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Abstract: Kriging surrogate modelling facilitates efficient decision making regarding where to place the next point for evaluation
during optimisation. This is particularly helpful in the design of electromagnetic devices where computationally expensive
numerical field modelling needs to be used. The disadvantage, however, is that correlation matrices are required which, for
problems with many design variables and multiple objectives, may grow in size leading to the need for page swapping and
thus slowing down of what in principle should be a very fast process. In this study several methodologies to reduce the
computational resources required in such problems are proposed. The efficiency of the proposed approach is demonstrated
using an example of a large multi-parameter optimisation problem where kriging coupled with the average gradient value
method is employed.
1 Introduction

Kriging [1–4] predicts the shape of the objective function by
considering the spatial correlation of data based on limited
information and thus offers an efficient and inexpensive
surrogate to replace the computationally demanding
numerical simulation (such as finite elements). The
accuracy of the prediction can be estimated by the mean
square error in kriging to assist in a decision on where to
place the next evaluation point during optimisation
iterations. The spatial correlation exists between the known
points (vectors) of the objective function and all the
unknown points, as well as among the known points (newly
found points and initial sampling points). The way of
calculating and storing the kriging correlation matrices was
suggested in [5] and is shown schematically in the box
marked M1 in Fig. 1.
This relies on the linear regression model

ŷ(x) =
∑m
k=1

bk fk (x)+ 1(x) (1)

and the Gaussian correlation model

R(1(xi), 1(xi)) =
∏n
k=1

e−uk xik−xjk

∣∣ ∣∣ pk
(2)

where the global function
∑m

k=1 bk fk(x) and an additive
Gaussian noise ε(x) are integrated to the predicted value
ŷ(x) of the objective function; θk is the correlation among
the data in the k-direction and pk determines the
‘smoothness’ of (2). The most popular correlation function
is given by the Gauss model where the value of pk is
simply taken as equal to 2. For a given set of data, the
maximum likelihood estimation optimises the value of θ
and then the correlation model is brought into the
regression model to evaluate the function with the best
linear unbiased predictor [1]. Although theoretically kriging
could be used for any type and size of optimisation, care
must be taken with large problems (many variables and
multi-objective) as the correlation matrices can grow rapidly.

2 Storage issue of correlation matrices

With the increase in the number of sampling points selected
by kriging during the iterations, the amount of data
produced by the correlation matrices (especially the
correlation matrices between the known sampling points
and the unknown points of the objective function), shown
as M1 in Fig. 1, accumulates constantly throughout the
optimisation process, which may become problematic
especially when coping with large-scale multi-parameter
tasks, resulting in a ‘combinatorial explosion’ [5]. In our
previous work [6] a successive ‘zoom in’ strategy to
alleviate the problem was proposed, where – in order to
reduce the amount of data storage and utilise the installed
physical memory capacity efficiently – the step sizes of the
design vectors were increased while the test range reduced.
However, the optimal step size is often problem dependent,
thus if the ‘roughness’ of the initial test is set
inappropriately, it is possible that certain regions of the
search space containing important information (including
the optimum) might be missed. How to utilise the test
experience obtained from the initial-stage tests, to guide the
model to define the test range and specific step size flexibly
in each dimension, is discussed in this paper, with the aim
to guarantee that the surrogate model converges to the
1
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Fig. 1 Schemes of producing correlation matrices
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global optimum or, at worst, the region nearby the global
optimum.
There are two ways in which the correlation matrices can

be divided into sub-elements that can be manipulated in an
efficient way: by partitioning the correlation matrix in terms
of sampling points or via the design vectors, as shown in
box M2 of Fig. 1. The splitting of the correlation matrix by
sampling points, which is only adding sub-matrices
between each sampling point and all design vectors, rather
than inserting the full-version correlation matrix into the
calculation, is applied during the process of producing the
predicted response surface. However, during the process of
estimating the mean square error in the predictor, a unique
way of partitioning the correlation matrix is by dividing it
into sub-matrices via the design vector. This partitioning
approach can be time-consuming, however, because each
cut requires rebuilding the full correlation matrix for
‘grabbing’ a slice of the sub-matrix. Using only one of
Fig. 2 Correlation sub-matrices for

