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New methods for assessing the control of blood flow in the brain
By Hesam Kouchakpour

Cerebral autoregulation is the process of maintaining blood flow to the brain almost constant
despite changes in arterial blood pressure (ABP) with the assumption that changes to other
physiological condition are small. Assessment of cerebral autoregulation plays a key role in
diagnosis, monitoring and prognosis of cerebrovascular disease clinically. In this work Transcranial
Doppler Ultrasound was used to measure middle cerebral artery velocity, arterial blood pressure
(ABP) was non-invasively measured using a finger cuff device (Finapres).

Mathematical models that characterize the cerebral autoregulatory system have been used in the
quantitative assessment of function/impairment of autoregulation as well as in furthering the
understanding cerebral hemodynamics. Using spontaneous fluctuations in arterial blood pressure
(ABP) and CO, as inputs and cerebral blood flow velocity (CBFV) as output, the autoregulatory
mechanism has been modeled using linear and nonlinear (Laguerre Volterra Networks), single-input
(S1, only ABP) and multi-input (MI, ABP and C0O,) approaches. From these models, a small number
of measures have been extracted to provide an overall assessment of autoregulation. It was also
investigated whether or not some of the poor performance previously reported can be overcome by
improved modeling (characteristics of the nonlinear models) and choice of autoregulation
parameter to extract cerebral autoregulation. In this work, lower inter and intra subject variability of
the parameters were considered as the criteria for identifying improved measures of autoregulation.

Search for improved analysis is then extended, using the data-driven approach based on subspace
distance (SSD). The performance of this method is compared to alternatives previously proposed,
using data from healthy volunteers in normo- and hyper-capnia (to induce transient impairment of
autoregulation). The subspace distance (SSD) provides a means of determining the distance of an
estimated model to others known to have been obtained from normal or impaired autoregulation,
considerably. The smallest average distance with respect to each of these sets then determines how
far from normal/impaired a given recording lies. For comparison, indexes of autoregulation were
obtained from methods used in previous work, including the phase of the frequency response at
0.1 Hz (P1), and the 2™¢ parameter of a 15¢ order FIR model (H1). The main advantage of this
method is that it does not require picking parameters but is driven by the data (the model) itself.



The method was found to be promising and provided better distinction between normocapnia and
hypercapnia compared to other autoregulatory parameters studied in this section.

Multivariate adaptive filters (multivariate recursive least square (MI — RLS)) and multivariate
moving window (MI — MW) to study the effect of Pgrco, in the dynamic of time-varying
characteristic of cerebral autoregulation were applied to study the multivariate, time-varying
characteristics of cerebral autoregulation. Here also SI — RLS, SI — MW, MI — MW and MI — RLS
methods to baseline, hypercapnia and normocapnia measurements from our volunteers individually
were applied. Autoregulation was quantified by both time-varying phase-lead and amplitude using
pressure pulse input. It was also noticed that multivariate models deal very well with the transient at
the beginning of hypercapnia compared to univariate models and autoregulatory parameters
extracted from MI — RLS provide the least variation. The results from multivariate time-varying
coherence showed that it can provide significantly higher values at low frequencies (f < 0.05 Hz)
and the transient between normocapnia and hypercapnia compared to univariate time-varying
coherence.

Finally, a new tentative approach of hardware and software system for the measurement of blood
flow control was carried out in Southampton General Hospital which allowed the inducement of
random, step-wise changes in blood pressure and inspired carbon dioxide (C0O,) level that can be
easily and safely repeated and may be applicable as a clinical tool. This experiment benefited from
the use of LBNP (Lower-body-negative pressure). It generates a controllable pressure variation,
built around the lower limbs of a subject resulting in temporary lowering the blood pressure. The
initial assessment of this dataset is presented.
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Chapter 1 : Introduction

1.1 Overview

Autoregulation is one of the mechanisms in the automatic adjustment of blood flow to supply the
required nutrition and remove waste in proportion to the tissue’s requirement at any instant in time
[2, 3]. For the brain, cerebral autoregulation refers to an active process of the brain by which
cerebral blood flow is controlled at steady state despites the changes in the arterial blood pressure
to ensure the required supply of the blood for the cerebral tissues. Cerebral autoregulation attracts
considerable attention in the literature as it is thought to be an important mechanism in the
development of some strokes, and also in the occurrence of the secondary damage, following
stroke, head injury and cerebrovascular disease [4]. Having a good assessment of the cerebral
autoregulation can potentially be used in clinics and hospitals where the changes in cerebral
autoregulation may be observed. These changes can indicate variations in the patient’s health and
may be used to modify their medical treatment in order to help to manage their therapy and
improve their recovery. Autoregulation is impaired by too low or too high cerebral perfusion

pressure (CPP) when compared to autoregulation with normal CPP (between 60 to 85 mmHg).

The inducement of changes in arterial blood pressure (ABP), middle cerebral blood flow velocity
(MCAV) and partial pressure of end-tidal carbon dioxide (Pgr¢o,) are the most common parameters
used to stimulate the regulating mechanisms. Infrared plethysmography (Finapres), transcranial
Doppler ultrasound and capnography are used respectively for these measurements as they can be

used non-invasively and are commonly available.

The main aims of this project are to propose innovative experimental and signal analysis techniques
for the robust assessment of cerebral blood flow control to determine the nature of the
autoregulation mechanisms and increase understanding of the dynamic interaction between CBFV,
ABP and  Pgrco, based on modelling of experimental data using multivariate and data driven

methods.



1.2 Layout of the thesis:

In chapter 2 of this thesis a brief summary of the relevant anatomy and physiology of cerebral blood

flow and cerebral autoregulation is given.

The technical details for analysis of the response to the pressure and blood flow changes, for both

static and dynamic cerebral autoregulation, are presented in chapter 3.

In chapter 4 the system identification methods to assess dynamic cerebral autoregulation by using a
previously published model: the Tiecks [5] model, and frequency response, coherence and transfer
function gain and phase are discussed which help to identify some challenges that exist in this field.
The results from these well-known approaches are used as a ground for new findings and to

compare new results to these approaches.

In chapter 5, multi-input (ABP,Pgrco,) Nonlinear Laguerre network (LVN) is used, to model, and to
extract new autoregulatory parameters from the response of the system to pressure pulse (PP)
input which has not frequently been extensively investigated. The variability between and within
subject is studied. The aim of this chapter is to find the optimal model characteristics for different
LVN and to test and compare the performance of these different models in term of assessment of

autoregulation.

In chapter 6, subspace distance as a novel and data-driven approach to assess autoregulation is
used. The performance of this methodology is studied by comparing it with some well-known

autoregulatory parameters.

In chapter 7, time-varying multivariate models using multivariate recursive least square (MI — RLS)
and multivariate moving window (MI — MW) are applied to study the time-varying characteristics of
dynamic cerebral autoregulation and the performance is compared with the univariate version of

these approaches.

In chapter 8, the new approach in data collection using constant/random lower body negative
pressure (LBNP) with constant/random high CO, (HCO,) is studied in order to test whether LBNP
can produce more variability in CBFV and as the result of that can help to get more robust

assessment of autoregulation.

In chapter 9, we conclude the work that has been carried out on this thesis.



1.3 List of original contributions

1.

Proposal of optimal method and orders for two-input Laguerre Volterra networks (LVN)
with different combinations of inputs and linearity/non-linearity: linear ABP, linearPgrco,,
nonlinear ABP, nonlinear Pgrco,, nonlinear interaction between ABP and Pgrco, with a
focus on extracting parameters for assessing autoregulation in the models. Assessment of
autoregulation was also done by looking at the variability between and within subjects and
the robustness of different autoregulatory parameter estimates were studied.

Proposal of a new data-driven approach, and showing the superiority of this method over
some other well-known autoregulatory parameters in term of assessing autoregulation and
distinguishing between normo- and hypercapnia.

Applying uni- and multivariate time-varying methods for the assessment of autoregulation,
showing that, having Pgcrco, as the secondary input can improve the normalized mean
square error in the training. The results also showed that the contribution of
Pgcrco, towards the spontaneous changes in CBFV is significantly higher in hypercapnia
compared to normocapnia. The result also indicated that the multivariate time-varying
model can improve the coherence value at low frequency range and also in the transient
between normocapnia and hypercapnia and vice versa. The results also showed that the
effect of Pgcrco, on the variation of CBFV is more significant when the subject is in
hypercapnia.

Analysis of data collection from random Lower Body Negative Pressure (LBNP) in
Southampton to induce bigger variations in ABP. Different autoregulatory parameters were
used and it was shown that more robust assessment of autoregulation can be achieved with
this new data collection approach. The results also showed significant reduction in the

variability of autoregulatory parameters from baseline to LBNP
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Chapter 2 : Literature review

2.1 Cerebral circulation

The brain is the most remarkable and complex biological structure known. The brain weighs only 2%

of total body mass, it consumes 20% of the total body oxygen and 25% of total body glucose [6].

In normal condition the amount of glucose supplied to the brain is seven times the necessary
requirement, however the supplied oxygen to the brain is about two or three times the required
amount. As a result cerebral blood flow may be halved without any distinct change in cerebral
function but if it goes considerably below 50%, then failure of normal brain function will very rapidly
become apparent due to an insufficient supply of oxygen [7, 8]. It is thus vital for human life, that the

brain always received an adequate supply of blood.

2.2 Anatomy

The anatomy of the cerebral circulation was first documented by Willis in 1664 where he described,
at the base of the brain, the arterial structures. He described the circle of arteries that distributes

most of the blood supply to the cerebral cortex and is now named after him.

Blood is pumped to large elastic arteries from the heart and these themselves branch into smaller
arteries. The structure of the arteries changes with their sizes. As the size of the arteries gets smaller
their structure changes from having walls with a large amount of elastic tissues and a smaller
amount of smooth muscle to structures with walls that have a smaller amount of elastic tissues and
a larger amount of smooth muscle. With respect to this structure the arteries can be divided into
three categories: elastic arteries, muscular arteries and arterioles. Elastic arteries have the largest
diameter and the least amount of smooth muscle. Muscular arteries have relatively thick vessel walls
compared to their diameter. The arterioles have small diameters and branch out of the arteries to

transport blood from arteries to the capillaries.

There are four main arteries in the neck which supply the blood to the brain as can be seen in
Figure 2-1. These arteries are connected at the base of the brain to the circle of Willis, as mentioned
above. The four major cerebral arteries are left and right carotid arteries and left and right vertebral

arteries (Figure 2-1).



The major cerebral network varies from one individual to another individual significantly. These
differences can be in arterial dimension, complete absence of some vessels, point of bifurcation and

even inclusion of additional duplicated vessels [9].
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Figure 2-1 Major cerebral arteries that supply the human brain and the circle of Willis [10]

2.2.1 The carotid arteries

The left and right carotid arteries follow the same path through the soft tissues of the neck but with
different origins. Both of the common carotid arteries divide to form an internal and external carotid
artery; the internal carotid artery is responsible for supplying the blood to the brain while the
external carotid artery supplies blood to the face, scalp and the neck. The internal carotid artery
travels up into the skull from the behind of the eyes’ orbit through the carotid foramen and joins the
anterior part of the Circle of Willis. The internal carotid arteries contain barorepectors which are
sensors that detect the blood pressure flowing through them. These sensors are located in a
thickening of the arterial wall called the carotid sinus. The communication between baroreceptors
themselves is done via the sinus nerves which are also responsible for regulating heart rate and
strength of contraction. Under normal conditions, the blood flow through both of the left and right
carotid arteries are the same and together they are responsible for 80% of the blood flow to the

brain while the two vertebral arteries are responsible for the remaining 20%.



2.2.2 The Vertebral and Basilar arteries

The left and right vertebral arteries originate from the subclavian arteries and they enter the
vertebral column at the level of the sixth vertebrae. They both then enter the skull through the
foramen magnum at the top of the spine and then join together to form the basilar artery which
itself terminates in the two posterior cerebral arteries of the circle of Willis. Several small arteries
from the vertebral arteries and basilar arteries supply essential blood to the cerebellum, spinal chord
and brain stem. Under normal conditions, just a little mixing between bloods in the communicating

vessels occurs.

2.2.3 The cerebral arteries

The two hemispheres which form the human brain receive their blood supply entirely from the Circle
of Willis. There are three major arteries that originate from the Circle of Willis to supply the blood to
each hemisphere, conveniently named; anterior, middle and posterior cerebral arteries. Under
normal circumstances, the left and right carotid artery supply the required blood to the left and right
anterior and middle cerebral arteries respectively. The basilar arteries as mentioned above, supply
the blood to the two posterior cerebral arteries. In other words under normal conditions the right
and left carotid arteries supply the right and left lateral and anterior cortex respectively while the
Basilar artery supply the required blood to the posterior cortex. Even though no communication
between these three arteries is required, they are linked close to their origin, by the anterior
communicating artery and each carotid artery is also linked to the corresponding posterior cerebral
artery by a posterior communicating artery. As the result of the mentioned arteries and
communicators the blood supply to the cerebral hemispheres is not exclusively dependent on just

one vessel.



2.2.4 The middle cerebral artery

As mentioned above, the middle cerebral artery (MCA) is one the three major arteries that are
responsible for the blood supply to the cerebrum®. The MCA is largest artery out of the three and is
responsible for supplying a significant proportion of the lateral surface of the cerebral hemispheres
such as: cortical regions controlling, auditory, and motor and speech activities. The cerebral blood
flow is commonly measured by transcranial Doppler ultrasound (TCD) in the MCA which will be
discussed in more details in 2.6 . The MCA is chosen not just because it is the largest vessel, but
because it shows the least anatomical variation and also the initial segment of MCA, travels almost
horizontally outwards, from the circle of Willis (Figure 2-1), for about 16 mm, with little tapering,
feeding the main arteries that supply the centre of the brain. It is the fairly straight initial segment of

the MCA is used to obtain the majority of TCD measurements [11].

2.3 Cerebral circulation

So far primarily the anatomy of cerebral circulation was discussed. In order to understand cerebral
autoregulation it is necessary to look at the blood flow and its dynamics. The dynamics of the blood
circulation involves the inter-relationships between blood pressure, blood flow, resistance and the
control mechanism that regulate blood flow and blood pressure in the vessels, and which play a

critical role in the functionality of the cerebral circulatory system.

2.3.1 Cerebrospinal fluid (CSF)

Cerebrospinal fluid (CSF) circulation exists intracranially in addition to cerebral blood circulation.
The CSF is a clear, colourless liquid that fills the ventricles of the brain and the subarachnoid spaces
[9]. The CSF supports the central nervous system against trauma. The brain weighs around 1500 g
in the air whilst this is only 50 g when immersed in CSF. One of the other responsibilities of CSF is
to remove waste products of neuronal metabolism, drugs and other substances which diffuse into

the brain from the blood [12].

The brain inside the skull is incompressible and as the result of that the overall combined volume of
the brain, CSF and intracranial blood must be maintained at a constant level. This means that if one
of these three parameters increases, it is at the expense of other two components to be reduced

according to Munro-Kellie hypothesis [13].

! The cerebrum with diencephalon, constitute the forebrain. It is the most superior (in human) region of the
vertebrate central nervous system.



It has been reported that the rate of formation of the CSF is independent of short-term variation of
intracranial pressure [14]. The CSF formation only slightly decreases from 0.35 ml/min to 0.30
ml/min when intracranial pressure (ICP) increases from less that 15 mmHg to more than 25

mmHg [14].

2.3.2 Blood pressure and blood flow

Blood pressure is the measurement of the pressure (force per unit area) that blood exerts on the
walls of blood vessel walls. Blood flow can be described as the volume of blood that passes a specific
point in a blood vessel at a certain point of time. The flow can be modelled using the pressure
difference also known as perfusion pressure between two sections of the vessels. We expect the
blood to flow from the point with high pressure (P;) flows towards the points with low (with respect
to P;) pressure (P,). The blood vessels have resistance (R) which is oppose the blood flow. The flow

can now be mathematically expressed as (Darcy’s law):
P, —P,

R

For the case of the brain, the blood flow in the brain is driven by the difference between the arterial

Flow = 2.1

blood pressure (P;) and the pressure in the skull (intra-cranial pressurez — P,). The vascular
resistance in the above equation is known as the cerebral vascular resistance (CVR) for the brain

mechanisms. The blood flow resistance can be modelled using the Hagen-Poiseuille’s law as below:

vl_ 8
R =(—)(— 2.2

D0
where in the above equation v is the blood viscosity, [ is the length of the vessel and r is the blood
vessel radius. From the above equation it can be seen that the blood flow resistance is greatly

related to the radius of the vessel (r*) and proportional to the length of the blood vessel and the

viscosity of the blood.

Each blood vessel has a critical closing pressure (CCP); the pressure below which the vessel collapse

and blood flow through the vessel stops. This can happen under the conditions of shock.

2.3.3 Vascular mechanics

It is known that the blood vessels are distensible. It results in the fact that the width of a vessel

depends on two factors: 1. Blood pressure 2. Tension in the wall. The radius of the vessel controls

? Elevation of the pressure in the cranium



the amount of tension in the wall in response to a given pressure drop. This principle is commonly

known as Laplace’s law.

T=P.r 2.3
where in above equation, T is the circumferential tension, P is the pressure difference between the
inside and outside of the vessel and r is the vessel radius. There is an assumption in writing above
equation that the vessel wall thickness is negligible with respect to the inner radius. However this is
not the case when arteries or arterioles are studied as they have significantly thick walls with respect

to internal radius. In this case the tension can be expressed by:

T = Pir — Pyrg = Por — P,(r + h) = oh 2.4
where P;, P,,r and 1, in above equation denote intravascular pressure, extravascular pressure,
intravascular radius and extravascular radius respectively and o is wall stress and h = ry — r is wall

thickness [15].

2.3.4 Intra-cranial pressure (ICP)

As mentioned in section 2.1 cerebral blood flow to the brain must be maintained in order for the
brain to receive required oxygen and glucose and removal of ‘waste ‘products. This maintenance
depends of a balance between the intra-cranial pressure (ICP) and arterial blood pressure, usually
quantified by the mean arterial pressure (MABP) with the mean value calculated over each heart
rate. The overall task of physiological regulation of ICP and CVR is to maintain a constant blood
flow. Thus for example when blood pressure falls, physiological mechanisms attempt reduce CVF to
maintain flow and prevent ischemia and conversely with an increase in MAP increase

cerebrovascular resistance (CVR) to prevent excessive flow.

As mentioned before ICP is the pressure within the rigid skull. High ICP can cause internal or
external herniation® of the brain, “distortion and pressure on cranial nerves and vital neurological

centres [16]”.

Inside the skull is the brain (80%), blood (12%) and cerebrospinal fluid (CSF) (8%) [10]. As
mentioned before if there is an increase in the volume of either the brain or blood the normal initial
response is a reduction in CSF volume within the skull. CSF is forced out into the spinal sac. Thus
the pressure within the skull, ICP, is initially maintained. If the pathological process progresses with

further increase in volume, venous blood and more CSF is forced out of the skull. So if the brain

3 Deadly side effect of very high intracranial pressure that occurs when the brain shifts across structures within
the skull.
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enlarges (megalencephaly which may occur as the result of neurological problems such as: seizures
or mental retardation), some of the blood or CSF inside the skull must escape to avoid a rise in
pressure. If this process fails, a rapid increase in ICP from the normal range (5-13 mmHg) will occur

[17, 18].

Non-invasive measurement of ICP, is very desirable but is only currently applicable to a newborn.
Pressure changes within the cranium are transmitted through the open fontanelle of the neonate

and can adequately reflect changes in ICP .

There have been researches to develop mathematical models to predict ICP non-invasively [19-21],
however there has not been any clinical applicability as the ICP prediction is still poor as the result

of changes in physiological conditions which lead to ICP changes.

2.3.5 Cerebral perfusion pressure (CPP)

Cerebral perfusion pressure (CPP) is defined as the difference between mean arterial and intra-

cranial pressure.

CPP = MAP — ICP 2.5
The normal value for CPP is around 80 mmHg. If CPP falls below 50 mmHg, there is a good
evidence of ischemia and reduced brain electrical activity ceases. It has been observed that
inadequate CPP (< 70 mmHg) is a major factor in the poor outcome of patients with raised

ICP [22].

For the purpose of this project it is assumed that ICP is constant and ABP can be measured instead

of CPP. The issues in measuring ICP are discussed in the section 2.3.4.

2.4 Autoregulation processes

The autoregulation system is one of the mechanisms that maintain the blood flow that is required
for all the regions in the brain. The target flow is derived from a complex balance of metabolic
requirements of the brain. The balance is not yet fully understood [16]. Without having any accurate
information about the required blood flow [23] it is impossible to conclude if the autoregulation is
ml

)

functioning correctly or is impaired. A broad range of resting cerebral blood flow (38 to 75 Toog min

is found in the normal population [24]. Theoretically it may be possible to assess autoregulation by
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its failure or success in keeping cerebral blood flow in this normal range. However in practice this is
not appropriate because in extreme cases cerebral blood flow may go outside the normal region and
it could be wrongly assumed that autoregulation has failed, where it is actually responding well to an
abnormal blood or brain chemistry abnormality or perhaps the demand. It can be concluded that
only measuring cerebral blood flow cannot tell us if cerebral autoregulation is working properly or

not [25].

In order to understand the challenges behind autoregulation it is necessary that the mechanism of
cerebral autoregulation is tested. The basic system is considered to have blood pressure as the input
and cerebral blood flow as the output. It is assumed that an intact autoregulation would maintain
the cerebral blood flow approximately constant during a change in the central arterial blood
pressure, but it will not be able to maintain flow, if it is impaired. It can be concluded that if cerebral
blood flow is changed when blood pressure changes then cerebral autoregulation is unreliable,
unless this change in cerebral blood flow was provoked by another known reason, which is normally
not the case. In such complex scenarios, it may not be possible to obtain a reliable estimate of

cerebral autoregulation.

Before the mid of 1990’s, most studies looked at what is now called static autoregulation. In static
autoregulation, the steady state relationship between arterial blood pressure and cerebral blood
flow is measured. Such studies were the only option, due to the lack of availability of continuous
recordings of cerebral blood flow with high temporal resolution [26]. For these static measurements,
a measurement of cerebral blood flow is obtained first at a constant baseline ABP and CBF,
followed by another steady state measurement that is taken after the autoregulatory response to a

manipulation of ABP has been completed [5].

Figure 2-1 shows the three stages associated with the measurement of the cerebral blood flow with
respect to changes to arterial blood pressure in classic autoregulation, where the range of blood
pressure and blood flow for a healthy volunteer during normal daily activities is shown. At very low
and very high pressures where autoregulation is not active, cerebral blood flow will change with
arterial blood pressure. At intermediate pressures there is however a plateau region where
autoregulation is said to be active and changes in blood pressure will not greatly alter cerebral blood
flow. This plateau region, in which the autoregulation is functioning correctly, is from about 50 to
150 mmHg. This range can change from patient to patient and is considerably higher in

hypertensive patients.
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Figure 2-2 Relationship between Arterial Blood pressure and Cerebral blood Flow assuming classical autoregulation [27]

2.5 The importance and pathophysiology of cerebral autoregulation

Assessment of autoregulation plays a key role in diagnosis prognosis and monitoring cerebrovascular
diseases clinically. Cerebral autoregulation is vital for assuring that the metabolic needs of the brain
are maintained and protect the brain from ischemia due to decreased cerebral perfusion pressure.
However this key mechanism can be disturbed, impaired or modified in several brain diseases or
injuries. Good and early assessment of cerebral autoregulation can help clinical staff and doctors to
monitor the development of brain conditions better and undertake any necessary treatment

promptly.

It has been shown by Czosnyka et al. [28] that, patients whose cerebral autoregulation was severely
impaired or disturbed during the first two days after a severe injury, are more likely to die. It has also
been reported [11] that, cerebral autoregulation is asymmetric in the two hemispheres of the brain
in patients with head-injuries with lateral brain contusions. The difference in side-to-side
hemodynamic reserve of the injured brain can be taken as a fatal outcome following head injury and

correlates with the side of contusion or brain expansion [11].

Cerebral autoregulation is a vulnerable mechanism which can deteriorate diffusely in addition to
areas of acute or subactute cerebral lesions [29]. Paulson et al. [29] listed eight pathophysiological

reasons which can lead to the impairment of cerebral autoregulation.

1. Hypertension
2. Diabetes Mellitus

3. Ischemic cerebrovascular diseases
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Infections
Spreading migraine

Acute hypertensive encephalopathy

N oo v s

Intracranial tumours and other space-occupying lesions

As the result of the discussion here, the monitoring of cerebral autoregulation can be used to guide

autoregulation therapy.

2.5.1 The mechanism of cerebral autoregulation

There are different numbers of mechanism that have been suggested to explain the nature of
cerebral autoregulation. Three main hypotheses were raised: myogenic, metabolic and neurogenic
mechanisms. It has been shown that cerebral autoregulation can be explained by either one of these

mechanisms or a by their combinations [30].

The myogenic mechanism theory suggests that smooth muscle of blood vessels reacts to the
stretching of the muscle by opening ion channels and leading to muscle contraction, is responsible to
changes in transmural pressure [30, 31]. It has been shown that the response of autoregulation is
initially within few seconds after changes in transmural pressure and fully completed within 15 — 30

sec, and is consistent with a myogenic response [29].

A tight coupling between 0, metabolic supply and brain’s demand can explained cerebral

autoregulation, or at least part of it [32, 33]. There are many chemical factors that can cause

vasodilation
1. Decrease in O, or nutrient levels
2. Increase in CO, level locally
3. DecreaseinpH
4. Increase in adenosine, lactic acid

However the role of these substances in the coupling between flow and metabolism is still unclear
[29]. It is known that hypercapnia causes an increase in cerebral blood flow globally. It has been also
reported [34]. Although the speed of the autoregulatory response has been linked with the
myogenic hypothesis, Paulson et al. [29] reported that flow changes may occur essentially in

response to metabolic changes.
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The studies done on the effect of a neurogenic mechanism on cerebral autoregulation is very diverse
and controversial [35, 36]. There are many factors that make it very difficult to reach a
comprehensive understanding of cerebral blood flow neurogenic control system. Ursino et al. [15]

summarized these factors as follow

1. The neurogenic mechanism can be easily be damaged during in vivo experiments
2. We don’t have a complete knowledge of nerve supply to cerebral vessels

3. Itis difficult to reach nerves that supply cerebral vessels

However the results of wide research on neurogenic control system support the neurogenic
hypothesis that autonomic neural control is likely to have a significant effect in cerebral

autoregulation [35].

2.6 Technical and experimental techniques for assessing static & dynamic
autoregulation

In this section the methods for assessing autoregulation are discussed. As mentioned before, in
general, most cerebral autoregulation experiments attempt to measure the regulation of blood flow
in the brain by changing the blood pressure in different ways. The reason behind changing blood
pressure instead of manipulating the metabolic requirement is that changes in blood pressure are
easier to process, control and monitor [37] and also manipulating the metabolic rate is not clinically
applicable. Throughout this thesis these changes in blood pressure to assess blood flow regulation

are studied.

Experiments to assess cerebral autoregulation can be categorized in to two forms, static and
dynamic. In section 3.1, experiments to assess static autoregulation are discussed. In section 3.2
the methods to measure blood flow and blood pressure in order to assess dynamic autoregulation

are presented.

System identification methods to assess dynamic cerebral autoregulation are studied in the

following section.
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2.7 Static autoregulation experiments

Up to mid1990’s, most of the studies that were carried out on cerebral autoregulation were
performed under ‘steady-state’ condition. This was due to the fact that, there was no method of

continuous recordings of cerebral blood flow with high temporal resolution.

Cerebral autoregulation (CA), as mentioned previously refers, to the ability of the brain to maintain
constant blood flow regardless of the changes in cerebral perfusion pressure (CPP) [3, 29, 38, 39].
Before the development of transcranial Doppler ultrasound (section 3.2.1), evaluation of CA was
carried out under steady-state condition. In order to measure autoregulation discussed in section
2.4, cerebral blood flow (CBF) is first measured at a constant baseline value of arterial blood
pressure (ABP) and constant CBF. After that another (steady-state) measurement is carried out
with a change in ABP provoked in some ways and maintained at a new level for a while (around

10 — 15 minutes [40, 41]), and then blood flow is recorded [5].

Most of the experiments carried out using static autoregulation require very time-consuming and/or
invasive procedures. This is due to the time needed to maintain the imposed changes on the blood
pressure in order for the blood flow to be measured. Most of the procedures carried out in static
autoregulation used Xenon [40, 42] or krypton radio-isotope [40, 42] and manipulation of the blood
pressure using vasoactive medications [43]. For example the time needed for measuring blood flow
after manipulation of blood pressure for Xenon is around 15 minutes. Other methods have been
proposed in order to change the mean ABP are: head tilting [44] and lower body negative pressure
[18, 45] which did not attract much attention as they could not be carried out for period of long time

which is the requirement for static autoregulation.

From the definition of cerebral autoregulation, CPP is required to be measured, but normally the
measurement of ABP is used. This is based on the assumption that any change in ABP would be
proportional to the change in CPP. This is a valid assumption when the intracranial pressure (ICP)
can be considered to be constant. This assumption is more questionable if the patient that is treated

has raised ICP, for instance head injury or hydrocephalus [46].

The main disadvantage of static autoregulation is the constrained number of experiments that can
be performed on each individual. Most of the works reported in this area are based on two
measurements, one before and one after the inducement of changes ABP. This makes it difficult to
predict the shape of the autoregulatory response curve for an individual. Some researchers [32, 40],

in order to overcome this problem, have accumulated the results for different individuals with the
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assumption that the autoregulation for “normal disease-free” subjects have identical autoregulation
curves [32], however in different and repeated studies it has been clearly shown that this is not the

case and it is vital that each individual should be considered based on their own data [20, 47].
Static autoregulation has some difficulties and problems which may be summarized as follows:

e It is difficult to assess steady state ABP alterations in humans over a large range
while keeping other parameters stable [5]. It is common to take two measurements
per subject, one just before and one after the induced change in ABP which makes
it impossible to measure the shape of autoregulation for individuals.

e In order to capture large spontaneous changes in mean ABP without externally
inducing a change in ABP (depending on spontaneous variations) very large
intervals e.g. 12 hours measurements are required. However over such large time
intervals, it is hard to keep other variables such as Pgr¢o, and Py, constant.

e In order to cancel out the effects of the individual physiological characteristics of
volunteer, for the pooled data method, many subjects need to be involved in the
measurements [32].

e Static autoregulation is unable to show changes in real time, due to the measuring

techniques [16].

As the results of the limitation of static autoregulation, further work in this thesis is concentrated on

dynamic autoregulation methods.
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2.8 Data collection and measurement Techniques for dynamic
autoregulation

In this section some of the most used methods for collecting cerebral blood flow velocity and blood
pressure are discussed.

2.8.1 Measurement of cerebral blood flow using Transcranial Doppler sonography

The use of Doppler ultrasound as a non-invasive technique to estimate blood flow velocity was first
described in by Satomura and Kaneko [48] in 1960 who measured blood flow velocity by recording
the shifted frequency of ultrasound reflected off red blood cells. However it was in the early 1980’s
when ultrasound devices were developed sufficiently to allow penetration through the skull to carry
out relatively quick non-invasive measurements of the blood flow velocity within the intracranial
circulation [16]. In order to achieve bone penetration low frequency ultrasound is usually used
(2 MHz is conventional). At low frequencies 1 to 2 MHz, the attenuation in bone and soft tissues is
considerably less than at higher frequencies. The thickness of the skull varies between regions, and
the bone of the temporal region is relatively thin, which makes it an ideal region for the penetration

of the ultrasound [16].

