
K/km and T2=0.02 K/km and the smoothing running Gaussian of ߪ௦=20 km. 

 

4.2.3 Level-4 analysis smoothing scales vary spatially 

Not only do the Level-4 analyses introduce some smoothing in the SST data, 

but they do not do so uniformly. The level of smoothing applied by an analysis 
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procedure is a complex combination of several factors. One of these factors is 

the error correlation scale. It is a parameter of the OI that controls the size of 

the smoothing filter and how far alternative measurements are looked for to 

substitute a missing one. The error correlation should be set carefully, if it is 

too small, the analysis can be too noisy where there is data and may decay too 

quickly to a climatology where there is none. If the error correlation scale is 

too large, the small gradients are unnecessary reduced. The error correlation 

scale is split into spatial and temporal components. It is involved in the 

systematic trade-off between interpolation in space, or in time, or a decay to a 

climatology. In some analyses, the three strategies may occur at the same 

time, with relative weights that are governed by the OI parameters and the 

quality and coverage of the input data sets. The REMSS MW analysis relies on 

isotropic error correlation scales of 100 km and 4 days. Other analyses allow 

the error correlation scale to vary with location so that the feature resolution 

of the analysis fits the local dominant scale of variability. The rationale of this 

approach is to increase the confidence in the results by means of physical 

assumptions in the generation of the product. In areas where small scales 

dominate, the smoothing and interpolation in space are reduced so that the OI 

result contains more energy at small scales. On the opposite, in areas where 

the larger scales dominate, it is possible to search for data a bit further to 

improve spatial coverage and diminish noise and yet still be confident about 

the result. Where it is assumed that larger scales are dominant, the analysis do 

not generate unrealistic small-scale features, even if some are present in the 

input data. 

The OSTIA analysis is built on two error correlation length scales of 10 km, to 

account for mesoscale variability, and of 100 km to capture larger scale 

variations introduced by synoptic features in the atmosphere. These scales are 

derived from the output of a 3-year integration of the Met Office Forecasting 

Ocean Assimilation Model (FOAM, (Bell et al. 2003, Bell et al. 2000) . Spatially 

varying error variances derived from the FOAM run and associated with these 

scales are input to the analysis procedure and define the effective correlation 

scale (Figure 4-10). The effective correlation scale applied in the ODYSSEA 

procedure is governed by two isotropic length scales. The first scale is equal 

to 80 km. The second is set to Rossby Radius of Deformation, bounded by 20 

km and 80 km, calculated on a 1º grid using the 1998 Levitus climatology. 
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This scale is presented on Figure 4-11, it is quite different from the one of 

OSTIA. The NCDC error correlation scales are not exactly isotropic, as shown 

on Figure 4-12. They have been calculated by Reynolds et al. (2007) on AVHRR 

and AMSR data sets by spatial lagged correlations following Reynolds and 

Smith (1994). 

The spatially varying error correlation length scales used in the analysis 

procedures limit the spatial consistency of the frontal results that are derived 

from them. It was shown in chapter 3 that the frontal detection is strongly 

linked to spatial variability. The amount of fronts detected on the SST images 

depends on the amount of smoothing that was applied on the image. Spatial 

variability of the smoothing filter complicates the spatial comparison of frontal 

results. Therefore it is important to know whether a different quantity of 

detected fronts in two different locations is due to different local 

characteristics or simply different amount of smoothing. The analysis products 

that apply spatially variable filters do so with a scientific rational that derives 

either from a temporal averaging of observed correlation length scale or from 

a temporal averaging of a model output. This approach offers confidence in 

the fact that the smoothing is making the output realistic, so the observed 

spatial variations of scales are close to the real ocean ones. One can argue that 

the methodologies to calculate the scales are prone to errors. The validity of 

the OSTIA scale assumption is limited by the precision of the FOAM model, 

which is unequal and suffers from the scarcity of FOAM input observations in 

some regions. One should therefore account for the uncertainties in the error 

correlation assumptions in the interpretation of the front detection results. In 

addition, even if these assumptions were completely realistic, they are based 

on temporal averages and constrain the presence of small scales in a way that 

is constant in time. Hence an actual temporal signal in the amount of small 

scale would not propagate fully to the results. The design of these analysis 

procedures limits the exploration of such temporal variability in the presence 

of small scales, in some regions. 
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Figure 4-10: OSTIA background error standard deviation for (left) 10 km 
mesoscale and (right) 100 km synoptic scale features derived from three years 
of daily FOAM ocean model outputs. From Donlon et al. (2012). 

 

 

Figure 4-11: ODYSSEA spatial correlation length scale for the mesoscale. From 
Autret and Piollé (2007). 
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Figure 4-12: NCDC AMSR +AVHRR and AVHRR-only zonal and meridional error 
correlation scales. From Reynolds et al. (2007). 

 

The error correlation length scales are described and implemented in different 

ways in the Level-4 analyses mentioned in this thesis. Other steps of the 

analysis procedures also introduce an unknown quantity of smoothing. 

Another way to compare the spatial smoothing applied by each procedure is to 

compare directly the autocorrelation length scales of the output images. The 

autocorrelation length scale was calculated on one day of OSTIA, ODYSSEA and 

REMSS MW. For this, the SST anomaly was computed and a high-pass filter with 

a cut-off frequency of 100 km was applied.  This filter is critical since 

variations in the absolute SST value increases the autocorrelation. The 

autocorrelation was processed on a 1º grid. The autocorrelation function was 
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processed locally by shifting in every direction the filtered SST anomaly field 

and getting the correlation with the non-shifted field. When the shift is zero, 

the correlation is equal to one. As the shift increases, the correlation 

decreases. The correlation decreases faster when the studied field is varying 

quickly in space. The autocorrelation length scale is defined as the distance 

over which the autocorrelation drops below 0.5, following Isaaks and 

Srivastava (1989). The calculated autocorrelation length scales of the three 

analyses mentioned above are shown on Figure 4-13. It shall be stressed that 

the measured scales depend on the combination of the real oceanic scales and 

of the scale filtering applied by the analyses. In addition, the next section 

shows that the scales present on Level-4 SST images is also governed by the 

type of SST data used as input. It is still interesting to compare the three maps 

on Figure 4-13 because they estimate in different ways the same real scene. 

Hence the differences presented on Figure 4-14 depend on the differences in 

the analysis procedures only. The autocorrelation length scale on OSTIA vary 

from 30 to 80 km, with larger scales on and around the Gulf Stream, the 

tropical and equatorial East Pacific and around the Antarctic Circumpolar 

Current (ACC). ODYSSEA scales are distributed less evenly than OSTIA’s. They 

are large everywhere between the Tropics, as well as on the Gulf Stream, the 

Kuroshio Current and the ACC but on narrower regions than on OSTIA. In 

contrast, mid- and high-latitude regions are characterized by a very small 

autocorrelation length scale of about 30 km. Figure 4-14 shows a clear pattern 

in the differences between OSTIA and OSYSSEA scales. The ODYSSEA scales of 

Figure 4-13 correspond closely to the theoretical spatial correlation length 

scale applied by ODYSSEA and shown on Figure 4-11. The larger scales 

observed on the ACC on ODYSSEA relative to its surroundings  can be 

attributed to the scales of the real surface temperature since the theoretical 

ODYSSEA spatial correlation length scale do not vary in the involved region. 

The scales displayed on the REMSS MW dataset are assumed to be close to 

reality, however they are confined to scales that the microwave resolution can 

resolve. The rectification of microwave measurements on an oversampled grid 

is not straightforward but it does not result in a spatially varying amount of 

smoothing applied. It is striking that the autocorrelation length scale of the 

microwave-only product is not significantly larger than that of analyses which 

make use of high-resolution infrared data. REMSS MW show larger scales on 

the Kuroshio Current, the Gulf Stream and the ACC. However the Tropical 
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regions are not characterized by larger scales, except on a narrow Equatorial 

band in the Pacific. This comparative analysis is based on a single day used as 

an example; it is not sufficient to draw general conclusions about the genuine 

autocorrelation scales on the ocean. It is however a good illustration of the 

different scales produced by the Level-4 SST analyses when estimating the 

same scene. 
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Figure 4-13: Radial correlation length scale in km, calculated for 
OSTIA/ODYSSEA/REMSS MW on 01/01/2008. The length scale is defined by the 
scale at which the autocorrelation drops below 0.5. A high pass filter of 100 
km is applied before the autocorrelation is processed. 
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Figure 4-14: Ratios of the autocorrelation length scales shown on Figure 4-13. 
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4.2.4 Level-4 analysis smoothing scales vary in time 

The previous section showed that some Level-4 analyses products are 

designed to return SST images whose feature resolution varies in space. When 

detecting fronts on these images, this effect should be accounted for in order 

not to misinterpret the portion of the spatial variability of fronts which is an 

artefact of the analysis procedure. A good understanding of the smoothing 

added by the OI and its variation in space helps to mitigate this limitation. The 

problem gets more complicated when the feature resolution varies also in time 

over the same location if it is due to processing artefacts rather than a natural 

signal. Changes in satellite SST instruments used as input to the analyses over 

time can impact the resulting feature resolution. These changes can be due to 

a variable cloud coverage which eliminate infrared measurements or rain 

events which also contaminate microwave inputs. They can also be the 

consequence of adding a newly available satellite instrument or terminating an 

old instrument. These changes can lead to artificial abrupt jumps in the 

resolution of the analyses (Reynolds et al. 2007). Consider, for example, an 

analysis product that blends infrared and microwave data sets. Cloud-free 

regions benefit from high-resolution infrared sampling as well as microwave 

sampling. If the analysis inherent smoothing is low enough, high-resolution 

features are transmitted to the output SST when infrared data are available. 

Suppose, now, that on a later day a persistent cloud cover appears on the 

same area. In these conditions, the analysis can only estimate the SST from 

low resolution microwave data sets. The resulting SST field feature resolution 

is bounded by the low resolution of the microwave images used as input. This 

example shows that an analysis that blends microwave and infrared data runs 

the risk that changes in infrared coverage because of cloud cover or narrow 

swath generate apparent temporal inhomogeneity in the small-scale variance. 

To explore this effect it is useful to consider analysis products that follow the 

same procedure but on different input data sets. Reynolds et al. (2007) discuss 

3 products based on the same procedure. NCDC AVHRR that is based on 

infrared data only, NCDC AMSR that is based on microwave data only, and 

NCDC AMSR&AVHRR that blends infrared and microwave data. To quantify the 

cloud cover effect on small scales, the authors define a gradient index on the 

Gulf Stream region whose cloud coverage is characterized by a strong seasonal 

variability. They found that differences between the gradient index of AMSR 
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and AMSR and AVHRR combined OI are very small. This result can be the 

consequence of either the large smoothing and infrared spatial binning 

involved in the NCDC procedure or of the limitation of the gradient index as a 

small-scale quantification. The gradient index calculated by the authors could 

be too coarse to give a larger weight to small scales but it should also be 

stressed that a gradient magnitude is not directly proportional to the presence 

of small scales. Especially on highly dynamic jets like the Gulf Stream, the 

temperature gradient is very large even at scales resolved by the microwave. 

Reynolds and Chelton (2010) show by exploring the zonal wavenumber 

spectra of the SST of various products at various locations and times that 

AMSR data can degrade the combined AMSR and AVHRR resolution in cloud-

free regions. This conclusion seems at first unnatural because, as illustrated in 

Table 4-2, the two products both benefit from high-resolution infrared data as 

input in clear-sky conditions. Yet, the NCDC OI is based on averaging available 

input data, hence the inclusion of the coarse 50-km resolution AMSR data at a 

time of prevalent AVHRR data results in a smoothing of the SST field that 

would otherwise be obtained from the 25-km (after spatial binning) AVHRR 

data alone. This observation clearly means that the NCDC AMSR&AVHRR 

product feature resolution is dependent on the cloud coverage and the 

availability of infrared data. This effect is likely to be accentuated in the OSTIA 

and ODYSSEA products because they rely on less smoothing and, at least in the 

case of OSTIA, make use of infrared data more effectively than NCDC OI 

(Reynolds & Chelton 2010). 

Table 4-2 also shows that in case of persistent cloud cover, the NCDC AVHRR 

analysis product has no other alternative but to apply spatial and temporal 

interpolation, or to decay to a climatology. This can result in the absence of 50 

km scales that are resolved by the microwave. Reynolds et al. (2007) establish 

that AMSR data significantly improve the resolution of the AMSR&AVHRR 

product under cloud-cover conditions when compared with AVHRR-only 

analysis. This effect is particularly important over the Gulf Stream region 

because of the seasonal cloud cover. The authors found that the gradient 

index of AMSR&AVHRR is nearly equivalent in the summer to that of AVHRR-

only but is almost double in winter. This stresses the importance of microwave 

data in multi-sensor Level-4 products and raises questions about the 
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consequences of the failure of AMSR in October 2011 on the mid and high 

latitude winter Level-4 data since then. 

 

 NCDC L4 SST 
Climatology/ 
Interpolation 

Microwave 
data Infrared data 

Clear sky 

AVHRR   X 

AMSR  X  

AMSR&AVHRR  X X 

Cloud cover 

AVHRR X   

AMSR  X  

AMSR&AVHRR  X  

Table 4-2: type of SST input data available for the 3 NCDC Level-4 SST 
products as a function of the cloud conditions. 

 

4.3 Qualitative comparisons of the gradients 

Another way to compare Level-4 SST products is to compare their gradient 

magnitude. Gradient magnitude is both a relevant dynamical index as shown 

in chapter 2 and a qualitative indicator, although not perfect, of how the small-

scale are resolved by each product. If looking at the gradient of various 

products does not allow one to conclude which one is closest to reality, it 

nonetheless sheds light on processing artefacts and differences between the 

products. Figure 4-15 displays the gradient magnitude calculated on a single 

day of OSTIA, ODYSSEA and REMSS MW SST, with no smoothing applied (=0 

km). The SST gradient magnitude reveals a great deal of mesoscale activity on 

the ocean surface. In the three products, the gradient resolves the western 

boundary currents and the activity in their surroundings, the ACC, Tropical 

Instability Waves in the East Pacific, coastal upwellings and smaller scale 

activity. A first glance gives the same impression on the three SST gradient 

maps of a higher gradient magnitude at mid-latitudes along the strong surface 

currents and a lower gradient in the Equatorial and Tropical regions. Yet it 

seems that OSTIA SST gradient drops quicker below the Gulf Stream where 

REMSS MW gradient is present and even going further to the South towards the 
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Equator. ODYSSEA seems to have a higher gradient than OSTIA where the 

gradient is low, but a lower gradient than REMSS MW. The later analysis 

resolves the stronger gradient in regions of low gradient but one can easily 

detect artefacts of the data merging as passes of AMSR seem to be 

characterized by a stronger gradient than the surrounding areas. It is 

important to add that these artefacts are a substantial obstacle for the front 

detection because they would trigger frontal detection on the edges of the 

passes. 

This impression is confirmed by Figure 4-16 and Figure 4-17 which compare 

the gradient magnitude on the three products with regional and monthly 

ratios. The gradient magnitude was calculated for each day of the January 

2008 for each of the three products, with no smoothing involved (=0 km). 

The monthly average gradient magnitude for each region shown on Figure 

4-16 was calculated so that the ratios OSTIA/ODYSSEA, OSTIA/REMSS MW and 

ODYSSEA/ REMSS MW could be computed. Figure 4-16 and Figure 4-17 show 

that ODYSSEA gradient is everywhere higher than OSTIA gradient, especially in 

the 20°S-40°S and 20°N-40°N latitude regions. REMSS MW gradient is much 

stronger than OSTIA between 40°S and 40°N and much stronger than ODYSSEA 

between 20°S and 20°N. Note that REMSS MW seems to have both smaller 

scales and larger gradient than OSTIA and ODYSSEA in the Equatorial and 

Tropical regions. However it has a gradient equal to ODYSSEA at mid-latitudes 

but scales larger than ODYSSEA in these regions (Figure 4-14). Similarly, 

ODYSSEA has a higher gradient than OSTIA everywhere, but it has a larger 

feature resolution than OSTIA between 20°S and 20°N and a smaller elsewhere. 

This shows that the autocorrelation length scale and the gradient magnitude at 

=0 km are two different concepts which are not always correlated. 

Figure 4-18 shows that the differences between the gradient magnitude of the 

products decreases as  increases. This demonstrates that the differences 

between the products are at the small scales. As the scales grow bigger 

because the smoothing increases, the gradient magnitudes come closer to 

each other. It is a natural and expected result that the products agree on the 

very large scales, because they are fairly stationary and very well resolved by 

all the inputs. 
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Figure 4-15: Gradient magnitude of OSTIA, ODYSSEA and REMSS MW Level-4 
analysis SST products, on 01/01/2009. The gradient is calculated with a 
simple gradient operator, without any smoothing applied. 
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Figure 4-16: Regional ratios of monthly average SST gradient over the month 
of January 2008 for the OSTIA, ODYSSEA and REMSS MW analysis SST products. 
Note that the regions are split every 10 latitude in each ocean and that the 
average gradient is computed by averaging the gradient calculated on each 
day of the month, with no smoothing involved (=0 km). 
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Figure 4-17: Monthly zonal average SST gradient and ratios (green) over the 
month of January 2008 for the OSTIA, ODYSSEA and REMSS MW analysis SST 
products. Note that the average gradient is computed by averaging the 
gradient calculated on each day of the month, with no smoothing involved 
 .(௦=0 kmߪ)
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Figure 4-18: Monthly zonal average SST gradient ratios over the month of 
January 2008 for the OSTIA, ODYSSEA and REMSS MW analysis SST products. 
Note that the average gradient is computed by averaging the gradient 
calculated on each day of the month, with varying smoothing involved (ߪ௦=0 to 
100 km). 
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4.4 Qualitative comparison of detected fronts 

The differences in feature resolution and gradient magnitude of the products 

described in the previous sections result in different fronts being detected. 

Figure 4-19 shows the frontal indexes detected over 5 days of OSTIA, ODYSSEA 

and REMSS MW with the Cayula method and a window size of 180 km. The 

analyses presented in this section are based on the Cayula algorithm despite 

the recommendation made in section 3.6 to rather use the Canny algorithm. 

The reason for this is the fact that at the time these analyses were performed, 

the Cayula algorithm was the baseline for achieving this thesis. It was however 

the practical implementation and exploitation of the Cayula algorithm which 

made the author of this thesis aware of some of the issues associated with it. 

The Canny algorithm was subsequently implemented and explored as a result 

of this scientific development. 

As explained in chapter 3, because the Cayula algorithm is parameterized with 

∆ ௠ܶ௜௡ ൌ  fronts are detected all over the ocean and the FLI is uniformly ,ܭ	0

distributed. The index of frontal strength FTDI however resolves the mesoscale 

activity in similar places as the gradient index does on Figure 4-15. The maps 

of the indices do not allow one to spot obvious differences between the three 

products. This can be done by calculating the ratio of regional averages of the 

frontal indexes as presented on Figure 4-20 and Figure 4-21. The frontal 

length is fairly close on the three products, while ODYSSEA frontal strength is 

everywhere larger than that of OSTIA. Despite the differences in feature 

resolution and gradient magnitude of ODYSSEA and REMSS MW, the frontal 

indexes detected on these two products are very close. This is likely due to the 

fact that the mentioned differences involve small scales and that the latter do 

not affect the Cayula algorithm with a window size of 180 km. Figure 4-21 

shows that OSTIA FTDI is between 0% and 20% lower than ODYSSEA FTDI, 

whereas ODYSSEA FTDI lays within 85% and 115% of REMSS MW FTDI. The 

Frontal Gradient Index, calculated from the gradient magnitude (ߪ ൌ 0	݇݉ሻ on 

the fronts, is plotted on Figure 4-22. It is more variable amongst the three 

products, OSTIA FGI is within 0% and 35% lower than ODYSSEA FGI and 

ODYSSEA FGI lies within 65% and 140% of REMSS MW FGI. This illustrates that 

the index based on the gradient magnitude is obviously more sensitive to the 

small scales differences in the gradient magnitude than the index representing 
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the difference in temperature on both sides of the front as detected by the 

Cayula algorithm. 
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Figure 4-19: Front Length Index (FLI, left) and Front Temperature Difference 
Index (FTDI, right) of OSTIA, ODYSSEA and REMSS MW between 01/01/2008 
and 05/01/2008. Fronts were detected with the Cayula algorithm, with a 
window size WS=180 km, and no minimum temperature difference:  
࢔࢏࢓ࢀ∆ ൌ ૙	ࡷ. 
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Figure 4-20: Front Length Index (FLI, left) and Front Temperature Difference 
Index (FTDI, right) ratios of OSTIA, ODYSSEA and REMSS MW between 
01/01/2008 and 05/01/2008. Fronts were detected with the Cayula algorithm, 
with a window size WS=180 km, and no minimum temperature difference: 
࢔࢏࢓ࢀ∆ ൌ ૙	ࡷ. 
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Figure 4-21: Zonally averaged Front Length Index (FLI, left) and Front 
Temperature Difference Index (FTDI, right) and ratios of OSTIA, ODYSSEA and 
REMSS MW between 01/01/2008 and 05/01/2008. Fronts were detected with 
the Cayula algorithm, with a window size WS=180 km, and no minimum 
temperature difference: ∆࢔࢏࢓ࢀ ൌ ૙	ࡷ. 
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Figure 4-22: Zonally averaged Front Length Index (FLI, left) and Front Gradient 
Index (FGI, right) and ratios of OSTIA, ODYSSEA and REMSS MW between 
01/01/2008 and 05/01/2008. Fronts were detected with the Cayula algorithm, 
with a window size WS=180 km, and no minimum temperature difference : 
࢔࢏࢓ࢀ∆ ൌ ૙	ࡷ. 
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4.5 From temperature gradient to density gradient 

Chapter 2 showed that resolving the density gradient in the mixed layer allows 

one to quantify dynamical properties of the vertical exchanges occurring at 

density fronts in certain conditions. In this thesis the temperature gradient in 

the mixed layer is used as a proxy for the density gradient, assuming the 

salinity constant over the front. This strategy is valid if and only if the 

temperature change dominates the salinity change in the equation of state 

which relates the temperature and salinity to the density. Where it is not the 

case, the density gradient cannot be estimated from the temperature gradient 

alone. Doing so indeed results in the underestimation of the density gradient 

in the case of a front warm and fresh on one side and cool and salty on the 

other or in the extreme case of a salinity front with constant temperature. 

Conversely, the density gradient is overestimated where the front is warm and 

salty on one side and cool and fresh on the other, the worst case being the 

exact cancelation of temperature and salinity gradients effects on density. This 

phenomenon is called compensation because temperature and salinity 

compensate in their effect on density. It has been known for some time for 

certain fronts at scales of a few tens to one hundred kilometres (Roden 1975). 

Compensation was also measured at horizontal scales as small as 10 km 

(Ferrari & Rudnick 2000). The correlation between thermohaline gradients is 

often quantified in terms of the ratio of the relative effect of potential 

temperature and salinity on density, the density ratio, 

 ܴ ൌ
ߙ ∙ ߠ∆
ߚ ∙ ∆ܵ

 (4-1)

where ߠ is the temperature, and ܵ is the salinity, and ߩ the density, and  

ߙ ൌ െିߩଵሺ߲ߠ߲/ߩሻ and ߚ ൌ  ሻ are the expansion coefficients of߲ܵ/ߩଵሺ߲ିߩ

temperature and salinity. Although the density ratio has been used vertically to 

characterize thermohaline structure from vertical profiles, it is applied on 

horizontal spatial differences in this thesis. The relative error in the density 

gradient calculated under the assumption that the salinity is constant is 

 
∆ఘೝ೐ೌ೗

∆ఘ೐ೞ೟೔೘ೌ೟೐೏
ൌ ቀ1 െ

ଵ

ோ
ቁ, 

(4-2)

where ∆ߩ௘௦௧௜௠௔௧௘ௗ ൌ െߙ ∙  Compensated fronts have a density ratio of 1, they .ߠ∆

are characterized by a temperature gradient but a constant density. In this 
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configuration a non-real density gradient is detected on SST. A front where the 

effect of temperature on density is opposed to but twice that of salinity has a 

density ratio of 2. In this later case the density gradient is overestimated by 

100% from SST. Fronts where the effect of temperature on density dominates 

that of salinity have a density ratio |ܴ| ≫ 1. The higher |ܴ| is, and the more 

accurate is the estimation of the density gradient from the temperature 

gradient alone. 