a Point 1
b Point 2
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these approaches may not give the expected computational
improvement, thus both schemes in M2 have been used for
different purposes, one for producing a response surface,
the other for producing the mean square error. Together
they can maintain correlation matrices at acceptable sizes
that should not exceed the available memory space and thus
manage the available RAM more efficiently.
Before explaining the details of the proposed approach it

may be useful to make some more general remarks. First,
the identified problems associated with large amount of data
are not unique to algorithms based on kriging approach and
may occur when other surrogate modelling techniques are
used; thus some of the techniques developed here will be of
more general interest. Secondly, no optimisation technique
can guarantee finding a global optimum but kriging – as
demonstrated by other authors and our previous
publications – appears to be particularly effective in
maximising the chances of determining one, while at the
IET Sci. Meas. Technol., pp. 1–8
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Fig. 3 ‘Standard’ sub-matrix and associated ‘window’
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same time offering savings in associated computation times.
Moreover, in accordance with the no free lunch theorem, its
performance is problem dependent but has been shown
before to be particularly efficient when solving problems
relying on time consuming numerical modelling, such as
finite element electromagnetic field simulation. Finally, it is
worth emphasising that the computer memory issues
resulting from the combinatorial explosion mentioned above
are not only a feature of the kriging methodology but are
also associated with a particular implementation of the
method.
3 Structure of the correlation matrices

It has been observed that the sub-matrices created when new
sampling points are added during iterations have similarities
that can be exploited to reduce the memory requirements.
In particular, the ‘shape’ of the distribution of values in a
given row of the matrix will be preserved (a ‘benchmark’)
but shifted depending on the position of the point. Thus
instead of creating and storing the whole matrix it may be
sufficient to duplicate information. This is best explained
using examples, therefore in the following sections several
cases are discussed and analysed, starting with a single
variable problem, gradually moving to multi-variable
problems of up to eight variables. The single and two
variable problems are exemplified using analytical
functions, whereas the multi variable problems are
illustrated with the help of TEAM 22 (SMES Optimisation
Benchmark) and TEAM 25 (Optimisation of Die Press
Model) electromagnetic optimisation problems.

3.1 Single-variable numerical test

The single-variable Schwefel function [7] was first used

f (x) =
∑d
i=1

−xi sin
( ����|xi|
√ )

(3)

where d = 2, with six initial sampling points x = (−500, −230,
y = 10−
∑n
i=1

3.5

1+ (xi − 5)2
+

1+ (xi

[
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−250, −40, 160, 500), paying attention that the first one was
on the edge of the region. A full correlation sub-matrix was
then created for this point and the distribution is shown in
Fig. 2a. It was then observed that all points have a similar
distribution, with Fig. 2b giving an example for the second
point. It is therefore possible to set up a ‘standard’
sub-matrix (as depicted in Fig. 3) and then shift it (using a
‘window’) to an appropriate position depending on the
location of the point under consideration (effectively a ‘cut
and paste’ technique), hence use storage space far more
economically.

3.2 Two-variable numerical test

The following analytical function was used and tested for the
two variable case (see (4)). Although this function can have
n variables, for the example discussed here n was set to two
(n = 2) in the range 0≤ xi≤ 27. The point (x1 = 0, x2 = 0,
y = 9.43) was selected to create a standard correlation
sub-matrix to be used by all remaining and new points, as
illustrated graphically in Fig. 4.
To assess achievable savings in computer memory and

associated computing times, the graphs in Fig. 5 have been
produced, showing and comparing three cases: the full
correlation matrix, the reduced size using the idea of a
standard sub-matrix and the joint usage of the sub-matrix
and matrix partitioning described previously in [5]. Note
that for this particular comparison (as well as later on in
Fig. 6) the three approaches are equivalent to M1, M2 and
a combination of M2 and M3 explained previously in Fig. 1.
The test demonstrates that significant savings can be made,

