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The efficient and accurate calculation of free energies of binding and hydration for

small molecules remains a valuable goal in the field of computational chemistry. We

focus on free energy calculations as a tool to predict free energies of binding and hy-

dration. Such calculations require the use of an energy model to compute the relative

energies of different configurations of a molecular system. Quantum mechanical (QM)

energy models offer excellent accuracy but at great computational cost, whereas clas-

sical energy models are more approximate but offer several orders of magnitude of

computational savings. Here we describe as hybrid those approaches that attempt to

combine both classical and quantum energy models to calculate free energies.

We demonstrate a fundamental validation step for the classical to quantum single

step free energy perturbation approach (SSFEP), by carrying out the reverse quan-

tum to classical perturbation. This required the generating of extensive trajectories

using molecular dynamics at the QM level, a costly and involving process. With this

data we demonstrate convergence between forward and reverse perturbations between

the different levels of theory, providing support for use of the technique. Such conver-

gence is dependent on the use of interaction energies when evaluating the free energy

difference, a practicality rarely alluded to in the literature. We go on to elucidate,

from first principles, the approximation engendered by the use of interaction energies

with theoretical work and demonstrative calculations in a series of model system.

A number of recently proposed and more sophisticated hybrid techniques are con-

sidered and compared with SSFEP and a novel approach, proposed by us. The exten-

sive QM trajectories generated previously are used again to a system within which

these techniques can be compared and benchmarked. We also consider extension of

each of these techniques to the use of interaction energies and demonstrate results of

superior convergence.

Finally, we set up and carry out simulation work with an isoform of the CD1 pro-

tein family. This forms preparatory work for the application of hybrid free energy

techniques within a protein-ligand system of clinical interest.
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A thesis must be long. The object, you see, is to bore and stupefy the examiners to

such an extent that they will have to accept it - only if a thesis is short enough to

be read all through word for word is there any danger of failure.

Less than Angels, Barbara Pym
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1. Introduction

The accurate and rapid prediction of free energies of binding and hydration for small

molecule targets remains a long sought goal in the field of computational chemistry1.

A range of different techniques have been developed to tackle this problem, the most

accurate of which make use of extensive Molecular Dynamics (MD) or Monte Carlo

(MC) sampling and rigorously derived free energy difference estimators2,3,4. Two

factors limit the accuracy of these free energy techniques: the realism of the energy

model used to describe the potential energy surface of interest, and achieving a suf-

ficient degree of sampling of the system to obtain converged ensemble average statis-

tics. Highly realistic i.e. first principles Quantum Mechanics (QM) based energy

models are able to accurately model a system’s potential energy surface but are pro-

hibitively expensive to undertake sufficient sampling of even moderately sized sys-

tems. This practical restriction generally necessitates the use of classically inspired

Molecular Mechanics (MM) force fields. Although computationally far cheaper, the

approximate and parameterized nature of MM methods places inherent restrictions

on the achievable accuracy of calculations using MM potentials.

The dichotomy between MM and QM approaches has led to the development of hy-

brid methods that attempt to exploit the accuracy of QM models at a fraction of

the computational cost, through judicious combination with MM potentials5,6,7,8,9.

These are known as hybrid free energy techniques and are based around a variety of

different approaches described fully in section 2.5.

In chapter 3 we consider the application of the mostly widely employed hybrid

approach, the single step free energy perturbation. Despite numerous occur-

rences6,10,11,12,13,14,7,15,16,17,9 within the literature, the ability to rigorously calculate

converged free energy differences has yet to be demonstrated. We approach this prob-

lem directly by generating extensive molecular dynamics trajectories at the QM level

of theory. The considerable computational cost of this approach has previously pre-

vented the carrying out of this important validation step.

One of our key findings is the necessity of the use of interaction energies, in the place

of total potential energies when employing hybrid free energy techniques. In chap-

ter 4 the theoretical implications of this are fully explored from a statistical mechan-

ics basis and it is shown to introduce an error term. This is explored in a series of

model systems of increasing complexity.
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Chapter 5 deals with reweighting and ensemble building hybrid free energy tech-

niques. These are applied to the previously considered model systems of chapter 4

and the DNA base pair MD dataset of chapter 3. Particular attention is paid to the

combination of these approaches with interaction energies and some theoretical re-

sults to this end are given in addition to the computational work.

Finally, we consider preparation and MD work with a proposed crystal structure for

an isoform of the CD1 protein family. This serves as preparatory work for the future

application of hybrid free energy techniques with a CD1 isoform of interest.

This thesis attempts to place hybrid classical and quantum free energy techniques in

a rigorous context. We robustly examine the convergence behaviour and theoretical

shortcomings of currently accepted practice and consider extension of more recently

proposed approaches.
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2. Theoretical Background

2.1. Statistical Mechanics

The foundation of the computational calculation of free energies is rooted in statisti-

cal mechanics. This is the theoretical branch of physics that deals with the prediction

of high level (macrostate) properties of molecular systems, e.g. temperature/pressure,

from low level (microstate) information e.g. atomic velocities and positions18. A sim-

ple example is the calculation of the temperature of a system from the velocities of

its constituent N particles:

T =
2K(v)

3NkB
(2.1)

where the temperature, T , is proportional to the total kinetic energy of the system,

K a function of the system velocities v, over N and the Boltzmann constant kB. The

classical kinetic energy term being given by:

K(v) =
1

2

N∑
i=1

mi|vi|2 (2.2)

the kinetic energy is a sum over all N particles where mi and vi are respectively

the mass and Cartesian velocities of the ith particle. Thus microstate knowledge of

atomic velocities can be used to calculate the higher level macrostate system property

of temperature. Throughout this introduction, as here, we will not attempt any first

principles derivations of statistical mechanics results as these may be obtained from

a range of texts19,18,20,21,22. Instead we will present and attempt to intuitively ratio-

nalise the various widely used expressions relevant to the calculation of free energy

differences.

A central concept to the statistical mechanics of equilibrium systems is that of ensem-

bles. To explain this we start by considering a thermodynamic system of N particles.

In a three dimensional space each particle can be completely described by 6 degrees

of freedom, its position in each dimension and its corresponding velocity in each.

Thus a system of N particles can be described by 6N degrees of freedom in total. The

positional degrees of freedom are limited by the size of the system, whilst the velocity

degrees of freedom are unbounded. These 6N degrees of freedom can be represented

25



in a phase space, also referred to as a state space, of 6N dimensions19. Any given

configuration of positions and velocities forms a point within the phase space, which

is bounded as described previously. The phase space describes every possible state

of the system at hand. However, equilibrium thermodynamics places restrictions on

how the phase space will be occupied. This leads neatly to the concept of an ensem-

ble which defines a set of restrictions or conditions on how a system will occupy its

associated phase space18. The term ensemble is often also used to refer to the set of

system states that conform to the correct properties of the associated thermodynamic

ensemble.

The simplest example is known as the microcanonical ensemble, often abbreviated as

NVE for the three restrictions it imposes. N, the number of particles, V, the volume

and E, the energy of the system are all constant. A particular NVE ensemble is com-

posed of all the system configurations within the phase space that meet these three

conditions. In the case of the NVE ensemble there are points of the phase space that

are inaccessible due to the restriction on the energy of the system. This can be ex-

pressed formally by the probability density21:

PNV E(x,v) ∝ δ(H(x,v)− E) (2.3)

where PNV E is the probability density of a particular system configuration given by

v and x within the NVE ensemble. δ is the Dirac delta function, that has a value

of infinity where its argument is zero, but a value of zero everywhere else. When

integrated over however the Dirac delta gives a value of one. H is the system Hamil-

tonian, the formal name for the function that takes the system state as input and

gives its corresponding energy. The energy of the system is dependent on the posi-

tional degrees of freedom, x, and the velocities, v. We will consider the properties

of the Hamiltonian later in this section and in section 2.2. Equation (2.3) defines a

hyper-surface within the full phase space of the system and displays an important

property of the microcanonical ensemble. The Dirac delta function has a constant

value for all system states with the correct energy. Therefore, all structures that com-

prise the NVE ensemble have an equal probability of arising. The probability density

can be made absolute by introducing a normalisation constant, known in this context

as the partition function, QNV E
22:

PNV E(x,v) =
δ(H(x,v)− E)

QNV E

(2.4)

QNV E =

∫
V
δ(H(x,v)− E)dxdv (2.5)

the partition function is simply given as an integral of all the degrees of freedom

within the system over the relative probability density. Here V denotes the limits

of integration imposed by the volume of the system. The microcanonical partition
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function corresponds to the volume of phase space containing structures that com-

prise the ensemble. Although of fundamental significance, the NVE ensemble rarely

corresponds to systems of interest. Biological systems in particular are not isolated

from fluctuations in energy. Rather these systems are often assumed to be accurately

modelled as being in temperature equilibrium with their surroundings by the canoni-

cal or NVT ensemble. In addition to the particle number and volume restrictions, T

signifies that the temperature of the system is constant. As given in equation (2.1)

the instantaneous temperature is shown to be a function of particle velocities. How-

ever, the temperature of a system is a time-averaged property such that the kinetic

energy need not be restricted to being the same value throughout the ensemble. In

contrast to the microcanonical ensemble where certain system states are inaccessible

for particular values of E, in the canonical ensemble any position within the entire

phase space can be occupied with the following probability density:

PNV T (x,v) =
exp[−βH(x,v)]

QNV T

(2.6)

QNV T =

∫
V

exp[−βH(x,v)]dxdv (2.7)

where β =
1

kBT
, a common abbreviation that will be used extensively throughout

this work. This is the famous Boltzmann distribution, with the numerator of equa-

tion (2.6) referred to as the Boltzmann factor. The canonical partition function is

similarly given as an integral over the relative probability density of the system. One

particularly desirable property of the partition function is that it can be directly

related to the free energy of a system19:

A = − 1

β
lnQNV T (2.8)

where A is defined as the Helmholtz free energy. The partition function in essence

is the term that links microstate data of the system to the macrostate property free

energy. Owing to the high dimensionality of the problem however, direct calculation

of the partition function is impossible for all but the simplest of systems. Techniques

that circumvent direct calculation of free energies are considered in detail in sec-

tion 2.4, but we shall first consider some simplifications that can be applied to the

problem. Returning to the definition of the system Hamiltonian, it is possible to give

the decomposition:

H(x,v) = U(x) +K(v) (2.9)

where K is the kinetic energy of the system as defined in equation (2.2) and U is

the potential energy. The calculation of U based on the atomic configuration of the

system is an interesting problem, the details of which are discussed extensively in
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section 2.2. For now, observing the ability to split the Hamiltonian into separate

potential and kinetic terms is sufficient. Using equation (2.9), we can reconsider our

definition of the canonical partition function:

QNV T =

∫
V

exp [−βH(x,v)] dxdv (2.10)

=

∫
V

exp [−β(U(x) +K(v))] dxdv (2.11)

=

∫
V

exp [−βU(x)] exp [−βK(v))] dxdv (2.12)

=

∫
V

exp [−βU(x)] dx

∫
exp [−βK(v)] dv (2.13)

= Z ×QK (2.14)

the first of these integrals, over the atomic positions of the system is often referred

to as the configurational integral and denoted by Z. The integral over the velocities

on the other hand can be treated analytically. This is straightforward as the kinetic

energy term, equation (2.2), is a sum over the contributions of each of the atoms.

The analytical result is given by19:

QK =

∫
exp

[
−β

N∑
i

mi|vi|2
2

]
dv (2.15)

=

∫ N∏
i

exp

[
−βmi|vi|2

2

]
dv (2.16)

=

(
N∏
i

2πmi
1

β

) 3
2

(2.17)

the last term being derived from the general form of integration over a Gaussian func-

tion. The ability to treat components of the free energy analytically helps to simplify

the problem of calculating free energy differences by removing a source of statistical

error. In the rest of this work we will no longer consider the inclusion of the kinetic

energy component in the calculation of free energy differences but proceed with al-

most all derivations and explanations in terms of the potential energy component

and the configurational integral. Excluding the kinetic component, the free energy

difference between states can be given as:

∆A1→2 = A2 −A1 = ln
Z2

Z1
(2.18)

thus the ratio of the partition functions of the two states is often the sought quantity

in evaluating ∆A1→2. Here, as throughout this work, the configurational contribution

to the free energy is taken as being synonymous with the full free energy. This implic-

itly assumes cancellation of the kinetic terms. Where this is not the case appropriate
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corrections can be given using the analytical kinetic result.

Finally, we introduce the concept of an ensemble average:

〈X〉 =

∫
X(x) exp [−βU(x)] dx∫

exp [−βU(x)] dx
(2.19)

=

∫
X(x) exp [−βU(x)] dx

Z
(2.20)

this may be better explained as the expectation value of the system property X,

which is some function of x. In principle X could relate to any possible property of

the system, for instance a particular bond length or an energy term. Unlike the parti-

tion function, evaluating ensemble averages is computationally feasible and methods

for this are considered in section 2.3. The uses of ensemble averages in calculating

free energy differences are explored in section 2.4.

A free energy calculation is dependent on three separate components working to-

gether23. First, an energy function or model that realistically describes the potential

energy surface of the system of interest is combined with a sampling protocol that

generates an ensemble of configurations with the appropriate Boltzmann distribution

and finally a expression estimating the free energy difference is required. The follow-

ing sections provide a comprehensive overview of modern approaches to all of these

components.
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2.2. Energy Models

An energy model or potential energy function should comprise a function that takes

the atomic positions of the system as input and gives a value for the potential energy.

This is often used synonymously with the term Hamiltonian to distinguish thermody-

namic states as the kinetic energy term is identical between different energy models.

For theoretical calculations to be correct the energy model of a system must accu-

rately recreate the energies of the real system, i.e. it must be realistic. Speaking

broadly, energy models can be divided into two groups, those that employ classical

theory (also known as molecular mechanics or MM) and those that make use of quan-

tum mechanics (QM), also known as ab initio. These employ different underlying

theories to describe the potential energy surface of a system and the combination of

MM and QM energy models within free energy calculations forms the basis of the

‘hybrid’ nature of the work presented in this thesis.

2.2.1. Quantum Mechanics

QM theory provides access to a class of potential energy functions of very high

achievable accuracy but at great computational expense. In contrast to classical

theory QM calculations deal explicitly with the electronic component of a molecular

system. The field of electronic structure theory is vast, with a huge array of tech-

niques proposed displaying varying degrees of accuracy and computational expense.

What follows is a very restricted discussion of modern QM approaches that will focus

on laying out the problem at hand followed by an examination of early Hartree-Fock

and modern plane wave DFT approaches.

At its core, quantum chemistry can be reduced to a constrained minimisation prob-

lem24 for the electronic component of the system. For a given configuration of the

system nuclei, the task at hand is to find the corresponding structure of the elec-

tronic degrees of freedom that minimise the system energy, subject to certain con-

straints. It is by now a well-known phenomenon that the QM description of sys-

tems, includes many effects that seem counter-intuitive from the classical perspective.

We will develop therefore an appropriate mathematical description of the electronic

system components such that the underlying physics is reflected. As such we will

not attempt to rationalise the physical properties of particles at the QM level but

take them as criteria to be met by our description. Once a suitable mathematical

form has been developed we shall consider methods to find minimised configurations

within the electronic configuration space.
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2.2.1.1. Electron wavefunctions

We start with the appropriate description for an isolated electron. Although classi-

cally understood as a particle, the electron is known to obey the Heisenberg uncer-

tainty principle. This states that an electron does not simultaneously have a well

defined position and momentum. The treatment of electrons as particles as in clas-

sical theory is therefore precluded25. Instead electrons are described in terms of a

wavefunction, denoted by ψ(r). Here r corresponds to the Cartesian spatial degrees

of freedom, within which the electrons reside. An exact physical interpretation of the

wavefunction is still an open question in QM theory. An intuitive one that we shall

consider here is the Born interpretation, that the wavefunction of an electron can be

related to its probability density:

P (r) = |ψ(r)|2 (2.21)

If P (r) is a probability density then the constraint is placed upon the wavefunction

such that: ∫
P (r)dr =

∫
|ψ(r)|2dr = 1 (2.22)

i.e. as the square of the wavefunction is a probability density, the integral over all

possible states must give a total probability of 1. Our description of the single elec-

tron is still not complete however, as we have yet to account for the property of spin.

The spin state of an electron can be either up or down, this can be elegantly handled

by introducing the auxiliary variable ω, and the two spin functions α(ω) and β(ω).

Such that: ∫
|α(ω)|2dω =

∫
|β(ω)|2dω = 1 (2.23)∫

α∗(ω)β(ω)dω =

∫
β∗(ω)α(ω)dω = 0 (2.24)

where ∗ denotes the complex conjugate of a wavefunction. This can be stated as

the requirement that α(ω) and β(ω) are orthonormal. A spin orbital can now be

defined based on the combination of a spatial wavefunction, given by ψ(r) and a spin

function24:

χ(x) = ψ(r)α(ω) (2.25)

note we have here used x to denote the combination of r and ω. This is in contrast

to the rest of this work, where atomic positions are denoted by x. However, this has

been adopted for the alternative purpose here to conform to existing conventions.

A spin orbital can be made with either spin function and any spatial wavefunction.
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Having defined an appropriate description of the single electron we now consider the

extension of this to a many-electron wavefunction, represented as:

Ψ(x1,x2, ...,xN ) =
1√
(N !)

∣∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) ... χn(x1)

χ1(x2) χ2(x2) ... χn(x2)
...

...
. . .

...

χ1(xN ) χ2(xN ) ... χn(xN )

∣∣∣∣∣∣∣∣∣∣
(2.26)

where Ψ is an n-electron wavefunction, n being the number of electrons in the system.

In practice this is one of various ways to form a many-electron wavefunction from sin-

gle electron wavefunctions and is known as a Slater determinant19. Its form is based

on the need for many electron wavefunctions to meet the anti-symmetry principle.

This requires that:

Ψ(x1,x2, ...,xN ) = −Ψ(x2,x1, ...,xN ) (2.27)

i.e. exchanging the position of any two electrons should change the sign of the wave-

function. This statement reduces to the well known Pauli exclusion principle, that

two electrons cannot occupy the same quantum state. For two electrons to occupy

the same spatial orbital they must have different spins. The combination of a Slater

determinant and the previously defined spin functions satisfies this requirement.

Up to this point we have discussed the properties of wavefunctions but have yet to

describe the form that they take in practice. One common choice is to represent

single-electron wavefunctions within molecules as a linear combination of so-called

atomic orbitals. These are a collection of simple wavefunctions, of tractable form,

referred to as a basis and centred on the nuclei of the system. The spatial component

of single-electron molecular orbitals, ψ, are then expressed as:

ψ1(x) =

Nb∑
i=1

ci1φi(x) (2.28)

where the basis of atomic orbitals is denoted by φ, Nb is the number of atomic or-

bitals and each atomic orbital is weighted by c. This allows us to consider an elec-

tronic configuration space made up by all possible values of the coefficient matrix c.

We can also express our problem as equated to finding the values of c that minimise

the electronic energy. In principle ψ can be represented exactly in this way (when

the basis is said to be complete). This would require an infinite number of basis func-

tions. Instead a sufficiently large basis such as to be nearly complete is employed in

practical calculations. Many choices are available for φ, most commonly hydrogen

orbitals (which can be derived analytically), Slater orbitals or Gaussian functions19.

An alternative to the linear combination of atomic orbitals approach is given in sec-
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tion 2.2.1.7.

2.2.1.2. QM Hamiltonian

An expression is needed to describe the interactions between different components of

the system. This is given by the QM Hamiltonian, in atomic units24:

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
I=1

1

mI
∇2
I −

N∑
i=1

M∑
I=1

qI
riI

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
I=1

M∑
J>I

qIqJ
rIJ

(2.29)

here lower case subscripts denote indices of electrons, whilst upper case subscripts de-

note indices of nuclei. ∇2 denotes the Laplacian operator, qI is the atomic number of

the Ith nuclei, r is the separation of the two subscripted particles, whilst M and N de-

note the number of nuclei and electrons in the system respectively. Thus the first two

terms give the kinetic energy component of the system, the third gives the energy for

the interaction between all electrons and nuclei, the fourth gives an electron-electron

repulsion term and the last a nuclei-nuclei repulsion term.

This full Hamiltonian can be simplified by making use of the observation that the

mass of the electron is much less than that of the nuclei and hence their movement

is much more rapid. This separation of timescales allows us to make the assumption

that for any given configuration of the nuclei, the electronic degrees of freedom will

instantaneously relax. This is known as the Born-Oppenheimer (BO) approximation

and allows formulation of an electronic Hamiltonian that considers the nuclear con-

figuration of the system as a parameter for the electronic system components rather

than as variables as in 2.29. This gives the electronic Hamiltonian:

Ĥelec = −1

2

N∑
i=1

∇2
i −

1

2

N∑
i=1

M∑
I=1

qI
riI

+

N∑
i=1

N∑
j>i

1

rij
(2.30)

where all terms not including the electrons from equation (2.29) have been dropped.

Thus we derive a QM energy function that takes a nuclear configuration of the sys-

tem as input and uses the electronic Hamiltonian to derive the electronic energy. The

constant nuclear energy contributions in the full Hamiltonian can then be included.

Use of the electronic Hamiltonian leads to a great simplification versus the full Hamil-

tonian and underpins modern QM approaches.
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2.2.1.3. Schrödinger Equation

The stationary levels of a QM system is derived by finding solutions to the time-

independent Schrödinger equation25:

EΨ = ĤelecΨ (2.31)

here the electronic energy is given by E and Ĥelec is the electronic Hamiltonian ex-

pressed as an operator. This represents an eigenvalue problem such that the eigen-

values of Ĥelec represent the total electronic energies associated with the ground and

various excited states of the system. The ground state energy of the system is given

by the lowest eigenvalue of equation (2.31). We shall denote this eigenvalue as E0

and the corresponding ground state wavefunction as Ψ0. Finding these eigenvalues

corresponds to finding the ground state energy and excited states of the system. A

method to find the ground state energy is given by the variational principle. The

corresponding electronic energy, Ẽ, of any trial wavefunction, Ψ̃ can be calculated

using:

Ẽ =

∫
Ψ̃∗(x1,x2, ...,xn)ĤelecΨ̃(x1,x2, ...,xn)dx1dx2...dxN (2.32)

the variational principle states that for any given trial wavefunction, Ẽ ≥ E0. This

is in some ways obvious, E0 being the global minimum of the electronic energy, by

definition therefore any other point in the electronic configuration space must have

a higher energy. However, we can use this to show that the relative quality of a trial

wavefunction can be assessed by its energy, improved wavefunctions having lower

energies than their more approximate counterparts.

We have now defined the constrained minimisation problem that constitutes elec-

tronic structure theory. Essentially we wish to minimize the electronic energy of

a trial wavefunction, with respect to the weights of its basis set functions, c. This

is subject to the constraint (so long as our basis functions are orthonormal) that

the squared values of the columns of c sum to 1. In practice, however, this is an ex-

tremely difficult problem. Directly finding solutions to the electronic Hamiltonian is

complicated by the presence of the electron-electron repulsion term. This constitutes

a notoriously difficult many-body problem, making the electronic energy surface a

complicated function of c. For this reason a large variety of techniques have been

developed based around forming approximations to the true electronic Hamiltonian.

In the following we shall derive Hartree-Fock theory, one of the first developed ap-

proaches, that conveniently demonstrates some of the fundamental properties of ab

initio calculations. This will be followed by the more modern and popular Density

Functional Theory (DFT), that is used extensively throughout this work.
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2.2.1.4. Hartree-Fock Theory

As one of the first methods developed for the approximate solution of the Schrödinger

equation26, the Hartree-Fock method is frequently used as an introduction to the

field of electronic structure theory. In fact, the Hartree-Fock equations arise naturally

through the use of a Slater determinant to represent the many-electron wavefunction

of the system. This is due to the fact that the Slater determinant is too simplistic

to represent all possible many-body wavefunctions, making its use inherently ap-

proximate and leading to simplifications of the electronic Hamiltonian. More exact

methods, such as full configuration interaction, make use of a linear combination of

Slater determinants in order provide a complete description of the many-body wave-

function24.

The fundamental effect of employing a Slater determinant is to replace the electron-

electron term of equation (2.30) with a mean field term, such that each electron only

encounters the average effect of every other electron within the system. This is given

by the Fock operator f̂ :

f̂ = ĥ+

N∑
j

v̂Cj − v̂Exj (2.33)

considering the various terms in more detail:

ĥ = −1

2

N∑
i

∇2
i −

N∑
i

M∑
I=1

qI
riI

(2.34)

this is the core Hamiltonian operator and contains all of the truly single electron

terms of equation (2.30). These are preserved unchanged and are simple to solve.

Next is the Coulomb operator:

vCj χi(x1) =

∫
|χj(x2)|2

1

r12
dx2χi(x1) (2.35)

as may be guessed, this accounts for the charge-charge interactions of the electrons.

However this is no longer a many-body problem but a series of effective single-electron

integrals. Electrons are considered as uncorrelated with one another and as will be

discussed this is the major short-coming of the Hartree-Fock approach. The final

term is known as the exchange operator:

vEXj χi(x1) =

∫
χ∗j (x2)χi(x2)

1

r12
dx2χj(x1) (2.36)

this term is a purely quantum effect, having no analogous classical equivalent, that

arises from the electron anti-symmetry requirement. The forms of the Coulombic and
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exchange operators are noted to be dependent on the value of the wavefunction. For

this reason the Hartree-Fock equations pose a non-linear problem and must be solved

self-consistently, through an iterative procedure. This is known as a self-consistent

field (SCF) procedure.

As mentioned above, the HF approach does not treat correlation effects between

electrons. This causes HF to consistently overestimate the ground state energy. The

correlation energy of a system is in fact defined as the difference between the best

estimate of the ground-state using HF theory and the true ground state energy of the

system. Despite its shortcomings however HF is still employed in molecular calcula-

tions.

2.2.1.5. Density Functional Theory

The calculations in this work are based around the method of Density Functional

Theory (DFT)27, a more modern technique, popularly used across a range of applica-

tions28. The fundamental quantity of DFT is the charge density, given by:

n(r1) = N

∫
. . .

∫
|Ψ(x1,x2, . . . ,xN )|2dω1dx2 . . . dxN (2.37)

here we are carrying out an integration of the many-electron wavefunction of the sys-

tem over all electronic degrees of freedom but the spatial of the first electron. As we

have removed all spin variables the charge density is independent of spin. The charge

density is a much simpler description of the electronic component of the system, but

importantly it has been shown that the ground state wavefunction of a system can be

uniquely mapped to a ground state density and vice-versa. In principle we can now

define a series of functionals that act on the charge density to give the energy of the

system:

E[n(r)] = T [n(r)] + V [n(r)] + U [n(r)] (2.38)

the three terms from (2.30) are given by their functional equivalents, T for the ki-

netic energy of the electrons, V the electron-nucleus interaction and U the electron-

electron term. Whilst the form of the V functional is trivially derived, there is no

known expression for T or U . How this problem is handled has come to define the

various forms of DFT. The most successful, and seemingly ubiquitous in modern

computational chemistry approaches, is known as the Kohn-Sham formalism29, given

by:

T + U = T0 + U0 + Uxc (2.39)

here T0 is the functional giving the kinetic energy of a set of N non-interacting elec-
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trons:

T0 =
1

2

N∑
i

∫
ψi∇2ψidr (2.40)

whilst equivalently U0 is the classical electron-electron Coulombic repulsion term:

U0[n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r− r′| drdr′ (2.41)

this can be directly compared with v̂C and is often known as the Hartree energy.

This leaves the final term Uxc, the exchange-correlation functional, the correct form

of which also remains unknown. This term encompasses all of the non-classical ex-

change and correlation effects of electron interaction, as well as the correction to

the kinetic energy. It may seem that the situation has not improved much. However

this formulation has the significant advantage compared to equation (2.38) that the

contribution of the unknown, Uxc is much smaller than the unknown terms T and

U , the majority of the physics of the system being captured by U0 and T0. Using

equation (2.39) and the variational principle gives the set of N Kohn-Sham equations:[
−1

2
∇2
i −

M∑
I

qI
r1I

+

∫
n(r2)

r12
dr2 + VXC(r1)

]
ψi(r1) = εiψi(r1) (2.42)

VXC(r) =
δUXC(n(r))

δn(r)
(2.43)

where εi is the energy of ith wavefunction, and the use of δ denotes a functional

derivative. This is effectively the Schrödinger equation for a set of N non-interacting

electrons in a fictional potential that gives the same ground state density as the po-

tential of the real interacting system. A Slater determinant is able to exactly repre-

sent the many-electron wavefunction of a non-interacting system and hence is suit-

able for representation of the charge density under the Kohn-Sham formalism. As

previously with Hartree-Fock theory, we note that the operator of equation (2.42)

contains the electron density and is hence the wavefunction of the system. Thus

solution of the Kohn-Sham equations may be performed iteratively with the SCF

procedure.

Whilst QM theory offers greater potential accuracy than classical approaches, the as-

sociated computational cost is much larger. Both Hartree-Fock and DFT calculations

bear a computational cost that scales as O(M3). This has prohibited its wide-spread

application in free energy calculations; until recently the required computing power

has not been widely available. Recently, linear scaling formulations of DFT have been

proposed, making tractable QM calculations of protein-ligand complexes comprising

thousands of atoms.

37



2.2.1.6. Exchange-Correlation Functionals

In practice we are able to partially evaluate the exchange-correlation term. Formu-

lation and improvement of novel approximations to Uxc is a major pre-occupation in

the study of DFT. There are numerous constraints that can be applied to the form of

the functional and the use of ideal reference systems is popular. The first and most

basic of the proposed functionals is the Local Density Approximation (LDA)30:

ULDAxc [n(r)] =

∫
n(r)εxc[n(r)]dr (2.44)

where εxc is the exchange-correlation functional of the homogeneous electron gas of

matching density. Using the exchange-correlation contribution of such an idealised

reference system is obviously quite rudimentary and not particularly realistic. How-

ever it can provide surprising realism for many solid-state systems and forms an

important starting point for the construction of more sophisticated functionals. Con-

sidering separately the two parts of εxc, the exchange contribution is known and can

be expressed simply:

ULDAx [n(r)] = −3

2

(
3

4π

) 1
3
∫

(nα(r))
4
3 + (nβ(r))

4
3dr (2.45)

where nα and nβ are the up spin and down spin contributions to the electron density.

The correlation contribution is more problematic as no correct analytical expression

is known, while various suggestions have been made based on parameterisation ap-

proaches31. This is discussed in slightly more detail in section 2.6.

Although use of the LDA functional provides a functional with the correct properties

it is not frequently used for biomolecular simulations. Instead a class of function-

als known as generalised gradient approximations (GGA) are more commonly used.

These include terms involving the gradient of the electron density to provide a more

powerful description of exchange and correlation. There are a great many different

GGA functionals, and their forms are somewhat more complex than the LDA. For

this reason we shall not consider them in detail, but content ourselves with noting

the popular Perdew-Burke-Ernzerhof (PBE)32 functional:

UPBEc =

∫
εc[n(r)] +H[n(r),∇n(r)]dr (2.46)

UPBEx =

∫
εx[n(r)]Fx[n(r),∇n(r)]dr (2.47)

this is developed from the uniform electron gas, where H and Fx are additional cor-

rections dependent also on the gradient of the density, ∇n(r). The PBE functional

has been shown to offer a good compromise between speed and accuracy in describ-

ing biological compounds33, and is frequently used in this context34,35,36,37,38.
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2.2.1.7. Plane Wave Basis Sets

Whilst the linear combination of atomic orbitals approach provides an intuitive

method for the construction of molecular orbitals a popular alternative has arisen

through the use of plane waves. Heavily used in the context of solid-state systems,

plane waves provide a natural and powerful description of periodic systems30.

ψ(r) =
∑
G

cG exp[iG.r] (2.48)

where G are defined as reciprocal lattice vectors, defining waves of different frequency

and direction, cG are complex coefficients and i =
√
−1. Unlike atomic centred basis

sets, plane waves are evenly spaced throughout the volume of the simulation cell. As

previously noted, to truly represent ψ, an infinite number of plane waves would be

required so instead the number of plane waves is truncated at a set number. A great

advantage of plane waves however, is that the size of the basis set can be easily and

systematically varied. Typically the size of the basis is determined through use of the

kinetic cut off energy:

∇2 exp[iG.r] =
|G|2

2
≤ Ecut (2.49)

where Ecut is the cut off value used for the kinetic energy term. The magnitude of cG

is inversely proportional to the magnitude of G and hence high energy plane waves

can be excluded without greatly influencing the accuracy of ψ. In practice an appro-

priate value of Ecut must be found for any given system of interest.

As plane waves propagate throughout the entire volume of the system, the number

of plane waves associated with a particular value of Ecut increases with the size of

the simulation cell. For this reason, the computational cost of plane wave DFT im-

plementations increase as a function of not only the number of electrons but also the

size of the periodic box.

An additional shortcoming of plane waves is that they are poorly suited to describing

electrons in non-valence orbitals19. These core electrons tend to require large num-

bers of plane waves to be accurately described and additionally the wavefunctions of

valence electrons in the core region tend to oscillate rapidly also making them diffi-

cult to describe. Explicit treatment of the core electrons can be avoided by noting

that they are largely invariant with respect to the environment of an atom. Thus

rather than explicitly modelling the core electrons their effect is replaced by a modi-

fied potential that mimics their inclusion (see figure 2.1). Such pseudopotentials can

be formulated on a number of criteria, one of these being norm conservation. This

requires that the wavefunction generated with a pseudopotential, matches the density

of the true wavefunction. In general the use of pseudopotentials considerably reduces
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Figure 2.1.: Diagrammatic pseudopotential representation, taken from Payne et al.39

The true nuclear-electron potential Z/r and the true wavefunction, ψV as distance
from the nucleus increases. The pseudopotential Vpseudo replaces Z/r and gives rise
to the pseudo wavefunction ψpseudo. At the distance from the nucleus, rc, the pseu-
dopotential and pseudo wavefunction become equal to the true potential and wave-
function.

the computational cost of plane wave calculations with only minimal compromises in

accuracy.

2.2.2. Classical Theory

The rationale for classical energy models is the approximation of true energy surfaces

through the use of potentials with simple functional forms and fitted parameters.