The existence of compensated fronts can be explained in the following way: 

assume that atmospheric forcing, mesoscale stirring and entrainment of 

thermocline waters create random distributions of temperature and salinity in 

the mixed layer. Regions will exist in which the horizontal gradients of 

temperature and salinity will happen to compensate in their effect of density, 

whereas in other regions they will create horizontal density gradients. The 

horizontal density gradients at small scale will slump under the action of 

gravity and restratify the mixed layer. Any subsequent strong vertical mixing 

results in a weakening of the horizontal density gradients. The thermohaline 

gradients that are compensated do not slump and do not experience 

horizontal dispersion and therefore persist (Ferrari & Rudnick 2000). At larger 

scales, slumping can occur, as due to baroclinic instability, but density 

gradients can persist in geostrophic balance. The phenomenon of 

compensation should thus be most prominent at scales smaller than about 10 

km (Rudnick & Martin 2002). The most exhaustive study of the compensation 

in the world’s ocean is presented by Rudnick and Martin (2002). The authors 

based their investigations on 15 years of towed instrument (SeaSoar) in-situ 

campaigns in the Pacific, Atlantic and Indian Ocean. They found compensation 

in all oceans, on 3-4 km horizontal scales, when the mixed layer is deep and 

significant thermohaline variability exists. The tendency for compensation is 

stronger as mixed layer depth increases and for mixed layer deeper than 75 m, 

a density ratio near 1 is typical. Conversely, compensation is not typical in 

shallow mixed layers, or when thermohaline variability is weak. Regions such 

as the subtropical gyres where the variability in salinity is low at small and 

meso-scales do not experience significant compensation. At moderate mixed-

layer depths between 25 and 75 m, the density ratio is poorly defined. At the 

smallest mixed layer depths, temperature dominates density variability (R is 

large). The authors speculate that horizontal density gradients exist in all 
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conditions, in the deep winter mixed layer depth or in the shallow summer 

one, but they are confined to frontal regions while most of the ocean has 

compensated thermohaline variability. 

The consequence of these findings for this thesis is that the estimation of the 

density gradient from the temperature gradient in the mixed layer is 

considered reliable for shallow mixed layer depths. One should be confident in 

the dynamical frontal indexes based on parameterizations that estimate the 

dynamics as a function of the horizontal density gradient only when the mixed 

layer depth is shallower than 75 m. This is a fundamental limitation of the 

usage of SST for vertical circulation parameterization over fronts. It should be 

stressed however that the need for such parameterization is more stringent 

over the shallow mixed layer depth regions because when the mixed layer is 

deep, vertical circulation is dominated by the wind stress induced mixing. In 

addition, surface temperature can be used as a passive tracer to measure 

turbulence in compensated and non-compensated situations. The simple 

frontal indexes are thus a valid way to observe turbulence in all conditions, 

while the dynamical indexes are restricted to the shallow mixed layer regions. 

Improvements in the understanding of the density ratio in the deep mixed 

layer or new systems for high resolution salinity satellite acquisition could 

overcome this limitation. 

 

4.6 Conclusion on the dataset/method to use 

It is not possible to study the small scales and benefit from a high temporal 

coverage on the same SST dataset. It was therefore necessary to adopt two 

parallel strategies with regard to the input SST data on which the fronts are 

searched for. They are summarised in Table 4-3. 

The first strategy takes advantage of the spatial and temporal coverage of 

some of the GHRSST Level-4 product. The selected product is OSTIA and OSTIA 

reanalysis because they offer the longest time span. The following chapter 

explores in more details the seasonal variability in the presence of small scales 

within several Level-4 SST products. In the two following chapters it will be 
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discussed whether these products should be smoothed before the fronts are 

detected to avoid artefact variability generated by the cloud coverage. 

The fronts are detected with the Canny algorithm because it is more easily 

linked to the dynamics as explained in chapter 3.  

The second strategy focuses on the small scale variability. Since it is not 

resolved by the Level-4 SST products, the ODYSSEA Level-3 super-collated 

products are chosen. The pixels that originate from microwave acquisitions are 

discarded and only infrared ones are kept in order to keep the spatial 

resolution consistency. No smoothing is applied to preserve all the small scale 

activity. The Canny algorithm is also selected because of its relevance in the 

geophysical studies, despite its reduced ability to detect fronts in the vicinity 

of missing data. 

 

Focus SST dataset 
smoothing

filter 
method time span 

time and 

space 

coverage 

OSTIA +  

OSTIA 

reanalysis 

Various levels 

of smoothing 

+none 

Canny 1985-today 

small scale 

variability 

ODYSSEA 

Level-3   

infrared only 

none Canny 

October 2007-

December 

2009 

Table 4-3: summary of the two stages of frontal exploration. 
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5. Chapter 5: Frontal Indices 

5.1 Introduction 

This chapter deals with the practical implementation of the principles and 

results presented in the first three chapters. The description of the dynamics 

of the mixed-layer associated with surface density fronts (chapter 2) is 

combined with the discussion on the frontal detection algorithms (chapter 3) 

and the exploration of multi-sensor SST datasets (chapter 4) to produce a novel 

set of frontal indices which attempt to capture physical parameters of the 

mixed-layer. The objective of this chapter is to demonstrate that the physics 

presented in the first chapter can be applied in practice on satellite images of 

surface temperature. A methodology is presented to compute maps and time 

series of physically meaningful frontal indexes. This methodology relies 

mostly on three parameters: the level of smoothing applied on the SST image 

before the fronts are searched, the minimum strength of the fronts that shall 

be retained and composited in the indexes, and in some cases the assumed 

width of the fronts. These input parameters are chosen based on the literature 

and practical deductions. The sensitivity of the results to these parameters is 

discussed when no objective choice was possible. Some of the indexes provide 

objective results that can be compared to the literature; others need to be 

calibrated through the optimal choice of parameter values to return results 

comparable to independent estimates in the literature of the physical 

parameter. In both cases, the construction of the indexes allows the robust 

assessment of the outcomes of the first three chapters as well as some 

assumptions made in some physical oceanography publications. 

The common characteristics of the calculated frontal indexes are presented 

first. The computational aspects are then exposed. The conversion of the SST 

to surface density is described, including a discussion on how to minimize the 

error due to frontal compensation of salinity and temperature. In the remaining 

subsections of the chapter several indexes are presented and discussed, in 

order of increasing complexity. Each of them is applied to a specific scientific 

case and is explored from both a qualitative and quantitative perspective. 
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5.1.1 General aspects of the frontal indexes 

The frontal indexes presented in this thesis are quantitative values of a frontal 

property that are calculated per surface area and per time span. They are 

stored on three-dimensional maps with latitude, longitude and time as 

dimensions. The maps are all consistent in both space and time so that their 

values for various places and dates can be combined or compared. In order to 

explore their spatial and temporal variability while minimizing the disk space 

necessary to store them, they are always created in two versions 

simultaneously: 

a) The High Spatial Resolution (HSR): this version provides a high 

spatial resolution of 0.1º but a low temporal resolution of 1 

month. 

b) The High Temporal Resolution (HTR): this version provides a low 

spatial resolution of 1º but a high temporal resolution of 1 day. 

It would be very memory consuming to store the frontal indexes at both a high 

spatial resolution and temporal resolution. Hence, even though the indexes are 

initially calculated daily over the original SST resolution (typically 0.1º), they 

are integrated in space in the HTR index file and in time in the HSR one. This 

allows one to drastically optimize the storage space required as the fronts are 

calculated on regional to global space scales and annual to decadal time 

scales. The HSR index allows the display of monthly composite maps of the 

frontal indexes. On the other hand the HTR index permits the plotting of the 

spatially averaged frontal indexes over a user-defined region against time. 

Every time an index is calculated, it is stored in monthly HSR files and a single 

HTR file. 

Each frontal index is stored in a Matlab object file which contains: 

a) Metadata associated with the frontal index: the name, 

description of the run, the type (HSR or HTR), the spatial and 

temporal resolution, the creation date, last update date, a 

modification log and the complete configuration parameters 

used as input to the run that has created the index. 
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b) Auxiliary data: the latitude, longitude and time associated to the 

index three-dimensional grid, the days that were processed, the 

name of the input SST files ingested and the surface area (in km2) 

of ocean in each pixel. 

 

c) Available SST surface: reported for each pixel (in km2). This is 

equal to the ocean surface in the case of the interpolated Level-4 

products but is reduced on the Level-2 and Level-3 products 

when less or no data are available over some regions, generally 

due to cloud coverage or satellite repeat cycle. This information 

is recorded over the same spatial and temporal resolution as the 

frontal indexes as this allows spatial averages per unit of surface 

to be calculated. 

 

d) The frontal indexes themselves: the frontal index object stores 

two indexes, a Frontal Length Index (FLI) and an index that is 

specific to the run. The FLI keeps track of the total length of the 

fronts (in km) while the second index is generally linked to the 

strength of these fronts as the next sections will explain. Each of 

these two indexes is accompanied by metadata that is composed 

of a name, a description and units. 

 

The frontal object was designed in the frame of this thesis to support the 

processes of generating and exploring the frontal information. The metadata 

and auxiliary data associated to the object allow the user to keep track of the 

processing performed to create the object, they avoid manipulation errors and 

allow the parallel processing described below. The Matlab frontal object also 

includes a set of functions that allow the display of the index in space or time. 

The plotting functions make use of the metadata to calculate in a statistically 

meaningful way the temporal or spatial averages for display. The metadata is 

also automatically displayed on the plots and the units are converted when 

needed. While the rationale behind this strategy is to offer simplicity to non-

expert users of the front detection routines, it has proven to be very valuable 



Chapter 5 

 174

also to the author of this thesis given the high number of runs that were 

needed. 

5.1.2 Computational aspects 

The calculation of the frontal index results is achieved with Matlab routines. 

The generic approach to compute the frontal indexes on one day over a 

defined region is the following: 

a) Ingestion of SST data from the selected day over the defined 

region. When needed, SSH data and climatologies of MLD (mixed 

layer depth) and SSS (sea surface salinity) are also ingested. 

b) If needed the SST is converted to surface density. 

c) If requested, the SST or density field is resampled and/or 

filtered. 

d) Fronts are detected with the Cayula or Canny methods. 

e) Vector fronts are transferred to frontal indexes. 

f) Results are stored in the frontal indexes Matlab object described 

in 5.1.1. 

 

The design of the Matlab routines was driven by the characteristics of the 

processing involved and the needs related to their usage. To calculate a frontal 

index, one requires: 

‐ The processing of a large number of input files. 

‐ The setting of a large number of parameters. 

‐ A large number of operations to be computed by the routines. 

These requirements have driven the design of the processing methodology in 

different ways. This is described in the following sub-sub-sections. 
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5.1.2.1 Approach to handle a large number of files 

In order to explore the temporal variability of frontal indexes, one needs to 

calculate them for a time series which should be as long as possible. A global 

input SST file is needed for each day on which the frontal index is calculated. 

The approach that was followed is to maximize the time span of the frontal 

indexes by downloading the complete data sets of SST products presented in 

Table 4-1. This resulted in above 20000 high-resolution SST files and 6000 

altimetry images. This database takes 190 Gb when the files are compressed. 

The compression factor being close to 10 on average, the approach is to keep 

only the compressed files. The routines are developed such that they are able 

to locate the required compressed file and un-compress it before the data are 

ingested. The un-compression being much faster than the compression, the 

files are not compressed back after being used. Instead, the compressed file is 

never removed and the un-compressed file is simply deleted after reading. 

 

5.1.2.2 Approach to handle a large number of parameters 

The methodology presented in this thesis to calculate frontal indexes is based 

on a large number of parameters. Also many runs were needed to obtain the 

results, each of these runs being defined by a precise set of parameters. In 

order to keep the set of routines user-friendly and to avoid manipulation 

errors, the whole software was coded with configuration control. This means 

that all the parameters were identified, classified and gathered in configuration 

files. The user simply has to create, or copy and modify, the set of 

configuration files before starting a processing run. These parameter files are 

loaded by the routines and parsed through each function that requires run-

specific parameterization. The consistency within the parameters is checked to 

avoid processing errors, and the configuration parameters are stored together 

with the frontal index results to allow the user to keep track of the settings 

applied. The set of parameters that the user is invited to define is summarized 

in Table 5-1. 
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Table 5-1: Set of parameters for the detection of fronts and the calculation of 
frontal indexes with the routines developed in the context of this thesis. 

generic 
parameters 

mode e.g. "FrontalIndex" for frontal index calculation 

run_name reference of the run 

run_description description of the run 

parallel processing 
parameters 

parallel 1 for parallel processing, 0 
otherwise 

reset_variables to continue a run started 
before or to start a new one 

loadFilesDuringAllocatedTimeSlots 
to ensure each parallel process 
is loading the files at a 
different time 

time management 

pauseDuringWorkHours 
to pause the processing during 
the day not to overload a 
shared workstation 

stopProcessingAt 
to stop the run at a defined 
time even if the run is not 
finished 

restartMatlabEvery to restart Matlab regularly and 
avoid memory leakage 

id user name 

Dataset 
parameters 

name name of the SST dataset to detect fronts on (e.g. "OSTIA",  "ODYSSEA" 
…) 

returnOnlyInfraRedFromL3 to discard microwave measurements from Level-3 products 

continueOSTIA_RANwithOSTIA to build a long time series with OSTIA_RAN and OSTIA 

Region 
parameters 

regionName full name of the region 

lats latitude bounds of the selected region 

lons longitude bounds of the selected region 

HighTemporalResolution temporal resolution of HTR 

HighSpatialResolution spatial resolution of HSR 

Time 
parameters 

startDate first day of the time series to process 

endDate last day of the time series to process 

dateIncrement increment of the time series to process 

Front 
detection 
Method 
parameters 

name method name ("Cayula" or "Canny") 

detectsFrontsOn "temperature" or "density" 

resampling 
initialResampling to resample the image 

interpMethod interpolation technique 

filtering  

filterImage to filter the image before fronts are 
detected 

filter "mean" or "gaussian" 

filterSize size of the filter in km 

fastFilter to apply a faster approximation filter 

highPassFilter to remove low spatial frequencies 

minimumFrontLength minimum length in km of the fronts to be retained 

divideGrid if needed, resolution of the division grid to process the original 
image in bits  

Cayula method 
regularResampling to resample the image on a sinusoidal 

equal-area grid 

regularResamplingPixelSize width of the pixels of the sinusoidal 
grid 
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windowSize size in pixels of the Cayula window 
decomposition 

minimumTempDiff minimum temperature difference in K 
within the Cayula window 

outputFronts 
value to keep as frontal strength: 
"temp_diff" or "gradient" 

Canny method thresholds 
T1 and T2 thresholds of the Canny 
method 

Frontal 
Index 
construction 
parameters 

name name of the frontal index to calculate based on the detected fronts 
(e.g. "FGI" or "Spall95_Subduction") 

FrontalWidth frontal width assumed in the calculation of some frontal indexes 

 

5.1.2.3 Approach to handle a very large processing load 

Detecting fronts on many high-resolution SST images requires a large number 

of operations. It was necessary to optimize the processing to keep the run 

computation time realistic. An important action towards achieving this was to 

implement the algorithms with matrix operations rather than iterative loops 

which are very much slower. Whenever possible, compiled in-built Matlab 

functions were exploited to speed-up the processing. Image processing Matlab 

library provided efficient functions that had to be used in a specific way to 

retain the geophysical meaning of the processing. The GSW library that was 

used for the sea water equation of state was optimized so that it could be 

applied on large two-dimensional data sets. One part of the frontal detection 

algorithms could not be implemented with matrix operations. This consists of 

the front-following step that links potential frontal pixels into front vectors. 

This is an iterative process with a non-linear memory usage which can be 

optimized by processing the SST images chunk by chunk. The SST image is 

divided into typically 10º chunks and the frontal index is calculated per chunk. 

The prior spatial filtering step is also computationally heavy due to the 

geographical projection of the data. As explained in chapter 3, to keep a filter 

width that is fixed in km, one should adapt its size in pixels depending on the 

latitude as the conversion from longitude increment to km is not constant. As 

a consequence, one needs a different filter shape for each line of latitude in 

the SST image. This is not implementable with the Image Processing Matlab 

functions so it was decided to apply a fixed filter shape per chunk which 

allowed the use of the fast in-built Matlab functions. This approximation was 

investigated and showed to generate a negligible level of error in the filtering. 

In order to further speed-up the processing, parallel processing functionalities 

were introduced in the developed routines. This allows launching the 
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computation of a run on several processors of the same workstation and on 

several workstations simultaneously. The advantage is to multiply the 

processing power available and divide the processing time by the number of 

processors running. Obviously, the parallel processing capability brings 

additional complexity to the implementation of the algorithms. The jobs of the 

processors running simultaneously need to be orchestrated so that the 

workload is efficiently distributed across the processing resources. The 

processors communicate with each-other with the help of common files that 

allow keeping track of the processing progress and ensuring two processors 

are not doing the same thing twice. The parallelization is achieved at the level 

of the choice of the SST image. This means that each processor takes the 

responsibility to process a particular product that corresponds to a day on 

which the run is asked to detect fronts. The resulting frontal index files are 

common to the mobilized processors and each processor is saving its results 

on them. Care is taken so that several instances of Matlab distributed on 

different processors do not read or write these common files simultaneously 

since this would result in file corruption. The configuration parameters are 

compared to the ones attached to the frontal index files to avoid human 

manipulation errors and guarantee consistency of the results within one file. 

Despite the various optimization strategies implemented in the routines, 

getting the frontal index results requires very long processing runs. With 4 

processors running in parallel some runs may take up to a week to complete. 

Hence, the software had to be designed in a way that it offers autonomy and 

robustness. The capability to automatically quit and restart Matlab and 

continue the processing every hour was added in order to contain the Matlab-

typical memory leakages that slow the processing after a few hours of 

continuous computations. The powerful workstations that these routines run 

on are shared with other users and are regularly serviced by the IT support. 

Consequently, the processing run should be robust to regular breaks in order 

to free the machine to another user or allow a reboot of the workstation after 

an update. This process becomes very time-consuming for the user of the 

routines if the latter are not robust and autonomous enough. This is the reason 

why they were implemented such that they may be stopped or killed at any 

point and restarted at a later stage by a simple and unique command. The 

restarted routines are able to continue the processing where it was stopped 
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without any major user intervention. This strategy also demonstrated its utility 

during the development stages as it allows easy recovery from crashes. The 

thorough logging across the processing is part of this strategy as it allows the 

user to keep track of the processing progress. 

Figure 5-1 presents the architecture of the routines and the data flow between 

the Matlab functions. The function computeFrontalIndexParallel.m is in charge 

of the orchestration, the parallel distribution of the work and the saving of the 

results. It interacts with the processing status files which are run-specific but 

shared between processors, and the results data bank. For each day from 

which the processor is required to detect fronts, it calls 

computeFrontalIndexOneDay.m which returns the frontal indexes over the 

defined region on the day that is parsed through. The latter function is in 

charge of the data ingestion and the SST grid division into chunks. For each 

chunk it calls computeEdges.m which returns the frontal index over the parsed 

chunk of data. The latter filters and resamples the SST data and converts it to 

sea surface density if required. It also computes the gradient and applies the 

front detection algorithm that is parameterized in the configuration files 

(Canny or Cayula). It then calls computeFrontalIndexFromEdges.m which 

inputs detected frontal vectors and returns the frontal index over the chunk as 

defined in the configuration files. 

 



Chapter 5 

 180

 

Figure 5-1: General architecture of the frontal detection routines developed in 
the context of the thesis 
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5.1.3 Density gradient calculation 

As explained in chapters 2 and 4, the density gradient is calculated from the 

SST images before the fronts are detected, in a geophysically meaningful way. 

To do so, after an initial resampling and filtering of the SST image, the SST 

gradient is calculated. The SST gradient is translated into a density gradient, 

assuming a constant salinity across the front with the formula: 

 
ߩ߲
ݔ߲

ൌ ߙ ∙ ଴ߩ ∙
ߠ߲
ݔ߲

 (5-1)

Where ߠ is the temperature, ߩ is the density, ߩ଴ is the reference density, and 

ߙ ൌ െିߩଵሺ߲ߩ ⁄ሻߠ߲  is the expansion coefficient of temperature. 

 is dependent both on temperature and salinity. It is calculated with the ߙ

function gsw_alpha.m of the Gibbs-SeaWater (GSW) Oceanographic Toolbox 

(http://www.teos-10.org/software.htm). This function uses the 

computationally-efficient 48-term expression for density in terms of salinity, 

conservative temperature and pressure (McDougall et al. 2010). In order not to 

create artificial jumps in the surface density gradient, a monthly salinity 

climatology is ingested and smoothed to the resolution of the SST. This 

climatology is the monthly 1º World Ocean Atlas (WOA) 2009 (Antonov et al. 

2006). 

Equation (5-1) assumes that the salinity is constant across the front. Section 

4.5 showed that this assumption is not always valid, and the salinity variations 

may complicate the relation between temperature and density. The principal 

risk is to overestimate the density gradient when the front is compensated. 

The compensation is less likely to occur when the mixed-layer depth (MLD) is 

shallower than 75m. Therefore the temperature-based mixed-layer depth 

climatology of de Boyer Montegut et al. (2004) is used to identify the times 

and locations where the typical mixed-layer depth is deeper than 75m within 

the three dimensional frontal index data sets. One solution could be to discard 

any frontal measurements performed over the regions where the MLD is 

deeper than 75 m at the time of the measurement. Then the time series of 

frontal quantities would be built by averaging in space the pixels of shallow 

MLD on each day. This solution was not retained because it would have 

introduced seasonal biases caused by the seasonal patterns of the MLD. 
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Instead it was chosen to combine pixels of all MLD in the spatial averaging but 

to flag the times when the frontal quantity is based on more than 50% of pixels 

with a deep MLD. The flagged times are displayed in red in the frontal index 

time series and identify the periods when the confidence in the frontal index is 

lower due to possible compensation. Figure 5-2 illustrates the regions in the 

North Atlantic that are affected by a deep MLD across the seasons. 

 

 

Figure 5-2: De Boyer Montegut et al. (2004) climatology for mixed-layer depth 
on the North Atlantic for March (top left), June (top right), September (bottom 

left) and December (bottom right). Depth 75 m is plotted on the black contour. 

 

5.2 Frontal Gradient Index 

This section presents the basic Frontal Length Index (FLI) and Frontal Gradient 

Index (FGI) introduced in Chapter 3. FLI is the total length of the detected 

fronts in a defined region and over a defined span of time: 
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ܫܮܨ  ൌ ෍ න ݔ݀
௙௥௢௡௧௦

௜௡	௥௘௚௜௢௡ௗ௔௬௦	௜௡
௧௜௠௘ ௦௣௔௡

 (5-2)

Where ݔ is the direction following the frontal paths. FGI is the integration of 

the frontal strength along the detected fronts. The frontal strength is 

measured as the horizontal density gradient magnitude on the front locations. 

ܫܩܨ  ൌ ෍ න |ߩு׏| ∙ ௙௥௢௡௧௦ݔ݀
௜௡	௥௘௚௜௢௡ௗ௔௬௦	௜௡

௧௜௠௘ ௦௣௔௡

 
(5-3)

 

When the fronts are detected with the Canny method, they are located on the 

surface density gradient crests, which means that they lie on local maxima of 

surface density gradient in the gradient direction. In these conditions: 

ܫܩܨ  ൌ 	 ෍ න ฬ
∂ρ
∂y
ฬ ∙ ݔ݀

௙௥௢௡௧௦
௜௡	௥௘௚௜௢௡ௗ௔௬௦	௜௡

௧௜௠௘	௦௣௔௡

 (5-4)

 
ܫܩܨ ൌ ฬ

∂ρ
∂y
ฬ ∙ (5-5) ܫܮܨ

Where y is the direction orthogonal to the front orientation; and ቚப஡
ப୷
ቚ  is the 

average gradient magnitude on the detected fronts. 

These indices are a first order indicator of stirring and mixing processes. When 

the fronts are detected with the Canny algorithm, which is the case in this 

chapter, the FLI indicates the length of the elongated crests that lie on a 

gradient whose magnitude is greater than a selected threshold. It should be 

noted that the FLI carries some information about the strength of the fronts 

because it is a measure of how many fronts there are that are stronger than 

the threshold. The FGI is complementary to the FLI because it is also 

dependent on the average strength of the fronts above the threshold. Equation 

(5-5) is true for each spatial and temporal pixel of the frontal index separately, 

FGI and FLI are not proportional for any time and location because the 
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distribution of the gradient magnitude on the detected fronts is not constant in 

space and time. 