Skull

Probe

Transmit

v Moving

1.ND Observer
i

Stationary Wave
Source

Frequency= 2 MHz (Fo)

Figure 2-3 Schematic diagram of transcranial Doppler ultrasonography [1]

In the work done by Satomura and Kaneko et al. [48] the frequencies used, were in the range of
1 MHz and 20 MHz. One transducer transmits and receives the ultrasound beam, and in
Transcranial Doppler sonography (TCD) this transducer is nearly always stationary. The moving
blood cells back-scatter the transmitted beam and the reflected waves indicate the flow velocity of

the blood [16]. These echoes return with a wide range of Doppler-shifted frequencies.
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In order to understand the process of the Doppler ultrasound, consider a single blood cell travelling
with velocity v as shown in Figure 2-3. The relative speed of the transmitted waveform after hitting
the cell is: ¢ — |v| cos ¢, where c is the speed of sound in the medium, ¢ is the angle between the
blood cell velocity and the ultrasound wave as shown in Figure 2-3. By using the mentioned equation

¢ — |v| cos ¢, the frequency of the ultrasound hitting the blood cell, f;, say, is [16]:

C

fv ft 2.6

~ c—|v|cos¢

where f; is the transmitted frequency. By assuming that there is some reflection by the blood cell,
the frequency of the ultrasound reflected back off the blood cell towards the transducer is f;. In
order to calculate the speed of the reflected wave, it has to be considered that the cell has moved a
distance of |v| cos ¢ /f, whilst transmitting one whole wavelength, and as the result of that the
relative speed of the reflected waves is ¢ + |v| cos ¢ and the resulting wave frequency received by
the transducer (f;-) will be shifted further. By further assuming that there is not full absorption by the

tissue or bone, we get some reflected waveform, the received frequency, f,- can be written as:

r:c+|v|cosq§ b 2.7
c
By replacing eq.2.6 in eq.2.7 we get:
¢ + |v|cos
_c+|v|cos¢ )8

" c—lv|cosp’t

1

Since the speed of sound through tissue is ¢ = 1500 ms™" and the flow velocity in the middle

1

cerebral artery (MCA) is around 0.5 ms™", and f; = f, — f;, the equation below gives a good

approximation.
2|v|cos ¢

da c t

2.9

The above equation gives us a very easy formula to calculate the velocity of the single blood cell just

from ¢ ,c, fp and f; [1].

In TCD, more than just a single velocity is measured, as the velocity varies across an artery. Usually
the whole cross-section of an arterial segment is captured in a single measurement, and some of its
branches may be included. This kind of measurement results in having many reflected waves from
many cells which contain a mixture of Doppler shifts [16]. Power Spectral distribution of velocities

within the target volume is determined by analysing of phase difference between 100 or more
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consecutive pulses [16]. The normal pulse repetition frequency” is in the order of 10 kHz. This signal

power is directly proportional to the number of cells travelling at that velocity.

The blood flow which is the required parameter in term of the cerebral autoregulation is
proportional to the mean velocity across the artery, if the radius of the vessel is not being monitored
and the form of the velocity profile does not change. TCD can enable the measurement of a

distribution of blood velocities which means it has the capability to provide the mean velocity.

In practise the mean velocity cannot be accurately and reliably measured. In order to obtain a good
accuracy in calculating the blood velocity in clinical measurements, set of conditions needs to be
satisfied, such as; the angle between the transducer and the vessel being interrogated is less that
15° [16], patients should not move and other conditions also stay unchanged. As the result of this
issue in most applications maximum velocity (vy,4,) Which corresponds to the largest Doppler shift is
considered as a more reliable measurement as it is not affected by the assumption made for the
mean blood velocity. This maximum velocity corresponds to the blood velocity at the centreline of

the major vessel in the sample volume [16].

The TCD measurement explained briefly above has led to the “dynamic” assessment of
autoregulation, which consists of real-time measurement of both arterial blood pressure and
cerebral blood flow velocity, usually in the MCA as well as arterial blood pressure. Information about
the time delay of the control mechanism and the rate of regulation can be extracted from real-time
measurement, which can help researchers gain more insight into dynamic autoregulation and the

parameters involved with it.

2.8.2 Measurement of blood pressure

It is vital to be able to measure blood pressure accurately in order to assess cerebral autoregulation.
The ‘gold standard’ technique is an invasive approach, which is able to direct hydraulic coupling of
the vessel to a pressure transducer, or even better, has a small tip pressure transducer at the end of
the catheter inside the blood vessel [49]. The standard procedure to measure the blood pressure is
to use a strain gauge pressure transducer, connected to the vessel via a saline-filled rigid-walled
catheter. This method can be used to collect the blood pressure in many different vessels including
the chambers of the heart, the pulmonary artery as well as the more easily accessible venous and

arterial systems. The short rigid-walled catheters provide an excellent frequency response which

* Number of pulses transmitted per second
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enables the capture of blood pressure fluctuations throughout the cardiac cycle’. The main

disadvantage of this method is obviously its invasive nature.

Invasive blood pressure measurements such as brachial artery cannulation [50, 51] provide excellent
recordings but they are uncomfortable and involve a risks for the subjects. As a result of these
disadvantages, non-invasive methods are preferred for measurements on volunteers. The most
standard non-invasive method to measure blood pressure is using an arm-cuff. The arm-cuff is first
inflated to a pressure above the expected systolic value to occlude flow in the artery. After that the
cuff pressure is gradually reduced while an assessment of the blood pressure is made. This is usually
done by listening to the Korotkoff® sounds. The Arm-cuff provides us with reasonable measurement
of the blood pressure that are sufficiently accurate for clinical purposes but measurement can only
be made once every about 30 secs [5] which is not fast enough to capture rapid fluctuations of the

blood pressure when dynamic assessment of cerebral autoregulation is needed.

The non-invasive measurement of the blood pressure are not fast enough to be used to assess
dynamic cerebral autoregulation but can be used in static assessment of cerebral autoregulation
with pharmaceutical manipulation of blood pressure. As a result of that most of the studies done in
this field [5, 16, 32, 50, 52-54] have used Infrared plethysmogpragy (Finapres) to measure the blood

pressure because they ensure accurate results.

2.8.2.1 Infrared plethysmography

This method of continuous assessment of the arterial blood pressure was first introduced in 1976 by
Penaz et al. [55]. This method uses a small cuff on the finger of the subject which can be inflated
through the normal range of blood pressures. The cuff contains an infrared transmitter which is
placed on one side of the finger and a receiver on the other side. The infrared light transmitted
through the finger is measured. This transmission is found to oscillate with the cardiac cycle. It has
been found that the cuff pressure with the largest amplitude oscillations corresponds to the mean
finger arterial pressure. The mean value of the transmitted light is measured which corresponds to
the mean blood pressure. This is done as a set point for calibration. Once the calibration process is
finished, a rapid and continuous inflation and deflation of the cuff is applied through servo control

feedback, in order to maintain the transmitted light at a constant level. With the help of the above

> Refers to any of the events related to the flow or pressure of blood that occurs from the beginning of one
heartbeat to the beginning of the next
® Sounds that medical personnel listen for when they are taking blood pressure using a non-invasive procedure
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process the arterial pressure waveform can be measured as it is the same as the cuff pressure

applied.

The method described is known as the volume clamp technique and is the basis of a commonly used
device called the Finapres. Many studies have looked at the accuracy of the blood pressure
measured by the Finapres, and the results from all these studies agree that under normal
circumstances, there is a good agreement with invasive arterial pressure measurements [23, 54, 56].
However the calibration process is not always accurate, so in order to overcome this shortage the
calibration process is usually done every 70 heart beats [57] which is approximately every one
minute. The recalibration process gives an unwanted artefact during the assessment of
autoregulation but can be turned off. One further concern with using the Finapres for measurement
of blood pressure is the unknown influence of peripheral vasoaction in the finger being measured, as
it can increase the arterial volume and reduce the transmission of the infrared light through the
finger. This can be misinterpreted by the Finapres as an increase in blood pressure, which would

result in false trends in the blood pressure recorded by the Finapres.

A completely different method for continuous non-invasive measurement of the arterial pressure is
the use of tonometry [58, 59], which uses a pressure transducer applied to the skin and continuously
presses and deflates an artery on to a bone surface. A comparison of autoregulation estimated by
these two methods has been carried out by Birch et al. [60] and shown that the difference between
the models is insensitive to peripheral vasoactivity mediated by local endothelial or myogenic

mechanisms.
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2.9 Assessment of dynamic autoregulation using system identification
methods

The dynamic measures of autoregulation focus on the transient response of CBF to the changes of
of ICP on CPP (or alternatively ABP when ICP is not available) as cerebral autoregulation acts
through vasomotor effectors that control cerebrovascular resistance (CVR) [38]. Active
autoregulation generates a rapid response of CVR and regulates CBF towards a baseline level,
whereas impaired autoregulation results in a passive response of CBF following the changes of
blood pressure. The very first time that the transient response was investigated was in animal
studies [61]. After that the first transient response in humans was reported in humans was during
the Valsalva manoeuvre which causes rapid changes of ABP [62]. The most common method for
inducing a sudden drop of ABP to study dynamic autoregulation was first introduced by Aaslid et al.

in 1989 [63], and is known as the thigh cuff experiment.

2.9.1 Thigh cuff and Lower Body Negative Pressure (LBN P) experiments

As mentioned above Aaslid et al. [63] developed a method to induce step changes in arterial blood
pressure (ABP) through the deflation of thigh cuffs. In this method the thigh cuffs around both legs
are inflated which causes the blood flow in the legs to decrease and after 2 minutes the cuffs are
released. As the result of the deflation, the ABP is reduced by about 20 mmHg [3], which is
equivalent to a decrease in ABP of around 20% from its baseline. Aaslid et al. [63] showed that the
step decrease in pressure last for up to 7 seconds before it starts to recover, and takes about 15 to
20 seconds before returning back to its base level. Aaslid et al. [63] also showed that in the case of
intact cerebral autoregulation, the blood flow velocity recovers to its original level, in about 8
seconds, which is much faster compared to the restoration of ABP. He also observed that in some
cases an overshoot in the maximum velocity, of up to 10% above the baseline value, 8 to 12

seconds after the drop in blood pressure.

Another indication of the subject’s autoregulatory capacity introduced by Aaslid was the half
maximal response time t; /,. The half maximal response time was defined as the time taken for the
percentage drop in maximum blood flow velocity to be reduced by half. Aaslid et al. [26] found that

the average value of ti2 for healthy subjects was 3.4 seconds.
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Aaslid et al. [63] compared the assessment of dynamic autoregulation using the thigh cuff technique
with static assessment analysed from a 20 mmHg drug induced rise in ABP, in 10 normal
volunteers during normocapnia, hypocapnia and hypercapnia. He suggested that dynamic
assessment of cerebral autoregulation has more value since more aspects of autoregulation capacity
such as delay and rate of regulation can be extracted from it, whilst static autoregulation can just

show the effectiveness of the autoregulation process.

Since the introduction of the thigh cuff test, dynamic autoregulation has attracted much of attention
amongst researchers, and extensive studies have been carried out in this area. The reasons for the

increasing studies of dynamic autoregulation can be summarized as:

e Transcranial Doppler  ultrasonography (TCD) and servo-controlled finger
photoplethysmography (Finapres) have enabled the investigation of the relationship
between ABP and CBFV of the cerebral circulation as they can be applied noninvasively and
can offer very high temporal resolution (< 0.1 seconds for TCD to monitor changes in CBF
(16])

e Dynamic AR has the ability to reduce the effect of other parameters such as Pgr¢o, and
mental activities over short periods of time required for the test.

e Dynamic AR can be carried out safely and repeatedly and avoids major change in ABP

remaining within the normal AR control range [16].

As mentioned above, the thigh cuff experiment introduced by Aaslid et al. [3] induces a step
decrease in BP by rapid deflation of cuffs around both thighs, following an inflation for about 2

minutes.

Another method to reduce BP is lower body negative pressure (LBNP) introduced by Schmidt et al.
[34]. The mechanism behind this method is that if the atmospheric pressure around the lower body
(enclosed in a sealed box) is decreased. During the initial stage the effective peripheral vascular
resistance of the lower body is lowered and flow to the lower limbs increases causing a drop in
central arterial pressure. After this initial stage, it would result in a reduction of extravascular
pressure, which itself results in dilation of veins and lowered vascular resistance, resulting in
increased in-flow to the lower limbs [64]. Sinusoidal LBNP has been used to produce a periodic
variation in blood pressure and has shown to provide a repeatable and controllable stimulus for

assessment of cerebral autoregulation [65].

Both the thigh cuff and the lower body negative pressure techniques have been developed to be

used in patients in the supine position. A major difficulty in using the thigh cuff method is that it can
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be painful [66] and it is not the ideal method for elderly subjects. The discomfort is an issue for lower
body negative pressure also, and it cannot be applied in obese subjects. As a results of that these
two methods cannot readily be used to assess dynamic cerebral autoregulation (dCA) in elderly

patients, and alternative methods to induce oscillations in ABP are needed.

Other proposed methods for a step decrease in blood pressure are placing a hand in iced water or
sustained hand-grip, which stimulates sympathetic efferent pathways [17, 67]. But the CBFV

response to these changes is diverse.

One of the easiest ways to induce changes in BP to assess dCA is the sit-to-stand procedure. The
reduction in BP and decreased in total peripheral resistance upon standing is presumably caused by
cardiopulmonary baroreflex mechanisms ’[68]. The advantage of this method is that, it is a useful
and feasible method to test dCA in elderly subjects and benefits from being realistic, as it reflects a

physiologic challenge that occurs in daily life.

All the methods mentioned above (apart from sinusoidal (LBNP)) provide a single-step decrease in
the blood pressure and create a single-step challenge in cerebral hemodynamics. An alternative
method is creating periodic oscillation of ABP and study the response of CBFV. This approach was
first introduced by Birch et al. and Diehl et al. [65, 69]. Diehl et al. [69] used periodic breathing with
controlled the frequency of ABP oscillation at 0.1 Hz (6 breaths per minute), on the other hand
periodic squatting with oscillation rate of ABP at 0.05 Hz was used by Birch et al. [65]. The results
from both above studies provided the same information regarding the oscillation of CBFV giving
significant phase lead over the changes of ABP, with normal AR. Birch et al. [65] reported a phase-
lead of 46 + 14° at 0.05 Hz and Diehl et al. [69] reported a phase-lead of 70.5 + 29.5° at 0.1 Hz.
Both of the mentioned studies agree on phase-lead reduction when autoregulation is impaired. This
phase-lead has since been become one of the most important measures of cerebral autoregulation

as will be discussed in section 2.11.2.

Other methods that employed technique of periodic oscillation in BP to produce almost sinusoidal

oscillation are pressure and oscillatory thigh cuff inflation and deflation [70].

Apart from the methods mentioned above, humans have spontaneous ongoing BP oscillation during
their normal daily and nightly activities that vary from 0.02 to 0.4 Hz without the need of external
induced BP changes. It has been shown that if spectral analysis of BP over a day is carried out three
different frequency bands are distinguishable: the first band at around the respiratory frequency

with 12 peaks per minute (0.2 Hz to 0.4 Hz, the high frequency region); the second band due to

’ One of the body’s homeostatic mechanism for maintaining blood pressure
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variations in vasomotor tone with 6 cycles per minute (the mid-frequency region, Mayer waves at
0.1 Hz); the third band whose cause is still not very well understood with 1 cycle per minute (the
low-frequency region, 0.02 to 0.07 Hz) [71, 72]. It can be concluded that spontaneous fluctuation of
BP and CBFV respectively can be very useful for assessing dCA and form the basis for the easiest
method for assessing of dCA, as it does not require externally imposed alteration in the BP, and can

thus be used in a clinical setting.

2.10 Modeling of dynamic cerebral autoregulation

In the above section possible methods to create change in BP were discussed. After inducing this
change, the relationship between the BP and CBF has to be modelled. In this section the most
common and well known methods in this area are presented. In this section all the methods assume
that linearity exists between ABP and CBF. The linear modelling of dynamic CA (dCA) can be
divided into three different categories: grading autoregulation, time domain analysis, and frequency
domain analysis. The common point of all these three categories is that they are all black-box

models. In this section some of the most well-known methods in these areas are briefly explained.

In the study of dCA, the system can be assumed as a control system, and the response of CBFV is
analysed when a step change or spontaneous fluctuations or induced ongoing in ABP occur. This
system can be considered as a system with ABP as the input variable and CBFV as the output
variable [73]. By having such a model, the system transfer function and time- and frequency-domain
characteristics of CA can be studied (section 2.11.2). Giller et al. [73] was the first person to employ
the spontaneous fluctuations of ABP and CBFV as the system input and output in order to develop
the transfer function of the cerebral autoregulation. In his attempt, the spontaneous data of ABP
and CBFV were used to estimate the amplitude, gain of frequency response and coherence, but not
the phase of the frequency response. Giller et al. [73] showed that the coherence obtains higher
values when the autoregulation is impaired compared with healthy subjects (intact autoregulation),
indicating that CBFV follows the fluctuations of ABP linearly (passively) with the lack of blood flow

control.

In 1995 Tiecks et al. [5] devised a methodology using the alteration in cerebrovascular resistance
index (CVRi = MCA/CBFV) in relation to the change in BP during the thigh cuff manoeuvres. This
method used a second order parametric model in order to describe the response of CBFV using 10
pre-defined levels of autoregulation thus defining the autoregulatory index (ARI). In this model ARI
of 0 indicates that CBFV passively follows BP (absence of AR) and ARI of 9 indicates that CBFV

recovers much faster than BP following a step change in BP. This method has been used as a
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starting point for other research that treats cerebral autoregulation as a “black box”, tries to model
the system mathematically and identify the coefficients of this mathematical model in order to
extract useful information from the time, frequency, impulse and step responses of the identified

system [32, 74, 75].

Czosnyka et al. [28] used spontaneous variations of ABP and CBFV, in order to assess cerebral AR
continuously. In this method Pearson’s correlation coefficient (called the index of
autoregulation, Mx) between ABP and CBFV in patients with head injury was used. In this study

negative and zero correlation coefficients indicate active blood flow control in the brain [76].

In the next section, some of the most common methods for modelling cerebral autoregulation

mentioned above are looked at.
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2.11 Univariate Ceberal autoregulation models

In this section assessment of autoregulation based on filtering the data and not concentrating on its
physiological aspect are studied. Tiecks model nonparametric approaches (coherence, spectra

analysis and transfer function) are shown in the following sections.

2.11.1 Tiecks model

Tiecks et al. [5] introduced the first model in order to describe the response of CBFV with respect to
a pure step change in ABP, to assess the dynamics of cerebral autoregulation In this method a
simple, second-order linear differential equation which can be expressed in the form of a state-
space model was used to describe the relationship between cerebral blood pressure as the input and

cerebral blood flow velocity as the output of this black box model.

Figure 2-4 illustrates the Tiecks model where a sudden drop in blood pressure is generated and the
response of the blood flow has been shown for 10 different autoregulation levels with step wise
drop of ABP of 10% at t = 0 for each step. From top to bottom; ARI = 9 denotes “perfect”
autoregulation and 0 denotes “absence” of autoregulation or in other words the autoregulation

mechanism is completely abolished.

In this state space model state variables x1 and x2 which were assumed to be equal to 0 initially and
after the step change in ABP, the equations are solved in steps of 100 ms (sampling rate,

f = 10 Hz). The model can be expressed as below:

dP = (MABP — iABP)/(cABP — CCP) 2.10
x2 = x2 + (x1 — 2D.x2)/(f.T) 2.11

x1 = x1+ (dP — x2)/(f.T) 2.12
MCAV = iMCAV. (1 + dP — k.x2) 2.13

where dP is the normalized change in mean ABP (MABP), iABP is the initial MABP, CCP is the
critical closing pressure, f is the sampling frequency and iMCAV is the initial MCAV (before the
sudden drop). T, D and K indicate time constant, damping factor and autoregulation dynamic gain.
These parameters are related to the dynamic autoregulatory index (ARI) [5]. In order to work with
this model, for each patient or volunteer the step response of the CBFV is estimated by finding the
best-fit step-response using a correlation criterion for that patient. By running the ABP with
different combinations of parameters (T, D and K as can be seen in Table 2.1) through the Tiecks

model, and simulating CBFV and comparing this with the measured CBFV, the autoregulatory index
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(ARI) can be estimated. These parameters were related to the dynamic autoregulatory index and to

the dynamic rate of regulation (dRoR) as shown by Aaslid et al. [16] as:

. dCVR 1 ABPbaseline

RoR = . . 2.14
0 dt CVRpgsotme AABP

where in above equation CVR is the cerebrovascular resistance which can be calculated using
eq.2.1. ‘Baseline’ in above equation refers to the values before the thigh cuff deflation. The RoR
lacks robustness as it only depends on two measured values of ABP and mean cerebral artery

velocity (MCAV).
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Figure 2-4 Responses of ceberal Autoregulation model to a step change in blood pressure according to the model adopted

from [5]

ARI ROR K T D
0 0 (No autoregulation) 0 2.00 0.00
1 2.5 0.20 2.00 1.60
2 5.0 0.40 2.00 1.50
3 10.0 0.60 2.00 1.15
4 15.0 0.80 2.00 0.90
5 20.0 (“Normal” Autoregulation) 0.90 1.90 0.75
6 30.0 0.94 1.60 0.65
7 40.0 0.96 1.20 0.55
8 60.0 0.97 0.87 0.52
9 80.0(Fastest Autoregulation) 0.98 0.65 0.50

Table 2.1 Comparison of Autoregulation Index to rate of regulation, dROR is the dynamic rate of regulation
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2.11.2 Nonparametric methods using correlation, spectral and transfer function analysis

Over the years, the main tool for analysing the recorded data from spontaneous ABP and CBFV
fluctuation and CBFV is frequency domain analysis. Frequency domain analysis of cerebral
autoregulation was first devised by Giller et al. [73]. In his test, he measured the data over the
intervals of more than 30 seconds. His experiment should be considered as an assessment of static
autoregulation as he investigated the effects of blood pressure oscillations with periods of around

one minutes. Giller et al. [73] used the coherence y between pressure and velocity as :

Gy (f)
Y= 2.15

V Gpp () Goo (f)

where G, (f) is the cross-spectrum between pressure and velocity, and G, (f) and G, (f) are the

squared auto-spectra of pressure and velocity respectively. Giller et al. [73] suggested that for
healthy subjects the coherence is less than 0.25 and this value increased to 77% in the patients with
subarachnoid hemorrhage. The author also illustrated that low coherence does not always imply
effective autoregulation as it depends on the form of the ABP present at the time. This means that
for example if the ABP of one patient does not vary at a given frequency and as the result of that
the coherence is low, it would not be possible to predict how efficient blood flow mechanism would

be for another experiment on the same subject.

Many works have been carried out on the frequency domain analysis of cerebral autoregulation
based on the study of Giller (Kuo et al. [77], Diehl et al. [78], Panerai et al. [32]). In these works, the

authors investigated AR via the transfer function H(f) between ABP and CBFV as:

F(f)=HP() 2.16
Where F(f) and P(f) are the Fourier transform of the flow f(t) and p(t) respectively. In the above
equation the transfer function can be obtained from the cross-spectrum and auto (power) spectrum

between pressure and velocity introduced above using the recorded data, as:

Gpy (f)
H(f) =2 2.17
Gpp (f)
By using the equations above the transfer function can be rewritten as:
G
y=Hep [ 218
Gy (f)

The above equation relates coherence and transfer function. The modulus/phase parts of the

complex transfer function are as below:
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IH(O)| = [Hr(F)? + H (]2 2.19

H,(f)
Hg(f)

Where |H(f)] is the gain (modulus) of the transfer function or frequency response and ¢ (f) is the

o(f) = tan™?t [ 2.20

phase of the transfer function. In the above equation subscripts I and R indicates the imaginary and
real parts of H(f). These two parameters describe the relative amplitude and time relationship

between the alteration in ABP and CBFV over a specified frequency range [79].

By using spectral analysis of cerebral blood flow, Kuo et al. [77] identified three different frequency
ranges for spontaneous fluctuations, which are similar to the three frequency ranges introduced first
by Parati et al. [80]. These ranges are: very low frequency (VLF,0.0016 < f < 0.04 Hz); assumed to
be due to a synchronisation with B-wave® fluctuations in ICP, low frequency (LF, 0.04 <f<
0.15 Hz), as the results of the VSM activity due to baroreflex, i.e. nerve stimulation of vessels and
heart and high frequency (HF, 0.15 < f < 0.4 Hz), due to the respiratory cycle. Kuo et al. [77]
showed that coherence between MCA and ABP are high for LF and HF regions, but low coherence
was reported in VLF oscillations. The low coherence in VLF fluctuations tells us that there is little
linear relation between ABP and MCA velocity, and as the result of that the true mechanism behind
autoregulation that produces fluctuation in velocity in this range is in question. For the reason
mentioned above Kuo et al. [77] and Diehl et al. [78] used the frequency range of 0.04 < f < 0.4 Hz
for their calculations. Kuo et al. [77] found ¢ (f) = 50° while the phase found by Diehl et al. [78]
was 70.5 + 29.5° both at LF fluctuation (especially f = 0.1 Hz; P1). Both authors observed a
significant drop in the phase in the HF fluctuation range; 10° and 18° found by Kuo et al. [77] and
Diehl et al. [78] respectively at 0.2 Hz. They both also observed that the phase falls to almost zero in
the HF range and they suggested that this is because autregulation is not active for high
frequencies. They both suggested that the reduction of phase for high frequencies can be used to
model the autoregulation as a high pass filter. In terms of gain Kuo et al. [77] did not comment on
this parameter as he did not find a significant relationship between frequency and |H(f)| where
increase in |[H(f)| was expected with increase in frequency. For instance, they both found
approximately the same results for gain such as |[H(f)| = 1.9 for f = 0.1 Hz, and |H(f)| = 1.4 for
f = 0.2 Hz which contradict the high-pass filter criterion, which is due to the dynamic “input
impedance principle which states that vessel resistance decrease as frequency increases even if

active autoregulation is present” [78].

® Slow and rhythmic oscillations in intracranial pressure (ICP)
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One of the important factors in assessment of cerebral autoregulation is “false autoregulation”.
False autoregulation refers to an “alteration of autoregulation in which the apparent maintenance of
a constant cerebral blood flow (CBF) when increasing cerebral perfusion pressure (CPP) is due to an
increase in brain tissue pressure” [81]. False autoregulation is frequently found in patients after a
severe head injury. These patients do not benefit from an increase in MABP to obtain a better CPP

as CBF is not modified or may even be reduced [81].

Panerai et al. [52] also looked at the frequency domain analysis of cerebral autoregulation on both
pre-mature newborns and adult volunteers respectively. The gain |[H(f)| showed that for both of
these groups (pre-mature newborns and adult volunteers) the gain increased with respect to the
increase in frequency. For instance, in the case of adult volunteers |H(f)| rose from 1 at f =0 Hz
to 1.7 at f = 0.2 Hz and stayed almost constant up to the point of f = 0.35 Hz where it again
increased to |[H(f)| = 2 at around f = 0.48 Hz. The results for the phase for the adults volunteers
agrees with the results found by Diehl et al. [78] and Kuo et al. [77] whereas it decreased giving
¢ =40° for f<0.15Hz and it dropped to 30° and 0° for f =0.2Hz and f =0.35Hz
respectively. However the results found by Panerai et al. [46] for pre-mature newborns did not agree
and the observed increased phase with frequency. Panerai et al. [46] proposed that the reason that
the phase increases with frequency in newborns is that the dynamic input impedance® principle is
more prevalent in the younger subjects considered in his research. Panerai et al. [52] suggested that
the first mechanism responsible for the slow response of CBFV to the fluctuation of ABP in the
frequency range of 0.02 < f < 0.2 Hz could be a metabolic mediator. He also suggests that the
second mechanism which is responsible for the response of blood flow control for the frequency

range of 0.25 < f < 0.5 Hz is a fast response compatible with a myogenic mechanism.

Another simple parametric approach taken by Simpson et al. [74] was to use a first order finite
impulse response (FIR) filter and look at the second coefficient (H1) from different recordings
during normocapnia and hypercapnia. Simpson et al. [74] reported strong evidence that the FIR
coefficients reflect autoregulatory activity by observing high-pass filter responses and showed
significant difference between normocapnia and hypercapnia recordings using H1 was also

apparent.

° The dynamic impedance refers to a circuit with an inductance and a capacitance in parallel at the frequency
at which this impedance has a maximum value.
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2.12 Assumption of linearity and time invariance

All the models discussed in section 2.11 for the assessment of autoregulation, there is an assumption
that our system is linear and time invariant. These assumptions have been made in a large
proportion of the literature in the area of assessing cerebral autoregulation, and linear techniques
have been used to describe and model the behaviour of dynamic autoregulation (dCA). These
assumptions are made in the frequency domain analysis (gain, phase, frequency response function,
coherence) and in the Tiecks model described in section 2.11.1).The question of validity of this
assumption has been raised by some authors (Panerai et al. [82], Mitsis et al. [83], Giller et al. [84]).
This is a crucial question to be addressed because if a system is nonlinear then its behaviour cannot
be fully described using linear techniques and a single frequency response function with a single
phase and gain. It has been argued [35, 46, 84] that cerebral autoregulation is a nonlinear response
when it is studied over a large pressure range see Figure 2-2. One can consider two extreme cases:
one with a small step change in blood pressure and one with a massive drop to almost zero blood
pressure. In the first case, blood flow drops and is quickly restored to baseline by autoregulation. In
the second case, blood flow drops to zero and remains at zero (autoregulation cannot bring it back)
[85]. From the above argument, it is obvious that the output (blood flow) and the response of the
system depend on the scale of the input (blood pressure), which, by definition, makes the system
nonlinear. However the main question is whether it would be a safe assumption to treat the

autoregulation response linearly within a limited range of blood pressure.

Panerai et al. [46] collected ABP and middle cerebral artery velocity from a large number of healthy
subjects. They then used one set of data collected from each subject and by using different
mathematical models (4 linear models and one non-linear: Volterra-Wiener kernels'®) to develop the
relationship between ABP and CBFV. Then the models for each individual were applied to the
second set of data collected and the results were compared for different models. The authors found
that the nonlinear model gave much more promising results compared to the linear models when
they were applied to the same set of data, on which the model was developed. However when the
models were applied to other sets of data, the result from the nonlinear model was relatively poor.
The authors argue that the nonlinear models are more flexible and provide a better fit to the data in
the training set. However nonlinear models may fail even when tries to fit new recording from the
same subject. That means when the coefficients of the model are calculated using the training set of

data, they would try to fit the noise as well. Noise can be assumed as non-linearity which includes in

% For details see appendix |
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our measurements, and when they are applied to different sets of recordings, as they are very
sensitive to the training signals, they would not provide promising results in term of signal to noise
ratio (SNR). The authors state that it cannot be a solid explanation but acknowledge that the
“nonlinear model becomes too sensitive to the particular blood pressure temporal pattern of the

training set (over-training)” [46].

Mitsis et al. [83] argues that the nonlinear behaviour of cerebral autoregulation has multiple
components that operate in different frequency bands. They argue that the assumption of linearity
would give satisfactory results when the system is studied over high frequencies (0.15 < f <
0.4 Hz), but nonlinearity would model the data better (data-fitting and grading autoregulation)
when low frequencies (0.04 < f < 0.15 Hz) are studied. Mitsis et al. [83] used a Volterra-Wiener
approach, that utilizes the Laguerre-Volterra' network with two filter banks to model the system
nonlinearly with two dynamics: fast and slow. Their results prove that nonlinear model provides
better results compared to linear models in term of data fitting. They argue that this improvement is

due to the representation of the system over the low frequency range.