The simple form of the potentials used are easy to calculate, hence making them well

suited to describing large molecular systems. The dependence on parameters greatly

limits their generality. This approach avoids directly considering the electronic de-

grees of freedom of the system. Replacing the complex nature of the electronic com-

ponent is the underlying cause of the high degree of parameterisation required for

classical models. Excellent efficiency savings in computational effort of several or-

ders of magnitude are produced however. A collection of potentials and parameters

is known as a force field model. The functional form of the AMBER force field40, a

popular and well known choice used throughout this work, is given by:

V (x) =
∑
bonds

Kb(b− b0)2 +
∑
angles

Kθ(θ − θ0)2 +
∑

torsions

(
Vn
2

)
(1 + cos[nφ− φ0])

+
∑

nonbonded

(
Aij
r12ij

)
−
(
Bij
r6ij

)
+

(
qiqj

4πε0rij

)
(2.50)
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the energy of the system is given as the sum of a series of terms each designed to

approximate an actual physical interaction between atoms. Covalent interactions are

described by the first term which makes use of potential form known as a harmonic

oscillator. Here, the energy of each covalent bond, is a function of the deviation of

the actual bond length, b, from some ideal bond length, b0, multiplied by the force

constant, Kb, where b is the same as b0 the energy of this potential is zero. However,

the energy for squashing or stretching the bond increases quadratically. The angle

term is likewise a harmonic oscillator dependent on deviation of the angle θ formed

between three bonded atoms, from an ideal angle, θ0 (figure 2.2a). The torsion term

is more complex due to the need to represent multiple minima. The torsion angle φ

is defined between fours of bonded atoms as shown in 2.2b. In parallel with the bond

and angle terms Vn acts as the spring constant, and φ0 gives the position of the first

peak. Additionally n is multiplicity of the torsion, defining the number of minima

within a full 360o turn.

The final components give the energy contributions from all pairings of atoms that

are not covalently bonded. rij is the interatomic separation between atoms i and j.

The first two terms containing A and B comprise a Lennard-Jones potential, which

has multiple roles. At very short ranges the r−12 term dominates giving large energy

penalties as atoms approach one another; this mimics Pauli repulsion effects where

atoms repel one another as their electron orbitals overlap. The higher power of the

r−12 means that it drops off to zero at longer ranges more quickly than the r−6 term.

This gives favourable negative energies at longer ranges to model the effect of at-

tractive van der Waals interactions41. The position of the potentials minima and its

depth are controlled by a combination of the parameters A and B.

The final term accounts for electrostatic interactions within the system, where qi and

qj are the charges of the ith and jth atoms respectively and ε0 is the vacuum permit-

tivity. It is typical for all atoms within classical models to be assigned a non-zero

partial point charge. This is to account for the partial charges arising due to differ-

ences in electronegativities between covalently bonded atoms. Within a molecule,

these energy terms are only calculated between atoms that are separated by at least

three bonds. Where separated by exactly three bonds these so called 1-4 terms are

scaled by an additional factor depending on the force field employed42,40,43.

The functional form of a force field alone is not sufficient to describe the potential

energy surface of a molecular system. These must be combined with sets of parame-

ters that give the correct ideal bond lengths, angles etc. The fact that these must be

determined is the great disadvantage of force field models, as creation of parameter

sets is a computational and labour intensive task achieved by the fitting of simulation

data to match experimental quantities and high-level QM calculations. Many differ-

ent parameter sets have been developed for different applications. Necessarily the use

of fitted parameters limits the generality of different parameter sets which have been
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(a) Bond angles are considered between all triplets
of bonded atoms. This is considered as the small-
est angle formed by the two end atoms with re-
spect to the central atom.

(b) Torsions are formed by groups of four contiguously
bonded atoms and represent rotation around bonds. Pic-
turing two planes that are defined by passing through the
first and last three atoms in the quartet, the torsion angle is
given by the intersection of these planes. This is equivalent
to the angle of intersection of the normal vectors of each
plane as shown above.

Figure 2.2.
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derived under specific chemical and physical conditions. Details of the parameter sets

used in this work and their derivation are given below.

Another notable disadvantage of the functional form of (2.50) is that it is too sim-

plistic to account for various physical effects. Covalent bonds are unable to break

for instance. As bonds are stretched the energy of their interaction should drop off

towards a constant value. However, the form of the harmonic oscillator models the

energy as continuously increasing. This prohibits the use of force field models in the

study of chemical reactions or enzymes where bonds must necessarily be allowed to

break and form. Additionally (2.50) does not include any terms that describe polari-

sation effects between molecules. Although various extensions have been proposed to

develop polarisable force field models, these remain in a tentative and experimental

stage44; an implementation extending polarisation effects to classical models is given

in section 2.2.2.5.

2.2.2.1. AMBER 94 Force Field (FF94)

FF94 was the first force field developed that matched the functional form of equa-

tion (2.50). For this reason, an in-depth examination is given here of the process that

was used to derive these parameters. The FF94 parameters are based on the preced-

ing force field by Weiner et al.42,45, that was designed primarily for simulation work

with implicit solvation models. FF94 was designed with the aim of providing a force

field model that would be compatible with explicit solvent simulations using prevail-

ing models of water through a consistent algorithmic approach. The scope of the

force field was limited to the fitting of parameters for prevalent biological monomers,

namely amino acids and DNA bases40.

The bond and angle parameters were taken directly from the Weiner et al. force field

and modified to reproduce the experimental vibrational frequencies of small molecule

fragments that make up amino acids and DNA bases. Dihedral parameters were

fitted to reproduce the conformational energies of 2nd order Møller-Plesset perturba-

tion theory (a high level QM technique). Lennard-Jones parameters were fitted to

reproduce empirical densities and enthalpies of vaporisation in liquid simulations of

chemically representative compounds. For instance, parameters for sp3 hybridised

carbon and aliphatic hydrogen were fitted to liquid methane, ethane, propane and

butane, whilst aromatic carbon and hydrogen were fitted to liquid benzene. Parame-

ters for other elements - nitrogen, oxygen and sulphur - were taken directly from the

OPLS force field. Hydrogen parameters were given further post hoc modifications

to account for the particular sensitivity of hydrogen to its chemical environment. Fi-

nally partial charges for all atoms were determined using the Restrained Electrostatic

Potential (RESP) fitting46, to multiple conformations, at the Hartree-Fock/6-31G*

level. A scaling factor of 1.0
1.2 for 1-4 interactions is used for this force field and its

derivatives.
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2.2.2.2. AMBER 99SB Force Field (FF99SB)

The development of the AMBER 99 force field was derived directly from FF94, and

focussed on the improvement of torsional terms through the inclusion of higher order

Fourier terms43. Considerable improvements versus FF94 were observed in recreating

conformational energies at the GVB/LMP2 level. Further improvements to protein

backbone torsion angles were made and released as FF99SB47. FF99SB is used exten-

sively throughout this work to model an Adenosine-Thymidine DNA base pair and

full protein-ligand systems.

2.2.2.3. General Amber Force Field (GAFF)

The aim of GAFF48 was to provide a generic set of force field parameters suitable for

a wide variety of small molecules relevant to drug design. This provides a particular

challenge, as it is necessary to derive parameters that cover a sizeable portion of

chemical space. Combined however with effective algorithms for the determination

of partial charges, such as RESP and AM1-bcc, GAFF greatly improved the ease of

applying force field models to novel compounds.

GAFF parameters were designed to cover small organic compounds comprised of car-

bon, oxygen, nitrogen, phosphorus, hydrogen, sulphur and halogens. The chemical

range of all of these compounds was covered by 35 unique atom types. In principle

GAFF can be applied out of the box to any compound comprised of the above ele-

ments.

The majority of bond and angle parameters were derived as averaged values taken

from experimental X-ray and neutron diffraction data49,50. Additional parameters

where also derived based on MP2/6-31G∗ calculations. Owing to the large number

of atom types, the basic GAFF parameter set is not complete, but included are em-

pirical rules for extrapolating missing parameters from those provided. Torsional pa-

rameters were derived by fitting potentials to recreate torsional scans at the MP4/6-

311G(d,p) level for a set of 200 model molecules. Lennard-Jones parameters were

adapted directly from the FF99 force field.

2.2.2.4. Water Models

As the ubiquitous biological solvent, considerable effort has been invested in develop-

ing an appropriate classical model for water. This has proved challenging however,

due to the unusual properties of water and the diversity of roles it fulfil20. Very many

different potentials have been proposed51. We shall here discuss only the two em-

ployed in this work. These are the TIP3P and TIP4P models52.

A diagrammatic representation of the two models is given in figure 2.3 along with the
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(a) TIP3P
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(b) TIP4P

Atom TIP3P TIP4P

O -0.834 0.00
H 0.417 0.52
M N/A -1.04

(c) Atomic charges for each
model

Figure 2.3.: TIP3P and TIP4P water models.

charges associated with the relevant atoms. The internal geometry of each water is

kept rigid, allowing only three rotational and three translational degrees of freedom

per molecule. The key difference between the models is the inclusion of a fourth

dummy atom on the TIP4P model. This dummy atom is assigned a partial charge.

However, it does not have any Lennard-Jones interactions. Inclusion of the additional

site greatly improves the distribution of charge and gives more accurate densities53.

Full parameters for both models are given by Jorgensen et al.52. Although the TIP4P

model offers benefits in terms of accuracy, the inclusion of an additional point charge

increases the computational cost.

2.2.2.5. Drude Oscillators

Multiple extensions to equation (2.50) have been proposed to account for polarisation

effects within classical systems. Here we shall consider the use of Drude oscillators54.

Firstly each atom, i, in the model system is assigned a point charge ni and a mobile

Drude particle. The Drude particle carries a point charge di that does not interact

electrostatically with ni, instead each Drude particle is anchored to its corresponding

nucleus by a harmonic potential with a sufficiently large spring constant, kdi , to pre-

vent significant displacement. The charge di is able to interact electrostatically with

all other charges within the system, except ni. We also define the net charge on each

atom qi = ni + di. Additionally, The energetic contribution of the Drude particles is
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given by:

UDrude(rd;x) =
∑
i=1

kdi |rdi |2 +
∑
i=1

∑
j>i

kedidj
rij

+
∑
I=1

∑
j 6=I

kenIdj
rIj

+
∑
i=1

∑
j>i

kenInJ
rIJ

(2.51)

where ke is Coulomb’s constant, rdi denotes the displacement vector between the ith

Drude particle and its paired nucleus. Values of r with multiple subscripts denote

Cartesian distances between system components, capital letters being nuclei and

lower case letters Drude particles. All of the distances can be written in terms of rd

and x, the nuclear configuration of the system, allowing UDrude to be expressed as a

function of these. The system is treated using the Born-Oppenheimer approximation,

with the Drude particles considered as electronic degrees of freedom that relax instan-

taneously to their minimum for any given configuration of nuclei. This is denoted

by the only parametric dependence of equation (2.51) on x. Thus we write the polar

contribution to the potential energy:

Upolar(x) = min{UDrude(x)} (2.52)

this represents the miminum energy configuration of the Drude degrees of freedom,

rd, for a given configuration of nuclei. For each Drude particle, we have introduced

two free parameters, di and kd that control the polarisability of each atom. Smaller

values of the spring constant increase the polarisability of an atom by allowing greater

displacement of the drude particle from the nucleus. On the other hand, increasing

the magnitude of di, typically by making it more negative to simulate a polarised

electron density, will also increase the polarisability. Both of these parameters can be

related to a single term, the isotropic polarisability, α55:

αi =
d2i
kdi

(2.53)

typically values of kdi are chosen so as to minimize potential numerical problems that

can arise due to large displacements of Drude particles from their respective nuclei.

Specific values of αi can then be achieved by fitting the appropriate value of di.

2.2.3. Ewald Summation

The treatment of electrostatics in molecular simulation is a well established problem,

especially compounded by the common use of periodic boundary conditions. The
1
r form of the electrostatic potential leads it to form very long-ranged interactions.

This potentially allows interactions between charges to span periodic images and

requires that such potentials are modelled appropriately. Ewald summation56 pro-
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vides an efficient and frequently used approach to calculate electrostatic energies in

infinite periodic systems. We will here deal with only a very simple qualitative de-

scription. Starting by slightly formalising the contribution of the Coulomb term from

equation (2.50):

UCoul =
∑
i

∑
j>i

keqiqj
|rij |

(2.54)

where rij is the displacement vector between the ith and jth atom. We now expand

this to account for interactions arising through periodic boundary conditions:

UCoul =

∞∑
n

∑
i

∑
j>i

keqiqj
(rij + n)

(2.55)

where n is the displacement vector between the central image and the periodic image

under consideration and we are summing over all images. It can be shown that this

series is only conditionally convergent, i.e. the order in which the terms are consid-

ered changes the answer. Naively attempting to solve equation (2.55) is therefore a

very difficult process and has lead to the development of alternative approaches such

as the Ewald summation and its extension Particle Mesh Ewald (PME)57. The basic

insight is that equation (2.55) can be separated into short range terms that converge

quickly, and longer range terms that converge slowly, through the introduction of

Gaussian charge distributions that screen the interactions of the charges. The final

result for the Ewald energy, UEwald:

UEwald =
1

2

N∑
i=1

N∑
j=1

( ∞∑
n

qiqj
erfc[κ(rij + n)]

rij + n
+ (2.56)

1

πL3

∑
k 6=0

4π2qiqj
|k|2 exp

[−|k|2
4κ2

]
cos[k · rij ]

)
−

κ

π
1
2

N∑
i=1

q2i +
2π

3L3

∣∣∣∣∣
N∑
i=1

qiri

∣∣∣∣∣
2

(2.57)

where we assume a cubic system of length L and carry out a summation over the set

of reciprocal lattice vectors k = 2πn
L2 . κ is a free parameter representing the width

of the Gaussian distribution used in screening the charges. The erfc is the complen-

tary error function, that has a steep transition between 0 and 1. Thus by choosing

an appropriately large value of κ the first sum can be made such that only n = 0,

i.e. the sum over charges in the central image, contributes significantly and the rest

can be truncated. The larger the value of κ used the greater the number of terms

are needed in the second sum over the reciprocal lattice vectors, but this provides a

straight forward convergent series.
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Particle Mesh Ewald extensions are based around the introduction of the fast Fourier

transformation (FFT) to handle the sums in reciprocal space. As the FFT is a dis-

crete operation it requires the potentials under consideration to be evaluated at

points on a grid. The use of the FFT provides a computational cost that scales as

O(N logN) compared with O(N2) for conventional Ewald summation.
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2.3. Sampling Methods

Although the theory of statistical mechanics provides powerful tools for the treatment

of thermodynamic systems, large practical difficulties remain. Typical molecular sys-

tems have a very high (3N) dimensionality but only small, intricately shaped, regions

of the phase space contribute meaningfully to ensemble average values. This prob-

lem precludes the use of direct integration techniques to derive exact solutions for

systems of interest. Instead computer simulation techniques have arisen as an alter-

native approach to collect statistically meaningful information. These techniques

are employed to generate a collection of configurations that have the correct Boltz-

mann distribution of states and can be used in the evaluation of ensemble average

properties.

2.3.1. Molecular Dynamics (MD)

MD makes use of Newton’s Second Law of Motion22:

ai(t) =
Fi(t)

mi
(2.58)

for a given configuration of a molecular system, at time t, the forces acting upon the

ith atom, Fi are accessible, and can be related to the associated set of accelerations,

ai, through the mass of each individual atom mi. The formal definition of the forces

acting within an isolated system is given by:

Fi(t) = −dU(x(t))

dxi
(2.59)

such that the forces, Fi(t), are given by the negative gradient of the potential energy

surface of the atomic coordinates at time t. This provides sufficient information to

advance the system through time taking into account the current velocities and the

accelerations to give a new set of atomic velocities and positions. This can be written

as the second order differential equation problem:

d2xi(t)

dt2
= −dU(x(t))

dximi
(2.60)

solving an equation of this form requires the boundary conditions xi(0) i.e. the start-

ing configuration of the system and dxi(0)
dt = vi(0), i.e. the starting velocities. Ideally

a closed form solution of equation (2.60) would be possible. However, we are faced

with a notorious many body problem and are forced to fall back on numerical integra-

tion techniques. This is a very broad field and will not be covered here. However a

summary of some notable techniques including those used throughout this work are

included in appendix B.
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At present we have a formulation of MD that conserves energy, corresponding to the

NVE ensemble. Energy exchanges back and forth between the potential and kinetic

components of the system but the total energy remains constant. In order to model

different ensembles we need to extend the formulation to produce a Boltzmann dis-

tribution of states. This is achieved through the use of thermostats, algorithms that

modify the velocities or forces to enforce a desired distribution. There are various

forms of thermostat with different advantages and use cases. We shall here consider

only the Langevin thermostat58. This is implemented through modifying the force

term at every time step:

FLi (t) = Fi(t)− γmivi(t) + (2γ
1

β
mi)

1
2R(t) (2.61)

here we define the Langevin forces, FLi , in terms of the deterministic forces (equa-

tion (2.59)), a friction term and a ‘kick’ term. R(t) is a Gaussian process, in practice

implemented as a pseudo-random number generator choosing values from a Gaussian

distribution of mean 0 and variance 1. The constant γ is a free parameter, known as

the friction constant. The contrasting roles of the friction and kick terms act together

to give the overall correct Boltzmann distribution, the friction term removing energy

from the system whilst the kick term adds energy. Each particle is thermostated in-

dividually, making this form of thermostat unsuitable for measuring certain dynamic

properties such as diffusion rates. The friction constant controls the behaviour of the

thermostat by modifying the average kick experienced by each atom and the strength

of the friction term.

2.3.2. Monte Carlo (MC)

MC methods have found widespread use across many fields, defined by the use of

stochastic sampling approaches to evaluate system properties. The application of MC

in the calculation of numerical integrals is common. However, we will here consider

the application of Markov chain MC to the exploration of the configuration space of

molecular systems. A Markov chain is formally defined as a system that undergoes

stochastic transitions between states19. Such a system is said to be memoryless, i.e.

the transition probabilities depend only on the current state of the system and not

its previous states.

The hallmark of Markov chain MC is stochastic sampling of a system’s configura-

tion state space. As noted in section 2.1 the state space for molecular systems is

comprised of 3N dimensions with only small regions contributing significantly to

molecular integrals. Stochastically sampling such a phase space näıvely therefore is

very inefficient and the chance of randomly generating a point in the phase space

of the system that is relevant to the equilibrium distribution is vanishly small. This

problem is resolved through the use of importance sampling59; this generates new

50



configurations using an alternative distribution and an acceptance test to recover

the desired Boltzmann distribution. States are added to the Markov chain with the

appropriate probability and hence are weighted equally.

A standard process for the construction of a Markov chain with importance sampling

is given by the Metropolis-Hastings algorithm60:

1. From some starting configuration x1, generate a trial configuration x2 by small

stochastic displacement of x1.

2. Calculate the acceptance probability, P acpt, from x1 and x2.

3. Draw a random number, r, from a uniform distribution in the range 0 to 1.

4. If r is less than P acpt, add x2 to the Markov chain, x2 becomes x1.

5. If r is greater than P acpt, add another copy of x1 to the Markov chain.

6. Repeat from 1. as desired.

As stated above, a Markov chain requires that the chance of accepting a new con-

figuration should depend only on the current state and the proposed state. This is

reflected in the acceptance probability, known as the Metropolis test, given by:

P acpt(x1 → x2) = min

(
1,
P (x2)Pg(x2 → x1)

P (x1)Pg(x1 → x2)

)
(2.62)

as defined previously, P denotes the Boltzmann factor, such that:

P (x2)

P (x1)
= exp [−β(U(x2)− U(x1))] (2.63)

additionally, Pg(x1 → x2) represents the probability of generating configuration x2

from x1. The value of this term is dependent on the procedure used in generating

trial configurations. In the case outlined above the Pg terms will cancel so long as the

displacements are drawn from a distribution symmetrical about zero. The difference

between x1 and x2 can be arbitrarily large. However, using stochastic displacement,

the chance of generating a viable configuration is closely tied to the size of the move.

In practice, the size of the average displacement is tuned such that a reasonable ac-

ceptance rate is achieved. This leaves the acceptance test for the Metropolis-Hastings

algorithm as:

P acpt(x1 → x2) = min (1, exp [−β(U(x2)− U(x1))]) (2.64)

the appropriate acceptance tests for more sophisticated structure generation pro-

cedures and their application to hybrid free energy calculations are considered in

section 2.5. The acceptance test is chosen such that the structures accepted into

the Markov chain follow the desired Boltzmann distribution. How this works can be
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demonstrated through the concept of a limiting (stationary) distribution. We start by

defining the transition operator, T̂, that acts on probability distributions19:

T̂pi(x) = pi+1(x) (2.65)

where pi(x) is some arbitrary distribution over configuration space. The limiting

distribution of T̂ is defined as:

p(x)lim = lim
i→∞

pi(x) (2.66)

thus meeting the criteria:

T̂plim(x) = plim(x) (2.67)

rationalising the alternative name of stationary distribution as it is unaltered by

the application of T̂. As developed previously plim is an eigenfunction of T̂ with an

eigenvalue of 1. In practice we do not deal directly with probability distributions

but instead with a series of configurations. However, the process is analogous. By

successive applications of a transition operator to each configuration, the limiting

distribution is approached for the states within the Markov chain. We wish to de-

fine T̂ therefore such that the limiting distribution corresponds to the equilibrium

Boltzmann distribution. This is given by the condition19:∑
j

P (xi)T (xi → xj) =
∑
j

P (xj)T (xj → xi) (2.68)

where T (x1 → x2) is the probability of the Markov chain transitioning from x1 to

x2. In practice a more restrictive condition is used, known as detailed balance. Here

equation (2.68) is satisfied by ensuring the condition is met for every j:

P (x1)T (x1 → x2) = P (x2)T (x2 → x1) (2.69)

the transition probability can be decomposed into the product of the probability of

generating a configuration and the probability of accepting a configuration:

P (x1)Pg(x1 → x2)P
acpt(x1 → x2) = P (x2)Pg(x2 → x1)P

acpt(x2 → x1) (2.70)

for here, it can be shown that the Metropolis acceptance test meets the detailed

balance criterion:

P (x1)Pg(x1 → x2) min

[
1,
P (x2)Pg(x2 → x1)

P (x1)Pg(x1 → x2)

]
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= P (x2)Pg(x2 → x1) min

[
1,
P (x1)Pg(x1 → x2)

P (x2)Pg(x2 → x1)

]
(2.71)

min[P (x1)Pg(x1 →x2), P (x2)Pg(x2 → x1)]

= min [P (x2)Pg(x2 → x1), P (x1)Pg(x1 → x2)] (2.72)

where we have multiplied into the brackets and cancelled the resulting fractions.
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2.4. Free Energy Difference Estimation

Whilst it is in principle possible to find the free energy of the thermodynamic system

through direct numerical solution of the partition function, for biologically relevant

molecular systems this is too complex to attempt. Instead free energy calculations

focus on calculating the free energy difference between two thermodynamic states

without directly calculating the partition function of either end point. There are

many different approaches to this form of calculation. However in this work we shall

make use primarily of a number of equilibrium techniques collectively referred to as

free energy perturbation (FEP). These constitute three different free energy differ-

ence estimators, each of which shall be derived and motivated in the following section.

The underlying idea behind all these approaches is that a free energy difference can

be expressed in terms of one or more ensemble averages1.

When calculating a free energy difference between two states it is convenient to de-

fine function that describes a smooth transition between the end-points. The most

frequently used form is given by:

Uλ = λU1 + (1− λ)U0 (2.73)

where U0 and U1 are the potential energy function of the end-points, denoted as

states 0 and 1 respectively, and λ is a scaling factor taking a value between zero

and one. The functional dependence of U on x has been skipped here for clarity.

This is referred to as the λ-coupling approach and will be used, at least implicitly,

throughout this section.

2.4.1. The Zwanzig Equation

This is also known as exponential averaging, or the perturbative method. This is the

first derived of the estimators we shall consider being given by Zwanzig in 19542. The

derivation is given as follows:

∆A0→1 = A1 −A0 (2.74)

= − 1

β
ln
Z1

Z0
(2.75)

= − 1

β
ln

∫
exp [−βU1] dr

Z0
(2.76)

= − 1

β
ln

∫
exp [−βU1] exp [−β(U0 − U0)] dr

Z0
(2.77)

= − 1

β
ln

∫
exp [−βU0] exp [−β(U1 − U0)] dr

Z0
(2.78)

= − 1

β
ln 〈exp [−β(U1 − U0)]〉0 (2.79)
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= − 1

β
ln 〈exp [−β∆U ]〉0 (2.80)

where ∆U = U1 − U0 and the ensemble average is over state 0. The formulation of

the Zwanzig equation provides the convenient property that it is based on a single

ensemble average, hence only requiring MD or MC sampling of one state. This fact

is used profitably to calculate MM to QM free energy differences efficiently, as will

be discussed in section 2.5. However, the Zwanzig equation has some notable draw-

backs. The exponential term within the ensemble average leads to poor numerical

behaviour as snapshots are weighted unevenly. Thus individual configurations can

have a disproportionately strong influence on the ensemble average, making it diffi-

cult to assess whether a calculation has converged23. There is no way to rule out that

there is not some, as yet unsampled, configuration that will contribute strongly to

the free energy difference. This effect lowers the efficiency of the operator requiring

the end-states of the calculation to be more similar to one another than other esti-

mators. This increases the number of intermediate windows that must be used for a

perturbation and leads to the Zwanzig equation not being as commonly used in free

energy calculations19.

2.4.2. Thermodynamic Integration (TI)

Also known as the integration method. This estimator, given by Kirkwood4, is de-

rived explicitly using the λ coupling approach:

∆A0→1 = A1 −A0 (2.81)

=

∫ 1

0

∂Aλ
∂λ

dλ (2.82)

=

∫ 1

0

∂[− 1
β lnZλ]

∂λ
dλ (2.83)

= − 1

β

∫ 1

0

∂[lnZλ]

∂Zλ

∂Zλ
∂λ

dλ (2.84)

= − 1

β

∫ 1

0

1

Zλ

∂Zλ
∂λ

dλ (2.85)

= − 1

β

∫ 1

0

1

Zλ

∂[
∫

exp [−βUλ] dr]

∂λ
dλ (2.86)

= − 1

β

∫ 1

0

1

Zλ

∫
∂[exp [−βUλ]]

∂λ
drdλ (2.87)

= − 1

β

∫ 1

0

1

Zλ

∫
∂[exp [−βUλ]]

∂[−βUλ]

∂[−βUλ]

∂λ
drdλ (2.88)

=

∫ 1

0

1

Zλ

∫
exp [−βUλ]

∂[Uλ]

∂λ
drdλ (2.89)

=

∫ 1

0

∫
exp [−βUλ] ∂[Uλ]∂λ

Zλ
drdλ (2.90)
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=

∫ 1

0

〈
∂Uλ
∂λ

〉
λ

dλ (2.91)

=

∫ 1

0

〈
∂[λU1 + (1− λ)U0]

∂λ

〉
λ

dλ (2.92)

=

∫ 1

0
〈U1 − U0〉λ dλ (2.93)

the resulting integral can be evaluated using numerical quadrature approaches as

outlined in appendix A. In contrast to the Zwanzig equation this expression requires

the evaluation of at least two ensemble averages for solution of the integral. Typi-

cally however, the integral is further subdivided at multiple intermediate values of

λ. The great benefit of TI is that it avoids the exponential weighting of the Zwanzig

equation, making it considerably less unstable numerically and giving smoother con-

vergence behaviour1. TI also has the notable advantage that the ensemble average at

each λ-window is dependent only on that value of λ. This allows one retrospectively

to add additional λ points to a calculation without the need to re-evaluate averages

at previously completed λ-windows.

2.4.2.1. Finite-Difference Thermodynamic Integration (FDTI)

For practical reasons the final steps of the previous derivation i.e.:〈
∂Uλ
∂λ

〉
λ

= 〈U1 − U0〉λ (2.94)

can be difficult to implement. This lead to the development of FDTI as a workaround

for this problem and an alternative to regular TI61. Starting as previously:

∆A0→1 = A1 −A0 (2.95)

=

∫ 1

0

∂Aλ
∂λ

dλ (2.96)

we then note the following limit:

∂Aλ
∂λ

= lim
h→0

Aλ+h −Aλ−h
2h

(2.97)

and introduce its finite difference approximation:

lim
h→0

Aλ+h −Aλ−h
2h

≈ Aλ+h −Aλ−h
2h

(2.98)

≈ Aλ→λ+h −Aλ→λ−h
2h

(2.99)

the finite difference approximates the limit well so long as h is sufficiently small. The
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Zwanzig equation is then used to evaluate the free energy differences in this term

giving:

∆A0→1 ≈
∫ 1

0

〈exp [−β(Uλ+h − Uλ)]〉λ − 〈exp [−β(Uλ−h − Uλ)]〉λ
2h

dλ (2.100)

The two ensemble averages in this expression are for the same value of λ and hence

can be evaluated with a single simulation. Although this formulation makes use of

the Zwanzig equation the small values of h used ensure excellent overlap of states and

rapid convergence of the perturbations. The use of FDTI has been reported to offer

superior convergence characteristics to TI61.

2.4.2.2. Replica-Exchange Thermodynamic Integration (RETI)

A further augmentation suggested for TI is the use of Hamiltonian Replica Exchange

(HRE)62. In practice this method is compatible with any of the estimators presented

in this section, however, it is most commonly used in the form of RETI and hence

is considered here. HRE takes the form of a specialised MC move undertaken at

regular intervals through a TI calculation. Such a calculation consists of a number of

simultaneous MC or MD simulations carried out at a range of λ values. A HRE move

attempts to swap configurations between simulations with neighbouring λ values,

subject to the acceptance test63:

PRETIA (xλm,xλn) =

min(1, exp [−β((Uλn(xλm)− Uλn(xλn))− (Uλm(xλm)− Uλm(xλn)))]) (2.101)

where λm and λn represent neighbouring λ windows within a calculation. Corre-

spondingly xλm and xλn are configurations generated by sampling at each λ window.

If the move is accepted the configurations are swapped between λ values, xλm becom-

ing xλn and vice versa.

This process is designed to enhance sampling at each λ window by providing access

to a larger volume of configuration space provided by sampling under similar, but

distinct, Hamiltonians. The real advantage of this process is that it comes at almost

no additional computational cost, the only restriction being that computations must

be carried out concurrently.
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2.4.3. Bennett’s Acceptance Ratio (BAR)

The derivation of this estimator is somewhat a more complex than either of the two

proceeding and is not given here in full, but is developed along the following lines3:

∆A0→1 = − 1

β
ln
Z1

Z0
(2.102)

= − 1

β
ln
Z1g(x) exp [−β(U0 + U1)]

Z0g(x) exp [−β(U0 + U1)]
(2.103)

= − 1

β
ln
〈g(x) exp [−βU1]〉0
〈g(x) exp [−βU0]〉1

(2.104)

here g(x) is an arbitrary weighting function, that modifies the potential energy sur-

face. As it appears in both the numerator and the denominator, the value of the

weighting function does not influence the free energy difference, but its value will

influence the statistical properties of equation (2.104). As g(x) can be freely chosen,

the best choice is the value of the function that minimises the statistical variance.

The details of this are not given here, but it can be shown that the optimal value is

given by:

g(x) =

(
Z0

n0
exp [−βU1] +

Z1

n1
exp [−βU0]

)−1
(2.105)

substituting equation (2.105) into equation (2.104) gives the final result:

∆A0→1 =
1

β
ln
〈F (U0 − U1 + C)〉1
〈F (U1 − U0 − C)〉0

+ C − 1

β
ln
n1
n0

(2.106)

C = ∆A0→1 +
1

β
ln
n1
n0

(2.107)

here F (x) is the Fermi function F (x) = (1 + exp[βx])−1, whilst n0 and n1 are the

number of snapshots sampled from each state. From an arbitrary initial guess equa-

tions (2.106) and (2.107) are solved self-consistently until a converged estimate of

∆A0→1 is obtained. Here C is a constant that adjusts the relative heights of the po-

tential energy surfaces, U0 and U1. Self-consistent solution gives the near-optimal

value of C that minimises the variance of ∆A0→1. At this value of C, denoted here

as Copt, the condition
〈
f(U0 − U1 + Copt)

〉
1

=
〈
f(U1 − U0 − Copt)

〉
0

is met. BAR is

often considered the most efficient estimator of those presented, as its derivation is

performed with the minimisation of the variance of calculated free energy differences

in mind.
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2.4.4. Free Energy Cycles

Whilst in principle the methods outlined above allow the calculation of free energy

differences between any two thermodynamic states, this does not mean that such cal-

culations are inherently practical to attempt. The greater the difference between the

end points of the calculation the greater the number of λ windows will be required

to evaluate it. Long simulation times at each λ are also required to allow the conver-

gence of ensemble averages as large scale conformational differences may be observed

between windows.

The direct calculation of free energies of binding or solvation can be circumvented

through the use of thermodynamic cycles as shown in figures 2.4a and 2.4b19. At-

tempting to evaluate (in the case of hydration) either of the terms ∆AsolvP or ∆AsolvQ

can be computationally intensive. As the ligand is inserted into the water, large scale

changes in the structure of the solvent to form hydration shells can occur on rela-

tively long timescales. Calculation of relative free energy differences (again in the

case of hydration defined as ∆∆AsolvP→Q = ∆AsolvQ −∆AsolvP ) can be achieved much more

efficiently, through use of the relation:

∆∆AsolvP→Q = ∆AsolvQ −∆AsolvP = ∆A
(aq)
P→Q −∆A

(g)
P→Q (2.108)

calculation of the terms ∆A
(aq)
P→Q and ∆A

(g)
P→Q is comparatively easy due to the inher-

ent state space overlap between thermodynamic states in the same phase. Assuming

that P and Q are similar enough to one another no large shifts within the solvent

structure or protein binding site are likely to occur providing ideal conditions for

free energy calculations to converge quickly. Other practical advantages are offered

through the cancellation of systematic errors in both computational free energy calcu-

lations and experimental determination of free energies. Whilst relative free energies

cannot be used to assess the absolute potency of a potential drug molecule they are

valuable in optimisation procedures. Starting from a lead molecule of demonstrated

efficacy, systematic modifications can be made to explore the nearby chemical space

for increases in binding affinity using relative free energy calculations1.

2.4.5. Single vs Dual Topology Calculations

Calculation of terms such as ∆A
(g)
P→Q, ∆A

(aq)
P→Q and ∆A

(b)
P→Q relies on establishing a

non-physical pathway between different molecules, often referred to as an alchemical

perturbation. This can pose practical challenges as the choice of path is arbitrary

and, to provide optimal convergence, should be chosen to minimise fluctuations in the

free energy as a function of λ.

Use of the single topology approach makes use of λ-coupling as given by equation (2.73)

and requires the simulation of a single ligand molecule. Atoms shared between the
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P(g) Q(g)

P(aq) Q(aq)

∆A
(g)
P→Q

∆A
(aq)
P→Q

∆AsolvP
∆AsolvQ

(a) Relative free energy of hydration cycle

P(aq) Q(aq)

P(b) Q(b)

∆A
(aq)
P→Q

∆A
(b)
P→Q

∆AbindP
∆AbindQ

(b) Relative free energy of binding cycle

Figure 2.4.: Thermodynamic cycles for the calculation of relative free energy differ-
ences of the two ligands P and Q.
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Figure 2.5.: Single topology ligand. The small blue spheres indicate dummy atoms
drawn within the van der Waals radius of a hydrogen atom.

end points of the perturbation are mapped onto one another and the value of λ is

used to scale potential energy functions. Some difficulty is introduced where the end

states have differing numbers of atoms. This requires the introduction of dummy

atoms that make no contribution to the energy but which are gradually switched on

to interact with the rest of the system. Such dummy atoms are normally withdrawn

within the van der Waals radii of their bonding partner (see figure 2.5).