if required, of necessary memory requirements, by applying
the concept of duplicating the standard correlation
sub-matrix. This can be combined with the idea of matrix
partitioning. The added bonus is that the computing times
can also be reduced, especially as the iterations progress,
although in the case of matrix partitioning this benefit may
be lost somewhat towards the end of the iterative process.
When applying the correlation matrix partitioning scheme,
the splitting by the design vectors requires more time to
produce the correlation matrix repeatedly for creating a
sub-matrix; thus the sub-matrix duplication assisted by
2.2

− 15)2/10
+ 1.2

1+ (xi − 25)2/30

]
(4)
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Fig. 4 Building and duplicating sub-matrices
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correlation matrix partitioning may ultimately require more
computing time.
4 TEAM 22

4.1 TEAM problem 22

The full description of the TEAM benchmark problem 22
(superconducting magnetic energy storage system) may be
found in [8]. The target is an arrangement of the two
superconducting coils such that the stored energy within the
system is Eref = 180 MJ while a minimal stray field Bstray is
Fig. 5 Memory requirements (a), and computing times (b), for the
two-variable test described by (4)
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present. The objective function is defined as

OF = B2
stray

B2
norm

+ |E − Eref |
Eref

(5)

where Bnorm = 3 μT and B2
stray =

∑22
i=1 Bstray,i

∣∣∣ ∣∣∣2
22

, subject to
geometrical and ‘quench’ constraints.

4.2 3-parameter test results

The full three parameter TEAM 22 problem with standard test
settings [8] is potentially a challenge to the kriging method
because of the ‘combinatorial explosion’ associated with
setting up the correlation model, as explained in Section 3 –
thus the savings because of avoidance of the
computationally expensive finite element simulations could
be compromised by the increased time required by the
kriging model should the problem of memory restriction be
encountered. The initial sampling points were chosen
differently to our previously reported test [9]; in particular
the value at the lower bound of the three variable’s test
range was selected specifically as the first sampling point to
create a standard correlation sub-matrix for duplication,
instead of repeatedly calling the correlation function (2),
which would be an inefficient and time consuming process.
The rest of the sampling points are randomly chosen as
summarised in Tables 1 and 2. The efficiency of the
algorithm and the memory usage were compared for the
three methods M1, M2 and M3 of Fig. 1, where M1 and
M2 have already been explained, whereas M3, as a
combination of the other two methods, is similar to M2, but
with initial duplication of the standard sub-matrix before
partitioning is applied. With the prescribed ranges and step
sizes the total size of the problem is 81 × 129 × 81,
consistent with the standard test size suggested in [8],
whereas the size of the sub-matrices needs to be set to be
less than the physical memory available in the computer but
also depends on the number of sampling points; in our tests
this has been set to ns × 5 × 105, where ns is the number of
existing sampling points.
Only the calculation times during the prediction stage and

the memory usage are different when using these three
IET Sci. Meas. Technol., pp. 1–8
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Fig. 6 Computing times (a), and peak memory requirements (b), obtained by different correlation matrix building methods for the TEAM 22
problem
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different approaches of correlation matrices construction,
since the number of updated sampling points required for
converging to the global optimum is the same. A
comparison between the results obtained with our kriging
assisted algorithm, using the three schemes of building
correlation matrices and some published results using other
methods is presented in Table 3. The slight difference in
the results obtained here as compared with our previous
work [9] is because of the different initial settings used.
Table 3 Performance comparison algorithms for TEAM 22
problem

Algorithm R2 (m) d2 (m) h2/2 (m) OF No. of FEM
calls

GA 3.040 0.386 0.240 0.134 2400
HuTS 3.080 0.380 0.246 0.089 3821
ITS 3.100 0.388 0.240 0.098 1824
SA 3.078 0.390 0.237 0.098 5025
NTS 3.080 0.370 0.254 0.089 1800
PBIL 3.110 0.421 0.241 0.101 3278
Kriging 3.09 0.349 0.267 0.08778 217

Genetic algorithm (GA) [10]; Tabu search (HuTS) [11]; improved
Tabu search (ITS) [12]; simulated annealing algorithm (SA) [13];
New Tabu Search (NTS) [14]; Population-based Incremental
Learning (PBIL) [15].
Results for GA, HuTS, ITS, SA, NTS and PBIL taken from [14].

