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Abstract  
The lung provides the main route for nanomaterial exposure. Surfactant protein A 

(SP-A) is an important respiratory innate immune molecule with the ability to bind or 

opsonise pathogens to enhance phagocytic removal from the airways. We 

hypothesised that SP-A, like SP-D, may interact with inhaled nanoparticulates and 

that this interaction will be affected by nanoparticle surface characteristics.  Here we 

characterize the interaction of SP-A with unmodified (U-PS) and amine-modified (A-

PS) polystyrene particles of varying size and zeta potential using Dynamic Light 

Scatter analysis. SP-A associated with both 100 nm U-PS and A-PS in a calcium 

independent manner. SP-A induced significant calcium dependent agglomeration of 

100 nm U-PS nanoparticles but resulted in calcium independent inhibition of A-PS 

self agglomeration. SP-A enhanced uptake of 100 nm U-PS into macrophage-like 

RAW264.7 cells in a dose dependent manner but in contrast inhibited A-PS uptake. 

Reduced association of A-PS particles in RAW264.7 cells following pre-incubation of 

SP-A was also observed with coherent anti-Stokes Raman spectroscopy (CARS). 

Consistent with these findings, alveolar macrophages from SP-A-/- mice were more 

efficient at uptake of 100 nm A-PS compared to wildtype C57Bl/6 macrophages. No 

difference in uptake was observed with 500 nm U-PS or A-PS particles. Pre-

incubation with SP-A resulted in a significant decrease in uptake of 100 nm A-PS in 

macrophages isolated from both groups of mice. In contrast, increased uptake by 

alveolar macrophages of U-PS was observed after pre-incubation with SP-A. Thus we 

have demonstrated that SP-A promotes uptake of non-toxic U-PS particles but inhibits 

the clearance of potentially toxic A-PS particles by blocking uptake into macrophages. 

 

  

3 
 



Introduction 
The ability of nanotechnology to produce engineered nanoparticles (NPs) of various 

shapes and materials has opened up new applications in areas such as medicine, 

engineering, electronics, textiles and cosmetics. The number of consumer products 

containing nanoparticles is rapidly increasing and is now counted in thousands 

(Nanotechnologies, 2014). This reflects the unique and diverse properties of 

nanomaterials, which can be very different from the bulk material due in part to their 

enhanced surface to mass ratio (Oberdorster et al., 2005).  

Exposure to nanomaterials is not a new phenomenon.  Throughout evolution humans 

have been exposed to nanosized particles from both biogenic and anthropogenic 

sources. However, human lung exposures have risen dramatically due to 

anthropogenic emission from diesel engines, power stations and engineering 

processes optimised for manufacturing nanoscale materials (Oberdörster et al., 2005). 

Due to the small size of nanomaterials, they are often airborne and have the capability 

of reaching the alveolar compartment of the lungs (Oberdörster et al., 2005, 

Oberdorster et al., 2002). Once inside the airways, the NPs can be adsorbed onto the 

mucosal surface in the upper airways and into surfactant lining the lower airways. A 

nano-bio corona of biological molecules then forms on the NP surface which can in 

turn influence the clearance, bioavailability and potential toxicity of the NPs (recently 

reviewed in (Kendall and Holgate, 2012)). 

Pulmonary surfactant is a multi-layered lipoprotein substance, comprising 

approximately 90% lipids and 10% protein, and lines the alveolar epithelium at the air 

liquid interface. Pulmonary surfactant performs two vital functions in the lung; 

reducing alveolar surface tension and protecting the lung from microbial infection 

(reviewed in (Pérez-Gil, 2008)). Surfactant protein A (SP-A) and its sister protein SP-

D are both hydrophilic proteins found in surfactant belonging to the calcium 

dependent (C-type) lectin sub-family known as ‘collectins’ (collagenous lectins). 

Collectins are oligomeric proteins made up of trimeric units. The trimeric units are 

composed of three monomers, each with its own carbohydrate recognition domain 

(CRD) containing the lectin activity (Fig S1). The trimeric units are characterised by 

four structural domains; an amino terminus (where the oligomerization between 

trimeric units take place), a collagenous domain, a neck region and the CRD region. 

Six of these trimeric units oligomerize to form octadecamers, the native form of SP-A 
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(Fig S1). As SP-A has a bend in the collagenous region the quaternary structure has 

been described as a “bunch of tulips” similar to the complement C1q molecule (Voss 

et al., 1988). Four trimeric units come together to form SP-D in the shape of a cross 

(Fig S1). SP-A is the most abundant of the two proteins with approximately ten times 

more SP-A in surfactant than SP-D (Pastva et al., 2007). The pulmonary collectins, 

SP-A and SP-D, play an important role in the innate immune defence of the lung; they 

are pattern recognition molecules and are able to protect the lung from infection 

through a variety of mechanisms. They recognise and bind specific carbohydrate 

moieties on the surface of micro-organisms via the CRD and can facilitate microbial 

clearance through agglutination and opsonisation (reviewed in (Pastva et al., 2007)). 

They also promote uptake and clearance of dead and dying apoptotic cells in the 

airway and bind to cell-surface exposed and free DNA debris (Clark et al., 2002, 

Palaniyar et al., 2003). Both SP-A and SP-D rapidly promote microbial uptake into 

phagocytes and have anti-inflammatory effects by inhibiting cytokine and chemokine 

responses of phagocytes and lymphocytes after initial infection. Phagocytosis is 

believed to keep the phagocytosed material contained and the lung in an 

inflammation-free and quiescent state for optimal lung function (Borron et al., 1996, 

Borron et al., 1998, Borron et al., 2000, Hansen et al., 2007, Brinker et al., 2003). In 

vivo studies with mice deficient for SP-A (SP-A-/- mice) have shown that SP-A is 

important for the phagocytosis and clearance of both bacteria and viruses from the 

lung (LeVine et al., 1997, LeVine et al., 1998, LeVine et al., 1999b, LeVine et al., 

1999a, LeVine et al., 2002, Li et al., 2002). Recent studies have suggested that SP-A 

and SP-D also play a role in the clearance of non-infectious particulate matter in the 

lung (Kendall et al., 2013, Ruge et al., 2011, Ruge et al., 2012).  

 
We have previously characterised the interaction of SP-D with various nanoparticles 

including unmodified (U-PS) and amine (A-PS) surface modified polystyrene 

particles (Kendall et al., 2013). SP-D co-localized to 200 nm A-PS (A-PS) NPs in 

A549 epithelium cells in vitro (Kendall et al., 2013). Furthermore, alveolar 

macrophages from wild type (WT) C57Bl/6 mice showed enhanced uptake of both 

100 nm and 500 nm U-PS and A-PS particles compared to alveolar macrophages 

isolated from mice deficient in SP-D (SP-D-/- mice) (Kendall et al., 2013). Addition 

of exogenous SP-D to alveolar macrophages from SP-D-/- mice enhanced the 
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percentage of alveolar macrophages taking up 100 nm A-PS (Kendall et al., 2013). 

Both SP-A and SP-D have been found to bind to carbon nanotubes (Salvador-Morales 

et al., 2007). The binding was calcium dependent and was variable between batches 

of nanotubes indicating that the binding was mediated by surface impurities or 

chemical modifications of the nanotubes (Salvador-Morales et al., 2007). Differential 

interaction of SP-A was also observed with metal oxide nanoparticles, including 

titanium oxide and cerium oxide particles, where differences were seen with different 

surface modified particles derived from the same bulk-material highlighting the 

importance of the particle size, surface charge and chemistry (Schulze et al., 2011). 