Another method that has been applied by Chacon et al. [82] was the use of a time lagged recurrent
neural network to model the relationship between ABP and CBFV as input and output respectively.
They showed that this new approach is superior in the prediction of CBFV compared to transfer
function analysis, but not to time-domain linear methods. The existence of nonlinear behaviour was
also observed in the ABP — CBFV relationship, involving not only an amplitude factor, but possibly
a directional effect as well. However they did not comment on the difference between this novel

approach and more common methods in term of the assessment of autoregulation.

Autoregulation is known to be nonlinear [35, 85], which raises the question of the validity of linear
approaches in assessing autoregulation. However it is been shown that over high frequencies
(f > 0.07 Hz), [84] and normal range of blood pressure, the linearity assumption is a safe
assumption and gives adequate results [35, 46, 52]. At lower frequencies no models appear to be
available to represent the response of the system and neither linear nor nonlinear models proposed
so far can accurately predict the relationship between arterial blood pressure and middle cerebral
artery velocity. The evidence so far suggests that some nonlinear models can be useful in terms of
modelling the behaviour of the system at low frequencies but perhaps due to our lack of knowledge
of other extraneous signals, especially cerebral metabolism changes and Pgr¢o, variation, a good

and accurate model remains to be found.

" For details see appendix Il
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Another assumption that has been made by most of the researchers and authors in the area of
qguantifying cerebral autoregulation is the time-invariance of the system. It can be said that the
mechanism itself is time-varying as mentioned before. So introducing a time-varying model would be
sensible choice. However it is possible that the complex mechanisms of the systems that are
responsible for autoregulation have time-varying responses depending on the local brain activity and
on the history of the blood pressure changes, arterial CO, changes and so on. As a result of that the
measurements of autoregulation may vary even from minute to minute as the measurements

continue.

It has been shown that the autoregulation response varies for healthy subjects [47]. Panerai et al.
[47] used a period of over 10 minutes of non-invasive recordings of CBFV from both left and right
MCA with Doppler ultrasound and simultaneous beat-to-beat ABP [47] and showed that the
mechanisms of cerebral autoregulation are time-varying. However the conventional analysis
assumes time-invriance and therefore it may be desirable to split the data up into invariant sections.
But this is difficult to achieve in practice usually, therefore time-invariance is assumed for short
segments of data and estimates are usually taken by averages across those sections. Panerai et al.
[47] has shown that continuous estimates of dynamics CA can be used to derive continuous cerebral
autoregulation index (cAi). He suggested that more work can be done in this area especially on
short-term variability of autoregulatory mechanisms. It has been suggested by many authors [53, 86,
87] that time-varying parameters should be given the second priority (after non-linearity) where a

more advanced model is considered.

2.13 Multivariate models

In section 2.12, the non-linear characteristic of cerebral autoregulation was discussed. However it is
known that the process of blood flow regulation is probably also multivariate [46, 83]. It is known
that the variations in CBFV is not entirely driven by pressure. There are other main physiological
parameters that are responsible for controlling blood flow such as: arterial O, (Pacoz)' and 0,
(Pqo,) levels. The reactivity of Pycp, and Pyp, can be assessed by Pgrco, and end-tidal O, ( Pgro, ).
Different studies have investigated the dynamic charactrestics of the CO, — CBFV relationship using
the measurments of CBFV response to a step change in Pgr¢o, [88, 89] or continuous measurement
of breath-by-breath fluctuations of Pgr¢o, [90, 91]. There are also work done on dynamic cerebral
autoregulation by Mitsis et al. [35, 92], which used multivariate nonlinear system using both ABP
and Pgrco, as inputs and employed the Laguerre-Volterra network methodology and showed that

CO, fluctuations and the interaction between ABP and CO, have a considerable effect on CBFV
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variation at low frequency bands. He argued that the results of these studies show, that ABP on its
own is not enough to explain CBFV variability in low frequency bands. Kouchakpour et al. [93],
showed that nonlinear multivariate models of CBFV can improve assessment of autoregulation and
can reduce both inter- and intra-subject variability when compared to univariate linear and

nonlinear models

2.14 Summary

In this chapter, a brief anatomy of arteries and cerebral circulation were studied. Cerebral circulation
and autoregulation process and their importance were also discussed. It is vital to monitor cerebral
autoregulation as it plays a key part in diagnosis and monitoring cerebrovascular diseases. Myogenic,
metabolic and neurogenic mechanisms which are known to be responsible for the cerebral

autoregulation were also discussed.

Next two types of behaviour of cerebral autoregulation; static and dynamic were discussed. The
reasons why assessment of the control system in clinical application and research now lean more

towards dynamic autoregulation were considered.

Next different models of cerebral autoregulation were studied. Tiecks model which allows to grade
cerebral autoregulation into 10 different autoregulatory levels was discussed. By assuming this to be
a linear single-input-single-output (S1S0) system, frequency-, gain-, phase-, step-, impulse-response,
coherence and transfer function can be calculated, using linear, time-invariant estimates. More
details about how cerebral autoregulation can be assessed using time- and frequency-domain

analysis will be given in the next chapter.

Different approaches have been taken by different authors in order to assess dCA. For example,
Carey et al. [66, 94] used the autoregulation index values using step response analysis and showed
that dCA is unaffected by aging. Lipsitz et al. [95] and Narayanan et al. [96] both used transfer
function analysis and showed that elderly normotensive and hypertensive elderly subjects retain

dCA, and dCA in healthy elderly subjects is intact in the low frequency ranges.

Although many different models using different approaches have been proposed to assess cerebral
autoregulation, none of the methods have been accepted for clinical applications and usage, which

gives us the motivation to address this issue and try new methods and investigate them further.
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Chapter 3 : Assessment of Autoregulation;
Two-input (ABP, Pgrcp,) models using

Laguerre-Volterra Network

Autoregulation refers to the automatic adjustment of blood flow to supply the required oxygen and
glucose to each tissue in the body in proportion to the tissue’s requirement at any instant in time. In
other words for the brain, cerebral autoregulation is an active process of the brain by which cerebral
blood flow is controlled at a steady state despite the changes in the arterial blood pressure. Having a
good assessment of the cerebral autoregulation by a model that characterizes this system can
potentially be used in various number of important clinical and hospital conditions, such as
prematurity, birth asphyxia, stroke, head injury, carotid artery disease, hypertension and vasovagal
syncope. Spontaneous beat-to-beat variation arterial blood pressure (ABP), breath-to-breath end-
tidal carbon dioxide (Pgrco,) as inputs and cerebral blood flow velocity (CBFV) as output are used
as signals to model the autoregulatory mechanism (Multi-Input-Single-Output; MISO model). In this
study a non-linear multivariate approach, based on Volterra-type kernels estimation models are
employed. The results are compared with linear, nonlinear Single-Input-Single-Output (SISO) and
linear MISO models. The mean squared error is used as the criteria of the performance of each
model in assessing cerebral autoregulation. Our simulation results corroborate that for relatively
short signals (around 300 seconds), nonlinear multiple-input model based on Volterra-model
perform better that other models and can considerably improve the system model error. Results
from 13 different healthy volunteers reveal that nonlinear models with additional input (Pgr¢o,)
have the least inter- and intra-subject variability compared to single-input linear and nonlinear and
linear and two-input models. Moreover it is found that simple linear using just ABP as an input

perform relatively well when short a data sample is available.
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3.1 Introduction

As explained in section 2.9 , it is well documented in the literature that changes in arterial CO,
tension causes vascular responses in cerebral vessels [29], and this reactivity of cerebral vessels,
causes changes in CBF regulation (hypercapnia can cause vasodilation and hypocapnia causes
vasoconstriction). The effect of step changes in CO, on CBFV has been investigated in number of
studies [88, 90]. It has been shown that, this effect is not instantaneous and takes around 20

seconds to develop fully.

In this chapter, the nonlinear dynamic relationship between ABP and CO, as inputs, and CBFV as
output is studied™. In order to simplify the problem of observing changes in arterial CO, tension,
the breath-to-breath, end-tidal CO; (Pgrco, ) variations was used. This measurement as mentioned
in section 2.13 can be used as a secondary input in addition to ABP and CBFV as the output in order
to test whether routine assessment of cerebral autoregulation and additional CO, reactivity have
potential clinical usage for patients with cerebrovascular disorders. Panerai et al. [90] used the same
two-input model to model dynamic cerebral autoregulation (ABP and Pgr¢o, as inputs and CBFV
variations as output), but employed causal FIR filters to assess the effect of arterial CO, on MCBFV
in a linear manner. In this study, Panerai et al. [90] used spontaneous beat-to-beat fluctuations in
MABP and breath-by-breath variability in end-tidal CO, in continuous recordings. It was found that
having CO, alongside with ABP improves the prediction error of the model considerably. He also
used impulse response to show the dynamic characteristics of the MABP and Pgrco, to MCBFV.

Panerai et al. [90] observed no significance interaction between the two inputs.

This chapter starts by employing, a two-input format of Laguerre Volterra Network (LVN) modelling
approach (section 3.3.1) to assess the nonlinear dynamic effects of MABP and Pgr¢o, on MCBFV
and the effect of their interaction [83]. The performances of different models (linear-SISO,
nonlinear-SI1S0, linear-MIS0, and nonlinear-MIS0) are compared and the structure of each model
are selected individually for each recording and later a general model structures for all the

recordings based on model fit (normalized mean square error; NMSE) are presented .

This is then followed by data fitting using multi-input Laguerre-Volterra Network (LVN) and the

performance of different models based on their ability to assess autoregulation is studied.

!2 part of this chapter was presented at IEEE EMBSS [93]
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Another issue that is of interest is the robustness of estimated step and impulse response which has
been intensively used to assess autoregulation from the models is then investigated [75, 88, 97].
However spontaneous fluctuations of blood pressure and their central frequency is not entrained or

synchronized with the changes in ABP (around 0.1 Hz) [74] (Figure 3-4).

In this section, a new input (Cosine shape input modulated by a Gaussian, which has more realistic
characteristics, i.e. closer to changes observed in spontaneous fluctuations of blood pressure) is used
[98] and the response of the system to this input is studied and then compared, with some well-
established autoregulatory parameters. Next the issues of inter- and intra-subject variability of the
autoregulatory parameters extracted from different models in order to assess the robustness of
these methods, was studied. In order to compare the proposed methods (Wiener) to previously used
methods, and to determine whether any improvement is due to the methods or just random effects
resulting from the specific dataset in question and whether the results are generalizable, a
permutation test between the models was used. This is a statistical significance test in which the
distribution of the test statistic under the null hypothesis is obtained by calculating all possible

values of the test statistic under rearrangements of the labels on the observed data points [99].

3.2 Subjects and measurements

The data used in this study was kindly provided by Prof. D.H. Evans and Prof. R. Panerai, and was
collected at the Leicester Royal Infirmary (Leicester, UK). 13 healthy volunteers (age 32 + 8.8
years) were involved in this study and the study was approved by the Leicestershire Research Ethics
Committee. All the measurements were collected with the volunteers in the supine position with
their head elevated. Transcranial Doppler Ultrasound (Scimed QVL — 120,) was used to measure
middle cerebral artery velocity using a 2 MHz transducer, held in position by an elastic headband.
Simultaneously arterial blood pressure (ABP) was non-invasively measured using a finger cuff device

(Ohmeda 2300 Finapres monitor).

The signals were pre-processed off-line. The maximum velocity envelope from the spectra of the
Doppler signal was extracted using a microcomputer-based analyzer that performs a fast Fourier
transform (FFT) every 5 ms. The ABP signals were digitized at 200 Hz. Short periods of evident
artefact as well as any spikes on the signals were removed by linear interpolation and the signals
(ABP,CBF) were low pass filtered with an eighth-order Butterworth digital filter (applied forward
and reverse to give zero phase shift) with a cut-off frequency of 20 Hz. The start of each heart cycle

was automatically identified (with visual correction) from the ABP signal, after which the average
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ABP and CBFVs from the right and left MCA were calculated for each heartbeat. This time series

was then interpolated with a third-order polynomial, and sampled at a constant rate of 1 Hz.

3.2.1 Data analysis

For each measurement, data segments of approximately 300 seconds in duration were available.
The recordings of ABP,CBFV and Pgrco, Were converted to a percent change with respect to the
mean value of each data segment, in order to remove the dependence on inter-individual variations

in mean level.

3.3 Methods

3.3.1 Laguerre-Volterra kernel

The Laguerre-Volterra Network (LVN) methodology was chosen to study the relationship between
blood pressure, CO, and blood flow in this chapter. The LVN has been shown to be an accurate
nonlinear method for short stimulus-response recordings [83] and “is the best implementation of
the kernel expansion approach in term of simplicity, to date” [100]. The LVN is a combination of
artificial neural networks with the Laguerre expansion technique (LET). The LVN for multivariate
models consists of two input layers of two Laguerre filter banks (Figure 3-2) (may be the same set of
filters) and a hidden layer with H hidden units using polynomial activation functions. The LVN model

consists of individual dual-input static nonlinearities associated with each input-output pair.

The Laguerre functions have been used for the expansion of Wiener kernels due to its orthogonally

over a domain from zero to infinity (appendix Il) which is in consistent with the kernel domain [100].

The Laguerre expansion technique (LET) for the Volterra kernel estimations is implemented by the
use of the orthonormal™ set of discrete Laguerre functions (DLFs) given by [100] as shown in

Figure 3-1.

j
m=j : my (J\ i
bj(m) = a 1/2(1—a)2;0(—1)k(k)(k)a1 k(1 —a)* 3.1

Where bj(m) denotes the jt"-order orthonormal DLF (the impulse response of the j filter in the

filter-bank), the integer m ranges from 0 to M — 1 (M is the memory-bandwidth; the length of the

13 . . . .
Two vectors in an inner product space are called orthonormal if they are orthogonal and unit vectors.
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impulse response), and the real positive number a ranging from 0 to 1, which is the critical DLF

parameter that determines the rate of exponential decline of these functions.
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Figure 3-1 Discrete Laguerre functions (DLF) of orders 0-5, for & = 0.3 plotted over the first 30 lags (M = 30)

The output of the filter-banks (v;(n)) are generated as the convolution of the two inputs ABP and
Pgrco,and the different DLFs and the filter outputs are fully connected to a layer of hidden units

with polynomial activation functions [83].

M-1

vj(i) (n) = Z bj(i) (m)x;(n —m) 3.2
m=0

where, j is the order of orthonormal DLF and i is the input and in this study can be either 1 or 2
representing MABP or Pgr¢o, and bj(i) denotes the basis function that is the impulse response of

the j filter in the i*" filter-bank.

The outupt is formed by simple summation of the output of the hidden units and an offset y,.

H
y(n) =y + Z zp(n) 3.3
h=1
Q
200 = fulun (] = ) e qu () 3.4
q=1
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Where Q is the order of nonlinearity and f} is the polynomial static nonlinearity. u,(n) is the
internal variable of the hth hidden unit and it is composed as a weighted summation of all filter

banks outputs:

1 2) (2
up(n) = Zw,(l'lj)v.( )(n)ZW,E'j)vj( )(n) 3.5
j=1 j=1

As mentioned before the value of a (eq.3.1) determines the convergence of the Laguerre expansion
for a given kernel function. So the choice of « is very important in order to achieve an efficient
model representation of a system with fast and slow dynamics. In this work, this value was chosen
based on the number of filter-banks for each kernel and the length of the impulse response for that
input based on the work done by Westwick et al. [101]. The equivalent LVN model of our system

with two-input, second-order nonlinearity is shown in Figure 3-2.

ABP pCo;

CBFV

Figure 3-2 The Laguerre-Volterra network (LVN) with two-inputs, with each input pre-processed through a different filter
bank (b].(i)) and respectitive filter bank outputs are fed into the hidden units of the hidden layer with polynomial activation

functions (f}), and the output is calculated as the summation of the outputs of the hidden units (z, (1)) and offset y,

[100].
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The system output y(t) according to the Volterra model can be written as:

Ly Ly
y(t) = oo + Z ¢1,001) Uh(l) ®) + Z ¢o1U1) v, @ ()

J1=1 J1=1
Lz L3

* Z Z c20Uj1,J2) v, (©) v, D (©)

Ji=1J2=1
Ly Ly
+ Z Z Co.2U1,J2) Ujl(z)(t) ij(z)(t)
J1=1J2=1
Ls Lg

+ Z Z c11U,J2) v, P () v, P (@) +... +€(2)

J1=1J2=1

3.6

where vjl(l) denotes the convolution of b; with x; (either MABP or Pgrco,). It has to be noted that
each input may also employ its own set of basis function. The unknown
parameters C,, (1, ..., jm+n) in above equations are the expansion coefficients of k,, , (eq.3.10).

The above equation can be simplified by:

y=Vc+e 3.7
Where in the above equation the matrix V is constructed using the output of the filter-banks and € is
the error term and y is the output. It needs to be noted that y, € and c are all also vectors. For

instance, for a second-order system, the nth row of the V matrix is in the format of:

1 1 2 1
|[ ® ® ® ® § V1( )((rll))’ ""1(7’14()1)(71)’ fi())(n)’(.l.)”vL(Z)((Tll))' ® ® @® -|
[vr M (), v, My (n), e Vg, M7 (), v, (M, (), v (M)v, ™ (n), e VL, (n)vL3 (n),| 38
l vl(z)(n)vl(z)(n), vz(z)(n)vl(z)(n), e UL(? (n)Vl(z) (n), vz(z)(n)vz(z)(n)’ Véz)(n)vz(Z)(n)' e UL(? (n)vL(Z)(n), |
lvl(l) (n) 172(2) (n), vz(l)(n) vl(z)(n), . vL(;) (n) vl(z) (n), 172(1) (n) 172(2) (n), vél)(n) vz(z)(n), e vL(;) (n) vL(:) (n),J
Where the expansion coefficients (c,.) takes into account the symmetries of the Volterra kernels:
Cm,n(jl' ]r) = Am,nam,n(jl' ]r) 3.9

Where 4, depends on the multiplicity of the specific indices (j;, ... j,) and (a,, »,) are the coefficients
of the rt" order kernel expansion. For instance, if all indices are distinct, then 4,,, = 1; but if the
indices form p groups with multiplicities m; (i =1,...,p and my + -+ m, =71), then Ay, =
m,!...m,!. The error term ¢ incorporates possible model truncation error and noise/interference in

the data.

The Volterra kernels can be expressed in term of DLFs and the expansion coefficients of k,,, as

below:
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km,n(jl:jZI :jm+n) =

L L 3.10
Y D G men Yoy, (1) by (1B (1 1) By G+ 0)

J1=1  jmen=1
It has to be noted that the indices j; to j,, correspond to the first input (MABP) and the indices
Jm+1 tO jman correspond to the second input (Pgrco,). The value of m and n in the kernels (ky, )
denotes the order of that kernel (1 would denote linear model and 2 would denote second-order
non-linearity). So ky, 0(U1,j2s sJm) Of kon(1,Jj2, ., Jn) corresponds to the self-kernels, and
describes the effect of both linear (m +n = 1) or nonlinear (m +n > 1) of that input on the

output, and if m,n # 0, then k,;, , (1, j2, -+, jm+n) denotes the cross-kernels and describe nonlinear

interaction between the inputs and its effect on the output.

The expansion coefficients in the model can be estimated through linear least-squares procedure

because they enter linearity into the model [100].

The most important issue when it comes to applying LVN is the determination of the structure
parameters L and Q, which determine the size of the matrix V. It is obvious that by going to higher
order in Q, we can deal with higher order nonlinearity and the system memory (M) defines the time
elapsed for the diminution of the causal effect of an impulsive input stimulus. The key to the efficacy
of the kernel expansion is in finding the proper b; (based on the a value and L), as Q is fixed before
choosing other parameters, and the number of columns in the V matrix in eq.3.8 only depends on
L;,i=1,2,..,5 (order of Laguerre Wiener functions; two linear models, two self-kernel nonlinear
model and one cross-kernel). In this work the order of nonlinearity was set to 2 (Q = 2) due the
small data sample and going to the third order would increase the number of kernels and require
bigger data sample in order to be able to validate the method. Also going to higher orders would
result into over training the validation dataset. Setting the Q = 2 the number of columns in matrix

Vis:

Ly X (L3 + 1) +L4><(L4+1)

(L + Ly) + ( > >

+ (Ls)? 3.11

In above equation, we can set any of L;,i = 1,2,..,5, to zero, and we simply won’t have that kernel
in our model (for example, setting L;, i = 2,..,5 to zero, would result into a simple linear single-input

model).

In the next section normalized mean-square error (NMSE) of the output on test data was used as

the criterion to select the structure of the multi-input LVN (L;,i = 1,2,..,5) and length of the

44



impulse response (M;, M,). The output prediction NMSE is defined as the sum of squares of the
output residuals (difference between true output and the predicted output) of the model prediction
normalized by the sum of squared of the true output. In order to avoid over fitting the network, we
use training and validation method (training on half of data samples and validation on the other half

and vice versa).

3.3.2 Selection of Autoregulatory Parameters

Different approaches have been made to assess autoregulation as described in section 2.9 in both
time and frequency domains. A very common method used by [46, 47, 65, 98] to assess
autoregulation is to look at the final value of the response of the model to a step or phase-lead at
1/12 Hz [65] and autoregulation index (ARI) [5], developed from time- and frequency-domain
analysis have been proposed to assess the status of cerebral autoregulation. The system responses
to a step and impulse change are shown in Figure 3-3. As it can be seen in this figure, variability
across the subjects is large and they also suffer from considerable inter- or intra-subject variability

and may show very large fluctuation over short periods of time [47].

3 4 5 0
Time(s) Time(S)

Figure 3-3 Top left: step, Bottom Left: Impulse from a 6 seconds-long FIR model, Right: response to cosine shape input
modulated by a Gaussian (pressure-pulse (PP)), for all thirteen subjects. The inputs are indicated as bold-dotted lines and

the responses are shown in solid lines. Large dispersion is observed in the step compared to the pressure pulse response.

Simpson et al. [102] proposed an alternative test-input to assess model responses shown in
Figure 3-3. In this method, instead of feeding a step or an impulse to the system and calculating the
response, they used a cosine wave modulated by a Gaussian envelope (pressure pulse, PP) and use
the system response to this input. The reason behind choosing this model is that, this input has
more realistic characteristics to our real input (spontaneous fluctuations of blood pressure) and its
central frequency can be chosen with refer to the autoregulatory system where the variations in the

CBFYV seem to be entrained or synchronized with the changes in ABP (around 0.1 Hz) [103]. The
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power spectral density for an arbitrary set of CBFV and ABP and three different inputs (step,
impulse and new pulse input) shown in Figure 3-3 are shown in Figure 3-4. As it can be seen, our
MABP and CBFV has most of their powers at frequencies between 0.03 Hz < f < 0.25 Hz,
however impulse has a flat power spectrum at all frequencies and step input has most of its power
at low frequencies which are not feasible with our system in hand. However it can be seen that the
PP has more realistic characteristic to our real data in term of power spectra density so more

meaningful results are expected from this novel input.

Power spectral density (PSD)
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Figure 3-4 Power spectral density for a set of CBFV and ABP, and step, impulse and pressure pulse input.

The high-pass characteristics of the autoregulatory response showed by [18, 77, 103] can be seen in

Figure 3-5, from the left-shift (phase lead) in the pressure pulse response (PPR).

In this work, the response of the system to the pulse input for all 13 volunteers during normo- and
hypercapnia is studied and the distance between their amplitude at different point are measured,

and the ones with the largest difference and highest trend follow across all datasets are chosen.

A typical system response to this pressure pulse and the autoregulatory parameters used from this
response are shown in Figure 3-5. demonstrated that, from simulations based on the Tiecks model
[5] and preliminary work on the recorded data, pulse response at 1.5 seconds (A1.5), and the
amplitude at 8 seconds (A8) provide good separation of different levels of autoregulation and are

used from now on in this chapter for the assessment of autoregulation.
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Time(s)

Figure 3-5 The test-input of the shape of pressure pulse response (PPR) in dotted-line and the estimated response in the

solid-line. The parameters used to access autoregulation are also shown (amplitude of the response at 1.5 and 8 seconds)

Angarita-Jaimes et al. [104] compared some of the most used parameters in the literature. These
include the following: The percentage change during the initial segments of the step response (PCS)
was calculated from amplitude of the step response after 3 seconds which has shown to provide
more robust result than the previously proposed parameter of the final value (non-parametric
estimates) [98]. Average phase (Pha) from 0.07 Hz to 0.2 Hz, measured from the transfer function
analysis proposed by Zhang et al. [75]. From the response of the linear and nonlinear models to the
step input, the final value (amplitude) is estimated (FVS). Coherence (Coh) over the same frequency
range [103, 105], the correlation method (Mx) using the Pearson’s correlation coefficient of
segments of %ABP and %CBFV time series proposed by Piechnik et al. [106] have been widely
used. The autoregulatory index (ARI) calculated by evaluating the set of models proposed by Tiecks
et al. [5] using the parameter values given by the authors (for each recording, the model by the
authors was applied to %ABP, and the model which provided the highest correlation coefficient
between the measured %CBFV and the generated velocity determined the ARI) is another widely
used method. The parametric approach proposed by Simpson et al. [74], the coefficients of a first-
order (two lags) FIR filter which is the simplest applicable model proposed by and choosing the
second coefficient of the filter as an autoregulatory parameter (H1) is also approach used in this
thesis. Angarita-Jaimes et al. [104] found that H1 and P1 (phase at 0.1 Hz) provide the most robust
results in term of assessing autoregulation and inter- and intra-subject variability compared to most
commonly used autoregulatory parameters mentioned at the beginning of the this section, even

though it performs poorly on data fit as shown in Table 3.3.
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3.3.3 Statistical Analysis

For each set of data and each model, the predicted output (CBFV) was compared to the desired
output and the performance was evaluated using the NMSE. Accurate model representation was
carried out using cross-validation, in which model parameters were estimated on one data segment
(training set) and NMSE then calculated on a second segment (validation set). Both segments
(training and validation sets) were around 150 seconds long for the same recording. The model
parameters were measured with the transient at the beginning (as univariate models have a lag of
6 sec and multivariate models can have a lag of up to 20 seconds) of the training half removed, and
then the model performance was measured in the validation half. This procedure was then
repeated, swapping training and validation segments [93]. The number of filter-banks (vji(n)) for
each set of measurements was evaluated using the NMSE between the responses of CBFV to
changes in ABP as a linear system (just kg o, k; o in €9.3.10), and this valued was later used in more

complex models (linear and nonlinear multivariate models).

In order for the LVN model to estimate the kernels precisely the number of filter-banks should be
large enough, as a smaller number of filter-banks would results in having a LVN model which is just

a sub-set of the actual solution.

In this work by scanning through all the models to find the optimum number of filter-banks (1 to 30
for linear kernels and 0 to 3 for nonlinear kernels) are chosen by having NMSE on the validation
segment as the criteria repeated on all the recordings. The choice of 30 for linear and 3 for nonlinear
kernels come from analyzing dataset. The NMSE for different combinations of filter-banks showed
that the lowest NMSE for linear model for different individual measurement was achieved with
filter-banks in the range of 4 to 20. However in term of second-order kernels, the largest number of
filter-banks that provided the lowest NMSE was with 2 filter-banks and the smallest number of
filter-banks that resulted in the lowest NMSE was with no filter-banks which represent no non-
linearity (m or n = 0 in eq.3.10). The validity of the results based on the criteria of NMSE [93] was
proven as higher orders showed to worsen the result on the validation dataset (due to the small

sample size).

The filter length was chosen differently for ABP and Pgr¢g, as their response is different and based
on previous works, filter lengths of 12 seconds for ABP and 20 seconds for Pgrco, are chosen [23,
39, 74, 97]. For each set of data (ABP, Pgrco, and CBFV), by fixing the filter length, the a (see
eq.3.1) was calculated based on the work of Westwick et al. [101] (based on the length of the data

and the filter length) and the number of filter-banks as shown in Figure 3-2, varied as mentioned
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above, and the NMSE for each iteration was calculated. Out of all possible combinations, the
number of filter-banks and a@ that provided the smallest NMSE was chosen as the characteristics of

the model for that specific set of data.

It has to be considered that in this work the kernels up to the second order were calculated. In each
model the number of filter-banks for each kernels varied from ‘0’ (absence of that kernel) to the
maximum of filter-banks for that specific kernel (30 for linear and 3 for nonlinear kernels). It was
found that the maximum number of filter-banks for the nonlinear kernels was 2 and for linear
kernels this was found to be twenty. In some cases, it was observed that in some set of data, the
best model was not the most complex model but a simpler model and adding the nonlinearity did

not improve our model prediction.

In this work the “distinction between normo- and hyper-capnia” and “inter-subject” and “intra-
subject” variability as the benchmarks for the assessment of cerebral autoregulation were used

which will be discussed below.

3.3.3.1 Inter-Subject Variability

We used inter-subject variability (normalized standard deviation; SDn) as an indication of how good
an autoregulatory parameter (ARP) separate between NC and HC and thus considered to provide

us with the best distinction between intact and impaired autoregulation.

X; = ARPy¢;i=1..13 3.12
Y; = ARPy¢,i=1..13 3.13
where in above equations ARPy¢, and ARPyc, indicate different autoregulatory parameters
(H1,P1,A1.5,A8) during NC and HC for all 13 recordings. The mean of these parameters are then
removed and normalized by the difference between the mean of these two groups (NC and HC) to

remove the effect of the scales using:

x, = JiomX s 3.14

nl_lmX—mYl i=1.. .
Y, —mY

nY; : i=1..13 315

= m i=
where in above equation mX and mY are the mean of the NC and HC across 13 recordings
respectively. The inter-subject variability is finally defined as the mean between the variation
(standard deviation; STD) of the normalized autoregulatory parameters defined in eq.3.14 and

eq.3.15 as:
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SD,x = STD(nX;) 3.16

SD,y = STD(nY;) 3.17
SD,. v + SD
SD,, = 100 x nx > ny 3.18

3.3.3.2 Intra-subject Variability

In order to test the robustness of different autoregulatory parameters and the influence of additive

noise in the recordings, intra-subject variability (mSDn; normalized standard deviation) is evaluated.

SDy, = STD(X;)i=1..13 3.19

SDy, =STD(Y))i=1..13 3.20
where in above equations SDy, and SDyare the standard deviation of the autoregulatory
parameters for each recording during NC and HC respectively. As no model can provide a perfect fit
to the data, random estimation errors are expected in both model fit and as the result of that in
autoregulatory parameters for each recording. By assuming that the underlying autoregulatory
response is time-invariant, such random errors would reflect the repeatability of measurements, or
the intra-subject variability. In order to assess these, Angarita-Jaimes et al. [104], used Monte-Carlo
simulations, as they allow not only the errors in model parameters but also the derived
autoregulation indexes to be assessed. The idea behind this method is to use computer-generated
data to determine the amount of variation in sample statistics. In this work by Angarita-Jaimes et al.
[104], 100 simulated signals were generated for each of the recordings. Surrogate %CBFV signals
were generated by applying the identified models (SI or M1 linear or nonlinear) to the %ABP signals
for that recording, and then adding random noise to simulate residuals. The generated noise was
modeled based on the residual error in %CBFV using an AR (autoregressive) model of order 8
selected based on the Akaike’s information criterion [107]. Then for each recording, the standard
deviation for the 100 simulated signals for different autoregulatory parameters were calculated, and

considered as the intra-subject variability.

By using the standard deviation of autoregulatory parameters for each recordings, intra-subject

variability (mSDn) can be defined as using below equations

mSDy = mean(SDy,) 3.21
mSDy = mean(SDy,) 3.22
mSDy 3.23
SDy = ————
nmoSx |mX — mY|
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mSDy 3.24

SDy = ————
nmo Sy |mX — mY|
as:
nmSDy + nmSD
mSDn = 100 X ( X > u 3.25

Low values of SDn and mSDn thus indicate low dispersion and/or wide separation between groups

indicating improved ability to distinguish between normal and impaired autoregulation

In order to calculate the variability (standard deviation) more accurately in this work, a mathematical
based approach was used in this work. In the next section, an introduction to this approach is first
given and a comparison between this method and Monte-Carlo simulation is presented to validate

this technique.