Table 2 Specific definition of the test

R2 (m) h2 (m) d2 (m)

test range [2.6 3.4] [0.408 2.2] [0.1 0.4]
step size 0.01 0.014 0.003
number of steps 81 129 101

Table 1 Setting of initial sampling points

R2 (m) h2 (m) d2 (m)

sample 1 2.6 0.408 0.1
sample 2 3.4 2.2 0.4
sample 3 3.2 0.744 0.4

IET Sci. Meas. Technol., pp. 1–8
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The kriging assisted by EI took 214 iterations to locate the
optimum, including the initial sampling points, thus the
total number of calls of the FEM software was 217, which
outperforms other algorithms.
But the main purpose of this test was to observe calculation

times and peak memory requirements when different schemes
were used for building correlation matrices. From Fig. 6 it can
be seen that although the memory usage can be maintained
below a certain size through applying the correlation matrix
partitioning method, computing times are longer during the
prediction process because of the way of partitioning the
matrices via design vectors. On the other hand, when
the correlation matrix partitioning method is combined with
the sub-matrix duplication scheme, the kriging model
performs the optimisation task efficiently and, as shown in
Fig. 6a, outperforms the other two algorithms. Initially the
sub-matrix duplication method, which requires storing the
benchmark standard sub-matrix for duplicating the other
correlation matrices, has a larger memory usage, but after
approximately 25 iterations, for this specific TEAM 22
problem, the rate of memory increase reduces quite
dramatically, as shown in Fig. 6b. As the iterations continue
there is a linear increase of memory requirements for
algorithms M1 and M2, which eventually overtake the
memory requirements for the M3 approach. Although for
this case the size of the problem was not exceptionally
large, and was comfortably handled by a PC with a 16 GB
of installed RAM, it is obvious that for larger problems
using M3 would be advantageous.
4.3 8-parameter TEAM 22

The 8-parameter TEAM 22 problem is a challenging test and
the fact that there are very few results published in literature is
a clear indication of the difficulties. Several observations can
be made before attempting to solve this problem using the
proposed algorithm. It is obvious that a large memory will
be necessary to store the response surface produced by
kriging, as well as the correlation matrices used during the
prediction stage. The size of these matrices is directly
linked to the number of variables, hence in this case of
eight variables and using modest 10 steps for each variable
vector, a 108 parameter set needs to be stored. Since the
kriging predictor produces the response surface at each
5
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Table 4 The specific definition of 8-parameter TEAM 22 test at the initial stage

R1 (m) R2 (m) h1/2 (m) h2/2 (m) d1 (m) d2 (m) J1 (A/mm2) J2 (A/mm2)

min 1.0 1.8 0.1 0.1 0.1 0.1 10 ‒30
max 4.0 5.0 1.8 1.8 0.8 0.8 30 ‒10
no. of steps 6 6 6 6 6 6 3 3
step size 0.6 0.64 0.34 0.34 0.14 0.14 10 10

Table 5 The average value of gradient of 8-parameter TEAM 22 test

R1 (m) R2 (m) h1 (m) h2 (m) d1 (m) d2 (m) J1 (A/mm2) J2 (A/mm2)

first-stage test D(x) 0.6 0.64 0.14 0.14 0.68 0.68 10 10
AG 0.0046 6.433 × 10‒4 0.0184 0.0446 0.2168 0.2168 3.036 × 10‒3 3.499 × 10‒5

second-stage test D(x) 0.3 0.32 0.17 0.17 0.04 0.04 10 10
AG 0.0148 0.0541 0.0947 0.1024 0.8546 0.8415 4.232 × 10‒3 4.279 × 10‒3

third-stage test D(x) 0.3 0.32 0.085 0.085 0.01 0.01 10 10
AG 0.0375 0.0231 2.736 1.743 0.476 0.257 4.572 × 10‒3 2.1755 × 10‒3

D: parameter value, AG: average gradient.

