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Abstract— We describe how image analysis can be used to detect 
the presence of Alzheimer’s disease. The data are images of brain 
tissue collected from subjects with and without Alzheimer’s 
disease. The analysis concentrates on the shape and structure of 
the blood vessels which are known to be affected by amyloid beta, 
whose drainage is affected by Alzheimer’s disease. 
The structure is analysed by a new approach which measures the 
Influence of the blood vessels’ branching structures.  Their 
density and tortuosity are analysed in conjunction with a 
boundary description derived using Fourier descriptors. These 
measures form a feature vector which is derived from the images 
of brain tissue, and the discrimination capability shows that it is 
possible to detect the presence of Alzheimer’s disease using these 
measures and in an automated way. These measures also show 
that shape information is influenced by the vessels’ branching 
structure, as known to be consistent with Alzheimer’s disease 
evolution. 

 

Keywords— medical image analysis; Alzheimer’s disease; 
segmentation; shape description. 

I. INTRODUCTION 
Alzheimer’s disease (AD) is the commonest form of dementia, 
affecting over 800,000 people in the UK and with no efficient 
treatment. Diagnosis is difficult, as many neurodegenerative 
conditions present with a similar picture [1]. Amyloid beta 
(A�) is a normal product of metabolism, cleaved from an 
amyloid precursor protein (APP) [2]. Young brains are 
equipped with different mechanisms to break down and 
eliminate A�, but with ageing and on the background of 
different genotypes the elimination of A� fails, leading to its 
accumulation and to AD[3]. The accumulation of A� in the 
walls of blood vessels of the brain reflects a failure of its 
elimination along the walls of blood vessels[4]. 

 
In recent years, researchers have tried to detect AD in the 

human brain using image processing techniques. Most of them 
have used MRI and CT scans to detect the abnormalities in the 
human brain including texture and shape abnormalities. For 
example, Li detected the shape changes of corpus callosum in 
AD [5]. In addition, Freeborough evaluated a texture feature 
vector to discriminate the AD with the normal brain [6], while 
Fischl introduced a new method to measure the thickness of 

the human cerebral cortex by considering the white and the 
grey matter[7]. However although the methods using computer 
vision have been demonstrated some detection capability, little 
attention has been given to detecting the abnormalities of 
specific components in the brain that are affected by amyloid 
beta, such as blood vessels. The concept of the early onset 
detection of AD has yet to receive much research attention. 
Naturally, any approach that can detect AD at the onset or 
early in its progression could be invaluable in medical 
planning. 
 
 Blood vessels have previously been analysed in diagnosis of 
diabetes, hypertension and atherosclerosis[8] supporting their 
potential use for diagnosing Alzheimer’s disease. The 
importance of blood vessels towards diagnosing the disease 
has suggested the need for detection of the abnormalities of 
the blood vessels using computer vision. This is made difficult 
by the limited observations and understanding of blood vessels 
patterns. Natural pattern such as a sea fans[9], river deltas and 
trees show structural similarity that have yet to be understood 
by human and computer vision. 
 
 The detection of a blood vessel’s pattern can use many 
features such as density and tortuosity which can be 
appropriate to define the blood vessels for Alzheimer’s disease 
detection. To our knowledge, there has been no prior analysis 
of branching structure, especially in the analysis of blood 
vessels and in the diagnosis of Alzheimer’s disease. In this 
study, we describe the branching structure of blood vessels by 
their density[10], by a new invariant measure of branching 
structure, and by their tortuosity. Our aim is to detect the signs 
of AD at early stage by focusing on the objects that have been 
most affected by this disease in early onset detection as the 
high density of blood vessels in Alzheimer’s disease could 
show early sign of the disease and the inspiration of detection 
diabetes and other’s disease by their tortuosity [8, 10]  
 
A particular focus of this paper is the analysis of blood vessel 
shape for the detection of Alzheimer’s disease. This confirms 
that the branching structure is consistent with the presence of 
Alzheimer’s disease and confirms the influence of the 
branching structure on shape and on disease detection. 
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II. VESSEL SHAPE DESCRIPTION 
We concentrate on blood vessel structure as there appears to 
be linkage between that and Alzheimer’s disease. To achieve 
this, we first detect branching structure, and then analyse 
vessel shape. 
 
 Current approaches for analysing branching structures in 
medical images concentrate on ductal trees [7] and vascular 
structures [8]. These are mainly large scale analyses of 
topology whereas blood vessels in segments of brain tissue are 
considerably smaller. Further, there is no analysis of this sort 
directed towards the detection of Alzheimer’s disease.  