3.3.3.3 Variation; Mathematical Approach

The linear regression is the simplest type of parametric approach which can be written as:

y(t) = dT(1)6 + e(t) 3.26
Where y(t) is a measurable quantity, ®(t) is an (n/p) matrix of known quantities and 6 is an n-

vector of unknown parameters and e(t) is the error.

0 = (0Td) ' (@Ty) 3.27

The covariance matrix of the unknown parameter estimates 8 can be calculated by [108]:

cov(8) = (®TP) 1PTRP(PTP)~? 3.28

where it is assumed that R is a positive definite matrix:

R = E(eeT) 3.29
where in above equation E is the expected value of the entry. The variance of our autoregulatory
parameters can be calculated using the covariance matrix of the parameters in the system. The
agreement between Monte-Carlo simulation (100 simulations) and covariance matrix for the
parameters extracted from the pressure pulse response for all 26 datasets (13 NC, 13 HC) for linear

two-input model (M2 model in Table 3.4) are shown in Figure 3-6.
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Figure 3-6 Agreement between confident limit (variation and mean) measured by Monte-Carlo simulation (100 runs) in
solid-red and covariance matrix in solid-black for all 13 subjects in both normo- and hyper-capnia using linear two-input
model (%ABP and Pgr¢o,) for top A) AL.5, bottom B) A8, the length in the box represents the standard deviation of

autoregulatory parameters in that measurement.

The variations measured from covariance matrix is more reliable compared to the Monte-Carlo
simulation as the robustness of Monte-carlo simulation depends on the number of repetitions.
However as mentioned before covariance matrix is linear approach to measure the variance and
consequently the standard deviation, and is not generalizable for different parameters where a

linear relationship between the population parameter and the input-output relationship exists.

In the current study, the variation measured from the covariance matrix, of the autoregulatory
parameters was used to measure intra-subject variability of different models. Paired t-test were
used to test the significance difference between normo- and hypercapnia for all autoregulatory
parameters extracted from different models (SI, MI linear and nonlinear). Results are considered

statistically significant at p < 0.05.

Another approach that has been taken in this work was to look at trend following as the criterion to
test how good the autoregulatory parameter is. As an example the P1 is expected to decrease from
NC to HC as reported by other authors [52, 73, 109]. However this test on its own does not provide
any information regarding the significant difference between autoregulatory parameters during NC

and HC.
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3.3.3.4 NC and HC significant difference

In order to test whether different autoregulatory parameters calculated from different models
(SI,MI linear or nonlinear) during NC and HC are significantly different, a null hypothesis that there
is no difference in their mean difference was assumed and the difference in their dispersion is

measured. The dispersion (intra-subject variablity) is calculated for each subject as:

1
O = (‘TNCL-2 + JHCiZ)Z i=1..13 3.30

and then a t-test is measured between different SI,MI linear or nonlinear to test the significance

between the dispersions from these models.

3.3.3.5 Randomization test

The difference between the models can be tested indirectly by setting up a null hypothesis which
says that any difference between the two model means is purely due to chance. If this null
hypothesis is consistent with the data then there is no reason to reject this in favor of the alternative
hypothesis. This can be interpreted in the same way as for conventional tests of significance: if it is
less that 5% this provides some evidence that the null hypothesis is unlikely to be true.

Randomization testing is a way of determining whether the null hypothesis is reasonable or not [99].

Significance difference between the inter- and intra-subject variability of different ARP extracted
from different model was measured using randomization [99]. Randomization has the downfall that,
it is not necessarily possible to generalize the conclusions form a randomization test to a population
of interest. “What randomization tell us is that a certain pattern in data is or is not likely to have
arisen by chance” [99]. However this disadvantage has very little value for our problem as this lack of

generalizability is not in our interest.

This method of statistical analysis can be used when the sample sizes are small. Consider now a
randomization test of inter- and intra-subject variability for two different ARP measured from
different models. As mentioned before, variability of the ARP can be calculated using its mean and
variance. The randomization test on 13 volunteers (26 measurements including both NC and HC),
can be based on the idea that if there is no difference then the distribution of these measurements
(measurements is 26 in our case) seen in the two inter- and intra-subject variability sample will just
be a typical result of allocating the 26 measurements at random into two groups of size 13. The test
therefore involves comparing the observed inter- and intra-subject variability (using the ARP mean

and variance) difference between the groups with the distribution of differences found with random

53



allocation. If the inter- and intra-subject variability found from observed result looks like a typical
value from the randomization distribution then it can be concluded that the allocation of
measurements to the two different ARP in reality does not have any significance difference. On the
other hand if the inter- and intra-subject variability from the observed result is unusually different
compared to the randomization result, then the data are unlikely to have arisen if the null model is
true and it can be concluded that the alternative hypothesis is more plausible. For this matter again

95% as the level of significance was used.

3.4 Results

3.4.1 Model Performance

The mean and standard deviation of MABP, Pgrco, and MCBFV for the 13 subjects are given in

Table 3.1.
MABP (mmHg) Pgrco, (%) MCBFV (cm/sec)
Normocapnia 106.82 + 19.24 5.54 +£0.38 62.50 + 11.14
Hypercapnia 112.28 £ 22.65 6.42 +0.31 76.58 + 15.5

Table 3.1 mean # standard deviation (STD) of MABP, Pgy¢y, and MCBFV, averaged over 13 subjects for normo- and

hypercapnia

Typical data segments of ABP, Pgrco, and CBFV are shown in Figure 3-7. The data are high-pass

filtered, zero-meaned to eliminate their effect on intra-subject variability.
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Figure 3-7 Representative segments of ABP, CBFV and CO, for one measurement, Top: Cerebral Blood Flow Velocity
(CBFV) and Arterial Blood Pressure (ABP), Bottom: CO,. The phase lead characteristics of cerebral autoregulation can be

seen in the top figure.

Mean number of

Training NMSE% Validation NMSE% Parameters used

Model
kq (linear, single-input) 16.21 + 8.51 16.28 +7.08 6
k10,ko1(linear two-input) 14.49 £ 7.30 15.28 + 6.44 7
k19,k20(nonlinear; self-kernels, 15.13+ 7.44 16.18 +7.17 6
single-input (ABP))
k19,k11(nonlinear; cross- 15.17 £ 7.48 16.14 + 6.97 6
kernels, two-inputs)
k10,k01, K20, ko2, k11 (nonlinear;
14.16 £ 7.70 14.59 + 6.13 9

self-kernels, cross-kernels, two-

inputs)
Table 3.2 mean+ STD of NMSE across all 13 subjects during training and validation, the last column shows the mean

number of parameters that were used for the best combination of filter-banks for each measurement.

The average output prediction achieved in the training and validation for linear, nonlinear single-

input (ABP), and linear, nonlinear two-input (ABP,Pgrco,) LVN models are presented in Table 3.2.

The last column of the table show the average number of parameters used. The numbers of
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parameters vary from one dataset to another; in some cases the best model based on the NMSE
was linear, single-input with only 3 filter-banks whilst in some other cases it was a nonlinear multi-
input models with all second-order nonlinear terms, the average number of parameters for each

model is given in this table.

For all the measurements, better performance (in terms of NMSE) was observed for training data,
as expected from theory [101]. The results show that by adding Pgr¢o, the NMSE of the LVN model
prediction in the validation data reduces compared to single-input linear and nonlinear models. The
average reduction in NMSE% from the single-input, linear model and single-input, nonlinear model
to two-input nonlinear models are 10.38% and 9.0% in validation respectively, indicating the
multivariate and nonlinear natures of cerebral regulation. However, the results also showed that for
8 measurements in the first half training, and 3 measurements in the second half training, linear
single-input (ABP) gave the best performance in terms of the validation NMSE. It has to be
considered that no significant test was done on the improvement of NMSE from simpler models to
the more sophisticated one. It has to be emphasized that the reason behind this was that as
mentioned in section 3.1, the separation and distinction between NC and HC is the criteria in this

work and data fit is not the aim in this chapter.

Finding the best number of filter-banks for each dataset is very time consuming as it requires
scanning through all possible combinations of filter-banks, for this reason the number of filter-banks
that resulted in the lowest mean NMSE across all 13 subjects during NC and HC for linear and

nonlinear kernels were chosen.

The results from comparing different models showed that cross-kernel term which is the interaction
between two inputs can have great impact on the assessment of autoregulation. As the result of this
and in order to show the great effect of the cross-term, the number of filter-banks in the cross-
kernel term in model 4 (M4 as shown in Table 3.3) was increased. The results show that by fixing the
model order the simpler the model the better it can be generalized for different datasets. It is also
clear that more complex models (more parameters) perform well on the training data but are not
generalizable and perform poorly on the validation set. These results (which are in agreement with
the finding of others [110, 111]) suggest that little benefit is achieved from the more sophisticated
models when it comes to the validation data and/or the variability between and within subjects

(inter- and intra-subject variability) is large in comparison between the differences between models.

56



Model order Total Training Validation
number of NMSE% NMSE%
Parameters
used
Models LW Linear  Quadratic Quadratic  Cross
Lags Pgrco, ABP Perco, term
M1 12 0 0 0 0 5 324 +169 42.7 + 285
M2 12 4 0 0 0 9 30.7 £ 15.8 81.2+93.13
M3 20 4 0 0 4 25 298+ 14.4 88.2 + 104.2
M4 20 3 0 0 7 56 9.6 +11.0 230.8 £ 867.2
M5 20 4 4 4 4 45 8.6+9.1 115.0 + 816.6
H1 FIR- 2 coefficients 2 36.4+17.5 47.5+25.4

In Figure 3-8 the measured CBFV and the predicted CBFV (whole of the recording) along with the
contribution of linear and nonlinear self and cross-terms (with k; o, kq 0,k 1,K2,0, K02, k1,1) for a
typical measurement (arbitrarily chosen) data set is shown. In Figure 3-8b the power spectrum for
the same dataset is compared with the power spectrum for the entire model prediction and first-
order models are compared. It can be seen from this figure that linear models can predict the CBFV

at higher frequencies whilst by adding nonlinearity low frequency components, can be explained,

Table 3.3 NMSE comparison for some pre-fixed models

consistent with previous work [83].
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Figure 3-8 Top A) measured CBFV and model prediction (total) for an arbitrary volunteer (randomly chosen), and the
contribution of different terms for a typical data segment. B) Spectra of the desired output for the same volunteer and the

model prediction (whole model with k; o, k; 0, ko 1, k2,0, ko 2, k1,1) and single-input linear model, two-input linear models.

The contribution of different terms of the LVN are shown in Figure 3-8.A and Figure 3-8.B. In
Figure 3-8.A, on the top trace the desired output for the model is shown. The second trace shows
the model prediction (two-input, linear and nonlinear terms ky g, kq g, ko 1,k2 0, ko 2, k1,1), third

trace corresponds to the single-input linear model (ABP — CBFV, ko, k1 o ), fourth trace shows the
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contribution of the linear Pgrco, k1,0, ko 1, and finally the last trace corresponds to the second-order
nonlinear terms (self and cross terms as explained in eq.3.10; k; 0, ko2, k11). Over the whole
thirteen subjects the average contribution of linear ABP toward the total model prediction power
was 64% of the overall power of the model prediction, whilst this for linear Pgr¢o, and nonlinear
terms was, 14% and 22% respectively which is in good agreement with the finding of Mitsis et al.
[83] where he found 60% for linear ABP, and 17% for Pgrco, and 23% for nonlinear terms. It was
also found that the cross-kernel terms between the ABP and Pgy¢o, had a strongest effect on the
NMSE than either of the second order self-kernels (15%). The spectra of the desired output (CBFV)
and the residual of different model prediction for one set of data are shown in Figure 3-8.B, the
results are consistent amongst all the subjects. It can be observed that most of the contribution of
ABP is at higher frequencies (> 0.04 Hz) which agrees with previous work [105] which states that
most of the output signal (CBFV) can be explained linearly at these frequencies by MABP. It can
also be seen that by having Pgrco, and nonlinearity (specially the cross-kernel terms) as the

secondary input, the power spectra of the residual at these low frequencies can be reduced.

The first order MABP Volterra kernel for one subject calculated using the LVN (M5) model is shown
in Figure 3-9.A. The shape of the response is consistent among all the dataset where it starts with an
overshoot, followed by an undershoot and gradually returns to the steady state and in agreement
with the finding of previous work on the step response using other methods [32, 46, 52, 75]. The
average first-order Pgrco, Volterra kernel again calculated using the LVN model is shown in
Figure 3-9 for one typical subject. The slower response of first-order Pgrco, compared to MABP is
observable (around 10 — 15 seconds) from these figures. Mitsis el al. [83] studied the standard
deviation and frequency responses of the above kernels in great detail and observed high-pass and
low-pass characteristics on the kernels in the frequency-domain respectively. However no clear
method for assessing autoregulation was reported. It is in great clinical interest that a method to
distinguish between normocapnia and hypercapnia can be achieved. As only model fitting cannot
provide any insight to the question of assessment of autoregulation itself and should be considered
as a middle stage when addressing the problem of distinguishing between intact and impaired

autoregulation.

Typical second-order MABP and Pgco, self-kernels and the corresponding cross-kernel are shown in
Figure 3-9.B. The second-order kernels show (Figure 3-9.C, d and E) considerable variability amongst
the datasets which is in agreement of the finding of Mitsis el al. [83]. As previously mentioned Mitsis
also studied the frequency responses of the second-order kernels but no meaningful results as a

criterion for CBF circulation was reported. In the next section the assessment of autoregulation
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using different autoregulatory parameters extracted from the model proposed in this section is
studied. The robustness of the models are examined using inter- and intra-subject variability to see

the effect of different terms of LVN (linear ABP and Pgr¢o, and nonlinear terms).

In this section, the performance of different models entirely based on model fit is studied. The
results in this section demonstrated that by having a second order multivariate models data fit can
be improved. However it is mentioned that this improvement has little benefit in the validation data
when a fix model for all the recordings is used (Table 3.3), however with precise choice of model
orders for each recording individually the improvement in the validation set can also be achieved
(Table 3.2). The contribution of different linear and nonlinear (each input and their interaction)
inputs was also shown. However as mentioned in section 3.4.1, having a good model fit to the data,
is not necessarily the best criteria for assessing models in the analysis of autoregulation. It the next
section, in the different autoregulatory parameters that can be employed to assess the CBFV

control system are investigated.
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Figure 3-9 Typical Volterra kernels calculated for one dataset from the LVN (M5) method A) top left: first-order MABP
kernel B) top right: first-order Pgr¢o, C) middle left: second-order MABP D) middle-right: second-order Pgrco,E) second-
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3.4.2 Assessment of autoregulation

The results from different autoregulatory parameters calculated from single-input (SI) model by
Angarita-Jaimes et al. [104], showed that for all of the mentioned autoregulatory parameters
(ARPs), significant differences were found between NC and HC using paired t-test, with p < 0.05,
confirming that all respond to the impairement of autoregulation introduced through hypercapnia.
In this paper it was found that A1.5, A8 (section 3.3.23.3.2 ) calculated from S1, linear and nonlinear
models and H1 (section 5.3.1.2) provided good separation between NC and HC compared to other
parameters studied. They also provided the smallest inter- and intra-subject variability. In order to
reduce the number of parameters studied in this section, in this work, these parameters (41.5, A8

and H1) from SI are used to be compared to the multi-input (M) linear and nonlinear models,

SDn and mSDn estimates, indicating inter- and intra-subject variability are presented for A1.5 and
A8 calculated from all M models shown in Table 3.3 and H1. Variation measured from the
mathematical approach discussed in section 3.3.3.3 for different autoregulatory parameters are

used to calculate intra-subject variability.

3.4.2.1 Inter-subject variability (SDn)

A small value of SDn indicats small within group (NC — HC) dispersion relative to the difference
between the groups, which is evidently the goal of suitable parameter as it provides the clearest
distinction between normal and impaired autoregulation. The normalization also aims to allow

different parameters with often quite different scales to be compared.

Angarita-Jaimes et al. [104] reported that H1, A1.5 (linear), A8 (nonlinear) and PCS had the lowest
SDn. It was observed in this work that magnitude of the PPR at 8 sec for linear and non-linear
multivariate models (M3 — 5) has lower SDn (around 50%) compared to H1 (58%) shown in
Figure 3-10. Wilcoxon matched pair test also shows significance difference between the magnitude
of A8 between NC and HC (significance level of 5%) for all models. The results also show that A1.5
performed relatively well when a linear model is used but it has very high SDn when two-inputs
especially when a nonlinear model is applied. A8 proves to be the best parameter when two-input

nonlinear models are applied (M3 — 5) and shows to have considerably low model influence.

Previously the advantage of using these novel autoregulatory parameters was reported [104].

However, these results show that nonlinear two-input models, mainly when cross-kernels between
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ABP and Pgrco, is included, have considerably lower inter-subject variability (M3 —5 in

Figure 3-10). This is in agreement with our finding in section 3.4.1.

The effect of cross-kernels is large, compared to self-kernels. The results show that even though
some models may not fit the data well; either under-fitting such as FIR filter with only 2 lags or
over-fitting. For example M4 and M5 in Table 3.3, they can provide good autoregulatory parameters

(A8) as shown in Figure 3-10.

3.4.2.2 Intra-subject variability (mSDn)

As discussed in section 3.3.3.2, when the robustness of different autoregulatory parameters with
different scales, and the influence of additive noise in the recordings is important, mSDn can be

evaluated. The results for intra-subject variability are shown in Figure 3-10 and Table 3.4.

Given that here thirteen standard deviation measurement are available in both NC and HC for each
ARP, significance tests can be readily carried out whereas in the case of SDn, this was not possible.
The intra-subject variability showed no significant difference between normo- and hypercapnia for
any of the autoregulatory parameters studied here, using paired t-test (p < 0.05). No significance
difference between the mSDn measured from the parameters extracted from the linear model
(single-input and two-inputs) was observed (p = 29%) which is in agreement with Angarita-Jaimes
et al. [104]. However pair wise comparison (t-test) between the parameters, showed that the
parameters extracted from the models in Table 3.4, circled in Figure 3-10 are significantly different
to all other parameters but not different to each other’s (p = 19%). The results showed that two-
input nonlinear models (M3 — 5) provide the best intra-subject variability compared to all other

methods and can be used to reduce the observed intra-subject variability.
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Figure 3-10 Different autoregulatory parameters extracted from different single-input, two-input linear and non-linear
models. Dashed circle shows the autoregulatory parameters with the lowest SDn and mSDn. The first 5 columns shown

with arrows, are for A8 autoregulatory parameter and the last 5 columns are for A1.5 autoregulatory parameter.

3.4.2.3 NC and HC significance difference

In the previous subsection, the variability of different autoregulatory parameters (ARP) for different
models was studied to measure the robustness of different ARP measured from different models.
The significance difference for intra-subject variability was also carried out. However it was not
possible to test the significance difference for inter-subject variability as it is not possible to do a
significant difference test between 2 numbers. Another criterion that can be measured to test the
goodness of these ARP, is to test whether these ARP during NC and HC are significantly different

or not.

The criterion of how many volunteers (of 13 tested) followed the expected trend of either lower
ARP during NC compared to HC (H1 and A1.5) or vice versa (A8). The comparison between H1
during NC and HC shows that in 12 cases H1 was smaller in NC compared to HC which was in
agreement with previous work [32, 52, 74, 75, 112]. The result for autoregulatory parameters
extracted from the pressure pulse response (A1.5 and A8) are shown in Table 3.4. The results show
that both of these ARP, perform very well (12 and 13 in most cases) when trend following is the
criterion. The results also show that A8 extracted from models when cross-terms are used perform
notably well with all the volunteers followed the same trend. This result again emphasizes the

importance of cross-term when LVN is used. It has to be noted for parameters extracted from
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the PPR, in multivariate and nonlinear models, the second-order and cross-kernel terms are set to

zero in order to be able to study the response of the system to PP.

Model Trend Follow Number of Intra-subject Inter-subject
patients passed | \/ariability (mSDn) | variability(SDn)
the significant
difference test

FIR , 2 lags, second coefficient (H1) 12 10 25.22 58.20
A1.5 A8 A1.5 A8 Al.5 A8 AlS5 A8
M1 12 12 4 7 41.73 34.13 65.05 69.54
M2 12 12 6 9 37.87 31.39 64.19 65.78
M3 12 13 7 9 35.70 28.87 70.16 45.90
M4 12 13 6 11 36.91 22.48 87.41 48.20
M5 8 13 5 8 74.14 25.73 155.04 43.69

Table 3.4 Summary of analysis between different autoregulatory parameters from different models, lags in above table
explain the length of the impulse response. The second column titled with Trend Follow, shows how many subjects out of 13
follow the expected trend; third column illustrates how many subjects passed the significance difference test, and fourth and

fifth columns show the inter- and intra-subject variability for different models.

The results from the significant difference test mentioned in section 3.3.3.4 is shown in the third
column of Table 3.4 (labeled as ‘number of patients passed the significant difference test’). The
results show that A1.5 extracted from all the models did not perform well as a distinction between
normo- and hypercapnia using this significance test (= 6 subject passed the significance different

test). However A8 and H1 perform notably well as can be seen in Table 3.4 (10 and 11 respectively).

Up to this point, the performance of various models based on the NMSE and different ARPs, based
on their robustness quantified by their variability between and within subjects has been studied.
However by looking at Table 3.4, it is very hard to say which ARP from which model is superior to
the others. Both H1 and A8 perform notably well when “Trend Following” or “Significance Test” or
even when inter- and intra-subject variability’s are the criterions. It can be argued that M3 to M5
have better performance, compared to H1 when variability (especially inter-subject) is considered
(46% and 58% respectively). However the significance of this difference is questionable, or even

more doubtfully in the case of M4 to M5 models (48% and 44%).
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3.4.2.4 Randomization test

A summary of the results for the randomization test is shown in Table 3.5. Pseudo-random number
generator was used to generate 4000 repetitions to determine random assignment of 26 test scores

to two groups of 13, and randomization can be made based on that.

Model Randomization result significance level % (4000 runs)
H1 M1 M2 M3 M4 M5
H1 SDn 49.62 48.42 36.9 35.37 29.15 47.95
mSDn 49.9 28.8 46 44.07 41.17 38.55
M1 SDn 46.72 49.47 26.37 17 11.82 429
mSDn 28.75 499 447 9.8 9.05 49
M2 SDn 37.55 26.67 49.42 38.87 27.82 26.15
mSDn 42.32 44.67 48 14.17 11.45 6.75
M3 SDn 353 17.62 40.17 49.12 35.85 21.85
mSDn 45.02 9.55 14.55 49.85 42.45 4292
M4 SDn 27.02 12.02 29.12 35.17 49.37 15.47
mSDn 45.02 9.47 11.85 40.12 49.25 35.32
M5 SDn 48.55 4417 25.5 20.4 16.35 49.62
mSDn 38.92 4.62 6.37 41.37 35.3 49.3

Table 3.5 Results from randomization test on the inter- and intra-subject variability for different models. The results

show that no model is significantly different compared with others methods

It can be seen from Table 3.5 that the result of randomizing inter- or intra-subject variability with
inter- or intra-subject variability of the same model, is consistent with chance (50%). The results
show that no inter- or intra-subject variability calculated from any ARP measured from any model is
significantly different to all other methods, in other words some ARP from some methods show
significant differences with other ARP from other methods (e.g. intra-subject variability of M1 and
M5 = 4.62%, or intra-subject variability of M2 and M5 = 6.3%) but no method in particular
provides strong evidence against the null model, and therefore in favor of the alternative. It has to
be noted that it is expected that the above matrix will be symmetric with respect to its diagonal, and
the slight differences in the values are the result of using a finite numbers of realisations of the

pseudo random generator.

The results also shows that by having a more complete and sophisticated models that provides
slightly better results, still a simple model H1 performs fairly well (29.15% between H1 and M4). In

other words even though a complex model (nonlinear multivariate model) provides better inter- and
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intra-subject variability in these set of measurements, there is no solid evidence that the same
model would still provide the same results in other sets of data. In other words, there is no solid
evidence that the improvement using nonlinear multivariate models that provided improvement in
assessment of autoregulation (less inter- and intra-subject variability) can be repeated in other

datasets. It can also be said that no model performed significantly better than the other models.

3.5 Discussion

Spontaneous fluctuations of MABP and MCBFV have been proven to be useful in analyzing the
characteristics of autoregulation [2, 35, 69, 73, 74, 98, 113]. However cerebral autoregulation is

affected by many other physiological mechanisms [5, 29, 46].

The reactivity of cerebral vessels to CO, changes is one of these parameters. Changes in arterial CO,
tension causes vascular responses in cerebral vessels [29], and this reactivity of cerebral vessels,
causes changes in CBF regulation (hypercapnia can cause vasodilation and hypocapnia causes

vasoconstriction) [46, 90].

In this chapter, the problem of effective modeling of cerebral autoregulation using spontaneous
variation in MABP and Pgr¢o, as inputs and CBFV as the output was studied. It has been reported
[46] that MABP — CBFV relationship exhibits considerable nonlinearities specially at low
frequencies (< 0.04 Hz). The combination of Laguerre expansion with feedforward artificial neural
networks in the form of Laguerre-Volterra network, which has been shown to provide a good
estimation of nonlinear system with short input-output records, was used to model the cerebral
autoregulation system. At first, the characteristics of the LVN were estimated separately for each
dataset (all 26 measurements) using NMSE (Table 3.3). Alpha value and consequently number of
filterbanks for each input with NMSE as the criterion for each measurement are estimated in the
network based on the data and memory bandwidth. It was found that by having two-input nonlinear
(second-order) models the performance of the model based on the NMSE improved by 10.38% in
validation in relation to the single-input linear model. This result initiated study of the existence of
nonlinearity in the autoregulatory system. It was also found that adding nonlinearity or Pgrco,in all
the datasets will always improve our NMSE in the training (as more parameters are involved) but
may not necessarily improve our NMSE on the validation segment. It was also shown that the
maximum number of filterbanks that reduced the NMSE in the validation data, was twenty whilst
this was only 3 for nonlinear ABP and Pgrco, and the cross-term. This maybe may be due to the

small size of the data set. Faster response of Pgr¢o, compared to previous works (10 to 15 seconds)
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compared to 20 seconds found by some other authors [23, 29, 83, 114]) was observed in this work,
however it is unclear how fast autoregulation changes as a result of the transients in partial pressure
of CO, in the blood. The time required for autoregulation to become impaired following

hypercapnia, and the recovery on return to normocapnia is unclear.

By looking at the contribution of each input towards the final model prediction Figure 3-8.A, it was
found that MABP explained the biggest fraction of MCBFV variability (64%) which as it can be seen
in Figure 3-8.B was at high frequencies. Linear Pgr¢o, explained mostly low frequency ranges and
had the contribution of 14%, whilst the self- and cross-kernels nonlinear terms had more effect in
term of contribution toward power spectra of the predicted CBFV than linear Pgrco, with the
contribution of 22%. It was also observed (Table 3.3) that cross-kernels between MABP-Pgr¢(, had
the most effect amongst the nonlinear terms (2% order self- and cross-terms for Pgrco, and ABP)
which indicate the importance of this term (in agreement with [83]). The spectral analysis of the
MCBFV and the model prediction and the spectra of the residual from different terms of the
Laguerre-Volterra network showed that most of the effect of Pgrco, and nonlinearity lies at low

frequencies.

Different indices for the assessment of dynamic cerebral autoregulation base on the changes in
Pgrco, levels which provokes temporary impairment of autoregulation was then studied. The
response to a cosine shape input modulated by a Gaussian, (pressure pulse response, PPR) which
was introduced by Simpson et al. [74] was used, which is more physiologically realistic compared to
step or impulse inputs. The results (Figure 3-5) showed the phase-shift characteristics expected of
cerebral autoregulation. Next the parameters that provided us with the best separation between
good and impaired autoregulation were chosen. Amplitude at 1.5 seconds and 8 seconds (41.5 and

AB) offered good distinction between intact and impaired autoregulation.

The primary goal of this chapter was to test the performance of different models; however this
should only be an intermediate step in answering the question of how to quantify autoregulation
when only spontaneous fluctuations in ABP and CBFV are present. High-inter subject variability and
poor reproductively have been reported [47, 74]. This work was carried on by looking at a novel
approach for assessing autoregulatory parameters using a criterion, the ability to distinguish
between NC and HC. This was done by performing a formal analysis to measure the standard

deviation using the covariance matrix analysis.

It was found that A8 when extracted from two-input nonlinear models, in particular when the cross-

kernel terms were included provided the lowest variability (in terms of inter- and intra-subject,
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Figure 3-10). The good performance of H1 is also very notable as can be seen in Figure 3-10. A8
extracted from two-input nonlinear models and H1 followed the expected trend (increase in H1 and

decrease in A8 from NC to HC) in 12 and 13 out of 13 subjects respectively.

Intra-subject variability has been reported previously by other authors using repeated recording with
only spontaneous variations [47], controlled breathing recordings with a sliding window [110] or
repeated thigh cuff tests [90]. Most of the mentioned methods use ARI and showed large intra-
subject variability. In this work it was shown that again A8 extracted from two-input nonlinear
models, especially when cross-kernels were employed alongside H1, provided the smallest change
of the parameter’s magnitude. These results suggest that having model fit (NMSE) alone, as shown
in Table 3.3, is not a good indicator for assessing autoregulation as H1 coming from an under-fitting
model (poor training and validation NMSE), or A8 coming from an over-fitting model (good training
and poor validation NMSE) M5 (Table 3.3), provided the best distinction between intact and

impaired autoregulation.

3.5.1 Limitations

It is obvious that a large number of possible parameters can be used to assess autoregulation. In this
work only a relatively small number of these were studied, and the current work can thus only
indicate the best methods among those analyzed here. In the paper by Angarita-Jaimes et al. [104]
different autoregulatory parameters, including parameters taken directly from the model (H1) were
investigated but none were superior to ones presented here. The small dataset (13 volunteers) and
small sample size (around 300 seconds) were the main limitations of the study presented in this
chapter. It can be argued that the results provided here from different methods are relative to the
effect in this particular dataset in question. However the large difference reported from different
methods here, can be taken as a hint of which autoregulatory parameters should be considered for
further research with a larger dataset. Repeated recordings of spontaneous changes in Pgrco, and
baseline (no Pgrco,) from the same volunteers should allow testing the repeatability of the methods

and more robust estimates of the inter- and intra-subject variability.

There are other factors in addition to noise in the signals, the difference between volunteers and the
effect of Pgrcp, which were studied in this chapter, that should be considered when investigating

the large scatter reported in the results. Some of these factors are the effect of other physiological
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variables such as: Poz, cerebral metabolic rate, intracranial and venous pressure and brain activity [5,

32, 46].

H1 presented in this work measured from a very simple model, provided small variation in term of
inter- and intra-subject variability (SDn and mSDn). One main advantage of this parameter is its
small number of free parameters which does not require big data sample and can be applied to

short data recordings.

The effect of large variations in Pgrco, and ABP should also be considered and to test whether
these changes can provide more robust results and smaller inter- and intra-subject variability. This

will be address in the next chapter.