An alternative to single topology approaches is offered through the use of dual topol-

ogy, allowing one to side step the issues of mapping atoms between ligands and

dummy atoms. This makes use of a distinct form of λ-coupling:

Udualλ = U intra0 + U intra1 + λU inter1 + (1− λ)U inter0 + U rest (2.109)

where U inter and U intra are the interaction and intra-molecular energies associated

with the ligand, and U rest is the energy of the system not involving either ligand.

When λ is 0, ligand 0 is fully interacting with the rest of the system and ligand 1 is

in the gas phase, and vice versa when λ is 1. The interaction between the two ligands

is not included at any time. Using Udualλ , equivalent relative free energy differences

can be calculated using the modified thermodynamic cycles in figure 2.6. In the case

of the solvation free energy, the cycle can be reduced to a single calculation as the

contributions of the gas phase free energy difference are implicitly accounted for. For

the binding free energy, it is simple to see that the gas phase contributions within the

cycle cancel out making figure 2.6b directly equivalent to figure 2.4b.
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P(aq) + Q(g) Q(aq) + P(g)

∆∆AsolvP→Q

(a) Relative free energy of hydration calculation

P(aq) + Q(g) Q(aq) + P(g)

P(b) + Q(g) Q(b) + P(g)

∆∆AsolvP→Q

∆∆A
(b)
P→Q

∆AbindP
∆AbindQ

(b) Relative free energy of binding cycle

Figure 2.6.: Dual topology thermodynamic cycles for the calculation of relative free
energy differences of the two ligands P and Q.
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2.4.6. Potential of Mean Force (PMF) Calculations

In parallel with the concept of a potential energy surface we may develop the idea of

a free energy landscape, or PMF, that can be defined formally as64:

A(λ) = − 1

β
ln

∫
δ[λ− γ(x)] exp [−βU(x)] dx (2.110)

where by analogy we have written the free energy as a function of the variable λ,

known in this context as the reaction coordinate, and the corresponding γ is an ar-

bitrary function of the spatial coordinates. The role of γ is to map λ to a chosen

degree of freedom within the system. A simple example would be γ(x) = xzj , denot-

ing the z-axis coordinate of the jth atom within a system. This definition can be

useful to define say the PMF of an ion within an inhomogenous medium such as a

lipid bilayer. As γ is arbitrary however λ can be mapped to any degree of freedom

desired, for instance the value of a torsion angle, or the distance between the centres

of mass of two molecules. This definition can easily be generalised to consider PMFs

over multiple degrees of freedom.

The PMF can be thought of as showing how the free energy of a thermodynamic

state is partitioned over a particular degree of freedom. As there are many arbitrary

ways of quantifying the degrees of freedom of any given system so too there are corre-

sponding PMFs. The physical meaning of A(λ) can be made apparent by noting:

P (λ) = exp[−βA(λ)] = 〈δ[λ− γ(x)]〉 (2.111)

where P (λ) is the probability density of the unconstrained system over λ. Thus,

where an appropriate degree of freedom is chosen for the reaction coordinate, the

PMF offers considerable information about the behaviour properties of the system

under study e.g. prediction of the relative occupancies of different minima.

In theory the PMF could be calculated from an unconstrained simulation by his-

togramming occurrences of different λ values. This can be highly inefficient where

large free energy barriers exist within the PMF however. Several different approaches

have been developed therefore to speed convergence of such calculations. The best

known of these is Umbrella sampling65, however we shall consider use of the potential

of mean constraint force.

Using the formalism of TI and equation (2.110) the free energy change associated

with different values of λ is given by:66

A(λB)−A(λA) =

∫ λB

λA

〈
∂(exp [−β[U(x;λB)− U(x;λA)]])

∂λ

〉
λ

dλ (2.112)

where we are considering the free energy difference between the system at λA and λB
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and the potential energy has been written as parametrically dependent on λ. The

ensemble average can be interpreted as the mean force experienced by a system con-

strained to a particular λ value. By differentiating equation (2.112) with respect to

λ it is easy to see that the slope of the PMF is directly related to the mean force ex-

perienced by a system constrained at the associated λ value. By running a series of

MD simulations with different constrained values of λ, and calculating the magnitude

of the force required to maintain the constraints, the value of dA(λ)
dλ at a number of

points can be determined. These may then be used to determine A(λ) through in-

tegration with, for example, the Euler method (appendix B). Algorithms to enforce

constraints and provide the corresponding forces are widely implemented, for instance

the SHAKE and RATTLE algorithms.67,68

This result can be more intuitively rationalised by noting that any degree of freedom

within a molecular system may be considered as sampling under a potential that

constitutes the averaged effects of the rest of the degrees of freedom of the system.

Equation (2.110), the PMF, can in fact be thought of as the definition of this. If

we accept this interpretation, then we can use equation (2.59) to demonstrate the

relationship between the forces experienced at each λ window and the gradient of the

PMF.
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2.5. Hybrid Quantum and Classical Free Energy Techniques

Owing to the above stated advantages and disadvantages of classical and QM theory

various attempts have been made to combine them in simulation work such as to get

the most out of both5,7,8,69,10. A range of different strategies have been explored and

are developed in technical detail. This is followed by a discussion and comparison of

the collection of techniques that comprise the state of the art and the focus of this

work.

2.5.1. MM/QM

The first, and perhaps most straightforward, combination of MM and QM theory was

developed by Warshel, Levitt and Karplus5 as the so-called QM/MM method, for

which they were awarded 2013 Nobel Prize in Chemistry. They proposed the idea

of embedding a QM region within a classical simulation as a method of studying en-

zyme reaction mechanisms. MM methods are inherently unable to deal with chemical

reactions, as they are cannot capture bond breaking or charge transfer polarisation ef-

fects. Assuming such effects are only relevant within the reaction site of the enzyme,

suitably accurate results can be achieved using this method. By limiting the size of

the QM region, only a fraction of the computational expense is required compared to

treating the whole system at the QM level. This technique has since been widely em-

ployed in the study of biological systems and many others (the reviews Lin & Truhlar

[70] and Senn & Thiel [71] give an impression of the extent of its use and details of

its implementation).

The main technical difficulty in the implementation of QM/MM is dealing with

the interface between the two regions of the system. Covalent bonds that cross the

QM/MM boundary can be handled in a number of ways, by introducing additional

moeities, or special cap atoms that satisfy the electronic requirements of the QM

region72. The treatment of the non-covalent interactions across the boundary may

also be handled with varying degrees of complexity73. The simplest form known as

mechanical embedding, treats the van der Waals forces purely classically and does

not describe Coulomb interactions. More sophisticated electrostatic embedding main-

tains the classical Lennard-Jones interactions, but includes the classical point charges

within the QM Hamiltonian. This allows the MM region to polarise the QM region,

placing it within a more realistic electrostatic context.

The flexibility of QM/MM methods allows them to be used to study a great range of

problems. Although considerably cheaper than pure QM methods, use of a QM/MM

Hamiltonian in free energy calculations is still comparatively expensive. For this

reason specialised approaches for the efficient calculation of free energy differences

have been developed. These can be freely combined with the QM/MM approach,

providing an additional level of improvement.
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2.5.2. QM Corrections with the Zwanzig Equation

Figure 2.7.: Extended MM/QM free energy cycle, diagram taken from ref Beierlein
et al. [6].

As developed fully in section 2.4, the Zwanzig equation is able to express the free

energy difference between two systems in terms of an ensemble average over only a

single state. Noting that the same chemical state, described using different Hamil-

tonians, constitutes separate thermodynamic states we can apply the same process

to calculate the free energy difference between the MM and QM descriptions of the

system:

∆AMM→QM = − 1

β
ln 〈exp [−β(UQM − UMM )]〉MM (2.113)

calculations of this form can be combined with a purely classical thermodynamic

cycle10 to give QM corrections to MM free energy differences (see figure 2.7). How

this is more efficient than a purely quantum calculation is not immediately obvious,

as each MM energy used within the estimator is paired with a QM energy. However,

due to the nature of MD and MC sampling, the consecutive configurations produced

are highly similar. As such there is no value to include all configurations within the

estimator. Instead snapshots are chosen from the trajectory at a constant interval.

In this sense the MM state is being used as a reference state, to produce a series

of uncorrelated snapshots that can be post processed to the QM level. This is far

more efficient than attempting to complete the alchemical perturbation purely at

the QM level, which would requiring sampling of the QM state and would generate

many correlated configurations at great cost. This approach has also been used by a

number of different groups for a range of applications11,12,13,14,6.

Whilst it is common practice to subdivide a perturbation between states using a

λ-coupling approach, in this case any intermediate λ window carries the same compu-

tational cost as sampling under the full QM Hamiltonian. To maintain the efficiency

of the method therefore it is necessary to carry out all MM to QM perturbations in

a single step. This method will be referred to throughout this work as the single-step
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free energy perturbation (SSFEP) approach.

An appealing improvement on this method is offered by the use of enveloping distri-

bution sampling (EDS).74 This approach defines a reference Hamiltonian constructed

from a combination of the MM and QM Hamiltonians, as given by:

UEDS = − 1

β
ln (exp[−βUMM ] + exp[−βUQM ]) (2.114)

where UESD is the reference state potential energy function. An MM to QM free

energy difference can then be ascertained by simulation of the reference Hamiltonian

and use of the Zwanzig equation to perform two individual perturbs to both the MM

and QM states from a single simulation trajectory. As the reference Hamiltonian is

constructed of both Hamiltonians it provides good phase space overlap with both

the MM and QM states. This ensures good convergence of the perturbations from

the reference state. Unfortunately a potential energy function of the form given by

equation (2.114), contains QM contributions and hence sampling of the reference

state will be as computationally intensive as direct sampling of the QM level.

2.5.3. Molecular Mechanics Based Importance Function (MMBIF)

This collection of methods aims to generate an appropriately distributed QM en-

semble from sampling only on an MM potential. The term MMBIF was coined by

Iftimie69,75 from work deriving QM free energy surfaces and reaction rates from MM

potentials. This was adopted by Woods and Mulholland7 and applied to the rela-

tive hydration free energy of water and methane. Using the same free energy cycle

as the SSFEP methodology but using MMBIF to generate ensembles cheaply at the

QM level it is feasible to employ a λ-coupling approach to subdivide the MM to QM

perturbation. This allows the use of (more efficient) estimators than the Zwanzig

equation. In the case of Woods and Mulholland, TI was used. What follows is a tech-

nical development of the technique as used by Iftimie and Mulholland using Multi-

‘Timestepping’ Monte Carlo (MTMC).

MTMC has been used for various applications in computational physics and chem-

istry76,77,7. The basic idea of the technique is to generate a Markov chain at the

QM level. Structures for this Markov chain are, however, not generated through

the Hastings method (stochastic atomic displacements) but instead by sampling on

an auxiliary Markov chain at the MM level. This necessitates the use of a specialised

acceptance test given by:

PMMBIF (x1 → x2) = min (1, exp [−β∆∆U ]) (2.115)

∆∆U = (UQM (x2)− UMM (x2))− (UQM (x1)− UMM (x1)) (2.116)
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the algorithm is given in full as follows7:

1. From some starting configuration x1, carry out a series of MC moves at the

MM level with the Metropolis-Hastings algorithm (see section 2.4) to generate

x2.

2. Get the QM energy of x2 i.e. calculate the value of UQM (x2)

3. Apply the acceptance test equation (2.115)

4. If test passed x2 is added to the Markov chain becomes x1

5. If test failed discard x2 and x1 is again added to the Markov chain

6. Repeat from 1. as desired

The derivation of the acceptance test equation (2.115) is given as follows. Starting

from the general form of the acceptance test at the QM level:

PAcptQM (x1 → x2) = min

(
1,
PQM (x2)Pg(x2 → x1)

PQM (x1)Pg(x1 → x2)

)
(2.117)

using the Boltzmann distribution for the QM state:

PQM (x2)

PQM (x1)
= exp [−β(UQM (x2)− UQM (x1))] (2.118)

we are left with the need to determine,
Pg(x2→x1)
Pg(x1→x2)

. The basis of the technique is that

we use a classical Markov chain to carry out the structure generation process, the

chance of a structure being generated is therefore the outcome of a series of standard

classical MC moves75:

Pg(x1 → x2) =

n∏
i=1

TMM (xi−11 → xi1) (2.119)

here xi1 are the intermediate, classically generated, configurations between x1 and x2

as we define x1 = x0
1 and x2 = xn1 . TMM is the classical transition probability. This is

readily extended to give the quantity we desire:

Pg(x2 → x1)

Pg(x1 → x2)
=

∏n
i=1 TMM (xi1 → xi−11 )∏n
i=1 TMM (xi−11 → xi1)

(2.120)

we use the classical Markov chain detailed balance condition,
TMM (xi1→xi−1

1 )

TMM (xi−1
1 →xi1)

=
PMM (xi−1

1 )

PMM (xi1)
,

to give:

Pg(x2 → x1)

Pg(x1 → x2)
=

∏n
i=1 PMM (xi−11 )∏n
i=1 PMM (xi1)

(2.121)
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=
PMM (x0

1)

PMM (xn1 )
(2.122)

=
PMM (x1)

PMM (x2)
(2.123)

= exp [−β(UMM (x1)− UMM (x2))] (2.124)

inserting equations (2.118) and (2.124) into equation (2.117) gives the full acceptance

test:

PAcptQM (x1 → x2) (2.125)

= min

(
1,
PQM (x2)Pg(x2 → x1)

PQM (x1)Pg(x1 → x2)

)
(2.126)

= min (1, exp[−β(UQM (x2)− UQM (x1))] exp[−β(UMM (x1)− UMM (x2))]) (2.127)

= min (1, exp [−β∆∆U ]) (2.128)

= PMMBIF (2.115) (2.129)

2.5.4. Non-Boltzmann Reweighting

The most recently proposed of this class of techniques was put forward by König

and Boresch8. Borrowing from the theoretical basis of the PMF technique Umbrella

Sampling, they use its core relation65:

〈X〉u =
〈X exp[βV ]〉b
〈exp[βV ]〉b

(2.130)

here u represents an ensemble average on an unbiased system, and b represents a

biased system. V is the bias potential by which the two states differ and X is some

property of interest.Most commonly this is chosen as a Harmonic potential and X

is chosen as the PMF. More generally however this result can be seen as recovering

an ensemble average of property X from sampling under a different Hamiltonian.

Sampling of the biased state is sometimes referred to as non-Boltzmann sampling

of the unbiased state, giving rise to the name of this technique. Maintaining the

formalism of biases for the moment, V can be defined as:

V = UMM − UQM (2.131)

this definition will allow the recovery of QM ensemble average properties from sam-

pling under an MM Hamiltonian i.e.:

〈X〉QM =
〈X exp[βV ]〉MM

〈exp[βV ]〉MM

(2.132)
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this can be profitably applied to the calculation of free energies, starting with the

Zwanzig equation at the QM level:

∆AQM,0→1 = − 1

β
ln 〈exp[−β(UQM,1 − UQM,0)]〉QM,0 (2.133)

here and in the following subscripts denote both the level of theory and an alchemical

change. So whilst UQM,0, UQM,1, UMM,0 and UMM,1 all correspond to thermodynami-

cally distinct states, only differences in numeral denote changes to chemically distinct

states. We then choose X = exp [−β(UQM,1 − UQM,0)]:

exp [−β∆AQM,0→1]

= 〈exp [−β(UQM,1 − UQM,0)]〉QM,0 (2.134)

=

∫
exp [−βUQM,0] exp [−β(UQM,1 − UQM,0)] dx∫

exp [−βUQM,0] dx
(2.135)

=

∫
exp [−β(UMM,0 − UMM,0)] exp [−βUQM,0] exp [−β(UQM,1 − UQM,0)] dx∫

exp [−β(UMM,0 − UMM,0)] exp [−βUQM,0] dx
(2.136)

=

∫
exp [−βUMM,0] exp [−β(UQM,1 − UQM,0)] exp [−β(UQM,0 − UMM,0)] dx∫

exp [−βUMM,0] dx∫
exp [−βUMM,0] exp [−β(UQM,0 − UMM,0)] dx∫

exp [−βUMM,0] dx

(2.137)

=
〈exp [−β(UQM,1 − UQM,0)] exp[βV0]〉MM,0

〈exp[βV0]〉MM,0

(2.138)

giving the so called non-Boltzmann Zwanzig result:

∆AQM,0→1 = − 1

β
ln
〈exp [−β(UQM,1 − UQM,0)] exp[βV0]〉MM,0

〈exp[βV0]〉MM,0

(2.139)

where V0 = UMM,0 − UQM,0. This result in principle gives the correct free energy

difference between two QM states, from sampling of only a single MM state and can

me applied as a post-processing technique. Note that for each snapshot both UQM,0

and UQM,1 must be calculated requiring two different QM computations. This does

not offer any apparent computational savings over the use of SSFEP therefore. As

the difference between the two QM states is likely to be greater then that between

each QM and its respective MM state, use of this result is unlikely to be practical.

However the above derivation is very flexible and through a completely analogous

series of steps can be used to derive non-Boltzmann BAR:

∆AQM,0→1 = − 1

β
ln

(
〈F (UQM,0 − UQM,1 + C) exp[βV1]〉MM,1 〈exp[βV0]〉MM,0

〈F (UQM,1 − UQM,0 + C) exp[βV0]〉MM,0 〈exp[βV1]〉MM,1

)
+ C

(2.140)

C = ∆AQM,0→1 +
1

β
ln
n1
n0

(2.141)

70



Figure 2.8.: Use of non-Boltzmann BAR (NBB) to calculation QM correction terms
to an MM perturbation. Circles in gray represent sampled states across the λ coordi-
nate, states in recovered using reweighting through NBB. Diagram taken from König
et. al.8

where V1 = UMM,1 − UQM,1. By allowing use of BAR as an estimator therefore the

numerical limitations of the Zwanzig equation are circumvented, at the cost of twice

the number of snapshots being processed at the QM level. This does not alleviate

the problem of poor overlap between UQM,0 and UQM,1 so this result remains unlikely

to have any practical usage. Instead the non-Boltzmann results can also be used to

perturb between MM and QM states. For the non-Boltzmann Zwanzig equation:

∆AQM→MM,0→1 = − 1

β
ln
〈exp [−β(UMM,1 − UQM,0)] exp[βV0]〉MM,0

〈exp[βV0]〉MM,0

(2.142)

similarly, an equivalent result using BAR can be derived. This can be used to effi-

ciently calculate free energy differences by using a typical λ-coupling window at the

MM level, but using equation (2.142) to correct the final perturbation at each end-

point (see figure 2.8). This allows the majority of the alchemical change to be carried

out at the MM level, but the use of BAR to calculate corrections to the QM level.

2.5.5. Discussion

The above techniques for hybrid free energy calculation have mostly been presented

in the literature as proof of concept demonstrations in the context of free energies.

As the first proposed, SSFEP is the most extensively used6,10,11,12,13,14,7,15,16,17,9, and

has been applied to the most ambitious collection of test systems, including protein-

ligand calculations6. The use of MMBIF approaches has been limited to simple wa-

ter to methane perturbations7 and model fluids78. The non-Boltzmann approach of

Boresch has been applied to a set of free energy of hydration calculations79 with both

implicit and explicit solvent.

Despite being the most widely used, SSFEP suffers from the drawback of depending

on the Zwanzig equation as an estimator. Its formulation allows for efficient one-

sided sampling. However, this in turn also leads to the poor numerical behaviour of

estimator. Determining the convergence of such calculations is challenging particu-

larly given the restriction that the perturbation must be carried out in a single step.

For this reason both MMBIF and non-Boltzmann approaches represent appealing

alternatives, having been used with TI or BAR, respectively. Both of these methods
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come at a greater degree of computational expense however. Use of TI or BAR ne-

cessitates that at least two MM ensembles must be post-processed to the QM level.

Some questions remain as to whether or not this increased cost is amply compen-

sated by more sophisticated estimators. The use of and validation of SSFEP is the

focus of the first chapter.

The use of MMBIF to derive free energy differences has been demonstrated using a

water to methane perturbation by Woods et al.7. A range of different water models

was used to carry out this process and in doing so demonstrate the drawback of this

approach. It was found that when attempting to use TIP5P as the classical water

model very poor acceptance rates for the QM Markov chain are observed, i.e. the

system gets stuck and is unable to find configurations suitable for the QM ensemble.

As they note this is likely due to poor phase space overlap of the two Hamiltonians.

Given the simplicity of the test system they consider, this is perhaps surprising and

suggests a potential shortcoming of this technique. Although MMBIF reduces the

requirement of overlap between states by allowing the use of TI as an estimator this

is replaced by the need for sufficient phase space overlap to carry out construction

of the ensemble. Whether this represents a true gain in the efficiency of MM to QM

calculations is therefore an open question. On the other hand the acceptance rates

of MMBIF moves provide valuable information about the quality of the simulation.

In contrast to SSFEP calculations where it is difficult to tell if a perturbation has

converged due to poor overlap, MMBIF calculations provide a key indicator that can

highlight problematic calculations.

Augmentations to the MMBIF methodology have been proposed that aim to alleviate

the degree of overlap required between states78. Coe et al. note that the tempera-

ture and pressure of the classical auxiliary Markov chain can be considered as free

parameters, as these properties are corrected to the appropriate values at the QM

level by the acceptance test. They then develop the argument that for any simulation

there is some optimum value for the classical temperature/pressure that maximises

acceptance to the QM ensemble, and propose an approach to determine these values.

Some points of similarity can be remarked between the MMBIF and non-Boltzmann

approaches. Both make use of an MM potential as reference state to derive QM

properties. In the case of MMBIF the actual ensemble is recovered, whereas non-

Boltzmann approaches recover the value of any given ensemble average property by

appropriate reweighting of the MM. In principle it is possible to use both MMBIF

and non-Boltzmann approaches to carry out perturbations completely at the QM-

level, with intermediate alchemical QM states matched by the corresponding al-

chemical MM reference potential. The QM calculations required for the intermediate

states, however, may simply obscure any benefits of this approach.

A practical benefit of the non-Boltzmann and SSFEP approaches are that the QM

calculations are not sequentially dependent on one another. In both of these cases,
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an MM simulation is run, and a series of snapshots are selected and post-processed

to the QM level. Such calculations are therefore able to exploit the massively paral-

lel architecture of modern super computers, leading to savings in real time if not in

CPU time. In contrast, for MMBIF calculations each new configuration for a QM

calculation is dependent on completion of the preceding. As the scalability of individ-

ual calculations is inherently limited by system size this can provide a bottleneck in

the time taken for such calculations. This drawback is compensated by the power of

MMBIF to bias sampling towards the desired ensemble, whereas other approaches are

able only to evaluate those configurations that are generated by the MM potential.

This introduction of biasing is argued to improve the efficiency of sampling offered by

MMBIF by increasing the probability of generating configurations compatible with

the QM ensemble69 (this is considered in chapter 5).

Some reservations have been expressed within the literature regarding the use of

hybrid free energy techniques. Many studies have focussed on demonstrating that

converged calculations can be obtained through these methodologies however the

work of Beierlein6, Warshel15 and Woods7 have all noted a decrease in the accuracy

of hybrid free energy calculations relative to purely MM calculations. All three note

a decrease in accuracy in the calculation of the free energy of hydration of methane.

Woods suggests that this discrepancy is due to MM water models not being well opti-

mised for use in QM/MM work. However, the same explanation cannot be extended

to the results of Warshel. Ultimately, the different QM and sampling approaches in

these studies make it very difficult to form a solid conclusion; that each seems to en-

counter the same problem is interesting. It may be that the increased expense of the

QM calculations prevents adequate convergence in the examples considered, or simply

that the particular test cases considered are already well described by the parame-

terised MM potentials. That said, Beierlein does achieve improvement in the results

of a protein-ligand free energy calculation employing COX-2.
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2.6. Software Packages

The aim of this section is to briefly outline the technical details of the software pack-

ages used throughout this work for clarity and brevity.

2.6.1. AMBER 12

The AMBER80 software suite comprises a collection of programs focussed on MD

sampling of MM energy models. The core applications that carry out MD are SANDER

and PMEMD, dynamics being propagated using the leapfrog integrator. A number

of algorithms are available for pressure and temperature regulation of the system.

Long range electrostatics are handled through the use of PME or conventional Ewald

summation in periodic systems. A CUDA implementation of PMEMD for use on

GPUs was also employed. AMBER 12 is used extensively throughout the molecular

simulation community.

The MM representation of molecules throughout this work have been produced

through use of the ANTECHAMBER application. This executable takes a molecular

structure as input and determines GAFF atom types and assigns partial charges for

all atoms. A number of methods can be used for partial charge derivation. However,

the AM1-bcc method was used exclusively in this work.

2.6.2. ProtoMS 2.6 and 3.0

A code developed in-house, ProtoMS76, is designed to undertake MC sampling of

MM systems using the Metropolis-Hastings algorithm. ProtoMS implements the

FF99 and GAFF force fields. As such ANTECHAMBER is used to determine ap-

plication of the GAFF force field to small molecules. Long range electrostatics are

not treated specifically and a distance cut off is used for both LJ and charge-charge

interactions.

In addition to periodic boundary conditions, ProtoMS is frequently used to simulate

systems with a solvent cap. Here a sphere of waters is placed around the contents

of the simulation cell. Any waters that stray outside off the defined cap radius are

penalised energetically by a Harmonic term. This is often combined with the use

of a protein scoop, whereby residues beyond a specified distance of a user-defined

point are removed from the protein structure. The scoop is usually placed around the

binding site of protein and used to limit the system size.
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2.6.3. CASTEP 5.5

CASTEP81 is a plane-wave DFT package using Born-Oppenheimer MD with the Ve-

locity Verlet algorithm. Long range electrostatics are treated using Ewald summation.

It is designed for massively parallel calculations with strong scalability. It supports

the use of pseudopotentials and offers ’On-the-fly’ pseudopotential generation. A

wide range of functionals are available including hybrid functionals such B3LYP as

well PBE and LDA. The employed implementation of the LDA functional is given by

Perdew and Zunger82.

Forces for molecular dynamics and structure minimisation are calculated analytically

with the expression:

F =
∑
i,j

c∗i cj

∫
ψ∗j (r)

∂Ĥ

∂x
ψi(r

′)drdr′ (2.143)

Where ψi and ψj are the plane-wave functions of the basis, and x are the nuclear

spatial coordinates. This makes the evaluation of forces relatively cheap once a con-

verged electron density has been calculated.83
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3. Single-Step Free Energy Perturbation

3.1. Introduction

Of the presented approaches to hybrid free energy techniques by far the most

commonly applied of these is the single step free energy perturbation (SS-

FEP)6,10,11,12,13,14,7,15,16,17,9. The Zwanzig equation2 is used for the calculation of

additional QM correction terms to MM based free energy cycles using a single-step

free energy perturbation10 (figure 3.1) as given by:

∆AMM→QM = − 1

β
ln 〈exp [−β(UQM − UMM )]〉MM (3.1)

The one-sided sampling of the Zwanzig equation allows the technique to avoid ex-

tremely costly sampling with the QM Hamiltonian. This advantage is countered

however by a more stringent requirement for overlap between perturbation end states

than other free energy difference estimators (see section 2.5).

The unstable numerical formulation of the Zwanzig equation and its inherent direc-

tionality make it difficult to determine whether the condition of sufficient overlap

has been met1 - there may be rare, as yet unsampled configurations, that will heav-

ily influence the calculated free energy difference. To our knowledge, it has yet to

be rigorously demonstrated that in general the overlap of QM and MM free energy

surfaces is sufficient to allow its use. Previous work from this group has developed

an alternative approach based around charge perturbation to test for convergence

of hybrid MM and QM calculations6. This provides a necessary but not sufficient

condition for convergence. We directly address the convergence of single step per-

turbations by considering the calculation of the reverse QM to MM process. As free

energy is a state property the free energy difference between the MM and QM states

is invariant based on the direction of the calculation. This provides a rigorous test for

convergence based on the condition:

∆AMM→QM + ∆AQM→MM = 0 (3.2)

in addition to the previously defined ∆AMM→QM the reverse perturbation, from the

QM to the MM state is denoted by ∆AQM→MM . In this chapter we present results
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LboundMM
LboundQM
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∆AsolvMM→QM

∆AboundMM→QM

Figure 3.1.: Free energy cycle for the calculation of QM correction terms to an MM
free energy difference for the ligand L.

considering direct assessment of the quality of phase space overlap between MM and

QM states through extensive generation of QM MD trajectories to allow calculation

of the reverse, QM to MM, perturbation. Throughout this work the deviation from

zero of equation 3.2 will be referred to as the discrepancy of a perturbation.

An adenosine-thymidine DNA base pair is used as a model system, chosen to repre-

sent a compromise between biological realism and computational tractability. Pre-

vious work has considered the suitability of different MM water models in hybrid

calculations14. However, the base pair system we consider here provides a far more

ambitious and biologically relevant system. The size of the system is sufficient to al-

low extensive sampling of the QM phase space, whilst also representing a ubiquitous

biological dimer.

We generate DFT QM ensembles using MD with the PBE32 and LDA29 function-

als. The PBE functional has been shown to offer a good compromise between speed

and accuracy in describing biological compounds33, and is frequently used in this

context34,35,36,37,38. The LDA functional provides a less realistic description of the

system’s dynamics but usefully demonstrates the behaviour of the single-step pertur-

bation where the MM and QM phase-spaces differ more markedly. Classical trajecto-

ries are generated using the AMBER ff99SB43 and GAFF48 force fields.

It is common practice when employing hybrid free energy techniques to make use

of interaction energies in the place of total energies within the free energy difference

estimator6,10,11,12,13,14,7,15,16,17,9. The interaction energy of a system, U interAB , is given

by:

U interAB = UAB − UA − UB (3.3)
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where A and B denote two different components of the system. The interaction en-

ergy of the two is given by the energy of the complex, UAB, minus the energy of the

two components in isolation, UA and UB. In the case of a typical MM model the

interaction energy can simply be derived by summing the appropriate terms of the

force field. For QM models additional calculations for the individual system com-

ponents are required as the electronic structure of each in isolation will differ from

that in the complex due to polarization effects between them. Interaction energies

are then simply substituted in the place of total energies within the estimator. In the

case of the Zwanzig equation:

∆A0→1 = − 1

β
ln
〈
exp[−β∆U inter]

〉
0

(3.4)

this substitution is not without theoretical difficulties as the derivation of the Zwanzig

equation is carried out using total energies. As such the consequences of this approxi-

mation are unclear and form the basis of chapter 4. As defined above, the interaction

energy of a system includes the energy of polarization and hence free energy calcula-

tions using interaction energies are still able to capture these effects.
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3.2. Measuring Phase Space Overlap

Given the requirement for phase space overlap between perturbation end states, it

is desirable to be able to estimate overlaps of probability distributions within phase

space. We here consider two expressions as developed by Bennett3. Firstly we note

the expression given for direct calculation of phase space overlap in the form of the

following integral:

O = 2

∫
P0(x)P1(x)

P0(x) + P1(x)
dx (3.5)

where P0(x) and P1(x) give the probability of a configuration x under different states.

Owing to the unfeasibility of evaluating integrals of more than a few dimensions, we

make use of this expression in only a few single dimensional cases to estimate phase

space overlap of particular degrees of freedom. A more practical method for evaluat-

ing overlap within higher dimensionality systems is also given by Bennett, directly re-

lated to the acceptance ratio method. BAR is given by equations (2.106) and (2.107).

As described previously in section 2.4.3, these are solved self-consistently until a con-

verged estimate for ∆A0→1 is obtained. This provides the value, Copt that minimises

the variance of free energy difference estimate. Bennett notes that the value to which

the ensemble averages converge (we shall refer to this as OBAR) provides information

about the phase space overlap of the end states of a perturbation, and is given by:

OBAR =
〈
f(U0 − U1 + Copt)

〉
1

=
〈
f(U1 − U0 − Copt)

〉
0

(3.6)

a value of 1 would indicate perfect overlap of the Boltzmann distributions of U0 and

U1 within phase space. Where the converged value of OBAR is small (compared to

unity) the overlap of end states is poor. Although this property is discussed directly

by Bennett3, to our knowledge it has not been profitably used to calculate overlaps

between perturbation end states. Evaluation of OBAR requires sampling of both

states 0 and 1, and hence cannot be used to assess quality of phase space overlaps

for use of the Zwanzig equation, without additional simulation work. One might

be curious regarding the relationship between equations (3.5) and (3.6). Figure 3.2

demonstrates their precise equivalence in the case of a single dimensional harmonic

spring test case, this is more fully explained in section 4.3.
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Figure 3.2.: Comparison of OBAR and the overlap integral (equation (3.5)).

3.3. Methods and Calculation Setup

3.3.1. QM Calculations

All QM calculations were carried out using the plane-wave DFT package CASTEP

5.581. Calculations using the LDA29 functional were carried out with a kinetic energy

cutoff of 900 eV with norm-conserving pseudopotentials84. PBE32 calculations used

a kinetic energy cutoff of 500 eV and ultra-soft pseudopotentials automatically gener-

ated by CASTEP. Kinetic energy cutoffs in each case were tested and chosen based

on the requirement of converged energies. Electronic energies were converged to a

tolerance of 10−5 eV per atom between SCF cycles, using a maximum g-vector of 0.1

Å−1 for charge mixing and a grid spacing factor of 2.0 relative to the diameter of the

cutoff sphere. A cubic periodic box with sides of 20 Å was used for LDA calculations

and 25 Å for PBE; both box sizes are more than sufficient to accommodate the A-T

dimer. Long range electrostatics were treated through Ewald summation.

3.3.2. MM Calculations

All MM calculations were carried out using the AMBER 12 software suite80,85. Cal-

culations were carried out using both the GAFF48 and ff99SB43 force fields. Partial

charges for use with the GAFF force field were produced with ANTECHAMBER

using the AM1-bcc charge method86,87. A cut-off of 8 Å, was used in the calculation

of non-bonded interactions and the Particle Mesh Ewald (PME) method was used

for long range electrostatics. The PME was validated against the conventional Ewald

approach for electrostatics to confirm the equivalent treatment between the MM and

QM Hamiltonians (see Supporting Information). A cubic periodic box with sides of

20 Å was used for ff99SB calculations and 25 Å for GAFF.
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3.3.3. Molecular Dynamics and SSFEP

The same MD protocol was used for both the MM and QM systems. Initial struc-

tures for production MD were generated by the NAB module of AMBER, and sub-

sequently minimised for 50 iterations with the appropriate potential energy function.

Bases were modelled with the associated deoxyribose component but without phos-

phate present. For each Hamiltonian, 5 independent repeats with the same starting

configuration were run. All MD calculations were carried out with a time-step of

0.25 fs, as determined by the requirement for constant energy dynamics under the

NVE ensemble. Production MD runs were carried out in the NVT ensemble with

periodic boundary conditions. Temperature control was achieved using the Langevin

thermostat with a collision constant of 0.1 ps−1 to regulate the system at 300 K.