SP-A has also been found to bind to certain surface modified magnetic nanoparticles 

(Ruge et al., 2011). It was shown that SP-A specifically interacted with magnetic 

nanoparticles modified with starch, carboxymethyldextran, chitosan, poly-maleic-

oleic acid and phosphatidylcholine compared to bovine serum albumin (Ruge et al., 

2011).  Surfactant protein A also enhanced the association of the surface modified 

magnetic particles to alveolar macrophages, except for starch, when compared to BSA. 

Furthermore, SP-A increased the uptake of phosphatidylcholine nanoparticles into 

alveolar macrophages whereas the presence of BSA resulted in a decrease in particles 

taken up by the cells (Ruge et al., 2011). SP-A was also found to facilitate the uptake 

of aggregated nanoparticle sized tacrolimus complexes, (an immunosupressive agent) 

into human macrophage-like U937 cells  

Here we characterise the interaction of SP-A with polystyrene nanoparticles with 

well-defined different surface characteristics and size. As in previous studies with SP-

D, we focused on U-PS and A-PS at 100, 200 and 500 nm. We characterized the 

effect of SP-A on uptake of nanoparticles in the murine macrophage cell line 

RAW264.7 before extending the results into primary alveolar macrophages isolated 

from SP-A deficient mice and C57Bl/6 wildtype control mice. The effects of 

interaction of SP-A and NPs are distinct from our previous report for SP-D.  
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Materials and methods 

Nanoparticles (NPs) 

Polystyrene particles with and without surface modification with sizes of 100 nm, 200 

nm and 500 nm were purchased (Polysciences Inc or Sigma-Aldrich, UK). The 

particles were unmodified polystyrene (U-PS), amine modified polystyrene (A-PS) 

and carboxylate modified polystyrene (C-PS). Fluorescent green 100 nm U-PS and 

fluorescent orange 100 nm A-PS were purchased from Polysciences and Sigma-

Aldrich respectively.  

 

SP-A purification 

Human bronchoalveolar lavage (BAL) was obtained from patients with written 

informed consent undergoing lung washings for therapeutic purposes including 

pulmonary alveolar proteinosis. The procedure was approved by the London National 

Health Service Research Ethics Committee (NRES reference 10/H0504/9). Native 

human SP-A was purified from the SP-A rich BAL pellet either by gel 

chromatography or butanol extraction as described previously (Suwabe et al., 1996, 

Wright et al., 1987). The purity of SP-A was verified by SDS-PAGE, Western 

blotting and N-terminal sequencing. The purified SP-A protein was diluted with 

nanopure water or TBS with 2-5 mM calcium before mixing with particles. 

 

Characterization of the NP and SP-A interaction by Dynamic Light Scatter (DLS) 

analysis and Zeta Potential (ZP) 

The interaction between SP-A and NPs was characterised by DLS (HPPS and 

Zetasizer Nano ZS, Malvern Instruments, UK) and ZP (Zetasizer Nano ZS, Malvern 

Instruments). This was initially performed in nano pure water as described previously 

(Kendall et al., 2013). The DLS and ZP analyses were also performed in Tris buffered 

saline (TBS) and serum free RPMI-1640 medium without phenol red (Gibco, Life 

Technologies, UK). In these experiments, A-PS or U-PS particles were suspended in 

TBS with 5 mM calcium at a concentration of 12.5 cm2/mL. These particles were 

diluted with equal volumes of protein (SP-A or BSA) suspended in TBS + calcium at 

50 µg/mL. The size and zeta potentials of these suspensions were measured 

immediately before (T-2) and after (T0) the addition of protein. The particle 

suspensions were then incubated at 37°C for 48 minutes, the size and ZP were then 

measured before (T48) and after (T60) the addition of serum free (SF) RPMI. This 
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yielded a TBS/RPMI ratio of 2:3 and final concentrations of proteins and particles of 

10 µg/mL and 2.5 cm2/mL respectively. The size and ZP of the suspensions were 

measured again following incubation for a further 2 hours at 37°C (T180). All 

measurements were conducted at 37°Cusing reusable or disposable capillary cells 

(Malvern Instruments). 

RAW cells  

RAW264.7 cells are a mouse macrophage-like cell line established from murine 

tumours induced with Abelson leukaemia virus (Raschke et al., 1978). Cells were 

routinely grown in RPMI 1640 (Gibco) supplemented with 1% L-glutamine (Gibco), 

1 % Penicillin/Streptomycin (Gibco) and 10% heat inactivated foetal calf serum 

(Sigma-Aldrich) at 37oC in a humidified atmosphere with 5% CO2. The semi-

adherent cell line was routinely sub-cultured using a cell scraper every third day. 

Uptake of unlabelled A-PS NPs. 

RAW264.7 cells were scrapped and plated in 6 well plates on sterile cover slips with 

500,000 cells/well. The cells were allowed to adhere for 24 hours and then the cells 

were incubated with 5 µL of NPs (in general 1013 NPs/mL corresponding to 5x1010 

NP/well) in a total volume of 1 mL serum free (SF) RPMI medium for 2 hours. The 

cells were washed carefully with PBS twice and then fixed in 1% paraformaldehyde 

in PBS for 1 hour at room temperature. The cover slips, with attached cells, were 

mounted on a glass side upside down and the edges sealed with clear nail polish. The 

slides were then analysed using Coherent anti-Stokes Raman scattering (CARS)..  

Uptake of fluorescent A-PS and U-PS particles in RAW cells 

Aliquots of 100 nm fluorescent orange A-PS or fluorescent green U-PS particles  

were mixed with SP-A in TBS containing 5 mM calcium to yield concentrations of 

9.4 cm2/mL particles and 25 µg/mL proteins. Particle-protein suspensions were 

incubated for 1 hour at 37°C in 96 well round bottom plates. RAW264.7 cells were 

washed three times in SF RPMI and dissociated from culture flasks using a cell 

scraper. Cells were suspended in SF RPMI at a concentration of 1.67x106 cells/mL 

and 30 μL aliquots were added to each well yielding a final particle concentration of 

3.75cm2/mL and a TBS/RPMI ratio of 2:3. The cells were incubated for 1 hour at 

37°C in a humidified atmosphere. The cells were washed once in 1mL PBS and 

centrifuged at 400g for 10 minutes to remove excess particles. The cells were 

resuspended in 40 μL PBS and kept on ice prior to analysis. Trypan blue was added to 
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the cells immediately before the analysis of 5000 cells per sample using flow 

cytometry (BD FACS Aria). 