A. Brain images 
We used the slides with human tissue from the Brain Tissue 
Resource in Newcastle to acquire the images using a Nikon 
Eclipse E600 microscope fitted with a digital camera Nikon 
Coolpix 950 at ×10 magnifications. We have five samples of 
each tissue type, from: young, age-matched control and 
subjects with Alzheimer’s disease. We choose images where 
the diagnosis was clear and the images are suitable for 
segmentation. 

 

B.  Density 
 Initially, we define the density as the number of branches in 
an image. In order to obtain the number of branches, we 
process the image to obtain a binary image and then convert it, 
via a thinning algorithm, into skeletons of vessels. Next, we 
seek to find the branching points so as to determine the 
intersections between them (should they occur) and thus count 
the number of branches. 
 The branching point�����, is calculated for each point��, of 
the structure (pixel) where the ����� are the neighbours of the 
analysed point,��, named clockwise consecutively. According 
to the equation below, ����� that has the value more than 2 
will be classified as branching point �	
  as described in Eq 
3(3).  
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Figure 3: The template matching used to detect branching point of the images  
 
After obtaining the branching points �	
 � � ��	
� �	
 , the 
branching points are then excluded when counting the number 
of branches, �	!"#$%&'   in the image. This was done by 
making the branching points, black, the same as the 
background image. The result obtained was the branches with 
no branching points, which were labelled to find the number 
of branches.  

( � ���)&''&* + �	
,,,,  (3) 

C. Tortuosity  
Tortuosity can be defined as the property of curve that has 
been twisted. As for the starting point, we use the basic 
measurement of tortuosity. This tortuosity measurement has 
been developed by Lotmar, Freiburghaus and Bracher[11] and 
tortuosity - is describes as an arc-chord ratio  
 - � . /0  (4) 

where . is a length of curve and / is the distance between the 
ends of curve. There is much room for extension in this 
measure and we investigate the basic form here as diagnostic 
and modelling of the vessel’s branching structure. 

D. Description of the Branching Structure 
 

The detected branching points allow for a new analysis of the 
branching structure (Fig.2). Essentially we have segments of 
blood vessels which are at different inclinations to the 
branching points. For a branching point bp with N branches of 
length L(bp) this can be described by the average vector 
product of pairs of branches and the angle between them, as in 
Eq. 5, 
 

1 � 2 .�3� 4 .�5� 4 678��9�3� 5� ����:�;���: �< 3 = 5 (5) 

 
As this equation appears to favour smaller angles, a version 
not using the cosine was also deployed, though this was found 
to have less capability for detecting the presence of 
Alzheimer’s disease. 

E. Boundary  description using Fourier descriptor  
 

  
Figure 1: Example Image of Brain Tissue Figure 2: Branching Structure 
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Fourier descriptors (FD) have been shown to be an efficient 
way to recognise different shapes due to robustness to changes 
in scale, rotation, shifting and starting point. Furthermore, 
although the FD technique is already more than 40 years old, it 
has features that are easy to compute and robust to noise. To 
apply the Fourier descriptors, we need a perimeter contour. 
Fig.4 (b) shows the contour for an object with no branching 
points in Fig. 4(a). Fig.4(c) shows a vessel with one branching 
point and its contour in Fig. 4(d). The vessels will be analysed 
separately according to the number of branching points to 
investigate the relationship between branching and detection 
of Alzheimer’s disease. 
 

  

  
(a) vessel with no 
branching points 

(b)contour from 
(a) 

(c) vessel with 
one branching 

point 

(d) contour from 
(c) 

Figure 4. Vessels for Fourier Descriptor analysis. 
 
Using Fourier descriptors, the high frequencies of the 
boundary will be ignored and the remaining low frequencies 
will be used to define the general shape properties of the 
object. Complex FDs are determined by applying the Fourier 
transform (FT) to find the frequency content of the whole 
shape by using the contour derived from shape boundary 
coordinates[12]. Based on frequency analysis, we can choose a 
small set of numbers, or, better known as the Fourier coefficient, 
which describes a shape rather than any noise. The curve in FD is 
described in two-dimensional (2D) whereas the image space is 
considered as complex plane. Thus, every pixel is represented by 
a complex number[12, 13].  
 >�?� � ��?� @ 5��?� (6) 
 
 
The complex Fourier descriptors are derived by applying the 
Discrete Fourier Transform (the complex coefficients,A�B�) 

A�B� � � >�?�
CD�

E�F
GD;HIJEC � ? � K���
� L � M � � (7) 

 
The inverse Discrete Fourier Transform for these coefficients 
restores�>�?�  

>�?� � �M � A�B�
CD�

J�F
G;HIJEC � ? � K���
� L � M � �� (8) 

 
We can create an approximate reconstruction of >N�?�if we use 
only the first O Fourier coefficients.  
 