3.6 Conclusion

In this chapter, the performance of different models (linear and nonlinear single-input, linear and
nonlinear two-inputs) was compared and different autoregulatory parameters were measured.
Some of them were extracted directly from the model (H1) and some were extracted from the
proposed pressure pulse response (A1.5 and A8). The A8 extracted from nonlinear two-input
models showed less variability (inter- and intra-subject) when compared to other autoregulatory
parameters. This parameter provided the best distinction between intact and impaired
autoregulation. However a very simple parameter (H1) provided notable good result in term of
small coefficient of variation (SDn and mSDn) with the added advantage of suitability for use in a

very short dataset.
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Chapter 4 : Evaluation of autoregulation

using subspace distance

4.1 Introduction

In the previous chapter, data fit of different Wiener method with the Laguerre expansion technique
for all the possible combinations of linear/nonlinear single-input (ABP — CBFV) and
linear/nonlinear two-input (ABP,Pgr¢o, = CBFV) models was studied. Next the inter- and intra-
subject variability of different autoregulatory parameters (pressure pulse and H1) was compared. It
was found that the pressure pulse (PP) as a new autoregulatory parameter extracted from nonlinear
two-input model was superior to other autoregulatory parameters and provided very good
separation between intact and impaired autoregulation and showed to be a robust parameter to the
system noise, amongst other possible autoregulatory parameters studied in section 2.10, which
have shown to provide good assessment of autoregulation by previous authors [73-75] on the
dataset examined. However as mentioned in section 3.6, there are other parameters that have been
proposed in both time- and frequency-domain in the literature which represent the status of
cerebral autoregulation which were not examined. These parameters are usually extracted from the

estimated step or frequency responses [47, 52, 74, 75] as described in Chapter 3.

In all the above methods, to address the assessment of autoregulation, there is an intermediate step
between black box model and setting the autoregulatory parameter which is to test the
performance of the model or to get a response of the system (step- or impulse-response) and
extract a parameter from it. However we showed in the previous chapter that good data-fit does not
necessary lead to good assessment of autoregulation, as both under-fitting; large NMSE in both
training and validation (FIR filter with only 2 lags) and over-fitting; small NMSE in training and large
in validation (nonlinear two-input model), provided the best distinction between healthy and

impaired autoregulation on the dataset examined (Table 3.3).

A major challenge of the methods used for the assessment of autoregulation is the issue of choosing
an autoregulatory parameter that could work on different datasets. Furthermore the lack of a “gold
standard” for assessment of dynamic cerebral autoregulation does not allow a robust reference, to
which alternative methods could be compared. Autoregulatory parameters are sensitive to many

physiological variables that can influence CBF (Pgrco,, brain activity, O, content, temperature, etc.)
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as has already been observed by other authors [52, 90, 92]. Furthermore, there is a dearth of studies
using multiple methods or performing inter-method comparisons [32]. Dynamic cerebral
autoregulation can also vary from one patient to another and over time [115]. For example, the
choice of phase at 0.1 Hz proposed by Giller et al. [73] has been extensively used, but there is no
physiological proof that this is the best autoregulatory parameter for every patient. As another
example in the previous chapter, it was proposed that careful choice of index (the amplitude at 1.5
seconds or 8 seconds from the PPR) can lead to significant improvement in the ability to distinguish
between normal and impaired autoregulation, but large inter- and intra-individual variations in
result persist and these parameters were chosen primarily based on visual inspection from the

response of the system.

So far all the work that has been done on dynamic assessment of autoregulation has been
concentrated on choosing an autoregulatory parameter extracted from different methods from
either time-domain analysis such as the correlation coefficient (Mx) between averaged CBFV and
ABP over time [73]. Some other works used autoregulatory index (ARI) calculated by evaluating the
set of models proposed by Tiecks et al. [5] using the parameter values given by the author (for each
recording, the model by the authors was applied to %ABP, and the model which provided the
highest correlation coefficient between the measured %CBFV and the generated velocity
determined the ARI) [5]. Frequency domain analysis; transfer function analyses (TFA), on gain,
coherence and phase [32, 46, 52, 75, 116] or multi-input models (ABP, PETCOZ) [35, 46, 90, 93, 113,
117]. Most of the autoregulatory parameters are usually extracted from the estimated step or

frequency responses [47, 52, 73, 74].

However, this autoregulatory parameter requires long stable TCD signal, typically more than an
hour, which is very hard to achieve. Other challenge with Mx is that it does not measure CBF
directly and it is only surrogate measure of autoregulation and the observed changes may be as the
result of factors that do not have a direct translation to CBF and could be as the result of the

calculation method [118].

The objective of this chapter is to propose and test a new data-driven method for assessing
autoregulation using subspace distance (SSD) between two autoregressive moving average (ARMA)
models, without studying primarily the performance of the models in term of data fit and choosing

an arbitrarily autoregulatory parameter by visual inspection as used in section 3.3.2.

Martin et al. [119] showed that by treating an ARMA model as a complex rational function, one can

define a metric on the set of complex rational function, and so measure the distance between two
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ARMA models. The subspace distance (SSD) has been used in dynamic models [120], observability
of linear hybrid system [121], bioengineering humans [122, 123]. Bissacco et al. [123] used SSD to

recognize different types of human gait in the space of dynamical systems.

Here, SSD is used to find the distance between new a measurement which is required to be
analysed to a group of normocapnia and also to a group of hypercapnia, and decide which group
that measurement belongs to by finding which set provides the smallest overall distance. This would
also help to construct the distance matrix and perform cluster analysis. In order to test whether this
approach is feasible to our system, it is first tested on Tiecks model as it is an acceptable model of
autoregulation. Later this method is applied to measure data from volunteers to test the

performance of this new approach.

In this chapter, the search for improved analysis is extended, using the data-driven approach based
on the subspace distance (SSD) (section 4.3.4.2). The performance of this method is compared to
alternatives previously proposed methods including the phase of the frequency response at 0.1 Hz
(P1) and the 2™¢ parameter of a 2™ order FIR model (H1), which is used in previous studies [46,
52, 73-75] and results from Chapter 3, showed this to be among the best indexes in terms of intra-

and inter-subject variability and its ability to distinguish between normo and hypercapnia.

4.2 Subjects and measurements

Signals were recorded from 30 subjects (25 — 55 years old); 27 of them came back for the second
recording and with the three subjects that only participated in one session total of 57 recordings
were used for this study altogether. Subjects were in the supine position, free from any known
cerebrovascular or cardiovascular diseases. The data was collected in the Leicester Royal Infirmary
by Dr E. Katsogridakis. ABP was monitored and measured non-invasively using the arterial volume
clamping method (Finometer, Ohmeda). Freehand transcranial Doppler (Companion lll, Viasys
Healthcare) identification of the both middle cerebral arteries (MCA) was performed using 2 MHz
probe, which was then held in place by a custom built head frame. A face-mask was connected to
the CO, delivery system, and by a line to a capnograph (Datex, Normocap 200) to measure end-tidal
CO, levels. Data were recorded at rest (with only spontaneous changes in ABP) in both
normocapnia and hypercapnia (inhalation of 5% CO, for 5 minutes). The mean arterial ABP and
CBFV was then calculated by low-pass filtering (cut-off frequency 0.4 Hz; zero phase filter) and
normalized by its mean value, to give the relative change in these signals. The resultant signals were

resampled at 1 Hz.

72



4.3 Methods

In this chapter, the subspace distance (SSD) as a model to measure the distance between two
ARMA models is studied. It is shown that the Tiecks can be approximated by a second-order ARMA
model. The SSD approach is used to measure the distance between different Tiecks models using
their second-order ARMA coefficients to validate the SSD on the dynamic CA system. In order to
show the advantage of using SSD by going to the cepstrum domain (section 4.3.4.1), the distance
between two ARMA models in the frequency domain is also measured and the results are compared
with the findings from the SSD. In the following section, the SSD for measured data is calculated

and the distance between different conditions of the volunteers (NC and HC) is measured.

In order to compare the result from SSD to the chosen autoregulatory parameters (P1 and H1),
firstly for all possible pairs of recordings, the distance calculated by SSD for ARMA models and also
alternative autoregulatory parameters (P1 and H1) (all three autoregulatory parameters) are
calculated. The distances between all normocapnia, hypercapnia and between normpcapnia and
hypercapnia  (NCssp/p1/u1 — NCsspyp1/n1HCsspp1yu1 — HCsspypiymr - @and  NCsspypi/mn1 —
HCssp/p1/m1) Mmeasurements are calculated, and the average values are computed as the cluster for
that pair and these values are compared with each other (section 4.3.5.1). The LOOCV approach is
then used to calculate the average value for each of these groups (NCssp/p1/n1 @and HCssp /p1/u1 )
and then measure the distance between the out dataset and the average value for each of these
groups and map that specific measurement to either one of these groups. Finally, cluster separation
was used to see which of our used autoregulatory parameters would give us better inter/intra-

subject variability.
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4.3.1 System Identification

System identification is the field of modeling dynamic system from experimental data [124]. A
dynamic system is driven by input variables x;(t) which are controllable and usually contains of
disturbance v(t) which can be controlled, and an output y(t). In the case, our application, the input

is arterial blood pressure (ABP) and the output is cerebral blood flow velocity (CBFV).

ARMA model, expresses a system function of a discretely sampled process as a rational function in
the z —domain. Martin et al. [119] showed that by treating an ARMA model as a complex rational
function, one can define a metric on the set of complex rational functions, and measure the

distance between two ARMA models.

ARMA models with ABP as input and CBFV as output are used to fit data using a least-squares
approach for each set of recordings. The estimated filter parameters provide the input to the sub-
space distance method. In order to see if SSD can be applied to the assessment of autoregulation,
by considering Tiecks model (section 2.11.1), and calculating the ARMA coefficents (re-expressing
the Tiecks model in ARMA form) for different ARI's the accuracy of the measured coefficients are
measured by comparing the step response of the ARMA models, with the original Tiecks model. The

ARM A approach is then used to model real ABP — CBFV relationship and assessing SSD.

4.3.2 Linear parametric models

The general model of a single input and single output system is given by [124]

y(m) = G(q)x(n) + H(q)e(n) 4.1

where x,y and e are system input, output and disturbance respectively.

where
_B(q)
H(q) = @ 4.2
3
6@ = 5oy )
and

Al@Q=1+a,q7 4+ a,,q ™

4.4
B(q) = byq~ " + - bypq P 4.5
C(Q)=1+cq7 +cpeq ™ 4.6
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where a; ,,, and by, and ¢; . are the parameters of the model and 4.1 can be rewritten as

A(@Q)y(n) = B(q)x(n) + C(q)e(n) 4.7

The above equation is known as an autoregressive moving average model with an exogenous signal

(ARMAX model; Figure 4-1)

%

Jlk
o]
|

Figure 4-1 ARMAX model

There are several special cases of ARMAX models which are described below:
An autoregressive (AR) model is obtained when nb = nc = 0.

A(@y(n) = x(n) 4.8
A moving average (MA) model is obtained with na = nc = 0.

y(n) = B(q)x(n) 4.9

An autoregressive moving average (ARMA) is the combination of the previous two models and is

given whennc =0

A(q)y(n) = B(q)x(n) 4.10
Another case is when nb = 0 is known as autoregressive with an exogenous input (ARX).
A(q)y(n) = B(q)x(n) + e(n) 4.11

Tiecks autoregulation index (ARI) model (section 4.3.3) is essentially a second order state-space

model.

In this work a simple second-order ARMA model (na = nb = 2) which is sufficient to re-express the

Tiecks model (section 4.3.3) as shown by [47] is used.
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Suppose one of above models have been chosen, and parameterized as a model structure which can

be rewritten as:
y(t) = T (£)6 + e(t) 4.12

Where 6 is the parameter vector and ¢ is the regression vector. The e in above equation denotes

the prediction error. For the case of ARMA model (eq.4.11), ¢ (n) is given by:
eT(m) = [-y(n—1) ...— y(n —na) x(n) ...x(n — nb)] 4.13
0 =[a; ...angbg - byp]” 4.14

There are different approaches that can be taken to measure the coefficients. Least mean square

method is most commonly used.
Least mean square estimate aims to minimize the sum of squared prediction error, which is given by:
0 = arg(minVy(6)) 4.15

Where V) is known as loss function, given by:

N
Vy(8) =%Z e?(n) 4.16
n=1

The parameter vector 8 that minimises the sum of squared equation errors is given by

-1

N N
~ 1 1
0= Nz P () [ﬁnzlgo(n)y(n)] 4.17

() = T ()0 4.18

Derived from the general form of the ARMA model shown in eq.4.11, the second-order ARMA

model can be expressed as:

bo+ byq™t + bq?
1+a,q7 1+ a,q7?

() = x(n) 419

Where a4, a,, by, by, b, are the filter coefficients.

The transfer function of a second-order ARMA model can be derived from eq.4.19 as:
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bo+ byq7t + bq™?

4.20
1+a,q7 1+ a,q7?

G(q) =

In the next subsection, the coefficients for a second-order ARMA for 10 pre-defined step responses

of the Tiecks model [5] is calculated.

4.3.3 Second-order ARMA model of Tiecks models

The 10 CBFV step responses for the ARI in the Tiecks model [5], were originally defined at f, =
10 Hz, however they can be calculated at any desired frequency. The approach for measuring the
ARMA coefficient from Tiecks model is shown in appendix lll. The a4, a,, by, b1, b, coefficients of the
ARMA model coefficients for 10 different Tiecks models based on the values of T, D, K and f, were

calculated and are shown in Table 4.1.

Model (ARI) ay a, by b, b,

0 0 1 0 0
1 -1.8375 0.8400 1 -1.8380 0.8400
2 -1.8475 0.8500 1 -1.8485 0.8500
3 -1.8825 0.8850 1 -1.8840 0.8850
4 -1.9075 0.9100 1 -1.9095 0.9100
5 -1.9183 0.9211 1 -1.9208 0.9211
6 -1.9148 0.9187 1 -1.9185 0.9187
7 -1.9014 0.9083 1 -1.9081 0.9083
8 -1.8672 0.8805 1 -1.8801 0.8805
9 -1.8225 0.8462 1 -1.8457 0.8462

Table 4.1 ARMA coefficients for different Tiecks models fy = 10 Hz

The result of the agreement between different using the 10 pre-defined step responses and 10

different coefficients using the ARMA model (Table 4.1) of these models is shown in Figure 4-2.

The Tiecks model originally is defined at 10 Hz, however in this work for the assessment of
autoregulation, recordings of ABP and CBFV were down-sampled to 1 Hz after being have a low-
pass filter applied to them with a Btterworth filter (3”% order) with the cutoff frequency of 0.4 Hz.
The step responses calculated from their corresponding ARMA models at 10 Hz and 1 Hz are
shown in Figure 4-2. The note that has to be considered is that as mentioned before, in the original
proposed model by Tiecks et al. [5], the sampling frequency of 10 Hz was used. However, different

sampling frequency can be used in the original second-order differential equations proposed by
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Tiecks et al. [5]. The only point that has to be considered is that if lower sampling frequency is used

(f = 1 Hz as used in most of the work in this thesis).

In the next section we introduce the subspace distance proposed by Martin et al. [119] as a novel
approach to measure the distance between two ARMA models. We use this approach to measure
the distances between different ARMA models shown in Table 4.1, measured from the Tiecks

models.

12 T T T ; T
+ Step response calculated at 10Hz
— Step response calculated at 1Hz

0.8~

0.6~

0.4~

Step-response

0.2~

" 3190909
steaaet bt AL IS

Time (s)

Figure 4-2 Agreement between step responses calculated from ARMA models from Tiecks method at 10Hz and 1Hz
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4.3.4 Subspace distance

In the previous section it was shown that the well-established Tiecks model can be realized as an
ARMA model with different ARI in the models, corresponding to different ARMA coefficients
(Table 4.1).

Eg.4.19 can be written in the z-domain in term of the system function as:

q .
H(z) = j=objz ]. _ L, - Bi/2) 4.21
5;0 a;z~) ]_[f=1(1 —a;/z)

Where a, and b, are defined to be one in this chapter. The a; and §; are the positions of the poles

and zeros of the model and H is a rational function of z.

Section 4.3.3 described the coefficients a; and b; for the Tiecks models for different ARIs. However
addressing the question of how two ARMA models can be compared, to find a metric for the space

for ARM A models would be very useful.

One approach is to compute ARMA models for subject with intact and impaired autoregulation and
then, for a new patient, the ARMA model can be fitted and compared with these two general
models and whichever gives the smaller distance would provide an indication of the stage of the

new patient.

Martin et al. [119] proposed that what is actually required is a method for comparing two spectra.

He introduced a purely algebraic approach to model comparison in the cepstrum domain.

4.3.4.1 Cepstrum

Cepstrum has been widely used in literature in processing signals containing echoes in seismology,
for measuring properties of reflecting surfaces, in loudspeaker design, for dereverberation,
restoration of acoustic recording, estimating parameters of the speech models, or calculating the

minimum phase spectrum corresponding to a given log amplitude spectrum [125].

The cepstrum is the inverse Fourier transform of the log magnitude of the Fourier transform (DFT)

of a signal.

C, = F71(log|F (x(n))|) 4.22

79



Where F is the DFT and F~ ! is the inverse DFT. It has to be noted that C,, in above equation is the
cepstrum coefficients and are not the same as eq.4.6 and from this point in this chapter are

regarded as the cepstrum coefficients.

As defined in eq.4.22, the cepstrum is the inverse Fourier transform of the logarithm of power
spectrum of a signal. If the signal of the system is discrete then its log-spectrum is periodic and the

inverse Fourier transform is just a Fourier series

In(P(2)) = znezcnz—n 4.23

The note that has to be considered is that the independent variable n, of the cepstrum has the
dimension of time, and is known as “quefrency”. “High quefrency” represents rapid fluctuations
(small frequency spacing) in the spectrum and “low quefrency” represents slow changes (large
frequency spacing) with frequency. Note that quefrency does not say anything about the absolute

frequency but only about frequency spacing.

The cepstrum of a discrete-time process is a Hermitian sequence™ (Cp)nez Cr = C—p, and it is a
relatively simple function of the model poles and zeros [126]. Using an ARMA model in the time-
domain requires convolution between the time-domain signals, which gives us multiplication in the
frequency-domain, and thus addition in the cepstrum-domain. This can simplify the calculation when

filters are used for system identification.

4.3.4.2 Subspace distance (SSD)

Martin et al. [119] defines a metric for the set of single input single output (SISO) linear time-
invariant system ARMA models. This new approach is based on the inner product of the cepstra of

ARMA models. If, there are two systems, M and M' be ARMA models with cepstrum coefficients C,
and C,,n=0,+1,%2,..

Definition: [119] The distance between M and M'with cepstrum coefficeints C,, and C;, is defined as:

d(C,C’) — ZWnlcn_Crlllz 4.24
n=0

Where w,, in above equation are fixed, positive weights. It has to be noted that the prime symbol " is

used in this chapter to distinguish between models.

" Hermitian matrix (general form of a sequence) is a matrix whose transpose is equal to the matrix of the
complex conjugates of its entries
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Definition: Martin et al. [119] used the cepstrum domain analysis and proposed that if we have two
ARMA models with transfer functions (M, M’), which are stable, (all poles and zeros are inside the
unit circle) with cepstrum coefficients for discrete cepstrum, C,, C,,, the distance between these

models is defined as

oo

M) = | Y nlCy - Cif? 4.25

n=1

However there are many questions that can arise from this definition. 1. How can a good set of
weights be chosen. Does it contain any good system-theoretic properties? e.g. one can argue that
the system should be more sensitive to the poles near the unit circle in comparison to the poles near
the origin as they indicate strong resonances in the system [119]. 3. One may propose that, the
metric does not care whether the models are stable or not. So it is very important not to make a

naive comparison between two model coefficients in order to decide how different they are.
It is apparent from 4.25 that it has the Euclidean property:
d(c—=c",c'=c¢")=d(cc") 4.26
The above equation can be generalized to ARMA models based on the property of the cepstrum:
dMM",M'M") =d(M,M") 4.27

Where M and M’ in above equation is the transfer function of the two ARMA models and M"' is an
arbitrary stable transfer function. This shows that if two ARMA models are filtered with linear filters
(FIR or IIR), their new distance is unaltered compared to the original distance. This is a direct
consequence of measuring the metric in the cepstral domain, as convolution of a signal with a

filtered impulse response results in the addition of their cepstra. This can be explored further: if

there is an ARMA model with M = %, then by applying a filter with system function (g), the process
can be whitened, and if there is another process with system function (M’ = %), by applying the

!
same filter to this process, a third process with system function N = (%) is obtained. If it is

assumed that M and M' are two identical processes, then N would be constant (white noise),

otherwise it is ‘coloured’. So d(M, M") can be regarded as a measure of how coloured (M'/M) is.

Different choices for w,, are discussed by Martin et al. [119]. Cepstrum analysis was originally used
because if two signals are convolved in the time-domain, their cepstra are combined additively then

this characteristic was used by Martin et al. [119] as the cepstrum coefficients give information
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about the autocorrelation properties of signal. The cepstrum coefficients (c,,) with small values of n
are related to time-domain effects that are correlated only on short time scales which corresponds
to ‘slowly varying’ features in the spectrum. Larger values of n in the cepstrum coefficients
correspond to strongly coherent elements in the signal and sharper spectral features. This property
will later be used when weighting the cepstrum coefficients are applied (cepstrum filtering or
homomorphic filtering) [127]. By setting w,, = n, Martin et al. [119], gave more weight to the
cepstrum coefficients at large quefrency and as the result of that bolded the effect of sharper
spectral features. Another reason for choosing w,, = n, was that, this choice gave a metric in which
the infinite summation can be performed explicitly: the metric becomes a finite product in the pole-

zero domain [119].

Martin et al. [119] started the work first by measuring the distance between two AR models (AR

model is a sub-model of ARMA model). It was shown that for two AR models with transfer functions
% and % with order p and p’ and poles a;(i = 1,...,p) and poles a;(i = 1, ...,p") the following

equality holds:

11\ TP - e YT TP, (L - )
d(M,M’)Z:d(—,—,) = log( ;1 ]pl — ;,1 ;,1 ,l ,J* 4.28
aa i=1 Hj=1(1 - aia]f") Hizl Hj=1(1 - (Ii(X]- )
Now if there are two ARMA models with transfer functions of
b(z b'(z
H(Z)=Q,H'(Z)= @) 4.29
a(z) a'(z)
L0+’

Where in the above equations the order of the models are p and p'. By taking H'" (z) = NETIGL

Martin et al. [119] concludes that the distance between two ARMA can be measured from the

equation below:

_(b(2) b'(2)
d(M,M")? _d<m,m> 4.30
Which itself is equal to:
d( t 1 ):d( 2 , i > 431
a(z)b'(z) a'(z2)b(2) a(z)b'(z)’ a’(z2)b(2)

As both M and M' are stable, the resulting AR models from the ARMA models are stable as well. In
other words, the ARMA models can be treated as two AR models with the transfer functions as

shown above.
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In the next subsection leave-one-out cross-validation (LOOCV) as method to test the performance

of different autoregulatory (H1 and P1) parameters and SSD are be discussed.

The SSD approach is then applied to the different second-order ARMA models corresponding to
Tiecks model to illustrate the method and later it will be applied to the recorded data to assess its

performance in distinguishing between autoregulation in normocapnia and hypercapnia.

4.3.5 Assessment of autoregulation using SSD

So far in this chapter, having shown that by using subspace distance (SSD) and going to the
cepstrum domain the distance between two autoregressive (AR) or autoregressive with moving
average (ARMA) model can be measured. However the main question that requires answering is
whether this new approach can help us with the assessment of autoregulation. In this chapter,
different approaches that can be taken for this assessment are studied. As it has been mentioned
throughout this thesis, the main task of this work is to be able to distinguish between NC and HC.
For this purpose, it is tried in this chapter to allocate a recording to either one of the NC and HC
groups using leave-one-out cross-validation approach (LOOCV). Another approach that can be taken
to study the effectiveness of an approach for assessment of autoregulation is to test the distance
between clusters of autoregulatory parameters in NC and HC. These approaches are studied in the

next two sections.

4.3.5.1 Leave-one-out cross-validation (LOOCV)

Cross-validation is a method for assessing the quality of the results of a statistical analysis [128]. One
of the most common method for cross-validation involves partitioning a sample of data into subsets
and performing the analysis on one subset (training set), and validating the analysis on the other
subset (validation set). There are four frequently used types of cross-validation: k —fold cross-
validation, repeated random sub-sampling validation, 2 —fold cross-validation and leave-one-out

cross-validation.

In k-fold cross-validation, the data is randomly partitioned into k subsamples and from the k
subsamples, one is retained as the validation data for testing, and the rest as the training data. This

process is repeated k times and each of the subsamples are used exactly once as the validation set.

2 —fold cross-validation has exactly the same process as k —fold cross-validation but the data are
randomly assigned to two sets, and then training on one subsample and validation on the other one,

and vice versa.
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In repeated random sub-sampling validation, the dataset is randomly split into training and
validation data, and the model is fit to the training data and assessed on the validation data and
averaged over the splits. This method has the advantage that the proportion of the
training/validation split is not dependent on the number of iterations over the k —fold cross-
validation. However as the samples are randomly split, some observations may never be selected in
the validation subsample and the result may vary if the procedure was to be repeated (Monte-Carlo

variation).

The last method is leave-one-out-cross-validation (LOOCV) which uses a single observation from the
original samples as the validation data, and treats the rest as the training data. Then this process is
repeated as many times as the number of observations that we have (same as k —fold-cross-
validation but k is equal to the number of our observations). This process may be very time

consuming if the number of observations is large.

In this work LOOCV method is used to test the performance of SSD and other autoregulatory
parameters (H1 and P1) on each volunteer’s measurement during normocapnia and hypercapnia,
and classify each set of measurements (NC and HC) individually with the rest of the measurements

as the reference (training).

4.3.5.2 Cluster separation

In order to be able to compare different autoregulatory parameters in different scales, cluster
separation was used as the criterion of measurement for good distinction between normocapnia
and hypercapnia. The average distances within each class (NC and HC) and between classes were
used to calculate the ratio between their mean difference and the mean (across each group;
NC — NC,HC — NC and HC — HC) of their standard deviations (variation across each subspace
distance; NC — NC,NC — HC and HC — HC) in order to remove the effect of mean from the

separation between all 27 sets of measurements during normocapnia and hypercapnia.

Xyny; = ARPyi—nc; ij = 1...27 4.32
Xuiy, = ARPyc,_nc; i) = 1..27 4.33
Xun,; = ARPyc,—pc;1,j = 1..27 4.34
Xy, = ARPyc,_nc; ij = 1..27 435

The mean and standard deviation (ST D) of above matrices are:

SDXyn = std (XNNi'j),mXNN = mean (XNNE.J.) 4.36
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SDXyy = std (XNHi'].),mXNH = mean (XNH,-J-)
SDXyy = std (XHHL.J.),mXHH = mean (XHHU

SDXyy = std (XHNi,j),mXHN = mean (XHNU)

By using above equations the cluster separation (CS) between the groups can be defined as:

mXyy —mX
CSyn—nH = Ny N 4.37

% X (SDXyy + SDXyi)

MX iz — MX iy 4.38
CSyH-uN = 1
> X (SDXyy + SDXyn)
CSyn_ny + CSyp_
cS = NN-NH HH-HN 4.39

2
The smaller values of STD would provide higher values of cluster separation so, higher value of

cluster separation provides better distinction between NC and HC for the autoregulatory

parameter.

4.4 Results

4.4.1 Subspace distance and Tiecks models

Section 4.3.4.2 shows that by having two ARMA models from two systems, SSD can be used to
measure the distance between the two models. The Tiecks model has the parameter ARI varying
from O representing the absence of autoregulation to 9 representing full autoregulation. In this
subsection the SSD between different ARI (0 — 9) is measured. The result is shown in Figure 4-3. In
this figure each line represents the ARI of a reference model, and the x-axis in the figure
corresponds to the ARI of the Tiecks model to which it is compared. The y-axis corresponds to the
subspace distance (SSD), which varies from 0 (when the reference model and test model are the
same) to 1.81 (when they are most different). It is evident that the distance between models when
both correspond to the same ARi is zero, and as the models differ more, the subspace distance
increases. The symmetry of Figure 4-3 can also be observed, so the subspace distance between ARI;

and ARI; is the same as the subspace distance between ARI; and ARI;.
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Another notable feature of applying this method to the Tiecks model is that the SSD between any
two adjacent ARI is most similar among all the combinations of ARl (0.1 < SSDARIL.IAR,(M) <
0.4,i = 0,...,8). This helps to interpret the SSD when applied to measured data with different

autoregulatory statues.
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Figure 4-3 Subspace distance between different Autoregulatory indexes (ARI) from Tiecks model varying from 0 — 9,

measured from second-order ARMA models.

The next subsection considers the alternative approach based on distance measures based simply on

the frequency responses of different Tiecks models.
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4.4.2 Distances in the frequency responses

In the previous section, the Tiecks model was used [5], and the distance between different ARI’s in
the cepstrum domain using the subspace distance (SSD) were calculated. The previous section
demonstrated that the SSD provides a convenient means of distinguishing between different levels
of ARIs (Figure 4-3). However, there are evidently many other ways of doing so and therefore in this
section this method is compared to one alternative. There are obviously other alternative
approaches that could have been taken, however in this work, the original approach taken by Martin
et al. [119] was used (due to its simplicity and the fact that going to cepstrum domain has the
advantage of simplicity as convolution in time domain becomes addition in cepstrum domain) and
compared to this alternative. A related question can be raised on why the 2-norm of the logarithm of
the cepstrum is used in preference to the 2-nrom of the spectrum itself. In this section, the distance

between two models (ARMA models) based on the difference between their gains was measured:

fs
. . 12
Db = (z |FRI£ - FR}{l ) 4.40
f=0

Where in the above equation FR} and FR]{ are the frequency responses of the two models whose

distance is to be measured. f; in above equation is the sampling frequency. The distance is

measured over the full frequency range of the models.

The distance between different Tiecks models measured using the above equation is shown in
Figure 4-4. The symmetry between the distances is also observable in this figure (distance between
ARI =i and ARI = j is the same as the distance between ARI = j and ARI =i, i,j vary from 0 to
9). The distance between models varies from 0 (two identical models) to 13.54 (ARI = 0 and ARI =
9). However the distances between different models are not as separated as Figure 4-3. It can be
seen (shown by a dotted circle) that the change in distances between a wide range of ARIs can be
quite small, making it difficult to distinguish between them. This can be a problem as if the
autoregulation of a subject with ARI = 6 deteriorates; it would be very hard to see if it came down

to ARI = 3 or all the way to ARI = 0.

To clarify thus further, it can be seen from Figure 4-4, that the SSD between ARI = 9 and ARI = 8
is 5.59, and the SSD between ARI = 9 and ARI = 7 is 9.66, so the difference between two SSD is
5.07. However the SSD between ARI = 9 and ARI = 4 is 12.29 and the SSD between ARI = 9 and
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ARI =5 is 12.19, which makes the difference only 0.1, and makes it harder to distinguish between

different ARIs levels.

Given that for autoregulation only frequencies between 0.04 Hz — 0.15 Hz are of main interest
[73], the calculations in eq.4.40 were repeated, restricted to this band, with results plotted in
Figure 4-5. A similar bunching of lines of result as Figure 4-4 was observed (though now near ARI =
9), and same argument as before holds here as it is hard to say whether the condition of a patient

which was previously measured at ARI = 0 improved to ARI = 3 or ARI = 6.
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Figure 4-4 Distance between different Autoregulatory indexes (ARI) from Tiecks model varying from 0 — 9, calculated from
the frequency response over the whole range of the frequencies, using the second-order ARMA models. Each line
represents a different level of autoregulation in the reference model, and the value on the x-axis that for in the test model.
The red dotted circle indicates the area where the SSDs are very close to each other and would make it very difficult to

distinguish between them.
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Figure 4-5 Distance between different Autoregulatory indexes (ARI) from Tiecks model varying from 0-9, calculated from
the frequency response over the frequency range of 0.04 — 0.15Hz, and using the second-order ARM A models. Each line
represent a different level of autoregulation in the reference model, and the value on the x-axis that for in the test model.