 

Coherent anti-Stokes Raman scattering (CARS) Analysis 

CARS microscopy is a label-free chemical imaging technique, which generates 

contrast using molecular vibrations which are specific to an individual molecule 

(Patel et al., 2013). A home-built CARS setup comprising of a Chameleon (Coherent) 

and Compact OPO (APE Berlin) coupled to an inverted Nikon Ti-U 2000 microscope 

was used to acquire images. The beams were temporally overlapped using a delay 

stage and combined to form a spatially overlapped collinear beam. The pump beam 

was set to 835 nm and the Stokes beam from the OPO was tuned to target the Raman 

frequency of 2850 cm-1 to target the CH2 stretching band. Due to the higher 

concentration of CH2 bonds in polystyrene beads and the fact that CARS has a 

quadratic dependence on the number of oscillators, the PS particles offer high contrast 

to enable qualitative and quantitative analysis.  Amine-modification of the surface of 

a polystyrene bead will not affect the bulk of the -CH2 CARS signal (at 2850 cm-1) 

from the 200 and 500 nm beads used in this work and changes, if any, are well within 

the spectral resolution of the system. 

A series of images was taken for every time point and each individual cell sample. 

Dwell times of 30 μs were usually chosen and an area of 30 μm x 30 μm scanned at 

1024 x 1024 pixels to generate a highly resolved image. Images were acquired with a 

40x (NA: 1.2) water immersion objective (Nikon). 4 images were acquired at random 

on cell areas on the glass coverslip for each separate treatment. In separate 

experiments to characterize the spatial (lateral) resolution of the CARS microscope 

beads of various sizes (100-1000 nm) were imaged. It was found that 200 nm sized 

PS particles were resolvable and hence, the quantitative analysis based on CARS was 

carried out ≥200 nm beads.  At the above target vibrational frequency of 2850 cm-1 

the PS particles showed up as highly CARS active areas which were quantified using 

a code written in MATLAB (Mathworks, UK). The number of pixels with intensities 

exceeding a certain threshold (defined by the background) was counted. This area 

contributing to the signal is related directly to the number of nanoparticles due to the 

nature of the CARS signal generation process (multiphoton and hence, inherently 

confined to the focal plane) and the images presented in this work are 2D rather than 
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3D projections/stacks. This number corresponding to the bright areas was compared 

to the overall cell area in pixels to obtain a ratio of NP over cell area. 

 

Mouse Bronchoalveolar Lavage (BAL) and isolation of Alveolar Macrophages 

Wild type (WT) C57Bl/6 mice and SP-A deficient mice (SP-A-/-, (Li et al., 2002)), 

back-crossed at least ten times onto the C57Bl/6 mouse background, were housed in 

specific pathogen free housing at the Biomedical Research Facility at the University 

of Southampton. Mice received sterile rodent chow and water ad libitum with a 12 

hour light and dark cycle. All animal procedures were approved by university local 

animal ethics committee and the Home Office, United Kingdom. The mice were 

sacrificed by CO2 asphyxiation prior to cannulation of the trachea with a fine bore 

cannula. The BAL was performed by instillation and withdrawal of 3 x 1 mL of PBS 

with 0.5 mM EDTA, which was subsequently pooled. Cells were pelleted by 

centrifugation at 300g for 10 min. The cell pellet was re-suspended in SF RPMI. 

Differential cell counts on cytospin preparations after staining with Diff-Quick 

(Scientific Products, McGaw Park, IL) confirmed that more than 95% of the cells 

isolated this way were alveolar macrophages (AMs). 

 

Alveolar macrophage uptake of Fluorescent Microspheres 

The NPs used in the ex-vivo experiments were either 100 nm or 500 nm U-PS (Sigma-

Aldrich) or A-PS (Sigma-Aldrich) and were labelled with green fluorescent dye 

(Fluorescein isothiocyanate (FITC), Sigma-Aldrich) dissolved in carbonate buffer 

(Sigma-Aldrich) at pH 9.6 at a conc of 1 mg/mL. The FITC was then diluted 1:10 in 

nanopure water containing the nanoparticles and incubated at room temperature for 1 

hour with rotation. The NPs were centrifuged for 10 min at 20,937g and washed twice 

with nanopure water. We have previously shown that the coupling of FITC to the NPs 

by this methodology only provides minimal leaching at pH 7.4 and 4.0, to mimic the 

conditions of the extracellular and endosomal environments, respectively (Kendall et 

al., 2013). Alveolar macrophages were isolated from C57Bl/6 and SP-A-/- mice as 

described above, the cells were washed and then incubated with NPs (1:5; 25,000 

cells:125,000 NPs), after 5 min sonication, at 37°C for 30 min. The cells were 

centrifuged at 300g for 10 min and washed 3 times with RPMI Gibco) to remove 

excess beads and re-suspended in cytofix (BD bioscience) containing 0.2% trypan 

blue, to quench extracellular fluorescence as previously described (Hartshorn et al., 
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1994). The fixed cells were then analysed by fluorescence-activated cell sorting 

(FACS). 

 

The effects of SP-A on Alveolar macrophage uptake of Fluorescent Microspheres 

Fluorescent A-PS (Sigma-Aldrich) or U-PS 100 nm nanoparticles (Polysciences) were 

used to determine the effects of exogenous SP-A on nanoparticle uptake in AMs 

isolated from C57Bl/6 wild type and SP-A-/- mice as described above. NPs were 

prepared as described in the section for the “Uptake of fluorescent A-PS and U-PS 

particles in RAW cells” and incubated for 90 minutes at 37°C, 5% CO2. 17,000 

AMs in colorless RPMI were added to the SP-A/NP preparation and incubated for a 

further 90 minutes at 37°C, 5% CO2. Cells were then washed with PBS with 1% BSA 

and 5 mM EDTA (FACS buffer) and centrifuged at 400 g for 10 minutes to remove 

excess particles. The cells were then re-suspended in FACS buffer containing 0.2% 

trypan blue for FACS analysis. 

 

FACS Analysis 

The FACS analysis was performed on a FACS Aria machine (BD Sciences). Both 

forward and side scatter threshold values were set to 200 to exclude free beads and 

cell debris from the analyses. Between 5,000 - 10,000 cells were counted for each 

sample. The cells that contained beads (FL-1 > 50) were counted through gating and 

analysed using BD FACSDiva software v4.3. 

 

Statistical Analysis 

Collected data were normal distributed and the parametric unpaired t-test with the 

Holm-Sidak method was used for testing between two groups and ANOVA (with 

Bonferoni post hoc test) was used to test results between multiple groups. Data was 

analysed using SPSS version 20 or Graphpad Prism version 6. Results were 

considered statistical significant when p < 0.05. 
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Results 

We have previously measured the size distributions and zeta potential of a range of 

similarly sized polystyrene particles (A-PS, C-PS, U-PS) , silicone particles (200V 

and R816) and carbon black particles (CB400R) in water over time with the addition 

of purified human SP-D (Kendall et al., 2013). These results showed that SP-D 

interacted differently with these particles. Here we present the interaction of A-PS and 

U-PS particles with purified human SP-A.  

The size distribution of purified human SP-A in water was measured by light intensity 

and number. The SP-A preparation was polydispersed with 2 peaks between 10 and 

500 nm. A few macromolecules were also evident in this preparation with a small 

peak around 4500 nm. The majority of the human SP-A, measured by number of 

particles, showed a median of 30 nm in size (Fig S2). The zeta potential of SP-A 

alone in water was -11.8 mV.    

In order to fully characterise the effect of SP-A on particle size and zeta potential 

these measurements were taken in nanopure water and the media used for cell 

experiments (i.e. TBS/RPMI).  