It should be recalled that although these frontal indexes represent averages or 

integrations of frontal parameters over a defined region and time span, they 

are calculated on single high-resolution two-dimensional surface density 

snapshots. Quantitative values of frontal index are calculated per day in a way 

that is consistent in time so that these values can be compared at different 

times. However the indexes are processed on each day from the density map 

of the selected date, with no consideration of the density at the day before or 

after. This approach is different than that of Miller (2009), who suggested a 

frontal index that combines the location, strength and persistence of the fronts 

detected over several days into a single map. This index is efficient to produce 

a synoptic view of the dynamics over a few days without blurring the changing 

patterns as occurs when time averaging cloud-affected sequences of SST 

images. Miller’s (2009) frontal index provides qualitative frontal maps that 

allow intuitive interpretation of mesoscale features. The author of this thesis 

was not able to develop a reliable methodology to associate fronts detected on 

one day to those detected on the next, with a quantitative geophysical 

meaning. 

The computation of FLI and FGI relies on two main parameters: the smoothing 

filter applied on the density scenes before the front detection and the 

thresholds T1 and T2 of the Canny front detection algorithm. Chapter 4 

describes how daily variability in the cloud coverage can compromise the 

temporal and spatial consistency of the spatial scales present in a Level-4 SST 

product. One way of ensuring this consistency is to apply a low-pass spatial 

filter on the density field and remove the portion of the spatial spectrum that 

is dependent on the cloud coverage. This filters out the small scales in which 

one is not totally confident, either because it is considered as noise, or 

because it is suspected to carry artefact signals generated by the variability in 

the availability of infrared SST products. The consequence of the low-pass filter 

is to modify the spatial spectrum of the density field over which the fronts are 

detected. This means that the smoothing filter determines which part of the 

spectrum is explored for fronts. When no filtering is applied or when a small 

amount of smoothing is involved, the smallest scales of the density field are 

retained and the fronts are detected on fine features. Conversely, when a 
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larger amount of smoothing is applied on an image, one can be more 

confident in the spatial and temporal consistency of the detected fronts but 

the small scale features are ignored. Therefore the decision on the required 

amount of smoothing is the result of a trade-off between the confidence in the 

scale consistency and the ability to resolve small scale frontal features. 

The Canny thresholds T1 and T2 are set to an equal value: 

 ܶ ൌ ଵܶ ൌ ଶܶ (5-6)

This simplifies the geophysical interpretation of the detected fronts as one can 

conclude that the fronts are detected on the crests of the density gradient 

magnitude where the gradient magnitude is greater than ܶ. 

Chapter 3 shows that applying a smoothing filter on an image reduces the 

gradient magnitude on the fronts whose width is of the same order of 

magnitude or smaller than the smoothing filter size. The decision was taken to 

apply running mean filters rather than Gaussian ones because the effect of the 

former on the spectrum is simpler to interpret. The smoothing effect of the 

running mean filter is equivalent to a spatial sampling at a lower resolution. 

The gradient reduction depends on the size of the running mean filter and on 

the width of the fronts. Once a field has been down-sampled or smoothed, the 

information about the small scales is lost. The width of small fronts is then 

unknown even though the smoothing filter is known. One can recover the 

spectrum at the small scales from the larger scale spectrum if the surface 

density spectrum slope is known. Fox-Kemper et al. (2011) show that if the 

buoyancy spectral slope is assumed to be locally k-2, the horizontal buoyancy 

gradient can be scaled so that it is independent from the resolution of a model 

grid. The average 〈ห׏ுܾ௭തതതห
ଶ
௕ܮ ௙〉 , over a scaleܮ/ݏ∆ ≫ ݏ∆ ≫   is approximately	௙ܮ

independent of ∆ݏ, where ׏ுܾ௭തതത is the depth-average of the horizontal buoyancy 

gradient over the mixed layer. ∆ݏ is the model grid-scale dimension in Fox-

Kemper et al. (2011). ܮ௙ is an estimate of the typical local width of mixed layer 

fronts. In this thesis we assume that ׏ுܾ௭തതത ൌ  ுܾ at the surface. This׏

approximation is developed to account for the small-scales that are not 

resolved by numerical model resolutions. It was adapted in the context of this 

thesis to scale the gradient magnitude of datasets with different resolutions in 

order to allow their inter-comparison. The autocorrelation filter applied in the 
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optimal interpolation (OI) in the creation of the SST Level-4 products has an 

effect on small scales similar to the smoothing applied in the front detection 

process or to a sampling at a coarser resolution. Hence ∆ݏ is chosen per SST 

product as an approximation of the feature resolution, which is the smallest 

scale resolved within the image. The feature resolution is greater than or equal 

to the actual product resolution, but it is also dependent on the smoothing 

involved both in the creation of the product and in the front detection. It 

should be noted that this scaling is an approximation of the energy at small 

scales, but only at the scales that are not resolved by a particular product and 

smoothing. The aim of this study is to push the spatial scales of the SST 

products to their finest limits; however these limits are different for each 

product. So this scaling is applied to allow the application of a consistent 

Canny threshold amongst the products. 

The horizontal wavenumber spectrum of near-surface density variance has 

been shown to scale with k-2 by a number of studies. Ferrari and Rudnick 

(2000) used SeaSoar observations to sample the temperature and salinity of 

the mid-Pacific near-surface ocean over horizontal length scales ranging from 

100 m to 100 km. They confirmed this scaling which is consistent with the 

numerical model with ubiquitous fronts of Capet et al. (2008a). Altimetric 

velocities also display a near k-2 rolloff at high wavenumbers despite a strong 

noise contamination (LeTraon et al., 2008). 

If the density variance is assumed to be locally equal to ܤሺ݇ሻ ൌ ௢ܤ ∗ ݇ିଶ, the PSD 

(power spectral density) of the horizontal density gradient is ܤ௚௥௔ௗ௜௘௡௧ሺ݇ሻ ൌ  .௢ܤ

The scaling recovers the energy at scales in ሾ∆ݏ,  ௙ሿ based on the energyܮ

present at scales in ሾܮ௕,  in a linear function of the scales. It assumes that the [ݏ∆

PSD of the horizontal density scales to ݇ିଶ in the missing part of the spectrum 

(ሾ∆ݏ,  ௙ሿሻ but also in the part of the spectrum present in the original imageܮ

(ሾܮ௕,  ,Unfortunately, the level-4 products PSD do not always scale with ݇ିଶ .([ݏ∆

as is shown by Reynolds and Chelton (2010), who have calculated an average 

zonal wavenumber spectrum in several regions. For instance, they showed 

that the wavenumber dependence of the OSTIA images ranges from ݇ିସ to ݇ିହ. 

In such a case the scaling will not bring back all the energy present at scales 

ሾ∆ݏ, ,௕ܮ௙ሿ (and not resolved by the product) because the energy at scales ሾܮ  is [ݏ∆
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underestimated by OSTIA in the first place. The following analyses in section 

5.2 explore the consequences of this spectrum in terms of frontal content. 

An important issue is which Canny threshold to retain. The FGI index attempts 

to capture the fronts associated with vertical exchanges. The thresholds are 

extracted from the literature and numerical studies that explore these 

dynamics at fronts. Capet et al. (2008b) define the fronts as the regions 

satisfying the inequality |׏ுߩ| ൐ 1.2 ൈ 10ିସ݇݃	݉ିସ	 in their numerical model. 

Strong frontogenesis conducive of vertical velocities is observed in the model 

over those regions. However, this density gradient magnitude is observed on 

none of the Level-4 products, even with no smoothing involved. The scaling 

described above can be applied to scale the density observed in the Capet et 

al. (2008b) model to the density calculated from the SST products. The real 

density gradient would be measured if ∆ݏ ൌ  :௙. Henceܮ

|௥௘௔௟ߩு׏|  ൌ |௠௘௔௦௨௥௘ௗߩு׏| ∙ ඨ
ݏ∆
௙ܮ

 (5-7)

The equation (5-7) is valid for the measured density gradient both on the 

numerical model of Capet et al. (2008b) and on the density gradient calculated 

from the SST. Assuming that ܮ௙ is equal on both scenes, this leads to: 

 ห׏ுߩ௠௘௔௦_ௌௌ்ห ൌ ห׏ுߩ௠௘௔௦_஼௔௣௘௧ห ∙ ඨ
஼௔௣௘௧ݏ∆
ௌௌ்ݏ∆

 (5-8)

Where ∆ݏ஼௔௣௘௧ ൌ 0.75	݇݉ is the grid-scale of the numerical model. Taking for 

instance ∆ݏௌௌ் ൌ 50	݇݉ as the approximate feature resolution of OSTIA and 

ห׏ுߩ௠௘௔௦_஼௔௣௘௧ห ൐ 	1.2 ൈ 10ିସ݇݃	݉ିସ. One gets 

ห׏ுߩ௠௘௔௦_ௌௌ்ห ൐ 1.47 ൈ 10ିଶ݇݃	݉ିଷ݇݉ିଵ as the Canny threshold. This density 

gradient magnitude is observed in the California Current region, although the 

fronts detected are very sparse and do not cover 2.5% of the domain area as 

occurs in the numerical model of Capet et al. (2008b). Therefore the threshold 

suggested by Capet et al. (2008b) is not retained. 

Spall (1995) used a nonlinear isopycnal primitive equation model to 

demonstrate how baroclinic instability and the resulting frontogenesis force 
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the subduction of parcels below and across the fronts. The initial configuration 

of the front is a variation of 0.3	݇݃	݉ିଷ across 16	݇݉, which corresponds to:. 

 ห׏ுߩௌ௣௔௟௟ห ൌ 1.875 ൈ 10ିହ݇݃	݉ିସ ൌ 1.875 ൈ 10ିଶ݇݃ ݉ିଷ ݇݉ିଵ  (5-9) 

This threshold is retained in this thesis for the calculation of FLI and FGI, it is 

scaled for each SST dataset following Equation (5-7). The following sub-

sections present the FLI and FGI averaged over the North-Atlantic and plotted 

against time, while varying the following parameters: 

 The SST dataset. 

 ݀ is the size of the running mean filter applied to the density 

image before the fronts are detected. 

 ܮ௙ is an estimate of the typical local width of mixed layer fronts. 

 ∆ݏ is an estimate of the feature resolution of a SST product after 

the smoothing stage which depends on the spatial sampling 

(resolution), the size of the autocorrelation filter applied in the 

optimal interpolation stage for Level-4 products and the 

smoothing applied on the image before the fronts are detected. 

The Canny threshold is set to 

 ܶ ൌ ห׏ுߩௌ௣௔௟௟ห ∙ ඨ
௙ܮ
ݏ∆

 (5-10) 

The Figure 5-3 displays the area that defines the North Atlantic region, and 

Figure 5-4 shows the percentage of it that has a mixed layer depth shallower 

than 75 m against time, as calculated from the Boyer-Montegut MLD 

climatology. 
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Figure 5-3: North Atlantic region. 

 

 

Figure 5-4: Percentage of the area of the North Atlantic region that has a 
mixed layer depth shallower than 75 m. 

 

5.2.1 FLI and FGI from OSTIA 

Figure 5-5 and Figure 5-6 show the FLI and FGI over the North Atlantic region, 

with ݀ ൌ ௙ܮ ,݉݇	0 ൌ 0.5	݇݉, and ∆ݏ ൌ 25	݇݉ on OSTIA. This configuration does 

not smooth the OSTIA SST images, converts them to surface density gradient 

and detects fronts with the Canny method and the threshold as defined in 

Equation (5-10). This methodology ignores the potential artefact small-scale 

variability in OSTIA which is described in Chapter 4, and applies no low-pass 
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filter on the SST image to remove it. The scaling function assumes that the 

feature resolution of the smoothed SST is 25 km, and that the fronts are 0.5 

km wide over the region. The profiles of FLI and FGI are very similar and it is 

even difficult to distinguish them, as was explained previously yet they carry 

slightly different information about the dynamics. A strong seasonal signal is 

present in the time series, with minimum of the indexes between March and 

April and maximum in August. In this time span of 6 years, one can observe 

inter-annual variability, with a higher annual average in 2006 and higher 

annual minima in March 2006, March 2007 and March 2010. Periods of deep 

MLD which are the times when the confidence in the calculated density 

gradient magnitude is reduced correspond to sharp decreases of the indexes. 

 

 

Figure 5-5: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on daily 
OSTIA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 
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Figure 5-6: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
daily OSTIA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-7 and Figure 5-8 present the same indexes but calculated on a weekly 

basis. The functions appear less noisy because the daily variability is reduced 

however the signal is equivalent. This shows that weekly indexes are sufficient 

when dealing with a time span as large as 6 years to explore the seasonal and 

inter-annual variability. This result is important in practice because a weekly 

index is in effect seven times quicker to process than the same on a daily 

frequency. 

 

 

Figure 5-7: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
OSTIA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 
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Figure 5-8: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-9 displays maps of monthly averages of FGI for August 2006 when 

the index was the highest according to Figure 5-6, August 2007 when the 

index was at an inter-annual low for a summer time and for April 2008 when 

FGI was the lowest. Comparing August 2006 and August 2007, it is possible to 

explain the higher average during the first month by what seems to be a more 

stretched Gulf Stream on the West and stronger fronts on the western coasts of 

Europe. The comparison with the maps of April 2008 is striking, much less 

frontal index is detected around the Gulf Stream which appears much 

narrower, and barely any front is detected along the East American coastline 

and on the Western European seas. 
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Figure 5-9: Maps of average monthly Front Gradient Index (FGI) in 
 ૚  processed on daily OSTIA over the North Atlantic regionି࢟ࢇࢊ૛ି࢓࢑	૜ି࢓	ࢍ࢑
with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Top: August 2006, middle: August 
2007, bottom: April 2008. 



Chapter 5 

 194

 

Figure 5-10 displays the daily percentage of cloud coverage over the North 

Atlantic. One can notice a seasonal variability in this temporal signal, with a 

low cloud coverage of about 50 % during the summer and a high of nearly 65 

% in the winter. It was explained in Chapter 4 how the temporal variability in 

clouds affects the feature resolution of Level-4 analysis SST products. This is 

due to variations in the quantity of infrared measurements available for the 

construction of the products and to the fact that the OSTIA spatial 

autocorrelation filter gets coarser when less high-resolution data are available 

around a particular day. This effect may explain part of the seasonal signal in 

the frontal indexes which would be an artefact of the construction process of 

OSTIA products. 

 

 

Figure 5-10: NOAA NCEP reanalysis daily percentage of cloud coverage over 
the North Atlantic. 

 

Figure 5-11 and Figure 5-12 present the FLI and FGI over the North Atlantic 

region, with ݀ ൌ ௙ܮ ,݉݇	0 ൌ 0.5	݇݉, and ∆ݏ ൌ 50	݇݉ on OSTIA. The difference 

with the previous figures is that the feature resolution ∆ݏ is assumed to be 

twice as large. As a consequence the Canny threshold is reduced to account 

for a higher estimated smoothing in the production of the dataset. It is not 

surprising that about twice as many fronts are detected, with a FLI reaching 

0.02	݇݉	݇݉ିଶ݀ܽିݕଵ. What is less intuitive is that both FLI and FGI seem to be 

nearly proportional when considering ∆ݏ ൌ 25	݇݉ and ∆ݏ ൌ 50	݇݉. This tends to 

show that the variation of the amount of fronts between the two Canny 

thresholds is linear in OSTIA. 
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Figure 5-11: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
OSTIA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-12: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-13 and Figure 5-14 present the FLI and FGI over the North Atlantic 

region, with ݀ ൌ ௙ܮ ,݉݇	25 ൌ 0.5	݇݉, and ∆ݏ ൌ 25	݇݉ on OSTIA. This 

methodology assumes that the artefact small-scale variability which is 

potentially present in OSTIA, as described in Chapter 4, is removed by the 25 

km low-pass smoothing filter. Then the scaling function assumes that the 

feature resolution of the smoothed SST is 25 km, and that the fronts are 0.5 

km wide over the region. Comparing Figure 5-14 with Figure 5-8 which is the 
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equivalent run without the 25 km running mean filter, one can see that in the 

smoothed run, there is less inter-annual variability, especially on year 2006 

which does not have the highest mean FGI over the North Atlantic. Instead it is 

2009 that has the highest mean. However there are still similarities between 

the two runs. For instance, in both cases, March 2007 and March 2010 have 

higher annual minima than the other years of the time span. It can be added 

that the FLI and FGI index are more than twice as small on the smoothed 

dataset, which is logical as the scaling is equal in both runs. This result clearly 

shows that there is a non-negligible amount of frontal energy at scales finer 

than 25 km in the OSTIA products across the seasons. 

 

 

Figure 5-13: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
OSTIA over the North Atlantic region with ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 
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Figure 5-14: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚ processed on 
weekly OSTIA over the North Atlantic region with ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-15 and Figure 5-16 present the FLI and FGI over the North Atlantic 

region, with ݀ ൌ ௙ܮ ,݉݇	50 ൌ 0.5	݇݉, and ∆ݏ ൌ 50	݇݉ on OSTIA. On this run the 

OSTIA dataset is smoothed with a low-pass 50 km filter and the gradient is 

scaled for an assumed 50 km feature resolution. FLI and FGI have a 

comparable range to those of the run with 25 km smoothing (Figure 5-13 and 

Figure 5-14). This tends to show that the scaling assumption is valid, and the 

spatial density spectrum between 50 km and 25 km is close to k-2. However 

the seasonal cycle is less pronounced on the 50 km smoothing case due to 

additional minima in August 2007 and August 2010. One can consider that 

these frontal indexes do not suffer from artefact seasonal variability due to the 

cloud coverage thanks to the initial 50 km low-pass filtering of OSTIA images. 

Indeed this filtering removes the fine features that are present on infrared 

observations but absent from the microwave ones. As the spatial coverage of 

microwave sensors is nearly global each day, it is fair to assume that no 

artefact temporal variability of small scales presence in OSTIA images remains 

above 50 km. 
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Figure 5-15: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
OSTIA over the North Atlantic region with ࢊ ൌ ૞૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-16: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚ processed on 
weekly OSTIA over the North Atlantic region with ࢊ ൌ ૞૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-17 and Figure 5-18 present the FLI and FGI over the North Atlantic 

region, with ݀ ൌ ௙ܮ ,݉݇	25 ൌ 1	݇݉, and ∆ݏ ൌ 25	݇݉ on OSTIA. The difference with 

Figure 5-13 and Figure 5-14 is that the front width is assumed to be 1 km 

rather than 0.5 km. It is logical that half the frontal index is detected because 

assuming that the fronts are twice as wide implies that the scaling for a 25 km 

low-pass filter is less intense hence the scaled horizontal density gradient 

magnitude is lower and fewer fronts are detected on it. It is also worth noting 

that the FLI and FGI variability is very similar to that of the above-mentioned 
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run with ܮ௙ ൌ 0.5	݇݉. Therefore it seems that the frontal width parameter has 

an effect on the magnitude of the indexes but their variability appears robust 

to it. 

 

 

Figure 5-17: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚ processed on weekly 
OSTIA over the North Atlantic region with ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑, and ∆࢙ ൌ
૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m are 
plotted in red. 

 

 

Figure 5-18: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚ processed on 
weekly OSTIA over the North Atlantic region with ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-19 and Figure 5-20 present the FLI and FGI over the North Atlantic 

region, with ݀ ൌ ௙ܮ ,݉݇	0 ൌ 1	݇݉, and ∆ݏ ൌ 25	݇݉ on OSTIA. The difference with 

the previous run is that no smoothing is applied on the OSTIA images. This run 
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is to be compared to Figure 5-7 and Figure 5-8, which are based on the same 

parameters except an assumed frontal width twice as large. It presents a FLI of 

half the size, which means that half the number of fronts are detected. FGI is 

smaller by a factor of 2. This example also shows that the indexes variability is 

very comparable when the fronts are assumed to be 0.5 km or 1 km wide over 

the region. However the absolute values of FGI depend on the assumed frontal 

width as it is involved in the density gradient magnitude scaling following 

Equation (5-7). 

 

 

Figure 5-19: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
OSTIA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. 
Times when more than 50% of the area MLD is deeper than 75 m are plotted in 
red. 

 

 

Figure 5-20: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚ processed on 
weekly OSTIA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 
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The general pattern of seasonal frontal variability is robust to the parameters 

of the front detection method. It features a lowest frontal activity around April 

in the North Atlantic and a highest one around August. It is important to 

explore this variability and assess to what extent it is the consequence of 

artefacts of the Level-4 SST production. Chapter 4 showed that Level-4 

products may suffer from a time-varying amount of small-scale activity due to 

a seasonal signal in the cloud coverage. One way of looking at the question is 

to explore the temporal variability of the SST and the SST gradient magnitude. 

Figure 5-21 presents the average OSTIA SST over the North Atlantic. It is close 

to an annual sinusoidal cycle with a low in March and a high in August, similar 

to the FLI and FGI indexes. Figure 5-22 to Figure 5-25 show the un-scaled 

OSTIA SST gradient magnitude but on different parts of its spectrum. Figure 

5-22 is the un-scaled SST gradient over its complete spectrum, since the SST is 

not filtered. It exhibits an annual cycle with a low in August and a high in 

February, almost in anti-phase to the SST average and the FLI and FGI indexes. 

Figure 5-23 is similar except that the SST was smoothed with a low-pass filter 

of 50 km prior to the gradient computation. The magnitude of the gradient of 

the smoothed OSTIA is obviously lower than that of the original OSTIA images. 

The gradient magnitude is reduced by 12% after the scales smaller than 50 km 

are removed. According to the scaling (5-7), this would mean that the original 

OSTIA images have an average feature resolution of 39 km over the North 

Atlantic. It was shown above that OSTIA images include a non-negligible 

amount of frontal energy at scales lower than 25 km. This would tend to show 

that the feature resolution, whose average is 39 km over the region, is varying 

in space or in time providing the k-2 assumption is correct. Since the basin 

average of the gradient magnitude of the original OSTIA appears to be 

proportional to the 50 km smoothed OSTIA with a constant ratio in time, it can 

be inferred that the feature resolution is close to constant in time but varying 

in space. 

Figure 5-24 shows the un-scaled gradient magnitude calculated on OSTIA 

images that are filtered by a 50 km high-pass filter. This ensures that the large 

scale meridional temperature gradient is not taken into account. The seasonal 

variability is reduced but still present in the small scale part of the gradient 

magnitude spectrum. The cycle is the same as for the larger scale gradient, in 
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anti-phase from the FLI and FGI. In Figure 5-25, which is the un-scaled gradient 

magnitude of 100 km high-pass filtered OSTIA images, one can see that the 

seasonal variability is increased by the presence of larger spatial scales. The 

difference between the frontal index and the index of average gradient of high-

pass filtered images makes the case for the frontal indexes. Indeed FLI and FGI 

show something other than simply the gradient of the small scale temperature. 

Due to the Canny methodology, fronts characterize regions where the gradient 

is intensified in a local maxima. This analysis demonstrates that the periods 

when the gradient of the small scales is high are not simultaneous with those 

when the frontal indexes are high. Chapter 2 showed that it is relevant to 

quantify the frontal zones where the horizontal buoyancy gradient is enhanced 

rather than simply averaging the gradient over the region. 

 

 

Figure 5-21: Average OSTIA SST over the North Atlantic. 

 



  Frontal indexes 

 203  

 

Figure 5-22: Average OSTIA SST un-scaled gradient magnitude over the North 
Atlantic. 

 

 

Figure 5-23: Average OSTIA SST un-scaled gradient magnitude over the North 
Atlantic. The SST images are smoothed by a low-pass 50 km filter before the 
gradient is calculated. 

 



Chapter 5 

 204

 

Figure 5-24: Average OSTIA SST un-scaled gradient magnitude over the North 
Atlantic. The SST images are convoluted by a high-pass 50 km filter before the 
gradient is calculated. 

 

 

Figure 5-25: Average OSTIA SST un-scaled gradient magnitude over the North 
Atlantic. The SST images are convoluted by a high-pass 100 km filter before 
the gradient is calculated. 

 

5.2.2 FLI and FGI from ODYSSEA 

Another way to assess the amount of artefact signal introduced by 

inconsistencies of the Level-4 production into the frontal indexes is to compare 

the results obtained from various datasets. In this section, the frontal indexes 

calculated on ODYSSEA (version 2.0) are presented. As described in chapter 4, 

ODYSSEA products are produced through a different methodology than that of 

OSTIA. The discrepancy between the frontal indexes calculated from different 

SST products, that are estimations of the same real but unknown scene, gives 



  Frontal indexes 

 205  

an indication of the contribution of the source Level-4 image error to the 

frontal error. 

Figure 5-26 and Figure 5-27 present the FLI and FGI over the North Atlantic 

region, with ݀ ൌ ௙ܮ ,݉݇	0 ൌ 0.5	݇݉, and ∆ݏ ൌ 25	݇݉ on ODYSSEA (version 2.0). 