The red dotted circle indicates the area where the SSD are very close to each other and making it almost impossible to

distinguish between them

In the next section, the SSD method mentioned is applied to measured data in both the NC and HC

conditions.

4.4.3 Recorded data

In this section, recorded data are used, and the SSD method was applied to measure the distance
between NC and HC in the same subject (pairwise measurements) and then the distance between
the estimated ARMA models from different subjects during NC and HC. In order to measure the
pairwise distance between the measurements, matrix of format shown in Figure 4-6 was created. As

can be seen this matrix is symmetric with respect to its diagonal (with zero in the diagonal), so the

. 113x114 . . . 5657
matrix has — = 6441 unique entries. From this number

= 1596 belong to the SSD
between NC — NC and, 1596 to HC — HC and the rest (3249) is the distance between NC — HC.
The distance between NC — HC itself forms a square matrix, where the diagonal is the distance
between the it" measurement during NC and HC. In order to make this matrix compatible with the
SSDs measured from the other two groups (NC — NC and NC — HC), the upper triangle of this

square matrix (57 X 57) was used.
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Figure 4-6 Format of the matrix created to measure the subspace distance between NC — NC, NC — HC and HC — HC

Table 4.2 shows mean of the pairwise SSD between recordings during NC — NC, NC — HC and
HC — HC for all 57 measurements in NC and HC shown in Figure 4-6 and explained above. It can be
seen from this table that the SSD between NC — HC is larger than the other two (NC — NC and
HC — HC). This finding is in agreement with the initial expectation that the models from different
autoregulatory conditions tend to be more different than the models of measurements with the

same autoregulatory status (intact or impaired).

Subjects Normocapnia SSD Hypercapnia SSD
Normocapnia 1.06 + 0.23 1.27 £ 0.28
Hypercapnia 1.27 £ 0.28 1.05+0.24

Table 4.2 Mean+STD of the subspace distance for 57 recordings between normo-nomo, hyper-normo and hyper-

hypercania

Evidence so far suggests that SSD provides a means of comparing models with each other. However
in order to compare the results obtained from SSD, to other autoregulatory parameters discussed at
the beginning of this chapter (P1 and H1), the Euclidian distance between measurements of these
autoregulatory parameters are assessed. For the autoregulatory indexes (P1 and H1), the distance
between two measurements (all possible pairwise comparison) are calculated, as the difference
between their autoregulatory parameter, and matrices in the same format as the matrix shown in

figure 6.5 are created using eq.4.41 and eq.4.42.
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As explained in SSD, the Euclidian distance between the normocapnia measurements (NC — NC)
and between hypercapnia measurement (HC — HC) and between normocapnia and hypercapnia
(NC — HC) form a sub-matrix of our matrix in Figure 4-6 with zero on diagonal (Euclidian distance
between a measurement and itself is zero). The mathematical formula for calculating the Euclidian

distance for P1 and H1 are shown below

4.41

Dp1,, = |Plncyhe, = Plneyme | 0 = 1,57

4.42

Ditr,; = [Hlnehe, = Hlne he;| 6/ =1,...,57

where in above equation, Plncij/hcij or Hlncij/hcij represent P1 or H1 during either normocapnia

or hypercapnia and would lead us to create the matrix of format shown Figure 4-6. As the matrices

for P1 and H1 are symmetrical, only one side of the diagonal was used for our calculations. This

113x114

would result in having ( = 6441) paired-wise Euclidian distances for each group (NC —

NC,HC —HCand NC — HC and HC — NC).

Subjects Normocapnia Hypercapnia | Normocapnia | Hypercapnia
P1 P1 H1 H1
Normocapnia 0.26 0.27 2.18 1.91
Hypercapnia 0.27 0.18 1.91 1.08

Table 4.3 Mean of the Euclidian distance of P1 and H1 for 57 volunteers between normo-nomo, hyper-normo and hyper-

hypercapnia

Table 4.3 shows the Euclidian distance for P1 and H1 for all the groups (NC — NC,HC — HC
and NC — HC). As it can be seen from this table, the distance between NC — HC for P1 is slightly
higher (0.27 for NC — HC compared to 0.26 for NC — NC and 0.18 for HC — HC), whilst this is not

the case for H1.

4.4.3.1 Statistical analysis
In order to evaluate the performance of this approach (SSD for assessment of autoregulation),
LOOCYV is applied. In order to remove the effect of each subject, both of the recordings from the

same subject are removed (from the dataset).

The result from 57 different LOOCV on SSD is shown in Table 4.4. In this approach, by removing
each subject’s NC and HC, 56 subjects during NC and HC (118 total) are left. The average value of
SSD of the left-out recording with the 56 recordings during NC and HC is calculated. The distance

that has the smallest value with that specific group would be the category for the recording in hand.
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Misclassification would refer to a condition when the left out subject’s SSD between its NC or HC
with the groups of NC or HC respectively is larger than distance to the other family. The

misclassifications for SSD are indicated by a star in this Table 4.4.

The results show only 7 misclassification using the SSD whilst these are 14 and 16 for P1 and H1,
respectively. Some of these misclassifications were from the same recordings but there was no
overall pattern that suggested these misclassifications was dependent of the recordings or
volunteers. The results from two sample z-test of two proportions shows that misclassification of 6
in SSD is significantly different to both misclassification for P1 and H1 with p < 5% (p = 4%) and
p < 5% (p = 2%) however, P1 and H1 are not significantly different (p = 32%)).
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Loocv

Normo-Normo

Hyper-Hyper

Normo-Hyper

Hyper-Normo

1 1.35 0.42 2.46 1.66
2 0.89 0.52 1.79 0.9
3 0.64 0.71 0.81 2.1
4 1.08 0.76 1.36 1.88
5% 1.12 0.11 0.39 1.39
6 0.68 0.75 1.71 2.05
7 0.49 0.34 1.05 1.43
8 0.84 1.13 1.71 242
9 * 1.61 0.75 2.57 1.33
10 0.45 0.87 1.65 1.28
11 0.5 0.57 1.43 1.65
12 0.38 0.5 1.4 1.24
13 0.27 0.53 1.66 1.87
14 0.83 0.62 2.14 2.02
15 1.06 1.43 1.22 2.61
16 * 1.88 0.64 1.76 0.96
17 0.48 0.61 1.45 1.31
18 0.95 0.76 1.14 1.44
19 * 1.31 1.07 1.02 0.82
20 * 1.43 0.64 0.5 1.89
21 1.05 0.36 1.68 1.11
22 0.94 1.44 1.81 1.13
23 * 1.6 0.67 0.31 0.87
24 0.65 0.23 0.84 1.17
25 1.02 0.7 2.26 1.97
26 0.38 1.07 1.69 1.35
27 0.41 0.67 0.99 1.24
28 0.72 0.96 0.76 0.77
29 1.63 2.2 1.73 2.09
30 0.7 0.22 1.73 1.58
31 0.68 0.13 0.85 1.36
32 0.48 0.26 1.05 1.24
33 0.64 0.81 1.78 1.35
34 0.94 0.95 2.17 1.26
35 0.34 0.24 2.22 1.26
36 0.56 0.22 0.93 2.57
37 1.63 1.74 2.05 2.22
38 * 1.03 1.59 2.25 0.98
39 1.07 0.29 1.75 1.5
40 0.91 0.42 1.95 1.14
41 0.22 0.68 1.44 1.12
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42 0.33 0.48 1.35 1.58
43 0.79 0.91 1.45 0.61
44 0.49 0.48 1.2 1.05
45 0.15 0.32 1.37 1.16
46 0.46 0.42 0.98 1.74
47 0.26 0.29 1.43 1.64
48 1.18 0.76 2.14 1.43
49 0.46 0.83 1.15 2.23
50 1.44 0.36 2.21 1.48
51 0.84 0.78 1.66 2.11
52 0.33 0.71 1.36 2.0
53 1.51 0.41 2.18 1.76
54 0.61 0.81 1.11 2.11
55 1.08 0.85 1.51 1.47
56 0.67 1.31 1.04 1.3
57 0.58 0.49 0.68 0.7

Table 4.4 Result from 57 LOOCV on volunteers data with arterial blood pressure (ABP) as input and cerebral blood flow
velocity (CBFV) as output. The second column in this table is the SSD between the left out measurement during NC and
the average ARMA model calculated over all other 56 NC measurements, the second column is the SSD between the left
out measurement during HC and the average ARMA model calculated over all other 56 HC measuremnets, the third and
fourth columns represent the SSD between the left out NC,HC measurement with the average ARMA model calculated
over all other 56 NC, HC respectively. It is expected that the distance between for example the left out NC measurement

with the reference ARM A model during NC be smaller that when this is compared with the reference ARMA model

during HC. The ones that do not follow the expected trend for both NC and HC are indicated with a star.

The result for the cluster separation is shown in Table 4.5. The results from cluster separation shows

that SSD gives us better separation compared to P1 and H1.

Model | Normo/Normo Hyper/Normo Hyper/Hyper Cluster
Separation
Mean STD Mean STD Mean STD .
Normalized
SSD 1.06 0.23 1.27 0.28 1.05 0.24 0.83
P1 0.26 0.2 0.27 0.19 0.183 0.14 0.29
H1 2.18 2.26 1.91 2.00 1.08 0.86 0.23

Table 4.5 Mean cluster separation between normo/normo, hyper/normo and hyper/hypercania, using

subspace distance (SSD) and phase at 0.1 Hz (P1) and second coefficient of FIR filter with 2 lags (H1)
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4.5 Discussion

The conventional approach to assess autoregulation is to model the relationship between ABP and
CBFV (SISO approach) and from this model an autoregulatory parameter is extracted. In term of
the assessment of autoregulation, this thesis has concentrated on choosing an autoregulatory
parameter from different methods in both time or frequency domain, using linear or nonlinear
system identification methods [5, 11, 39, 46, 75, 90, 93, 106, 116, 129, 130]. These parameters are
usually extracted from the estimated step or frequency responses [47, 52, 73, 74]. There are other
approaches to assessment of autoregulation that does not require choosing a parameter from the
step or frequency responses such as correlation coefficient (Mx) between cerebral perfusion
pressure (CPP) and blood flow velocity (BFV) [28, 118], however this approach does not measure

CBF directly and provides a surrogate measure of autoregulation [118].

In this chapter a new data-driven approach for assessing autoregulation using subspace distance
(SSD) between two ARMA models is proposed which avoids the need for prior choice of the
autoregulatory parameter. It has to be noted that whilst there are many alternative approaches that

could have been chosen, the original approach by Martin et al. [119] is used.

In this chapter, it is first shown that by applying SSD to the CBFV responses proposed by Tiecks [5],
good and effective separation between all 10 autoregulatory responses ARI can be achieved. To this
end an ARMA model is used (with order 2,2) and adapted for a sampling frequency of 1 Hz. It is
shown that the step responses obtained from the different sampling frequencies are in good

agreement (Figure 4-2).

Next, it is showed that by going to the cepstrum domain, the distance between to ARMA models can
be measured as the difference between their cepstrum coefficients [119, 131]. Moving to the
cepstrum domain has the advantages of simplicity (convolution in time domain is addition in
cepstrum domain) and reduction of the dimension of the spectral vector [132]. Based on the
simulation using Tiecks models, it is shown that in dynamic assessment of autoregulation, going to
the cepstrum domain, gives clearer separation between different levels of than simple distances
between frequency responses (Figure 4-4 and Figure 4-5). Then ARMA models with order 2,2 are
applied to the ABP and CBFV data recorded in volunteers and the SSD between different
combinations of normocapnia and hypercapnia (NC — NC,HC — HC and NC — HC) are calculated.
The results show that the SSD between two different conditions (NC — HC) are greater than the
distance calculated from two measurements with the same condition (NC — NC or HC — HC); 1.27

for NC — HC compared to 1.06 and 1.05 for NC — NC and HC — HC respectively. The Euclidian
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distance for P1 and H1 are calculated for all the conditions (NC — NC, HC — HC and NC — HC).

The results of the mean of the distances for these three groups are shown in Table 4.3.

In order to test the benefit of this novel data driven approach using SSD, similar methods on some
more conventional autoregulatory parameters are employed [73-75] and are used in previous
chapters. Comparisons are made using LOOCV (section 4.3.5.1). The results from this test shows
considerable superiority of SSD over P1 and H1 with only 7 misclassifications compared to 12 and
14 for P1 and H1, respectively. Next cluster separation is used as a criteria of how separated the

three difference groups (NC — NC,HC — HC and NC — HC) are from each other.

Inter- and intra-subject variability is a big issue when it comes to the assessment of cerebral
autoregulation [47, 74, 97, 102]. There is no ‘gold standard’ in the assessment of autoregulation [47,
74, 133, 134]. In order to study the variability of this novel approach and compare it to our other
autoregulatory parameters, cluster separation is used. The result showed the advantage of using
SSD over P1 and H1 with the cluster separation of 0.83 for SSD, compared to 0.29 and 0.23 using

other two autoregulatory parameters respectively (Table 4.5).

One requirement in applying SSD as a method for assessing autoregulation is the need to choose
the order of the ARMA models, which might have a major effect on results. In this work ARMA
model of order (2,2) is used to facilitate comparison with the initial simulations based on the Tiecks
model. This model order has also been used by other authors [97]. In order to probe this choice
further, the method is also applied using a simpler model of 2,0 ARMA model (FIR filter with only 2
lags which was originally used by Simpson et al. [102]) and almost similar results were found. The
reason behind choosing the original ARMA model with 2,2 was to be compatible with our original
order chosen for the Tiecks model and to be in agreement with the literature [97], however as
mentioned, with simpler model, slightly better result are achieved, which suggest further

investigation can be carried out in this section (maybe AIC to calculate the best model order).

An important point that has to be considered is that, in order to measure the SSD between two
models, it is not required that both models have the same orders (they only need to be stable), and
the distance can be measured from two ARMA models with different orders and structures. This
might be appropriate when recordings have very different durations (where the principle of
parsimony would indicate that for shorter recordings lower model orders are indicated) or
recordings may show very different spectral characteristics. However in this work, average ARMA

model is used as the reference model and using models with different orders cannot be applied.
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The results from LOOCV showed 7 misclassification for SSD and 14 and 16 for P1 and H1,
respectively. The results one-tailed z-test of two proportions showed that classification using SSD
was significantly different compared to P1 and H1, however classification using P1 and H1 showed
no significant difference. The poorer result may be result from the effect of each subject in both
training and validation (even though they were measured in two different seasons, but deeper

analysis is required in this area).

One issue in using SSD as a method to assess cerebral autoregulation is that the ARMA models are
required to be stable [119]. However this will not always be the case (especially with higher order
models), but with small order ARMA models this is usually the case. In the case of assessment of
autoregulation in the dataset in hand, no measurement found to be unstable with the chosen orders

in this chapter.

Another issue of using the SSD is that the models fed to the model are required to be single-input-
singe-output (SISO) models. However, it may be possible that this model can be extended to
measure the distance between multi-input-single-output (MIS0). This may permit the inclusion of
for, example Pgrco,, Which the previous chapter showed to improve the assessment of
autoregulation. However, multivariate model of SSD has not be done and could be the next stage in

this work.

Another issue using SSD that has arisen, is the big dispersion of autoregulatory parameters within
the groups, as can be seen from the large standard deviation in each group shown in Table 4.5
compared to their mean values. This indicates that it is hard to separate the groups from each other
and grey area between the groups still exists as reported by others [93, 97, 102]. However the
results from cluster separation shows better separation between these groups using SSD compared
to P1 and H1. The results suggest that the grey area between the cluster of SSD of NC — NC,
NC — HC and HC — HC are separated better compared to P1 and H1.

4.6 Conclusion

The results from this work show that subspace distance can provide a novel approach for assessing
autoregulation, and the results suggest better performance than more conventional alternatives.
The method requires that the models are stable. The main advantage of this method is that it does
not require the choice of parameters to quantify autoregulation to be picked by the researcher, but
is driven by the data (the model) itself. The method is found to be promising, but requires further

evaluation with larger datasets. Orders of the ARMA models are chosen based on the model orders
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chosen previously used in Tiecks models. However model investigation on the order of ARMA model
using probably AIC would be ideal as the choice of the order ARMA plays an important role in
applying SSD. Multivariate SSD can also be the next step in applying SSD to cerebral autoregulation
as we have already shown in Chapter 3 that including Pgrco, can improve the assessment of

autoregulation.
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Chapter 5 : Multivariate time-varying
analysis of cerebral autoregulation in

response to changes in Pgrco,

In this work, the contributions of spontaneous beat-to-beat mean arterial blood pressure (ABP) and
breath-by-breath carbon dioxide of end-tidal CO; (Pgrc¢o,) on fluctuations of beat-to-beat cerebral
blood flow velocity (CBFV) variation using linear time-varying models in normal subjects at rest is

studied.

Cerebral autoregulation has been widely studied using linear filter system using arterial blood
pressure (ABP) and cerebral blood flow velocity (CBFV) as input and output respectively. The time-
varying characteristic of cerebal autoregulation during step-wise changes in arterial Pgrco,using
adaptive filters has already been studied [114]. The aim of this chapter is to investigate time-varying
characteristic of dynamic cerebral autoregulation using multivariate (ABP and Pgrco,) adaptive
filters (multivariate recursive least square (MI — RLS) and multivariate moving window (MI —
MW)). Here single input RLS (SI — RLS), single input moving window (SI — MW), multi-input
moving window (MI — MW) and MI — RLS methods are also applied to baseline, hypercapnia and
normocapnia (second baseline; after hypercapnia) measurements from volunteers, individually.
Autoregulation is quantified by both time-varying phase lead and amplitude using pressure pulse
response (PPR) as discussed in section 3.3.2, it is noticed that the multivariate models can remove
the transient at the beginning of hypercapnia compared to the univariate models and autoregulatory
parameters extracted from MI — RLS provide the least variation over time (1 and 2.69 rad for the
mean of variations for the phase at 0.1 Hz), as well as the largest separation between normo- and
hypercapnia. The analysis of experimental measurements from healthy volunteers shows that by
using time-varying multiple coherence of CBFV, with ABP and Pgrco,, significantly higher values in
the transient phase between normocapnia to hypercapnia compared to the values obtained from
univariate time-varying coherence function at these stages. The results illustrate that at low
frequencies and for the transients, the low value of univariate coherence may be due to the effect of

Pgrco, on the variations of CBFV.

99



5.1 Introduction

The coherence function between ABP and CBFV, exhibits low values in the low frequency region,
which questions the validity of the linear ABP — CBFV relationship of the cerebral autoregulation at
these frequencies [135, 136]. More sophisticated system identification can be applied to study the
effect of nonlinearity and non-stationarity of cerebral autoregulation [23, 35, 92, 93, 137] although
this is not universally accepted. They showed that by including Pgrco, and nonlinearity and the
cross-effect of Pgrcp, on ABP (section 2.9), variation in CBFV can be almost fully explained. Peng et
al. [91], used a multivariate coherence function with ABP, Pgr¢o, and end-tidal oxygen (Pgro,) as
inputs and showed that multiple coherence provide significantly higher values at f < 0.05 Hz
compared to the corresponding univariate coherence with ABP which indicate that alongside
nonlinearity and non-stationarity in the system and signals respectively, other physiological signals

also have great impact on CBFV [90, 138].

On the other hand, there is large inter- and intra-subject variability in the assessment of
autoregulation when short periods of data was analyzed using only spontaneous variations in ABP
and CBFV [47, 74, 90, 114, 133, 139, 140]. It is known that increasing arterial CO, causes cerebral
vasodilation, and impairs cerebral autoregulation temporarily. This can be exploited by switching
between ambient air and in air/5% CO, mixture to assess cerebral autoregulation to investigate
impairment statuses [46, 88, 90, 93, 114, 141-143]. Liu et al. [114] studied the speed of the changes

in autoregulation as a result of transient in partial pressure of CO, in the blood (Py¢o,)-

In this chapter, the assessment of autoregulation using multivariate time-varying methods is
explored. The aim of this chapter is to assess the transient changes in autoregulation as the result of
breathing 5% CO, using both ABP and Pgrco, as inputs to adaptive filters and comparing it to a

univariate model with just ABP as input.

In the next section, the data acquisition procedure is introduced. Then the adaptive filter methods
are described, followed by a description of the autoregulatory parameters used for the assessment
of cerebral autoregulation are outlined. In the following section, the results of tracking time-varying

dynamic autoregulation are shown, followed by discussion and suggestions for future work.
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5.2 Methods

5.2.1 Data Collection and processing

The same dataset used in the Chapter 4 was used in this work (section 4.2). Participants were asked
to assume a supine position. After a brief settling down period, brachial ABP was measured and the
thigh cuffs were placed. Once connected to the inflation system, a trial inflation/deflation cycle was
performed to familiarize participants with the procedure. ABP was monitored non-invasively using
the arterial volume clamping method (Finapres, Ohmeda 2300, Louisville, CO, USA). Freehand
transcranial Doppler (SciMed QVL 120, SciMed, Bristol, UK) identification of the right middle
cerebral artery (MCA) was performed using a 2 MHz probe, which was then held in place by an
elastic head-band during data acquisition. Following a 5 minutes baseline recording, each participant
underwent four more 5 minutes recordings, corresponding to all possible combinations between the
two sequences and the two high thigh cuff pressure settings. All manoeuvres were performed in a
random order. However for the sake of this chapter, only the baseline and high CO, (5%) and

second baseline (hormpcapnia) recordings are used.

The mean arterial ABP and CBFV are then calculated by low-pass filtering (cut-off frequency
0.4 Hz; zero phase filter [39, 46]) and the mean was removed from the signals. The resultant signals

were resampled at 1 Hz.

5.2.2 System identification

As mentioned above the segments of data obtained at baseline, hypercapnia and second baseline
(normocapnia) are visually inspected and the mean values were removed. From the time series

for ABP [p(n)], Pgrco, [c(n)] and CBFV [v(n)], the latter is modeled as below [144] where v(n) is

modeled with p(n) and c(n) as inputs.

va_l Ley—1

) = Y hpu@Op(1= D+ Y hay(De(n—)) +e() 5.1
i=0 j=0

where e(n) is noise and h,, (i) and h, (i) are the coefficients of the causal FIR filter which are

estimated using a multivariate least-squares fit, using

H = RxxRxy 5.2

Here H is the matrix of the FIR coefficients
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H = [hpy(0)... hpy(Lpy — 1), hey (0)... hey(Ley — D]T 5.3

In above equation L,, and L., are the lengths of the FIR filters for hy, and h,, respectively.

R R R
Ryx = e ch] is the auto-correlation matrix of the inputs and Ryy = [.F¥

is the cross-
Rpc cc RCV]

correlation matrix between the inputs and v(n).

The above equations for the multivariate model can be simplified to a univariate model by removing
one input. For instance, by removing the effect of Pgr¢o, the auto-correlation and cross-correlation

matrices employed in eq.5.2 would become, Rxx = [Ry,p] and Rxy = [Rpy].

In this work, 6 and 20 seconds are chosen for L,,, and L, respectively. These values are chosen
based on the previous work done by other authors [29, 90, 91, 141]. It has been shown that these

impulse response lengths can cover most of the important effects of ABP and Pgrco, -

In order to estimate the time-varying characteristics of autoregulation, a sliding-window version of
above equation with a window size (WS) of 60 sec [53] are used to be able to capture variations in
CBFV and the characteristics of cerebral autoregulation. The H matrix is recalculated for each
window and the window is advanced by one sample steps. Different autoregulatory parameters are

then calculated from H to quantify cerebral autoregulation as is explained later.
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5.2.3 Multivariate RLS analysis

The univariate RLS model previously used by Liu et al. [114] was extended to a multivariate RLS

method as [144]

A7P,(n— Dp(n)

1+ )L‘leEn)Pp(n - Dx(n)’ O0=<i=1D >4
A71P.(n — 1)c(n)

1+ A x(n)P.(n— Dc(n)’

kp n) =

kc(n) = (0<1<1) 5.5

where in the above equations 0 < 1 < 1 is the forgetting factor and P(n) = R;;! is the inverse
autocorrelation matrix of the input signals at sample n and k(n) is the Kalman gain vector. The error

at the n*" sample was the calculated using

e(n) =v(n) —Hn—1)Tx(n) 5.6

Where x(n) in above equation is a vector and H(n — 1)7 in above equation is

H v(n - 1)
Hn-1)= [HZc(n B 1)] 5.7
Hpy(n — 1) = [hyy(n).... hyy(Lyy — 1) 00...0] 5.8
Hey(n— 1) = [hey(0) ..o hey(Ley — 1)] 5.9

In order to be able to put two rows of different length (as the length of impulse response for ABP
and Pgrco, are chosen differently) into one vector, H,,, was zero-padded to have the same length as

H_,. This was also done for x(n).

_ [xp(m)
x(n) = [x’c’ (n)] 5.10
xp(n) = [p(n — Lpy)...p(n) 00...0] 5.11
x.m)=[c(n—Lg)... c(n)] 5.12
These are updated sample by sample using
Hn)=Hn-1)+ e(n)k(n) 5.13
where
_ k()
k(n) = [ki(n)] 5.14

Next P(n) for each input was updated and the output y(n) are calculated and the error from the

measured v(n) is updated.
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Py () = 27 P jpy(n— 1) — A7 kg (M) Xy ()T Pejp(n — 1) 5.15
y(n) = H'x(n),e(n) = v(n) — y(n) 5.16

where in above equation c/p indicates either c or p.

In order to improve the performance of the models, the system is initialized with H(n) calculated
from a multivariate FIR filter (Wiener filter) using the whole set of data. This helps to reduce the
large error at the beginning of the process whilst the RLS method converges. In this study, same
values used by Liu et al. [114] for A = 0.98 is used, as these values showed relatively low error

estimation at the beginning of the adaptation of the datasets.

5.2.4 Multivariate Coherence function

P(f),C(f) and V(f) as the frequency-domain transforms of p(t), c(t) and v(t) are computed using
an FFT algorithm. The power spectrum and the cross spectrum of these signals can be measured

using [124]:

Gppyecy(f) = E[(P/C/V)*(FIP/C/V()] 5.17

Gowyer(f) = ELP/CY (AV(F)] 5.18

where Gpp,/cc/vv(f) are the power spectrum of P(f) or C(f) or V(f) and Gpy /ey is the cross-
spectrum between ABP or Pgrco, and, and the expected value of the complex product is obtained
with the Welch method by smoothing the spectra with a 128 —point Hanning window (128 seconds;
which gives good resolution to study the effect of cerebral autoregulation at around 0.1 Hz) with

50% overlap.

The univariate coherence function I'Z(f) between p and v is defined by:

6O
Goo () Gpp (f)

The coherence function tells how much of the output can be linearly explained by the input over

L (f) =

different frequency ranges.

It has also been shown [138] that the complex transfer function Hp,,(f) and H.,(f) can model the

output signal with p(t) and c(t) as inputs using

Y(f) = Hppo(N)P(f) + Hey (F)C(S) 5.20
By using above equations the system auto-spectrum of the model input can be written in matrix

form as:
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Gyy(f) = E[Y* ()Y ()] 5.21

By using above equations and the definition of coherence as the explained variation of the output

over the total variation, the multiple coherence I'Z (f) is defined as:

Gyy (f)
Gy (f)

In this chapter, both the univariate and multivariate coherence at different samples are calculated to

Li(f) = 5.22

be able to capture the autoregulatory parameter characteristic as the state of autoregulation

changes:

Gyy(f. t;
hi(f.t) = ng E)) 5.23

i=N-WS,..,N
Where t; in the above equation is the sample time, N is the length of the signals (in samples) and

WS is the window size. Thus the coherence is estimated using the last WS samples of the measured

p(t), c(t) and v(t).

5.2.5 Autoregulatory parameters

By applying univariate and multivariate time-varying models (RLS and moving window) discussed in
the previous section, different autoregulatory parameters can be extracted as the characteristics of

the models changes with time using these different techniques. In this work, time-varying
autoregulation is estimated using the phase lead between p(t) and v(t) at 1—12Hz which has been

widely used [65, 73, 98] as an indication of the status of cerebral autoregulation. Birch et al. [139]
reported a mean phase-lead of 46 + 14° at 0.05 Hz and Diehl et al. [69] reported a phase-lead of
70.5 + 29.5%t 0.1 Hz. Both of the mentioned studies agree on phase-lead reduction when
autoregulation is impaired. This phase-lead has since been become one of the most important
measures of cerebral autoregulation. In this work, the impulse responses for the ABP (Hp,),
calculated from the different univariate and multivariate time-varying moving-window and RLS
filters are transformed into frequency domain by FFT, and the phase angle (phase lead) is estimated

at 1/12 Hz for each estimate.

The amplitude at 8 sec (A8) of the response of the system to a pressure pulse input (PPI) as
introduced in section 3.3.2 is also considered. It was shown that this novel input has more realistic
characteristics as our real input in term of power spectrum as shown in Figure 3-4 [102]. This has
also been shown to be superior to phase at 1/12 Hz for the assessment of autoregulation in terms

of inter- and intra-subject variability and robustness (section 3.3.3.1 and 3.3.3.2). In this method,
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instead of feeding a step or an impulse to the system and calculating the response a cosine wave
modulated by a Gaussian envelope is used. It is shown Figure 3-4 that this input has more realistic
characteristics compared to step and impulse input, with respect to those observed in
spontaneously varying ABP and its central frequency can be chosen considering the autoregulatory
system where is often selected around 0.1 Hz [73, 139]. This allows us to study autoregulation in
frequency bands where autoregulation is known to be working. It can also be seen that PPI has a
wider frequency range around 0.1 Hz which enables to capture more information around this

frequency which would result in better assessment of autoregulation.

The time-varying models introduced in section 5.2.2 are then applied on recorded ABP, Pgr¢o, and
CBFV to capture the time-varying characteristics and multivariate structure of cerebral
autoregulation during baseline, hypercapnia and normocapnia. The changes of the phase lead and
the amplitude at 8 seconds from the pressure pulse response (PPR) are also looked at to firstly
observe how fast the autoregulatory parameters change following step-wise changes in Pgr¢o,, and
secondly to study the effect of multivariate time-varying models compared to univariate time-

varying models. In the next section, the results from these models are presented.

5.3 Results

The meant standard deviation of ABP, Pgrco, and CBFV averaged over the time of recordings for
all 57 recordings are given in Table 5.1. The results here are in agreement with literature which
indicates the increase of CBFV in the hypercapnia stage. The results from the paired-wise test
shows that the increase in CBFV during hypercapnia stage is significantly different to both baseline

and normocapnia stage (p < 0.05), whilst it was the case for ABP (p = 0.055).

Mean+STD of ABP Meanz STD of Pgrco, Meant STD of CBFV
Baseline 88.34 + 14.58 39.47 £ 3.21 56.45 +11.31
Hypercapnia 94.55+ 1841 47.94 + 2.89 70.73 + 16.44
Normocapnia 89.55 + 13.44 3796 £ 3.21 54.16 + 11.77

Table 5.1 Mean + STD of ABP,PTCO, and CBFYV for all 57 measurements

Table 5.2 presents the normalize mean square error (NMSE) for the comparison between the
desired CBFV and the model outputs averaged over all the measurements in baseline, normocapnia
and hypercapnia. It can be observed that the NMSE for the multivariate RLS improved 16.56%
relative to SI — RLS. A decrease in variability across subjects is also noticed (11.64%). The same

improvement is also observed from multivariate to univariate moving window models (32.51% and
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31.96% respectively). A paired t-test is then employed to analyse the statistical significance of the
difference between the univariate and multivariate models. The results illustrates that the NMSE
from the multivariate models are significantly different with the significant level of (p < 5%).
However the results also show that the multivariate RLS and moving-window methods are not
significantly different (p = 11.43%). This illustrates that the multivariate RLS and moving window

models are not significantly different in terms of model fit.