Firstly, we examined the hydrodynamic size and zeta potentials of A-PS and U-PS 

particles in nanopure water without calcium with and without the addition of SP-A 

(Table S1). In nanopure water, A-PS particles had a strong positive (+60 mV) zeta 

potential which became negative with the addition of SP-A (-22.8 mV). U-PS 

particles had a zeta potential of -38.5 mV which moved closer to zero following the 

addition of SP-A (-18.7 mV). The z average increased for both A-PS (49.1%) and U-

PS (14.3%) particles when incubated with SP-A for 1440 mins (Table S1).  

The extent of the increase in the z average for 100 nm U-PS particles when incubated 

with SP-A for 24 hours is indicative of the formation of a protein corona rather than 

particle agglomeration. Calcium is essential for the lectin activity of SP-A as the ion 

is involved in the coordination of several of the amino acid residues involved in 

binding to carbohydrates (Head et al., 2003). We therefore investigated the effect of 

calcium concentration on the agglomeration rate of 100 nm U-PS particles within a 

range of from 0 – 2 mM to elucidate if the CRD in SP-A could be involved in 

agglomeration. The results showed that the agglomeration rate of U-PS depended on 

the calcium concentration with the addition of 2 mM of calcium required for SP-A 

mediated agglomeration to occur (Fig S3B). When the calcium concentration was 1 

mM or lower, agglomeration of U-PS particles in the presence of SP-A was not 
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observed.. In the presence of 2 mM calcium, SP-A agglomerated the U-PS particles 

within 10 min and the agglomerates increased in size over time (Fig S3C). Based on 

these results, a minimum concentration of 2 mM CaCl2 was used in the following 

experiments.  

In order to maintain the calcium concentration above 2 mM at all stages of the in vitro 

cellular experiments the particles were pre-incubated with SP-A in tris buffered saline 

containing 5 mM calcium before the addition of cells suspended in SF RPMI media. 

The proportion of TBS to RPMI used in the experiments (2:3) was pre-determined not 

to cause precipitation of calcium – which occurred following the addition of 2 mM 

calcium directly to RPMI.  The size and zeta potentials were measured in TBS or 

TBS/RPMI at various time points (T-2 to T180). These results are presented in Table 

1, Figure 1 and Figure 2. The time points chosen reflect the incubation periods for the 

in vitro cellular experiments. Size and ZP were measured in TBS + Ca immediately 

before (T-2) and after (T0) the addition of protein. The particle-protein suspensions 

were incubated at 37°C and the size distributions and ZP measured before (T48) and 

after (T60) the addition of RPMI. This incubation period reflected the pre-incubation 

of particles and proteins before the addition of cells. The particle suspensions were 

incubated again for a further 2 hours to reflect the incubation period with the cells 

(T180). 

  

Interestingly, the incubation of A-PS particles in TBS/RPMI (T60) resulted in the self 

agglomeration of the particles at physiological temperatures (i.e. 37°C); pre-

incubation with SP-A resulted in a reduction in the A-PS particle self agglomeration 

at this temperature. BSA also inhibited this self agglomeration (Fig 1A and Table 1). 

The particle size distributions show that SP-A reversed the self agglomeration of A-

PS particles over time (Fig 1B). However, this did not seem to be the case when 

examining the Z-average of the particles (Table 1). This may be related to the high 

polydispersity of the samples and the presence of a few large agglomerates skewing 

the z average. The incubation of SP-A with U-PS particles for 60 minutes at 37°C 

greatly enhanced the particle size (Fig 1C). The incubation of BSA with U-PS 

particles resulted in a slight increase in the size of the majority of particles and the 

generation of a small number of larger particle agglomerates around 500 nm in size. 

At T180 U-PS particles had begun to self agglomerate, a process which was inhibited 

in the presence of BSA. This was evident by examining both the z average and the 
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size distribution by number. RPMI promoted the agglomeration of both particles (see 

Table 1).  

A-PS particles had a positive zeta potential in TBS with calcium, which reduced 

slightly over time at 37°C. The addition of RPMI to the A-PS particles resulted in a 

negative zeta potential (Table 1). The addition of SP-A or BSA to the A-PS particles 

also resulted in negative zeta potentials (Table 1). The U-PS particle zeta potential 

became closer to zero over time and following the addition of RPMI (Table 1). The 

addition of SP-A  or BSA  had similar effects in making the U-PS zeta potentials 

closer to zero (Table 1).  

Due to the large polydispersity indices for the DLS measurements and the 

differing results when comparing particle agglomeration kinetics, fluorescence 

microscopy was also used to examine nanoparticle agglomeration in buffered saline 

with or without calcium following incubation with SP-A or BSA. The micrographs 

show that the U-PS particles remained stable either in the presence or absence of 

calcium at physiological temperatures (Fig 2). The incubation of U-PS particles with 

SP-A in the absence of calcium resulted in a small degree of particle agglomeration, 

however, this agglomeration was greatly enhanced in the presence of 2 mM calcium 

and SP-A (Fig 2). In order to ascertain whether the effect was specific to SP-A, we 

performed the experiment with a similar concentration of BSA and observed no 

agglomeration with or without the presence of calcium (Fig 2). A-PS particles self-

agglomerated at physiological temperatures (i.e. 37°C). This self-agglomeration was 

inhibited in the presence SP-A in a calcium independent manner. However, large 

agglomerates were still evident when A-PS particles were incubated with BSA (Fig 2).  

The association of SP-A with A-PS and U-PS particles was also examined 

using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

analysis. Particles were incubated with SP-A for 24 hours at 37°C in TBS containing 

calcium or EDTA. The particles were then centrifuged and washed twice in the 

appropriate buffer (i.e. TBS containing Ca or EDTA) and the pellet examined using 

reduced SDS-PAGE. This allowed the determination of the hard (i.e. strongly bound) 

SP-A corona. SP-A strongly associated to U-PS particles and the association 

independent of calcium. SP-A was found not to strongly associate with the A-PS 

particles wither in the presence of calcium or EDTA (see Fig S4).      
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Toxicity of U-PS and A-PS NPs 

In order to establish whether particle toxicity could influence cellular uptake of the 

particles the effect of the NPs on cellular toxicity was investigated using the 

tetrazolium dye (MTT) colorimetric assay for cellular growth and viability. 

RAW264.7 cells were incubated with A-PS and U-PS particles  in a range from 1-15 

cm2/mL and were found not to be toxic to RAW264.7 cells at one hour (A-PS: p = 

0.85 and U-PS: 0.82, Fig S5). Following 24 hours of incubation, the A-PS particles 

reduced cellular viability (p < 0.05 for concentrations ≥3.75 cm2/mL) whereas no 

effect was observed for the U-PS particles (p = 0.79, Fig S5). The results of the dose 

response at 24 hours were verified with a clonogenic assay, which showed significant 

toxicity of the A-PS particles from a concentration of ≥0.23 cm2/mL (p < 0.05, Fig S6) 

but not for the U-PS particles when compared to no NP particles present (p = 0.34, 

Fig S6).  