The only differences between MD calculations for the MM and QM systems, besides

the choice of Hamiltonian, lies in the different algorithms used by CASTEP and AM-

BER. AMBER employs the leap-frog integrator to solve equations of motion, whilst

minimisations employed the conjugate gradient algorithm. Born-Oppenheimer ab

initio MD calculations in CASTEP employed the velocity Verlet algorithm, whilst

minimisations were based on the Broyden-Fletcher-Goldfarb-Shannon (BFGS) algo-

rithm88.

Generation of QM and MM trajectories was carried out simultaneously and were con-

tinued until the discrepancy of all perturbations with interaction energies was close

to zero. Five repeat NVT trajectories were calculated under each Hamiltonian. In

total, for the GAFF and PBE trajectories, 80,000 configurations were generated per

repeat, for the LDA and ff99SB, 5000 configurations were generated per repeat. For

calculation of free energy differences the first 500 configurations from each trajectory

were discarded as equilibration and every one in ten frames was post-processed with

all Hamiltonians for the calculation of total and interaction energies. Calculation of

free energy differences was carried out with a custom python script implementation.

3.3.4. Potential of Mean Force Calculations

Potential of Mean Force calculations were carried out using MD with linear con-

straints with CASTEP.89 An additional 25 short (1500 time-steps) MD runs were

carried out with linear constraints placed on the N-H–N hydrogen bond between

thymidine and adenosine. The N-H and H–N bonds were considered as separate de-

grees of freedom constrained at 0.2 Å intervals, from 1.0 - 1.8 Å. This gives a 5 by

5 grid of points, corresponding to the 25 runs. Constraints were enforced using the

RATTLE67 algorithm. The mean force required to maintain each constraint is equal

to the gradient of the free energy surface at that point. The surface itself is then gen-

erated through use of the Euler method90, taking the lowest point of the PMF to be

zero.
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Figure 3.3.: Convergence of QM energies with increasing Ecut.

3.4. Results and Discussion

3.4.1. Validation of Kinetic Cutoff Energies

As considered more fully in section 2.2.1.7, a necessary prerequisite for the use of a

plane wave DFT package such as CASTEP, is the selection of an appropriate kinetic

cutoff energy, Ecut, for the basis set. This should be sufficiently large to provide con-

verged energies, but is associated with increased computational costs and hence the

minimum value that offers convergence is desirable. Calculated energies for the LDA

and PBE functionals over a range of Ecut are shown in figure 3.3 support the use

of the select cutoff values of 500 eV and 900 eV for the PBE and LDA functionals

respectively.

3.4.2. Validation of MD Procotol

As an extensive amount of MD work was to be undertaken, it was considered desir-

able to validate the MD protocol under use. A simple test for the stability of an MD

trajectory is its ability to conserve energy under the NVE ensemble. This allows se-

lection of an appropriate timestep for the integration algorithms used by the different

software packages (see appendix B and section 2.6). The results shown for short NVE

trajectories for both classical MD with ff99SB in AMBER and QM MD with the

LDA functional in CASTEP. These results were generated using the same protocol

as given by section 3.3 but without the use of the Langevin thermostat. The classical

results show good conservation of average energy across all timesteps considered. Al-

though the averages are well maintained considerable differences in the variability of

the energy are seen.

Molecular dynamics at the QM level is noted to require shorter time-steps due to

the presence of the iterative SCF procedure at every time step39. Regardless of the
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Figure 3.4.: System total (potential and kinetic) energies under constant energy MD
conditions with different timesteps.
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Figure 3.5.: System total (potential and kinetic) energies under constant energy MD
conditions with different tolerence values used for convergence of the electronic en-
ergy calculation.

timestep used for the QM MD, net drift in the total energy of the system is seen,

although this is markedly improved for the 0.5 and 0.25 fs trajectories. This effect

arises from the extrapolation of wavefunctions carried out between timesteps. The

number of SCF cycles required for convergence of the system energy at each timestep

can be greatly reduced if a good estimate of the final density is used to start the pro-

cedure. It is typical for QM MD packages therefore to extrapolate an estimate of the

system density at each timestep by using the final density of the previous timestep.

This extrapolation is then subject to the standard SCF procedure. This practice how-

ever has the unfortunate property of breaking the time reversibility of the integration

scheme i.e. the energy of any configuration becomes dependent on the configuration

before leading to the observed drift in energies91. Drift arising for this reason can be

reduced by altering the electronic energy convergence tolerance used with the SCF

procedure. Results showing the change in total energy drift as a function of the toler-

ance are given in figure 3.5 for trajectories generated with a timestep of 0.25 fs. The

use of 10−5 eV/atom and 10−6 eV/atom are comparable. However 10−7 eV/atom of-

fers a marked improvement, confirming the source of energy drift as being due to the

wavefunction extrapolation. The similarity in drift magnitude between the tolerances

of 10−5 eV/atom and 10−6 eV/atom arises due to the length of the convergence win-

dow used. CASTEP requires that the electronic energy remains converged to the

specified tolerance for a specified number of SCF cycles (in this case 3). This allows

the electronic energy to converge beyond the required tolerance. MD runs using 10−5
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eV/atom as the required tolerance typically actually converge to 10−6 eV/atom, lead-

ing to little practical difference between these values. Additional cycles are required

however to converge the electronic energy more tightly to 10−7 eV/atom, leading to

a decrease in the energy drift of the system. Owing to the increased computational

cost, however, it was decided to use a 0.25 fs timestep and the default electron energy

convergence tolerance of 10−5 eV/atom.

3.4.3. Minimised Configurations

(a) LDA

(b) PBE

Figure 3.6.: Initial minimised configurations used for QM MD runs.

The minimised initial configurations used for MD with the four different Hamilto-

nians are shown in figures 3.6 and 3.7. FF99SB is the only Hamiltonian to give a

planar orientation of the bases. This may be due to parameterisation of this force

field to reproduce stacking within DNA duplexes. Heavy atom RMSD values be-
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(a) gaff

(b) ff99SB

Figure 3.7.: Initial minimised configurations used for classical MD runs.
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(a)

Hamiltonian 1 2 3 4 5

PBE 1.180 1.154 0.993 1.389 1.382
LDA 1.086 1.099 1.066 1.382 1.391

GAFF 1.080 1.092 1.006 1.320 1.319
FF99SB 1.083 1.091 1.011 1.373 1.374

(b)

Configuration RMSD vs. PBE RMSD vs. FF99SB

PBE 0.00 3.85
LDA 0.35 3.93

GAFF 3.98 0.49
FF99SB 3.84 0.00

(c)

Figure 3.8.: 5 bond lengths (in Å) with the greatest difference in minimised configura-
tions between Hamiltonians. Bond positions are highlighted on the structures in (a).
Corresponding lengths under different Hamiltonians are given in (b). (c) Heavy atom
RMSDs (in Å) of minimized configurations under different Hamiltonians. Structures
were aligned to the heavy atoms of the bases, excluding the sugars.
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tween different structures are given in figure 3.8c and show the closest accordance

between structures at the same level of theory. Agreement of the LDA structure with

the more sophisticated PBE functional suggests an, at least, reasonable description

of the system is achievable with the former. Although RMSDs provide information

about similarities in Cartesian space it is informative to consider explicitly details of

the internal geometry. Figure 3.8b gives the five bond lengths within the base pair

that show the largest difference between Hamiltonians. It is interesting to note that

in each case there tends to be a specific outlier that does agree well with the other

structures. Although we might expect the supposedly poorer LDA and GAFF Hamil-

tonians to show greater variability, no particular trend can be observed within the

outliers. For bonds 1 and 2 PBE is the outlier, for bond 3, LDA, for bonds 4 and 5,

GAFF. The consequences of marked differences in the bonded degrees of freedom are

discussed in more detail in section 3.4.6.

3.4.4. Single-Step FEP

Results of all perturbations between the four considered Hamiltonians are given in

figure 3.9. Although our stated aim is to examine perturbations between MM and

QM states, it was considered trivial additional work to complete the calculations for

all possible perturbations. Using the protocol described in section 3.3.3, gave 8000

data points for each repeat of the perturbations between GAFF and PBE and 450

data points for all other perturbations.

Completion of the larger cycle allows for a more rigorous test of convergence through

the computation of cycle closures. Unfortunately cycle closures are non-trivial to

calculate as each leg has two separately calculated free energy differences associated

with it. Different forward and reverse calculations can be used in any permutation to

provide a value for the cycle closure. We compromise by calculating all possible per-

mutations for each cycle and reporting the minimum, maximum and mean unsigned

closures. It is immediately apparent from these results that interaction energies pro-

vide much tighter cycle closures than using total energies. Although the reported

minimum closures using total energies are close to zero, the large associated standard

errors suggest this is simply spurious, through a fortunate combination of different

components of the cycle. The mean and maximum closures are exceedingly poor

however, and suggest the unsuitability of total energies in hybrid free energy work.

Although a recent paper has presented results that give successful convergence with

total energy calculations, the general applicability of this approach has yet to be

demonstrated in a system as complex as that considered here8.

The convergence of each leg of the cycle can be assessed by calculating the discrep-

ancy between the forward and reverse perturbation as given by equation 3.2. This

is shown in figure 3.10. For total energies no particular leg in the cycle can be high-

lighted as responsible for the poor convergence; even the best converged leg (the PBE
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to LDA perturbation) has a discrepancy of greater than 10 kcal.mol−1. The use of

interaction energies however, is much more compelling. All perturbations fall close to

or less than one standard error from zero, with the exception of the PBE to ff99SB

calculations (p-value < 0.05 from an unpaired Student’s t-test that the free energy

differences in either direction are drawn from different distributions).

The magnitude of the free energy differences are considerable when using total en-

ergies. Interpretation of these values should be taken with care as all energies cal-

culated are given with respect to an arbitrary reference value, determined by the

Hamiltonian. The difference in this reference value between Hamiltonians gives very

large apparent free energy differences. The use of the free energy cycles such as in

figure 3.1 accounts for this reference state effect and gives meaningful relative free

energy changes. Interpretation of the values associated with individual legs of the

cycle should be carried out with care.

It might be argued that the convergence of calculations using total energies fails sim-

ply due to the large differences in the size of the energy values associated with each

Hamiltonian. To test for the possibility of numerical instability caused by difference

in reference state, arbitrary constants were used to adjust energy values within indi-

vidual perturbations. This allows for the exponential terms in figure 3.1 to be scaled

to numerically tractable regions and the unadjusted free energy difference can then

be recovered by removing the arbitrary constant used. In practice this procedure was

found to have no effect on the discrepancy of the each perturbation. Moreover, it can

be shown analytically that the discrepancy is invariant with respect to the difference

in reference state between Hamiltonians (see appendix D). As long as care is taken

to avoid numerical overflows in the exponential terms, the difference in scale of the

energy values has no effect on the convergence properties of a calculation.

These results indicate that, in practical terms, the use of single step perturbation

techniques is restricted to interaction energies. In addition to the significantly su-

perior convergence properties of interaction energies, they provide a more intuitive

interpretation for the resulting free energy differences, as differences in the strength

of interaction under different Hamiltonians. For interaction energies, all Hamiltonians

share a naturally defined common reference state, namely the two bases at infinite

separation. In practice, the use of interaction energies is commonplace with hybrid

MM and QM work.6,10,11,12,13,14,7,15,16,17,9 Despite this prevalence however interaction

energies are not formally correct in the context of free energy calculations based on

the Zwanzig equation which is derived for total energies. A rigorous theoretical and

practical examination of the consequences of using interaction energies are presented

in chapter 4. In practice however, the poor convergence of total energy calculations

leaves little choice but to use interaction energies.

The failure of calculations using total energies is suggestive of poor overlap between

the potential energy surfaces of the different Hamiltonians. That only total energies
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are affected suggests the problem pertains to the intra-molecular degrees of freedom

of the system. This is considered in more detail in a section 3.4.6.

3.4.5. QM MD Trajectories

Within the QM trajectories some examples of proton exchange were observed be-

tween the N-H of the thymidine and the N hydrogen bonding partner of adenosine

(see figure 3.11). Marked exchange events were observed within two of the five trajec-

tories with the LDA functional; this is particularly significant given their short du-

ration. In contrast, the PBE functional demonstrated comparatively little exchange,

only two events occurring within one the five repeats of considerably greater length.

Characterisation of the free energy barrier of proton exchange under the LDA func-

tional was carried out through potential of mean force of constraint (PMFC) calcu-

lations, using CASTEP. This reveals a free energy barrier of around 1.0 kcal.mol−1,

well within the range expected to be crossed due to thermal fluctuations at 300 K.

This value is perhaps underestimated due to the coarse resolution of the PMF and

the short, constrained trajectories used to generate it. The key features of the land-

scape appear to be recreated however, and transitions between the minima occur

across the saddle point. The observation of hydrogen exchange within this system

may also be attributed to the propensity of DFT functionals to underestimate proton

exchange barriers.92

The comparative rarity of proton exchange events under the more accurate PBE func-

tional suggests that exchange is due to the shortcomings of the LDA functional, lead-

ing to unphysically low barriers within the MD runs. Production of an LDA ensem-

ble is still of considerable value as it is noted that a converged free energy difference

can still be calculated even where the QM Hamiltonian includes non-classical effects,

such as charge transfer or polarisation. Owing to the formulation of the Zwanzig

equation, configurations with very high energies in the classical Hamiltonian (such

as a highly stretched covalent bond in the case of the proton exchange) are negligi-

bly likely to occur under classical dynamics and hence do not contribute to the free

energy difference. Conversely, whilst sampling under the QM Hamiltonian, configu-

rations stabilised by non-classical effects have large negative values of ∆U and hence

small contributions to the overall free energy difference.

3.4.6. Phase Space Overlap

The failure of calculations to converge with the use of total energies is indicative of

a violation of the requirement for sufficient phase space overlap of not only the MM

and QM potential energy surfaces, but of all the energy models. That this problem

can be ameliorated with the use of interaction energies suggests the practical reason

for the widespread use of this approximation.
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Figure 3.9.: Free energy cycles constructed between all Hamiltonians. A single stan-
dard error for each perturbation is shown, derived from the standard deviation of the
5 repeats of each calculation. As each leg of the cycle has two associated free energy
differences there are multiple different combinations that can be used to construct
a closed cycle. We calculated all combinations and on the right of each diagram
present the minimum, maximum and mean closures of the illustrated cycle. Stan-
dard errors for closures are calculated by summing the variance of each leg of the
cycle involved. Standard errors for mean closures were calculated by taking the aver-
age variance of all possible leg permutations for each cycle. All free energy differences
are in kcal.mol−1.

Perturbation Total Energies Interaction Energies

GAFF ↔ ff99SB 3.71× 10−3 ± 3.72× 10−3 0.98± 0.00
LDA ↔ ff99SB 4.38× 10−10 ± 8.75× 10−10 0.12± 0.04
LDA ↔ GAFF 1.46× 10−16 ± 2.91× 10−16 0.08± 0.04
PBE ↔ ff99SB 5.46× 10−5 ± 1.20× 10−4 0.56± 0.02
PBE ↔ GAFF 9.77× 10−12 ± 1.38× 10−11 0.40± 0.03
PBE ↔ LDA 2.19× 10−5 ± 1.76× 10−5 0.56± 0.14

Table 3.1.: OBAR values for each perturbation using total and interaction energies,
calculated as described in section 3.2.
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Figure 3.10.: Discrepancies for forward and reverse perturbations within the free cy-
cles. One standard error is shown for all results, calculated by summing the variance
of the forward and reverse calculation.

To examine the extent to which using interaction energies improves phase space over-

lap, the value of OBAR was calculated for all perturbations using total and interac-

tion energies (table 3.1). Although values of OBAR cannot profitably be compared

between perturbations due to differing simulation lengths, values for total and inter-

action energies within perturbations can be compared directly as they are produced

from the same data. The use of interaction energies provides between 5 and 16 orders

of magnitude improvement in the value OBAR. The smaller overlap values for interac-

tion energies between the LDA functional and classical potentials can be rationalised

in terms of the proton transfer events seen in the LDA trajectories. It is comforting

to note that the calculated overlap is superior between the PBE functional and clas-

sical potentials, than to the LDA functional. Perhaps unsurprisingly, the specialised

parameters of the ff99SB force field are noted to offer enhanced overlap with the PBE

functional compared to the GAFF force field. Regardless, the values of OBAR pre-

sented for perturbations involving GAFF are still more than sufficient to suggest the

feasibility of the single-step perturbation.

The striking improvement in phase space overlap provided by interaction energies

suggests that the poor total energy results are likely due to the failures in the overlap

of intra-molecular degrees of freedom. Using interaction energies reduces the number

of degrees of freedom that are considered within the perturbation to exclude intra-

molecular terms. Additionally, it is noted generally that intra-molecular potentials

tend to be less ‘soft’ then their inter-molecular counterparts. This suggests that in

general it is easier to satisfy the required phase space overlap for inter-molecular

interactions that have broader probability distributions.

To pinpoint the particular intra-molecular degrees of freedom that give rise to poor

total energy overlaps, a simple analysis restricted to the system bond lengths was

used. From the trajectory data, distributions for all bond lengths under the PBE and

GAFF Hamiltonians were generated, as these are the longest and hence best sampled
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Figure 3.11.: (a) and (b) show example configurations from an LDA MD run, with
the proton exchanged (a) and not exchanged (b). (c) and (d) give time series of r1
and r2 from an example LDA (c) and PBE (d) MD run. (e) Free energy surface of
proton exchange between bases using the LDA functional. The solid lines indicate
the paths taken by the 5 LDA MD trajectories. Dashed contour lines are plotted
every 0.25 kcal.mol−1.
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Figure 3.12.: (a) Distribution of overlaps between GAFF and PBE ensembles for
covalent bonds in the base pair calculated using equation 3.5. (b) Distribution of
bond C4-O4 bond of thymidine under different Hamiltonians.

trajectories. Overlaps between the distributions of corresponding bonds under differ-

ent Hamiltonians were then calculated using equation 3.5. The 64 covalent bonds in

the base pair give rise to a distribution of overlaps as shown in figure 3.12a. The ma-

jority of bonds display excellent overlap between the MM and QM ensembles, but a

number demonstrate considerably reduced overlap caused by an offset in equilibrium

lengths. The worst example of this is given in figure 3.12b, showing the C4-O4 bond

within thymidine (using the Amber force field atom naming conventions43).

Each bonded degree of freedom can be approximated as varying independently with

respect to the other bonds of the system (figure 3.13 shows a correlation analysis

between all bonded degrees of freedom). An estimate of the combined overlap of the

PBE and GAFF Hamiltonians can therefore be obtained by taking the product of the

overlaps for each individual bond. This overlap estimate is limited to a sub-region of

the configuration space of the system as defined by those covalently bonded degrees

of freedom and gives a value of 2.132× 10−5. This represents a generous upper-bound

on the overlap of the two states as the inclusion of additional degrees of freedom can

only serve to lower the combined overlap of the system. Although the majority of

bonds within the system present an overlap of greater than 0.95, the comparatively

small number with poor overlap values can combine to give a globally poor overlap

between states. This estimate of the overlap falls short of that required for the con-

vergence of calculations using BAR93. As a less efficient estimator, the Zwanzig equa-

tion requires even better phase space overlap between states. The values of OBAR

for the different perturbations presented in table 3.1 support the use of the Zwanzig

equation as they suggest significant overlap is achieved between inter-molecular de-

grees of freedom.
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Figure 3.13.: Correlation matrices for all covalent bonds under the GAFF and PBE
Hamiltonians. Correlation coefficients are calculated from simulation data time se-
ries.
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3.5. Conclusions

The data presented in this chapter constitute a direct validation of the MM to QM

single step free energy perturbation procedure, through completion of the reverse

QM to MM perturbation. This required the generation of extensive ab initio MD

trajectories within a model biological system. The A-T DNA dimer chosen for these

calculations represents a compromise between biological complexity and expense of

calculations. In total over 100 ps of ab initio MD was generated using plane-wave

DFT.

Importantly the practical restriction that perturbations must be carried out with

interaction energies instead of total potential energies is established. Discrepancies

between forward and reverse perturbations are shown to be on the order of 10s of

kcal.mol−1, for total energies, but nearing zero for interaction energies. Although

single step perturbation techniques have been used for some time, the requirement to

use interaction energies is often glossed-over or not explicitly stated.

The failure of total energy calculations with the Zwanzig equation is explained in

terms of poor phase space overlap between MM and QM Hamiltonians. Marked dif-

ferences between the phase-space distributions of intra-molecular degrees of freedom

are highlighted as problematic. Although limited to only the covalently bonded de-

grees of freedom, our analysis gives very low upper-bound estimates for total energy

phase-space overlap. This analysis also suggests caution in hybrid free energy work

around the common practice of enforcing bond length constraints. Constraints may

improve overlap between MM and QM ensembles, by removing problematic degrees

of freedom from being sampled, but run the risk of constraining ensembles outside

their global minimum, distorting calculated free energy differences. The extent to

which this problem may be avoided through the use of interaction energies is unclear.

König et al. has examined the effect of bond length constraints in a simple hybrid

free energy perturbation of ethane to methanol8.

Interaction energy calculations are demonstrated to exhibit markedly better overlap

between ensembles, and improved convergence of single step free energy calculations.

The presence of non-classical proton exchange interactions between the bases does

not prevent stable convergence of the calculated free energy differences.

In addition to the single step methodology considered here, there have been other no-

table suggestions for hybrid free energy work based around more elaborate sampling

or reweighting techniques7,8. The generated QM ensembles to provide a valuable data

set for the analysis of other methodologies, and this is considered chapter 5. The

contents of this paper have been published under the title “Direct Validation of the

Single Step Classical to Quantum Free Energy Perturbation”94.
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4. Interaction Energies

4.1. Introduction

An aspect of hybrid free energy calculations that is not widely discussed in the liter-

ature is the use of interaction energies. The interaction energy of a system is some-

what subjectively defined. Generally, where the study of the interaction of two com-

ponents of a thermodynamic system are considered34:

U interAB = UAB − UA − UB (4.1)

U interAB = UAB − U intraAB (4.2)

Where the interaction energy, U interAB , of the two system components A and B is given

by the total energy of the complex, UAB, minus the total energy of each component

in isolation, UA and UB. We here refer to the combined energies of the isolated sys-

tem components as the system’s intramolecular energy, U intraAB . This definition can be

intuitively applied to systems of common interest for free energy calculations. When

calculating free energies of hydration for instance, the solvent can be considered one

system component and the solute another. In the case of protein-ligand free energy

calculations the protein can be grouped with the solvent as one component and the

ligand treated as the second. Despite the name, the intramolecular energy term may

contain energetic interactions between molecules (eg. solvent molecules), although

never between the two different components of the system. The terminology is some-

what inconsistent therefore and might be better thought of as the intra-component

energy, however we shall proceed with the use of intra-molecular.

As demonstrated in the results of chapter 3 the use of interaction energies is largely

necessitated in the hybrid free energy calculations in order to provide sufficient over-

lap between perturbation end-points . Some benefit is also gained in certain situa-

tions by simplifying free energy cycles, as when using interaction energies, some free

energy differences are necessarily zero, eg. the alchemical transformation of a lig-

and in vacuo. This produces free energy calculations analogous to those used in dual

topology calculations (figure 2.6).

Interaction energies are used within free energy calculations by simply substituting

them in the place of the appropriate total energy values. For instance in the case of
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the Zwanzig equation, equation (2.80) becomes:

∆Ainter0→1 = − 1

β
ln
〈
exp

[
−β∆U inter

]〉
0

(4.3)

Where ∆U inter = U inter1 − U inter0 . The Zwanzig equation is derived with the use of

total energies and we are not aware of any attempt to justify the use of interaction

energies on a statistical mechanics basis. Although it is only explicitly stated in a

few papers6,10,11,12,13,14,7,15,16 it is understood that the use of interaction energies is

implicit in the majority of hybrid free energy work.

Similarly, the effect of interaction energies on calculations using MMBIF and non-

Boltzmann approaches are unknown. In their application to water and methane,

Woods and Mulholland go so far as to keep the solutes entirely rigid, thereby remov-

ing the effect of intramolecular degrees of freedom7. The extent to which this may

be expected to achieve realistic results when applied to more complex systems of

biological interest is unknown. Their approaches are addressed in chapter 5.

A great deal of theoretical uncertainty is introduced through the use of interaction

energies as free energy techniques are formally derived using total energies2,4,3 and

the validity of carrying out a straightforward substitution with interaction energies is

not readily apparent. This chapter shall consider the use of interaction energies as a

proxy for total energies in free energy calculations through a thorough first-principles

statistical mechanics analysis. It is shown that under certain conditions interaction

energies fail as an appropriate substitute for total energies. To our knowledge this

forms a novel theoretical critique of common practice in hybrid free energy calcu-

lations and further theoretical observations are made that lay the ground work for

design of appropriate diagnostic tools for use on a calculation by calculation basis.

The derived theoretical results are applied and verified in a series of test systems of

increasing realism. The wider implications in the context of single and dual topology

calculations are also considered.
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4.2. Theoretical Analysis

Here we work from first-principles statistical mechanics to provide some insight into

the effects of using interaction energies in free energy calculations. The use of interac-

tion energies is most common with the single step free energy perturbation (SSFEP)

approach. For this reason interaction energies within SSFEP are used as a starting

point for this analysis. To recap briefly, SSFEP is carried out through application of

the Zwanzig equation2:

∆A0→1 = − 1

β
ln〈exp[−β∆U ]〉0 (4.4)

for clarity we reiterate that ∆A0→1 is a configurational free energy difference between

the thermodynamic states 0 and 1, where we only consider the potential energy terms

from the system Hamiltonian. All references to total energies in this chapter refer to

total potential energies, as the kinetic energy component can be factorised out and

treated analytically where necessary (see section 2.4). Equation (4.4) is an ensemble

average and can therefore be rewritten as an integral over configuration space2:

∆A0→1 = − 1

β
ln

∫
P0 exp [−β∆U(x)] dx (4.5)

Where x are the configurational degrees of freedom of the system and P0 is the Boltz-

mann probability term:

P0(x) =
exp [−βU0(x)]

Z0
(4.6)

=
exp [−βU0(x)]∫
exp [−βU0(x)] dx

(4.7)

the use of interaction energies with (4.4) in practice is carried out by simple substitu-

tion of interaction energies in the place of total energies, to give the interaction free

energy difference:

∆Ainter0→1 = − 1

β
ln
〈
exp

[
−β∆U inter

]〉
0

(4.8)

∆Ainter0→1 = − 1

β
ln

∫
P0(x) exp

[
−β∆U inter(x)

]
dx (4.9)

where ∆U inter = U inter1 − U inter0 . The Boltzmann probability term P0 is unchanged

between equations (4.5) and (4.9) as the Hamiltonian under which sampling is car-

ried out is the same. Although they are used interchangeably in hybrid free energy

work, it is not self evident however, what relation ∆Ainter0→1 bears to ∆A0→1. The

Zwanzig equation is derived with the use of total energies and the physical interpreta-

tion of the weighting of interaction energies by the total energy Boltzmann factor is
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1:P(g) 2:Q(g)

3:P(aq) 4:Q(aq)

ΔAhydP ΔAhydQ

ΔA1→2

ΔA3→4

Figure 4.1.: Example thermodynamic cycle for the calculation of relative free energies
of hydration of P and Q. The shown numbers are used to label the different states
of the cycle. The free energy of hydration for P and Q are denoted by ∆AhydP and
∆AhydQ respectively. Whilst ∆A1→2 and ∆A3→4 give the free energy differences
between states 1 and 2 and states 3 and 4 respectively.

not readily apparent; certainly its treatment as being equivalent to equation (4.4) is

difficult to justify without further analysis.

It should be noted that whilst the values given by equations (4.5) and (4.9) are not

directly equivalent, interaction energies are not employed to calculate individual free

energy differences between two thermodynamic states. Instead they are employed

within thermodynamic cycles to calculate relative free energies of hydration or bind-

ing such that an additional free energy calculation is always performed. For this

reason, we shall proceed by considering the application of equations (4.5) and (4.9)

within the context of a relative free energy of hydration calculation. As given in fig-

ure 4.1 we shall consider the notional relative free energy of hydration of the com-

pounds P and Q. Using equations (4.5) and (4.9) we can give expressions for the rel-

ative free energy of hydration, ∆∆Ahyd, and its equivalent using interaction energies

∆∆Ainterhyd :

∆∆Ahyd = ∆A3→4 −∆A1→2 (4.10)

= − 1

β
ln

∫
P3 exp [−β(U4 − U3)] dx +

1

β
ln

∫
P1 exp [−β(U2 − U1)] dx

(4.11)

Combining logarithms:

= − 1

β
ln

∫
P3 exp [−β(U4 − U3)] dx∫
P1 exp [−β(U2 − U1)] dx

(4.12)

Expanding P3 and P1:

= − 1

β
ln

∫
exp [−βU3] exp [−β(U4 − U3)] dx

Z3∫
exp [−βU1] exp [−β(U2 − U1)] dx

Z1

(4.13)

Expanding Z3 and Z1, and cancelling U3 and U1:
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= − 1

β
ln

∫
exp [−βU4] dx∫
exp [−βU3] dx∫
exp [−βU2] dx∫
exp [−βU1] dx

(4.14)

and:

∆∆Ainterhyd = ∆Ainter3→4 (4.15)

= − 1

β
ln

∫
P3 exp

[
−β(U inter4 − U inter3 )

]
dx (4.16)

Expanding P3:

= − 1

β
ln

∫
exp

[
−β(U intra3 + U inter3 )

]
exp

[
−β(U inter4 − U inter3 )

]
dx

Z3
(4.17)

Expanding Z3 and cancelling U inter3 :

= − 1

β
ln

∫
exp

[
−β(U intra3 + U inter4 )

]
dx∫

exp [−βU3] dx
(4.18)

here the subscripted numbers are used to denote the different thermodynamic states

corresponding to the cycle of figure 4.1. We have made use of the equality noted in

section 2.4.4 to relate the relative hydration free energy to the two alchemical per-

turbations ∆A3→4 and ∆A1→2. Although the total energy expression is the standard

ratio of partition functions, the interaction energy term contains the partition func-

tion of state 3, along with a hybrid partition function containing the intramolecular

terms of state 3 and and the intermolecular terms of state 4. The interaction free

energy difference can therefore be thought of as the perturbation between state 3 and

the hybrid state. Equations (4.14) and (4.18) are general expressions of the relative

free energy difference. We can tailor these for the calculation at hand by noting the

following decompositions for the potential energy at each point in the cycle:

U1(x) = U lP(x) (4.19)

U2(x) = U lQ(x) (4.20)

U3(x) = U intra3 (x) + U inter3 (x) = U lP(x) + U s(x) + U inter3 (x) (4.21)

U4(x) = U intra4 (x) + U inter4 (x) = U lQ(x) + U s(x) + U inter4 (x) (4.22)

states 1 and 2 correspond to the molecule in vacuo and hence only contain the ligand

energy terms, U lP(x) and U lQ(x). The potential energy function used for the ligands

is the same for states 1 and 3 and states 2 and 4 respectively. Additionally states

3 and 4 contain contain solvent molecules as an environment for the ligand and as

such we have introduced the observation that the intramolecular energies can be

decomposed into the contributions of the ligand, U l, and the solvent U s. The solvent

molecules intramolecular energy term, U s, is unchanged between states 3 and 4 and

hence not subscripted. We note that this assumption is true in the case of a chemical
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perturbation as considered here. In the case of an MM to QM perturbation where

states 3 and 4, are described at a different level of theory, the energy model used

for the solvent is different between the states and hence separate U s3 (x) and U s4 (x)

potential energy functions would be required. This distinction does not qualitatively

influence the results presented here and the MM to QM perturbation case is not

explicitly considered and we proceed with the more general decompositions as given.

The interaction potential energy terms always vary depending on the ligand present

and hence are distinct between states 3 and 4. From equation (4.14):

∆∆Ahyd = − 1

β
ln

∫
exp

[
−β(U lQ + U s + U inter4 )

]
dx∫

exp
[
−β(U lP + U s + U inter3 )

]
dx∫

exp
[
−βU lQ

]
dx∫

exp
[
−βU lP

]
dx

(4.23)

and from equation (4.18):

∆∆Ainterhyd = − 1

β
ln

∫
exp

[
−β(U lP + U s + U inter4 )

]
dx∫

exp
[
−β(U lP + U s + U inter3 )

]
dx

(4.24)

this now looks a little more promising and it is apparent that if cancellations of the

solvent and ligand contributions to the free energy difference were allowed these ex-

pressions would be equivalent. However as currently written in equations (4.19) to

(4.22) all of the potential energy terms are a function of the same set of Cartesian

coordinates, x. We can proceed further by introducing the concept of internal coordi-

nates, which provide an alternate description of the degrees of freedom of molecular

system,95 as applied to equations (4.19) to (4.22):

U1(r
l) = U lP(rl) (4.25)

U2(r
l) = U lQ(rl) (4.26)

U3(r,q) = U intra3 (r) + U inter3 (r,q) = U lP(rl) + U s(rs) + U inter3 (r,q) (4.27)

U4(r,q) = U intra4 (r) + U inter4 (r,q) = U lQ(rl) + U s(rs) + U inter4 (r,q) (4.28)

we are choosing here to represent U as a function of an internal coordinate set such

that N degrees of freedom x have been subdivided into three different categories. In

general there will be a set of G global degrees of freedom that correspond to rigid

body translations and rotations of the system. These do not contribute to the poten-

tial energy of the system and hence do not appear in the above. Of the remaining N

- G degrees of freedom, a subset r of size L degrees of freedom can be defined such

that the intramolecular energy is a function of only r . The final N - L - G degrees

of freedom are the interaction degrees of freedom and are denoted q . The interac-
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tion energy of the system can then be written as a function of both r and q . The

ability to write the potential energy in this form is independent of the energy model

used. Thus these results can be readily applied in the context of both MM and QM

calculations. We also note that the intramolecular degrees of freedom can be decom-

posed into those of the ligand being mutated, and the rest of the system, denoted

by the superscripts l and s. These terms are directly comparable to equations (4.19)

to (4.22), but written using the internal coordinate system. Whilst U l and U s can

be written as functions of their individual degrees of freedom, the interaction en-

ergy terms remain a function of all of non-global degrees of freedom of the system.

Updating equations (4.23) and (4.24) using the internal coordinate system given by

equations (4.25) to (4.28) gives:

∆∆Ahyd = − 1

β
ln

∫
exp

[
−β(U lQ(rl) + U s(rs) + U inter4 (r,q))

]
drldrsdq∫

exp
[
−β(U lP(rl) + U s(rs) + U inter3 (r,q))

]
drldrsdq∫

exp
[
−βU lQ(rl)

]
drl∫

exp
[
−βU lP(rl)

]
drl

(4.29)

and:

∆∆Ainterhyd = − 1

β
ln

∫
exp

[
−β(U lP(rl) + U s(rs) + U inter4 (r,q))

]
drldrsdq∫

exp
[
−β(U lP(rl) + U s(rs) + U inter3 (r,q))

]
drldrsdq

(4.30)

as we have undertaken a change in coordinate system, the contribution of the Jaco-

bian should be considered96, as each change of the coordinate system is paired within

a fraction, however these contributions to the free energy difference cancel exactly.