They can be directly compared to Figure 5-5 and Figure 5-6 which are the 

same indexes computed with the same parameters on OSTIA. These runs 

feature no smoothing prior to the frontal detection, hence the finest features 

present in the source SST images are retained. It is striking that the ODYSSEA 

FLI is about 30% lower than the OSTIA FLI, which means that a significant 

proportion of fronts are detected on OSTIA but not on ODYSSEA. Meanwhile, 

the annual range of ODYSSEA FGI is very close to that of OSTIA FGI. It can be 

concluded that less fronts are detected on the raw ODYSSEA images but that 

the ones that are detected are significantly stronger that the ones on OSTIA, 

leading to a FGI of the same magnitude. Although the ODYSSEA indexes exhibit 

a clear seasonal variability, their inter-annual signal is different from that of 

OSTIA. For example the annual averages of FLI and FGI on OSTIA are 

significantly higher in 2006. However some common patterns are seen 

between the results of the two datasets. For instance the annual frontal 

indexes minima in 2007 and 2010 were higher than those in the other years 

on both datasets. Besides, ODYSSEA frontal indexes appear to be noisier in 

time, especially in 2009. This could be due either to a stronger temporal 

smoothing in the OSTIA production which would smooth out high temporal 

variability or to a higher error in the ODYSSEA images. It should be added that 

the ODYSSEA dataset was only available until end of 2010. 

The processing of the frontal indexes reveals some variability in the fine scale 

content of the source dataset that is sometimes unlikely to be natural, such as 

the sudden drop in FLI and FGI around beginning of October 2010, or 

sometimes clearly an artefact of the SST product like the multiplication by a 

factor 10 of the indexes at the end of December 2007 (filtered out on Figure 

5-26 and Figure 5-27). The second example is an indication of a sudden 

massive divergence in the optimal interpolation process at these dates which 

produced completely unrealistic maps of SST for a few days on ODYSSEA. The 

first example was investigated by plotting the ODYSSEA gradient magnitude 

over the month of October 2010 over the North Atlantic. It can be observed on 
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Figure 5-28 that the fine features evolve from one day to another until October 

the 10th 2010, at which point the dynamics seem to freeze and gradually 

smoothen in space until October the 14th when the scene appears unusually 

smooth. From October the 15th onward the fine features reappear and change 

from day to day. It can be assumed that the cause of the strong event is that 

no input Level-2 data were ingested in the ODYSSEA optimal interpolation for 5 

days and that the autocorrelation spatial filter consequently became larger as 

the confidence in the small scale features extracted from previous days was 

reduced more and more. 

Figure 5-29 and Figure 5-30 present the FLI and FGI over the North Atlantic 

region, with ݀ ൌ ௙ܮ ,݉݇	50 ൌ 0.5	݇݉, and ∆ݏ ൌ 50	݇݉ on ODYSSEA. They can be 

directly compared to Figure 5-15 and Figure 5-16 which are the same indexes 

computed with the same parameters on OSTIA. Both FLI and FGI are much 

larger on ODYSSEA than on OSTIA after the source images are smoothed with a 

50 km low pass filter. Similarly to the previous run, ODYSSEA frontal indexes 

exhibit a larger variability from one day to the next, and artefacts of the 

ODYSSEA production are seen in the indexes. 

 

 

Figure 5-26: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on daily 
ODYSSEA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 
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Figure 5-27: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
daily ODYSSEA over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 
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Figure 5-28: Sequence of un-scaled ODYSSEA SST gradient magnitude from 
09/10/2010 to 16/10/2010, from left to right and top to bottom 
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Figure 5-29: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚ processed on weekly 
ODYSSEA over the North Atlantic region with ࢊ ൌ ૞૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-30: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚ processed on 
daily ODYSSEA over the North Atlantic region with ࢊ ൌ ૞૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-31 shows the un-scaled gradient magnitude of the raw ODYSSEA 

images averaged over the North-Atlantic. Comparing with Figure 5-22 which 

presents the equivalent results for the OSTIA product, one can see that the 

gradient magnitude of the raw ODYSSEA images is about 15% higher than on 

OSTIA. Another difference worth noting is the inter-annual trend observable in 

each datasets. While the annual average of OSTIA gradient magnitude is stable 

between 2007 and 2009, there is a clear negative trend on ODYSSEA. Figure 
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5-32 shows the un-scaled gradient magnitude of the 50 km low-pass filtered 

ODYSSEA images averaged over the North-Atlantic. The variations are similar 

to those seen on Figure 5-31, with less noise and an average reduced by about 

15%. The reduction of daily noise is more obvious between Figure 5-31 and 

Figure 5-32 than between Figure 5-22 and Figure 5-23. This indicated that a lot 

of noise in the daily ODYSSEA gradient magnitude lays in the scales shorter 

than 50 km. It should also be stressed that the gradient magnitude with 50 km 

smoothing is about 15% higher on ODYSSEA than on OSTIA. This means that 

there is still more dynamics above 50 km on ODYSSEA. 

 

 

Figure 5-31: Average un-scaled ODYSSEA SST gradient magnitude over the 
North Atlantic. 

 

 

Figure 5-32: Average un-scaled ODYSSEA SST gradient magnitude over the 
North Atlantic. The SST images are smoothed by a low-pass 50 km filter before 
the gradient is calculated. 
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Figure 5-33 and Figure 5-34 illustrate the difference in the scales that are 

present in OSTIA and ODYSSEA products. It is clear that ODYSSEA images retain 

much more energy at the small scales and OSTIA gradient magnitude appears 

to be a smoothed version of ODYSSEA gradient magnitude. There is however 

more confidence in the spatial consistency of the presence of the small scales 

in OSTIA images. One can indeed observe moving patterns of smoother areas 

in sequences of ODYSSEA gradient magnitude maps that are likely to be due to 

evolving cloud coverage. 
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Figure 5-33: Un-scaled OSTIA SST gradient magnitude on 10/10/2010. 

 

 

Figure 5-34: Un-scaled ODYSSEA SST gradient magnitude on 10/10/2010. 
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5.2.3 FLI and FGI from REMSS_MW 

Figure 5-35 to Figure 5-38 present the FLI and FGI calculated on the 

microwave-only product REMSS_MW, with ݀ ൌ ௙ܮ ,݉ܭ	0 ൌ ݏ∆  ,݉ܭ	0.5 ൌ  ݉ܭ	25

and 50	݉ܭ. The first thing to note is that there is an obvious seasonal 

variability in the microwave Level-4 product. Comparing Figure 5-35 and 

Figure 5-37, one can say that the seasonal variability of the FLI is increased by 

searching for weaker fronts. As for the other products, the frontal indexes 

reach their annual minimum around March and their annual maximum around 

September. Since REMSS does not include any infrared data, the scales present 

in it are not affected by the cloud coverage. Hence the seasonal variability 

observed in the frontal indexes can be described as natural. Even though the 

REMSS_MW images are produced from spatially consistent input source 

images, the microwave acquisitions from various sensors are merged by 

means of an optimal interpolation (OI) which is prone to errors. A few 

REMSS_MW images have returned unnaturally high frontal indexes (not shown 

on the figures), and investigations have exposed errors in the outputs of the 

OI. Indeed, a close look at the gradient magnitude of the REMSS_MW across the 

periods when errors are suspected show that the feature resolution of the 

product suddenly gets sharper for a day before going back to normal on the 

next day. This behaviour is difficult to spot by eye, however the frontal and 

the gradient indexes are able to act as diagnostic tools to detect it. Comparing 

Figure 5-35 with Figure 5-7, one can observe that more than twice as many 

fronts are detected on OSTIA than on REMSS_MW. This can be due either to the 

fact that OSTIA ingests high resolution infrared SST or to a higher smoothing in 

the production of REMSS_MW data. Comparing Figure 5-37 with Figure 5-15, 

one can say that 40% more fronts are detected on REMSS_MW than on OSTIA 

when the latter is smoothed by a 50 km low pass filter. However, when this 

smoothing is reduced to 25 km as on Figure 5-13, the frontal indexes are very 

close between smoothed OSTIA and raw REMSS_MW (Figure 5-35). REMSS_MW 

products feature a slightly higher gradient index than OSTIA, both when taken 

raw (Figure 5-39 and Figure 5-22) and when smoothed by a 50 km running 

mean (Figure 5-40 and Figure 5-23). Note that Figure 5-39 and Figure 5-40 

exhibit the errors in the optimal interpolation previously mentioned. 
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Figure 5-35: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
REMSS_MW over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-36: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly REMSS_MW over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, 
and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 
m are plotted in red. 
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Figure 5-37: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
REMSS_MW over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-38: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly REMSS_MW over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, 
and ∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 
m are plotted in red. 
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Figure 5-39: Average un-scaled REMSS_MW SST gradient magnitude over the 
North Atlantic. 

 

 

Figure 5-40: Average un-scaled REMSS_MW SST gradient magnitude over the 
North Atlantic. The SST images are smoothed by a low-pass 50 km filter before 
the gradient is calculated. 

 

5.2.4 FLI and FGI from IFREMER_L3_IR 

Figure 5-41 to Figure 5-46 present the FLI and FGI calculated on the product 

IFREMER_L3 from which infrared-only pixels are extracted (therefore called 

IFREMER_L3_IR) with ݀ ൌ ௙ܮ ,݉ܭ	0 ൌ ݏ∆  ,݉ܭ	0.5 ൌ ,݉ܭ	0  One .݉ܭ	and 50 ݉ܭ	25

can note that the seasonal variability observed on the other SST datasets is 

present on each of these frontal indexes.  This seasonal variability is entirely 

natural since the creation of IFREMER_L3_IR data does not involve any 

interpolation and the scales present are consistent in time and space. Figure 

5-47 and Figure 5-48 present the same indexes as shown on Figure 5-41 and 

Figure 5-42 but averaged over the NA1 region which is a small area in the 
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middle of the Sargasso sea ( 30˚N<latitude<35˚N and 45˚W<longitude<40˚W). 

The seasonal variability is present in the time series of the frontal indexes 

averaged over NA1. This indicates that the seasonal variability observed in the 

North Atlantic averages is not an artefact of the spatial and temporal patterns 

in the cloud coverage which may force the averaging over different areas of 

different frontal densities during different seasons. 

The FLI is higher on Figure 5-41 than on Figure 5-5 which is calculated with 

OSTIA SST. This indicates that the assumption underlying Figure 5-5 is not 

valid and that the feature resolution of OSTIA is higher than 25 km. The 

IFREMER_L3_IR feature resolution is only limited by the spatial sampling of 10 

km. Conversely, Figure 5-41 shows a comparable FLI range with Figure 5-11 

which is the OSTIA FLI over the same region with an assumed feature 

resolution of 50 km. This shows that the assumption of ∆ݏ ൌ  for OSTIA ݉ܭ	50

is closer to reality. However Figure 5-42 exhibits a FGI that is 35% higher than 

the FGI shown on Figure 5-12 calculated with the same assumption. This 

discrepancy can be interpreted as follows: whereas the scaling of the density 

gradient magnitude allows correcting for the coarser OSTIA feature resolution 

effect on the amount of detected fronts, it is not sufficient to retrieve the exact 

gradient magnitude at the crest of the front. One can make the hypothesis that 

the enhanced slope of the density at the front’s centre is underestimated by 

the k-2 density assumption. This point supports the case for the use of high 

resolution non-smoothed SST data. 
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Figure 5-41: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
IFREMER_L3_IR over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૚૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-42: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	݇ି࢟ࢇࢊ૚  processed on weekly 
IFREMER_L3_IR over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૚૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-43 and Figure 5-44 present the FLI and FGI calculated after an initial 

smoothing of the IFREMER_L3_IR data of ݀ ൌ 25	݇݉ and an assumed feature 

resolution of ∆ݏ ൌ 25	݇݉ for the gradient scaling. They compare very well in 

range to Figure 5-41 and Figure 5-42, showing that the scaling is performing 

between 10 km and 25 km. The signal however seems noisier on the 

smoothed IFREMER_L3_IR data. This can be attributed to the reduction of the 

amount of SST available after the smoothing close to coastlines or cloud 

edges. 
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Figure 5-43: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
IFREMER_L3_IR over the North Atlantic region with ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-44: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly IFREMER_L3_IR over the North Atlantic region with ࢊ ൌ ૛૞	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is 
deeper than 75 m are plotted in red. 

 

Figure 5-45 and Figure 5-46 present the FLI and FGI calculated after an initial 

smoothing of the IFREMER_L3_IR data of ݀ ൌ 50	݇݉ and an assumed feature 

resolution of ∆ݏ ൌ 50	݇݉ for the gradient scaling. Compared to Figure 5-41 and 

Figure 5-42 where the density field was not smoothed, both FLI and FGI are 

50% lower on the smoothed and scaled field. This clearly demonstrates that 

the k-2 scaling does not bring back all the fronts when the features finer than 

50 km are lost. This again stresses the need for high-resolution SST products 

of at least 25 km for accurate front detection. 
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Figure 5-45: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
IFREMER_L3_IR over the North Atlantic region with ࢊ ൌ ૞૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-46: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly IFREMER_L3_IR over the North Atlantic region with ࢊ ൌ ૞૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૞૙	࢓࢑. Times when more than 50% of the area MLD is 
deeper than 75 m are plotted in red. 
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Figure 5-47: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
IFREMER_L3_IR over the NA1 region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ
૚૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m are 
plotted in red. 

 

 

Figure 5-48: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly IFREMER_L3_IR over the NA1 region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૚૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

Figure 5-49 and Figure 5-50 present the average North-Atlantic IFREMER_L3_IR 

gradient magnitude from raw data and 50 km low-pass filtered data. As the 

feature resolution of the raw IFREMER_L3_IR SST (10 km) and of the filtered 

IFREMER_L3_IR SST (50 km) are well known, the k-2 assumption from which the 

density magnitude gradient scaling is derived can be assessed. Following (5-7), 

one can derive: 
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 ห׏ுߩ௅ଷೝೌೢห ൌ ห׏ுߩ௅ଷఱబೖ೘ห ∙ ඨ
50
10

ൎ ห׏ுߩ௅ଷఱబೖ೘ห ∙ 2.2 (5-11) 

Where ߩ௅ଷೝೌೢ is the raw density derived from IFREMER_L3_IR data, whereas 

 ௅ଷఱబೖ೘ is smoothed with a 50 km low-pass filter. It should be noted that theߩ

assumption of a constant salinity across the fronts allows one to replace 

density with temperature in (5-11). The ratio of the time average of the 

measured gradient magnitudes shown on  Figure 5-49 and Figure 5-50 is equal 

to: 

 
ห׏ுߩ௅ଷೝೌೢห
തതതതതതതതതതതതതത

ห׏ுߩ௅ଷఱబೖ೘ห
തതതതതതതതതതതതതതത ൎ 	2.1 (5-12) 

Therefore the SST observations of IFREMER_L3_IR over the North Atlantic 

strongly confirm the k-2 assumption between the scales of 10 km and 50 km. 

 

 

Figure 5-49: Average un-scaled IFREMER_L3_IR SST gradient magnitude over 
the North Atlantic. 
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Figure 5-50: Average un-scaled IFREMER_L3_IR SST gradient magnitude over 
the North Atlantic. The SST images are smoothed by a low-pass 50 km filter 
before the gradient is calculated. 

 

5.3 Spall (1995) Index Of Subduction 

This index is a first order estimation of the subduction at upper ocean fronts 

driven by internal instabilities. As discussed in section 2.2.2, Spall (1995) 

estimated the total permanent subduction rate to be 20 m/year, for a region 

representative of the North Atlantic Subtropical Convergence Zone, using a 

nonlinear isopycnal primitive equation mode, although local and temporary 

subduction can be much larger. Here, an evaluation of the Spall index is built 

on the FLI index in a simple way: wherever a front is detected on a SST image, 

it is assumed that the phenomenon modelled by Spall (1995) is occurring. The 

strength of the subduction is constant for all fronts detected above the 

threshold of Spall (1995) and with the scaling described in section 5.2 to 

compensate for the low feature resolution of the source images. A simple 

scaling is applied to estimate the subduction generated by each kilometre of 

front, it is calculated from the parameters of Spall (1995): 300 km of front in a 

300 x 300 km domain leads to an average of 20 m/year permanent subduction 

rate over the domain 25 days after the front was initialised and left to evolve 

under the action of baroclinic instability. This leads to a volume of 

permanently subducted water per kilometre of front of: 

 ௌܸ௣௔௟௟ ൌ 1.644 ൈ 10଻ ݉ଷ݀ܽିݕଵ݇݉ିଵ (5-13)
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Equation (5-13) allows a total length of detected fronts (FLI) to be related to a 

volume and a rate of permanently subducted water at fronts. As the 

Spall95_Subduction index is calculated proportionally to FLI, it has the same 

variability. Figure 5-51 shows the permanent subduction calculated on OSTIA 

with ݀ ൌ ௙ܮ ,݉݇	0 ൌ ݏ∆  ,݉݇	0.5 ൌ 25	݇݉ over the North Atlantic. This run 

assumes the fronts to be 0.5 km wide and the raw OSTIA images to have a 

feature resolution of 25 km. The average permanent rate of subduction at 

fronts varies between 25 m/year and 60 m/year with annual lows around 

March/April. This is of the same order of magnitude as estimates of 

subduction due to large-scale variations in atmospheric forcing, which are 

typically 50-100 m/year (Spall 1995). Spatial maps of monthly average 

permanent subduction calculated with this index are shown on Figure 5-52 for 

two typical maximum months (August 2006 and August 2007) and for a 

typical minimum month (April 2008). They show a strong spatial variability 

with an intensive permanent subduction in the Gulf Stream region, the 

Mediterranean Sea, the North Sea and on Moroccan Coasts around August. 

Conversely, the permanent subduction at fronts appears extremely low over 

the Sub-Tropical gyre of the North Atlantic. Around April, there is less 

subduction on average over the North-Atlantic, especially around the Gulf 

Stream but also over the Mediterranean Sea. There is however an increased 

subduction over the Sub Tropical gyre.  

Figure 5-53 presents the same subduction index calculated with an assumed 

frontal width of ܮ௙ ൌ 1	݇݉. The variability is not changed although the 

magnitude of the subduction is largely reduced as it varies between 12 m/year 

and 31 m/year. This run is closer to the 20 m/year subduction estimated by 

Spall (1995). This illustrates the sensitivity of the permanent subduction rate 

index to the assumed frontal width. 

The results of this parameterization should be interpreted with caution over 

the shelf seas where the fronts are controlled by rather different dynamics. 

Moreover these regions are often unstratified. 
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Figure 5-51: Spall (1995) index of permanent subduction (Spall95_Subduction) 
in ࢓	ି࢘ࢇࢋ࢟૚  processed on weekly OSTIA over the North Atlantic region with 
ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. 
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Figure 5-52: Maps of average monthly Spall95_Subduction index in ࢓	ି࢘ࢇࢋ࢟૚  
processed on daily OSTIA over the North Atlantic region with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Top: August 2006, middle: August 2007, bottom: 
April 2008. 
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Figure 5-53: Spall (1995) index of permanent subduction (Spall95_Subduction) 
in ࢓	ି࢘ࢇࢋ࢟૚  processed on weekly OSTIA over the North Atlantic region with 
ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. 

 

5.4 Lapeyre and Klein (2006) index of vertical velocity 

The Lapeyre_Klein index aims at capturing the vertical velocity generated by 

frontogenesis when a background straining field stirs a filament as described 

by Lapeyre and Klein (2006). These filaments are bounded by fronts, which are 

strengthened whenever the fronts are elongated (see section 2.2.5). The 

resulting thermal-wind imbalance generates vertical motions that are governed 

by the Omega equation. The authors calculate a scaling of this equation, based 

on SQG regime characteristics, they obtain: 

ሻݖሺݓ  ൌ
ߪ݃
ܰଶ

ߩ∆
଴ߩ

ݖ
ܦ
expሺܦ/ݖሻ (5-14)

Where ݖ is the depth, ݓ is the vertical velocity generated by frontogenesis, ߪ is 

a scale for the surface large-scale strain field, ܦ is a scale for the vertical decay 

of density, ܰଶ is the Brunt-Väisälä frequency: 

 ܰଶ ൌ െ
݃
଴ߩ
߲௭(5-15) ߩ

 is the ܦ .is the density variation across the fronts that bound the filament ߩ∆

vertical length scale to which the density decays exponentially. 
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The vertical profile of ݓሺݖሻ is maximum at ݖ ൌ  where ,ܦ

௠௔௫ݓ  ൌ ሻܦሺݓ ൌ
ߪ݃
ܰଶ

ߩ∆
଴ߩ

e (5-16) 

The Lapeyre_Klein index developed in the context of this thesis is a measure of 

the upwelling across the depth ܦ at small scale fronts. Fronts are detected with 

the Canny algorithm and the maximum vertical velocity generated by 

frontogenesis is evaluated as follows: 

 The surface large scale strain field ߪ is calculated following 

Johnston et al. (2011): 

ߪ  ൌ ඨ൬
ݑ߲
ݔ߲

െ
ݒ߲
ݕ߲
൰
ଶ

൅ ൬
ݒ߲
ݔ߲

൅
ݑ߲
ݕ߲
൰
ଶ

 (5-17) 

 ,are horizontal velocities ݒ and ݑ are the horizontal coordinates and ݕ and ݔ

which are positive eastward and northward. ߪ is calculated from gridded 

altimetry products of absolute geostrophic velocities. The altimeter products 

were produced by Ssalto/Duacs and distributed by Aviso, with support from 

Cnes (http://www.aviso.oceanobs.com/duacs/). 

 The Brunt-Väisälä frequency is scaled following Lapeyre and 

Klein (2006) for small scale filaments: ܰ ൌ 62.5	݂. 

 ∆ߩ is calculated from the density gradient magnitude measured 

by the Canny algorithm over the crest of the fronts and the 

assumed front width. 

As for the previously mentioned indexes, the Lapeyre_Klein index depends on 

four parameters: the SST dataset, ݀ the size of the smoothing filter, ܮ௙ an 

estimate of the typical local width of fronts, and ∆ݏ an estimate of the feature 

resolution of the SST product after the smoothing stage.  

The parameter ܮ௙ influences the index in three independent ways: 

 As with the previously mentioned indexes, it is used for the 

scaling of the density following Equation (5-7). 
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 It is also used in the calculation of ∆ߩ from the density gradient 

magnitude measured by the Canny algorithm over the crest of 

the fronts. 

 Finally, it is accounted for in the integration of the vertical 

velocity calculated on the crests of the fronts into a vertical 

transport over the surface of the fronts. The underlying 

assumption is that the upwelling occurs with the same strength 

across the width of the front and that it is not present further 

away from the crest than half the width of the fronts on each 

side. 

The sensitivity of the frontal index to ܮ௙ is a competition between opposite 

effects. When it increases, the scaling of the density is reduced. Conversely, 

when ܮ௙ increases ∆ߩ increases which results in a higher vertical velocity ݓ௠௔௫  

estimated on the crest of the fronts. In addition, the calculated vertical velocity 

is integrated over a larger frontal width. 

Because the index targets the small scale fronts, it is calculated on IFREMER 

Level-3 SST products, from which the infrared measurements are extracted. No 

smoothing being applied in the production of these products, the feature 

resolution is equal to the images grid resolution ∆ݏ ൌ 10	݇݉. Neither is 

smoothing applied before the fronts are detected: ݀ ൌ 0	݇݉. The Canny 

threshold is set to ܶ ൌ 10ିଷ	݇݃	݉ିଷ	݇݉ିଵ, which is a very low value allowing the 

capture of the highest number of fronts, even the weakest ones. 

The index is first calculated over the Sargasso Sea, the region in the gyre in the 

middle of the North Atlantic. The definition of the Sargasso region is presented 

as a red dotted rectangle in Figure 5-56. It is of interest as it is believed to be a 

region of low dynamical activity in an oligotrophic balance. As discussed in 

Chapter 2, it is suspected that the vertical nutrient flux budget could be closed 

by the vertical exchanges at fronts. 

Figure 5-54 presents the Frontal Length Index (FLI) integrated over the 

Sargasso region defined in Figure 5-56. It is detected on the infrared IFREMER 

Level 3 products, with no smoothing involved at all (apart from the down-

sampling of the Level-2 single-sensor SST datasets from about 1 km to 10 km, 

the final resolution of the Level-3). The seasonal cycle is visible with a lower 
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FLI during winter and a higher one during summer. The frontogenesis-induced 

upwelling at fronts as estimated following Lapeyre and Klein (2006) scaling is 

averaged over the Sargasso Sea region into the Lapeyre_Klein_SSH index 

shown on Figure 5-55. This index also exhibits a seasonal variability with a 

higher upwelling during summer. However it also features an inter-annual 

signal under the form of a higher summer maximum during 2010 than during 

2009 or 2008. 