 

A-PS particle association to macrophage-like RAW cells analysed by Coherent 

anti-Stokes Raman spectroscopy (CARS) 

Imaging with coherent anti-Stokes Raman spectroscopy (CARS) was used to quantify 

the association of unlabelled A-PS particles to the murine macrophage-like RAW 

264.7 cells. Some of the NPs were pre-incubated with SP-A (10 µg/mL) for an hour 

before incubating with the cells. Initial experiments showed that individual 100 nm 

NPs could not be  resolved  with enough specificity using this technique (data not 

shown). However,  200 nm A-PS particles were resolvable and therefore used in this 

study. The CARS analysis showed that SP-A inhibited the association of the A-PS 

NPs to the cells (Fig 3A). Quantification of the 200 nm A-PS particles compared to 

the area of the cells showed that SP-A significantly decreased the association of the 

A-PS NPs with the cells (p = 0.029, Fig 3B). 

 

NP uptake into RAW cells and mouse alveolar macrophages analysed by FACS. 

To examine the effect of SP-A interaction with 100 nm NPs specifically on cellular 

uptake, rather than just cellular association, we performed dose response experiments 

using a two-fold serial dilution of SP-A from 20 – 0 µg/mL with 100 nm fluorescent 

U-PS or A-PS NPs using the macrophage-like cell line RAW264.7 in the presence of 

calcium (Fig. 4). Following NP treatment and directly before FACS analysis the cells 
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were treated with trypan blue, which quenches the fluorescent signal outside the cells 

(Hartshorn et al., 1994). SP-A significantly increased the uptake of U-PS into the 

RAW cells at concentrations of ≥10 µg/mL (p < 0.01 with SP-A ≥10 µg/mL) whereas 

the uptake of A-PS was significantly reduced in the presence of SP-A at 

concentrations of ≥0.156 µg/mL (p < 0.05 at SP-A ≥ 0.156 µg/mL) compared to the 

absence of SP-A (Fig 4). Bovine serum albumin (BSA) was used as a non-specific 

protein control at a concentration of 20 µg/mL for both types of particles. BSA caused 

non-significant increases in the uptake of both U-PS particles (3.8% increase, p = 0.44) 

and A-PS particles (9.1% increase, p = 0.19) (data not shown). 

The effect of SP-A on the uptake of A-PS and U-PS in the alveolar macrophages (AM) 

from wild type (WT) and SP-A knock-out mice (SP-A-/-) was also examined. An 

increase in the uptake of 100 nm A-PS particles in AM from SP-A-/- mice was 

observed when compared to AM isolated from WT mice (Fig 5A). No statistically 

significant difference was seen when the uptake of 100 nm U-PS particles was 

compared in alveolar macrophages from SP-A-/- and WT mice (Fig. 5A). Furthermore, 

no statistically significant difference was seen in the uptake of either 500 nm U-PS or 

A-PS particles in SP-A-/- and WT alveolar macrophages (Fig. 5A). This suggests there 

might be a dependency on both the size and surface chemistry of the SP-A inhibition 

observed for the 100 nm A-PS particles. We next investigated the effect of exogenous 

SP-A on the uptake of 100 nm U-PS and A-PS particles into alveolar macrophages 

isolated from SP-A-/- and WT mice. The 100 nm particles were chosen for the SP-A 

add back experiments as no significant difference was observed in the uptake of either 

the 500 nm A-PS or 500 nm U-PS particles between WT and SP-A-/- mice. Consistent 

with the previous experiments there was a significant increase in the uptake of 100 

nm A-PS particles in SP-A-/- macrophages compared to WT macrophages (P < 0.002) 

(Fig 5B). The pre-incubation of exogenous SP-A with A-PS particles decreased the 

uptake by alveolar macrophages from both groups of mice significantly compared to 

in the absence of SP-A (p < 0.001 for both mouse groups) (Fig 5B). An increase was 

seen in the uptake of 100 nm U-PS particles by the addition of SP-A to alveolar 

macrophages isolated from both groups of mice but this did not reach statistical 

significance (WT: p = 0.26 and SP-A-/-: p = 0.17) (Fig. 5C). 
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Discussion  

We have previously characterised the interaction between SP-D and PS particles with 

different surface modifications (Kendall et al., 2013). This showed that SP-D 

differentially interacts with particles, modifying their uptake by alveolar macrophages 

and lung-derived dendritic cells. The purpose of this study was to investigate whether 

SP-A showed differential interaction with PS nanoparticles with different surface 

charge and if this interaction affected uptake of these nanoparticles into macrophages 

in a similar or complementary way to SP-D. 

Nanoparticle characterisation 

The size of SP-A in water remained stable at around 30 nm, which is consistent with 

the literature, where human SP-A has previously been measured by DLS to be 42 ± 6 

nm (López-Sánchez et al., 2011) and electron micrographs of recombinant human SP-

A being less than 50 nm in length (Voss et al., 1988).  

The incubation of U-PS particles with SP-A or BSA resulted in the zeta potentials of 

the particle suspensions moving closer to zero. This shows that the addition of protein 

to the particle suspension results in a reduction in colloidal stability, a process which 

enhances the likelihood of particle agglomeration. . This observation is similar to the 

findings by Ruge and colleagues, where they observed that SP-A and BSA had 

similar effects when incubated with magnetite nanoparticles with different surface 

charges (Ruge et al., 2011). In the current study SP-A changed the ZP for A-PS 

particles from a positive to a negative charge when incubated in TBS with calcium 

(+24.4 to -7.4 mV) or nanopure water (+60 to -22.8 mV). This is also similar to the 

findings by Ruge and colleagues when using particles with a positive zeta potential 

(Ruge et al., 2011).  

Protein coronas which form around nanoparticles usually consist of an outer layer of 

loosely associated proteins termed the “soft” corona and an inner layer of strongly 

associated proteins called the “hard” corona (Deng et al., 2012, Barran-Berdon et al., 

2013). Differences in particle agglomeration following incubation with SP-A may be 

linked to altered protein association with the particles. In particle association studies 

using SDS PAGE we found that SP-A formed a hard corona around U-PS but not A-

PS particles (Fig S4). The changes in the DLS and zeta potential measurements 

suggests that SP-A forms a soft corona around the A-PS particles. This shows that 

differences in the particle surface chemistry can influence the interaction of SP-A 

with the particles, which in turn may influence particle agglomeration and uptake. 
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Furthermore, this study has shown that although SP-A mediated agglomeration of U-

PS particles dependent on the presence of calcium, the association of SP-A with these 

particles is calcium independent. Although the zeta potential for both NPs bound by 

SP-A is around -20 mV in nanopure water and around -10 mV in TBS, the 

agglomeration kinetics are different. The U-PS particles agglomerated in the presence 

of SP-A whereas disagglomeration occurred for A-PS particles. This again implies a 

differential SP-A binding mechanism for these two types of particle. SP-A has been 

reported to self-agglomerate under certain conditions. Binding of SP-A to U-PS 

particles could facilitate conformational changes in SP-A that would enhance protein 

self-agglomeration or agglomeration of the U-PS particles. In the case of A-PS 

particles, the results indicate that the presence of the SP-A molecule at the particle 

surface may block the sites on the particle involved in self-agglomeration. SP-A 

would thereby inhibit A-PS self-agglomeration. The degree to which this is an SP-A 

specific effect is unclear as BSA also inhibits A-PS agglomeration. Further work 

examining the particle agglomeration kinetics following SP-A incubation is necessary 

using techniques that allow the accurate quantification of particle size in highly 

polydispersed suspensions.  