Adopting internal coordinates gives expressions with a reduced degree of dependence

between the terms of the potential energy function. However separation of the in-

tegral into a product of simpler terms is still precluded by the interaction energy

term that remains a function of all the degrees of freedom of the system. However, a

separated approximation of the equations (4.29) and (4.30) can be given by:

∆∆Ahyd

≈∆∆A
(sep)
hyd (4.31)

Introducing 〈r〉 in the place of r:

=− 1

β
ln

∫
exp

[
−β(U lQ(rl) + U s(rs) + U inter4 (〈r〉Q ,q))

]
drldrsdq∫

exp
[
−β(U lP(rl) + U s(rs) + U inter3 (〈r〉P ,q))

]
drldrsdq∫

exp
[
−βU lQ(rl)

]
drl∫

exp
[
−βU lP(rl)

]
drl

(4.32)

Separating the integrals:
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=− 1

β
ln

∫
exp

[
−βU lQ(rl)

]
drl
∫

exp [−βU s(rs)] drs
∫

exp
[
−βU inter4 (〈r〉Q ,q))

]
dq∫

exp
[
−βU lP(rl)

]
drl
∫

exp [−βU s(rs)] drs
∫

exp
[
−βU inter3 (〈r〉P ,q))

]
dq∫

exp
[
−βU lQ(rl)

]
drl∫

exp
[
−βU lP(rl)

]
drl

(4.33)

Cancelling all intra terms:

=− 1

β
ln

∫
exp

[
−βU inter4 (〈r〉Q ,q))

]
dq∫

exp
[
−βU inter3 (〈r〉P ,q))

]
dq

(4.34)

and:

∆∆Ainterhyd

≈∆∆A
inter(sep)
hyd (4.35)

Introducing 〈r〉 in the place of r:

=− 1

β
ln

∫
exp

[
−β(U lP(rl) + U s(rs) + U inter4 (〈r〉P ,q))

]
drldrsdq∫

exp
[
−β(U lP(rl) + U s(rs) + U inter3 (〈r〉P ,q))

]
drldrsdq

(4.36)

Separating the integrals:

=− 1

β
ln

∫
exp

[
−βU lP(rl)

]
drl
∫

exp [−βU s(rs)] drs
∫

exp
[
−βU inter4 (〈r〉P ,q)

]
dq∫

exp
[
−βU lP(rl)

]
drl
∫

exp [−βU s(rs)] drs
∫

exp
[
−βU inter3 (〈r〉P ,q)

]
dq

(4.37)

Cancelling all intra terms:

=− 1

β
ln

∫
exp

[
−βU inter4 (〈r〉P,q))

]
dq∫

exp
[
−βU inter3 (〈r〉P,q))

]
dq

(4.38)

where the notation 〈r〉 is taken to denote the equilibrium values of the intramolecular

degrees of freedom. Each of these has a subscript denoting the thermodynamic state

from which the averages are taken and dictated by the intramolecular terms within

each integral. The above represents an approach for writing separated approxima-

tions to integrals over multiple variables95. By including the averaged value of r it

is removed as an explicit degree of freedom that must be integrated over, from here

separation of the integral into its components follows naturally.

The obvious question is under what conditions do equations (4.34) and (4.38) well

approximate their counterparts. It is above noted that each of the integrals within

equations (4.29) and (4.30) corresponds to a partition function which can be related

to the probability distribution of a thermodynamic state by equation (2.6). The full

expressions are well approximate by their separations where the probability distribu-

tions of the system degrees of freedom are unchanged in isolation. This is tantamount

to the requirement that the probability distributions of the intramolecular and in-

teraction degrees of freedom are independent of one another i.e. uncorrelated. For
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example, consider the separation:∫
exp

[
−β(U lQ(rl) + U s(rs) + U inter4 (〈r〉Q ,q))

]
drldrsdq

≈
∫

exp
[
−βU lQ(rl)

]
drl
∫

exp [−βU s(rs)] drs
∫

exp
[
−βU inter4 (〈r〉Q ,q))

]
dq

(4.39)

within the full integral, the probability distribution of the intramolecular degrees of

freedom r is altered by the presence of the U inter4 . The separated expression treats

the intramolecular terms in isolation however, allowing cancellation with the gas

phase term. The more closely the probability distribution of r matches between the

isolated terms and the full interacting system the better the approximation given

by the separated integral expression. This same condition applies in reverse, consid-

ering the effect of the intramolecular energies on the interaction degree of freedom,

with the exception that this time we are simplifying the integral by freezing the in-

tramolecular terms at their averaged values.

In the limit of ∆∆A
(sep)
hyd and ∆∆A

inter(sep)
hyd , providing sufficiently accurate approxi-

mations to equations (4.29) and (4.30), the use of interaction energies in free energy

calculations may be considered comparable to total energies, with a discrepancy

given by:

∆∆A
(sep)
diff = ∆∆A

(sep)
hyd −∆∆A

inter(sep)
hyd = − 1

β
ln

∫
exp

[
−βU inter4 (〈r〉Q ,q))

]
dq∫

exp
[
−βU inter4 (〈r〉P ,q))

]
dq

(4.40)

interpretation of equation (4.40) requires some care. The difference lies in the equilib-

rium values used for the intramolecular degrees of freedom in the different states of

the cycle. Under what conditions then might this term be expected to be negligible?

The degrees of freedom subsumed in r are rl and rs. The majority of values in 〈r〉Q
will be the same as in 〈r〉P excepting those ligand degrees of freedom that are mu-

tated. If the mutated terms lead to significant changes in internal geometry however

this may be expected to generate contributions to equation (4.40). The inclusion of

the solvent intramolecular degrees of freedom meanwhile suggest that changes in the

solvent structure caused by the perturbations in the ligand may also contribute to

this term.

Having noted the lack of rigour inherited through the use of interaction energies,

questions are raised about properties of interaction free energy differences. In partic-

ular, are the free energy differences calculated with interaction free energies pathway

independent? We address this issue through the introduction of an additional λ win-
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dow into the above derivations. For total energies:

∆∆A2λ
hyd = (∆A3→3.5 + ∆A3.5→4)− (∆A1→1.5 + ∆A1.5→2) (4.41)

= − 1

β
ln

Z3.5

Z3

Z1.5

Z1

− 1

β
ln

Z4

Z3.5

Z2

Z1.5

(4.42)

= − 1

β
ln

Z4

Z3

Z2

Z1

(4.43)

= ∆∆Ahyd (4.44)

for interaction energies:

∆∆Ainter,2λhyd (4.45)

=∆Ainter3→3.5 + ∆Ainter3.5→4.0 (4.46)

=− 1

β
ln

∫
exp

[
−β(U intra3 + U inter3.5 )

]
drdq∫

exp [−βU3] drdq
− 1

β
ln

∫
exp

[
−β(U intra3.5 + U inter4 )

]
drdq∫

exp [−βU3.5] drdq

(4.47)

6=∆∆Ainterhyd (4.48)

where ∆∆A2λ
hyd and ∆∆Ainter,2λhyd are the total and interaction free energies of hy-

dration calculated using 2 λ windows. As expected ∆∆Ahyd is invariant with the

number of λ windows, as it creates a smooth succession of states i.e. a perturbation

from 3 to 3.5 and then from 3.5 to 4. However this is not the case with the use of

interaction energies. As discussed above, ∆∆Ainterhyd can be understood as the free

energy difference between state 3 and a hybrid of states 3 and 4. The introduction

of a λ-window however does not create a connection of states. Rather we have a per-

turbation from state 3 to a hybrid intermediate of states 3 and 3.5, followed by a

perturbation from 3.5 to a hybrid of states 3.5 and 4.

4.2.1. Discussion

In the preceding analysis we have shown that the use of interaction energies, al-

though common place, lacks the theoretical correctness associated with total energies.

This is a prominent disadvantage as one of the noted strengths of free energy tech-

niques is their rigorous theoretical derivation. The use of interaction energies adds

an additional degree of approximation, although the magnitudes of such errors as

will be introduced in calculations with systems of biological complexity are not read-

ily apparent. In this context we have reached the limits of the purely theory-based

analysis as presented here and must move on to consider what can be learned from
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calculations performed in practice. This is carried out in the form of a model ther-

modynamic system in section 4.3, a full protein-ligand system in section 4.4 and an

extension of the model system to consider polarisation in section 4.5. First, however,

some additional observations are made on the basis of theory alone.

Despite the loss of rigour it engenders, the interaction energy expression 4.18, has

advantages with regard to the use of total energies. As previously noted the resultant

simplification of the free energy cycles to exclude a vacuum calculation provides some

computational savings. It might be argued that this is minimal, as simulations in

vacuum are comparatively cheap, but this may not always be the case. Consider the

free energy of hydration of a MM/QM system where the QM ligand is embedded in

MM solvent. Here the MM component of the system contributes negligibly to the

computational requirements in the aqueous phase of the calculation. This entails that

the vacuum simulation of the ligand at the QM level will therefore require almost

exactly as much CPU time to complete. Differing computational requirements of

the gas and aqueous phase will be more prominent as the solvent is modelled more

intensively. However in this case the use of interaction energies reduces the cost of

the computation by approximately half.

A second benefit is also suggested by the separated equations (4.34) and (4.38). The

integral in these terms is reduced to cover only the interaction degrees of freedom.

The number of interaction degrees of freedom are far fewer than the number of in-

tramolecular degrees of freedom. Reducing the dimensionality of the integrals sug-

gests far superior convergence characteristics for the interaction energy expressions

and can be viewed in terms of reducing the requirement for phase space overlap be-

tween states of the perturbation. As only the interaction degrees of freedom con-

tribute directly to the free energy difference, only overlap of the relevant sub-volume

of the total phase space is required. This aspect of the use of interaction energies is

demonstrated in detail in chapter 3.

A valuable distinction can be made between the use of interaction energies in the

context of single and dual topology calculations. The alternative λ-coupling approach

used in dual topology calculations is given by equation (2.109). Use of this with any

of the free energy difference estimators leads to the cancellation of intramolecular

energy terms, leaving only the interaction energies. The work of this section has im-

plicitely assumed the use of single-topology calculations, through the form of the

potential energy functions specified. Although superficially single topology with in-

teraction energies and dual topology approaches appear similar, it is shown in ap-

pendix C that interaction energies remain rigorously correct in the context of dual

topology. Despite being unsuitable for single step MM to QM perturbations with

the Zwanzig equation, when combined with some of the alternative approaches con-

sidered in section 2.5, dual topology calculations may provide a way to circumvent

difficulties associated with the use of interaction energies. This is discussed in more
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detail in chapter 5.

There are notable points of comparison warranted between our theoretical analysis

and the work of Boresch95,97,98 related to the treatment of bonded terms within free

energy calculations. Boresch’s treatment is limited to considering the decomposition

of the free energy difference of the ligand degrees of freedom into three different con-

tributions95 and uses this to conclude the equivalency of the single and dual topology

free energy calculations. This does not consider the effect of interaction potentials

on the intramolecular degrees of freedom however as their independence is simply

assumed. Our analysis therefore builds on the work of Boresch and considers situa-

tions in which the influence of interaction degrees of freedom violates the assumed

independence.
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Figure 4.2.: Interaction energy model system. The covalent bond is shown as a solid
line whilst the dashed lines denotes Lennard-Jones potentials. Marked are the two
bond lengths r1 and r2 that constitute a complete internal coordinate system.

4.3. Model System

Having proposed the theoretical results of the previous section we proceed by explor-

ing the implications of the derived terms in the context of a model thermodynamic

system. The system under consideration is shown in figure 4.2. This meets the crite-

ria of having a well defined interaction energy term but is sufficiently simple to allow

precise solution, through numerical evaluation, of its partition function. As shown in

figure 4.2 the system is composed of three atoms and three potentials in a one dimen-

sional non-periodic box of length L. Atom 1 is kept stationary against the left wall of

the box leaving a system with 2 degrees of freedom. The configuration of the atoms

is also maintained such that r2 ≥ 0, i.e. the third atom is not able to pass through

the central atom and maintains its position to the right. The potential energy of this

system is given by:

Umodel(r1, r2) =Hm(r1) + LJA(r2) + LJB(r1 + r2) (4.49)

=k(b0 − r1)2 + εA

[(
σA

r2

)12

− 2

(
σA

r2

)6
]

+ εB

[(
σB

r1 + r2

)12

− 2

(
σB

r1 + r2

)6
]

(4.50)

where the systems potential energy Umodel is the sum of a harmonic potential term,

Hm, and two Lennard-Jones terms, LJ . The LJA and LJB potentials correspond

to those labelled in figure 4.2. For the harmonic potential the parameters k and b0,

specify the spring constant and equilibrium bond length respectively, whilst for the

LJ potentials ε and σ give the well-depth and the displacement of the potential’s

minimum. Hm is considered to comprise the intramolecular energy of the system

whilst the Lennard-Jones terms constitute the interaction energy. We can use this

model system to mimic the relative free energy of hydration calculation from the

previous section. Using equation (4.49) to give the stages of the cycle equivalent to
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equations (4.19) to (4.22):

Umodel1 (r1) =kP (b0P − r1)2 (4.51)

Umodel2 (r1) =kQ(b0Q − r1)2 (4.52)

Umodel3 (r1, r2) =kP (b0P − r1)2 + εA3

[(
σA3
r2

)12

− 2

(
σA3
r2

)6
]

+ εB3

[(
σB3

r1 + r2

)12

− 2

(
σB3

r1 + r2

)6
]

(4.53)

Umodel4 (r1, r2) =kQ(b0Q − r1)2 + εA4

[(
σA4
r2

)12

− 2

(
σA4
r2

)6
]

+ εB4

[(
σB4

r1 + r2

)12

− 2

(
σB4

r1 + r2

)6
]

(4.54)

gas phase conditions are simulated by setting εA = εB = 0 kcal.mol−1. Adjusting the

parameters of calculations made with the model system, different scenarios can be

designed that assess the various properties of the interaction energy approximation

observed in the previous section. First is the question of how well equations (4.23)

and (4.24) are approximated by equations (4.34) and (4.38). This can be directly

assessed through the control of LJB, as this term (being a function of both r1 and

r2) precludes the separability of the integrals within the partition function of the sys-

tem. When εB3 = εB4 = 0.0 the integrals are formally separable and equations (4.23)

and (4.24) equate closely with equations (4.34) and (4.38), through cancellation of

the intramolecular terms. By increasing the strength of LJB therefore the quality

of the approximation can be controlled. Second, is the contribution of the equa-

tion (4.40), giving the difference between the equations (4.34) and (4.38). This is

noted to relate to the averaged geometries of the intramolecular term and hence can

be examined through altering the value of b0 between different states of the cycle.

4.3.1. Solution of Model System Equations

We here give details for exact solution of the equations of the model system, includ-

ing the limits of the integrals and application of the separated expressions to this

system.

From equation (4.29):

∆∆Ahyd = − 1

β
ln

∫ L
0

∫ L−r1
0 exp

[
−βUmodel4 (r1, r2)

]
dr2dr1∫ L

0

∫ L−r1
0 exp

[
−βUmodel3 (r1, r2)

]
dr2dr1∫ L

0 exp
[
−βUmodel2 (r1)

]
dr1∫ L

0 exp
[
−βUmodel1 (r1)

]
dr1

(4.55)
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From equation (4.30):

∆∆Ainterhyd = − 1

β
ln

∫ L
0

∫ L−r1
0 exp

[
−βHm3(r1) + LJA4 (r1) + LJB4 (r1 + r2)

]
dr2dr1∫ L

0

∫ L−r1
0 exp

[
−βUmodel4

]
dr2dr1

(4.56)

From equation (4.34):

∆∆A
(sep)
hyd = − 1

β
ln

∫ L−b0Q
0 exp

[
−βLJA4 (r1) + LJB4 (b0Q + r2)

]
dr2∫ L−b0P

0 exp
[
−βLJA3 (r1) + LJB3 (b0P + r2)

]
dr2

(4.57)

From equation (4.38):

∆∆A
inter(sep)
hyd = − 1

β
ln

∫ L−b0P
0 exp

[
−βLJA4 (r1) + LJB4 (b0P + r2)

]
dr2∫ L−b0P

0 exp
[
−βLJA3 (r1) + LJB3 (b0P + r2)

]
dr2

(4.58)

From equation (4.40):

∆∆A
(sep)
diff = − 1

β
ln

∫ L−b0Q
0 exp

[
−βLJA4 (r1) + LJB4 (b0P + r2)

]
dr2∫ L−b0P

0 exp
[
−βLJA4 (r1) + LJB4 (b0P + r2)

]
dr2

(4.59)

Integrals are given over the internal coordinate system (r1,r2). As mentioned previ-

ously, a lower bound of 0 is enforced for r2 whilst its upper bound is limited by the

size of the system, L, and the current value of r1. All calculations in this section as-

sume the same temperature of 300 K. All integrals were solved using the adaptive

Gaussian quadrature routines (see appendix A) of the SciPy library, which provides

wrappers to Fortran QUADPACK routines. Integrals were solved to a relative toler-

ance of 1.5× 10−8.

In addition to these analytical expressions, the total and interaction free energy

terms ∆∆Ahyd, ∆∆Ainterhyd are evaluated using Monte Carlo sampling and the Zwanzig

equation (equation (2.80)). This is used to provide independent support for the de-

rived results and their application within the model system, as well as to act as verifi-

cation of the numerical integration routines. For all results within this section, equiv-

alent MC results are given in appendix E, showing excellent agreement, generally to

within 1 σ.

It may be noted, that the resulting equations fail to exactly correspond to those of

the previous section, where the degrees of freedom are divided into three categories.

Restricted to two degrees of freedom the model system forgoes inclusion of a sepa-

rate solvent intramolecular degree of freedom. As the influence of the ligand degrees

of freedom on the interaction energy is not qualitatively distinct from that of the
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solvent intramolecular degrees of freedom we do not consider that this limits this

interpretive analysis.

4.3.2. Integral Separation

The first set of scenarios considered are given in table 4.1 and figure 4.3. Here we

have varied two parameters of the model pertaining to LJB. This term controls the

degree of separability of the integrals given by equations (4.55) and (4.56). When

εB = 0 the intramolecular term Hm and the interaction term LJA are independent

of one another. However, as LJB increases r1 and r2 become more correlated. Both

of the parameters of LJB were varied, three values of σB were used, along with 15

values of εB. Equations (4.55) to (4.57) (under this set of parameters equation (4.57)

and equation (4.58) are equivalent as b0P = b0Q) were solved for each set of the parame-

ters. For simplicity the two varied parameters are held to the same values for states

3 and 4 of the cycle. Figures 4.3a to 4.3c show a number of interesting properties.

First, they provide support for the interpretation of integral separability as the limit

in which ∆∆Ahyd approaches equivalence with ∆∆Ainterhyd . Where the values of these

terms coincide, they also agree well with the separated limit expression, ∆∆Asephyd, as

enforced by small values of εB.

Secondly, the error of ∆∆Ainterhyd with respect to ∆∆Ahyd is shown to monotonically

increase with the parameter εB, (figure 4.3d). Thus, increasing the strength of the

correlated term LJB leads to interaction energies acting as an increasingly poor

proxy for total energies. This effect is particularly pronounced where σB = 1.7, much

larger errors being observed in this case. As noted in section 4.2 the separated expres-

sions form good approximations where the probability distributions of the intramolec-

ular and interaction degrees of freedom are not strongly influenced by one another.

This will allow the cancellation of the isolated intramolecular terms in ∆∆A
(sep)
hyd to

approximate the full and interaction energy expressions. In the case of the model

system where σB < b0 + σA the effect of LJB is to crowd Hm to occupy shorter

bonds lengths than it would typically adopt in isolation. As LJB is made stronger

Hm is crowded further and the interaction energy result deviates further from the

total energy result.

This observation is supported through a second set of simulations, with parameters

given in table 4.2. This is based on the collection of parameters from the previous

set of simulations that give an absolute error of around 0.05 kcal.mol−1. Here we

introduce the parameter km that is used a modifier to the parameter k, such that

kP = 50 + km and kQ = 100 + km. This formulation allows the stiffness of the

Hm term to be increased whilst keeping the size of the perturbation between states

fairly similar. ∆∆Ahyd, ∆∆Ainterhyd and ∆∆A
(sep)
hyd for a range of values of km are given

in figure 4.4. The value of all three terms are shown to converge as the value of km

increases, the stiffer harmonic bonds being better able to resist distortion by the
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Figure 4.3.: Results of model system free energy of hydration calculations using pa-
rameters from table 4.1.
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Parameter Value

kP 50 kcal.mol−1.Å−2

kQ 100 kcal.mol−1.Å−2

b0P,b0Q 1.0 Å

εA3 1.0 kcal.mol−1

εA4 2.0 kcal.mol−1

εB3 ,εB4 var kcal.mol−1

σA3 ,σA4 1.0 Å
σB3 ,σB4 var Å
L 3.0

Table 4.1.: Parameter sets used in the calculations with the model system for fig-
ure 4.3.

Lennard-Jones terms. ∆∆A
(sep)
hyd is in fact invariant with respect to the values of kP

and kQ as it only takes into account the values of b0.

Interestingly, the deviation of the average of the bond length r1, under MC sampling

of state 3, from b0 shows a linear correlation with the difference between ∆∆Ahyd,

∆∆Ainterhyd . This offers direct support that alterations in the probability distribution

of r1 contribute to error in the use of interaction energies. We note that the range

of spring constants considered cover the typical range of harmonic bond strengths

within force field models. However, in this model system the harmonic term is in-

tended to stand in for the various potentials used to describe the intramolecular

energy of biomolecules, including softer bond and dihedral potentials.

4.3.3. Difference in Separated Terms

A third set of calculations using the values in table 4.3 were used to explore the im-

plications of equation (4.40), results are shown in figure 4.5. By choosing εB = 0, we

ensure that the integral expressions are equivalent to their separated counterparts.

For this set of calculations therefore ∆∆Ahyd = ∆∆A
(sep)
hyd (shown by figure 4.5b)

and ∆∆Ainterhyd = ∆∆A
inter(sep)
hyd , the difference between ∆∆Ahyd and ∆∆Ainterhyd being

precisely captured by equation (4.40). The interaction energy results (figure 4.5a)

are again invariant with respect to changes in the system intramolecular parameters

however, we note that changing the bond length b0Q does not change the free energy

contribution of the intramolecular term itself. These contributions cancel precisely in

both the interaction and total energy case. The difference given by equation (4.40)

instead arises due to the changes in the average value of r1 between states, and the

effect this has on the distribution of r2. These data demonstrate that even in the

limit of complete separability there is an independent source of error arising in the

use of interaction energies, caused by differences in intramolecular geometry between

states.

The results presented here support the conclusions from the theoretical analysis that
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Parameter Value

kP 50 + km kcal.mol−1.Å−2

kQ 100 + km kcal.mol−1.Å−2

b0P,b0Q 1.0 Å

εA3 1.0 kcal.mol−1

εA4 2.0 kcal.mol−1

εB3 ,εB4 3.0 kcal.mol−1

σA3 ,σA4 1.0 Å
σB3 ,σB4 1.7 Å
L 3.0

Table 4.2.: Parameter sets used in the calculations with the model system for fig-
ure 4.4.

Parameter Value

kP 50 kcal.mol−1.Å−2

kQ 100 kcal.mol−1.Å−2

b0P 1.0 Å
b0Q var Å

εA3 1.0 kcal.mol−1

εA4 2.0 kcal.mol−1

εB3 ,εB4 0.0 kcal.mol−1

σA3 ,σA4 1.0 Å
σB3 ,σB4 2.0 Å
L 3.0

Table 4.3.: Parameter sets used in the calculations with the model system for fig-
ure 4.5.
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−0.80

−0.79

−0.78

−0.77

−0.76

−0.75
∆

∆
A
h
y
d

E
st

im
at

e
(k

ca
l.m

ol
−

1 )

∆∆Ahyd

∆∆Ainter
hyd

∆∆A
(sep)
hyd

(a) Free energy of hydration with varying strengths of harmonic bond.
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Figure 4.4.: Results of model system free energy of hydration calculations using pa-
rameters from table 4.2.
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Figure 4.5.: Results of model system free energy of hydration calculations using pa-
rameters from table 4.3.
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Figure 4.6.: Difference in free energies using multiple λ-windows. All perturbations
using more than a single step employ additional λ-windows. Percentage errors are
given against the total free energy difference using 1 step.

we have identified the contributions to the difference between the total and interac-

tion free energy results. Questions remain as to what extent the issues highlighted

come in to play in the context of more realistic biomolecular free energy calculations.

4.3.4. Effect of λ-windows

Further to the analysis of section 4.2, we here demonstrate the effect of including

additional λ-windows in the calculation of interaction free energy differences, shown

in figure 4.6. Calculations were carried out using parameters from table 4.1, with

εB3 = εB4 = 5.0 kcal.mol−1 and σB3 = σB4 = 1.7 Å. As expected total energy results

do not vary with the number of λ-windows, but interaction energy results do. Al-

though the effects demonstrated here are comparitively small compared to the those

reported previously, it is sufficient to demonstrate in principle the path-dependence of

interaction energies.
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4.4. Cyclooxygenase 2

(a) The ligand scaffold for the set of
congeneric COX2 inhibitors99

R1 CH3

R2 CH2CH3

R4 SCH3

R5 OCH3

R6 CF3

R7 OH

(b) Different R groups for COX2
ligands

R4

R5 R2

R7 R1 R6

(c) The different R groups used in free energy calcula-
tions arranged in a perturbation cycle. Arrows indicate
the direction in which free energy differences are given.

Figure 4.7.: Cyclooxygenase 2 Ligands

The results presented in section 4.3 are qualitatively enlightening but their implica-

tion for calculations in more realistic systems is not clear. For this reason we have

considered the relative free energies of binding and hydration of a set of congeneric

inhibitors of cyclooxygenase 2 (COX2). This system was chosen as it has been the

subject of previous calculations within this research group100.

4.4.1. System Setup and Calculations

Calculations were performed using ProtoMS 2.376 with simulation inputs prepared

for a previous study100, with a slightly altered simulation protocol. Ligands were

prepared using the ANTECHAMBER module of AMBER 8 to calculate AM1-bcc

charges for each atom. These were subsequently used to construct template files for

use with ProtoMS. Aqueous phase simulations were prepared by adding a sphere of

TIP4P waters with a radius of 22 Å around the centre of geometry of the ligand.

The protein structure for the bound-phase simulations was derived from the pdb

structure 1CX2. Hydrogen atoms for this structure are already given within the pdb
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database entry, although the protonation state of all histidine residues was deter-

mined by visual inspection (see Michel et al. for details100). A ‘scoop’ of the protein

was prepared such that only residues with a heavy atom with 15 Å of a heavy atom

of ligand 2 were retained, leaving a structure of only 155 residues. The protein scoop

complexed with ligand 2 was then energy minimised using the SANDER module of

AMBER 8. Some minor additional details are given in Michel et al.100.

Free energy differences between different R groups were calculated using FDTI and

Hamiltonian replica exchange (see section 2.4). λ-windows between 0.0 and 0.9 were

evenly spaced by 0.1, with an additional 2 windows at 0.95 and 1.0 to give a total

of 12. The trapezium rule was used to give the final free energy differences between

states. Perturbations were conducted using the single topology approach. Dummy

atoms were withdrawn within the van der Waals radii of neighbouring atoms, to

a bond length of 0.2 Å and were not sampled at the appropriate end point of the

perturbation. Boundary conditions for solvent and bound phase simulations were

non-periodic. A half-harmonic potential was applied to all solvent molecules more

than 22 Å away from the geometric centre of the ligand to prevent diffusion.

Simulation protocols are given as follows. 20 million Metropolis-Hasting MC moves of

the solvent alone were performed to remove clashes with protein and/or ligand. For

each individual perturbation a further separate equilibration of 20 million MC moves

was conducted, using the system with the largest ligand of the perturbation and

with moves for all system components attempted. Production simulations were then

conducted with a further 10 million moves of equilibration to allow the system to

accommodate to the corresponding geometry of the ligand at each λ-window, statis-

tics for TI were then collected for 30 million moves. Ten independent repeats with

different random number seeds were carried out for each perturbation. MC moves

for different system components were attempted with the following probabilities. In

the aqueous phase - solvent 98.4%, ligand 1.6%. In the bound phase - solvent 85.8%,

protein 12.8% and ligand 1.4%. Bond length moves for the entire system along with

bond and torsion angle moves within rings were not attempted and these degrees of

freedom were hence constrained to their initial simulation values. The primary dif-

ference between the work presented here and the simulation protocol used previously

is that MC moves for all protein sidechain and backbone atoms were attempted. In

contrast, Michel et al.100 kept protein backbones rigid and only attempted moves for

sidechains with a heavy atom within 10 Å of the ligand.

4.4.2. Results

Results for the relative free energies of hydration and binding calculations are given

in Tables 4.4 and 4.5. Using total energies these are in good agreement with those

reported by Michel et al. using total energies. Differences between results arising

through the use of interaction energies and total energies are shown in figure 4.8
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Perturbation ∆A(g) ∆A(aq) ∆∆Ahyd ∆∆Ainterhyd

1→2 0.66 ± 0.00 1.18 ± 0.03 0.52 ± 0.03 0.48 ± 0.02
2→4 -1.09 ± 0.00 -1.61 ± 0.01 -0.52 ± 0.01 -0.36 ± 0.01
4→5 -3.43 ± 0.00 -4.93 ± 0.01 -1.50 ± 0.01 -1.66 ± 0.01
7→5 8.96 ± 0.00 12.33 ± 0.04 3.37 ± 0.04 2.93 ± 0.04
7→1 13.54 ± 0.00 18.25 ± 0.01 4.71 ± 0.01 4.69 ± 0.01
1→6 16.35 ± 0.00 16.92 ± 0.01 0.57 ± 0.01 0.45 ± 0.01

Table 4.4.: Results for relative free energy of hydration calculations using COX2
ligands. All values are given in kcal.mol−1.

for both hydration and binding calculations. Generally it can be seen than the er-

ror introduced by the use of interaction energies is non-zero. The solvation calcula-

tions appear far more robust, the greatest discrepancy being 0.44 kcal.mol−1 in the

perturbation from group R7 to R5, and the mean unsigned average being only 0.16

kcal.mol−1. In the case of the binding free energies however notably larger errors are

observed. The two largest being the R2 to R4 and R1 to R2 perturbations at 0.73

kcal.mol−1 and 0.76 kcal.mol−1 respectively. The mean unsigned error for binding is

also significantly inflated at 0.44 kcal.mol−1.

All perturbations appear well converged, giving standard errors less than 0.1. Cycle

closures can be calculated for the loop given by the ligands R1, R2, R4, R5 and R7.

These are given in table 4.6 for each of calculations performed. Despite the small

standard errors given for individual perturbations, the closures for certain cycles are

relatively poor, in particular the total energy results in the gas and aqueous phases.

Standard errors reported between independent repeats are small and are reported for

ten repeats from the same initial configuration. Poor closure of the cycles suggests

that the standard errors are overestimating the convergence of these results. As ex-

pected the interaction energy results show much better cycle closure, suggesting these

values are better converged.

4.4.3. Discussion

Poor convergence of the total energy results makes it difficult to draw any firm con-

clusions from these data. This said, the difference between results reported for total

and interaction energies differ markedly for individual perturbations. Sizeable errors

of greater than 0.5 kcal.mol−1 arise in three of the five perturbations. A notable im-

provement is observed for the closure of the thermodynamic cycle in figure 4.7c, for

calculations using interaction energies versus those with total energies (table 4.6).

This may be rationalised by the observation made in the previous section regarding

the decreased requirement for phase space overlap provided by the use of interaction

energies.

No particular trends can be observed in those perturbations associated with large
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Perturbation ∆A(aq) ∆A(b) ∆∆Abind
1→2 1.18 ± 0.03 2.97 ± 0.02 1.78 ± 0.03
2→4 -1.61 ± 0.01 -3.69 ± 0.01 -2.08 ± 0.02
4→5 -4.93 ± 0.01 -5.46 ± 0.03 -0.53 ± 0.03
7→5 12.33 ± 0.04 10.26 ± 0.04 -2.06 ± 0.06
7→1 18.25 ± 0.01 16.18 ± 0.02 -2.06 ± 0.02
1→6 16.92 ± 0.01 21.18 ± 0.02 4.27 ± 0.02

(a) Results for total energy relative free energy of binding calculations
using COX2 ligands. ∆A(b) gives the free energy difference between
ligands in the bound state.

Perturbation ∆Ainter(aq) ∆Ainter(b) ∆∆Ainterbind

1→2 0.48 ± 0.02 1.49 ± 0.02 1.02 ± 0.03
2→4 -0.36 ± 0.01 -1.71 ± 0.01 -1.35 ± 0.02
4→5 -1.66 ± 0.01 -1.63 ± 0.02 0.03 ± 0.02
7→5 2.93 ± 0.04 0.79 ± 0.03 -2.13 ± 0.05
7→1 4.69 ± 0.01 2.73 ± 0.02 -1.96 ± 0.03
1→6 0.45 ± 0.01 4.50 ± 0.02 4.05 ± 0.02

(b) Results for interaction energy relative free energy of binding calcu-
lations using COX2 ligands.

Table 4.5.: Results for relative free energy of binding calculations using COX2 ligands.
All values are given in kcal.mol−1.

Cycle Closure (kcal.mol−1)
∆A(g) 0.72 ± 0.00

∆A(aq) 0.56 ± 0.05

∆A(b) -0.26 ± 0.06

∆Ainter(aq) 0.22 ± 0.05

∆Ainter(b) 0.09 ± 0.05

Table 4.6.: Closure of thermodynamic cycle given in figure 4.7c according to calcula-
tion of different free energy differences.
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(b) Comparison of interaction errors arising for matching perturbations in the
hydration and binding calculations. Line of best fit shown in black.

Figure 4.8.: COX2 interaction energy errors
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error terms. Changes in ligand size or number of atoms are not associated with larger

errors. Additionally errors are not consistent between binding and hydration calcu-

lations, the worst performing hydration being one of the best performing binding. A

linear fit between the two for each perturbation gives an R2 value of only 0.07 (see

figure 4.8b).