Table 6 Test ranges and steps for the 8-parameter TEAM 22 test

R1 (m) R2 (m) h1 (m) h2 (m) d1 (m) d2 (m) J1 (A/mm2) J2 (A/mm2)

second-stage test test range [1.0 2.8] [1.8 3.72] [0.2 2.24] [0.2 2.24] [0.38 0.66] [0.1 0.38] [10 30] [‒30 ‒10]
no. of steps 7 7 7 7 8 8 3 3

third-stage test test range [1.0 1.6] [1.8 3.72] [0.2 3.6] [0.2 3.6] [0.1 0.8] [0.1 0.8] [10 30] [‒30 ‒10]
no. of steps 3 3 21 21 29 29 3 3

fourth-stage test test range 1.0 1.8 [0.2 3.6] [0.2 3.6] [0.4 0.6] [0.1 0.3] [10 30] [‒30 ‒10]
no. of steps 1 1 41 41 21 21 3 3

Table 7 Optimal solution found in the four tests and the corresponding iterations

The first-stage test The second-stage test The third-stage test The fourth-stage test

optimum
solution

R1 = 1, R2 = 1.8, h1 = 0.2,
h2 = 0.2, d1 = 0.52, d2 = 0.24,

J1 = 30, J2 = ‒20,
OF = 0.9392

R1 = 1, R2 = 1.8, h1 = 0.54,
h2 = 0.54, d1 = 0.62, d2 = 0.38,
J1 = 20, J2 = ‒20, OF = 0.63732

R1 = 1, R2 = 1.8, h1 = 0.37,
h2 = 1.9, d1 = 0.625, d2 = 0.1,
J1 = 30, J2 = ‒10, OF = 0.7874

R1 = 1, R2 = 1.8, h1 = 1.56,
h2 = 1.39, d1 = 0.4, d2 = 0.15,
J1 = 30, J2 = ‒30, OF = 0.05361

no. of FEM
calls

183 17 29 220

The units of the 8 parameters are the same as in Table 6; OF: the objective function value.
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iteration, and it is of the same size as the task itself (108), a
computer with 9 GB available memory is bound to be
challenged. Moreover, background processes are likely to
reduce available memory for the optimiser because of
dynamic allocation. Adding correlation matrices to this data
will only make the problem worse. Thus the correlation
matrix partitioning and/or sub-matrix duplication schemes
may need to be supplemented by some form of a ‘zoom in’
strategy, which has been used successfully before.
However, the difficulty of this strategy is how to define the
optimal step size, as this may determine whether the
algorithm will converge to the right answer. To alleviate
this difficulty it is proposed that a sensitivity analysis in
each dimension is conducted before deciding which of the
parameters should be using a finer step size. We have
decided to use an average value of the gradient in each
dimension to guide the algorithm when choosing the
variables that need a finer resolution. The average value of
the gradient is thus calculated after each iteration and a
variable that needs finer resolution may change in the next
6
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step. Table 4 presents the specific settings at the initial
stage (note also that Bnorm = 200 μT in this case).
After the first-stage test, in order to determine how to resize

the parameters at the next stage, an average value of the
gradient with respect to each dimension was calculated. The
values obtained from the tests at different stages are listed
in Table 5. In this particular case the parameters h1, h2, d1,
d2 seem to have higher values of the average gradient,
indicating higher sensitivity and should therefore be focused
on in the following tests by refining the increment
(increasing the number of steps) in stages two, three and so
on. The range of each variable is also monitored and may
be decreased or increased as appropriate. All this is
illustrated in Tables 6 and 7.
Through analysing the sensitivity of the first-stage rough

test, it has been determined that the test range of R1 and R2

needs to be contracted in order to save computer memory
for the other four more sensitive parameters. Moreover, the
sensitivity of the current density settings (J1 and J2) is
extremely low, so during the three tests the test ranges and
IET Sci. Meas. Technol., pp. 1–8
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Table 8 Performance comparison between different algorithms