Model NMSE + STD (%)
Single-Input RLS 47.41 + 11.55
Multiple-Input RLS 39.56 + 9.86
Single-Input Moving Window 52.99 + 13.86
Multiple-Input Moving Window 35.76 £ 9.43

Table 5.2 Normalized mean square error (NMSE %) for different signal processing models

Figure 5-1 shows the results for the autoregulatory parameters; phase lead and A8 averaged over 57
measurements calculated during different stages (baseline, hypercapnia, second baseline;
normocapnia). It can be noted that in hypercapnia there is a transient from normocapnia to the
opening of the valve of CO, (Figure 5-3). There is also an adaptation period for the coefficients and
the corresponding autoregulatory parameters which can be seen at the beginning of all the stages as
is shown in Figure 5-1. The positive phase indicates that CBFV leads ABP which is in agreement
with other studies [65, 69]. The results also show that phase lead and A8 both decrease with the
incensement of Pgrcp, which impairs autoregulation as shown by other authors [65, 69]. It can be
seen from Figure 5-1, that the average autoregulatory parameters over all 57 recordings extracted
from different models provide almost the same results when they are in the normocapnia stage,
however the results differ when the subject are in the hypercapnia stage. This indicates that the

effect of variation in Pgrco, on CBFV is more apparent when the subject experiences hypercapnia.
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Figure 5-1 Phase at 0.1 Hz and amplitude at 8sec averaged over all 57 measurements for different CO, levels

It has to be noted that the filters are initialized using a univariate or multivariate FIR filter to reduce
the adaptation period at the beginning of the procedures. This adaption period can be seen at the

start of all autoregulatory parameters (lower values at the start).

Different autoregulatory parameters are then synchronized at the hypercapnia stages based on the
trigger of step-up or down of Pgrco, as shown in Figure 5-2 the 4.6% of Pgr¢o, was used as the
trigger point. The top row shows the first 200 seconds of the autoregulatory parameters at the
onset and the bottom row shows the last 200 seconds of the autoregulatory parameters in the
hypercapnia stage. It can be seen that Pgr¢o, takes up to almost 85 seconds from opening the valve
to reach hypercapnia (to the dashed line in Figure 5-2). In order to synchronize different
autoregulatory parameters, the point of hypercapnia is used as the trigger of hypercapnia. The mean
of the synchronized phase lead and A8 based on the trigger of Pgr¢(, are shown in Figure 5-2. It can
be seen from the top row in Figure 5-2, that the delay in the phase leads due to slowness of CO,

response calculated from the SI models are more evident at Pgr¢o, step-up compared to step-

down.
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The mean value of CBFV during normocapnia (Table 5.1) and its increase at the onset of
hypercapnia and its decrease when in baseline are in agreement with previous works [46, 63, 88,
112, 142]. As mentioned before, phase lead and A8 both decreased during hypercapnia as
autoregulation is impaired and returned at the end of hypercapnia as reported previously [46, 73,
90, 142]. Liu [145] also showed that autoregulation deteriorates rather more slowly during the onset
of hypercapnia compared to its recovery on return to normocapnia. However, here it is shown that
that by including Pgrco, in the models the transient of the autoregulatory parameters can be
reduced at the onset of Pgr¢o, (Figure 5-2). The results show that at the onset of hypercapnia the
univariate models require around 150 sec to reach a plateau whilst multivariate models show a
much more abrupt change. At the offset of Pgrco, the results have more consistency between the

models with the difference being at the mean values (Figure 5-2, bottom row)
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Figure 5-2 the first 200 sec and the last 200 sec of phase at 0.1 Hz and amplitude at 8 sec at the onset (top row) and

offset of hypercapnia (bottom row), shown with the dashed line averaged over 57 recordings

Figure 5-4 shows the mean results of the last 200 seconds of the normocapnia followed by the
starting 200 seconds after the onset of hypercapnia (opening of the valve; Figure 5-3) of the

synchronized autoregulatory parameters.
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Figure 5-3 Pgr¢o, during hypercapnia averaged over all recordings, The dashed lines show the triggers of the onset and
offset of high CO,

Figure 5-4 also shows the last 200 seconds before the offset of hypercapnia followed by the first
200 seconds of the normocapnia of the adjusted autoregulatory parameters with respect with the
onset and offset of high CO,. The standard deviations of these parameters at different stages are
also shown in the figure with vertical bars. The results showed wide inter-subject variability which
was expected as shown previously [97, 98, 139]. The vertical bars in this figure, corresponds to the
STD of the mean values, during the window of 100 to 150 seconds or 350 to 400 seconds. The
reason behind choosing these windows are to be able to compare the models after passing the

transient stage.

At the onset of hypercapnia, the models are adapting to the change from normocapnia to
hypercapnia. As the last 200 seconds of normocapnia is used for the comparison between NC and
HC, as this stage the initial transient while the RLS filter adaptation has passed as can be seen

Figure 5-1.
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Figure 5-4 The last 200 seconds normocapnia followed by the first 200 seconds of hypercapnia at the onset of hypercapnia
(top row) and the last 200 seconds of hypercapnia followed by the first 200 seconds of normocapnia (bottom row),
averaged over 57 recordings phase at 0.1 Hz and amplitude at 8 seconds. The vertical lines correspond to the STD of the
models averaged over windows of 100 to 150 seconds and 300 to 350 seconds. The discountinouty between different

protocols should be considered (shown with three dots)

It has to be noted that, there would appear to be a discontinuity between normocapnia and
hypercapnia in above figure at 200 seconds, this is an artifact because two sets of results are shown
together in the above figure. Another point that needs to be considered is that, the adaptation is
stopped at the end of each recording and each stage (baseline, hypercapnia and second baseline)
and is started again for the next recording or stage; consequently, the sets of results are not

dependent.

Table 5.3 shows the mean+STD of the autoregulatory parameters along time across all the
measurements for the different 200 seconds segments mentioned above. The results show the
decrease of 16.81 to 9.36 from univariate to multivariate RLS method in the hypercapnia at the
start of the onset of high C0O, using the phase lead. It has to be noted that a smaller mean and the
higher STD value for univariate models in the hypercapnia stages were as the result of the transient
at the beginning of the process. The reduced STD from the multivariate model compared to

univariate model shows the ability of multivariate model to deal with the transient.
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This reduction in STD was also considerable when the last 200 seconds of hypercapnia at the offset
of Pgrco, is considered. Standard deviation and mean values are not good indications of a good
model in terms of the assessment of autoregulation, as they are related and it is hard to compare

results of small STD with small mean with large STD with a large mean value.

Table 5.4 shows the results for the cluster separation which can be used as a criteria of how
separated the results from different groups are. Cluster separation (section 3.4.2.3) uses the mean

and the standard deviation of each segment and measures the average between their standard

Phase at 0.1 Hz

Model NCinNC — HC HCinNC—HC | HCinHC — NC NCinHC — NC
Single-Input RLS 46.87 £ 8.63 17.81+16.81 | 20.31 +12.28 49.36 £ 5.01
Multiple-Input RLS 46.97 + 7.83 30.75 £ 9.36 3092 +7.34 49.38 +4.42
Single-Input Moving Window 46.92 + 14.44 26.09 +17.41 | 25.40 £+ 18.31 48.46 + 8.51
Multiple-Input Moving Window 46.60 + 15.60 31.724+12.68 | 31.63 +£13.19 49.23 £9.08

Amplitude at 8 seconds (48) (x 1072)
Single-Input RLS 61.60 + 18.29 9.70 £+ 38.74 10.95 + 25.97 77.09 +10.73
Multiple-Input RLS 63.34 + 17.30 30.38+20.13 | 28.24 +£15.36 77.08 + 10.19
Single-Input Moving Window 60.60 + 27.38 19.22 £ 31.63 | 17.52 +30.41 73.68 + 16.24
Multiple-Input Moving Window 62.90 + 32.57 30.49 +£27.29 | 2492 + 27.69 74.95 + 18.46

Table 5.3 Averaged mean + STD for phase 0.1 Hz and amplitude at 8 sec during different data sections for different

models at the onset and offset of CO,
deviation normalized by the difference between their mean values (eq.4.37-eq.4.39). Bigger values
in cluster separation correspond to better separation between NC and HC. The results show that for
the RLS models, in phase lead, the separation can be improved by 190% and 123% for the onset and
the offset of hypercapnia respectively whilst these values were -25.51% (i.e worse) and 121%
for A8. The results also show that the univariate and multivariate moving window methods perform
poorly compared to RLS methods. It has to be noted that for these analysis the transient at the

beginning of the data are removed.
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Phase at 0.1 Hz Amplitude at 8 sec
Model NC—> HC HC—> NC NC—> HC HC—> NC
Single-Input RLS 8.32 15.46 12.62 13.59
Multiple-Input RLS 15.88 19.13 9.40 16.48
Single-Input Moving Window 5.15 5.93 8.06 13.80
Multiple-Input Moving Window 4.90 6.90 430 10.79

Table 5.4 Cluster separation value for the onset and offset of CO, for

different time-varying models

By using the coherence function discussed in section 5.2.4. Figure 5-5 shows the time-varying
univariate coherence measured between ABP as input and CBFV as output and time-varying
multivariate coherence measured with ABP, Pgrco, as inputs and CBFV as output, averaged over all
57 recordings. In this work, the data are synchronized by the trigger of onset and offset of Pgrco,
and show the last 200 sec of normocapnia and first 200 sec of hypercapnia after the trigger of the

valve. In this figure, the coherence as a function of both time and frequency can be observed.

It is apparent from the results that univariate coherence provides lower values at low frequencies
(f < 0.05 Hz) at all the stages of measurement (sz(f) < 0.30). However at these frequencies the
multivariate coherence function provides much higher values (I'Z(f) > 0.45) for different levels of
Pgrco, which is in agreement with the finding of previous authors [91, 138]. It is also observed
multivariate coherence provided higher values (I'Z(f) > 0.58) when the subject is in hypercapnia
(impaired autoregulation). It has to be noted that as the recordings were low-pass filtered with cut-

off frequency at 0.4 Hz.
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Figure 5-5 Univariate (left column) and multivariate (right column) coherence function at different times at the onset and

offset of CO, averaged over all 57 recordings

It can also be seen from above figure that at the transient between baseline to hypercapnia at the
onset of hypercapnia and also at the transient between hypercapnia to normocapnia at the offset of
hypercapnia, coherence measured from the univariate model provides lower values (Fﬁ (f) < 0.53)
compared to coherence calculated from multivariate mode (Fﬁ (f) > 0.68) in the frequency ranges
0.12 < f < 0.32 Hz. However the results at other frequency bands or in the steady state of the
measurements provide similar results. This illustrates that the contribution of the additional input
(Perco, term ) is firstly at low frequencies which is consistent with the finding of [35, 46, 93], and it
can also improve the linear model fit and hence ability to explain of CBFV at higher

frequencies(0.12 < f < 0.32 Hz) when the transient section is studied.

A paired t-test analysis is also carried out in order to check the significance difference between
univariate and multivariate coherence function at different frequency range and also at different

times.
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Figure 5-6 paired t-test between univariate and multivariate coherence functionat different times at the onset and offset of

CO, averaged over 57 recordings

Figure 5-6 illustrates the results of this test. The trigger between normocapnia and hypercapnia and
vice versa is at t = 200 seconds. It is apparent from Figure 5-6 that time-varying multivariate
coherence using ABP and Pgrco, provides significanltly different results when it is compared to
univariate coherence with just ABP at both low frequencies (f < 0.05 Hz) and in the transient
between the onset and offset of PETCO, (top figure). However the results show that time-varying
models are not significantly different at frequencies 0.05 < f < 0.4 Hz in steady stage which
indicates that univariate time-varying models with only ABP is adequate to explain the

characteristics of CBFV at those frequencies.
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5.4 Discussion

Univariate and multivariate time-varying analysis of the dynamics of cerebral autoregulation using
RLS and moving-window analysis have been carried out in this study. This is achieved by using the
relationship between ABP — CBFV and ABP, Pgr¢co, = CBFV during step-wise changes in Pgrco, -
The results showed that by adding Pgrco,to univariate model (ABP — CBFV) in addition to the
improvement to the model fit, better assessment of autoregulation in term of better separation
between normocapnia and hypercapnia using autoregulatory parameters used in this chapter (phase
at 0.1 Hz and amplitude at 8 seconds using PPI) can be achieved. The results also show that the
effect of Pgrco, toward the spontaneous changes in CBFV is significantly higher in hypercapnia
compared to normocapnia. It is also shown that multivariate coherence provided higher values at
the transient phase between normocapnia to hypercapnia and vice versa and it is also shown that it
is significantly different to univariate models during this transients and at low frequencies

(f < 0.1 Hz) (Figure 5-6).

Many authors have used univariate models using ABP as input to study CBFV variability. However it
is known that ABP is not the only factor for the spontaneous changes in CBFV [23, 35, 90, 93]. CO,
is one of many factor or a specially important one and it has vasodilatory effect on cerebral vessels,
increasing CBFV [73]. Different studies have been carried out to characterize the dynamic
relationship between CO, — CBFV by either measuring the response of CBFV to a step change in
end-tidal CO, [88, 89], or by continuous recording of breath-by-breath spontaneous fluctuations in
CO0, [39, 74, 98, 114]. The multivariate analysis of the dynamic cerebral autoregulation using linear
and nonlinear methods has also been studied [35, 90-93]. Mitsis et al. [92] and Kouchakpour et al.
[93], showed that Pgr(o, as the secondary input can improve the model fit and further showed that
the nonlinear interaction between ABP and Pgr¢o, has also a major contribution toward CBFV
variability. Peng et al. [91] also showed that the low values of coherence in low frequency range
(f < 0.04) is partly due to the effect of CO,. Mitsis et al. [35] and in section 3.3.2 confirmed this
result by showing the power spectra of the residual using multivariate nonlinear model can be
brought down to almost zero over the whole of the frequency range (0 — 0.5 Hz) which suggest that
CBFV variability can almost be explained to a very large extent using nonlinear model with ABP and

Pgrco, as inputs.

It is also known that the dynamic relationship between ABP and CBFV is time varying [85, 87]. Liu
et al. [114], showed that the dynamic relationship between ABP and CBFV can be studied using

time-varying adaptive RLS method. Liu et al. [114] used phase lead as the autoregulatory parameter
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to assess autoregulation and found that the cerebral autoregulation responses to the Pgr¢o, step-up
are significantly slower than those to the Pgrco, step-down. Peng et al. [146] used CO, reactivity to
modify the phase relationship between ABP and CBFV in the low-frequency band. Payne et al.
[146] suggested that the low value of the synchronization index at low frequency does not mean
that ABP and CBFV are not related but they relationship is distorted in that frequency range by
CO,. He showed that by including CO, the estimated phase shift of ABP — CBFV system can be

increased significantly in the low-frequency band.

In this work the univariate time-varying adaptive RLS algorithm is modified to include the effect of
Pgrco, on the variation of CBFV, both univariate and multivariate moving-window methods are also
applied to assess cerebral autoregulation. The results show that multivariate models improve the
model fit compared to univariate models for RLS and moving-windows by 16.55% and 32.08%
(NMSE) respectively. Phase lead and amplitude at 8 seconds from the response of the system to a
pressure pulse response (PPR) are used as autoregulatory parameters to assess autoregulation. The
results show reduction in the autoregulatory parameters when the subjects went from normocapnia
to hypercapnia in all the models. However multivariate RLS method shows better cluster separation

compared to other univariate time-varying adaptive methods.

The results from the coherence function using both univariate and multivariate models also show
that the impact of Pgrco, on the variation of CBFV is higher when the subject in hypercapnia

compared to normocapnia.

The results from the time-frequency coherence function also show that the low values of coherence
at low frequencies is partly due to the effect of Pgrcp,, Which is in agreement with the finding of
Peng et al. [91], but also the low values at the transient between normocapnia and hypercapnia can
be increased by including Pgrco, Which has not been noted previsouly. The results also show that
the improvement in separating NC at the onset and offset of CO,from HC for SI — RLS and
MI — RLS is small and large scatter between subjects is observed. However the results from cluster
separation of phase lead demonstrate that the multivariate time-varying models provide better
results compared to the corresponding univariate models. The significance test comparing univariate
and multivariate time-frequency coherence (Figure 5-6) show that the improvements in the low
frequency range and at the transient between normocapnia to hypercapnia and vice versa are
significant which shows the importance of Pgrco, in the assessment of autoregulation. Pgr¢o, and
ABP are not the only parameters to affect CBFV variability (even though they can explain most of
the variability), so models to study the effect of other parameters such as 0, may improve the

estimation of the dynamics of the cerebral autoregulation system. This can be used as the next step.
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It has to be noted that the difference between RLS and MW models is raised based on the choice of
the window length and the value of A. As the result of these differences, it is impossible to simply
and objectively compare the performance of these two approaches as their initialization is different
[86]. However the results suggest that by adding Pgrco, as a secondary input to the univariate
model, in both cases the analysis can be improved in term of both model fit and the assessment of

autoregulation.

5.5 Conclusion

In this chapter the dynamic relationship between arterial blood pressure and cerebral blood flow
velocity was viewed as time-varying and nonlinear and time-varying algorithms (RLS and moving
window) are shown to be able to track time-varying characteristics of dynamic cerebral
autoregulation. In this work, it is first shown that by having Pgrco, as the secondary input, the
NMSE is improved compared to univariate models (as mathematically necessary). However in this

work only training data could be used and no validation dataset was available.

Previous finding of other authors [91, 138] showed a low coherence value at low frequencies which
suggested that univariate models cannot explain the variability of CBFV at these low frequencies. It
was also shown that the phase lead between ABP and CBFV can be used in the univariate time-
varying RLS method as an assessment of autoregulation. The results now show that multivariate
time-varying model (MI — RLS) with ABP and Pgr¢o, can overcome the overshoot at the beginning

of the transient in the set of data from normo- to hypercapnia.

In this chapter it is also shown that the effect of Pgy¢o,0n the variation of CBFV is more significant
when the subject is in hypercapnia. The result also indicated that the multivariate time-varying
model can improve our coherence value at low frequency range and also at the transient between

normocapnia and hypercapnia and vice versa.
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Chapter 6 : Analysis of new protocol of data
collection using pseudorandom step-wise

changes in pressure using LBNP

6.1 Introduction

In the previous chapters data from spontaneous variations in CBFV and ABP were analyzed during
NC and HC. For the measurement of dynamic cerebral autoregulation many different experimental
and signal analysis methods have been proposed, without a “gold-standard” having emerged [139].
The exploitation of spontaneous variations in arterial blood pressure (ABP) and cerebral blood flow
velocity (CBFV) is now perhaps most common, as it requires minimal interference with the patients.
However, low variability in arterial blood pressure has been associated with limited performance
[139]. Different techniques have been employed to oscillate arterial blood pressure but
measurement reproducibility has been poor. Some of these approaches to create blood pressure
stimuli which have been widely used are: complex changes from natural spontaneous variation [2,
32, 75, 85], periodic variation induced by rhythmic postural changes or slow breathing [65] , step
changes induced by the use of thigh cuffs or carotid artery compression [5, 63]. All these techniques

generate a time series with blood pressure as the input and blood flow velocity as the output.

At Southampton General Hospital a new hardware and software system was developed, for the
measurement of blood flow control, which allowed the inducement of small random, step-wise
changes in blood pressure and inspired carbon dioxide (CO,) level that can be easily and safely
repeated and may be applicable as a clinical tool. This new tool was used to collect a dataset from
31 healthy subjects in two separate sections. The current chapter presents initial results from that

dataset.

This experiment benefited from the use of LBNP (Lower-body-negative pressure) discussed in
section 2.9.1 which generates a controllable pressure variation, around the lower limbs of a subject
resulting in temporary lowering the blood pressure [64]. The experiment also used a valve system to

control the flow of inspired air/C 0, mixture.
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The main aim of this newly proposed experimental paradigm is to increase the variability in the
changes in blood pressure in order to obtain more robust assessment of cerebral autoregulation,
given that it has already been established that increasing ABP variability can improve estimates of
cerebral autoregulation [74, 97]. The protocol of pseudorandom step-wise changes in pressure is
well tolerated by the volunteers. It appears promising for the study of cerebral autoregulation, as a
means of inducing small, well controlled transient increases in blood flow and pressure and is,

somewhat surprisingly, associated with increased performance of autoregulation.

A new GUI (Graphical User Interface) is also built in order to review and edit the collected data and

save it in different formats for further use (Appendix IV).

The first section introduces the experiment and data collection procedure. In the following sections,
data collection procedure and results from the analysis of cerebral autoregulation during different

experimental phases are presented and discussed.

6.2 Methods

6.2.1 Data Collection

All the measurements were performed on 31 healthy adult volunteers between the age of 18 and
50 with no history of cardiovascular disease or other serious medical conditions, under no

medication, not pregnant and with waist measurements below 40 inches.

Each data from each subject were collected in two separate seasons. One subject did not come back

for the second recording (61 recordings all together).

The measurement of blood pressure was carried out using Finapres (section 2.8.2) (Ohmeda
Finapres 2300). The finger which was used for the measurement of blood pressure was rested at
approximately the level of the heart. The blood flow velocity was monitored with a 2 MHz pulsed
transcranial Doppler ultrasound (ulti-Dop T, manufactured by DWL Elektronische Systeme GmbH,
Sipplingen, Germany) from both middle cerebral arteries. The probes were held in position by an
elastic head strap. For the measurement of end tidal carbon dioxide, a computer controlled valve
switched inspired air to 5% CO, in air mixture (fed from a 200 litre Douglas bag). The experiment
consisted of 6 procedures carried out in random order (apart from baseline which was always

collected at the beginning of the experiment).

1. Baseline (NC); the volunteer at rest

2. Hypercapnia (HCO0;); 5% CO0, /air
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Random lower body negative pressure (LBNP)
Hypercapnia+lower body negative pressure (HCO, — LBNP)
Random 5% CO, (RHCO,)

o v & W

Random 5% CO, +lower body negative pressure (RHCO, — LBNP)

6.2.2 Data pre-processing

A typical raw data from all the channels is shown in Figure 6-2. ABP, CBFV and CO, were digitized
at 250 Hz whilst the original sampling frequency of ECG was 500 Hz in order to be able to measure

heart rate (HR) accurately.

Side channel blower

Vacuum Limiter
ELr ==

| Pressure transducers l

Control Valve 7 ﬁﬁ

Wacuum (. oJltlochJ

Doppler

“Fit 1apres

Data Collection

Figure 6-1 Schematic representation of the lower body negative pressure chamber. Taken from [139]

The signals are visually inspected, narrow spikes and artifacts were removed and the ABP signal
calibrated at the beginning of each recording. The systolic and diastolic CBFV and ABP were
calculated automatically by identifying the maximum and minimum values in each heart-beat. Mean
ABP (MABP) and CBFV (MCBFV) were calculated with a 3" order Butterworth filter (applied in
the forward and reverse direction to give zero phase shift) with a cut-off frequency of 0.5 Hz. The
start of each heart cycle was automatically identified from both left and right ABP and ECG and HR
is calculated from these signals. HR was calculated from all these three different signals (left ABP,

right ABP and ECG).
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Figure 6-2 typical recorded signals

The signals are then down-sampled to 1 Hz to increase numerical robustness in parameter
estimation. The resampled data are then band-pass filtered using a 3"¢ order Butterworth filter with
a cuff-off frequency of 0.03 Hz and 0.4 Hz to remove very slow variation and baseline shift and high
frequency components. The removed sections in the data are marked as NaNs (Not-A-Number) in
the calculations. Data are then normalized by their mean value using the following equation to give

the relative changes in the signals

_ X - Xmean

AX 6.1

Xmean

Where X in above equation refers to both ABP and CBFV and AX is the normalized variation of the

data.

The start and end of different procedures are automatically selected from the trigger signals of

LBNP and €0, switch valve (Appendix IV).

In this work, following visual inspection, MABP and CBFV signals from either the left or right side
from Finapres or MCA respectively are chosen for further analysis. Other signals extracted from the

measurements are available for future analysis.
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6.3 Analysis of autoregulation

The phase at 0.1 Hz (P1) [52, 73, 116] and second coefficient of an FIR filter with 2 lags (H1) [74]
are used (section 3.4.2) as parameters for the assessment of cerebral autoregulation. P1 has been
extensively used in the literature and shown to be a powerful and easy parameter to extract from
recorded data [52, 73, 116]. In Chapter 3 it was shown that H1, despite its simplicity can provide
robust assessment of autoregulation. In this work, these two autoregulatory parameters for this
preliminary analysis of the novel protocol for data collection are studied. Mont-Carlo simulation is

also used to measure the variability of these autoregulatory parameters as discussed in Chapter 3.

6.3.1 Statistical analysis

The Wilcoxon signed-rank is adopted as a non-parametric statistical hypothesis test to compare the
effect of selected parameters on the classification of autoregulatory responses. It is also used to test
the mean values of ABP and CBFV and their variations during different protocols. The variation of
different autoregulatory parameters (P1, H1) calculated from Monte-Carlo simulation is also tested.

A significance level of 5% is used.

6.3.1.1 Intraclass correlation (ICC)

Intraclass correlation (ICC) is a measure of the reliability of measurements. It is a general
measurement of agreement, where the measurements used are assumed to be continuous and have
a normal distribution. It is widely used when agreement between two or more evaluation methods
on the same set of subjects is assessed. It can be used to assess the agreement between repeated

measurements [147].

The key difference between ICC and Pearson correlation coefficient is that in ICC the data are
centered and scaled using a pooled mean and standard deviation (STD), whilst in the Pearson
correlation, each individual variable is centered and scaled by its own mean and STD therefore
Pearson’s correlation quantifies how close two measurements are to a best-fit straight lit but not

how the values agree [147].

Intraclass correlation (r) for two groups consisting of N paired data points (x;, 1, Xy, ») is introduced

as [147]
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where in above equation 2N — 1 is the number of degree of freedom.

6.4 Results

As previously mentioned, a total of 31 subject of age 18 to 50 are studied on two separate days. All
volunteers came back for the second measurement apart from one. Total number of 61
measurements were collected. All these measurements are of sufficient quality to be analyzed. After
some initial adjustments to the protocol to increase comfort, the procedure was generally
considered acceptable by the volunteers; the need for a face-mask to deliver and measure CO,
levels, was deemed the least comfortable aspect. The average drop in blood pressure following each
‘suction’ is 7.5%, confirming that the gas mixture was inspired. This is calculated by synchronizing
the falling edge and raising edge of LBNP during each suction for each recording and calculating the

mean drop in pressure for all measurements (Figure 6-3).
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Figure 6-3 Normalized MABP and MCBFV during the raising edge of LBNP averaged over all recordings
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Figure 6-4 Normalized MABP and MCBFYV during the falling edge of LBNP averaged over all recordings

An overview of the mean+STD of ABP,CBFV and CO, for different protocols is presented in

Table 6.1. The increase in mean CBFV from baseline to HCO, by 7.66 cm.s™! shows the effect of

high CO,. The 5% increase in C0O, from baseline to HCO, is also apparent from the result. The ABP

during all procedures is in the range 80 to 90 mmHg.

Signals NC LBNP HCO, HCO, — LBNP RHCO, RHCO, — LBNP
MeantSTD | Meant STD | Meant STD | Meanx STD Meant STD Meanzx STD
ABP (mmHg) | 8645+12.52 | 80.99+1253 | 89.39 +14.59 83.90 + 13.35 84.90 + 15.91 84.30 £ 12.10
CBFV (cm/s) | 6658+1215 | 62.92+£11.19 | 7424+14.07 70.89 + 12.93 68.98 + 11.83 65.21 + 11.77
ETCOZ (%) 4.72+£0.41 5.07 £ 0.33 5.44 + 0.34 5.29+0.39 5.01+0.33 4.89 +0.35

Table 6.1 An overview of signals during different procedures averaged across 61 recordings

Table 6.2 depicts the result from p-values using Wilcoxon signed-rank pair-wise test on the mean

values of ABP and CBFV during different procedures. The results show that the mean CBFV is

significantly different between all measurements apart from between baseline and LBNP.
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Procedures LBNP HCO, HCO, — LBNP RHCO, RHCO, — LBNP
CBFV | ABP | CBFV | ABP| CBFV | ABP | CBFV | ABP | CBFV ABP
NC 2.7 0.002 | 2.3 0.01 | 3.5 0.194 | 0.003 | 0.777 | 0.50 0.088
x 1077 x 10710 ¢ x 1075
LBNP 5.1 3.3 | 1.8 022 |88 0.002| 8.7 0.04
x 10719 x 107 x107° x107° x 1076
HCO, 0.002 | 0.008 | 2.1 0.123 | 2.6 0.004
x 1077 x 1079
HCO, — LBNP 0.005 | 0.297 | 3.6 0.93
x 1076
RHCO, 8.8 0.257
x 104

Table 6.2 p-values calculated using significance test (Wilcoxon) between the mean value of ABP and CBFV during

different procedures (Significant difference is indicated by bold numbers)

The main aim of this new protocol is to increase the variability in ABP and as a result of that, obtain
better estimation of autoregulation. For this purpose, the effect of different procedures on the
variability (STD) of both ABP and CBFV is studied. The average of the variation of different
procedures across all recordings through the period of the data collection is given in Table 6.3. It can
be seen that the ABP has increased in procedures with LBNP compared to the respective

procedure without LBNP (NC - LBNP,HCO, - HCO, — LBNP and RHCO, - RHCO, — LBNP).

Signals NC LBNP HCO, HCO,— LBNP | RHCO, RHCO, — LBNP
STD STD STD STD STD STD
ABP (mmHyg) 3.02 4.06 3.17 4.22 3.02 4.15
CBFV (cm/s) 3.10 4.02 3.18 4.08 3.17 4.44
ETCO0,(%) 031 0.33 0.17 0.16 031 0.32

Table 6.3 STD of different procedures averaged across all recordings through the period of data collection

Table 6.4 shows the result of this significance test. The results show that STD of ABP and CBFV
during baseline are significantly different to corresponding ABP and CBFV during LBNP,HCO, —
LBNP and RHCO, — LBNP but not to others (p < 10~8). On the other hand, the STD of ABP and
CBFYV signals are not significantly different from the LBNP to HCO, — LBNP and RC0O, — LBNP.

No significant difference was also seen between HC and NC for either of the measured signals.
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Procedures LBNP HCO, HCO, — LBNP RHCO, RHCO, — LBNP
CBFV | ABP | CBFV| ABP | CBFV| ABP | CBFV| ABP | CBFV | ABP
NC 1.1 1.5 0.493 | 0.204 | 1.8 4.2 0.789 | 0.659 | 4.9 5.6
x1078| x 1077 x 1078 x107° x107%| x1078
LBNP 3.3 7.1 034 | 0.16 |8.9 7.6 0.088 | 0.964
x107°| x 1075 x107%| x 1078
HCO, 1.7 4.4 0.547 | 0.183 | 4.3 8.1
x1077| x 1077 x1078| x107°
HCO, — LBNP 9.8 8.6 0.122 | 0.383
x107%| x 1077
RHCO, 3 8.36
x107%| x1078

Table 6.4 p-values calculated using significance test between the STD of ABP and CBFV during different procedures

The above table shows that by introducing LBNP, the variability in ABP has increased (from
baseline - LBNP ,HCO, - HCO, — LBNP and RHCO, - RHCO, — LBNP) which is in agreement
with the expectation that LBNP increases variability and suggests that the protocol is affecting ABP
and CBFV as expected. Next, different autoregulatory parameters are studied to test whether this

increase in variability has led to better assessment of autoregulation.