The physical meaning of equation (4.40) was considered previously, however a further

observation in the light of the above results is illuminating. It relates to the effect

of the internal geometry intramolecular degrees of freedom on the interaction poten-

tials. It is an indirect effect whereby the difference of internal geometry from state

3 leads to a difference in probability density experienced by the interaction poten-

tials of state 4. This effect might be reasonably expected to be much more sigificant

in a bound state than in solvent. Consider the perturbative growth of a ligand in

the aqueous phase. As the dummy atoms extend out into the system, the solvent

structure is freely able to adjust to accommodate the ligand, allowing the interaction

potentials to satisfy their minima. However the environment of a protein binding site

is far less homogeneous, as the perturbed group grows out of the ligand it experiences

changes in environment, according to the conditions of the binding site. Thus differ-

ences in geometry between perturbations end-states may have a more pronounced

effect in the context of binding calculations. Although somewhat speculative, it is

interesting to note that this aligns with relative errors of hydration and binding in

the COX2 system.
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Figure 4.9.: Polarisable model system adapted from figure 4.2. Large circles denote
atoms, whilst small circles denote Drude particles.

4.5. Polarisable Model System

A key advantage of QM theory is the inclusion of polarisation effects between molecules.

These were not considered in the former model system nor in the calculations on

COX2, making it difficult to draw conclusions from these that extend specifically to

hybrid MM and QM work. A qualitative examination of polarisation effects is con-

sidered here through modification of the model system to include Drude particles55.

The theoretical background of the use of Drude particles to model polarisation effects

in classical energy models is given in section 2.2.2.5. The model system was modified

from that of section 4.3 through the addition of a point charge and a mobile Drude

particle for each atom. The energetic contribution of the Drude particles is given by:

UDrude(rd;x) =

3∑
i=1

kd|rdi |2 +

3∑
i=1

3∑
j>i

kedidj
rij

+

3∑
I=1

3∑
j 6=I

kenIdj
rIj

+

3∑
I=1

3∑
J>i

kenInJ
rIJ

(4.60)

This represents a specialised application of the more general expression given by

equation (2.51), that has been modified to include the number of atoms within the

model system and to restrict the value of kd to be the same for all atoms. The poten-

tial energy function for the polarisable model system is given as:

Upolar(r1, r2) = Hm(r1) + LJA(r2) + min{UDrude(r1, r2)} (4.61)

Where the final term represents the energy of the minimised configuration of Drude

particle displacements for the given values of r1 and r2. For simplicity LJB is not

considered within this version of the model system, as the introduction of point

charges within the system is sufficient to prevent separability of the configuration

integrals, through the introduction of an electrostatic interaction between the 1st and

3rd atoms. As noted through its formal definition (equation (2.53)), the isotropic po-

larisability of the model can be controlled through the combination of the parameters
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di and kd.

4.5.1. Solution of Model System Equations

Solution of equation (4.14) and equation (4.18) is complicated by numerical difficul-

ties arising through the introduction of the Drude particles. Firstly for any given

configuration of the nuclei, an algorithm is required to find the corresponding mini-

mum of the Drude particle configuration space. This is achieved through the use of

a non-linear conjugate gradient algorithm as given by Polak and Ribiere101 and im-

plemented within Scipy 0.12.0. No detailed explanation of the algorithm is provided

here except to note it being chosen for its robustness and numerical stability.

Second, evaluating the energy of system configurations where nuclei are in close prox-

imity to one another can lead to numerical infinities (the so called polarisation catas-

trophe effect102). This is avoided by introducing a buffer region between atoms over

which the integrals are not solved, taking the form of a lower bound of greater than

zero. This procedure does not alter the free energies calculated so long as the ener-

getic contribution of Hm and LJA in these regions are large and positive. This will

generally be true due to the short range repulsive property of the Lennard-Jones

potential, but restricts the values that are suitable for use as a spring constant for

Hm. Too soft a harmonic potential will cause the introduced buffer regions to have

non-negligible contributions to the configurational integrals and lead to erroneous

results. Care is taken to avoid this effect by assessing consistency of the calculated

free energies with small changes in the size of the buffer regions.

4.5.2. Results and Discussion

Calculations on this system were carried out using the parameters in table 4.7a with

additional parameters pertaining to the Drude particles given in table 4.7b. Each

ligand has been assigned a set of charges qi and the values of di are varied to control

the polarisability of the system. Values of ni are chosen such that the net charge qi is

preserved for each Drude-nucleus pair. All values of di were the same across different

states within a particular cycle and are referred to as d. ‘Gas phase’ states involving

only atoms 1 and 2 are neutral. States including the third ‘solvent’ atom obtain a net

charge. This is designed such that inclusion of the third atom in the system is able to

polarise the neutral ‘solute’.

The results of calculations using this system are given in figure 4.10. Where d = 0,

polarisation effects within the system hav been turned off, leaving ni = qi. The

discrepancy between interaction and total energy results at this point is due to the

presence of the nuclear point charges precluding integral separability, due to charge-

charge interactions between the first and third nuclei. It is seen that as the value of
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Parameter Value

kP 600 kcal.mol−1.Å−2

kQ 1200 kcal.mol−1.Å−2

b0P,b0Q 1.0 Å

εA3 2.0 kcal.mol−1

εA4 4.0 kcal.mol−1

σA3 ,σA4 1.0 Å
L 3.0

(a) Parameters for non-polarisable compo-
nents of the model system.

Molecule Parameters Value

P q1 0.1 e
q2 -0.1 e

d1,d2 d (var)
n1 q1 − d
n2 q2 − d

Q q1 0.15 e
q2 -0.15 e

d1,d2 var
n1 q1 − d
n2 q2 − d

N/A q3 0.2 e
d3 var
n3 q3 − d
kd 105 kcal.mol−1.Å−2

(b) Here e denotes units of elementary charge. Whilst
subscripts refer to atom numbers rather than thermo-
dynamic states within the cycle. Different states of the
cycle are conveyed through the parameters associated
with the two molecules P and Q. Parameters for the
third ’solvent‘ atom are not varied between states 3 and
4 of the thermodynamic cycle.

Table 4.7.: Polarisable model system parameters
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d becomes more negative, and hence polarisability becomes more pronounced, the

error associated with the use of interaction energies increases. This effect is compara-

ble to the use of the potential LJB. As the polarisability of the system is increased,

the presence of the charged ‘solvent‘ atom has a more pronounced effect on the in-

ternal geometry of the ‘solute‘ atoms, leading to the observed increase in error. The

magnitudes of the errors observed are not large compared to the magnitudes of the

associated free energy differences. However, we note that the introduction of polarisa-

tion more than doubles the error associated with the unpolarisable system (d = 0) in

the most extreme case. The range of polarisabilities explored in these calculations are

similar to those employed in more realistic contexts55.

One of the major rationales for the use of the hybrid free energy calculations is the

inclusion of QM theory to accurately model polarisation effects. However, the use

of interaction energies is a practical necessity as demonstrated in chapter 3 in the

context of hybrid work. This represents an inherent conflict as interaction energies

lose accuracy in precisely the high polarisability conditions that QM theory is in-

voked to model. Although enough to demonstrate the effect in principle, the results

presented here using a model system cannot predict the extent of this problem in

realistic biomolecular contexts.
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Figure 4.10.: Results from calculations with polarisable model system.
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4.6. Predicting the Error of Interaction Energies

Having established that the quality of the interaction energy approximation can

vary depending on the specific properties of the system to which it is applied, it is

desirable that we should be able to estimate the extent of this error. Comparison

of interaction energy results directly with total energy results is not always possible

as total energy calculations cannot always be carried out, for instance in the case

of the MM to QM SSFEP. For this reason it would be advantageous to formulate a

diagnostic approach capable of highlighting problematic calculations with minimial

computational effort.

We will first consider the theoretical results of section 4.2 to motivate the form of

such a diagnostic. Here we identify two independent contributions to the error aris-

ing through the use of interaction energies. It is required that the interaction and

intramolecular degrees of freedom of the system be well approximated if they are

assumed to be separable, i.e. ∆∆Ahyd ≈ ∆∆A
(sep)
hyd and ∆∆Ainterhyd ≈ ∆∆A

inter(sep)
hyd .

Even in the limiting case of this being true it is shown that interaction and total en-

ergies results differ and it is hence required that equation (4.40) be small in value.

There are multiple integrals within the proposed expressions that require separation.

We can highlight those terms that will contribute directly to the error through the

following:

∆∆Ahyd −∆∆Ainterhyd

=− 1

β
ln

∫
exp

[
−β(U lQ + U s + U inter4 )

]
drdq∫

exp
[
−β(U lP + U s + U inter3 )

]
drdq∫

exp
[
−βU lQ

]
drl∫

exp
[
−βU lP

]
drl

+
1

β
ln

∫
exp

[
−β(U lP + U s + U inter4 )

]
drdq∫

exp
[
−β(U lP + U s + U inter3 )

]
drdq

(4.62)

=− 1

β
ln

∫
exp

[
−β(U lQ + U s + U inter4 )

]
drdq∫

exp
[
−β(U lP + U s + U inter4 )

]
drdq∫

exp
[
−βU lQ

]
drl∫

exp
[
−βU lP

]
drl

(4.63)

Clearly interaction energies and total energies are equivalent where equation (4.63)

is zero. It is interesting to note that this term does not contain the partition func-

tion of state 3. Instead the partition function of the notional state combining the

intramolecular terms of state 3 with the interaction energies of state 4 is included,

along with the partition function of state 4. As the interaction energy terms control

the degree of correlation between the intra and intermolecular degrees of freedom this

suggests that the properties of state 4 most significantly influence the error between

interaction and total energies (this is supported through a series of model system
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calculations in appendix F). From equation (4.63):

− 1

β
ln

∫
exp

[
−β(U lQ(rl) + U s(rs) + U inter4 (rl, rs,q))

]
drldrsdq∫

exp
[
−β(U lP(rl) + U s(rs) + U inter4 (rl, rs,q))

]
drldrsdq∫

exp
[
−βU lQ(rl)

]
drl∫

exp
[
−βU lP(rl)

]
drl

(4.64)

Separate integrals by introducing the averages 〈r〉 and introduce the scaling

factors ccorr1 and ccorr2

=− 1

β
ln

ccorr1

∫
exp

[
−βU lQ(rl)

]
drl
∫

exp [−βU s(rs)] drs
∫

exp
[
−βU inter4 (〈r〉P,q))

]
dq

ccorr2

∫
exp

[
−βU lP(rl)

]
drl
∫

exp [−βU s(rs)] drs
∫

exp
[
−βU inter4 (〈r〉P,q))

]
dq∫

exp
[
−βU lQ(rl)

]
drl∫

exp
[
−βU lP(rl)

]
drl

(4.65)

Cancel terms

=− 1

β
ln
ccorr1

∫
exp

[
−βU inter4 (〈r〉Q,q)

]
dq

ccorr2

∫
exp

[
−βU inter4 (〈r〉P,q)

]
dq

(4.66)

Use equation (4.40)

=∆∆A
(sep)
diff −

1

β
ln
ccorr1

ccorr2

(4.67)

Rename ratio of scaling factors

=∆∆A
(sep)
diff + ∆∆Acorr (4.68)

Where we have introduced the terms ccorr1 and ccorr2 . These are scale factors that re-

cover the value of the correlated integrals from their uncorrelated approximations.

We are also left with the contribution of the difference in separated terms, ∆∆A
(sep)
diff ,

as given previously by equation (4.40). In practice the exact values of ccorr1 and ccorr2

are inaccesible. This is simply used as a convenient way to express the individual

error contributions of each integral as a single term. For the value of ∆∆Acorr to

approach zero we require the condition ccorr1 ≈ ccorr2 . We note this does not in fact re-

quire the configurational integrals to be perfectly separable, although this represents

one situation where the condition is met.

Predicting the error associated with interaction energies can therefore be approached

through attempting to approximate the terms ∆∆A
(sep)
diff and ∆∆Acorr. We note that

this analysis is limited to the case of a hydration free energy cycle. In the case of a

binding calculation, ∆∆A
(sep)
diff will have a different form and two additional values of

ccorr are introduced through the inclusion of the bound state within the thermody-

namic cycle.

It is common in the case of purely classical free energy calculations to make use of
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the λ windowing approach (see section 2.4). As demonstrated by the results of sec-

tion 4.2 and section 4.3.4 the value of the interaction free energy difference is depen-

dent on the number of λ-windows used in a perturbation. We can extend the analysis

of equations (4.64) to (4.68) to consider the use of additional λ-windows:

∆∆A2λ
hyd −∆∆A2λ,inter

hyd (4.69)

=− 1

β
ln

Z3.5

Z3

Z1.5

Z1

− 1

β
ln

Z4

Z3.5

Z2

Z1.5

+
1

β
ln

∫
exp

[
−β(U intra3 + U inter3.5 )

]
drdq∫

exp [−βU3] drdq
+

1

β
ln

∫
exp

[
−β(U intra3.5 + U inter4 )

]
drdq∫

exp [−βU3.5] drdq

(4.70)

=− 1

β
ln

∫
exp [−βU3.5] drdq∫

exp
[
−β(U intra3 + U inter3.5 )

]
drdq

Z1.5

Z1

− 1

β
ln

∫
exp [−βU4] drdq∫

exp
[
−β(U intra3.5 + U inter4 )

]
drdq

Z2

Z1.5

(4.71)

=− 1

β
ln
ccorr1

∫
exp

[
−βU inter3.5 (〈r〉P/Q ,q)

]
dq

ccorr2

∫
exp

[
−βU inter3.5 (〈r〉P ,q))

]
dq
− 1

β
ln

ccorr3

∫
exp

[
−βU inter4 (〈r〉Q ,q)

]
dq

ccorr4

∫
exp

[
−βU inter4 (〈r〉P/Q ,q)

]
dq

(4.72)

Where we introduce the scale factors ccorr3 and ccorr4 for the perturbation from the

intermediate λ state 3.5 to state 4. The notation P/Q is used to denote the inter-

mediate ligand states between P and Q. From this we conclude that errors arising

from intermediate λ-windows also contribute to the interaction energy error of the

perturbation. This does not necessarily mean that introducing λ-windows into a per-

turbation increases the overall error however. Although additional values of ccorr

are introduced with additional λ-windows, it might be reasonably expected that

the ratios
ccorr1
ccorr2

and
ccorr3
ccorr4

will more closely approach unity where their corresponding

thermodynamic states are more similar to one another. Although each λ-window

contributes individually to the error, as the perturbation performed is smaller the

contribution of the error is also reduced. This suggests that in attempting to formu-

late a diagnostic for the use of interaction energies the individual error contribution

of each λ-window must be considered.

In section 4.3.4 we demonstrated an increase in interaction energy error with ad-

ditional λ windows. However, the effect is very small. The practical effect of the

number of λ windows on the use of interaction energies remains an open question

therefore.

In addition to the above considerations, we can specify the properties that an ideal

diagnostic test would have. First and perhaps foremost it should be simple and feasi-
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ble to calculate without considerable additional computational work to that required

for the calculation itself. Preferably it would be applicable using data typically col-

lected in the course of a free energy simulation run, allowing its application to histor-

ical and previously published work. In the case of being able to predict not only the

magnitude but the sign of the interaction energy approximation, values from the diag-

nostic could be used to provide a correction term that restores the total free energy

difference.

In the above analysis we note that the partition function of state 3 does not strictly

enter into the error term given by equation (4.68). In the context of a hybrid calcu-

lation using SSFEP state 3 is simulated at the MM level whilst state 4, the QM, is

not sampled at all. This means that we have access to ensemble average properties

from the MM state but not the QM. Configurations from the MM state are post-

processed to the QM level, allowing access to a certain amount of information about

QM properties, but true QM ensemble averages are not available as configurations

are weighted by an MM Boltzmann factor. The dependence of the error term equa-

tion (4.68) primarily on state 4 (the QM level), is problematic as this is not sampled

directly. In such a case a successful diagnostic that retains the efficiency of the SS-

FEP approach must be accessible using only the QM processed configurations of

state 3, or must be inferable from the ensemble average properties of state 3.

Also in the context of MM to QM perturbations, we note in section 4.5 that polarisa-

tion effects are correlated with an increase in interaction energy error. Methods for

the calculation of polarisabilities at the QM level may therefore be used profitably to

infer diagnostic information from configurations generated at the MM level.

In section 4.2 it is noted that the interaction energy approximation holds where the

presence of intermolecular potentials does not alter the sampling of the ligand away

from that which it adopts in the gaseous phase. Comparison of the sampling of the

ligand with and without its surrounding environment may therefore yield information

that can be used as a diagnostic. This approach has the drawback however, of requir-

ing additional work in the form of a gas phase calculation. As these are not required

for relative free energy of binding calculations this requires additional computational

investment. Additionally, if using interaction energies to carry out a free energy of

hydration calculation a great benefit is avoiding the need to simulate the ligand in

isolation. A complication of this idea is that comparing ligand sampling requires

the comparison of two N-dimensioned distributions in configuration space, the inter-

pretation of which may be complex and unclear. An alternative may be to consider

changes in the sampled energy distributions that are conveniently single dimensioned.

Building from this we consider the meaning of the scale factors ccorr. Hypothesis-

ing that these are directly proportional to the separability of their integrals, we note

that the physical manifestation of this effect may be related to the degree of corre-

lation between the intra and intermolecular degrees of freedom. Where the integrals
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under consideration are perfectly separable, the different degrees of freedom of the

system will sample independently of one another. The correlation of the intra and

intermolecular degrees of freedom can be measured directly through the calculation

of correlation coefficients between the corresponding energy distributions. This can

be easily calculated from data gathered from an MD or MC run.

We have applied several of the above approaches to the model systems with some suc-

cess. However, this work remains at a tentative stage and hence is not presented here.

In particular further work is required to refine approaches suitable for application to

the COX2 system.
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4.7. Conclusions

The results presented here provide a strong argument for caution when making use

of interaction energies in free energy calculations however they are frequently used

within free energy techniques as a practical necessity. In the case of the MM to QM

FEP the use of interaction energies not only offers numerical tractability but also

provides much greater overlap between the end points of the calculation. We demon-

strate strongly in chapter 3 that poor overlaps with total energies requires the use of

interaction energies making their use unavoidable.

The results presented here provide insight to the consequences of using interaction

energies within free energy calculations. A theoretical elucidation of the underlying

approximate nature of interaction energy calculations is given. The use interaction

energies with the Zwanzig equation is shown to equate to a perturbation from the

sampled state to a notional hybrid state, composed of the intramolecular terms of the

source state and the interaction energy of the target state. We demonstrate that this

perturbation approaches the total relative free energy of hydration under the limit of

separability of the intramolecular and interaction degrees of freedom of the system

and where the averaged intramolecular distributions between source and target states

are similar.

We demonstrate the validity of these results through application to a series of sys-

tems of increasing complexity. The model system employed allows exact quantifi-

cation of the interaction energy error, and is used to directly support the derived

theoretical results. We then move on to consider comparable calculations within a

realistic biological system. Poor convergence of the total energy results precludes any

firm conclusions but the size of the interaction energy error observed for individual

perturbations is compelling. In particular for the binding energy calculations discrep-

ancies of up to 0.8 kcal.mol−1 between interaction and total energies were observed

for particular perturbations.

One of the most compelling cases for hybrid free energy are systems displaying strong

polarisation effects that cannot be appropriately described at the MM level. For

this reason we extend the model system to account directly for polarisation effects

through the addition of Drude particles. This allows a qualitative examination of the

unique effects at play for the case of perturbations involving a QM Hamiltonian. We

demonstrate that increasing the strength of polarisation effects is associated with in-

creases in interaction energy error. This suggests an unfortunate tension between the

need to use QM energy models to describe polarisable systems and the introduction

of error through interaction energies.

Finally we move on to consider the need for a diagnostic approach capable of high-

lighting calculations that are problematic with the use of interaction energies. We

extend the theoretical analysis to this end and provide a number of valuable observa-
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tions and criteria that such a test should meet. Unfortunately despite discussion of

several possibilities, we have been unable to demonstrate a working example within

the more realistic COX2 system. As such, this remains a focus for future work.

t
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5. Ensemble Generation/Reweighting

Approaches

5.1. Introduction

So far this work has focussed on the practical and theoretical aspects of SSFEP as

the most commonly used hybrid free energy technique. Recently however, several

more sophisticated approaches have been proposed and proof of principle calculations

have been made7,8,69,75. These were discussed in some detail and their theoretical

background developed in section 2.5.

In this chapter we will focus on the application of molecular mechanics based im-

portance function (MMBIF) sampling with multi-‘timestepping’ Monte Carlo and

the use of the non-Boltzmann Zwanzig equation. The primary difference between

these methodologies is that MMBIF is able to actively guide sampling of the MM

state to match the QM, whilst non-Boltzmann approaches are carried out purely

through post-processing of an existing MM ensemble. Calculations are carried out

with the model thermodynamic system of chapter 4 and the DNA base pair MD

dataset presented in chapter 3. Particular attention is paid to the combination of

these approaches with interaction energies and some theoretical results to this end

are given in addition to the computational work.

We introduce a novel post-processing method based upon resampling of an equilib-

rium MM distribution and use of a MC acceptance criteria. We refer to this resam-

pling approach and MMBIF collectively as ensemble building techniques. Resampling

provides an option for ensemble building as a purely post-processing technique, thus

avoiding the interdependency of QM calculations necessitated by MMBIF. This is

discussed more fully in section 5.3.

The techniques from this section were developed in section 2.5 in the context of cal-

culations between MM and QM states. Many of the calculations performed here how-

ever, are not explicitly between MM and QM states, but also between MM Hamil-

tonians and states of the model system. Wherever convenient we have maintained

the terminology of MM and QM in order to make apparent the application of these

techniques in the context of actual hybrid free energy work.
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1:P(g) 2:Q(g)

3:P(aq) 4:Q(aq)

QM MM∆A
(g)
P→Q

∆A
(aq)
P→Q

Figure 5.1.: Thermodynamic cycle used in model system calculations. Cycle states
in red are sampled by the auxiliary Markov chain, the blue arrows denoting the con-
struction of an ensemble with MMBIF. The blue labels MM and QM are given for
analogy with a hybrid free energy calculation.

5.2. Molecular Mechanics Based Importance Function

As developed fully in section 2.5.3, MMBIF techniques provide the ability to con-

struct a rigorously correct QM ensemble from sampling of only a reference MM en-

semble. A specialised acceptance test is used to remove the biasing influence caused

by sampling under the MM Hamiltonian and produce an ensemble with the correct

QM Boltzmann factor for each configuration. We consider here application of this

methodology within the model thermodynamic system of section 4.3 and consider its

extension to the use of interaction energies.

5.2.1. Model System

An MMBIF implementation based on multi-“timestepping” Monte Carlo is here em-

ployed in conjunction with the model thermodynamic system. This presents an ideal

test bed, as it is possible to directly calculate overlaps in configuration space using

the overlap integral described in section 3.2. Additionally, free energy differences

computed with the MMBIF approach may be compared with direct solution of the

partition function for the model system as previously (section 4.3).

The results given here represent application of the standard MMBIF approach de-
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Parameter Value

kP 50 kcal.mol−1.Å−2

kQ 100 kcal.mol−1.Å−2

b0P,b0Q 1.0 Å

εA3 1.0 kcal.mol−1

εA4 1.5 kcal.mol−1

εB3 ,εB4 var kcal.mol−1

σA3 ,σA4 1.0 Å
σB3 ,σB4 1.7 Å
L 3.0

Table 5.1.: Parameter sets used in calculations with the model system from sec-
tion 4.3 to produce figure 5.3.

scribed in section 2.5.3. The standard Metropolis-Hastings algorithm is employed for

the auxiliary Markov chain used to generate structures. After every ten moves of the

auxiliary chain an acceptance test for the QM chain is attempted as given by:

PMMBIF (x1 → x2) = min (1, exp [−β∆∆U ]) (5.1)

∆∆U = (UQM (x2)− UMM (x2))− (UQM (x1)− UMM (x1)) (5.2)

overlap integrals of the model system degrees of freedom r1 and r2 between different

states are calculated using equation (3.5) as described in detail in section 3.4.6.

The descriptions of MM and QM in this context are somewhat meaningless, as we

have no true QM Hamiltonian for the model system. Instead we shall use an alterna-

tive set of parameters to define distinct states with the system that shall be consid-

ered analogous to the QM. Free energy cycles will therefore be computed as shown in

figure 5.1. To complete the analogy, P states stand in for the QM system, whilst Q

states represent the classical. Only the states 2 and 4, are sampled and used to build

the states 1 and 3, respectively. The free energy differences ∆A
(g)
P→Q and ∆A

(aq)
P→Q are

then computed using the ensembles constructed using MMBIF. Hence we are using a

reference state to construct a target ensemble in order to calculate the perturbation

back to the reference ensemble. This represents a somewhat trivial use of MMBIF,

but it serves to illustrate its application without the need to include additional ther-

modynamic states within the cycle. Free energy differences are calculated using the

Zwanzig equation to complete the perturbation from the constructed ensemble back

to the reference ensemble.

5.2.1.1. Total Energies

Results for total energy MMBIF calculations are shown in figure 5.3 and were car-

ried out using the parameters set given in table 5.1. A simple visual demonstration

of the effectiveness of the ensemble building approach is given in figure 5.2. As can
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fr
eq

ue
nc

y

Target
Ref
MMBIF

(b) r2

Figure 5.2.: Probability distributions of r1 and r2. The distribution Ref is the system
state on which the auxiliary MMBIF Markov chain is constructed. Target is the
distribution that MMBIF attempted to reproduce, and MMBIF denotes the actual
distribution produced by ensemble building.

142



0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

−0.36

−0.35

−0.34

−0.33

−0.32

−0.31

−0.30

−0.29

−0.28

∆
∆
A

(k
ca

l.m
ol
−

1 )

Analytical
MMBIF

(a) Free energies of hydration

0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

−0.40

−0.38

−0.36

−0.34

−0.32

−0.30

−0.28

∆
∆
A
in
te
r

(k
ca

l.m
ol
−

1 )

Analytical
MMBIF

(b) Interaction free energies of hydration

0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

0.980

0.985

0.990

0.995

1.000

O
ve

rla
p

r1

r2

(c) Overlaps between target and MMBIF derived distri-
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r2, calculated using equation (3.5)

Figure 5.3.: Model system calculations using MMBIF. Results derived from direct
solution of the partition function are compared with results calculated with MMBIF
using parameters as given in table 5.1
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be seen, the distribution of bond lengths produced by MMBIF, closely resembles the

target distribution, although composed only of configurations generated by the ref-

erence distribution Markov chain. Excellent overlap between the MMBIF and target

distributions is shown over the full parameter range considered (see figure 5.3c). Ex-

cellent agreement is also seen in calculated free energies of hydration using both total

and interaction energies between MMBIF and direct numerical solution. The results

presented here are intended only to serve as a general purpose demonstration of an

application of the MMBIF methodology and to validate our implementation of the

algorithm as correct.

5.2.2. Interaction Energies

Having demonstrated a working example MMBIF calculations within the model

system we move on to consider the use of interaction energies with MMBIF. This is

carried out by maintaining the use of the standard (total energy) Metropolis-Hastings

test for the auxiliary ‘MM’ Markov chain, but using a modified acceptance test at the

‘QM’ level, given by:

P interMMBIF (x1 → x2) = min
(
1, exp

[
−β∆∆U inter

])
(5.3)

∆∆U inter = (U interQM (x2)− U interMM (x2))− (U interQM (x1)− U interMM (x1)) (5.4)

we here make no rigorous attempt to theoretically justify an acceptance test of this

form, but its application to the model system is illustrative in the context of the

results presented in section 4.2. Two conditions were imposed on the reliability of

interaction energies in calculations using FEP, the independence of the intra and in-

termolecular degrees of freedom, discussed in section 4.3.2, and consistency of the

intramolecular equilibrium geometry between states, discussed in section 4.3.3. Vi-

olation of either of these conditions causes interaction energies to give divergent re-

sults from total energies. The relation of these two conditions to the behaviour of

MMBIF with the use of interaction energies are considered individually with two sets

of simulations, designed to be analogous to the scenarios considered in sections 4.3.2

and 4.3.3.

Starting with the criteria of separability and reusing the parameters given in ta-

ble 5.1, gives the results of figure 5.5. A compelling demonstration of the behaviour

of MMBIF is given in figure 5.4. Here εB = 1.5 kcal.mol−1, so the system intra and

intermolecular degrees of freedom are not perfectly separable. Nonetheless the target

state distribution of the interaction degree of freedom, r2, is well reproduced by inter-

action energy MMBIF. Figure 5.5c shows that overlap of the r2 distribution between

interaction energy MMBIF and direct MC sampling of the target distribution re-

mains excellent over the entire range of parameters considered and is not contingent

on the separability of the degrees of freedom of the system. The intramolecular dis-
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tribution of the system meanwhile remains completely unaltered from the reference

state regardless of the value of εB. This result is somewhat intuitive; removing any

information relating to the intramolecular degrees of freedom from the acceptance

test leaves the technique unable to reweight the relevant intramolecular degrees of

freedom. The observation regarding overlaps is borne out through the calculated free

energy differences compared against direct numerical solution. Whilst matching total

free energies is dependent on the established separability condition, interaction free

energy differences appear to be accurately recovered through the use of equation (5.4)

as the acceptance test.

We now move to consider the second requirement for the viability of interaction en-

ergies. This can be related to the consistency of internal geometries between states,

but is more formally expressed as the requirement that equation (4.40) is zero. As

in section 4.3 this effect is explored within the model system by changing values of

b0 at different states of the cycle, i.e. b0P 6= b0Q. Results presented here employ the

parameters given by table 5.2.

In contrast to the results relating to separability, changes in internal equilibrium ge-

ometry between target and references states, disrupt the behaviour of MMBIF with

the use of interaction energies. Overlaps between MMBIF and target intermolecular

distributions are shown in figure 5.7c. As b0Q, and therefore the discrepancy between

internal equilibrium geometries, is increased the observed overlaps drop off. The rea-

son for this can be intuitively demonstrated by the results shown in figure 5.6. As

before, the intramolecular distribution remains unaltered from the reference state.

However, within the constructed ensemble the distribution of r1 is shifted with re-

gards to the target state. This shift combined with the boundary conditions of the

system, prevent the generation of configurations of r2 of greater than 2.0 Å, as these

configurations are not generated, the MMBIF procedure is not able to include them

within the constructed ensemble. This effect is counteracted when using MMBIF

with total energies as configurations for the intramolecular distribution are also cor-

rectly reweighted, allowing generation and acceptance of appropriate configurations

of the intermolecular distribution. Despite largely matching the target distribution,

the final result of interaction energy MMBIF is in fact something of a hybrid between

the target and reference states. This failure to correctly reconstitute the interaction

degree of freedom distribution leads to an accumulation of error in the calculated free

energy differences, not just using total energies, but also interaction energies.

A note of caution perhaps should be injected into interpretation of these results how-

ever. Whilst it is interesting to note the effect observed in figures 5.5 and 5.7 this in

part arises due to the boundary conditions applied within the model system. The use

of periodic boundary conditions would preclude this effect for instance, by removing

the dependency of the maximum length of r2 on r1.
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Figure 5.4.: Probability distributions of r1 and r2 constructed with interaction energy
MMBIF. The distribution Ref is the system state on which the auxiliary Markov
chain is constructed. Target is the distribution that MMBIF attempted to reproduce,
and MMBIF is the actual distribution produced by ensemble building.

146



0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

−0.37

−0.36

−0.35

−0.34

−0.33

−0.32

−0.31

−0.30

−0.29

−0.28

∆
∆
A

(k
ca

l.m
ol
−

1 )

Analytical
MMBIF

(a) Free energies of hydration

0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

−0.40

−0.38

−0.36

−0.34

−0.32

−0.30

−0.28

∆
∆
A
in
te
r

(k
ca

l.m
ol
−

1 )

Analytical
MMBIF

(b) Interaction free energies of hydration

0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

O
ve

rla
p

r1

r2

(c) Overlaps between target and MMBIF derived distri-
bution for the model system degrees of freedom r1 and
r2.

Figure 5.5.: Model system calculations using interaction energy MMBIF. Results
derived from direct solution of the partition function are compared with results calcu-
lated with MMBIF using parameters as given in table 5.2
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0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y
Target
Ref
MMBIF

(a) r1

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Bond Length (Å)
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Figure 5.6.: Probability distributions of r1 and r2. The distribution Ref is the sys-
tem state on which the auxiliary MMBIF Markov chain is constructed. Target is
the distribution that MMBIF attempted to reproduce, and MMBIF is the actual
distribution produced by ensemble building.
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bution for the intermolecular degrees of freedom r2. Here
we omit the intramolecular degree of freedom r1, as it
displays unvarying poor overlap.

Figure 5.7.: Model system calculations using interaction energy MMBIF. Results
derived from direct solution of the partition function are compared with results calcu-
lated with MMBIF using the parameters as given in table 5.2
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Parameter Value

kP 50 kcal.mol−1

kQ 100 kcal.mol−1

b0P 1.0 Å
b0Q var Å

εA3 1.0 kcal.mol−1

εA4 1.5 kcal.mol−1

εB3 ,εB4 0.0 kcal.mol−1

σA3 ,σA4 1.0 Å
σB3 ,σB4 2.0 Å
L 3.0

Table 5.2.: Parameter sets used in the calculations with the model system for fig-
ure 5.7.

5.3. Monte Carlo Resampling

Despite the similarity of the MMBIF and non-Boltzmann approaches, a significant

advantage claimed for MMBIF is the biasing of sampling toward regions of the phase

space suitable to the QM ensemble (this is discussed in section 2.5.5). The extent to

which this is beneficial however is unclear. We here propose an alternative MC based

resampling method, similar to MMBIF but without the sampling bias. This is similar

therefore to the non-Boltzmann approaches that reweight MM ensembles to recover

QM properties, except a full QM ensemble is reconstituted. The MC resampling

procedure is given as follows:

1. Generate an ensemble of MM structures with MD or MC, xMM,i.

2. Randomly select a configuration from xMM,i to be x1.

3. Randomly select a configuration from xMM,i to be x2.

4. Apply the acceptance test

P acptrsmp(x1 → x2) = min(1, exp [−β∆∆U ]) (5.5)

∆∆U = (UQM (x2)− UMM (x2))− (UQM (x1)− UMM (x1)) (5.6)

5. If test passed, x2 is added to the Markov chain and becomes x1

6. If test failed, discard x2 and add another copy of x1 to the Markov chain

7. Repeat from 3.

The acceptance test proposed has the same form as equation (5.1), the acceptance

test for MMBIF. The general form of the Metropolis test is given by equation (2.62).

As previously (see sections 2.3.2 and 2.5.3), the full form of equation (5.5) is depen-
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dent on the corresponding value of:

Pg(x2 → x1)

Pg(x1 → x2)
(5.7)

where Pg(x1 → x2) is the probability of generating the trial configuration x2 from x1.

In this case the term has the form:

Pg(x1 → x2) =
1

NMM
PMM (x2) (5.8)

where, NMM is the number of configurations within the previously generated classi-

cal ensemble, xMM,i. In addition PMM (x2) is the absolute probability of x2 arising

within the classical Boltzmann distribution. Expanding this to encompass both direc-

tions:

Pg(x2 → x1)

Pg(x1 → x2)
=

1
NMM

PMM (x1)
1

NMM
PMM (x2)

(5.9)

=
PMM (x1)

PMM (x2)
(5.10)

= exp [−β(UMM (x1)− UMM (x2))] (5.11)

inserting this into equation (2.62) gives the full test as in equation (5.5). As with

MMBIF, once the ensemble has been constructed the free energy difference is then

calculated through the application of the Zwanzig equation. This gives the free en-

ergy difference back to the reference ensemble from the constructed target ensemble.