R1 (m) R2 (m) h1 (m) h2 (m) d1 (m) d2 (m) J1 (A/mm2) J2 (A/mm2) Objective function No. of FEM calls

PSO 1.0000 2.2647 1.1076 1.7766 0.5225 0.3442 28.1779 ‒5.4921 2.3363 ∼6000
Q-PSO 2.2947 2.6126 1.0764 2.2704 0.3967 0.2040 30 ‒21.293 0.5735 ∼6000
E-QPSO 1.0000 1.8000 2.0616 3.6000 0.5155 0.2851 19.9975 ‒6.3571 1.1730 ∼6000
GSA 1.939 2.823 1.130 1.101 0.399 0.195 22.5 ‒22.5 0.00517 17 150
ES 1.990 2.931 1.293 0.940 0.290 0.188 26.6 ‒26.6 0.00489 4200
SAA 1.694 2.907 1.609 0.882 0.323 0.207 20.9 ‒20.9 0.0110 14000
CGM 1.836 2.762 1.178 1.001 0.395 0.214 22.5 ‒22.5 0.0248 200
Kriging 1 1.8 1.56 1.39 0.4 0.15 30 ‒30 0.05361 449
standard answer 1.296 1.8 2.178 3.026 0.583 0.195 16.955 ‒18.91 0.0018 –

PSO: particle swarm optimisation [16], Q-PSO: quantum-behaved particle swarm optimisation [16–18], E-QPSO: QPSO using the
exponential probability distribution [19], GSA: global search algorithm [20], ES: evolution strategy [20], SAA: simulated annealing
algorithm [20], CGM: conjugate gradient method [20].
Results for PSO, Q-PSO, E-PSO, GSA, ES, SAA and CGM taken from [16] and [20].
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step sizes for currents have not been changed. The correlation
matrix partitioning strategy has been applied and the full
correlation matrix divided into sub-matrices of the size ns ×
3 × 105 where ns is the number of sampling points.
The results presented here were acquired applying the

following methodology: if available physical memory was
larger than requested by the problem the normal method
M1 was applied. A switch that allows moving to the
correlation matrix partitioning method was implemented;
the switching criterion was controlled by the time
consumed to construct the correlation matrix. If the time
used to build the correlation matrix was larger than a
certain threshold, the switching was triggered and the
partitioning scheme activated, which then continued
throughout the remaining iterations.
In terms of the quality of the answer itself, compared with

other methods and the standard answer provided by [8], with
the help of the zoom-in strategy based on the evaluation of the
predicted average gradient value, the kriging algorithm seems
to perform much more efficiently than the particle swarm (PS)
and related methods with only 449 iterations required to
converge to the optimum, compared with estimated 6,000
needed with PS methods. The other three algorithms (GSA,
ES and SA) can find a slightly better solution than the one
achieved by kriging but with much higher number of FEM
calls. The conjugate gradient method (CGM) performs
efficiently and provides an accurate answer, but it is of
course a direct method, thus generally cannot guarantee
finding a global optimum. Obviously no method can
provide such a guarantee, but stochastic methods in general
and kriging based methodologies in particular, offer a high
probability of success. Although the quality of the solution
obtained by kriging was marginally worse than the standard
answer, it was achieved using a very small number of FEM
calls. Should the optimum in Table 8 obtained by kriging
not satisfy the designer, more detailed tests could be added
to continue the search, in particular by examining the
sensitivity in other directions.
Table 9 Specific definition of TEAM 25

Parameter Test range
(mm)

Step size (mm) No. of steps

Min. Max.