The temporal average upwelling rate due to vertical circulation at fronts is 

0.15 m/day. This value is comparable in magnitude with the value estimated 

by Lapeyre and Klein (2006) of about 0.85 m/day. The discrepancy may be a 

consequence of the difference in dynamical activity between the region 

numerically simulated by Lapeyre and Klein and the Sargasso region. Indeed 

the authors base their analysis on a turbulent eddy field which is more 

energetic than the Sargasso region. Another reason could be a wrong 

assumption about the fronts width followed by the author of this thesis. 

Ignoring the sensitivity of the frontal detection process to the parameterized 

frontal width, which is due to the density scaling, the Lapeyre_Klein_SSH index 

calculated with two different frontal width would be purely proportional. 

Indeed, 

௙ܮ൫ݓ  ൌ ൯݉݇	ݔ ൌ ௙ܮ൫ݓ ൌ 1 ݇݉൯ ∙  ଷ/ଶ (5-18)ݔ

 where ݓ൫ܮ௙ ൌ  ൯ is the Lapeyre_Klein_SSH index of upwelling calculated݉݇	ݔ

while assuming a frontal width ܮ௙ ൌ  Hence, while the assumption .݉݇	ݔ

௙ܮ ൌ  leads to a temporal average upwelling rate due to vertical circulation ݉ܭ	1

at fronts of ݓഥ൫ܮ௙ ൌ 1	݇݉൯ ൌ ௙ܮ assuming , 	ݕܽ݀/݉	0.15 ൌ 0.5	݇݉ would have led 

to ݓഥ൫ܮ௙ ൌ 0.5	݇݉൯ ൌ  Conversely, a larger assumed frontal width .ݕܽ݀/݉	0.05

would lead to a higher estimated frontal upwelling: ݓഥ൫ܮ௙ ൌ 2	݇݉൯ ൌ  ݕܽ݀/݉	0.43

and ݓഥ൫ܮ௙ ൌ 5	݇݉൯ ൌ  .ݕܽ݀/݉	1.68
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Figure 5-54: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on daily 
IFREMER_L3_IR over the Sargasso Sea region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑,  
∆࢙ ൌ ૚૙	࢓࢑, and ࢀ ൌ ૚૙ି૜	ࢍ࢑	ି࢓૜	ି࢓࢑૚. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. 

 

 

 

Figure 5-55: Lapeyre_Klein_SSH index of frontogenesis induced upwelling in 
 ૚  processed on daily IFREMER_L3_IR over the Sargasso Sea region withି࢟ࢇࢊ.࢓
ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑,  ∆࢙ ൌ ૚૙	࢓࢑, and ࢀ ൌ ૚૙ି૜	ࢍ࢑	ି࢓૜	ି࢓࢑૚. Times when more 
than 50% of the area MLD is deeper than 75 m are plotted in red. 

 

Although the quantitative measure of the small scale frontal upwelling due to 

large scale strain requires a more precise understanding of the frontal width, 

the spatial and temporal variability is independent from it and conclusions can 

be drawn based upon them. The monthly composite of the index over the 

Sargasso region is mapped on Figure 5-56. It shows that the upwelling occurs 

mainly over the Gulf Stream region, this is not surprising as it is known to be a 

dynamic area. However one can observe scattered and very localized frontal 

areas where the vertical transport is taking place at a lower rate even at places 
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where not much vertical activity is expected at small scales. This measured 

activity has a non-negligible effect on the vertical transport once averaged 

over the Sargasso Sea as shown on Figure 5-55. 

 

 

Figure 5-56: Monthly composite of the Lapeyre_Klein_SSH index of 
frontogenesis induced upwelling in June 2010  processed on daily 
IFREMER_L3_IR over the Sargasso Sea region (shown by the red dotted line) 
with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑,  ∆࢙ ൌ ૚૙	࢓࢑, and ࢀ ൌ ૚૙ି૜	ࢍ࢑	ି࢓૜	ି࢓࢑૚. 

 

Figure 5-57 and Figure 5-58 present the temporal variability of the FLI and 

Lapeyre_Klein indexes over the Mediterranean Sea. They are calculated in the 

same way as over the Sargasso Sea except for the mesoscale strain which is 

estimated from the Mediterranean MADT AVISO product. Both the FLI and the 

Lapeyre_Klein indexes exhibit seasonal variability with a low in winter and a 

high in summer. It is interesting to note that the two indexes show different 

annual signal and that the Lapeyre_Klein index seasonal variability is more 

pronounced. The Lapeyre_Klein index over the Mediterranean Sea is about 

twice as high as that of Lapeyre_Klein_SSH over the Sargasso Sea. It should be 

added that assuming the mesoscale strain to be constant at ߪ ൌ 2.5 ∙ 10ି଺	ିݏଵ, 

following the classical value related to small-scale filaments taken by Lapeyre 

and Klein (2006), leads to the underestimation of the Lapeyre_Klein_SSH by a 
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factor of two. Finally, there is no clear inter-annual signal in the Lapeyre_Klein 

index over the Mediterranean Sea over the years when IFREMER Level-3 data 

are available. 

 

 

Figure 5-57: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on daily 
IFREMER_L3_IR over the Mediterranean Sea region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑,  
∆࢙ ൌ ૚૙	࢓࢑, and ࢀ ൌ ૚૙ି૜	ࢍ࢑	ି࢓૜	ି࢓࢑૚. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. 

 

 

Figure 5-58: Lapeyre_Klein index of frontogenesis induced upwelling in 
 ૚  processed on daily IFREMER_L3_IR over the Mediterranean Sea regionି࢟ࢇࢊ.࢓
with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑,  ∆࢙ ൌ ૚૙	࢓࢑, and ࢀ ൌ ૚૙ି૜	ࢍ࢑	ି࢓૜	ି࢓࢑૚. Times when 
more than 50% of the area MLD is deeper than 75 m are plotted in red. 

 

Figure 5-59 presents the average spatial variability of the Lapeyre_Klein index 

over the Mediterranean Sea during the month of September 2010. As for 

Figure 5-56, higher upwelling rates are observed in the vicinity of strong fronts 
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and eddies, although a non-negligible portion of it occurs in less dynamical 

regions. 

 

 

Figure 5-59: Monthly composite of the Lapeyre_Klein index of frontogenesis 
induced upwelling in September 2010 processed on daily IFREMER_L3_IR over 
the Mediterranean Sea region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૚	࢓࢑,  ∆࢙ ൌ ૚૙	࢓࢑, and 
ࢀ ൌ ૚૙ି૜	ࢍ࢑	ି࢓૜	ି࢓࢑૚. 

 

5.5 Capet et al. (2008) index of frontogenesis 

This section presents the exploration of the frontogenesis driven by the 

horizontal strain following analytical and numerical results of Capet et al. 

(2008b) through satellite observations. Section 2.4 introduces the 

frontogenesis function defined by Capet et al. (2008b): 

ௌܨ  ൌ ܳௌ ∙  (5-19) ߩு׏

Where 

 ܳௌ ൌ െ൬
ݑ߲
ݔ߲

ߩ߲
ݔ߲

൅
ݒ߲
ݔ߲

ߩ߲
ݕ߲

,
ݑ߲
ݕ߲

ߩ߲
ݔ߲

൅
ݒ߲
ݕ߲

ߩ߲
ݕ߲
൰ (5-20) 

 ,are horizontal velocities ݒ and ݑ are the horizontal coordinates and ݕ and ݔ

which are positive eastward and northward. 



  Frontal indexes 

 235  

 ௌ is a measure of the rate of increase of the horizontal density gradient arisingܨ

from the straining by the horizontal velocity field. Hoskins (1982) states: 

ଶ|ߩு׏|ܦ 

ݐܦ
ൌ (21-5) ܨ

Where ܨ is the addition of the straining by the horizontal density field (ܨௌ), the 

straining deformation by vertical velocity, the vertical mixing and the 

horizontal diffusion. 

A frontal index is constructed that is a quantitative measure of ܨௌ over the 

detected fronts. The author of this thesis is not aware of any direct analytical 

link between this function and the rate of vertical velocity at fronts. However 

Capet et al. (2008b) show a very strong correlation between ܨௌ and vertical 

circulation at small scale. ܨௌ is then considered as a valuable indicator of 

vertical exchanges at fronts driven by frontogenesis. 

As done in the previous section, the horizontal surface velocity field is 

approximated to its mesoscale geostrophic component. It is taken from 

satellite AVISO altimetry measurements. As opposed to the Lapeyre_Klein_SSH 

index presented in the previous section, the Capet_Fs index accounts for the 

relative orientations of the surface fronts and the surrounding mesoscale field. 

Figure 5-60 displays a fairly cloud-free Level-3 SST map of the California 

upwelling that Capet et al. (2008b) attempted to model. This image features 

small scale frontal instabilities along the upwelling which are comparable to 

the ones present on Capet et al. model output shown on Figure 2-7. The model 

output benefits from a finer spatial resolution (0.75 km) than the Level-3 SST 

image (0.1˚). The horizontal surface density gradient magnitude is shown on 

Figure 5-61. It can be compared to the model output on Figure 2-8.a. Note that 

the density on Figure 5-61 is scaled following (5-7) and an assumed front 

width of 0.5 km. Scaling the model output density gradient to account for its 

resolution in the same way would require the multiplication of the model 

output density gradient by 1.22. The scaled maximum density gradient 

observed on the model is 

௠௔௫,௠௢ௗ௘௟|ߩ௛׏|  ൌ 12.2 ൈ 10ିହ ݇݃.݉ିସ (5-22)
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Whereas the scaled maximum observed on the Level-3 SST image (after a few 

high pixels are discarded) is 

௠௔௫,ௌௌ்|ߩ௛׏|  ൌ 15 ൈ 10ିହ ݇݃.݉ିସ (5-23) 

Section 5.2 shows that the OSTIA SST products do not allow one to measure 

the high density gradient magnitude that Capet et al. (2008b) model is 

claiming to occur over the California Current system, even after the scaling to 

account for their reduced feature resolution is applied. Conversely, Equations 

(5-22) and (5-23) demonstrate that the IFREMER Level-3 SST products feature 

such high density gradient magnitude once they are scaled.  

Figure 5-62 displays ܨௌ calculated from the SST shown on Figure 5-60 and the 

AVISO altimetry product. Comparing to Figure 2-8.c, the spatial distribution of 

 ௌ appears similar from the model and as calculated from satelliteܨ

observations. It generally follows the patterns of high density gradient with an 

added effect originating from the position of the fronts within the straining 

field. Most of the strong frontal regions on Figure 5-62 feature a frontogenesis 

function ܨௌ above 3 ൈ	10ିଵସ	݇݃ଶ݉ି଼ିݏଵ. The model output features most fronts 

above 6 ൈ	10ିଵସ	݇݃ଶ݉ି଼ିݏଵ, which is twice as high. This discrepency is most 

probably due to the low resolution of the altimetry data compared to the 

model horizontal velocities and to the fact that the ageostrophic circulation 

effect on local strain is ignored in the calculations leading to Figure 5-62. 

The Capet_Fs index is based on the frontogenesis function ܨௌ as defined above 

but integrated only on the front crests. It is therefore a measure of the amount 

of fronts and the frontogenetic forcing of the mesoscale straining field on 

them. This is illustrated on Figure 5-65 which represents the map of Capet_Fs 

on one day. The time series of the geographically-averaged Capet_Fs index is 

shown on Figure 5-67 while the FLI based on the same parameters is shown on 

Figure 5-66. These two indices are calculated with ݀ ൌ ௙ܮ ,݉݇	25 ൌ 0.5	݇݉, and 

ݏ∆ ൌ 25	݇݉ on OSTIA. It is worth noting that the MLD is constantly shallower 

than 75 m in the California Current region.  

The seasonal variability is obvious in these two signals, whereas the cloud 

coverage shown on Figure 5-64 does not feature any clear seasonal variability. 

This indicates that the seasonal variability observed in OSTIA fronts over this 

region is not an artefact of the data introduced by the seasonal variability of 



  Frontal indexes 

 237  

the cloud coverage. As for the Lapeyre_Klein_SSH index, it should be stressed 

that, although the FLI and Capet_Fs feature a common seasonal variability, 

they are not proportional and a signal is clearly added within Capet_Fs by the 

frontogenesis function. Comparing the two indexes around March 2007, one 

can notice a difference in the indexes shapes. On March 2007 both indexes 

reach an annual minimum, but the Capet_Fs index remains low much longer 

than the FLI. One can conclude that not only the FLI is low at that period but 

also the frontogenesis function. A low frontogenesis function can be caused 

either by a low density gradient magnitude, which also results in a lower FLI, 

or a low ܳௌ, or a low projection of ܳௌ on the density gradient. The fact that the 

Capet_Fs index remains low longer than FLI indicates that the straining of the 

mesoscale field is reduced around March. Figure 5-68 illustrate the difference 

between the simple FLI and the Capet_Fs index embedding the configuration of 

the flow with regard to the fronts. In August 2009 fronts are detected nearly 

evenly over the California Current region, however the frontogenesis appears 

to occur with more strength close to the coastline at 40ºN. Other areas are 

populated with many fronts but do not seem to host strong frontogenesis 

action of the mesoscale flow as resolved by the altimetry products. 
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Figure 5-60: IFREMER Level-3 SST image of the California Current upwelling on 
01/09/2008. 

 

 

Figure 5-61: Density gradient magnitude on 01/09/2008 calculated from the 
SST shown on Figure 5-60. 
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Figure 5-62: Frontogenesis function ࡿࡲ in ࢍ࢑૛ି࢓ૡ࢙ି૚ calculated from the 
density gradient magnitude shown on Figure 5-61 and altimetry data on 
01/09/2008. 

 



Chapter 5 

 240

 

 

Figure 5-63: California Current region over which the frontal indexes are 
calculated on Figure 5-66 and Figure 5-67. 

 

 

Figure 5-64: Percentage of cloud coverage over the California Current region 
from NOAA. 
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Figure 5-65: Frontogenesis funtion ࡿࡲ in ࢍ࢑૛ି࢓ૡ࢙ି૚ calculated on OSTIA of 
27/07/2008 in the California Current Region, plotted on the fronts detected 
with ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Black arrows are the altimetry 
AVISO MADT horizontal velocities on the same day, used in the calculation of 
 .ࡿࡲ

 

 

 

Figure 5-66: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on daily 
OSTIA over the California Current region with ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૛૞	࢓࢑. The MLD is constantly shallower than 75 m. 
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Figure 5-67: Capet_Fs index of frontogenesis in ࢍ࢑૛ି࢓ૠ࢙ି૚ି࢓࢑૛ି࢟ࢇࢊ૚ 
calculated on daily OSTIA SST images over the California Current region with 
ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. The MLD is constantly shallower than 
75 m. 
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Figure 5-68: Monthly-averaged FLI and Capet_Fs index calculated on 
OSTIA with ࢊ ൌ ૛૞ ࢌࡸ ,࢓࢑ ൌ ૙. ૞ ࢙∆ and ,࢓࢑ ൌ ૛૞   shown on August ,࢓࢑
2009 and January 2010. 
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5.6 Fox-Kemper and Ferrari (2008) index of 

restratification at fronts 

This section presents the Fox_Kemper frontal index that attempts to capture 

the restratification by mixed layer eddies (MLE) that develop from baroclinic 

instabilities of ocean fronts. MLE effects on stratification are described in 

section 2.3. This frontal index is based on the parameterization of the MLE 

restratification suggested by Fox-Kemper and Ferrari (2008) (hereafter referred 

to as F-KF). The equivalent vertical heat flux due to MLE restratification is 

estimated as a function of the horizontal buoyancy gradient, the mixed layer 

depth and the inertial period: 

 ܿ௣ݓߩ′ܶ′ധധധധധധ ൌ
ܿ௣ߩ

ߙ݃
ധܾ௭ห׏௘หܥ

ଶ
ଶܪ

|݂|
 (5-24) 

Where ܿ௣ is the water specific heat, ߙ is the thermal expansion coefficient, 

௘ܥ ൌ 0.06 is the stirring efficiency coefficient estimated by F-KF, ܪ is the mixed 

layer depth. ׏ധܾ௭ is the horizontal buoyancy gradient averaged vertically over 

the mixed layer. The buoyancy is defined by ܾ ൌ െ݃ߩ/ߩ଴. The double overline 

indicates horizontal averaging onto the grid of the coarse numerical model this 

parameterization is developed for, and primes denote submesoscale 

perturbations from the coarsened averages. 

MLE fluxes are a rearrangement of buoyancy and not a source, but F-KF 

convert the flux to heat flux units in order to allow ready comparison of the 

MLE restratifying fluxes to air-sea heat fluxes. 

This parameterization is intended to improve coarse resolution OGCM that do 

not resolve the submesoscale by having them account for the restratification 

produced by horizontal buoyancy gradients which occurs at small scales. 

However F-KF estimate the climate implications of this parameterization by 

applying the restratification scaling to satellite observations. They estimate the 

mixed layer depth from the de Boyer Montegut et al. (2004) climatology and 

use a constant ்ߙ ൌ 2 ∙ 10ିସିܭଵ. They claim that estimating the horizontal 

buoyancy gradient from SST satellite data leads to unrealistically high values of 

vertical fluxes that would quickly restratify the mixed layer worldwide. Their 

interpretation is that the SST overestimates the buoyancy gradient because of 
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temperature-salinity compensation at the surface. Alternatively, they estimate 

the horizontal buoyancy gradients from satellite altimetry. They calculate the 

vertical fluxes to be comparable to monthly mean air-sea fluxes in large areas 

of the ocean which suggests that restratification by mixed layer eddies is a 

leading order process in the upper ocean. 

The index implemented in the context of this thesis relies on preliminary 

frontal detection on the surface density fields derived from SST images. The 

parameterization is applied only at the fronts and across their width. This 

strategy allows minimizing the bias created by the compensation, as does the 

flagging of the estimations relying on a majority of pixels with a mixed layer 

depth deeper than 75 m. As for the Lapeyre_Klein frontal index, the 

Fox_Kemper index relies on the assumed frontal width ܮ௙. This parameter 

affects the calculation of the index in the scaling of the density gradient 

magnitude to account for the limited feature resolution of the SST images. 

Independently, it is also used in the calculation of the surface over which the 

estimated flux is integrated (along the detected front length and across the 

assumed front width) for the calculation of spatial averages. The mixed layer 

depth is again extracted from the de Boyer Montegut et al. (2004) climatology. 

The thermal expansion coefficient is not taken to be constant as assumed by F-

KF but is estimated from the SST and the WOA climatology for SSS with the 

GSW toolbox. The estimation of the horizontal buoyancy gradient from the SST 

rather than from satellite altimetry obviously permits the observation of much 

finer spatial and temporal scales (ܱሺ10	݇݉ሻ and ܱሺ1	݀ܽݕሻ versus ܱሺ100	݇݉ሻ and 

ሺ30	݀ܽݏݕሻ ). 

The time series of the geographically-averaged Fox_Kemper index is shown on 

Figure 5-70 while the FLI based on the same parameters is shown on Figure 

5-69. These two indices are calculated with ݀ ൌ ௙ܮ ,݉݇	0 ൌ 0.5	݇݉, and 

ݏ∆ ൌ 10	݇݉ on IFREMER_L3_IR over the North-Atlantic region. The FLI index 

features a seasonal variability described above with a low in winter and a high 

in summer. Conversely, the Fox_Kemper index  features an opposite seasonal 

variability. This is due to the strong influence of the mixed layer depth in this 

index. The mixed layer depth contributes to the Fox_Kemper signal with more 

strength than the quantity of detected fronts. The former is extracted from a 

monthly climatology which explains small discontinuities in the Fox_Kemper 
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temporal signal. The variability of Fox_Kemper within one month hence is 

entirely due to the variability of detected fronts and their strength. This shows 

that the frontal signal is not negligible in the Fox_Kemper index. 

The North-Atlantic average of MLE-induced restratifying flux varies from 1 W.m-

2 in the summer to 15 W.m-2 in the winter when the MLD is large. It should be 

recalled that the winter values are associated with a lower confidence since the 

phenomenon of compensation is more likely to introduce a bias. 

Figure 5-71 presents the spatial distribution over the world ocean of the 

monthly average of MLE-induced restratifying flux in February 2010 and 

August 2010. It compares fairly well with the heat flux calculated by F-KF from 

altimetry shown on Figure 5-72. In February, the F-KF heat flux is slightly 

higher on the Gulf Stream West of 30ºW and nearly zero elsewhere. The flux 

shown on Figure 5-71 is lower however more spread around over the ocean, 

with non-negligible values south of the Gulf Stream and north of the Antarctic 

Circumpolar Current in the South Atlantic. The restratifying flux is also twice 

as high as calculated by F-KF on the Mediterranean Sea. Similarly to F-KF 

results, a high restratifying flux is observed in regions which are crucial for 

communication between the atmosphere and ocean such as deep water 

formation regions. F-KF compared the restratifying flux to the Grist and Josey 

(2003) air-sea heat flux dataset and found that the flux they calculated is most 

of the time comparable to the air-sea heat flux. During active convection 

events in times of extreme heat fluxes, MLE fluxes are overwhelmed by air-sea 

fluxes, although they are comparable to the monthly mean fluxes and will 

restratify after cooling events (F-KF). 

The Fox_Kemper index was also calculated with an assumed front width of 

௙ܮ ൌ 1	݇݉. Far fewer fronts were detected although the surface over which the 

flux is integrated is increased and the resulting restratifying flux is very close 

in absolute value to the one shown on Figure 5-70. This shows that this index 

has a low sensitivity to ܮ௙. 
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Figure 5-69: Front Length Index (FLI) in ࢓࢑	ି࢓࢑૛ି࢟ࢇࢊ૚ processed on daily 
IFREMER_L3_IR over the North Atlantic region with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૚૙	࢓࢑. Times when more than 50% of the area MLD is deeper than 75 m 
are plotted in red. 

 

 

Figure 5-70: Fox_kemper index of restratification at fronts in ି࢓.ࢃ૛ 
processed on daily IFREMER_L3_IR over the North Atlantic region with ࢊ ൌ
૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૚૙	࢓࢑. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. 
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Figure 5-71: Monthly average of Fox_kemper index of restratification at fronts 
in ି࢓.ࢃ૛ processed on daily IFREMER_L3_IR with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and 
∆࢙ ൌ ૚૙	࢓࢑. February 2010 (top) and August 2010 (bottom). 
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Figure 5-72: Equivalent vertical heat flux due to submesoscale restratification 
of the mixed layer as estimated by Fox-Kemper and Ferrari (2008). February 
(top) and August (bottom). 
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5.7 Conclusion 

This chapter has built on the combination of results from the first three 

chapters. Dynamical studies presented in chapter 2 which allow surface 

horizontal density gradients to be related to vertical exchanges were used in 

synergy with the critical understanding of frontal detection methods and of 

analysis SST products presented in chapter 3 and 4 respectively. A 

methodology for the processing of frontal indexes was developed (see section 

5.1.2) that allows a large number of adjustable parameters to be handled. The 

combinations of these can potentially specify a very large amount of 

operations. This methodology relies on a Matlab-based software that was 

developed by the author of this thesis in order to produce the results 

discussed in the rest of the chapter. This software is a very important 

achievement of the study as it was proved capable of dealing with the 

complexity involved in the frontal detection within high resolution SST data 

and over long time series. It also demonstrated the necessary flexibility to 

adapt to many different input data and frontal calculations. Finally its 

robustness permitted massive data crunching exercises that led to the 

diversity of results presented in this chapter and the next. 

The approach used for scaling of the horizontal gradient based on the k-2 

assumption to account for the resolution and the feature resolution of the 

input dataset was investigated and shown to be performing well between 10 

and 50 km (see section 5.2.1). This scaling performs well at estimating the 

effect of smoothing on spatial averages of the temperature gradient but does 

not precisely reconstruct the SST gradient at the front crests. The highest 

resolution SST data are therefore still needed for optimized frontal exploration. 

The errors associated with this scaling are two-fold: first the SST images may 

not have a wavenumber spectrum scaled to k-2 (in particular when the product 

is very smooth like OSTIA), and second because the k-2 is good at 

approximating the gradient average over a large region but not as accurate for 

reconstructing the gradient at the front crest where the Canny algorithm 

assesses the frontal strength. 