>N�?� � �O�A�B�
PD�

J�F
G;HIJEC � ? � K���
� L � M � �� (9) 

The FDs are normalized so as to be invariant to scaling, 
shifting, rotating and the starting point as in Table I. 
 

TABLE I  DETERMINING INVARIANT FDS 

Transformation Fourier Descriptor 
Translation AQ��� � A��� @ RFS���, 

where S��� � ��3T�? � K�and  S��� � K�3T�? =K 
Scaling or Zooming AQ��� � UA��� 

Starting point AQ���GD�HI#V :0  
Rotation AQ��� � A���G�WV� XYGZG�G�WV � 678 9F @ 8[\ 9F 

 
 
An alternative approach is to use Elliptic Fourier descriptors 
which are also have similar invariant with complex Fourier 
descriptors, but do not include the effects of high order 
frequencies that are more prone to noise [14].Let us denote ]^�_� � �^�_� @ 5�`�_�  as the transformed contour. This 
contour is defined as, 

a�^�_��`�_�b � �
 aA^cFA`dFb @ �aA`cE e`cEA`dE e`dEb
f

E��
a678�?g_�8[\�?g_�b (10) 

 
The advantage of these descriptors�A^  and e^with respect to 
complex FDs is that they do not involve negative frequencies. 
In Eq.11, the Elliptic Fourier Descriptor is also made invariant 
to contain neither the scale factor, nor rotation. 

hi`Ehhi`�h �
jAcEH @ AdEH

jAc�H @ Ad�H
k\l h1`Ehh1`�h �

jecEH @ edEH

jec�H @ ed�H
 (11) 

 
For these descriptions, the vessels are labelled according to 
their branching level (Fig. 4) and the complex and the Elliptic 
FDs are calculated for�O � mn�via Eqs. 7 and 11 respectively, 
for each image (separately for non-branching and branching 
vessels) and the mean of each FD for each vessel is obtained. 
This forms a feature vector of 64 components for each of the 
branching levels. The FDs for each image are then compared 
using k-NN classification to differentiate between AD and the 
normal images. 

 

F. Classification 
The features are then used for classification of AD. Features 
are assigned as vectors in the classification and k-NN 
classification is used since its implementation is fast and it 
suitable for small number of dataset. Clearly there are more 
sophisticated analyses possible, and faster ones, but here our 
intention is to investigate whether there is any promise in the 
use of these features and as such a basic classifier suffices. 
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Since we have a limited number of images, leave-one-out 
cross validation was deployed and merged with k-NN 
classification to determine the classification rate. We increased 
the value of k until 11 to determine the best value of 
k that in k-NN classification. 
 

III. RESULT AND DISCUSSION 
 

The first task was to determine which of the Fourier 
descriptors was most appropriate here. Fig. 5 shows the 
correct classification rates for the detection of Alzheimer’s 
disease where the horizontal axis is the value of k used within 
the k-NN rule. Subjects with AD and recognised as such, 
together with subjects without AD and recognised as such, are 
both considered to be correct classifications. A subject without 
AD but recognised as a subject with AD, and vice versa, is 
marked as an incorrect classification. The correct classification 
rate is shown for the Complex and the Elliptic Fourier 
Descriptors of vessels that have a single branching point and 
the comparison is between the three groups (AD, age-matched 
control and young). The correct classification rate is the 
proportion of subjects correctly classified as having 
Alzheimer’s disease or not averaged across the three groups. 
As can been the Complex FDs offer greater discrimination 
capability, and the trend of performance of both descriptors is 
very similar.  
 

 
Figure 5. Correct classification rate for two different FD 

 
We also investigated use of feature selection using Sequential 
Forward Floating Search (SFFS) [15] to find which 
coefficients contribute the most for correct classification. 
Table 2 lists the descriptors that offer the highest and the 
second-highest classification capability. It interesting that the 
results show the earlier coefficients are major contributors to 
correct classification, emphasizing the importance of overall 
shape. The distribution of the first and second most important 
descriptors is similar for the complex FDs and the EFDs, and 
the most important descriptions are different for vessels with 

branching structure, and vessels without branching structure, 
as expected. 
 
Accordingly, Complex Fourier descriptors are chosen to 
perform the description as they show a better classification 
rate than Elliptic Fourier descriptors. 
 

TABLE II: SELECTING THE MOST DISCRIMINATIVE FDS. 