5.3.1. Model System

Validation of the resampling approach is provided through application to the model

system of section 4.3, as discussed fully in section 5.2.1. Calculations presented in

the following are resampled from ‘MM’ ensembles constructed using 106 moves of the

standard Metropolis-Hastings algorithm. Every one in ten configurations, giving a

total of 105, was then used with the resampling procedure to build an ensemble of

106 configurations. As we are carrying out sampling with replacement from the 105

structures, the resulting ensemble will contain multiple instances of certain struc-

tures. This is designed to simulate the post-processing of only a subset of the MM

configurations generated by MD or MCs to the QM level.

5.3.1.1. Total Energies

The results shown here make use of the same parameters employed previously for

calculations with MMBIF and are given in table 5.1. The results shown here demon-
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Figure 5.8.: Probability distributions of r1 and r2 constructed with interaction en-
ergy resampling. The distribution Ref is the resampled system state. Target is the
distribution that resampling MC attempts to reproduce, and POST is the actual
distribution produced by ensemble building.

strate good agreement with results derived from direct solution of the partition func-

tion and the total energy MMBIF results. Similarly these results are only intented to

provide a basic proof of principle for this approach and validation of the algorithm’s

implementation.

5.3.1.2. Interaction Energies

By analogy with the use of interaction energies with MMBIF considered previously,

the use of the interaction energies with MC resampling is demonstrated here. As

before the interaction acceptance test is given by:

P acpt,interrsmp (x1 → x2) = min(1, exp
[
−β∆∆U inter

]
) (5.12)
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Figure 5.9.: Model system calculations using MC resampling. Results derived from
direct solution of the partition function are compared with results calculated with
MC resampling using parameters as given in table 5.1
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∆∆U inter = (U interQM (x2)− U interMM (x2))− (U interQM (x1)− U interMM (x1)) (5.13)

calculations using MC resampling with interaction energies were carried out with

the same test sets as employed previously with MMBIF (section 5.2). Compellingly,

precisely the same properties as observed for MMBIF with interaction energies are

observed in the case of the resampling procedure. Interaction free energy differences

are accurately reproduced despite the correlation between the intramolecular and

interaction energy terms (figure 5.10), whilst changes of internal geometry disrupt the

reconstitution of both interaction and total free energy differences (figure 5.11).

Owing to the similarity of the procedures employed it is not surprising that MC

resampling and MMBIF give identical properties with the use of interaction energies.

The main advantage offered by the proposed resampling approach, is that it can be

applied purely as a post-processing technique.

5.3.2. DNA Base Pair

The data presented in chapter 3 using the adenosine-thymidine DNA base pair in

vacuum is amenable to post-processing using the MC resampling procedure presented

here. The nature of the data set with four interconnected perturbations allows ex-

tensive post-processing with resampling. Three different calculations were performed,

resampling with equation (5.5) was used to calculate total and interaction free energy

differences (table 5.3 and figure 5.12) and resampling with equation (5.12) was used

to calculate interaction free energy differences. For each of these sets of calculations

multiple different perturbations involving three thermodynamic states were carried

out. This allows many different calculations to be constructed from subsets of the

four states of the cycle. In essence, any state can be resampled to produce any other

state, and then the free energy of perturbation to any third state can be calculated.

Each application of resampling used 450 configurations from the MD trajectories to

build an ensemble of 200000 configurations. All standard errors shown are between

the five independent repeat MD trajectories that were generated for each state of the

cycle.

Results for the total energy calculations (table 5.3) are of limited value due to the

calculations being unconverged in the case of the single-step perturbation, it is thus

difficult to assess the quality of the resampled free energy differences as no reliable

estimate of the true value is available. However, considering the variability of differ-

ent estimates for each perturbation, the source ensemble chosen to resample impacts

considerably the resulting free energy difference. We would conclude therefore that

the use of resampling in these approaches does not offer any improvement over the

single-step perturbation approach. Considered in the light of the extremely poor

total phase space overlap between states of the base pair system observed in sec-

154



0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

−0.37

−0.36

−0.35

−0.34

−0.33

−0.32

−0.31

−0.30

−0.29

−0.28

∆
∆
A

(k
ca

l.m
ol
−

1 )

Analytical
POST

(a) Free energies of hydration

0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

−0.40

−0.38

−0.36

−0.34

−0.32

−0.30

−0.28

∆
∆
A
in
te
r

(k
ca

l.m
ol
−

1 )

Analytical
POST

(b) Interaction free energies of hydration

0.0 0.5 1.0 1.5 2.0 2.5 3.0

εB (kcal.mol−1)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

O
ve

rla
p

r1

r2

(c) Overlaps between target and resampling derived
distribution for the intra and intermolecular degrees of
freedom r1 and r2 respectively.

Figure 5.10.: Model system calculations using MC resampling with interaction ener-
gies. Results derived from direct solution of the partition function are compared with
results calculated with MMBIF using parameters as given in table 5.1
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Figure 5.11.: Model system calculations using MC resampling with interaction ener-
gies. Results derived from direct solution of the partition function are compared with
results calculated with resampling using parameters as given in table 5.2
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tion 3.4.6 however, this result is perhaps unsurprising. Encouragingly however all free

energy differences fall within the correct magnitude and are thus entirely consistent

with the SSFEP results presented.

Interaction energy differences calculated through resampling with total energies are

given in figure 5.12. Agreement with SSFEP results is generally reasonable except in

the case of the ff99SB→ LDA perturbation. The mean unsigned error for reweighted

results against SSFEP is 1.56 kcal.mol−1. The interaction free energy differences

derived from resampling with equation (5.12) however, are markedly improved (see

figure 5.13), the majority of the perturbations showing good agreement with SSFEP.

These give a mean unsigned error of 1.04 kcal.mol−1.
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Figure 5.12.: Interaction free energy differences from total energy resampling for the
DNA base pair system. Bars are coloured according to the ensemble that was built
from. The blue FEP data is taken from the results presented in chapter 3. Error
bars show a single standard error between repeats.
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Figure 5.13.: Interaction free energy differences from interaction energy resampling
with equation (5.12) for the DNA base pair system. Bars are coloured according
to the ensemble that was built from. The blue FEP data is taken from the results
presented in chapter 3. Error bars show a single standard error between repeats.
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5.4. Non-Boltzmann Free Energy Perturbation

Detailed derivation of the non-Boltzmann approaches are given in section 2.5, but we

shall again briefly outline the theory here for clarity. Non-Boltzmann approaches are

based around the core result:

〈X〉QM =
〈X exp[βV ]〉MM

〈exp[βV ]〉MM

(5.14)

this provides a means to recover a true QM ensemble average of the property X from

sampling under an MM Hamiltonian. Where V is known as the bias potential and is

given by:

V = UMM − UQM (5.15)

Choosing X = exp [−β(UQM,1 − UQM,0)] gives the non-Boltzmann Zwanzig equation:

∆AQM,0→1 = − 1

β
ln
〈exp [−β(UQM,1 − UQM,0)] exp[βV0]〉MM,0

〈exp[βV0]〉MM,0

(5.16)

here ∆AQM,0→1 is the free energy difference between the chemically distinct states

0 and 1 at the QM level of theory. This result is only dependent however on an en-

semble average of state 0 at the MM level. This result can be applied therefore by

generating an ensemble of state 0 at the MM level and postprocessing configurations

to obtain UQM,0 and UQM,1. This result was reported and applied, along with its

BAR counterpart, by König et al.8,79.

5.4.1. Interaction Energy Theory

We shall here consider the novel extension of the theory to the use of interaction en-

ergies in the context of the Zwanzig equation. We propose two novel results, based

around the combinatino of interaction energies with equation (5.16) in two ways.

Firstly, and perhaps slightly trivially, we choose the value of X to be the interaction

energy difference, i.e. X = exp
[
−β(U interQM,1 − U interQM,0)

]
. Substituting this into equa-

tion (5.16) we can derive:

exp[β∆AinterQM,0→1]

=

〈
exp

[
−β(U interQM,1 − U interQM,0)

]
exp[βV0]

〉
MM,0

〈exp[βV0]〉MM,0

(5.17)
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=

∫
exp [−βUMM,0] exp

[
−β(U interQM,1 − U interQM,0)

]
exp [−β(UQM,0 − UMM,0)] dx∫

exp [−βUMM,0] dx∫
exp [−βUMM,0] exp [−β(UQM,0 − UMM,0)] dx∫

exp [−βUMM,0] dx

(5.18)

=

∫
exp [−β(UMM,0 − UMM,0)] exp [−βUQM,0] exp

[
−β(U interQM,1 − U interQM,0)

]
dx∫

exp [−β(UMM,0 − UMM,0)] exp [−βUQM,0] dx
(5.19)

=

∫
exp [−βUQM,0] exp

[
−β(U interQM,1 − U interQM,0)

]
dx∫

exp [−βUQM,0] dx
(5.20)

=
〈
exp

[
−β(U interQM,1 − U interQM,0)

]〉
QM,0

(5.21)

at this point we have simply reproduced the interaction Zwanzig equation at the QM

level. Using a series of steps analogous to those of section 4.2 gives:

∆AinterQM,0→1 = − 1

β
ln

∫
exp

[
−β(U intraQM,0 + U interQM,1)

]
dx∫

exp
[
−β(U intraQM,0 + U interQM,0)

]
dx

(5.22)

this is completely analogous to equation (4.24), differences in notation not withstand-

ing, and we therefore expect use of interaction energies in this context to accurately

reproduce interaction free energy differences. Use of equation (5.17) will be referred

to as the total bias interaction energy approach.

The second novel expression based on equation (5.16) arises through considering the

extension of interaction energies to include the bias potential which we now give as:

V inter = U interMM − U interQM (5.23)

Replacing V0 in equation (5.23) with equation (5.17) gives:

∆AinterbQM,0→1 = − 1

β
ln

〈
exp

[
−β(U interQM,1 − U interQM,0)

]
exp[βV inter

0 ]
〉
MM,0〈

exp[βV inter
0 ]

〉
MM,0

(5.24)

this will be referred to as the interaction bias approach, the associated free energy

difference denoted as ∆AinterbQM,0→1. Replacing the total energy bias with the interac-

tion energy bias, is possible but how does ∆AinterbQM,0→1 relate to the total free energy

difference? Continuing from equation (5.24):

exp
[
−β∆AinterbQM,0→1

]
=

〈
exp

[
−β(U interQM,1 − U interQM,0)

]
exp[βV inter

0 ]
〉
MM,0〈

exp[βV inter
0 ]

〉
MM,0

(5.25)
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=

∫
exp [−βUMM,0] exp

[
−β(U interQM,1 − U interQM,0)

]
exp

[
−β(U interQM,0 − U interMM,0)

]
dx∫

exp [−βUMM,0] dx∫
exp [−βUMM,0] exp

[
−β(U interQM,0 − U interMM,0)

]
dx∫

exp [−βUMM,0] dx

(5.26)

=

∫
exp

[
−β(UMM,0 − U interMM,0)

]
exp

[
−βU interQM,1

]
dx∫

exp
[
−β(UMM,0 − U interMM,0)

]
exp

[
−βU interQM,0

]
dx

(5.27)

=

∫
exp

[
−β(U intraMM,0 + U interQM,1)

]
dx∫

exp
[
−β(U intraMM,0 + U interQM,0)

]
dx

(5.28)

Interestingly this result is analogous to equation (5.22) however with the MM in-

tramolecular terms in place of the QM intramolecular terms. Equation (5.28) there-

fore contains energy terms that do not pertain to either end-state of the perturbation,

i.e. the QM states. Introduction of the separability approximation, as previously

(section 4.2), gives, from equation (5.22):

∫
exp

[
−β(U intraQM,0(r) + U interQM,1(r,q))

]
drdq∫

exp
[
−β(U intraQM,0(r) + U interQM,0(r,q))

]
drdq

(5.29)

≈
∫

exp
[
−βU intraQM,0(r)

]
dr
∫

exp
[
−βU interQM,1(〈r〉QM,0 ,q)

]
dq∫

exp
[
−βU intraQM,0(r)

]
dr
∫

exp
[
−βU interQM,0(〈r〉QM,0 ,q)

]
dq

(5.30)

=

∫
exp

[
−βU interQM,1(〈r〉QM,0 ,q)

]
dq∫

exp
[
−βU interQM,0(〈r〉QM,0 ,q)

]
dq

(5.31)

and from equation (5.28):

∫
exp

[
−β(U intraMM,0(r) + U interQM,1(r,q))

]
drdq∫

exp
[
−β(U intraMM,0(r) + U interQM,0(r,q))

]
drdq

(5.32)

≈
∫

exp
[
−βU intraMM,0(r)

]
dr
∫

exp
[
−βU interQM,1(〈r〉MM,0 ,q)

]
dq∫

exp
[
−βU intraMM,0(r)

]
dr
∫

exp
[
−βU interQM,0(〈r〉MM,0 ,q)

]
dq

(5.33)

=

∫
exp

[
−βU interQM,1(〈r〉MM,0 ,q)

]
dq∫

exp
[
−βU interQM,0(〈r〉MM,0 ,q)

]
dq

(5.34)

In the limit of separability both equations (5.22) and (5.28) approach the desired

free energy difference. The difference lies in the implicit effect of the intramolecular

terms. Equation (5.31) corresponds to the interaction energy result equation (4.24),

however the viability of replacing the averaged QM intramolecular geometries with
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MM geometries is not readily apparent. In principle, so long as the effect on the

interaction energy terms are equivalent, equation (5.34) will give comparable results

to equation (5.31). This should be expected to vary on a case by case basis and so we

move on to consider the practical application of this approach.

5.4.2. Base Pair

Calculations were carried out through post-processing of the dataset presented in

chapter 3. Three sets of calculations were made using equations (5.16), (5.17) and (5.24).

Results using the total bias total energy approach are comparable with those of sec-

tion 5.3.2. As discussed there, the poor convergence of the SSFEP results prevents

any firm conclusions from being drawn. However, general consistency in the size of

the perturbations gives general validation of the approach. Results for the total bias

interaction energy approach are given in figure 5.14. The quality of these results

compared to SSFEP is markedly variable. Certain perturbations show reasonable

agreement with SSFEP, for instance PBE→LDA, LDA→PBE, gaff→ff99SB. How-

ever the majority show fairly poor agreement, and in some cases considerable errors

are seen, eg. gaff→LDA. In particular the ff99SB→LDA result reweighted from the

gaff ensemble is off by greater than 10 kcal.mol−1. The mean unsigned error of the

non-Boltzmann results against SSFEP is 1.93 kcal.mol−1.

Improvement on the total energy and total bias energy results results is seen in the

use of the interaction bias approach (see figure 5.15), with a mean unsigned error

of 1.05 kcal.mol−1. The disastrous ff99SB→LDA reweighted from the gaff ensemble

is improved considerably in particular. We would speculate that the reason for this

improvement may attributed to the presence of the classical intramolecular energies

within equation (5.28). In the case of total bias interaction energies the total energies

within the bias still require the reweighting of intramolecular energy distributions to

produce the correct ensemble averages. The complete removal of the intramolecular

energies in the interaction bias method therefore simplifies the requirement for phase

space overlap. Only the average effect of the MM intramolecular energies are required

in equation (5.34) and these are determined directly from sampling of the MM state,

rather than through reweighting.

5.4.3. Comparison of MC Resampling and non-Boltzmann approaches

As the two post-processing techniques considered here it is interesting to compare

the results derived from the resampling and non-Boltzmann approaches. We consider

here the accuracy with which each methodology recreates the well converged interac-

tion energy SSFEP results from the base pair system (figure 3.9b). As can be seen

from table 5.5, use of interaction energies with either resampling or non-Boltzmann
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Figure 5.14.: Interaction free energy differences from total bias interaction energy
approach. Bars are coloured according to the ensemble that was built from. The
blue FEP data is taken from the results presented in chapter 3.

Method MUE (kcal.mol−1)

Total energy bias 1.93
Interaction energy bias 1.05
Total energy resampling 1.56
Interaction energy resampling 1.04

Table 5.5.: Mean unsigned error for different hybrid methodologies compared with
SSFEP.
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Figure 5.15.: Interaction free energy differences from the interaction bias approach.
Bars are coloured according to the ensemble that was built from. The blue FEP
data is taken from the results presented in chapter 3.
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approaches provides very similar accuracy of around 1 kcal.mol−1 mean unsigned er-

ror. Moderately better performance is shown for total energy resampling than total

energy bias results.
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5.5. Discussion and Conclusions

The results presented here provide a practical demonstration and comparison of sev-

eral state of the art hybrid free energy techniques. Results using these techniques are

compared with the well converged SSFEP results presented in chapter 3. Although

no improvements in the calculated free energy differences were shown, highly consis-

tent results were found between all approaches.

We introduce a novel ensemble-building technique based on resampling equilibrium

MM distributions and use of an MC acceptance criteria. We develop the theory and

demonstrate its viability through model system calculations, and application to the

base pair data. It shows performance comparable, and in some cases slightly superior,

to the non-Boltzmann techniques also considered here. A key advantage provided by

resampling is that it can be used purely as a post-processing technique, compared to

MMBIF which actively uses QM computations to guide sampling. Considering the

practical limitations implied by the guided sampling of MMBIF however, we conclude

that, for sufficiently well behaved perturbations, there might be more drawbacks

associated with its use than advantages. In this case using a purely post-processing

derived techniques such as resampling or non-Boltzmann may be advantageous.

We extend the application of the presented techniques beyond the established liter-

ature by considering further usage of interaction energies. This is shown rigorously

through theoretical analysis in the case non-Boltzmann and through demonstrative

calculations with the model thermodynamic system for the ensemble building ap-

proaches. Post-processing the DNA base-pair MD data was considerably improved by

the use of interaction energies in all cases, with considerably improved mean unsigned

error when compared directly with SSFEP results. Whilst interaction energy appli-

cation was successful for the data presented here, we note that the same criteria are

required for accuracy with post-processing techniques as are considered in chapter 4.

The behaviour of the ensemble building techniques considered here is especially inter-

esting to note in the context of a diagnostic test for the size of the interaction energy

error as discussed in section 4.6. In particular, the use of these techniques with inter-

action energies is noted to produce an ensemble with hybrid properties i.e. composed

of the intramolecular distributions of the references state but the interaction distribu-

tions of the target state. Recalling the results of section 4.6 we can write the size of

the interaction energy error over a single λ-window as:

∆∆Ahyd −∆∆Ainterhyd = − 1

β
ln

∫
exp

[
−β(U intraQM + U interQM )

]
drdq∫

exp
[
−β(U intraMM + U interQM )

]
drdq∫

exp
[
−βU lQM

]
drl∫

exp
[
−βU lMM

]
drl

(5.35)
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Where we have simplified and adapted the notation for the context of the MM to

QM perturbation. Notably, the partition function of the solvated MM state does

not appear in this expression. Instead only the partition function of the target QM

state and a hybrid state of MM and QM energy terms are present. The hybrid state

partition function given here and the distributions generated through ensemble build-

ing with interaction energies are intriguingly similar. We would suggest therefore

that use of ensemble building to generate information regarding this hybrid state is a

promising avenue to pursue in the development of a viable diagnostic approach. En-

semble building with total energies is also able in principle to generate the target QM

ensemble, and provide information for the diagnostic. The utility of MMBIF in the

context of a diagnostic is limited by its need to influence sampling at the MM level,

preventing its application as a post-processing approach. This condition is alleviated

by the proposed and validated resampling approach.
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6. CD1c

6.1. Introduction

One of the key challenges presented to the body’s immune system, is the question of

self or non-self103. How to identify those molecules or cells within the body that do

not form a part of normal physiological function but mark the presence of a harmful

pathogen or carcinogenic mutation. Immune cells patrol the blood stream and extra-

cellular compartments and have mechanisms to inspect the surface of cells that they

encounter. In order to locate cells that are playing host to pathogens or with harmful

mutations an active mechanism is required, involving participation of the cell under

inspection. This is fulfilled by the role of antigen-presentation pathways. These rep-

resent a specialised collection of proteins that sample the intramolecular composition

of a cell and present the contents at the cell surface for inspection by the immune

system. An antigen is any small molecule that elicits a response from the adaptive

immune system104.

The most commonly discussed and best understood antigen presentation pathways

are associated with the major histocompatibility complex (MHC) proteins. These

specialise in the presentation of peptide antigens from various intracellular compart-

ments for inspection by cytotoxic T-cells and helper T-cells105. Far less well studied

and the focus of this simulation work is the CD1 (Cluster of Differentiation 1) family

of proteins, composed of the isoforms CD1a through to CD1e. In contrast to MHC

pathways, CD1 isoforms present primarily lipid antigens (although presentation of

some lipopeptides has been identified106), and activate different classes of T-cells107.

Sitting at this position of the immune system therefore CD1 proteins make tempting

therapeutic targets for modulation of immune responses to a wide variety of condi-

tions. This may include amplifying the immune responses to cancers or pathogens, or

suppressing activity for the treatment of autoimmune conditions.

The general structure of the CD1 protein family is shown in figure 6.1. The CD1

heavy chain is made up of the three domains α1, α2 and α3. Similar to MHC pro-

teins, the heavy chain forms a complex with β2-microglobulin. The α1 and α2 do-

mains cooperate to form the antigen binding domain; this consists of a flat base of

six beta sheet strands and a pair of helices, one from each domain, that make up the

sides and roof of the binding pockets108. The α2 helix is broken by a short loop of

residues. The CD1 main chain faces outwards from the cell surface and is able to
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interact with T-cell receptor (TCR) tetramers on the surface of different classes of

T-cells104.

The CD1 binding site, formed by the α2 and α3 domains, is separated into two vol-

umes known as the F’ and A’ binding pockets with a connecting bridge. The struc-

ture of these regions show considerable variability between the known CD1 isoforms.

This enhances the diversity of lipid presentation by allowing each isoform to spe-

cialise in presenting subclasses of lipid structures108.

The aim of this work is to aid in the interpretation of X-ray crystallography data to

produce a viable model, for the structure of the isoform CD1c. The data produced

by X-ray crystallography comes in the form of a 3 dimensional maps that show the

electron density within the system to the achieved resolution. The challenge is then

to fit atoms within this electron density that correctly correspond to the structure

of the crystal. The fitted atoms are therefore an interpretation of the data and can

only be considered as a model for the true structure of the crystal. Fitting protein

atoms within the structure is relatively easy for several reasons. The majority of

proteins usually composed solely of the basic twenty amino acids, providing only a

limited number of residues that can be fitted to the observed density. The availability

of sequence data for proteins also provides detailed information that aids in fitting.

Non-protein components of the system can prove more challenging however, as pro-

tein crystals are often prepared under conditions containing many different chemical

species and in which impurities and degradation products may arise preventing exact

knowledge of the composition of the crystallisation media109.

Data from MD simulations can be used profitably to validate models derived from

crystal structures. MD provides access to the dynamic properties of the system and

can assess the stability of structure models and check for consistency with previously

reported MD results110,111. In the following we present results from MD work with a

series of CD1c structures produced by our collaborators Salah Mansour and Stephan

Gadola of the Faculty of Medicine and Ivo Tews of the Centre for Biological Sciences.
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Figure 6.1.: Schematic figure of CD1 isoforms.

6.2. CD1c with PEG

The initial model provided contained three polyethylene glycol (PEG) molecules, two

in the F’ pocket and one in the A’ pocket, along with a stearic acid molecule in the

A’ (figure 6.2). The structure of PEG is given by H-(O-CH2-CH2)n-OH, where for

the crystal structure n is 2 or 3. The model provided was based on an electron den-

sity map resolved to ~2.7 Å. To achieve crystallisation it proved necessary to produce

a hybrid structure with the α3 domain of CD1b grafted onto the α1 and α2 domains

of CD1c. The PEG molecules are not naturally occurring biological compounds, but

are a significant component of the buffer solution used in the crystallisation process.

A previous structure of CD1c has been published by Scharf et al.108, showing the

protein in complex with Mycobacterial lipid. This is available as the pdb structure

3OV6 from the protein databank and will be referred to as the CD1c MPM structure

due to the presence of a complexed mannosyl-b1-phosphomycoketide primarily in the

A’ pocket. Comparison of the CD1c PEG and CD1c MPM two structures is shown

in figure 6.3. Figure 6.3a shows an alignment of the first 165 residues (encompassing

the entire binding site) of the CD1c chain, giving an RMSD of only 1.18 Å. This

demonstrates a large degree of structural similarity between CD1c PEG and MPM.

An interesting feature highlighted by Scharf et al. in CD1c MPM is the presence

of a F’ binding groove with an open roof structure, in the place of a well defined

F’ binding pocket as seen in other CD1 isoforms. They hypothesise that this open

structure enhances the diversity of antigens that CD1c is able to present, similar

to MHC class proteins. Figure 6.3b shows the ligands occupying the binding sites

of both structures. Occupation of the A’ pocket is remarkably similar. The stearic
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Figure 6.2.: Binding site of CD1c PEG model. PEG molecules are shown in blue,
stearic acid in red.

acid and a PEG molecule largely recreate the tail of the MPM lipid. The contents

of the F’ pocket differ markedly however, with considerably more volume occupied

by the PEG molecules than the C12 hydrocarbon chain of CD1c MPM. CD1c PEG

therefore demonstrates more fully the binding capacity of the F’ site.

The larger volume of ligands in the F’ site suggests that CD1c PEG may be exploit-

ing the open F’ groove structure. Comparison of the roof residues of the F’ site

between the two structures suggests otherwise however (figure 6.3c). Rather than

the binding groove observed in CD1c MPM and despite the fuller occupation of the

F’ binding site, CD1c PEG shows a closed roof structure similar to other CD1 iso-

forms. This F’ pocket roof is comprised of the residues TYR152, LEU147, GLU80

and HIS84 that connect the α1 and α2 helices in a tethered configuration.

Given the differing occupation of the F’ pocket it is surprising that the position of

the helices agree so well between the structures. How is the highly hydrophobic F’

pocket being held open in the CD1c MPM structure? Although Scharf et al. describe

the fitted C12 chain as ‘conservative’ there is no suggestion of unaccounted for elec-

tron density that would appropriately fill the pocket. Instead it has been suggested

that the open conformations of CD1c MPM and crystal structures of other CD1 iso-

forms are maintained by crystal packing effects110.

Fitting of PEG to the binding site was carried out on the basis of their excellently

matching the observable electron density, and their presence during the crystallisa-

tion process. Whilst partially hydrophobic, PEG is also soluble in water and has an
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overall amphipathic character112. This raises questions about its ability to form sta-

ble complexes with the highly hydrophobic binding pocket of CD1c. We here under-

take MD simulation work of the proposed CD1c PEG structure to assess the stability

of the complex and the suitability of PEG as the fitted ligand. In addition we carry

out simulations with the CD1c binding site emptied of all ligands and, to examine

the effect of ligands with a more hydrophobic character, we use a system employing

aliphatic chains in the place of PEG.

6.2.1. System Setup

The first requirement for simulation with the protein structure is the addition of hy-

drogen atoms that are not have not been resolved within the electron density. This

was considered in some detail with comparison of three different protonation soft-

ware packages (for this analysis see appendix G). For all simulation work presented

here, the structure produced by the PROTANATE3D module of the MOE software

package113 was used. Crystallographic waters were retained within the structure and

additional solvent was added to the system, with TIP3P water molecules placed in

a box such that the minimum distance from protein to box edge was 8 Å. Sodium

ions were added to neutralise the overall charge of the system, giving a total system

size of ∼50,000 atoms. Three different simulation setups were created. The all PEG

setup: the provided crystal structure with all three PEG molecules and stearic acid

present. The empty setup: all PEG molecules and stearic acid removed from the

binding site leaving it empty. The aliphatic chain setup: all oxygen atoms in PEG

molecules were replaced with CH2 groups to produce purely aliphatic carbon chains.

Simulations were carried out using the AMBER 12 package80, with the FF99SB

force field43. Ligands were parameterised with the GAFF force field48 using the AN-

TECHAMBER module with partial atomic charges assigned using the AM1-bcc

method86,87. GAFF atom types and charges were checked manually for consistency

with no changes made.

6.2.2. Simulation Protocol and Analysis

The equilibration protocol included a series of successive minimisations, gradually

releasing restraints on the heavy atoms of the system. Heavy atoms of the protein

were then restrained and the system was gradually heated to 300 K over 200 ps, and

equilibrated to the correct pressure for 200 ps under the isothermal-isobaric ensem-

ble. The system was then cooled and the procedure repeated with protein restraints

removed.

Temperature control was achieved using the Langevin thermostat58, with a collision

constant of 3.0 ps−1. Pressure regulation employed the Berendsen barostat114 with a
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(a) Binding site protein structure

(b) CD1c ligands. Those to the right occupy the A’ pocket, to
the left the F’ pocket.

(c) F’ pocket roof.

Figure 6.3.: Comparison of CD1c PEG and MPM structures. CD1c MPM is shown in
purple, whilst CD1c PEG is shown in blue. Structures were aligned to the backbone
of the residue range 5-170 of the CD1c main chain.
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F’ A’

Figure 6.4.: Exit of PEG molecules from CD1c binding sites. The series of stills show
exit of PEG molecules through each pathway, with the relevant region highlighted on
the central diagram. Black - F’ pocket side exit, blue - F’ pocket roof exit, red - A’
roof exit.

relaxation time of 2.0 ps. Dynamics were carried out using a 2 fs timestep and a cut

off of 8 Å for non-bonded interactions. Covalent bonds were constrained through use

of the SHAKE algorithm68. Production runs were carried out on the Emerald GPU

cluster, using the CUDA implementation of PMEMD115,116. Production runs were

carried out under constant volume and temperature dynamics. Three repeats of each

simulation setup were carried out to give a total of nine MD trajectories, each 200 ns

in length.

Simulation data was post-processed using the PTRAJ executable of the AMBER

software package for calculation of RMSD values. Pocket volume data was produced

using the PocketAnalyzer package117, with minimum number of neighbours set to 15

and degree of buriedness set as 11. This represents the default settings. Additionally,

VAL96 was specified as the only residue of interest for the pocket finding algorithm.

6.2.3. Results

The most striking observation that can be made from the simulation data is the

rapid exit of the PEG molecules from both the F’ and A’ binding sites. Three differ-

ent locations were identified where PEG molecules were able to leave the binding site,

two in the F’ pocket and one in the A’ pocket. These are shown in figure 6.4 along

with trajectories taken by PEGs as they leave the binding site. Of the three repeat
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(a) 0 ns

(b) 200 ns

Figure 6.5.: Starting and final configurations of stearic acid within the A’ binding
pocket.
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simulations, two lose all PEGs within the 200 ns time scales simulated. For the third,

one PEG molecule remains in the F’ pocket by the end.

Within all simulations the stearic acid molecule remains within the binding site, al-

though it is displaced significantly from its initial position. The crystal structure

places the aliphatic chain of the stearic acid into a groove beneath the α1 helix,

whilst the head group is buried, pointing ‘downwards’ into the A’ pocket. Rather

than remaining buried, the acid head group seeks solvent through the roof of the

A’ pocket; this is perhaps unsurprising given the lack of a polar interactions within

the binding site to stabilise the position. The starting and final configurations of the

stearic acid are shown in figure 6.5.

In a previous MD study of CD1 isoforms, by Garzón et al. working with the CD1c

MPM structure, it was noted that hydrophobic collapse of the binding pocket occurs

in the absence of ligand. Our MD results with the CD1c PEG structure confirm this

observation. In all empty runs the inward collapse of helices α1 and α2 was observed

as shown in figure 6.8. This leads directly to the loss of binding pocket volume (fig-

ure 6.6). Despite the restraints placed on protein atoms during the majority of the

equilibration process, by the start of the production phase, the empty simulation

runs already demonstrate much smaller pocket volumes than the PEG simulations.

The pockets rapidly collapses further to around zero, with PocketAnalyzer117 often

unable to locate a binding pocket. Interestingly, the all-PEG simulations show much

a more progressive collapse as PEG molecules evacuate the binding site. Loss in

binding pocket volume is strongly correlated with the exit of PEG molecules from

the binding site. One of the PEG simulations maintains the binding volume of the

pocket; this is the same trajectory that retains a PEG molecule. It is interesting to

note therefore that the presence of even a single PEG in the binding site maintains

the structure of the pocket.

As observed above the most prominent difference between the CD1c MPM struc-

ture and CD1c PEG is the arrangement of the four roof residues of the F’ pocket.

As these are hypothesised to relate to the binding state of the protein, special atten-

tion was focussed on these residues. Figure 6.7 shows RMSD values for the sidechain

heavy atoms of these residues against the starting configuration of each trajectory.

For all simulation setups the roof residues remain in the tethered configuration at

the start of the production runs. Large increases in RMSD correspond to loss of the

tethered configuration to give structures that resemble more closely those of CD1c

MPM (figure 6.9). For the empty simulations (figure 6.7b) loss of the tethered config-

uration is immediate, likely due to the hydrophobic collapse of the pocket disrupting

the required binding geometries. For the PEG simulations (figure 6.7a) in accordance

with the pocket volume data, loss of tethering is more gradual. The second simula-

tion (green line), where pocket collapse does not occur, after an initial loss, recovers

the tethering interactions. This may provide a rationale for the persistence of the
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(d) Comparison a single trajectory from each setup

Figure 6.6.: Pocket volumes throughout MD trajectories for PEG simulation setups.
Results shown are moving averages over a window of 2 ps.
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(d) Comparison of a single trajectory from each setup

Figure 6.7.: RMSD of roof residues versus starting frame of simulation. Structures
were aligned to the beta sheets that make up the base of the binding site of starting
structure of each trajectory and RMSDs were calculated with no additional fitting.

181



Figure 6.8.: Comparison of CD1c PEG (green) versus a configuration from MD tra-
jectory with empty pockets (blue). Significant displacement of the α2 and α1 helix
leads to collapse of the F pocket.

PEGs in this simulation with closure of the roof preventing a route of exit. Observ-

ing the eventual collapse of the other repeats however, it is likely that this is only a

temporary effect.

The observed instability of PEG as a ligand of CD1c, suggests strongly that these are

unlikely to be the ligands present in the molecular crystal. Owing to the presence of

the oxygen groups, PEG is a moderately polar species that does not seem to reside

for long periods of time in the purely hydrophobic binding site. For this reason it was

decided to modify the CD1c structure to contain aliphatic carbon chains in the place

of PEG through the introduction of CH2 groups in the place of oxygen. This was

not designed necessarily to represent plausible ligands that might be present in the

crystal structure but instead to produce ligands of a comparable volume to PEG but

with a more hydrophobic character.

Results of the simulations with aliphatic chains are given in figures 6.6c and 6.7c.