A strategy was implemented in section 5.1.3 to minimize the errors introduced 

by temperature-salinity compensation at fronts, by flagging results associated 

to a mixed-layer depth larger than 75 m. This approach is an attempt to make 
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the most of currently available results by others on temperature/salinity 

compensation in the mixed layer, although these results are not fully 

conclusive. Therefore the flagging of potential compensation in this thesis 

should be interpreted with care. A great deal of additional confidence would 

be attached to the results of this thesis if a better understanding were reached 

on the phenomenon of compensation. A methodology to calculate density 

gradient from temperature gradient with a climatology of surface salinity was 

also described, assuming a constant salinity across the fronts (i.e. no 

compensation). 

The frontal detection methodology as presented (see section 5.2) relies 

strongly on three parameters: the estimated finer spatial scale present in the 

ingested SST images, the minimum strength of the fronts that are retained and 

composited in the indexes, and in some cases the assumed width of the 

fronts. It was considered important to select the most appropriate values for 

these parameters for each study cases as they have a combined effect on the 

amount of detected fronts and on their estimated strength. The threshold on 

the minimum strength of fronts to retain is important as it is understood that 

the combined effect of weak fronts can be a significant contributor in some 

geophysical budgets. Little was found in the dynamical studies on the 

minimum strength at which a front has an impact on regional budgets. A 

threshold suggested by Capet el a. (2008b) was discarded as it was not 

observed in the Level-4 SST images. The choice was made to retain a threshold 

based on the results presented by Spall (1995) as it appeared to return an 

appropriate quantity of fronts when used in combination with the SST gradient 

scaling. The frontal width was taken as 0.5 km but the variability of the results 

was conserved when assuming a frontal width of 1 km.  

Future theoretical or analytical studies could largely improve the selection of 

these parameters and therefore provide more confidence in the absolute 

frontal indexes. In-situ measurements of temperature and salinity by ferry-

boxes on research ships or opportunity ships have the potential to provide 

surface density profiles with a spatial resolution sufficiently fine to explore the 

frontal width spatial and temporal variability. Satellite SST images could be 

used in synergy to account for the angle between the ship track and the 

considered fronts. Infrared Sea Surface Temperature Autonomous Radiometer 

(ISAR) acquisitions on ships of opportunity also provide this potential for sea 



Chapter 5 

 252

surface temperature (Donlon et al. 2008). The drawback of such 

measurements is their low spatial and temporal coverage limited to the ship 

tracks and position at any given time. High-resolution satellite Level-2 SST data 

such as AATSR could be used in a complementary approach which would take 

advantage of their global coverage (despite cloud hindering) for fronts of 

width larger than 1 km. 

The estimation of the amount of small scales present in the SST images is an 

important factor in the quantitative frontal results. The resolved scales are well 

understood for Level-2 and Level-3 products, but it was explained that they are 

not easily estimated on Level-4 SST products. Absolute care must be taken 

when detecting fronts on Level-4 SST products as this detection relies on small 

scale variations. Yet the scales resolved by a particular Level-4 SST product 

may vary in space and time as a result of available SST data and the complex 

behaviour of the Optimal Interpolation. For the time being, very little 

information is provided to the users of such products regarding the smoothing 

involved in its production. It is a strong recommendation concluding this 

thesis that more visibility on this aspect should be provided to the users by 

the Level-4 SST producers. This information is however not straightforward to 

obtain, even for the engineers and scientists in charge of the Level-4 SST 

production. This is why a large effort and an important outcome of this thesis 

is the in-depth analysis of the scales present in the various Level-4 SST 

products by means of their frontal content. This analysis was required to gain 

confidence in the geophysical results of this thesis but will also be an 

independent assessment of great interest to the Level-4 SST producers. 

The basic frontal indexes of frontal length (FLI) and strength (FGI) were 

introduced in section 5.2 and were shown to be useful indicators in the study 

of the scales and artefacts present within the Level-4 analysis SST products. It 

was shown that OSTIA data have an average feature resolution of about 40 km 

over the North Atlantic with a significant portion below 25 km. The analyses 

showed that this feature resolution varies in space but most probably not in 

time. The frontal indexes could also be used for inter-comparisons between 

the various available Level-4 SST products. The difference between OSTIA and 

ODYSSEA is interesting as fewer fronts are detected on ODYSSEA but those that 

are detected are stronger than OSTIA. ODYSSEA was shown to retain more 

energy at small scales although it appears to be more inconsistent in time with 
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regard to the presence of these small scales. REMSS_MW contains a similar 

quantity of fronts as OSTIA after the latter is filtered by a 25 km low-pass 

filter. ODYSSEA and REMSS are generally noisier than OSTIA. Several instances 

of production artefacts were detected by means of the frontal indexes, some 

of these artefacts being not easily spottable by eye. The inter-annual variability 

of the FGI is different when detected on these various Level-4 products. This 

stresses the importance of eliminating the biases introduced by the spatial and 

temporal variability of the feature resolution. For inter-annual frontal 

exploration, the Level-3 datasets are the most relevant as they have a constant 

feature resolution. Since the Level-3 datasets are not available on periods 

longer than a few years, the following chapter is constructed on frontal results 

obtained from the OSTIA reanalysis product. OSTIA optimal interpolation offers 

the best spatial and temporal consistency of the feature resolution of the 

Level-4 products. 

A seasonal signal with a high frontal index during the summer and a low one 

during winter was observed on every product over the North Atlantic. It was 

demonstrated to be mostly a natural signal through frontal exploration on un-

smoothed Level-3 SST data. This aspect is explored in more detail in the next 

chapter. 

Several quantitative indexes of dynamics occurring at fronts were constructed 

from the processing of SST images but also in synergy with altimetry data and 

climatologies of salinity and mixed layer depth, making use of the published 

state of the art of the dynamics occurring at fronts. The Spall_95 index 

presented in 5.3 relies on simple scalings of the subduction at fronts based on 

Spall (1995). This index does not deliver much more than the FLI index, apart 

from attempting to carry quantitative estimates of subduction at fronts. A 

limited confidence is associated to it as it relies strongly on the assumption on 

the frontal width. It should be regarded as a qualitative scientific index in the 

open ocean. In common with the other indexes presented, the author of this 

thesis does not believe it to be valid on shelf-sea waters. 

The Lapeyre_Klein index, discussed in 5.4, is more advanced, being based on a 

scaling of the Omega equation. It relies on the actual strength of the fronts and 

on the mesoscale strain calculated from altimetry data. This index also 

depends on the assumed frontal width although it was shown that the index 



Chapter 5 

 254

spatial and temporal variability is independent from it. Still, even if the precise 

value is not known, results show that a non-negligible and seasonally variable 

vertical transport at small scales due to large scale strain interaction with 

fronts is occurring over the Sargasso Sea. Twice as much vertical transport at 

fronts is estimated over the Mediterranean. This index is judged to be a useful 

scientific indicator of vertical transport at fronts that could be made more 

accurate in absolute if a better understanding of the frontal width was 

obtained. 

The Capet_Fs index developed and exposed in 5.5 attempts to capture the 

frontogenesis function discussed by Capet et al. (2008b). This index also 

makes use of the altimetry but, contrary to the Lapeyre_Klein index, it 

accounts for the relative orientation of the fronts with the mesoscale strain. It 

is also dependent on the assumed frontal width and does not provide an 

estimation of vertical transport. It is however a valuable scientific indicator of 

where frontogenesis is occurring and it provides an important independent 

assessment of several aspects of the numerical model used by Capet et al. 

(2008b) against observations. 

Finally the Fox_Kemper index was presented in 5.6; it attempts to capture the 

restratification at fronts by Mixed Layer Eddies based on a parameterization 

suggested by Fox-Kemper and Ferrari (2008). This index provides a useful 

global distribution of restratification fluxes that compare well with the 

estimates made by Fox-Kemper and Ferrari (2008) based on altimetry 

measurements. As for the previously mentioned indexes, it relies on the 

assumed frontal width. It is however not very sensitive to frontal width 

because it is affected by this parameter in several ways that partly compensate 

each other. Its limitation is mainly that its high values are associated with a 

lower level of confidence since they mostly occur when the mixed layer is 

deep and compensation is more likely to introduce a bias. 

These novel indexes, based on frontal detection on SST data, show a very 

promising potential for retrieving dynamical information on the mixed layer. 

Since they are a first attempt to do so, they require more analyses to produce 

quantitative values that can be relied on. Such analyses would involve the 

accurate selection of input parameters such as the frontal width but also the 

understanding of the conditions in which these indexes are valid. 
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Nevertheless, the FLI and FGI indexes are in themselves a good first order 

measure of stirring and mixing processes and they are based on fewer 

assumptions. It is thus worth exploring their qualitative variability across the 

globe’s oceans and across several decades as is done in the next chapter. 
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6. Chapter 6: Climatic variability of frontal 

activity 

 

This chapter presents the exploration of climatic signals in the frontal activity 

measured on the ocean surface. It builds on the analytical processes developed 

in Chapters 3, 4 and 5 to produce massive three-dimensional datasets of 

space-time distribution of ocean thermal fronts. The main difference compared 

with the analyses presented in chapter 5 is that the frontal indexes discussed 

in this chapter are calculated globally on long time series of satellite-derived 

Level-4 SST products. In particular, fronts are detected on the daily global 

OSTIA reanalysis (OSTIA_RAN) dataset which covers a time span of 22 years 

(1985 to 2007). OSTIA_RAN is, like OSTIA, a daily analysis of the global SST 

produced by the UK Met-Office on a 1/20 degree grid. The OSTIA_RAN blends 

satellite data provided by the Pathfinder AVHRR project and reprocessed 

(A)ATSR together with in-situ observations from the ICOADS dataset (Donlon 

et al. 2012, Stark et al. 2007). 

Chapter 5 demonstrated that a genuine seasonal signal is present within the 

frontal gradient index (FGI) over the North-Atlantic. This chapter sets out to 

identify how fronts vary with space and time from an inter-annual perspective. 

To achieve this goal, the fronts were calculated globally from OSTIA_RAN 

products every 7 days from 1985 to 2007. The methodology applied was 

described in chapter 5. The frontal index examined is the FGI as it is a simple 

expression of the frontal dynamics which relies on fewer hypotheses than the 

more elaborate indexes presented in chapter 5. The calculation of climate-scale 

variability of these complex frontal indexes requires a careful examination of 

the hypotheses involved in the index construction and is out of the scope of 

this PhD thesis.  

This chapter will provide a brief tour of different views that emphasize various 

aspects of the spatial and temporal frontal index variability present within the 

very large three-dimensional dataset which results from the frontal index 

calculation stage. Along the way it is also intended to identify the scientific 

potential of visualizing the behaviour of fronts. It should be stressed however 
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that the scope of this chapter is limited to providing a critique of this scientific 

potential rather than to develop any particular scientific application in detail. 

Climate scientists are trying to observe and predict changes in sub-mesoscale 

and mesoscale processes. This chapter is aimed at demonstrating the power of 

the innovative tools developed in the context of this thesis for finding subtle 

change in the small scale processes that are correlated to frontal activity. It is 

an invitation for oceanographers to exploit the local weather of the frontal 

indexes in synergy with other data in the frame of regional studies. The frontal 

index data-cube (two spatial dimensions and one temporal dimension as 

introduced in 4.1.1) calculated for this chapter has the potential to provide 

new insights on how the ocean actually works. 

6.1 Wavenumber spectrum of OSTIA_RAN 

As discussed in section 5.2, the surface density wavenumber spectrum is 

assumed to locally scale to k-2 in order to estimate the SST gradient energy un-

resolved by the SST product of feature resolution ∆ݏ. It was also pointed out 

that Reynolds and Chelton (2010) have shown a wider range of spectral slopes 

present in OSTIA level-4 SST products. Since the OSTIA_RAN product is used in 

the rest of this chapter to illustrate climate variability of frontal activity it 

seemed important to test whether the k-2 assumption is fair for this dataset. 

Following the methodology of Reynolds and Chelton (2010), the wavenumber 

spectrum was computed from daily OSTIA_RAN SST in January 2007 along 

each latitude of grid points within a domain in the Tropical Pacific. These 

individual spectra were then ensemble averaged over the latitudes and the 31 

days of the month. Figure 6-1 shows a SST wavenumber spectrum which 

scales remarkably well to the k-2 slope over the scales present in the images. 

This provides some confidence to the scaling of the SST gradient performed in 

the following sections that use OSTIA_RAN. 

 



  Climatic variability of frontal activity 

 259  

 

Figure 6-1: OSTIA_RAN zonal wavenumber spectrum for January 2007 over the 
Tropical Pacific (10ºS-10ºN, 180ºW-100ºW). 

 

6.2 Global spatial distribution of the FGI 

Figure 6-2 presents the global map of the temporally averaged FGI calculated 

on OSTIA_RAN with ݀ ൌ ௙ܮ ,݉݇	0 ൌ 0.5	݇݉, and ∆ݏ ൌ 25	݇݉. The relationship 

between these parameters and the Canny algorithm thresholds are described 

in section 4.2. This configuration applies no smoothing on the SST images 

prior to the front detection, the thresholds are calculated following Spall’s 

(1995) derived values of horizontal density gradient magnitude. The horizontal 

density magnitude is scaled assuming a constant frontal width of 0.5 km and a 

25 km feature resolution of the SST dataset. This figure shows the long term 

average over the period 1985-2005, however it should be stressed that the 

fronts were detected on daily global SST images of 0.05 degree resolution, 

sub-sampled at a weekly frequency. It displays a strong FGI temporal average 

over the main western boundary currents, the Gulf Stream and the Kuroshio, 

as well as over the Antarctic Circumpolar Current, the Agulhas retroflection 

and the Malvinas/Falklands retroflection. In addition strong FGI average is 
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found over some coastal waters where upwelling is occurring such as the 

Benguela, California, Morocco and Chile. It is also observed around Australian 

coastlines and on the Eastern side of New-Zealand, over the shelf sea waters of 

the North Sea, Red Sea and Persian Gulf. A fine line of strong FGI starts from 

the Chile upwelling and extends towards the West following the Equator. In 

addition, one can notice that the open ocean is divided into regions of very 

low FGI and others of medium FGI. Medium FGI is found extending from high 

FGI regions whereas very low FGI regions are found in mid-latitudes far from 

the coasts and the main currents and South of the ACC. It is not clear whether 

the low FGI South of the ACC is genuine or whether it is an artefact of the 

OSTIA_RAN dataset. This could be a consequence of poor data coverage where 

there is a high cloud coverage reducing the availability of reliable high-

resolution (IR) data input to OSTIA_RAN. It is therefore interesting to note a 

circular patch of medium FGI in the North-West Indian Ocean whose diameter 

is approximately 20 degrees. 

The FGI temporal standard deviation over the same period is shown on Figure 

6-3. The spatial distribution of the FGI temporal standard deviation is very 

close to that of the FGI temporal mean. The only exception is situated over the 

Arctic ocean where the average FGI is rather low but the standard deviation is 

higher than that of areas of similar mean FGI. 
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Figure 6-2: Long term (1985 to 2007) mean Front Gradient Index (FGI) in 
ࢊ ૚  processed on weekly OSTIA_RAN withି࢟ࢇࢊ૛ି࢓࢑	૜ି࢓	ࢍ࢑ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ
૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑.  

 

 

Figure 6-3: Long term (1985 to 2007) standard deviation Front Gradient Index 
(FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly OSTIA_RAN with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. 
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6.3 Temporal distribution of the FGI 

Figure 6-4 presents the temporal variation of the FGI spatially averaged over 

the North-Atlantic. The North-Atlantic region is shown in section 4.2. On Figure 

6-4, the FGI calculated on OSTIA_RAN is plotted with stars, from 1985 to end 

of 2007. The FGI calculated on OSTIA images in January 2008 is plotted with 

circles. The OSTIA_RAN version is CF-1.0 and OSTIA’s is v01-fv02. One can first 

observe the same dominant seasonal signal as discussed in chapter 5 with a 

low around March and a high around July or August. One can also notice an 

inter-annual signal of up to 10 years period. It is worthwhile to mention that 

no obvious discontinuity can be seen at the end of 1991 when ATSR images 

from ERS-1 became available and start to be combined with the AVHRR ones. 

Finally, there seems to be a discontinuity between the OSTIA_RAN FGI and the 

OSTIA FGI at the transition between the two datasets at the end of 2007. This 

point is explored in more detail below. 

 

 

Figure 6-4: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN (stars) and OSTIA (circles) over the North Atlantic region 
with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the 
area MLD is deeper than 75 m are plotted in red. 

 

Figure 6-5 displays the FGI from OSTIA_RAN and OSTIA over the Northern part 

of the Tropical Atlantic (latitudes from 0˚N to 20˚N). Figure 6-6 shows the 

same index over a small portion latitudinal band around the Equator over the 

Atlantic Ocean (latitudes 10˚S to 10˚N). These two figures exhibit a dominant 

seasonal signal with a lower inter-annual signal. It should be noted that over 
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these regions the MLD is never deeper than 75 meters over more than 50% of 

the selected area. The amplitude of the seasonal variability is reduced in 

comparison to the FGI over the whole North-Atlantic shown on Figure 6-4. The 

regular inter-annual behaviour is almost entirely replaced by a more irregular 

time variability on Figure 6-7 which displays the FGI over the Southern part of 

the Tropical Atlantic Ocean (latitudes from 20˚S to 0˚N). Instead an inter-

annual harmonic of about 5 to 6 years seems to dominate. A much less noisy 

seasonal variability is observed over the South Atlantic FGI, as shown on Figure 

6-8. The latter displays both an inter-annual signal in the annual average of FGI 

and in the annual range of FGI (difference between maximum and minimum 

turning points of FGI each year). One may suspect a discontinuity between the 

years 1991 and 1992 at a point in time when ATSR measurements started to 

be incorporated in the daily OSTIA_RAN analysis. No discontinuity is however 

obvious at the transition between OSTIA_RAN FGI and OSTIA FGI over the 

South-Atlantic. The FGI over the Mediterranean Sea is shown on Figure 6-9. The 

seasonal signal is very strong over this region, whereas no clear harmonic is 

perceivable within the inter-annual variability. It is worth mentioning the rare 

jump in annual maximum of Mediterranean FGI between the years 2002 and 

2003. It is not clear whether there is a discontinuity between OSTIA_RAN and 

OSTIA over the region. 

 

 

Figure 6-5: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN and OSTIA over the Tropical Atlantic North region with 
ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. 
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Figure 6-6: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN and OSTIA over the Equatorial Atlantic region with ࢊ ൌ
૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. 

 

 

Figure 6-7: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN and OSTIA over the Tropical Atlantic South region with 
ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. 
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Figure 6-8: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN and OSTIA over the South Atlantic region with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is 
deeper than 75 m are plotted in red. 

 

 

Figure 6-9: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN and OSTIA over the Mediterranean Sea with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is 
deeper than 75 m are plotted in red. 

 

6.4 Comparison of the OSTIA_RAN FGI with the OSTIA 

FGI 

Some of the previous figures shown in this chapter hinted at a discrepancy in 

the detected fronts between OSTIA_RAN and OSTIA. The discontinuity is more 

obvious in Figure 6-10 which shows the FGI over the North-Atlantic processed 

on SST images that are smoothed with a spatial 25 km running mean 

(݀ ൌ ௙ܮ ,݉݇	25 ൌ 0.5	݇݉, and ∆ݏ ൌ 25	݇݉). It is also the case after a 50 km 
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smoothing filter is applied, as shown on Figure 6-11. Figure 6-12 presents the 

difference between the annual averages of FGI calculated on OSTIA_RAN and 

OSTIA, both from the year 2007 and after a 25 km smoothing. Note that OSTIA 

data are available on the year 2007 although it is not shown on Figure 6-4 to 

Figure 6-11. The FGI calculated on the OSTIA dataset is consistently and 

significantly lower than that of the OSTIA_RAN. Like the OSTIA dataset, the 

OSTIA_RAN dataset was produced by the Met-Office, it is however more recent 

and its Optimal Interpolation algorithm produces sharper images. This may 

explain the discrepancy between the FGI indexes of both datasets. The fact 

that this discrepancy remains after a spatial smoothing of 25 km or 50 km 

tends to show that the spectra of the data sets are not equivalent at these 

scales. It is difficult to explain why this discrepancy is enhanced after the 

spatial smoothing. The cause of this phenomenon is probably a combination of 

the Optimal Interpolation differences between the two data sets and the 

inherent behaviour of the front detection algorithm. Figure 6-13 and Figure 

6-14 show the monthly averaged HSR FGI (High Spatial Resolution as described 

in 4.1.1) for the month of January 2007 as calculated from OSTIA_RAN and 

OSTIA respectively. These two figures present estimations of the frontal 

activity based on SST Level-4 images of two distinct data sets which attempt to 

capture the same reality. It is striking how the weak fronts are detected on 

OSTIA_RAN but not on OSTIA, whereas the strong fronts are present on both 

data sets. OSTIA is constructed with input SST images from more satellites 

than OSTIA_RAN. For instance OSTIA includes SEVIRI and AMSR-E 

measurements while OSTIA_RAN relies on (A)ATSR and AVHRR only.  This could 

lead to the presence of finer scales in OSTIA whereas the two figures show the 

opposite. One can conclude from this that the optimal interpolation scheme of 

OSTIA_RAN resolves finer scales than the (older) one of OSTIA. 

The consequence of the described discrepancy in the presence of small scales 

within OSTIA_RAN and OSTIA is that these two data sets cannot be combined 

to obtain a longer and continuous SST dataset for the climatic exploration of 

fronts. As seen on Figure 6-4, the FGI is inconsistent across both datasets and 

this generates a temporal signal in the FGI time series which is a pure artefact 

of the difference in optimal interpolation. In the rest of this chapter, 

OSTIA_RAN and OSTIA will not be combined and the statistics will be based on 
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OSTIA_RAN fronts only, detected in the 23 years long period between 1985 

and 2007.  

In this chapter, the OSTIA_RAN SST images are not filtered prior to frontal 

detection. This allows one to make use of the finest scales present in the 

products. As all the Level-2 images that feed the OSTIA_RAN estimation 

process are infrared images, the inconsistencies in the feature resolution can 

only originate from the spatially non-uniform autocorrelation length scale or 

the effect of the cloud coverage variability. The spatial variability of the 

autocorrelation length scale is not considered a major hindrance as it changes 

very smoothly in space and does not vary in time. The variability of the feature 

resolution as a consequence of the cloud coverage changes is more of a 

concern. Yet there exists no spatial cut-off frequency able to remove such bias 

from the SST. It was therefore decided not to filter OSTIA_RAN images.  

 

 

Figure 6-10: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN (stars) and OSTIA (circles) over the North Atlantic region 
with ࢊ ൌ ૛૞	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of 
the area MLD is deeper than 75 m are plotted in red.  
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Figure 6-11: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN (stars) and OSTIA (circles) over the North Atlantic region 
with ࢊ ൌ ૞૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of 
the area MLD is deeper than 75 m are plotted in red. 

 

 

Figure 6-12: 2007 annual mean Front Gradient Index (FGI) difference between 
OSTIA_RAN and OSTIA in	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚ , both calculated with ࢊ ൌ ૛૞	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. 
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Figure 6-13: High Spatial Resolution monthly mean of Front Gradient Index 
(FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly OSTIA_RAN with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑ on January 2007.  

 

 

Figure 6-14: High Spatial Resolution monthly mean of Front Gradient Index 
(FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly OSTIA with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑ on January 2007. 
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6.5 Climatological variability of the FGI 

The typical seasonal pattern can be explored by calculating the FGI 

climatological average seasonal cycle from the datacube of FGI as a function of 

space and time. Figure 6-15 shows the seasonal cycle of FGI over several 

latitudinal bands in the North Atlantic. Between 40˚N and 60˚N the seasonal 

FGI cycle is very clear with a maximum in August and a minimum in March. 

Figure 6-16 and Figure 6-17 display the FGI seasonal cycle for latitudinal 

stripes over the Tropical and South Atlantic. The typical seasonal FGI can be 

fairly different in regions close to each other. For instance, one can see from 

Figure 6-16 that the seasonal cycle between 0˚N and 5˚N reaches a maximum 

in July and a minimum in February. Meanwhile, the FGI averaged between 5˚N 

and 10˚N is highest in March and lowest in November. Figure 6-17 shows that 

the FGI features a seasonal variability South of 30˚S, with a maximum in 

February/March and a minimum around September/October. 

 

 

Figure 6-15: Climatology of Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  
processed on weekly OSTIA_RAN over the North Atlantic region with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑, for several latitude bands. 
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Figure 6-16: Climatology of Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  
processed on weekly OSTIA_RAN over the Tropical Atlantic region with 
ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑, for several latitude bands. 

 

 

Figure 6-17: Climatology of Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  
processed on weekly OSTIA_RAN over the South Atlantic region with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑, for several latitude bands. 