R1 (mm) 5 9.4 0.1 45
L2 (mm) 12.6 18 0.1 55
L3 (mm) 14 45 1 32
L4 (mm) 4 19 0.5 31

IET Sci. Meas. Technol., pp. 1–8
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5 TEAM 25

A model of a die press with an electromagnet for producing
anisotropic permanent magnets is chosen as a second
example [21]. The shape of the die is to be set up in such a
way that magnetic flux density components Bx and By

should be the same and equal to 0.35cos(θ) T along a circle
line at 10 measurement points for 0° < θ < 45° and r0 =
0.01175 m. The problem has four design parameters R1, L2,
L3 and L4 specified in Table 9. The objective function is
evaluated at specific points as

OF =
∑10
i=1

Bxi,calc − Bxi,requ

( )2
+ Byi,calc − Byi,requ

( )2( )

(6)

where calc means calculated and requ required.
Three initial sampling points have been chosen as (R1 =

5.0, L2 = 12.6, L3 = 14, L4 = 4.0), (R1 = 7.0, L2 = 15.8, L3 =
20, L4 = 15), (R1 = 8.5, L2 = 17, L3 = 31, L4 = 8). The first
sampling point has been chosen so as to allow for creating
the standard matrix for duplicating correlation matrices.
As before, during the first stage of the test (as shown in

Fig. 7) the normal approach M1 has been applied until the
switching criteria (when the peak memory requirement
exceeds 9 GB) is triggered and then Method M3 is applied
from the 61st iteration onwards. Although the theoretical
physical memory size is 16 GB, with the consideration of
the impact from other background processes, the upper limit
for the predictor was set to 9 GB. Interestingly the
computing time at the instant of switching shows a slight
Fig. 7 Time consumed and the peak memory requirement at each
iteration
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Table 10 Performance comparison of algorithms for TEAM 25 problem

Algorithm OF( × 10‒4 T2) R1 (mm) L2 (mm) L3 (mm) L4 (mm) No. of FEM calls

GA 2.6861 7.2996 14.174 14.001 14.326 3421
SA 1.6223 7.2252 14.322 14.110 14.306 2145
HuTS 0.5009 7.3780 14.613 14.371 14.201 1580
UTS 1.0501 7.5487 14.908 14.506 14.416 931
NTS 0.6482 7.4337 14.732 14.428 14.237 575
Kriging 0.4527 7.2 14.1 14 14.5 241

Universal Tabu Search (UTS) [14], otherwise as in Table 3.
Results for GA, SA, HuTS, UTS, NTS taken from [14].
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perturbation but only a small one, indicating that matrix
duplication and partitioning has little effect on computation
times. However, it would probably be ill-advisable to draw
a general conclusion from this observation as the case
considered only necessitated one partitioning to be applied;
for larger problems requiring further partitioning the extra
time requirements may be more noteable. Finally, the kriging
model converges to the optimum after 241 iterations, which
is much more efficient than with other methods reported in
Table 10, while the quality of the answer is also better.

6 Conclusion

Kriging assisted optimisation has once again been
demonstrated to perform efficiently, both in terms of a better
quality of the final answer but also – and most importantly –
the much smaller number of necessary function calls
involving computationally expensive numerical modelling,
such as finite elements in electromagnetic designs. However,
some of the time gains could be compromised because of the
need to construct memory hungry correlation matrices
required in the kriging approach. This will not matter when
using large computers, but as design tasks are increasingly
solved on small computers or laptops the issue of efficient
management of computer memory needs to be addressed and
this has been the focus of this paper.
The structure of the correlation matrices associated with the

kriging model may be exploited to avoid uncontrolled growth
of such matrices for large problems to avoid the need for page
swapping which will inevitably lead to slowing down of the
process. In particular, it is possible to duplicate and shift
data while storing only a small subset of necessary
information. For large-scale multi-variable tasks, a zoom-in
strategy based on sensitivity evaluation of each variable
may be implemented in association with the proposed novel
strategies for creating correlation matrices. With the help of
these methods, the issue of memory storage can be
mitigated to significant extent.
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