The complexes produced by these simulations appear much more stable than those

with the PEG molecules. Pocket volumes for all simulations remain large and con-

sistent the crystal structure. Importantly the tethering interactions of the roof are

also maintained strikingly well. This shows that stability of the roof structure is de-

pendent on occupation of the binding site by ligands of the correct size and physico-

chemical character. This is interesting to note in the context of the previous observa-

tion that the CD1c MPM structure does not demonstrate the full binding capacity of

the CD1c F’ pocket.
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In the PEG simulations the stearic acid group undergoes significant rearrangement to

allow access of the charged head group to solvent. In the aliphatic chain simulations

however, the stable presence of the aliphatic chain within the A’ pocket prevents

access through the A’ roof in two of three simulation repeats. In these cases the head

groups emerge through a portal beneath the α2 helix. This portal is composed of the

residues PHE126, TYR160, LEU163 and ARG164; a positive charge is provided by

ARG164 that interacts with the lipid head group. To our knowledge this portal has

not been previously observed in any simulation work or crystal structures relating to

CD1 isoforms and is not present in the crystal structure, suggesting that it may arise

transiently.

(a) 0 ns (b) 40 ns

Figure 6.9.: Comparison of F’ roof residues from trajectory of CD1c PEG against the
CD1c MPM crystal structure. Roof residues of CD1c MPM in red. Configuration
first CD1c PEG trajectory shown in green. At 0 ns MD configuration (a) shows the
tethered arrangement of the roof residues as seen in CD1c PEG crystal structure. As
the simulation progresses, at 40 ns (b) the structure of the F’ roof has been lost, giv-
ing configurations that more closely resemble the CD1c MPM crystal structure. The
considerable flexibility of residues His84 and Tyr152 gives a wide range of configura-
tions for the roof residues, with the above image being selected for its similarity to
CD1c MPM.
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Figure 6.10.: stearic acid emerging through a side portal of the A’ pocket comprised
of residues PHE126, TYR160, LEU163 and ARG164.

6.3. Crystal Structure with Lauric Acid

On the basis of the simulation work with CD1c PEG, and given the impure nature

of crystallisation media it was considered that PEG was a poor choice for the fitted

ligand. For this reason the diffraction data were subjected to another round of re-

finements by our collaborators. This produced a second structure here termed CD1c

LAU. This was based on a different crystal than CD1c PEG, although produced un-

der identical conditions, with an electron density map of ~2.8 Å resolution and a unit

cell comprising two copies of CD1c with minor differences in sequence. The bind-

ing site and fitted ligands for both structures were close to identical. In place of the

three PEG molecules, two lauric acid molecules were fitted in the F’ binding pocket,

with only the stearic acid in the A’ pocket. The new configuration of the stearic acid

places the head group facing upwards towards the roof of the A’ pocket, as opposed

to the CD1c PEG where it is buried facing down into the pocket.

The system set up procedure used was the same as given in section 6.2.1. Of the

two CD1c structures within the unit cell one was chosen on an arbitrary basis for

simulation work due to their similarity.

6.3.1. Results

The pocket volume and roof residue RMSD results for all three lauric acid simula-

tions are given in figure 6.12. Encouragingly these are very similar to the results
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Figure 6.11.: CD1c LAU crystal structure. Lauric acid molecules are shown in blue,
stearic acid in red.

provided by the aliphatic chain simulations. Comparison with the other simulation

setups is given by figures 6.13 and 6.14. Stable complexes are observed throughout

the time scales simulated. Pocket volumes fluctuate less than the aliphatic chain

simulations suggesting that the pocket is more stable in the presence of the lauric

acid.

Starting and ending configurations from a production run are shown in figure 6.15.

Some movement of the ligands away from their position within the crystal structure

is seen although generally agreement is good. Notably in the 200 ns configuration the

stearic extends out of the A’ pocket into the F’; this likely provides a route for the

head group to access solvent without disrupting the roof residues of the A’ pocket.
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Figure 6.12.: Lauric acid simulation data. Pocket volumes and RMSDs are calculated
as discussed previously in section 6.2 and figure 6.7
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Figure 6.13.: Pocket volumes throughout MD trajectories for all simulation setups.
Results shown are moving averages over a window of 2 ps from representative trajec-
tories.
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Figure 6.14.: RMSD of F’ roof residues versus their starting tethered configuration
for all simulation setups. Results shown are moving averages over a window of 2 ps
from representative trajectories.

6.4. Discussion and Conclusions

As discussed previously, the CD1 protein family isoforms have an important role in

modulating the response of the immune system. CD1c has been shown to present my-

cobaterial antigens108,118 as well as lipopeptides106 and a selection of self-lipids107. In

particular, tuberculosis is a member of the mycobacterium genus and a notable target

for therapeutic intervention. The results presented here have been successfully used

to aid the interpretation of X-ray diffraction data to develop an atomic resolution

model of CD1c. The generated structure containing lauric and stearic acid species

produces a stable protein-ligand complex over the 200 ns time scales simulated.

The initially proposed model with PEG molecules fitted within the binding site

was not stable. Rapid loss of PEG molecules occurred in all simulations closely fol-

lowed by loss of binding pocket volume. Additional simulations were performed with

aliphatic chains of equivalent size modelled in the place of PEG, producing stable

complexes maintaining the F’ roof. It was concluded that PEG does not have a suf-

ficiently hydrophobic character to complex stably within the non-polar pockets of

CD1c. This information was used to carry out additional refinements and produce

the final CD1c LAU structure. Further simulation work demonstrated the stability of

this structure, the maintenance of the F’ roof interactions.

These findings contribute to the general understanding of antigen presentation by
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(a) 0 ns

(b) 200 ns

Figure 6.15.: Start and ending configurations for lauric acids from a simulation pro-
duction run. The ligands shown in blue are the configurations of the crystal struc-
ture, along with the visible protein structure.
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CD1c and the key role of the F’ roof in this regard. As well as acting as a learning

exercise in the preparation of protein structures and MD work with large systems.

This work is also intended as preparatory work for the application of hybrid free

energy techniques to the CD1d isoform as part of an ongoing BBSRC collaboration.

This is discussed in more detail in chapter 8.

Comparison of the CD1c MPM and PEG structures gave rise to the suggestion that

the MPM structure may represent an intermediate structure that has not adopted

its final conformation for TCR tetramer binding. Such a suggestion is interesting

in the context of the results presented here. We demonstrate the requirement for

the binding site to be filled with ligand of the correct physico-chemical character

in order to maintain the interactions of the roof residues. From the data presented

here it is unclear if the loss of the F’ roof is a necessary prerequisite for collapse of

the binding site, or whether the collapse in the absence of ligand causes loss of the

roof interactions. Stable complexes of CD1c MPM were seen by Garzón et al.110

over timescales of 100 ns; however no analysis of the F’ pocket roof was carried out.

Without further work it is not possible to rule out CD1c MPM producing a stable

F’ roof under simulation, rather than crystallographic, conditions. Strong evidence

for the open roof structure as a folding intermediate would require experimental

demonstration of the failure of such a structure to elicit a T-cell response in cellular

assays.
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7. Conclusions

The aim of this work has been to provide important validation work, both practical

and theoretical, in the application of hybrid free energy techniques. We present a

valuable demonstration of the convergence of the widely used SSFEP approach, with

respect to not only the MM to QM, but also the reverse QM to MM perturbation.

Although this does not guarantee appropriate convergence of the SSFEP approach in

all cases, it represents an important proof of principle for a representative system of

biologically relevant complexity.

The convergence of calculations with SSFEP is shown to be dependent on the use

of interaction energies in the place of total energies. We demonstrate that is due to

poor overlaps between the MM and QM probability distributions, and that overlaps

when considering interaction energies are improved by several orders of magnitude.

Unfortunately this also leads to a loss of theoretical rigour as free energy estimators

are derived using total energies.

Given the seeming practical necessity of the use of interaction energies we proceed

with a detailed theoretical analysis, supported with a series of calculations in model

systems. We demonstrate that the use of interaction energies is inherently approx-

imate, but note a limit in which interaction and total energies are equivalent. This

limit is given by a system in which the intra and intermolecular degrees of the system

can be considered independent. This is obviously not generally the case for biologi-

cally relevant systems, and we demonstrate through direct comparison of total and

interaction free energy differences in a protein-ligand system that considerable dif-

ferences can arise between the two, although this varies on a case by case basis. The

prospect of designing a diagnostic test predict the size of the error associated with

the use of interaction energies is discussed and some further theoretical and practical

observations are made to that end.

In addition to SSFEP we go on to consider the application of a pair of more recently

developed hybrid free energy techniques, in the form of non-Boltzmann reweighting

and MMBIF. We consider the validation of these procedures through their applica-

tion to the model system as used in chapter 4 and the base pair data of chapter 3.

Additionally we present a novel technique closely related to MMBIF, based upon

resampling of classical distributions to derive QM distributions through use of a

QM acceptance test. This approach is demonstrated to give behaviour equivalent

to MMBIF but can be used purely as a post-processing technique. We extend all
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of these techniques to consider their use with interaction energies and demonstrate

improved performance in application to the DNA base pair data.

Finally, as preparatory work for future application of hybrid free energy approaches,

we carry out setup and molecular dynamics simulations of an isoform of the CD1 pro-

tein family. Working in collaboration with other researchers we carry out validation

of a proposed crystal structure for CD1c.
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8. Future Work

As highlighted throughout this work, the inherent approximation engendered by the

use of interaction energies, gives rise to errors that vary on a system by system ba-

sis (see section 4.4). Although we present some valuable theoretical observations for

the development of a diagnostic approach, capable of estimating the error for each

perturbation, considerable additional work will be required to create a viable proce-

dure that meets the criteria detailed in section 4.6. Approaches are suggested by the

results presented in chapter 5, exploiting properties of the proposed MC resampling

technique.

A striking improvement in convergence of free energy calculations with the use of in-

teraction energies is demonstrated in chapters 3 and 5. It would be highly profitable

therefore to expand the use of interaction energies beyond hybrid free energy work,

to include their application in alchemical perturbations with purely MM calculations

and develop their use as a standard approximation in the field of free energy calcu-

lations. This would compromise one of the strengths of free energy estimation as a

theoretically rigorous approach. However, combined with an effective diagnostic ap-

proach capable at least of highlighting cases that should be extended with further

simulation work to converge total free energy differences, considerable computational

savings are potentially available. It would be interesting to consider the different con-

vergence characteristics of total and interaction energies with, for instance, the COX2

calculations presented in chapter 4. Savings may be possible, not only in the number

of required MC moves, but in the required number of λ windows.

Although the results for MMBIF within the model system are qualitatively enlighten-

ing, it would be informative to consider application of the MMBIF methodology to

the DNA base pair system for comparison with the directly calculated SSFEP results.

This was not carried out here due to the guided sampling of the approach, requiring

considerable additional calculations.

A major advantage of the techniques considered in chapter 5 is that they enable

the use of more sophisticated free energy difference estimators than the Zwanzig

equation i.e. TI or BAR. We limit ourselves to application of the Zwanzig equation

however, for comparison to the SSFEP base pair data. Due to the extensive QM MD

data generated, it would be interesting to compare application of BAR to these data

natively, as well in the context of the reweighting and ensemble building techniques.
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It is our intention to consider application of the hybrid methodologies considered

here to the development of fluorinated derivatives of the ligand KRN7000 for the C1d

isoform, CD1d. This system is the subject of an ongoing BBSRC collaboration at

the University of Southampton. We anticipate hybrid free energy techniques to be

valuable in this context due to proposed fluorine-carbonyl interactions between the

ligand and protein backbone. This interaction is poorly described by classical energy

models and we therefore hypothesise that purely MM approaches will be unable

to appropriately capture the free energy differences between KRN7000 derivatives.

This represents an opportunity to demonstrate the effectiveness of hybrid free energy

techniques within a system of interest for clinical developments and not adequately

handled by classical theory.

The data presented here cover a number of different approaches to the calculation

hybrid free energy differences. Our focus has been the validation and extension of

these rather than direct comparison of their merits and efficiency. Further application

of the non-Boltzmann and ensemble building techniques, is required to assess their

practical viability. In particular these demonstrate superior convergence behaviour

with extension to the use interaction energies and we have not here considered the

advantages of using estimators like BAR and TI. The ability of MMBIF to bias sam-

pling of the reference potential to the ‘QM’ phase space is compelling. However, this

procedure is shown to fail even in the limited test case considered by Woods et al.

On the basis of the validation presented in chapter 3 and its being the most exten-

sively applied throughout the literature, we would consider the use of SSFEP to be

the most rigorous and robust method for the calculation of free energy differences

at the QM level at this time, although more recent approaches show considerable

promise.
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A. Numerical Quadrature

Quadrature techniques provide approximate solutions to problems of the form:∫ b

a
f(x)dx (A.1)

Where f is some function integrated over the range a to b. The most basic algorithm

is given by the trapezium rule:

∫ b

a
f(x)dx ≈ (b− a)

2N

N∑
i=1

[f(xi) + f(xi+1)] (A.2)

Where the range a to b is divided over N evenly sized windows. The values of xi are

a collection of N+1 points at which f is evaluated and are referred to as nodes. The

trapezium rule can be thought of as fitting a linear polynomial to the function at

each node and giving the exact area of the fitted function.

Rather than assuming a fixed interval between nodes, a more general collection of

quadrature techniques can be derived by generalising the form of the problem.

∫ 1

−1
f(x)dx ≈

N∑
i

wif(xi) (A.3)

Where wi is a set of weights paired with the nodes xi. Gaussian quadrature rules

are defined by the number nodes used in their evaluation, known as the order of the

rule. Each order of rule has an associated set of nodes and weights. Different forms

of Gaussian quadrature are associated with fitting different forms of polynomial, for

instance the integration routines from the Scipy library used extensively throughout

this work make use of adaptive Chebyshev-Gauss quadrature.

A.1. Adaptive Quadrature

The results given by numerical quadrature rules are inherently approximate. There

is a direct trade off between the number of nodes used in a calculation and the accu-

racy of the answer produced. Increasing the number of nodes within an integral also

increases the required number of function evaluations and hence the computational
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cost of evaluating the integral. Where function evaluations are expensive, it is desir-

able therefore to be able to solve an integral to a certain degree of accuracy with the

minimum required number of nodes. This is carried out through the use of adaptive

quadrature. The procedure is given by:

1. Evaluate the integral with some number of nodes, N

2. Increase the value of N

3. Evaluate the integral with new N

4. Compare answers for different values of N

5. If difference between answers is less then the desired accuracy stop

6. Else repeat from 2.

The difference between evaluations of the integral with different values of N is known

as the relative error, the desired value of which is specified by the user. Efficient pro-

cedures can be defined that make efficient use of function evaluations with previous

values of N.
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B. Numerical Methods for the Solution of

Differential Equations

This section addresses numerical methods for the solution of differential equations of

the form:

dx(t)

dt
= f(x(t)) (B.1)

Where a solution takes the form of x(t). The simplest approach to is the application

of the Euler method90. An intuitive and straightforward process, it is given by:

x(t+ h) = x(t) + f(x(t))h (B.2)

Where h is the freely chosen step size of the algorithm. Here t is discretised and

the value of f(x(t)) is treated as constant over the interval h. In practice the Euler

method requires a very small h to accurately approximate a solution to x(t). For the

majority of application far more sophisticated approaches than the Euler method are

used (e.g. high order Runge-Kutta methods), however for some problems it remains

suitable.

B.1. Integrators for MD

Although in principle its form is the same as equation (B.1), the demanding prob-

lem posed by MD, i.e. the solution of equation (2.60), has led to the development

of a number of specialised algorithms with desirable numerical properties. A major

problem with the Euler method (and its higher order associates) is that error in the

solution aggregates globally. This means that the more steps of integration you carry

out the further from the desired solution you end up. In the case of MD, this mani-

fests itself in terms of drift in the total energy of the system. This is problematic in

ensuring that one’s statistics correspond to the correct ensemble.

This is resolved through the use of a class of methods that do not accumulate error
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globally, known as symplectic integrators. Symplectic methods are specialised in that

they depend on a form of symmetry, inherent in the MD problem, however with a

sufficiently small step size will conserve the energy of a system within. In practice,

because of the discretisation of time inherent to such methods they do not give an

exact solution for x(t), however they have proved to be sufficiently stable to allow

even protracted MD runs. A drawback of such methods is that they are limited to

being 2nd order accurate in the local error.

Here are presented two of the most frequently used algorithms in a variety of popular

MD packages. The first of these is the Leapfrog algorithm50:

xi(t+ ∆t) = xi(t) + vi(t+
1

2
∆t) (B.3)

vi(t+
1

2
∆t) = vi(t−

1

2
∆t) + ai(t) (B.4)

Where ∆t is the timestep of the algorithm. This has an unusual form as the veloc-

ities are offset from the positions by a half timestep, leading to its unusual name

as they hop past each other. The Leapfrog algorithm is symplectic and 2nd order

accurate, however the noted offset introduces drawbacks. If the velocities at an in-

teger timestep are required they must be interpolated from the half timesteps. This

requires additional computational effort and the storage of two sets of velocities in

memory. A popular alternative to the Leapfrog algorithm as it does not suffer from

these notable drawbacks is the Velocity Verlet algorithm119:

x(t+ ∆t) = x(t) + v(t)∆t+
1

2
a(t)∆t2 (B.5)

v(t+ ∆t) = v(t) +
1

2
[a(t) + a(t+ ∆t)]∆t (B.6)

In fact this integrator can be derived through straightforward algebraic manipula-

tion of equations (B.3) and (B.4). In this form it retains the desirable properties of

Leapfrog integration but can be efficiently implemented to require the storage of only

a single set of velocities.
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C. Dual Topology and Interaction Energies

We here demonstrate that the use of interaction energies that arises through the use

of dual topology approaches (section 2.4) is distinct from their usage in the case of

single topology. Interaction energies emerge naturally in dual topology approaches

and we here demonstrate rigorously their correctness. In parallel with the develop-

ment of section 4.2 we consider free energy of hydration calculations of the form

given by figure 2.6. We start by defining the two states involved in the calculation:

Udual3 (rl, rs,q, rl2) = U lP(rl) + U s(rs) + U inter3 (rl, rs,q) + U lQ(rl2) (C.1)

= U intra3 (rl, rs) + U inter3 (rl, rs,q) + U lQ(rl2) (C.2)

Udual4 (rl, rs,q, rl2) = U lQ(rl) + U s(rs) + U inter4 (rl, rs,q) + U lP(rl2) (C.3)

= U intra4 (rl, rs) + U inter4 (rl, rs,q) + U lP(rl2) (C.4)

And consider their application within the Zwanzig equation:

∆∆Adualhyd = ∆Adual3→4 (C.5)

= − 1

β
ln
〈
exp

[
−β(U inter4 − U inter3 )

]〉
3

(C.6)

= − 1

β
ln
〈

exp
[
−β((U inter4 + U s + U lQ + U lP)− (U inter3 + U s + U lP + U lQ))

]〉
3

(C.7)

= − 1

β
ln
〈

exp
[
−β(Udual4 − Udual3 )

]〉
3

(C.8)

= − 1

β
ln

∫
exp

[
−βUdual3

]
exp

[
−β(Udual4 − Udual3 )

]
drldrsdqdrl2∫

exp
[
−βUdual3

]
drldrsdqdrl2

(C.9)

= − 1

β
ln

∫
exp

[
−βUdual3

]
exp

[
−β(Udual4 − Udual3 )

]
drldrsdqdrl2∫

exp
[
−βUdual3

]
drldrsdqdrl2

(C.10)

= − 1

β
ln

∫
exp

[
−βUdual4

]
drldrsdqdrl2∫

exp
[
−βUdual3

]
drldrsdqdrl2

(C.11)

= − 1

β
ln

∫
exp

[
−β(U intra4 + U inter4 )

]
exp

[
−βU lP

]
drldrsdqdrl2∫

exp
[
−β(U intra3 + U inter3 )

]
exp

[
−βU lQ

]
drldrsdqdrl2

(C.12)

= − 1

β
ln

∫
exp

[
−β(U intra4 + U inter4 )

]
drldrsdq

∫
exp

[
−βU lP

]
drl2∫

exp
[
−β(U intra3 + U inter3 )

]
drldrsdq

∫
exp

[
−βU lQ

]
drl2

(C.13)
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= − 1

β
ln

∫
exp

[
−β(U intra4 + U inter4 )

]
drldrsdq∫

exp
[
−β(U intra3 + U inter3 )

]
drldrsdq∫

exp
[
−βU lQ

]
drl2∫

exp
[
−βU lP

]
drl2

(C.14)

= ∆∆Ahyd (C.15)

For convenience we have dropped explicit notation of many of the degrees of free-

dom. However these results surfice to demonstrate ∆∆Adualhyd = ∆∆Ahyd, and thus

represents a situation in which interaction energies arise in a rigorous context that is

distinct from the single topology approach.
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D. Invariance of Forward-Backward Free

Energy Perturbation Differences with

Respect to Potential Shifts by a

Constant

It can be shown that adjusting the energy values within the ensemble average by

a constant value is equivalent to adjusting the overall free energy difference by the

same amount i.e.:

∆A0→1 + α =
1

β
ln 〈exp [−β(U1 − U0 + α)]〉0 (D.1)

As:

∆A0→1 + α =
1

β
ln 〈exp [−β(U1 − U0)]〉0 + α (D.2)

= − 1

β
ln 〈exp [−β(U1 − U0)]〉0 +

1

β
βα (D.3)

= − 1

β
ln 〈exp [−β(U1 − U0)]〉0 −

1

β
ln exp[−βα] (D.4)

= − 1

β
ln 〈exp [−β(U1 − U0)] exp[−βα]〉0 (D.5)

∆A0→1 + α = − 1

β
ln 〈exp [−β(U1 − U0 + α)]〉0 (D.6)

The discrepancy between the perturbation in either direction is given by γ:

γ = ∆AMM→QM + ∆AQM→MM (D.7)

γ = − 1

β
ln 〈exp[−β(UQM − UMM )]〉MM −

1

β
ln 〈exp[−β(UMM − UQM )]〉QM (D.8)

The use of different values of α is equivalent to shifting the potential energies by

different constants and hence adjusting the relative heights of the potential energy

surfaces. As the relative heights of the surfaces can be represented with only a single

scalar we shall, without loss of generality, consider the effect of shifting only the MM

potential surface with the value α. This gives an adjusted potential energy surface
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Uref = UMM − α.

γ = − 1

β
ln 〈exp[−β(UQM − Uref )]〉MM −

1

β
ln 〈exp[−β(Uref − UQM )]〉QM (D.9)

Using (D.6) it is trivial to show that the value of γ is invariant with the value of α:

γ = − 1

β
ln 〈exp[−β(UQM − (UMM − α))]〉MM −

1

β
ln 〈exp[−β((UMM − α)− UQM )]〉QM

(D.10)

γ = − 1

β
ln 〈exp[−β(UQM − UMM )]〉MM + α− 1

β
ln 〈exp[−β(UMM − UQM )]〉QM − α

(D.11)

γ = ∆AMM→QM + ∆AQM→MM (D.12)
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E. Toy System Raw Data

We here present Monte Carlo results in corroboration of the model system calcula-

tions presented in section 4.3. All Monte Carlo results show the average and standard

error from 5 independent repeats from runs of 106 MC moves. Parameters and equiv-

alent figures can be found in section 4.3.
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εB ∆∆Ahyd ∆∆Ainterhyd ∆∆Ahyd MC ∆∆Ainterhyd MC
0.000 -0.630 -0.630 -0.637 ± 0.001 -0.637 ± 0.001
0.100 -0.639 -0.639 -0.647 ± 0.001 -0.647 ± 0.001
0.200 -0.648 -0.648 -0.649 ± 0.001 -0.650 ± 0.001
0.500 -0.672 -0.675 -0.676 ± 0.001 -0.678 ± 0.001
0.700 -0.687 -0.691 -0.693 ± 0.001 -0.698 ± 0.001
1.000 -0.707 -0.714 -0.712 ± 0.001 -0.719 ± 0.001
1.500 -0.732 -0.745 -0.734 ± 0.001 -0.747 ± 0.001
2.000 -0.747 -0.770 -0.749 ± 0.001 -0.771 ± 0.000
2.500 -0.753 -0.787 -0.756 ± 0.001 -0.789 ± 0.001
3.000 -0.750 -0.799 -0.751 ± 0.000 -0.800 ± 0.000
3.500 -0.739 -0.805 -0.740 ± 0.000 -0.805 ± 0.000
4.000 -0.721 -0.807 -0.722 ± 0.001 -0.807 ± 0.000
5.000 -0.669 -0.801 -0.670 ± 0.000 -0.801 ± 0.000

(a) σB = 1.7 Å

εB ∆∆Ahyd ∆∆Ainterhyd ∆∆Ahyd MC ∆∆Ainterhyd MC
0.000 -0.630 -0.630 -0.634 ± 0.001 -0.634 ± 0.001
0.100 -0.644 -0.642 -0.645 ± 0.001 -0.644 ± 0.001
0.200 -0.657 -0.653 -0.663 ± 0.001 -0.659 ± 0.001
0.500 -0.695 -0.686 -0.696 ± 0.001 -0.687 ± 0.001
0.700 -0.717 -0.705 -0.722 ± 0.001 -0.709 ± 0.001
1.000 -0.746 -0.730 -0.750 ± 0.000 -0.734 ± 0.000
1.500 -0.786 -0.764 -0.787 ± 0.000 -0.764 ± 0.000
2.000 -0.817 -0.790 -0.817 ± 0.000 -0.790 ± 0.000
2.500 -0.841 -0.809 -0.840 ± 0.000 -0.808 ± 0.000
3.000 -0.860 -0.824 -0.859 ± 0.000 -0.824 ± 0.000
3.500 -0.874 -0.835 -0.876 ± 0.000 -0.836 ± 0.000
4.000 -0.886 -0.844 -0.887 ± 0.000 -0.843 ± 0.000
5.000 -0.904 -0.856 -0.903 ± 0.000 -0.856 ± 0.000

(b) σB = 2.0 Å

εB ∆∆Ahyd ∆∆Ainterhyd ∆∆Ahyd MC ∆∆Ainterhyd MC
0.000 -0.630 -0.630 -0.636 ± 0.001 -0.636 ± 0.001
0.100 -0.606 -0.598 -0.607 ± 0.001 -0.600 ± 0.001
0.200 -0.581 -0.574 -0.583 ± 0.001 -0.576 ± 0.001
0.500 -0.521 -0.525 -0.523 ± 0.001 -0.528 ± 0.001
0.700 -0.495 -0.506 -0.501 ± 0.001 -0.512 ± 0.001
1.000 -0.468 -0.487 -0.471 ± 0.001 -0.490 ± 0.000
1.500 -0.442 -0.470 -0.443 ± 0.000 -0.472 ± 0.000
2.000 -0.428 -0.462 -0.431 ± 0.001 -0.465 ± 0.001
2.500 -0.420 -0.457 -0.419 ± 0.001 -0.456 ± 0.001
3.000 -0.415 -0.455 -0.414 ± 0.001 -0.455 ± 0.000
3.500 -0.411 -0.453 -0.412 ± 0.001 -0.453 ± 0.000
4.000 -0.409 -0.452 -0.409 ± 0.000 -0.452 ± 0.000
5.000 -0.405 -0.450 -0.405 ± 0.000 -0.450 ± 0.000

(c) σB = 2.3 Å

Table E.1.: Monte Carlo results corresponding to figure 4.3.
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km ∆∆Ahyd ∆∆Ainterhyd ∆∆Ahyd MC ∆∆Ainterhyd MC
0.000 -0.750 -0.799 -0.784 ± 0.001 -0.795 ± 0.000
10.000 -0.760 -0.798 -0.761 ± 0.001 -0.799 ± 0.001
20.000 -0.767 -0.797 -0.769 ± 0.001 -0.798 ± 0.001
50.000 -0.778 -0.795 -0.779 ± 0.000 -0.796 ± 0.000
100.000 -0.785 -0.794 -0.786 ± 0.001 -0.794 ± 0.001
150.000 -0.788 -0.793 -0.789 ± 0.001 -0.794 ± 0.001
200.000 -0.790 -0.793 -0.789 ± 0.001 -0.792 ± 0.001
250.000 -0.790 -0.793 -0.791 ± 0.001 -0.793 ± 0.001
300.000 -0.791 -0.793 -0.793 ± 0.001 -0.794 ± 0.001
400.000 -0.791 -0.793 -0.793 ± 0.001 -0.794 ± 0.001
500.000 -0.792 -0.792 -0.792 ± 0.001 -0.793 ± 0.001
600.000 -0.792 -0.792 -0.791 ± 0.001 -0.791 ± 0.001
700.000 -0.792 -0.792 -0.791 ± 0.001 -0.792 ± 0.001
800.000 -0.792 -0.792 -0.793 ± 0.000 -0.794 ± 0.000
900.000 -0.792 -0.792 -0.793 ± 0.001 -0.793 ± 0.001

Table E.2.: Monte Carlo results corresponding to figure 4.4.

b0Q ∆∆Ahyd ∆∆Ainterhyd ∆∆Ahyd MC ∆∆Ainterhyd MC
1.000 -0.630 -0.630 -0.635 ± 0.001 -0.635 ± 0.001
1.010 -0.629 -0.630 -0.631 ± 0.001 -0.632 ± 0.001
1.020 -0.628 -0.630 -0.629 ± 0.002 -0.631 ± 0.002
1.030 -0.627 -0.630 -0.631 ± 0.001 -0.633 ± 0.001
1.040 -0.626 -0.630 -0.631 ± 0.001 -0.637 ± 0.002
1.050 -0.624 -0.630 -0.630 ± 0.002 -0.636 ± 0.001
1.060 -0.623 -0.630 -0.632 ± 0.004 -0.637 ± 0.002
1.070 -0.622 -0.630 -0.627 ± 0.003 -0.634 ± 0.002
1.080 -0.621 -0.630 -0.622 ± 0.003 -0.631 ± 0.003
1.090 -0.620 -0.630 -0.624 ± 0.006 -0.631 ± 0.002
1.100 -0.619 -0.630 -0.623 ± 0.004 -0.636 ± 0.002

Table E.3.: Monte Carlo results corresponding to figure 4.5.

215





F. Invariance of Interaction Energy Error

With Respect to State 3

As dicussed fully in section 4.6 the difference between the free energy of hydration

calculated by total and interaction energies is given by:

∆∆Ahyd −∆∆Ainterhyd = − 1

β
ln

∫
exp

[
−β(U lQ + U s + U inter4 )

]
drdq∫

exp
[
−β(U lP + U s + U inter4 )

]
drdq∫

exp
[
−βU lQ

]
drl∫

exp
[
−βU lP

]
drl

(F.1)

Interestingly, this expression does not contain the partition function of state 3 of the

free energy of hydration cycle (figure 4.1). Instead it contains the partition functions

of states 1, 2 and 4, as well as an apparent hybrid state composed of the intramolec-

ular terms of state 3 and the intermolecular terms of state 4. This expression can

be shown to approach zero in the limit of integral separability, however separability

of this expression is independent of the properties of state 3, i.e. the state sampled

through application of the Zwanzig equation.

This surprising property is demonstrated here through calculations with the model

system. Two sets of calculations were completed with the parameter sets given by

tables F.1 and F.2. Figure F.1 demonstrates that ∆∆Ahyd = ∆∆Ainterhyd so long as the

state 4 remains completely separable. Meanwhile figure F.2 shows that impairing the

separability of state 4, leads to an increasing degree of interaction energy error.
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Figure F.1.: Model system calculations with variable separability of state 3 and per-
fect separability of state 4 i.e. εB3 is varied whilst εB4 = 0.

Parameter Value

kP 50 kcal.mol−1.Å−2

kQ 100 kcal.mol−1.Å−2

b0P,b0Q 1.0 Å

εA3 1.0 kcal.mol−1

εA4 2.0 kcal.mol−1

εB3 var kcal.mol−1

εB4 0.0 kcal.mol−1

σA3 ,σA4 1.0 Å
σB3 ,σB4 var Å
L 3.0

Table F.1.: Parameter sets used in the calculations with the model system for fig-
ure F.1.
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Figure F.2.: Model system calculations with perfect separability of state 3 and vari-
able separability of state 4 i.e. εB4 is varied whilst εB3 = 0

Parameter Value

kP 50 kcal.mol−1.Å−2

kQ 100 kcal.mol−1.Å−2

b0P,b0Q 1.0 Å

εA3 1.0 kcal.mol−1

εA4 2.0 kcal.mol−1

εB3 0.0 kcal.mol−1

εB4 var kcal.mol−1

σA3 ,σA4 1.0 Å
σB3 ,σB4 var Å
L 3.0

Table F.2.: Parameter sets used in the calculations with the model system for fig-
ure F.2.
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G. Comparison of Protonation Software

Packages for CD1c Structure Setup

The resolution of the electron density from protein crystallography is rarely sufficient

to determine the position of hydrogen atoms. This is particularly challenging for

histidine residues as this group has 3 possible protonation states. The imidazole can

be protonated on either the delta nitrogen, the epsilon nitrogen or both. Determining

the appropriate protonation state for each histidine is therefore a required step in the

preparation of protein structures for MD simulation work.

Additionally for certain residues the electron density can be ambiguous with respect

to the correct rotamer. These include histidine, glutamine, asparagine. For each of

these residues it is important to consider potential flipped conformations that may

provide superior hydrogen bonding opportunities, or avoid steric clashes. Histidine

presents a particular problem due its combination of multiple protonation states with

its flat ring structure compatible with flips.

For this reason multiple software packages have been developed to automate this

process. In tables G.1 and G.2 here give a brief comparison of three different pieces

of software developed for this purpose, WHATIF120, REDUCE121 and the PROTO-

NATE3D module of MOE113.
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Chain Res No Res Type WHATIF MOE REDUCE
CD1c 7 HIS X X

11 HIS X
14 GLN X
21 GLN X
27 GLN X
38 HIS X X X
57 ASN X X
82 GLN X X X
84 HIS X X X
87 GLN X
128 ASN X
142 GLN X X
146 HIS X
150 HIS X
161 ASN X X
183 HIS X X
185 GLN X
204 GLN X
228 GLN X
229 GLN X X
232 GLN X X
266 HIS X X X
272 GLN X

β2-M 3 GLN X

Table G.1.: Residues flipped with respect to the crystal structure. A tick mark de-
notes a flip has been carried out by the corresponding software package.

Chain Res No WHATIF MOE REDUCE
CD1c 7 HID HIP HIE

11 HIE HIP HIE
38 HIP HIP HIE
51 HIE HIP HIE
84 HID HIP HID
105 HIE HIP HID
146 HIE HIE HIE
150 HIE HIP HIE
183 HIE HID HID
208 HID HIP HIE
266 HIE HIP HIE

β2-M 14 HID HIP HID
32 HIE HIE HIE
52 HID HIP HID
85 HIE HIE HIE

Table G.2.: Protonation state of all histidines within CD1c crystal structure. HIE
denotes protonation of the epsilon nitrogen, HID the delta and HIP both.
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