 

These climatological averages of the seasonal cycle not only provide a 

temporal cycle but also quantitative information on the FGI, such as the typical 

peak-to-peak fluctuation in a year. The previous figures present the seasonal 

cycle averaged over a region and based on the 23 years of OSTIA_RAN, but it 

can be calculated in the same way for each pixel on the world’s oceans from 

the datacube. For each pixel the peak to peak of the climatologically averaged 

seasonal cycle is calculated and the result is plotted on Figure 6-18. The 

timings of the minimum and maximum of the seasonal cycle for each pixel are 

also calculated and shown on Figure 6-19 and Figure 6-20. 
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This peak to peak fluctuation of the annual cycle over each location looks very 

similar to, although a bit noisier than, the temporal FGI standard deviation on 

each pixel (Figure 6-3). This map shows the areas where the variability of FGI 

within one year is large in absolute value. This fluctuation is correlated to the 

absolute FGI long term mean shown on Figure 6-2. 

 

 

Figure 6-18: Peak to peak of seasonal cycle of Front Gradient Index (FGI) in 
ࢊ ૚  processed on weekly OSTIA_RAN withି࢟ࢇࢊ૛ି࢓࢑	૜ି࢓	ࢍ࢑ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ
૙. ૞	࢓ࡷ, and ∆࢙ ൌ ૛૞	࢓࢑ (1985 to 2007). 

 

The temporal phase of the typical seasonal FGI cycle presented in Figure 6-15 

to Figure 6-17 is obtained by averaging large portions of the ocean basins. The 

spatial averaging hides details of regional and local variability of the 

climatological behaviour. One way to avoid this limitation is to plot on a map 

the timing of typical FGI minimum (maximum) as a function of the location as 

done on Figure 6-19 (Figure 6-20). These two figures offer a novel view on 

how the ocean frontal activity typically changes within the year. The first thing 

to remark is the general pattern over both hemispheres where the FGI is 

maximum over the summer and minimum around early spring. This general 

pattern is consistent with the large geographical averages of Figure 6-15 to 
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Figure 6-17. However, the surprising aspect is the spatial variability which 

creates numerous yet coherent regions of independent phasing of the FGI 

cycle. Figure 6-19 and Figure 6-20 allow one to segregate the oceans into 

regions of temporally coherent frontal activity. It is not the scope of this study 

to identify the physical mechanisms involved in the generation of the 

variability of the frontal activity described in this chapter. The author of this 

thesis however expresses the hope that oceanographers will study these 

phenomena and advance their understanding. This work contributes to 

unveiling some aspects of the frontal phenomenology, it is now up to other 

scientists to explain what creates these spatially consistent ocean regions! 

One may wonder whether the frontal activity seasonal pattern is correlated to 

that of the mixed layer depth (MLD). Indeed a geographically limited mixing 

event may generate a strong front only if the mixed layer is strongly stratified. 

It seems natural to suggest that the FGI and the mixed layer depth (taken 

positive) are anti-correlated. This is explored in Figure 6-21 which maps the 

correlation between the FGI and the monthly MLD extracted from the Boyer 

Montegut et al. (2004) climatology. These two quantities are anti-correlated at 

mid and high-latitudes, with values lower than -0.3 higher than 40˚N and 

around 40˚S. However between 40˚S and 40˚N the correlation is closer to 

zero with even small positive values in some regions. The MLD is therefore 

able to explain a part of the frontal index seasonality only over mid and high 

latitudes. 
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Figure 6-19: Date of minimum climatology of Front Gradient Index (FGI)  
processed on weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. 

 

 

 

Figure 6-20: Date of maximum climatology of Front Gradient Index (FGI)  
processed on weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. 

 



  Climatic variability of frontal activity 

 275  

 

Figure 6-21: Correlation between Front Gradient Index (FGI) processed on 
weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑ and monthly 
Boyer Montegut et al. (2004) Mixed Layer Depth (resampled on a 1 day 
resolution by nearest-neighbour). 

 

6.6 High spatial resolution signal exploration 

As was explained in 4.1.1, the frontal index computation routines store the 

resulting frontal quantities in two complementary datasets. The first one is the 

High Temporal Resolution (HTR) and the second is the High Spatial Resolution 

(HSR). The results presented above (except Figure 6-13 and Figure 6-14) are 

based on the HTR which features a daily temporal resolution but a low 1˚ 

spatial resolution. In contrast, the HSR features a low temporal resolution of 

one month but a high spatial resolution of 0.1˚. It should be added that while 

the 23 years of OSTIA_RAN were searched for fronts on a global scale to 

produce the results shown in this chapter and stored on the HSR and HTR, it 

remains possible to generate a spatially limited frontal index datacube with 

both a fine temporal and spatial resolution. The latter can only be done on a 

limited area due to memory constraints. To achieve this result, the region of 

interest should be identified on the HTR or HSR in the first place. 

This section aims to illustrate the power of the HSR dataset for resolving small 

spatial changes of the frontal activity over time. Figure 6-23 shows the 

Hovmöller plot of the FGI on a meridional transect against time. The transect 
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location is shown on Figure 6-22, it is a line at longitude 150˚E between 

latitudes 20˚N and 50˚N. For each month between 1985 and 2007, the HSR 

FGI is extracted over this transect and longitudinally averaged in a 5˚ window. 

The Hovmöller plot hints at a 13 years period North-South oscillation of the 

southern edge of the Kuroshio Current which lays on average along 35˚N at 

150˚E. This inter-annual oscillation appears very clearly on the Hovmöller plot 

and its amplitude is nearly 3˚ (333 km). The position of the northern edge of 

the Kuroshio also appears to be oscillating on a decadal time scale but it is 

seen less clearly as it is blurred by the presence of a strong seasonal signal. 

 

 

Figure 6-22: July 2003 monthly average Front Gradient Index (FGI) processed 
on weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. 
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Figure 6-23: Hovmöller plot of the Front Gradient Index (FGI) processed on 
weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑, at longitude 
150˚E ± 2.5˚and latitude between 20˚N and 50˚N (as shown on Figure 6-22). 

 

6.7 Quantitative trends of the FGI 

The spatial representations of the signals present in the FGI datacube are 

typically presented as averages of a particular aspect over time. Therefore they 

mask inter-annual variability of the index. Conversely, the temporal 

distributions of the FGI shown in previous sections of this chapter are 

averaged over a whole ocean basin and hide details of regional and local 

variability of the FGI. Figure 6-24 shows the trend of the FGI over the 23 years 

of OSTIA_RAN for each pixel of the HTR grid. It is calculated, for each pixel, as 

the slope of the linear least-squares fit of the temporal evolution of the FGI 

over the pixel. This figure unveils an aspect of the inter-annual temporal 

distribution at the local spatial scale. It reveals coherent regions of the oceans 

which evolve in time with the same absolute magnitude. The general pattern 

of this map is a positive trend at mid to high latitudes and a negative trend 

over some consistent regions of the Equatorial and Tropical latitudes. In 

addition, the FGI is increasing in the East Pacific cold tongue, in the 



Chapter 6 

 278

Mediterranean Sea and along the Morocco upwelling. Adjacent stripes of 

positive and negative trends are observed over the Gulf Stream or the ACC. 

These are probably due to lateral shifts of the strong fronts associated to these 

currents over the explored time period. 

Figure 6-25 shows the relative inter-annual trend expressed as a percentage of 

the local FGI per year. It can be analysed with an eye on Figure 6-2 which 

shows the long term FGI mean. The general pattern is similar on the absolute 

and relative trend maps, except some regions such as the Gulf Stream where 

the absolute trend is high whereas the relative trend is low because the FGI is 

high. Some regions such as the Tropical South Atlantic exhibit a very high 

relative annual trend from a very low mean index. 

 

 

Figure 6-24: Daily trend of Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૛  
processed on weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑ 
calculated over the years 1985 to 2007. 
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Figure 6-25: Normalized trend of Front Gradient Index (FGI) in %	࢟ି࢘ࢇࢋ૚  
processed on weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑ 
calculated over the years 1985 to 2007. 

 

These maps divide the global oceans into regions of consistent long term 

trend. Tools were developed to allow the exploration of inter-annual statistics 

over precise areas as a function of the spatial segmentation identified within 

any spatial statistical display such as Figure 6-24 and Figure 6-25. These tools 

allow the user to easily travel through the FGI datacube by the click of the 

mouse. A background map needs first to be selected, for instance the absolute 

long term trend shown on Figure 6-24. The user then defines boxes by 

drawing them with the mouse (Figure 6-26) and the routines plot inter-annual 

statistics as in Figure 6-27 to Figure 6-30. The automatic process involves the 

selection of the pixels that lie inside the box and the filtering of the time series 

of the mean area FGI by a monthly running filter. Then the annual mean, the 

annual minimum and annual maximum FGI are plotted on the top panel 

against time. The dates of annual minimum and maximum of the filtered data 

are also shown on the middle and bottom panel respectively. These figures 

reveal the low frequency temporal evolution of the FGI mean but also of the 

annual fluctuation between the annual minimum and the annual maximum. 

The top panel contains more information than a simple value of trend, it 

discloses the variability from one year to another, cycles of frequency lower 
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than a year-1. For instance the FGI of the area 2 offshore Mauritania (Figure 

6-27) increased by 0.5 kg.m-3.km-2.day-1 over the 23 years period with a sharp 

rise around 1991 and a fairly stationary annual mean during the other years 

before and after. Conversely, area 4 (Figure 6-28) shows an average decrease 

of 1.5 kg.m-3.km-2.day-1 from 1994 to 2007. The area 5 (Figure 6-29) reveals a 

strong inter-annual variability of the mean FGI with fast variations from one 

year to the next. The annual fluctuation between the annual minimum and 

maximum is also varying quickly, for example it is 0.3 kg.m-3.km-2.day-1 in 

2002 and 0.7 kg.m-3.km-2.day-1 in 2004. 

 

 

Figure 6-26: Daily trend of Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૛  
processed on weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑ 
calculated over the years 1985 to 2007. Areas whose inter-annual statistics are 
shown below are delimited by the boxes. 
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Figure 6-27: Annual mean, annual minimum and annual maximum of FGI (top), 
date of annual minimum of FGI (middle) and date of annual maximum OF FGI 
(bottom). The FGI is extracted from the box 1 (left) and box 2 (right) shown on 
Figure 6-26, it is filtered by a monthly running filter. 
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Figure 6-28: As for Figure 6-27 but for box 3 (left) and box 4 (right) on Figure 
6-26 

 

Figure 6-29: As for Figure 6-27 but for box 5 (left) and box 6 (right) on Figure 
6-26 
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Figure 6-30: As for Figure 6-27 but for box 7 on Figure 6-26 

 

Figure 6-31 shows the time series of the FGI averaged over the whole global 

oceans. The higher global FGI was observed in June 1994. The long term trend 

on a global scale is negligible (less than -0.03% per year). The global FLI (not 

shown) decreases on average by -0.16% per year. Figure 6-32 presents the 

time series of the averaged FGI for latitudes between 45˚S and 45˚N. There is 

a small negative trend over this part of the world’s oceans of -0.12% per year 

and -0.25% for the FLI (not shown). The fact that the FLI decreases faster than 

the FGI means that, even though fewer fronts are detected on average from 

1985 to 2007, the ones which are detected are slightly stronger. This result is 

in disagreement with that of Cornillon and Obenour (2012) which reported an 

increase of their frontal index of 0.47% per year with the day SST and 0.59% 

per year with the night data. Their frontal index is a frontal probability, 

therefore it is close to the FLI. Their fronts were detected on the AATSR re-

processing for climate (ARC) with the Cayula front detection method. It was 

shown in chapter 3 (section 3.5.3.1) that the Cayula method is sensitive to 

noise and detects fewer fronts where the noise is higher. Since the noise level 

of the ARC data is decreasing over the period chosen by the authors (1991-

2010), it could be suggested that the long term increase of the frontal 
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probability measured by Cornillon and Obenour (2012) is an artefact of the 

frontal detection method and of the SST input dataset. 

 

 

Figure 6-31: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN and OSTIA over the whole oceans with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ
૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area MLD is deeper 
than 75 m are plotted in red. The long term linear fit is plotted as a dashed 
line. 

 

 

Figure 6-32: Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on 
weekly OSTIA_RAN and OSTIA for latitudes between 45˚S and 45˚N with 
ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. Times when more than 50% of the area 
MLD is deeper than 75 m are plotted in red. The long term linear fit is plotted 
as a dashed line. 
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6.8 Correlations with climatic indexes 

The FGI datacube spatial and temporal variability was extracted and presented 

in a variety of ways in the previous sections. It is striking how much the frontal 

activity can change from one year to another over the same region. It is not 

clear today what physical changes in the ocean and atmosphere can cause 

these variations in the frontal activity. This section explores whether the 

temporal variability of the FGI is correlated to some of the regional climate 

indexes. Correlation of these quantities would be a hint of a potential causality 

between what is captured in the climate index and the frontal activity. 

The climate index of interest considered in this section is the El Niño-Southern 

Oscillation (ENSO). It is captured in the NINO 3.4 Index generated by NOAA’s 

National Center for Environmental Prediction. NINO 3.4 is the 5-months 

running means of SST anomaly in the region 5˚N-5˚S, 120˚W-170˚W and 

normalized by its standard deviation over the period from 1950 to 1979. 

Trenberth (1997) suggests that an El Niño can be said to occur if NINO 3.4 

exceeds 0.4˚C for 6 months or more. As seen on Figure 6-33, there was an El 

Niño in 1991-1992 and a very strong one in 1997-1998. In contrast, it is 

assumed that La Niña occurs when ENSO 3.4 is less than -0.4°C. 

 

 

Figure 6-33: NINO 3.4 index (in °C) as downloaded from 
(http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.data) 
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For each pixel of the Pacific Ocean, the monthly climatology of FGI was 

calculated over the period 1985-2007. It was then subtracted from the daily 

temporal FGI signal to obtain the anomaly FGI. This anomaly time series was 

then correlated to the NINO 3.4 index with a lag between the two time series 

ranging from -90 days to +90 days. The maximum correlation for each pixel is 

shown on Figure 6-34 while the lag that is associated with the maximum 

correlation is shown on Figure 6-35.  One can first notice the large patch of 

negative correlation over 10˚S-10˚N and East of 180˚W, which includes the 

NINO 3.4 region. This patch correlation is achieved with a negative lag of 60-

80 days, meaning that an increase (decrease) of FGI is in advance of a decrease 

(increase) of NINO 3.4. Below are two smaller regions of significant correlation, 

the first one is centred on 20˚S/150˚W, and the other one on 40˚S/110˚S.  

The former is associated to a consistent positive correlation with NINO 3.4 

whereas the latter is associated to a negative one. They are however both best 

correlated to NINO 3.4 with a positive lag of about 80 days, which means that 

the NINO 3.4 index is in advance to the FGI over these regions. Therefore, 

these figures tend to show that an El Niño (La Niña) event is preceded 60-80 

days earlier by a decrease (increase) of the FGI in the Equatorial patch. About 

80 days after an El Niño (La Niña) event, the FGI increases (decreases) in the 

middle patch and decreases (increases) in the Southern patch. 

This lagged correlation is confirmed by Figure 6-36 and Figure 6-37 which 

show the FGI HSR monthly index for respectively 3 months around the El Niño 

event in December 1997 and 3 months around the La Niña event in December 

1998. Each figure also shows for comparison the corresponding months in 

1993-1994 when no particular ENSO event was occurring. These two figures 

show a low FGI in the Equatorial patch 2 months before the El Niño of 

December 1997. Conversely the FGI is higher than normal over the Equatorial 

patch 2 months before the La Niña of December 1998. The lagged correlation 

in the middle patch and the Southern one are likely to be explained by the shift 

of a proportion of the fronts from the Southern patch to the middle one about 

3 months after an El Niño event. The opposite displacement of the frontal 

activity occurs 3 months after a La Niña event. 
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Figure 6-34: Lagged correlation of the monthly anomaly of Front Gradient 
Index (FGI) with NINO 3.4 in the period 1985 to 2007. The FGI is processed on 
weekly OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. The maximum 
lag allowed is ± 90 days. The contour corresponds to an absolute value of the 
correlation of 0.2. 
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Figure 6-35: Lag (in days) corresponding to the maximum correlation of the 
monthly anomaly of Front Gradient Index (FGI) with NINO 3.4 in the period 
1985 to 2007. The FGI is processed on weekly OSTIA_RAN with ࢊ ൌ ૙	࢓࢑, 
ࢌࡸ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. The maximum lag allowed is ± 90 days. The lag 
is shown only where the absolute value of the correlation is higher than 0.2. 
The lag is positive (negative) where NINO 3.4 is in advance (late) with regard to 
the FGI. 
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Figure 6-36: Monthly averages of High Spatial Resolution monthly mean of 
Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. The left column shows 
three months around the El Niño event of end of 1997. The right column 
shows the corresponding months 4 years earlier when no El Niño event was 
occurring. 
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Figure 6-37: Monthly averages of High Spatial Resolution monthly mean of 
Front Gradient Index (FGI) in ࢍ࢑	ି࢓૜	ି࢓࢑૛ି࢟ࢇࢊ૚  processed on weekly 
OSTIA_RAN with ࢊ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ ૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. The left column shows 
three months around the La Niña event of end of 1998. The right column 
shows the corresponding months 5 years earlier when no La Niña event was 
occurring. 
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Following the same methodology as that described in 5.6, the inter-annual 

statistics of four regions shown in Figure 6-38 are shown on Figure 6-39. The 

first region lays over the Eastern part of the cold tongue. The El Niño event of 

1997 is clearly visible in the annual average drop of 65% of the FGI over the 

same year. In 1997, the annual maximum of the monthly filtered FGI was 

reached in January while it occurs on average in July for the other years. The 

FGI annual average also dropped in 1987 during another El Niño event and 

peaked in 1988 during a La Niña. Note that the date of maximum of the FGI in 

1987 is average, while it drops to May in 1988. In the 1998 La Nina, this date 

is close to average. The second area is the central part of the cold tongue, its 

FGI is lower than on the Eastern part. Its annual statistics present the same 

response to the ENSO events as described for the first region. For instance, 

during the El Niño of 1997 the FGI is 3 times lower than average, whereas in 

the 1998 La Nina it raises to 3 times the average. Over the Western part of the 

cold tongue, captured by the third region, the average FGI is lower. It does 

however follow the same pattern by dropping during the El Niño events and 

peaking during La Nina. The fourth region lies over a region of very low FGI 

below the central part of the cold tongue. The El Niño signal is clearly picked 

up in the region annual FGI statistics as the annual FGI average sharply 

increases in the La Nina years of 1988 and 1998. The El Niño events are not 

seen as the index is very low in the first place. The ENSO can therefore be said 

to strongly affect the FGI over these regions, mostly with sharp drops 

(increases) when an El Niño (La Niña) occurs. No clear pattern can be observed 

for what concerns the timing of the annual maximum and minimum when 

there is an ENSO event. 
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Figure 6-38: Long term (1985 to 2007) mean Front Gradient Index (FGI) in 
ࢊ ૚  processed on weekly OSTIA_RAN withି࢟ࢇࢊ૛ି࢓࢑	૜ି࢓	ࢍ࢑ ൌ ૙	ࢌࡸ ,࢓࢑ ൌ
૙. ૞	࢓࢑, and ∆࢙ ൌ ૛૞	࢓࢑. 
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Figure 6-39: Annual mean, annual minimum and annual maximum of FGI (top), 
date of annual minimum of FGI (middle) and date of annual maximum of FGI 
(bottom). The FGI is extracted from the boxes 1 to 4 shown on Figure 6-38, it 
is filtered by a monthly running filter. 
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6.9 Conclusion 

This chapter demonstrates the potential of the front detection routines 

described in chapter 5 as they are able to detect fronts with a consistently high 

accuracy, at high resolution, on the global scale and at a climatic time scale. In 

addition an elaborate set of routines was developed to allow the exploration of 

the three-dimensional (latitude, longitude and time) dataset of detected Frontal 

Gradient Index (FGI). These routines build on the object oriented programming 

of the FGI files. They offer the means to easily plot and save figures of time 

series or maps with a very wide range of statistics applied. This chapter’s 

figures were all plotted with these automatic tools, some of them are even 

obtained by the click of the mouse. These statistical analysis routines are an 

achievement in themselves because they may be used to analyse any other 

type of three dimensional dataset. 

In this chapter, the typical seasonal pattern of the frontal activity at the surface 

of the oceans was described with an unprecedented accuracy. The seasonal 

signals were extracted and projected in a variety of ways to deliver a precise 

view on how this seasonality varies from one place to another. 

Changes in time of the local frontal activity were also studied by means of 

local trend calculations. It was shown that the frontal activity changes in 

different ways across the globe. The global or regional trends that were 

calculated previously and by others lack the kind of details that were revealed 

by this study. Moreover the positive trend that was calculated by Cornillon and 

Obenour (2012) between 45˚S and 45˚N was not confirmed by this study. In 

contrast a small negative temporal trend over this region was found instead. 

This was suggested to be due to the fact that the Cornillon and Obenour 

(2012) methodology is based on the Cayula frontal detection algorithm. The 

latter is more sensitive to noise than the methodology used in this thesis, 

which is based on the Canny algorithm. Since the noise of the SST product has 

been continuously improved since 1985, this could explain why Cornillon and 

Obenour (2012) observe a positive trend. This stresses the importance of a 

frontal index calculation methodology that is robust to noise or other potential 

bias sources. The capacity of the frontal index calculation routines to deliver 

both a high temporal resolution (HTR) and a high spatial resolution (HSR) 

dataset was also proven useful. The HSR was explored and, by means of a 
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projection into a Hovmöller plot, it reveals the North-South oscillation of a part 

of the Kuroshio with an amplitude of 270 km and a period of about 13 years. 

The calculated frontal index was shown to be linked over the Equatorial and 

South Pacific to the NINO 3.4 climate index of the ENSO. Interesting lagged 

correlations and changes in the typical frontal pattern before and after El Niño 

or La Niña events were exposed. This is an important result as this allows the 

frontal activity to be linked to a well-studied climate phenomenon. Evolutions 

of the frontal activity in some regions have the potential to be predicted based 

on the prediction of the climate index they are correlated to. It should be 

stressed that caution must be exercised while analysing the correlations 

between the fronts and such a major climate index since the ENSO is strongly 

linked to the atmosphere dynamics. Biases may be introduced by the cloud 

coverage and this was shown in chapter 4 to have a potential effect on the 

resolved frontal content of the Level-4 SST products. This stresses the 

importance of adding a measure of the smoothing involved as a quality 

indicator to the Level-4 SST datasets. Such a measure could be introduced in 

the frontal calculation and would improve the confidence in this kind of result. 

It should be recalled that this chapter has aimed simply to illustrate potential 

rather than attempt a systematic analysis of patterns and trends in the spatial 

and temporal variability of the FGI; the datacube explored in this chapter has 

many more secrets to reveal. It has demonstrated that the methods to extract 

information from global 20-year FGI dataset are developed and ready for a 

more penetrating exploitation by the physical oceanography community. More 

precise frontal extraction in a defined region, through a more elaborate frontal 

index such as those presented in chapter 5, based on a higher resolution 

Level-2/3/4 SST dataset and at a higher temporal sampling rate, can be 

performed in a user-friendly way using the methods and routines shown in this 

thesis. The intended scope of the thesis has been achieved, its author hopes to 

have convinced physical oceanographers that their topical and regional studies 

could benefit from applying this work! 

In the future it would be interesting to also correlate the frontal indexes with 

observations of Eddy Kinetic Energy (EKE) and stratification. A deeper insight in 

the correlations between the fronts and these parameters would help predict 

the likely evolution of frontal activity because EKE and stratification are 
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themselves resolved or predicted by the current GCMs. In the case of 

stratification, the correlation could be based on monthly datasets of 

stratification index from Argo floats. Besides, gridded satellite altimeter 

products such as AVISO (Le Traon et al. 1998) can be used to produce global 

maps of EKE (Fu et al. 2010). The main issues with the altimetry products are 

their temporal and spatial resolution and the noise contamination. Due to the 

orbital constraints of the altimeters which produce repeat times of days to 

weeks, these products do not resolve the small spatial and temporal scales 

(Arbic et al. 2013). The signal to noise ratio in altimetric data is a strong 

function of the wavenumber, apparently falling sharply at scales shorter than 

about 200 km (Ferrari and Wunsch 2010 and Stammer 1997), which also 

prevents the exploration of small scale signals. This is to say that the frontal 

variability described in this thesis could not be obtained from altimetry which 

do not observe the same quantities nor resolve the same scales as the SST 

satellite missions. Nevertheless, the interactions between the small scale 

surface fronts and the larger scale EKE field are far from being understood and 

the suggested correlation has the potential to shed some light on it, as 

discussed in 2.5. 
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7. Chapter 7: Conclusion 

7.1 Overview of the achievements in a multi-faceted 

research landscape 

The general objectives stated in section 1.1.6 have broadly been met. Even 

though, in some cases, no definitive absolute answer could be provided, 

significant results were achieved and the scientific understanding was 

improved with regard to many aspects of front detection and interpretation. 