 

SP-A mediated agglomeration of U-PS is dependent on calcium concentration 

We found that a minimum concentration of 2 mM calcium was required for SP-A to 

agglomerate the 100 nm U-PS particles (Fig S3). This minimum calcium 

concentration is consistent with findings reported by Haagsman who observed that 

SP-A became saturated with calcium around a free calcium concentration of 2 mM 

(Haagsman et al., 1990). This also agrees with structural findings reported for the 

recombinant fragment of human SP-D,  where this calcium concentration was thought 

to act like a molecular switch in the lectin binding site (Shrive et al., 2003). These 

findings indicate that the carbohydrate recognition domain (CRD) may be involved in 

the agglomeration of the U-PS particles. Calcium is required to stabilise the 

conformation of the lectin binding domain (Head et al., 2003). By using the structure 

of trimeric fragment of rat SP-A and computer modelling Head and colleagues 

showed that the electrostatic surface of the CRD of the SP-A becomes less negatively 

charged when calcium is present in the CRD (Head et al., 2003). The SP-A induced 

agglomeration of NPs might not directly involve the actual lectin binding site in the 

CRD region but the overall conformation or electrostatic surface charged induced by 
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calcium could result in a differential interaction than that seen in the absence of 

calcium. We have previously shown that a recombinant fragment of SP-D (rfhSP-D), 

containing a trimeric unit of neck and CRD regions only (Fig S1), is enough to 

interact with the particles used in this study (Kendall et al., 2013). It therefore seems 

plausible to extend this finding to SP-A.  SP-A would, by crosslinking individual 

particles via individual trimeric units, be able to agglomerate NPs. These results also 

show that SP-A has a different interaction with surface modified NPs compared to 

native SP-D. SP-A inhibits the agglomeration of A-PS particles whereas SP-D 

facilitates A-PS particle agglomeration. Both SP-A and SP-D agglomerated U-PS 

particles in the presence of calcium (summarized in Fig 6A). 

Nanoparticle toxicity 

We show here that the used A-PS and U-PS particles were not toxic to the RAW 

264.7 cells over short incubation periods such as those used in the in vitro cellular 

experiments (Fig S5 and S6). The observed difference between in the effect of SP-A 

on A-PS and U-PS particles is therefore not due to the toxicity of short term exposure 

of the cells with the NPs. However, when extending the incubation period from one 

hour to 24 hours the A-PS particles did show toxic effects on the cells while no toxic 

effect was observed for the U-PS particles. This is consistent with previous reports 

where it was observed that A-PS but not U-PS particles had a toxic effect on the TT1 

cell line, a human alveolar epithelial type I like cell line (Ruenraroengsak et al., 2011). 

This highlights the difference between the “high dose - short exposure” acute toxicity 

models often used in in vitro assays and real life exposure scenarios where there is 

often low concentration of NPs but a long/chronic exposure period. 

 

SP-A promotes or inhibits cellular uptake of NPs depending on the surface chemistry 

and size of particle.  

Macrophage-like RAW264.7 cells were used to investigate the interactions of SP-A 

with NPs on phagocytic NP uptake. We found that SP-A enhanced the uptake of U-PS 

particles in a dose dependent manner, but inhibited the uptake of A-PS particles. To 

investigate this further we isolated alveolar macrophages from SP-A-/- mice, which 

would have no SP-A associated with them and compared them to alveolar 

macrophages from WT mice, that would have SP-A associated with them. SP-A-/- 

alveolar macrophages were not deficient in uptake of 100 nm or 500 nm U-PS or 500 

nm A-PS particles compared to the control WT alveolar macrophages. However, there 
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was a significantly increased uptake of 100 nm A-PS into alveolar macrophages 

isolated from SP-A-/- mice compared to WT alveolar macrophages. The interaction 

was further confirmed by coating NPs with SP-A prior to incubation with alveolar 

macrophages isolated from SP-A-/- and WT mice, respectively, showing that SP-A 

inhibited the uptake of A-PS particles by cells from both groups of mice. The 

reduction of macrophage clearance of 100 nm A-PS particles following pre-

incubation of SP-A could be  mediated, at least in part, through the inhibition of A-PS 

self-agglomeration at physiological temperatures. However, BSA also showed the 

ability to inhibit A-PS agglomeration but had little effect on the uptake of A-PS 

particles by RAW cells. This finding coupled with the enhanced uptake of A-PS 

particles by AM from SP-A-/- mice suggests that mechanisms other than the inhibition 

of A-PS agglomeration may be involved in the SP-A mediated reduction of A-PS 

uptake. The reduction in phagocytic clearance of potentially toxic particles may result 

in enhanced exposure or damage to the alveolar epithelium and/ or increased 

translocation to extrapulmonary sites through the systemic circulation. We have 

previously shown that exogenous SP-D can enhance the uptake of 100 nm A-PS 

particles by alveolar macrophages from SP-D deficient mice (Kendall et al., 2013). It 

would therefore, be interesting to determine in future experiments whether the 

presence of SP-D could alter the ability of SP-A to inhibit the clearance of these 

particles by alveolar macrophages.  

Potential impact in vivo 

It is thought that NPs move by diffusion and pass through the trachea bronchiolar 

region into the alveoli, where they are deposited and may remain for some time 

(Muhlfeld et al., 2008). Once they enter the surfactant hypophase they have the 

opportunity to interact with surfactant lipids and proteins such as SP-A and SP-D (Fig 

6B). Lipids and proteins absorb onto the particle surface forming coronas (Walkey et 

al., 2012). This bio-corona leads to changes in surface chemistry and colloidal 

stability (Ruge et al., 2012). The particles may be directly taken up by alveolar 

macrophages (Geiser et al., 2008, Erpenbeck et al., 2005). However, changes to 

surface chemistry could result in different pattern recognition by defence molecules or 

surface receptors on cells and could therefore potentially influence the fate of 

nanomaterials. As SP-A and SP-D show differential interaction with the particles used 

in this paper the two proteins could potentially complement each other in vivo. 
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It has been shown that both lipids and proteins from surfactant interact with 

nanoparticles (Kendall, 2007, Bakshi et al., 2008). In order to create a more realistic 

in vitro model of in vivo conditions, it would be beneficial to include lipids in these 

models for future experiments. Ruge and colleagues looked at SP-A and SP-D with 

metal-nanoparticles with different surface coatings and found differential effects of 

SP-A and SP-D (Ruge et al., 2012). They also observed that incorporating surfactant 

lipids into the in vitro models modified the effects of SP-A and SP-D (Ruge et al., 

2012). This highlights the fact that current in vitro models do not reflect what happens 

in vivo. Human bronchoalveolar lavage can agglomerate nanoparticles (Kendall et al., 

2002). An in vitro model using the natural porcine surfactant preparation Curosurf 

(devoid of SP-A and SP-D) also modified the effect of multi-walled carbon nanotubes 

and enhanced their oxidative and pro-inflammatory effects (Gasser et al., 2012). In 

order to have a comprehensive understanding of how nanoparticles interact with both 

surfactant proteins and lipids it is important to understand how NPs interact not only 

with specific subcomponents of surfactant but also implementing a model system that 

resembles in vivo circumstances as recently highlighted by Schleh and colleagues 

(Schleh et al., 2013). 