 
 
To investigate the effect of branching structure we then 
separated the data into vessels with and without branching 
points for the three groups (AD, age-matched control and 
young). The correct classification rate is then the proportion of 
subjects correctly classified as having Alzheimer’s disease or 
not averaged across the three groups. Clearly in this result 
(Fig. 6) the correct classification rate for the vessels with 
branching points show considerably higher performance than 
those without branching points. This suggests that the 
branching structure can be used to differentiate subjects with 
AD from those without AD as suspected by the effect of 
Alzheimer’s disease on the drainage of Amyloid beta. 
 

 
Figure 6. Correct classification rate for Complex FD for 3 groups (young, age-

matched control and AD) 
 

We then combined the vessels of young and age-matched 
control subjects as a single class of normal subjects and 
compared this with the vessels from subjects with AD to 
clarify the result (Fig. 7). Again this shows that branching 
structure aids recognition capability. The increase in 
recognition suggests that there is similarity in structure 
between the vessels of young and age-matched control 
subjects, further confirming the capability to use vessel shape 
description for the detection of AD. 
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Figure 7. Correct classification rate for Complex FD for two groups (Normal 

and AD) 
 
 
Figure 8 shows the Correct Classification Rate for the images 
when divided into three groups; young, old-matched control 
and old with Alzheimer’s disease. The features used are the 
density D, the tortuosity, the branching measure B, and then 
FDs or combinations of these sets of measurements, combined 
as a feature vector for use with the k-NN rule. By this analysis, 
each measure contributes to successful discrimination of 
subjects with Alzheimer’s disease, suggesting that image 
based analysis of brain tissue samples could prove a suitable 
avenue for research, as predicted by physical analysis and the 
postulated effects of A�. FDs are the most discriminative 
measures, followed by those relating to the branching 
structures. The tortuosity appears to offer the least sensitivity, 
but this might be due to the simplicity of the measure used, 
since the higher order FDs offer discriminative capability. The 
performance across differing values of k suggests that the 
feature space is quite smooth, since the recognition capability 
drops little with increase in k. 

 
Next, in Fig. 6 we combine the young datasets with the control 
dataset to perform the discrimination of the brain tissue with 
AD from normal brain tissue. This provides ten images from 
young and age-matched control subjects, together with five 
samples from subjects with Alzheimer’s disease. 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Figure 8. Correct classification rate and for each feature combinations versus 

the number of k. 
 

Clearly in Fig. 9, the CCR for branching structure shows 
capability to differentiate the AD from other normal brain, but 
the feature space is less smooth. However, this measure of 
tortuosity shows increased performance, though the ranking of 
performance for the different measures remains the same. By 
combining all the features, we could see the classification rate 
are nearly 100% achievable suggesting all the features are 
important in this detection process. The performance analysis 
shows that it is possible to discriminate subjects with AD from 
those with AD. The analysis could potentially be improved 
with alternative methods for fusing the data, such as by 
classifier fusion, and by different measures (the tortuosity 
measure in particular is likely to be improved). 
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Figure 9. Correct classification rate overall and for each feature combinations 

versus the number of k using 2 groups. 

IV. CONCLUSIONS 
Studies suggest that the drainage of the protein A� is 
consistent with presence of Alzheimer’s disease and this 
suggests that image based analysis of blood vessel structure 
might indicate the presence of Alzheimer’s disease. Here we 
have deployed the standard measures of density and tortuosity 
for this analysis and have developed a new technique which is 
suited to analysis of the small branching structures to be found 
in these images. The images were derived from brain tissue of 
subjects in controlled conditions. We have performed the 
boundary analysis of vessels using Fourier Descriptors as the 
most discriminative feature in the recognition analysis. These 
two measures (branching structure and FDs) are formulated to 
have requisite invariant properties for this analysis. 
 
We have shown that it is possible by these measures to 
discriminate between subjects with Alzheimer’s disease and 
those without AD. In general, our initial result shows that the 
branching structure appears to be a major contributor to 
discriminate AD from a normal brain. This is reflected in the 
description by complex FDs, especially of the vessels with 
branching points. Branching structure is also discriminative as 
well as other features (density and tortuosity). The tortuosity 
has shown some contribution even though as per feature, it 
shows slightly lower performance compared with others and 

motivates the need for a better way to analyse tortuosity. The 
study so far has concentrated on features rather than 
classification and that and fusion could be more sophisticated 
though the approaches here suffice to demonstrate basic 
performance. 
 
Note that so far the study is in vitro and this study is 
sufficiently encouraging for translation to in vivo 3D MRI 
image analysis. 
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