The rationale behind this work was to obtain more oceanographic information 

from the SST satellite measurements by looking at their mesoscale and 

submesoscale variability. This objective drove the research activities from the 

beginning to the end of the PhD. The choice was made to focus on surface 

fronts because they are linked to intense dynamical activity and can be 

observed on SST images.  

More information on the dynamics of the mixed layer was extracted from the 

SST data by means of two parallel strategies. On one side the characterization 

of the spatial and temporal variability of fronts was pushed to a new limit by a 

rigorous analysis of the algorithmic techniques to detect them on SST images 

and a thorough investigation on the ability of multi-sensor SST products to 

resolve these fronts. On the other side a very systematic exploration was 

carried out of the parameterizations presented by physicists that relate 

dynamics to the surface density gradient. This work permitted the tuning of 

frontal detection algorithms such that they identify fronts that are likely to 

have an impact in the dynamics of the mixed layer. But most importantly, it 

allowed constructing frontal indexes that attempt to quantify physical 

phenomena occurring at fronts. The adaptation of dynamical studies to what 

can be observed from space is a significant step towards bridging between 

recent physical oceanography results and new improvements in SST remote 

sensing. These two disciplines have the potential to be used in synergy and to 

provide unprecedented information on the dynamics of the mixed layer.  

This effort to reach oceanographic dynamical parameters from the detected 

surface fronts and additional parameters such as altimetry observations and 

climatologies of salinity and MLD is a novel approach and constitutes a 
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significant scientific achievement of this thesis. Software tools were developed 

to support this conceptual approach. A very large effort given to the design 

and implementation of these tools resulted in routines that follow high 

software engineering standards. They were made user-friendly, highly 

optimized, robust and versatile in order to allow numerous data crunching 

exercises on very different SST data sets while following filtering and frontal 

detection strategies adapted to the dynamical parameters of interest. These 

software tools were instrumental in the application of the conceptual results to 

the exploration of frontal dynamics signals globally and over spans of SST data 

up to 27 years long. All the figures presented in chapter 5 and chapter 6 that 

display the results of the frontal detection runs were also produced by 

dedicated visualisation tools which are part of the developed software. Using 

these tools it was possible to carry out an independent assessment and inter-

comparison of the scales resolved by the new multi-sensor GHRSST Level-4 

products. Interesting oceanographic results were produced by the adaptation 

of theoretical physical understanding to the frontal observations on SST 

images. These results are discussed and the potential of such methodologies 

have been demonstrated. In most cases the quantities are not yet fully reliable 

but their variations in space and time reveal new aspects of how the ocean 

actually works. So the objective of providing solid dynamical indicators with 

an absolute accuracy could not be fully met in the context of this PhD. 

However this work brings the oceanography community significantly closer to 

the objective because the methodology developed and presented is robust. 

Indeed, its processing and input data were systematically characterized and 

their limitations were thoroughly described. This work is in good part 

methodological; it was conceived and achieved as such.  

Being very user-friendly is another achievement of this thesis, the analyses 

presented allow other scientists to build on this work. Others can even re-use 

the software tools because their versatility and robustness permit their 

straightforward adaptation to future breakthroughs on the dynamical side. 

This work comes at a good time because fronts are gaining fresh interest and 

important improvements are being achieved in the understanding of the 

physical phenomena occurring in their vicinity. At the same time rapid 

progress is being made in the development, production and distribution of 

multi-sensor SST products that offer the resolution and coverage required for 
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such studies. The need for new indicators of the ocean dynamics constructed 

from satellite observations for monitoring the ocean is widely recognized; this 

work is a step in this direction. 

 

7.2 Summary of scientific achievements 

7.2.1 Objective 1: define a methodology for the detection of fronts on 

SST images 

The first objective was to understand how best to detect temperature fronts on 

SST images. This question was divided into two questions: what is the best 

way to detect fronts on a SST image (Q1 of 1.1.6) and what SST dataset is most 

suitable for this application (Q2 of 1.1.6). While answering both questions, 

care was taken to characterize the performances of the algorithms and dataset 

such that physical conclusions can be drawn from the results they return. 

The study on the front detection algorithms presented in chapter 3 was the 

first piece of work carried out for this thesis. A review of the different 

algorithms to extract fronts on two-dimensional images was achieved and two 

particular algorithms were identified for their relevance with regard to the 

foreseen applications: the Cayula method (also called SIED for Single Image 

Edge Detection) and the Canny method. The Cayula algorithm was 

implemented in Matlab based on its published description which required a 

consequent effort of conceptualization, implementation and optimization to 

allow its use on very large images. The Canny algorithm was implemented 

based on a compiled Matlab library but required a significant adaptation from 

an image processing to a geophysical perspective. The process of 

implementing these algorithms into working routines delivered sufficient 

expertise and insight to be able to identify their strengths and weaknesses as 

well as the assumptions and parameters they rely on. 

Although the Cayula method for detecting fronts has been widely used by 

oceanographers, it seems to have never been thoroughly characterized. In the 

context of this study, since the ultimate goal was to recover physical 

parameters from the detected fronts, it was not conceivable to leave part of 
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the processing acting as a black box. Therefore a systematic characterization 

of the response of the Cayula algorithm to synthetic scenes of fronts of 

varying intensity, width and noise was performed (3.5.2). This investigation is 

a novel piece of work that unveils the behaviour of the Cayula algorithm. The 

same analysis was carried out with the Canny algorithm which proved to be 

more predictable and consistent in relation to the frontal characteristics, 

sinuosity and orientation (3.5.3). The latter algorithm proved to be better at 

detecting fronts of various scales and intensities that are by nature embedded 

in a complex turbulent flow. It also does not rely on any arbitrary parameter as 

opposed to the Cayula method and seems to be more easily linkable to 

dynamical interpretations. This investigation concluded that the Canny 

algorithm is the most suitable for the exploration of fronts on Level-3 and 

Level-4 SST products. An in-depth quantitative description of the effect of 

different smoothing filters to the noise and the small fronts was provided that 

allows one to perform the trade-off between the reduction of noise and the 

suppression of the genuine small-scale fronts before the Canny algorithm is 

executed (3.5.1). 

The second important body of work carried out during this PhD project was to 

quantify the ability of the SST products to resolve the small scale features that 

are targeted by the front detection algorithms (Q2 of 1.1.6). A detailed review 

on the Level-2, Level-3 and Level-4 SST was presented in section 4.1. The 

selection of the input SST dataset and the spatial filtering that is applied to the 

images prior to the frontal detection are an important part of the methodology. 

They must both be very carefully decided in order to return frontal results that 

are scientifically accurate and consistent, and which are able to capture the 

scales of interest. The choice was made to use new Level-3 and Level-4 multi-

sensor SST products because of their advantages in terms of spatial and 

temporal coverage. These multi-sensor products have recently achieved a 

quality leap in the context of the GHRSST program: this concerted international 

effort has made them more accurate and temporally and spatially finer by 

improving the statistical methods that produce them and by basing them on a 

wider selection of input sources. Nevertheless, these products suffer from 

limitations in the context of the exploration of small scale variability. This 

study being the first to attempt to achieve the systematic characterization of 

mesoscale and submesoscale phenomena using these multi-sensor products, it 
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was essential to first characterize the ability of these data sets to resolve the 

fronts at different scales. The strategy to achieve this characterization was 

twofold: it tackled the question on one hand in a theoretical context and on 

the other hand through an experimental approach. On the theoretical side, a 

significant effort was put into understanding the production process of the 

Level-4 data and in particular the optimal interpolation. This led to the 

description of the theoretical situations in which the scales resolved by a 

particular product (also called “feature resolution”) may be limited or even 

inconsistent in time or in space as presented in section 4.2. The question of 

the feature resolution of the products is very complex since it depends on 

assumptions made on the actual scales present in reality across the oceans, on 

the cloud coverage, on the availability of infrared and microwave satellite 

observations and on the detailed design of the state estimation filter that lays 

at the heart of the production of these data sets. Due to the complexity of the 

optimal interpolation process, it is not yet clear, even to the engineers and 

scientists that are in charge of this production, what level of smoothing or 

interpolation is introduced by the optimal interpolation as a function of date 

and location. This is why the practical exploration of the feature resolution in 

the various Level-4 products was not only fundamental for this thesis but also 

equally of great interest to these engineers and scientists. It was a very 

delicate task to separate the genuine scale of variability of the ocean from the 

variability introduced by the observation and processing chain of the images 

that attempt to capture it. This analysis was fundamental because of the dual 

objectives of this PhD, namely the validation of the input images in parallel 

with the extraction of natural signals from them. This challenge was tackled in 

depth by the careful exploration and inter-comparisons of the different 

products in terms of gradient (4.3), frontal content (4.4) and spatial 

autocorrelations (4.2.3). This was performed in various filtering conditions and 

in comparison with results extracted from Level-3 images which are consistent 

in scales. This process, which was exposed in chapter 4 and chapter 5, 

brought us closer to establishing a measure of confidence in the use of Level-4 

OSTIA SST for genuine frontal exploration. 
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7.2.2 Objective 2: the derivation of information about oceanographic 

dynamical parameters 

The second objective of this thesis was to work towards the recovery of 

dynamical parameters of the mixed layer from the observation of temperature 

fronts at its surface (Q3 of 1.1.6). This particular objective was very ambitious 

because it involves the use in synergy of the disciplines of both fluid dynamics 

and remote sensing. As explained in section 1.2.3, previous efforts to link 

these two disciplines are limited to very specific case studies. This study 

attempted to be systematic and to offer a methodology that is automatic and 

objective and which can be used globally. It relies on the thorough review of 

analytical and numerical studies that provide an understanding of the 

dynamics occurring in the vicinity of surface density fronts as presented in 

chapter 2. This resulted in an advanced description of the current knowledge 

of the frontogenesis, but also of the scientific context that surrounds these 

studies, the challenges that they face and the main directions in which physical 

oceanographers are trying to shed light on the small scale frontal dynamics.  

Based on the understanding of fronts that was acquired by the author carrying 

out this review, some of the results and parameterizations, such as the Omega 

equation (5.4), were adapted to be applied to the detection of fronts on SST 

images. This way, several frontal indexes were defined which provide an 

estimate of a dynamical parameter of the mixed layer such as vertical velocity 

(5.4) or restratification (5.6) by Mixed Layer Eddies at fronts. These dynamical 

indexes were calculated making the most of independent observational data 

such as altimetry products and climatologies of surface salinity and MLD. 

Because these indexes also rely on assumptions such as the local frontal 

width, which is taken constant in this thesis, their exact quantitative estimates 

cannot be fully trusted. Nevertheless, their variations can be relied on and they 

shed some interesting light on the vertical exchanges at the small scale in the 

mixed layer. Moreover, these indexes proved to be valuable independent tools 

to critically assess purely theoretical results (5.5). Finally, the potential of these 

dynamical frontal indexes for resolving accurate quantitative dynamical 

parameters in the future was demonstrated, provided some of the 

assumptions they rely on are refined. This study is, in this regard, somewhat 

preliminary and more of a precursor; it has built some foundations through its 

scientific achievements but more work is required to construct a methodology 
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able to recover accurate small scale dynamical parameters of the mixed layer 

from SST images. Such additional analyses do not fall in the scope of this PhD 

thesis, they are however outlined in section 7.4. 

7.2.3 Objective 3: the characterization of the spatial and temporal 

variability of the frontal activity 

The characterization of the spatial and temporal variability of the frontal 

activity was another objective of this thesis (Q4 of 1.1.6). It was achieved by 

calculating the basic Frontal Gradient Index (FGI) on several SST products as 

shown in section 5.2 and chapter 6. A strong seasonal signal was observed on 

all the products with a high frontal index during the summer and a low one in 

the winter over the North Atlantic (5.2 and 6.5). The spatial variability was also 

described and showed large frontal contents over the main western boundary 

currents and some coastal areas (6.2). The oceans were shown to be divided 

into regions of low FGI over the mid-latitudes far from the shores and the main 

currents and regions of medium FGI extending surprisingly far from the 

regions of high FGI. An enormous run was carried out to measure the FGI on 

the OSTIA_RAN dataset globally and every 7 days over a time span of 23 years. 

Section 6.5 showed how the frontal index resulting from this run allows one to 

characterize the typical annual behaviour of the fronts over each ocean pixel. 

The phenomenology of the FGI was described by means of global plots of the 

dates of annual maximum and minimum of the typical FGI over each pixel. The 

typical annual fluctuation, the temporal mean and standard deviation were 

also presented. The physical mechanisms that generate the seasonal variability 

of the fronts were discussed (6.5). Frontogenesis is linked to the turbulence of 

the surface mixed layer, it can be triggered also by atmospheric effects such 

as heterogeneous wind mixing or sun heating. It was shown that the FGI is to 

some extent anti-correlated to the MLD taken positive from mid to high 

latitudes but it is not the case over most of the other areas. The frontogenesis 

is controlled by the complex combined effect of these dynamics, but this study 

does not conclude on the exact origin of the front seasonal variability it 

revealed.  

Changes in time of the typical frontal activity were also explored over the 23 

years of available global frontal index. It was exposed that the FGI varies 

slowly over decadal time scales in different ways over different areas (6.7). 
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Frontal activity temporal trends observed by others were not confirmed, and 

both positive and negative trends were revealed by this study. Temporal FGI 

signals over some regions of the Equatorial Pacific showed to be sensitive or 

even correlated to the El Niño Southern Oscillation index (6.8). Small 

meridional displacements of the Kuroshio Current were also revealed by the 

FGI calculated at a fine spatial resolution (6.6). These analyses demonstrate the 

potential of this methodology for revealing signals in the ocean surface 

dynamics by extracting fronts from a series of global high resolution images 

and applying statistical methods to project the large three dimensional frontal 

dataset into figures that can be plotted and that carry a scientific meaning. 

This methodology also allows to point towards many ocean areas that show a 

spatially consistent behaviour which should trigger the curiosity of physicists 

and the author of this thesis encourages them to explain the frontal variability 

exposed. 

 

7.3 Technical achievements 

The software tools that were developed during this PhD were not in 

themselves a scientific objective, they however were a necessary means to 

accomplish those and thus constitute a great achievement of the thesis. This 

made the PhD work heavily computational as developing the routines and 

running them accounted for a large part of the research effort. The entire 

coding was carried out in Matlab. 

7.3.1 Implementation of the front detection algorithms 

The first layer of the software that was developed is the scientific routines. The 

Cayula front detection method was implemented based on its theoretical 

description that was published in Cayula and Cornillon (1992). This algorithm 

is fairly complex and its practical implementation raised numerous issues. 

Being extremely incremental, it required a very large amount of memory and 

operations in its raw form. As the objective was to run this algorithm on a 

large number of huge SST images, it needed to be optimized. This was 

achieved by means of strategies that limited both the number of operations 

and the required memory. Some of these strategies were based on a divide-
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and-conquer approach which divides the input SST matrix into imagettes and 

reconstructs the fronts that lie over several of them. The algorithm was 

significantly optimized but the consequence was a sharp increase of the 

algorithm detailed design complexity. The Canny algorithm was also 

implemented and optimized as much as possible, and so were the spatial 

filtering functions.  

7.3.2 Implementation of the geo-physical routines 

A second layer of routines was added to make the frontal detection, image 

filtering applicable to geo-physical interpretations and to store the results into 

meaningful frontal indexes. This layer comprises the calculation of the basic 

and more advanced frontal indexes from the detected fronts, all the 

techniques related to the different geographical projections, the geo-physical 

statistics involved in the calculation of the frontal indexes and in the 

production of figures. 

7.3.3 Implementation of a software engineering layer 

 Finally a layer of pure software engineering was added on top of the others 

that deals with the input parameters, the configuration control, the 

parallelization of the processing across several processors, the access to 

satellite products and climatologies and the monitoring and logging of the 

progress and the errors. This last layer was necessary to provide the user-

friendliness, the robustness, the optimization and the flexibility which were 

absolutely instrumental in the achievement of the scientific results. It 

permitted the completion of nearly one hundred runs, each of which was 

configured by means of a long and unique list of parameters and involved 

heavy data crunching that required up to several weeks of processing time on 

one or more workstations. Since the workstations were shared amongst a 

group of scientists, strategies were developed and implemented to optimize 

the required disk space, memory and processor time and to allow the 

automatic stopping and resuming of calculations. A big effort was also 

invested in the plotting capabilities of these tools which make the most of 

object oriented programming and metadata attached to the frontal indexes in 

order to offer a very straightforward and flexible way to explore the results. 

The figures are directly produced at a near publication standard which greatly 
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eased the exploration of frontal signals exposed in chapter 5 and chapter 6. 

While developing these complex yet user-friendly tools, the author also had in 

mind their potential use by other scientists. Not only were these tools of great 

support to the conceptual approach developed in this work, but being 

encapsulated in a finished product fully tested and validated during the 

author’s experimentations, they become potentially reusable by others and 

therefore even more useful scientifically. It is worth adding that the advanced 

plotting library that has been developed could be easily reused by anyone 

wishing to explore the variability of a spatial and temporal geo-physical 

quantity. 

 

7.4 Where the study can be taken further 

This section presents the directions to be followed in order to get more 

accurate results or to obtain additional ones from the presented methodology. 

7.4.1 Improving the Level-4 products feature resolution knowledge 

The main way to improve the confidence in the calculated frontal indexes is to 

select more accurately the parameters that have a significant effect in the 

detected fronts and in the calculation of the frontal indexes. The first 

parameter that could be improved is the assumed feature resolution of a SST 

image. When dealing with Level-4 SST products, this scale was estimated based 

on analyses of the present scales on a number of images. However the feature 

resolution is controlled by the state estimation algorithms that produce the 

SST field from Level-2 single-sensor images. It should be feasible for the Level-

4 GHRSST data providers to calculate and record the amount of spatial 

smoothing introduced by their algorithms. It is a recommendation of the 

author of this thesis that a matrix of the feature resolution, for instance in 

kilometres, is attached to the SST as auxiliary data in the GHRSST Level-4 

products. The routines developed and presented in this thesis could be easily 

adapted to cope with a spatially varying feature resolution. Such information 

would help extracting more accurate frontal indexes but would also improve 

the interpretation of such results because it would be known with precision 

where small scales are resolved or not by the input data set. When the feature 
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resolution is known with precision, the effect of the smoothing on the small 

scale fronts can be cancelled provided the spatial spectrum slope is known. 

The k-2 assumption was used in this thesis, it is confirmed to be valid by Autret 

(unpublished work) at the submesoscale and it was shown in this thesis to be 

valid between 10 and 50 km. Therefore it would be a significant improvement 

to use the precise value of smoothing in the frontal detection. However this 

would not allow measuring local departures from the average spectrum slope. 

This means that datasets with the finest feature resolution should be favoured. 

Level-3 SST products were shown to be the ultimate input data for front 

detection because they do not involve any kind of smoothing other than the 

sampling they are based on. Their feature resolution is perfectly known, and 

constantly equal to its minimum achievable: the spatial resolution of the 

image. The advantage of Level-3 products over Level-2 ones is their spatial and 

temporal coverage. Ideally, the frontal detection routines should be run on 

Level-3 time series of SST images. Unfortunately, the Level-3 SST products 

available to the science community are fairly limited, and this thesis is a strong 

call for the production and distribution of much more of them. It shall be 

stressed that the presented methodology and routines are perfectly adapted to 

the Level-3 images, even though they present different characteristics than the 

Level-4 ones, mostly involving missing data. In order to obtain a constant 

feature resolution on Level-3 images, the microwave measurements should be 

discarded. Therefore the Level-3 data used as input to detect fronts do not 

resolve cloudy regions at all. Care must be taken that this does not introduce 

biases in the resulting frontal indexes. 

In order to quantify in absolute terms how accurately various Level-4 datasets 

resolve the fronts of all scales, one may identify a number of cloud-free Level-2 

scenes to be used as control points. The comparison of the fronts detected on 

the Level-2 images with those detected on the considered Level-4 images 

could provide an estimate of the “frontal accuracy” of the Level-4 products. 

This method may introduce a bias as it would only consider cloud-free 

configurations. One way to overcome this bias is to generate Level-4 images 

from a sub-set of the input Level-2 images that are meant to be ingested in the 

OI process. The fronts from the Level-2 images which are not used in the 

generation of the Level-4 SST scenes can be used for comparison with the 

Level-4 fronts. This would be equivalent to comparing the fronts from a cloudy 
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region of a Level-4 image (where no IR data was available on a particular day) 

to the real front distribution over this region on this day. This approach is 

complex and would require the cooperation of the institutions in charge of the 

production of the Level-4 products. 

7.4.2 Improving the knowledge of the frontal width 

The other parameter that could be improved is the frontal width as it was 

shown that its uncertainty limits the ability of the dynamical frontal indexes to 

return values that can be quantitatively relied on. Two directions are 

suggested by the author: one could be to simply measure the frontal width 

directly on the SST image before using it in the calculation of the frontal index. 

This strategy is limited by the resolution of the SST image, for instance 

GHRSST Level-3 images provided at the global scale are projected on a grid of 

about 5 km resolution. The alternative direction is to estimate the frontal 

width by means of external knowledge, this could be by theoretical physical 

oceanography, with numerical models or dedicated in-situ measurements. Very 

high resolution Level-2 satellite SST could also be used to carry out such 

estimations. 

7.4.3 Improving the understanding of the density compensation 

This work would also greatly benefit from breakthroughs in the understanding 

of the phenomenon of compensation in the mixed layer. As the surface density 

gradient is estimated from the SST gradient assuming a constant salinity 

across the front, potential compensation of temperature and salinity across the 

fronts is ignored. The implemented strategy was to flag the cases where the 

MLD is deeper than 75 m because it is so far understood that compensation is 

more likely to occur in these conditions. Understanding the scales and 

conditions at which the compensation occurs, how often this happens and to 

which extent, is instrumental for the development of methodologies that allow 

recovering physical parameters from satellite SST observations with 

confidence. The exploitation of satellite Sea Surface Salinity (SSS) 

measurements is a potential solution, it is however strongly limited by the 

resolution of the recovered SSS so far (about 50 km spatial resolution for 

SMOS). 
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7.4.4 Developing the dynamical parameterizations and refining the 

assumptions 

The dynamical parameterizations may be improved by a better understanding 

of the physics associated to fronts. The physicists are making outstanding 

progress in this domain, and more precise insights are likely to be published in 

the near future. It is the hope of the author that the physicists will continue to 

work toward the construction of reliable parameterizations of the mixed layer 

dynamics based on the surface density gradient and other quantities that can 

also be measured. Additional analyses to identify the conditions under which 

these parameterizations are valid or not would also build up the confidence in 

the dynamical frontal indexes. It should be added that parameterizations that 

are known to be accurate in limited areas and/or periods still have the 

potential to answer very important questions when combined with satellite 

observations. Section 2.2.4 presented a review of the studies based on the 

eSQG assumption which estimate the complete stream-function in the upper-

layer of the ocean from a unique snapshot of the surface density anomaly. This 

method has the potential to be combined with satellite observations to recover 

surface currents as shown by Isern-Fontanet et al. (2006). This direction was 

not explored in this thesis because it is computationally very different from the 

implemented methods which rely on the detected fronts. This does not mean 

that the eSQG formulations do not present any interest, and the author 

recommends them to be analysed in view of their adaptation on systematic 

and global algorithms. Finally, it is worth adding that the future high 

resolution altimetry measurements will open a great potential for the use in 

synergy of high resolution SST and SSH in the context of frontal dynamics 

exploration. 

7.4.5 Using the tools for regional studies 

Finally, much more can be done with the tools as they were developed and 

presented. They can be taken to regional studies with customized data, 

parameters and indexes as a function of the local conditions and 

understanding. The extracted index can then be correlated with other local 

observational data such as ocean colour, wind or any in-situ measurement of 

relevance to gain knowledge on the relationship between the frontal activity 

and other phenomena. The question of the links between the fronts and the 
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wind may be tackled by means of remote sensing data, even while taking into 

account the relative orientation of the wind and the fronts as is done by Capet 

et al. (2008b). As discussed in section 7.2, it would be very interesting to 

explore the causes of the seasonal and inter-annual variability of the frontal 

activity described in chapter 5 and chapter 6. In addition, when more 

confidence will be associated to the dynamic frontal indexes thanks to 

additional analyses, it will be worth to study them in a climatic perspective as 

done in chapter 6 with the FGI. 
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