Agglomeration seems to be the key to enhanced uptake into AMs in these 

observations and the surface chemistry described provides a mechanism for 

agglomeration by SP-A. However, SP-A provides important immune functions within 

the airspace and sequestering by NPs may leave an individual vulnerable to other 

pathogenic events and uncontrolled inflammation. We have previously shown that 

three different types of carbon black particles, ranging from 25-75 nm in diameter, 

were able to completely eliminate SP-D from a suspension (Kendall et al., 2004). 

Furthermore, an animal study exposing rats infected with Streptococcus pneumoniae 

to PM2.5 particles resulted in an exacerbation of the on-going infection (Zelikoff et al., 

2003). We have recently shown that incubating these nanoparticles with SP-A and 

SP-D alters the ability of these proteins to neutralise influenza A infection in vitro 

(McKenzie et al., 2014). This implies that sequestering immune related proteins could 

result in functionally deficient individuals resulting in an increase in their 

susceptibility towards bacterial and viral infections and other inflammatory conditions 

as observed in mice deficient for SP-A or SP-D (Hawgood et al., 2004, Li et al., 2002, 

LeVine and Whitsett, 2001). It is therefore important that more research is performed 

to elucidate the implications of the interactions between surfactant protein A and D 
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and NPs in order to evaluate the potential health implications when implementing the 

usage of NPs in the working environment and everyday modern consumer products. 

 

Conclusions 

Here we have characterised the interaction between NPs and SP-A, examined the 

effect on cellular uptake, and propose uptake mechanics into macrophages. SP-A 

showed material specific binding and calcium dependent agglomeration of U-PS 

nanoparticles. We showed that SP-A inhibited the uptake of 100 nm A-PS 

nanoparticles into macrophage-like cells and primary alveolar macrophages using 

CARS (unlabelled 200 nm NPs) and FACS (fluorescent NPs) but this was not 

observed for larger (500 nm) A-PS particles. 

This study combined with previous studies with SP-A and SP-D shows that these 

molecules may have a (complementary) role in clearing non-pathogen particulate and 

nanoparticulate materials in vivo. An important factor, when examining the 

interaction of SP-A or SP-D with NPs, is to consider how the interplay between 

surfactant lipids and proteins in the bio-corona will affect the interaction and the 

subsequent downstream bioavailability of the collectins. Future in vivo studies 

focusing on the interaction between these lung collectins, NPs and the clearance 

route(s) into cells and body compartments is required to provide further insight into 

the role(s) of SP-A and SP-D in response to inhalation of NPs.  
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Figure captions 
Figure 1: Dynamic Light Scattering analysis of the size distributions of 100 nm 

A-PS and U-PS particles in TBS/RPMI. Size distributions of 100 nm A-PS (A and 

B) and 100 nm U-PS (C and D) nanoparticles in TBS-RPMI. 12.5 cm2/mL of 

particles in TBS with 5 mM Ca2+ were mixed with 50 µg/mL BSA (■) or 50 µg/mL 

SP-A (▲) or TBS only (●) for 1 hour before being mixed with RPMI (TBS:RPMI; 

2:3) and their size distributions immediately measured at 37oC (A and C, T60) and 

again 2 hours later (B and D, T180). The final protein concentration was 10 µg/mL 

and nanoparticle concentrations were 2.5 cm2/mL. Size distributions of nanoparticles 

in TBS only at T-2 are shown as dashed line.  

 

 

Figure 2. Effect of SP-A on A-PS and U-PS particle agglomeration. The effect of 

SP-A (10 µg/mL) in the presence and absence of calcium (2 mM) in PBS on the 

agglomeration of 100 nm fluorescent orange-labelled A-PS or 100 nm fluorescent 

green-labelled U-PS particles (3.8 cm2/mL) was evaluated using fluorescence 

microscopy. A-PS and U-PS particles were incubated with or without proteins for 1 

hour at 37°C before being mounted onto slides for microscopy. Pictures were taken at 

x400 magnification. 

 
Figure 3. The association of 200 nm unlabelled A-PS with (w) and without (w/o) 

SP-A to macrophage-like RAW264.7 cells visualised and quantified by CARS. A) 

CARS images. 200 nm A-PS particles show up as white particles (arrows). Note that 

other –CH2 rich structures, such as the nuclear membrane, shows up as a visible ring 

in each cell (asterisks). B) CARS images were analysed using MATLAB software as 

described in the materials and methods section. N = 4 per column. Shown is the mean 

+/- standard derivation. p < 0.05 was considered statistically significant. 

 

Figure 4. The effect of exogenous SP-A on the uptake of 100 nm A-PS and U-PS 

particles in macrophage-like RAW264.7 cells. Two-fold serial dilution of SP-A was 

incubated with fluorescent 100 nm A-PS or U-PS particles (3.8 cm2/mL) in the 

presence of calcium before incubating with RAW cells. Extra cellular association of 

NPs with cells were quenched using trypan blue. The particle uptake was analysed 
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using FACS. Shown are the mean +/- standard derivation of four independent 

experiments. * p < 0.05 and **** p < 0.0001. 

 

Figure 5. Uptake of U-PS and A-PS and the effects of 10 µg/mL SP-A on the 

uptake by alveolar macrophages isolated from wild-type and SP-A-/- mice. 

A) Uptake of FITC labelled 100 and 500 nm U-PS and A-PS particles (5:1 NP/cell) 

by AMs isolated from wild type mice (light grey) and SP-A-/- mice (dark grey). B) 

Fluorescent orange-labelled 100 nm A-PS (3.8 cm2/mL) in the absence (light grey) of 

presence (dark grey) of SP-A with AMs from wild type mice and SP-A-/- mice. C) 

Fluorescent green-labelled 100 nm U-PS (3.8 cm2/mL) in the absence (light grey) or 

presence (dark grey) of SP-A with AMs from wild type mice and SP-A-/- mice. The 

statistical analysis was determined using unpaired t-test as described in the materials 

and method section. P < 0.05 was considered statistical significant and significant 

values are shown in the figure. Data show relative mean fluorescence intensity (MFI) 

+/- standard derivation derived from 3 (Fig 5A and B) and 2 (Fig 5C) independent 

experiments with n = 3 mice per experiment. 

 

Figure 6. The role of collectins in agglomeration of NPs. A) Differential 

interaction of SP-A, SP-D and rfhSP-D with 100 nm U-PS and A-PS particles. 

Both SP-A and SP-D agglomerates U-PS  particles in the presence of calcium. A-PS 

particles tend to self-agglomerates at 37oC but SP-A inhibits that by binding to the 

particles whereas SP-D facilitates further agglomeration. The rfhSP-D binds to both 

A-PS and U-PS particles but does not facilitate agglomeration of the particles as seen 

with native SP-D (Kendall et al., 2013). The NPs, SP-A, SP-D and rfhSP-D are 

approximately to scale. B) Simplistic model showing the roles of SP-A and SP-D 

and NP clearance in vivo in the alveolar space. Inhaled particles enter the alveolar 

space (1) and deposit onto the air-liquid interface of the alveolus (2). The particles are 

then displaced into the fluid phase through wetting forces, resulting in the formation 

of a lipid biocorona (3). The biocorona is then modified through the incorporation of 

surfactant proteins, potentially resulting in particle agglomeration dependent on the 

surface chemistry of the particle (4). Particle agglomerates are recognised by alveolar 

macrophages (5) and phagocytosed (6). Abbreviations: ATI; alveolar epithelial type I 

cells, ATII alveolar epithelial type II cells. Model not to scale. 
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Table 1. Hydrodynamic size and zeta potential of A-PS and U-PS particles 

following incubation with SP-A or BSA. Z average (Z-AVE), polydispersity index 

(PDI) and zeta potential (ZP) of polystyrene particles incubated at 37°C at various 

time points (T-2 to T180). T-2 represents time point immediately prior to mixing with 

protein which occurred at T0. Particles – protein suspensions were then incubated for 

48 mins at 37°C (T48) before the addition of serum free RPMI cell culture medium 

(T60). The particles were then incubated for a further 2 hours (T180). *Δd = (d(t)-d(t-

2))/d(t-2). The zeta potential of SP-A in TBS was -10.9 mV at T-2.   
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Table 1 

NP 
 

Media 
(Time point, 

mins) 

Control SP-A BSA 
Z-

AVE 
(d, 

nm) 

Δd* 
(%) PDI ZP 

(mV) 

Z-
AVE 
(d, 

nm) 

Δd* 
(%) PDI ZP 

(mV) 

Z-
AVE 
(d, 

nm) 

Δd* 
(%) PDI ZP 

(mV) 

A-PS 

TBS 
(T-2) 109.7 - 0.123 +24.4 109.7 - 0.123 +24.4 109.7 - 0.123 +24.4 

TBS 
(T0) 258.8 135.9 0.426 +14.9 400.4 265.0 0.465 -7.4 392.3 257.6 0.197 -3.3 

TBS (T48) 1264 1052.2 0.283 +15.7 566.8 416.7 0.429 -8.1 579.2 428.0 0.272 -4.1 

TBS + 
RPMI (T60) 1693 1443.3 0.340 -12.4 573.7 423.0 0.664 -9.3 606.0 452.4 0.218 -8.0 

TBS + 
RPMI 
(T180) 

2229 1931.9 0.363 -9.3 1142 941.0 0.518 -12.4 720.1 556.4 0.376 -10.3 

U-PS 

TBS 
(T-2) 127.6 - 0.008 -26.8 127.6 - 0.008 -26.8 127.6 - 0.008 -26.8 

TBS 
(T0) 136.5 7.0 0.040 -26.1 545.6 327.6 0.363 -7.0 148.8 16.6 0.055 -8.7 

TBS (T48) 151.1 18.4 0.100 -17.0 2224.0 1642.9 0.328 -9.2 134.2 5.2 0.027 -8.3 

TBS + 
RPMI (T60) 324.2 154.1 0.262 -11.3 1830.0 1334.2 0.229 -9.4 153.9 20.6 0.064 -10.3 

TBS + 
RPMI 
(T180) 

1037.0 712.7 0.540 -7.5 2038.0 1497.2 0.270 -9.2 235.4 84.5 0.441 -9.4 
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Supplementary figure captions 

Figure S1. Human lung collectins and the recombinant fragment of human SP-D 

(rfhSP-D). A) Oligomerisation of SP-A and SP-D. Black: N-terminal region involved 

in the higher oligomerization of SP-A and SP-D; green: Collagenous region; blue: 

Neck region where trimerization of the three polypeptides initiates; orange: 

Carbohydrate recognition (lectin) domain (CRD).  B) The trimeric recombinant 

fragment of human SP-D consisting of the 8 Gly-Xaa-Yaa repeats of the collagenous 

region, the neck region and the CRD region of native SP-D (Hakansson et al. 1999).  

Ribbon diagram generated with Chimera (Pettersen et al. 2004) from 1PW9 PDB file. 

Only the neck and CRD regions are shown in the ribbon diagram. Green spheres show 

the location of the calcium ions and the lectin binding sites in the CRDs. 

 

Figure S2. Size distributions of SP-A by light intensity and number.  

10 µg/mL SP-A in nanopure water. Size distribution based on light intensity (•) and 

number (○).  

 

Figure S3. Effect of calcium on the size distributions of 100 nm U-PS and SP-A 

suspensions in water over time. A) U-PS particles (2.5 cm2/mL) mixed with SP-A 

(10 µg/mL) in water without calcium. Mixing time: (●) 0 min, (○) 10 min, (▼) 240 

min, (Δ) 1444 min. B) The effect of the calcium concentration on the relative size 

distributions after mixing U-PS particles (2.5 cm2/mL) with SP-A (10 µg/mL); 

calcium concentrations: (•) 0 mM, (○) 0.2 mM, (▼) 1.0 mM, (Δ) 2.0 mM. C) Size 

distributions after mixing U-PS particles (2.5 cm2/mL) with 10 µg/mL SP-A in the 

presence of 2 mM CaCl2 over time (•) 0 min, (○) 10 min (▼) 30 min, (Δ) 120 min. 

 

Figure S4. Reduced SDS-PAGE analysis of SP-A bound to 100 nm PS particles. 

Particles were incubated with SP-A for 24 hours at 37°C in TBS containing calcium 

or EDTA. The particles were then centrifuged and washed twice in the appropriate 

buffer (i.e. TBS containing Ca or EDTA) and the pellet examined using reduced SDS- 

PAGE analysis. The proteins were visualized using SimpleBlue SafeStain according 

to manufacture’s protocol (LifeTechnologies, Paisley, UK) 
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Figure S5. Cell viability (MTT assay) of macrophage-like RAW264.7 cells 

following incubation with fluorescently labelled 100 nm A-PS or 100 nm U-PS 

particles. A) 1 hour incubation and B) 24 hours incubation. Data represents mean of 

three independent experiments +/- SEM conducted in triplicate. Statistics determined 

using ANOVA with LSD post hoc compared to nanoparticle free control. *p = 0.040, 

**p = 0.005, *** p < 0.001; 1 hour A-PS p = 0.85 (ANOVA); 1 hour U-PS p = 0.82 

(ANOVA); 24 hours U-PS p = 0.79 (ANOVA). 

 

Figure S6. Clonogenic survival of macrophage-like RAW264.7 cells following 24 

hours incubation with fluorescently labelled 100 nm A-PS or 100 nm U-PS 

particles. Data represents mean of at least three independent experiments +/- SEM. 

Statistics determined using ANOVA with LSD post hoc test comparing against 

nanoparticle free control; *p = 0.020; ***p < 0.001. 

 

Table S1. Size (intensity) and zeta potential of particles (2.5 cm2/mL) before and 
after mixing with 10 µg/mL SP-A in water, ∆d = (d(t)/d(t=0)). The zeta potential of 
10 µg/mL SP-A alone was -11.8mV. 
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Figure S3 
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Table S1 

 
 
 
 
 
 
 

Table S1: Size (intensity) and zeta potential of particles (2.5 cm2/mL) before and 
after mixing with 10 µg/mL SP-A in water, ∆d = (d(t)/d(t=0)). The zeta potential of 
10 µg/mL SP-A alone was -11.8mV. 
 

NP 
Zeta potential (mV) Size (nm) 

NP NP + SP-A t(min) d2(nm) Δd (%) 

A-PS +60 -22.8 

 

0 

1400 

 

100.6 

150.0 

 

- 

49.1 

U-PS -38.5 -18.7 

0 

20 

1440 

96.9 

100.4 

110.7 

- 

3.6 

14.3 
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