Table 6.5 shows the mean+STD of the chosen autoregulatory parameters (P1 and H1) for all
available measurements during the different procedures carried out. Figure 6-5 shows the
autoregulatory parameters extracted from each volunteer recording during different procedures
plotted against each other. The P1 for all procedures is positive, and larger at baseline compared to
HCO, which is in agreement with the finding of others [52, 65, 73, 116]. The reduction in P1 from
LBNP to HCO, — LBNP can also be seen in Table 6.5, which is in agreement with the expectation in
previous works [52, 73, 116].

The result of H1 also met our expectation [74] with larger mean absolute values (less negative) in
hypercapnia compared to the relevant normocapnia stages. It can be seen that during normocapnia
the majority of P1 are larger in NC than HCO, and thus lie below the line of identity. The result also
shows that P1 during LBNP is larger than during HC. The reason being that during LBNP the
subject is still in normocapnia and is expected to behave in that manner. The same structure of
result is also delivered by H1 where, H1s are larger (less negative) in hypercapnia compared to both
normocapnia and LBNP. However the comparison between HCO, and HCO, — LBNP for both P1

and H1 suggests that the values not to be clearly different.
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Comparison of Phast at 0.1Hz between different procedures
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Figure 6-5 Comparison between different autoregulatory parameters for P1 (top two rows) and H1 (bottom two rows). In
this plot each point represents one recording from one subject. The blue line is the separation line and is used for better

visual observation
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Mean+STD of P1 Mean+STD of H1
NC 0.754 £+ 0.286 —0.62 + 0.27
LBNP 0.855 + 0.361 —0.77 £ 0.40
HCO, 0.643 + 0.251 —0.52+0.24
HCO; — LBNP 0.790 £+ 0.343 —0.65+ 0.34
RHCO, 0.776 + 0.283 —0.66 + 0.36
NC 0.774 + 0.280 —0.76 £ 0.43

Table 6.5 Mean+STD of different autoregulatory parameters for different procedures

However in order to test whether these differences shown in Table 6.5 are significant, Wilcoxon
signed-rank pair-wise tests for both P1 and H1 during these different procedures is used (Table 6.6).
The results show that baseline P1 is significantly different to P1for LBNP and HCO,, but not

others. The result also shows that P1 for HC O, is significantly different to all other procedures.

Procedures LBNP HCO, HCO, — LBNP RHCO, RHCO, — LBNP
P1 H1 P1 H1 P1 H1 P1 H1 P1 H1
NC 0.034 | 6.4 3.1 0.018| 097 | 0.523 | 0.852 | 0.619 | 0.482 | 0.004
x107™* | x107°
LBNP 2.1 1.5 0.016 | 0.002| 0.006| 4.1 0.067 | 0.291
x 1075 | x 1075 x 1074

HCO, 0.004 | 0.007( 0.005| 0.013 | 8.6 |4.2
x 1074 x 1075
HCO, — LBNP 0.996 | 0.564 | 0.305 | 0.049
RHCO, 0.575 | 0.034

Table 6.6 Wilcoxon signed-rank test for P1 and H01 during different procedures over all measurements

The results for H1 show that during baseline they are significantly different to HCO, and LBNP and
RHCO, — LBNP but not the others. It can also be seen that H1 during LBNP is significantly
different to all other procedures but to RHCO, — LBNP. On the other hand the H1 autoregulatory

parameter during HC 0O, is significantly different to all other procedures.

As mentioned before, the main aim of this new protocol is to obtain a more robust assessment of
autoregulation. In order to study the robustness of this protocol, Monte-Carlo simulation
introduced in section 3.4.2.3 is used to measure the variability of P1 and H1 during these different
procedures and then Wilcoxon signed-rank pair-wise test is used to compare the variability between

them.
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MeanxSTD of STD of P1 MeanxSTD of STD of H1
NC 0.133 £ 0.063 0.101 £ 0.048
LBNP 0.106 + 0.065 0.095 + 0.037
HCO, 0.101 + 0.053 0.071 + 0.035
HCO, — LBNP 0.123 +£0.196 0.084 £+ 0.046
RHCO, 0.135 4 0.058 0.095 % 0.041
RHCO; — LBNP 0.132 4+ 0.125 0.110 + 0.652

Table 6.7 Mean+STD of the variation of the autoregulatory parameters (P1, H1) during different procedures over all

recordings

Table 6.7 shows the overall Mean +STD of variation of both P1 and H1 during all 6 procedures
carried out and Table 6.8 the corresponding p-values computed from these parameters. The result
shows reduction of the mean and the variation of both P1 and H1 from baseline to LBNP. The
result of the mean variation of our autoregulatory parameters from HCO, to HCO, — LBNP shows
an increase in variability which is in contradiction our initial expectation that LBNP will provide

more robust assessment of autoregulation (reduction in variability in autoregulatory parameters).

Procedures LBNP HCO, HCO, — LBNP RHCO, RHCO, — LBNP
P1 H1 P1 H1 P1 H1 P1 H1 P1 H1
NC 0.03 | 094 |4.1 |4.7 1.6 0.005| 0.548 | 0.108 | 0.132 | 0.323
x 1074 x 1077 x 10716
LBNP 0.16 |3.5 0.002 | 6.49 | 0.007| 0.005 | 0.258 | 0.391
x 1075 X 1074

HCO, 4.01 007 | 2.5 |7.4 0.107 | 3.5
x 10718 x 1074 x 107 x 1078

HCO, — LBNP 0.003| 0.063 | 0.008 | 4.9
x 1078
RHCO, 0.197 | 0.007

Table 6.8 Wilcoxon signed-rank test of the variation of autoregulatory parameters (P1, H1) during different procedures

over all measurements

It can be seen in Table 6.8 that the variability of P1 and H1 during NC are only significantly different
to, HCO, and HCO, — LBNP.

In order to test the agreement between repeated measurements on different days, intraclass
correlation (ICC) introduced in section 6.3.1.1 between the autoregulatory parameters obtained on
different days. The results are shown in Table 6.9. The results show that ICC for P1 has increased

from NC - LBNP and RHCO, - RHCO, — LBNP, which indicates better repeatability can be
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achieved with LBNP. However the results from H1 is not in agreement with P1. On the other hand

reasonably high value of ICC for RHC O, requires further analysis.

ICC for P1 ICC for H1
NC 0.29 0.1843
LBNP 0.34 0.0474
HCO, 0.57 0.1615
HCO, — LBNP 0.43 0.2405
RHCO, 0.14 0.6924
RHCO, — LBNP 0.30 0.0024

Table 6.9 Intraclass correlation for the autoregulatory parameters (P1 and H1) on different days

6.5 Discussion

The results from the mean of our signals shown in Table 6.1 and Table 6.2 demonstrated a significant
increase in CBFV from baseline to HCO, and HCO, — LBNP (10.21% and 6.08% respectively)
which reflects the known cerebral vasodilation as the effect of increased arterial tension of CO, [5,
23, 141]. Significant reduction in both ABP and CBFV from baseline to LBNP is also observed which
is in agreement of the finding of others [130, 148] and expected from pooling of blood in the legs.
The point that has to be emphasized here is that the volunteers in LBNP stage are still in
normocapnia and are expected to behave in similar format to baseline with respect to hypercapnia.
The results in Table 6.2, confirmed this, as a significant difference between HCO, and baseline for
both ABP and CBFV is also observed in LBNP. The results also showed significance different
between HCO, — LBNP with LBNP and NC for CBFV but not for APB (p = 19% and p = 22%
respectively for ABP, Table 6.2). These results seem to confirm the observation of Balldin and Sun et

al. [130, 148] that CBFV reduces with LBNP.

As mentioned in the introduction, the main aim of this new study is to increase variability in ABP
and CBFV and hopefully as the result of that, obtain more robust assessment of autoregulation. In
Table 6.4, it is observed that a significant differences in the variation of ABP and CBFV as the result
of LBNP. The results in Table 6.7 show that P1during LBNP provides the lowest within
measurement variability compared to all other procedures apart from HCO,. It is also shown by
Birch et al. [139] that LBNP increases variability in ABP. The result of significance test between
procedures without LBNP (baseline, HCO, and RHCO,) and corresponding procedures with LBNP
(LBNP, HCO, — LBNP and RHCO, — LBNP) agreed with the finding of Birch et al. [139] regarding
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the increase in variability of ABP and CBFV. The result shows very clear effect of LBNP on our

volunteers.

Two independent autoregulatory parameters (P1; phase at 0.1 Hz of the frequency response, H1;
second coefficient of FIR filter with 2lags) are measured and used for the assessment of
autoregulation. Table 6.5 shows the calculated autoregulatory parameters from all our
measurements. A significant increase of 14.72% and reduction 16.12% for P1and H1 from
baseline to HCO, is observed, which is in agreement of findings of others [52, 65, 73, 74, 116]. The
same changes is also observed from LBNP to HCO, — LBNP for both P1and H1 (7.6% and
15.58% respectively). No significant difference is observed for either P1 and H1 between baseline
and RHCO, (p =85% and p =62%). The results also show no significant difference for
P1 between RHCO, and RHCO, — LBNP (p = 57%). This may be due to the fact that RHCO, does
not impair autoregulation significantly and it takes some time for autoregulation to respond
(see Chapter 5 and [86, 114]). On the other hand LBNP enhances cerebral autoregulation and

RHCO, reduces it, so they may have little overall effect.

In order to study the effect of LBNP on more robust assessment of autoregulation, Table 6.7 shows
the Mean+STD of variation of our autoregulatory parameters. The results show smaller variations in
autoregulatory parameters and as the result of that, better assessment of autoregulation was
achieved from NC — LBNP and RHCO, - RHCO, — LBNP. Table 6.7 shows significant reduction
in variability for both P1 and H1 from baseline to LBNP of (20.3% and 5.94% respectively),
however the result of variation between HCO, and HCO, — LBNP did not follow the reduction
pattern expected, and an increase of 15.47% and 17.88% for P1 and H1 respectively is observed.
This might be due to individual movement of the head-mask and induce leakage in mask and as the
result of this, 5% CO, is not achieved during the protocols as LBNP pushes the volunteers into the
chamber and introduces movement to the head-mask; however a more robust investigation is

required.

The intra-subject analysis for two measurements is carried out on the same subject on two different
days using intraclass correlation (ICC) (Table 6.9). The results show that by introducing LBNP the
ICC for P1 has increased and showed better agreement between the measurements on the same
subject on two different days compared to NC. The same result is also observed from RHCO, —
RHCO, — LBNP, however HCO, - HCO, — LBNP did not show an expected increase in ICC which
may again be due to a fault in the measurement or the head-mask during the protocols as discussed
above. The small values of ICCs also requires further analysis, and significance test between these

values should be studied in more details.
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Even though the current protocol is not appropriate for assessing dynamics of autoregulation due to
it being quite uncomfortable and its distressing nature as the result of the force on the body induced
by the vacuum. However it does have distinct advantages over previous methods. The
autoregulatory parameters used in this chapter (P1 and H1) can be continuously calculated (it has to
be noted these are not the only parameters that could be used) and the result of the measurement
is a quantitative value on a continuous scale. This would allow us to study the changes and trends in

a subject from one stage to another, which could be over a course of physiological events.
Some of the steps that can be taken in future are:

1. The number of recordings that were available in this protocol was limited. In order to limit
the inter-subject variability and improve the robustness of the analysis, larger sample should
be studied.

2. It can be argued that two measurements from the same subjects are not independent from
each other and should not be studied as two independent measurements. This issue was
tackled in Chapter 4 by removing the second recordings from the same subject. However
deeper analysis should be carried out to study the repeatability within and between
sessions.

3. In Figure 6-3 and Figure 6-4, the speed of changes in ABP and CBFV to rising and falling
edge of LBNP was shown. However deeper analysis of the speed of response to LBNP can
be carried out. This can also be done on the falling and raising edge of C0O, and the speed of
response to the changes in CO, can be studied.

4. It was shown in Chapter 3 and many others [35, 46, 86, 92, 93, 135, 137] that cerebral
autoregulation is a nonlinear system. Non-linear effects comparing the transients to increase
and decrease in blood pressure induced by LBNP can be carried out in future work to
investigate whether nonlinearity is more evident with the larger transitions induced by

LBNP.

6.6 Conclusion

In this chapter a new dataset collected from 31 healthy volunteers at Southampton General Hospital
using a new hardware and software system for the measurement of blood flow control, which
allowed the inducement of small random, step-wise changes in blood pressure and inspired carbon
dioxide (CO,) level was analysed. This new experiment used LBNP to generate controllable
pressure variation and also used a valve system to control the flow of inspired air/C 0, mixture. The

main aim of this work was to increase variability in ABP and CBFV and to study the robustness of
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assessment of autoregulation. The results showed that the autoregulatory parameters had
significantly lower variability with LBNP compared to the corresponding recording section without
it. The results from intraclass correlation (ICC) on the same subject on two different increased for
P1 when LBNP was present apart from when HCO, was studied. It could be as the result of a fault

in the measurement or the mask-head, however this requires further analysis.

The result from this new protocol generated a more robust estimate of cerebral autoregulation
compared to those obtained with conventional methods, however the improvement that could be
obtained while ensuring user comfort still does not allow impairment to be detected in every

individual subject and further analysis and refinement is still required.
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Chapter 7 : Conclusion and Future Work

7.1 Conclusion

The research presented in this thesis has used different mathematical, signal processing and
measurement methodology methods to investigate the cerebral autoregulation process in different
experiments that were designed to assess a subject’s autoregulatory state. It has been shown that
these new approaches have provided us with deeper insight into understanding of non-invasive
assessment of cerebral autoregulation. The main conclusions are summarized for each of the main

elements of the thesis.

7.2 Physiological parameters and measurement techniques

Cerebral autoregulation is an active physiological process by which cerebral blood flow is controlled
at an approximately steady level despite changes in arterial blood pressure, providing other
physiological conditions are maintained in a stable level. This physiological control system is highly
complex and yet not fully understood. There are no ‘gold standard’ methods for assessing dynamic

autoregulation, and clinical use is still very limited.

The advent of transcranial Doppler ultrasonography (TCD) for the measurement of cerebral blood
flow velocity (CBFV) usually from the middle cerebral artery (MCBFV) and servo-controlled finger
photoplethysmography (Finapres) for continuous measurement of arterial blood pressure (ABP),
have enabled the investigation of the dynamical relationship between ABP and MCBFV of the
cerebral circulation. It is also known that cerebral autoregulation is very sensitive to C0, [23, 53, 89,
91, 98, 138], and end-tidal pCO, is a good indicator of cerebral autoregulation for healthy individual

subjects under a range of experimental conditions.

Simultaneous measurement of ABP, CBFV and end-tidal CO, (Pgrco,), under normocapnia and
hypercapnia condition were carried out in this research. This procedure enables the relationship
between different inputs (ABP and Pgrco,) and CBFV as output to be modeled and finally the state

of cerebral autoregulation to be assessed.

7.3 Autoregulation models and parameters

In this thesis, different methods for assessment of autoregulation were studied. Most of the

concentration of work in this field has been on the relationship between spontaneous fluctuations of
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ABP and CBFV [3, 39, 47, 52, 53, 65, 69, 73, 84, 112, 133, 134, 149, 150]. Cerebral blood flow is also
affected by other physiological signals such as €0, [23, 53, 89, 91, 98, 138]. A linear relationship
between ABP and CBFV is assumed by many authors (section 2.12). The effect of CO, and
metabolic activity on flow is another assumption that is usually made when linear relationship

between ABP and CBFYV is studied.

In Chapter 3, the combination of Laguerre expansion with feedforward artificial neural networks in
the form of a Laguerre-Volterra network, which has been shown to provide a good estimate of
nonlinear systems with short input-output records [151], was used to model the cerebral
autoregulation system. It was found that by having two-input nonlinear (second-order) models the
performance of the model based on the NMSE improved by 10% in validation data. This result
provided further indication for the existence of nonlinearity in the autoregulatory system as found

by other authors [23, 35, 46, 92, 93, 137].

Neural networks were previously used by Mitsis et al. [35, 137]. However in his work, the
characteristic of the system was fixed for all recordings as mentioned before it is known that there is
no ‘gold standard’, and cerebral autoregulation varies from one individual to another. Another
limitation of the work by Mitsis et al. [35, 137], was that only the existence of nonlinearity and the
impulse response of the system were studied, no assessment of autoregulation was reported from
that model. In Chapter 3, in order to study the effect of nonlinearity in individuals, the characteristics
of Laguerre-Volterra network was optimized. The results showed that the effect of CO, (its
contribution toward CBFV) and the cross-kernel (the effect of nonlinear interaction between ABP
and CO, toward changes in CBFV) vary between subjects and even within subjects. In that chapter,
different indices for the assessment of dynamic cerebral autoregulation, based on the changes
provoked by altering Pgrco, levels, which leads to temporary impairment of autoregulation in order
to assess autoregulation, were studied. The Pressure pulse response (PPR) was used (section 3.3.2)
as an autoregulatory parameter as it is more physiologically realistic compared to step or impulse
inputs usually (section 3.3.2). The amplitude of the response at 1.5 seconds (A1.5) and 8 seconds
(A8) were selected as autoregulatory parameters from this novel input. It was found that A8, when
extracted from two-input nonlinear models, especially when the cross-kernel terms were included,
provided the lowest variability (inter- and intra-subject) and the best separation between Pgrco,
levels and thus autoregulation. However a very simple parameter (H1; second coefficient of an FIR
filter with 2 lags proposed by Simpson et al. [74]) provided good performance in terms of variability

with the added advantage of suitability for use in a very short dataset in comparison to nonlinear
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multivariate models where in order to train the system, large data samples are required. With H1 as

the result of the small number of free parameters this is not the case.

A major challenge of the methods used for the assessment of autoregulation is the issue of choosing
an autoregulatory parameter that could work on different datasets collected from different patients
under different physiological conditions. Furthermore the lack of a “gold standard” for assessment
of dynamic cerebral autoregulation does not allow a robust reference, to which alternative methods
could be compared. Autoregulatory parameters are sensitive to many physiological variables that
can influence CBF (Pgrco, brain activity, O, content, haemotacrit, temperature) as has already been
observed by other authors [52, 90, 92]. Furthermore, there is a dearth of studies using multiple
methods or performing inter-method comparisons [32]. Dynamic cerebral autoregulation can also
vary from one patient to another and over time [115]. In Chapter 4, a new data-driven method for
assessing autoregulation using subspace distance (SSD) between two autoregressive moving
average (ARMA) models was proposed and tested, without studying primarily the performance of
the models in term of data fit or choosing an arbitrarily autoregulatory parameter by visual
inspection, as used in section 3.3.2 Martin et al. [119] showed that by treating an ARMA model as a
complex rational function, one can define a metric on the set of complex rational functions, and
measure the distance between two ARMA models. In that chapter it was first shown that the Tiecks
model corresponding to a 2™¢ order ARMA model can be used to measure the CBFV responses.
Building on this, the distance between two ARMA models was measured. This could also be
extended to higher orders. The results from this work showed that subspace distance can provide a
basis for assessing autoregulation, and the results using cross-validation suggest better performance
than more conventional alternatives (Chapter 4). The main advantage of this method is that it does
not require picking parameters to assess autoregulation, and it is driven by the data (and the model)

itself.

In Chapter 5, we tackle time-varying characteristic of cerebral autoregulation as another issue in the
assessment of autoregulation (section 2.12) using both univariate and multivariate models and both
RLS and moving window approaches. These methods were applied during step-wise changes in CO,
levels. ABP — CBFV and ABP,PETCO, — CBFV during step-wise changes in PETCO, respectively
were studied. The results showed that by including PETCO, in a univariate model (ABP — CBFV) in
addition to the improvement to the model fit, we can also get better assessment of autoregulation
using different autoregulatory parameters (phase lead; P1, and amplitude using pressure pulse input
(PPR); A8 ). The results also showed that the contribution of PETCO, towards the spontaneous

changes in CBFV is significantly higher in hypercapnia compared to normocapnia. It was also shown
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that the multivariate coherence provided higher values at the transient between hypercapnia to
normocapnia and vice versa and we also showed that it is significantly different to univariate models
during these transients and at low frequencies (f < 0.1 Hz) (Figure 5-6). This was concluded that
the effect of PETCO, on the variation of CBFV is more significant when the subject is in
hypercapnia. The result also indicated that the multivariate time-varying model can improve our
coherence value at low frequency range and also at the transient between normocapnia and

hypercapnia and vice versa.

In Chapter 6, a new experimental approach for generating small random step-wise changes in blood
pressure and inspired carbon dioxide (C0,) level was studied. The aim was to test a protocol that
can be easily and safely repeated and may be applicable as a clinical tool. In this approach
pseudorandom lower-body negative pressure (LBNP) variations were applied as a means to
provoke a small increase in blood pressure variability. This study consisted of 31 subjects, with two
sessions for each subject. A total number of 61 recordings were available for this study. The increase
in mean CBFV from baseline to HCO, by 7.66 cm.s™! shows the effect of high CO, on cerebral
vasodilation. The ABP during all procedures was in the range of 80 to 90 mmHg (see Table 6.1).
Significant difference in the variation of ABP and CBFV as the result of LBNP was also observed
.The average drop across all recording in blood pressure following each ‘suction’ was 7.5%. This was
calculated by synchronizing the falling edge and raising edge of LBNP during each suction for each
recording and calculating the mean drop in pressure for all measurements (Figure 6-3 and
Figure 6-4). It was also shown that by introducing LBNP, the variability in ABP has increased (from
baseline - LBNP ,HCO, - HCO, — LBNP and RHCO, - RHCO, — LBNP) which is in agreement
with the expectation that LBNP increases variability and suggests that the protocol is affecting ABP
and CBFV, as expected.

Significant change in autoregulatory parameters (P1 and H1) from baseline to HCO, and LBNP to
HCO, — LBNP was observed. However no significant different between RHCO, and RHCO, —
LBNP was reported. This could be as the result of RHCO, does not impair autoregulation
significantly. However a leakage in the face-mask was discovered, and as the result of that, 5% €O,
was not fully achieved, and hypercapnia does not reduce autoregulation as strongly as expected, but

this requires further analysis.

The results also showed significant reduction in the variability of autoregulatory parameters (P1 and
H1) from baseline to LBNP. However the variation of the autoregulatory parameters from HCO, to
HCO, — LBNP did not follow this reduction, which could be as the result of individual movement of

the head-mask during the protocols due to the heavy suction of the chamber. The results of
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intraclass correlation for autoregulatory parameters from the same subject on different days
showed better agreement between measurements during LBNP compared to baseline and RHCO,
to RHCO, — LBNP, but not from HCO, to HCO, — LBNP. However low values of ICC and their
significance different should be studied in more depth. It was shown in this chapter that this new
protocol can provide more robust estimates of cerebral autoregulation. However the improvement
that could be obtained while ensuring user comfort still does not allow impairment to be detected in

every individual subject and further analysis and refinement is required.

7.4 Future work

The cerebral haemodynamic system is known to be nonlinear and non-stationary [46, 87, 92, 135,
138, 146]. In this work, the nonlinear characteristics of this system were considered with Wiener-
Laguerre models, but more sophisticated ‘black-box’ that could simultaneously address the non-

stationary characteristics of cerebral autoregulation could be applied to this study in the future.

In chapter 5, a rather time-consuming approach to identifying the optimum system characteristics
(Laguerre-Volterra Network model orders) for different models for each recording was studied. Even
though this method resulted in better assessment of autoregulation, due to its computational cost
this approach would not be feasible for clinical applications. Further investigation of the optimal
choices for the nonlinear approach for the assessment of cerebral autoregulation would be

beneficial.

The research in this thesis has focused on the assessment of autoregulation in healthy volunteers,
and hypercapnia as the result of inhaling high CO, was assumed to behave in a similar way to that
observed in different autoregulation impairments in clinical conditions. This assumption, made

repeatedly in the field, should be tested on data from patients.

The intracranial pressure (ICP) has been assumed to be constant throughout this work. This
assumption has led to another assumption that cerebral perfusion pressure (CPP) changes is
proportional to ABP. However in patients with severe head injury or pathological conditions this
may not necessary be the case, and more sophisticated model of the relationship between ABP,ICP

and CPP may be needed.

Another assumption that was made in Chapter 6 was that the two measurements from the same

subjects are independent; however measurements from the same subjects are not independent
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from each other and should not be studied as two independent measurements. The same approach
has been used in some earlier work [47, 50]. This issue was tackled in Chapter 4 by removing the
second recordings from the same subject. However deeper analysis should be carried out to study

the repeatability within and between sessions.

It was shown in Chapter 3 and many others [35, 46, 86, 92, 93, 135, 137] that cerebral
autoregulation is a nonlinear system. Non-linear effects comparing the transients of increasing and
decreasing in blood pressure induced by LBNP on data collected in Chapter 6 can be carried out in
future work to investigate whether nonlinearity is more evident with the larger transitions induced

by LBNP.

A comparison between repeatability of different protocols (data collection from Leicester and
Southampton) and ability to distinguish between normocapnia and hypercapnia using different

methods for assessment of autoregulation studied throughout in this thesis should also be studied.
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Appendix

Appendix L. Volterra Models

The development of Volterra series relies on mathematical notion of the Volterra series (power
series expansion), introduced by the Italian mathematician Vito Volterra in 1930. The Volterra series
can be viewed as a generalization of the Taylor multivariate series expansion of an analytic function,
f, of m variables asm — oo, The multivariate Taylor series expansion of an analytic function
f (x4, ..., xpy) about a reference point (xj, ..., X;,) in the m-dimensional vector space is defined by

these m variables as:
m m m
FO, o, %) = f X5, o, X)) + Z a;(x; — x;}) + Z Z ag, i, (%, = x7) (2, — x5,) +
i=1 i1=1i,=1

And if m — oo, it will evolves into the Volterra function power series, where the origin of the real
axis is used as the reference point. Then the vector [x4, ..., X;; ] turns into a continuous function x (1)

for Ain the interval [a, b]. The Volterra series expansion can be expressed as:

b b
F[x(l)] = ko + f kl(l)x(l)dl’l + f jkz(ﬂ.l,ﬂ,z)x(ﬂ.l) x(ﬂ,z)d Aldﬂ.z + A
b
+f ...fkr(/ll,...,/lr)x(/ll) X Ay dy + o

In the above equation k, represents the limit of the multivariate Taylor expansion coefficients

a;, ..i,and is called the “Volterra kernel” of rt" order. The multiple integrals are called “Volterra

functional”.

Another form of the Volterra series that is more commonly used is in the form that can relate to the
output of a time invariant stable causal system in terms of its input signal using the equation below:

y(t) = kg +J ki (D)x(t — 1)dt
0

+ f f ky(tq,T)x(t — 11)x(t — T5)dTdTy + -
0

+ f f ke (tg, o, T)Xx(t — T1) . x(t — T,.)d T ... AT, + -
0
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The first-order Volterra kernel, k, (), is the same as the impulse response function of linear system
and can be viewed as the linear component of the nonlinear system. The second-order kernel
k,(t41,7,) represents the lowest order nonlinear interactions in the Volterra framework, and can be
viewed as the two-dimensional pattern by which the system weighs all possible pair-wise product
combinations of input in order to generate the second-order component of the system output.
Higher-order kernels represent the patterns of nonlinear interactions among a number of input

epoch values equal to the order of the kernel.
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Appendix II: Wiener-Laguerre
To date, the best method (in terms of the number of Kernels required) for estimating the kernel

expansion is the use of discrete Laguerre functions [151]. Laguerre is based on Wiener’s original
suggestion or expansion of the Wiener kernels, because Laguerre functions are orthonormal over

the domain from zero to infinity and have a built-in exponential.

A set of real function w,, (t) is said to be orthonormal over the interval (a, b) if

0 form#n
1 form=n

f o Own (Dt = 5, = {

a
It is shown [35] that function f(t) for which fffz (t)dt < oo can be approximated by N members
of an orthonormal set with minimum integral-square error over the interval (a, b) as

N

F©O =) cuwn(®)

n=1

In which the coefficients ¢, have the value

b
on= [ FOW @

The value of the resulting integral-square error is

N N

Ey = j "o - Y camn(OF dt = f " rode - X

n=1 n=1
Also, if the set {w,,(t)} is complete, Ey —» 0 as N — oo,

An important complete set of orthonormal functions is the set of Laguerre functions, which can be

obtained by forming an orthonormal set from the linearly independent set of functions:

(t) = { 0 fort <O
VmiE = (pt)me Pt fort=0m=0,12..

The positive real constant p is a scale factor by which the functions v, (t) can be stretched out or
compressed on the time scale. The Laguerre functions I,,,(t) are defined in terms of the set v, (t)

as:

n

W® = untin(®)

m=0
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With the orthonormal property

oo

f I (O (£)dt = S
0

So the nth-Laguerre function is a linear combination of the first n members of the set {v,,(t)}.
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APPENDIX III: ARM A model of Tiecks model

Tiecks et al. [5] proposed a second-order differential equation to predict the changes in cerebral
blood flow velocity (CBFV (t)) to changes in arterial blood pressure (ABP(t)), where:

P(t)

aP() =T—¢,cp

where in the above equation dP(t) is the normalized pressure change and CrCP is a fraction of the
baseline pressure (CrCP = 0 was used in Chapter 4). The relative velocity CBFV(t) can be
calculated using:

CBFV(t) =1+ dP(t) — K X x,(t)

where K in above equation is a gain parameter, and different values of gain selected by Tiecks et al.
[5] is shown in Table 2.1.

The estate variable equations can be expressed based on below second-order linear differential
equations:

dP(t—1) —x,(t—1)

x;(t) =x(t—1) + FXT

x(t—1)—2XDXx,(t—1)

x(t) = x(t—1) + FXT

Where in the above equations f is the sampling frequency, T is the time-interval and D is the
damping factor. K,T and D are also pre-defined values and only 10 combinations of these
parameters are reported by Tiecks et al. [5] (shown in Chapter 4) and each combination represents
one value for ARI.

By taking a z —transforms of above the equations, the transfer function between ABP(t) and
CBFV (t) can be obtained

CBFV(z) = ABP(2) — KX, (2)

P(2) —z7'X,(2)

X1(2) =z7'X,(2) + T

X,(2) — 2Dz71X,(2)
T/

X,(2) =z7'X,(2) +

where in the above equation T' = f X T. Solving above equations leads to the transfer function
between CBFV and ABP

KN\, _4(1 ,2D s 2D
CBFV(z)_(l_F) tz (WJFT‘Z)JFZ &

ABP(z) (1 2D _ —2¢1 _2D
14z (T’2+T' 21+z72(1 T

The above equation can be re-written as:
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CBFV(z) a+bz ' +cz™?
ABP(z) 1+bz 1+ cz2

K\?2 1 . 2D 2D
Where a = (1_F) ,b = (F+F—2)andc = (1_7)
By applying the inverse z —transform to above equation, we get:
CBFV(n) = aABP(n) + b[ABP(n — 1) — CBFV(n — 1)] + c[ABP(n — 2) — CBFV (n — 2)]

As it can be seen from above equation, it is indeed has a format of an ARMA model, where the past
samples of both CBFV and ABP are weighted by the same coefficients.
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Appendix IV: Manual for “Graphical User Interface (GUI)” for Data Analysis
A GUI interface was created to ease the process of data analysis and visualization. In this program
four different channels can be observed at the same time with two channels being plotted on top of
each other to ease comparison. It also gives the option to the user to zoom into the channels and
look at the signals in more details. The data can be saved as .mat files.

Some snapshots of the GUI for different signals for an arbitrary recording are shown below.

(ol v
B GULmain — — S— =R

File Signal View Window

DSde (k890 R4- 2|0 =@

Active channel- TCD-R pr(rcvnIZTvim 1 Ohz_mat Channel: TCD-L

1000 1500 2000 2500 3 35 : 2975 2980 2985 2990
seconds

Active channel: ABP-R prcrcvo\ZT\«'is‘l_Ith.n\at Channel: ABP-L

1000 1500 2000 3 35 2975 2980 2985 2890
seconds

eady

Measured CBFV from left and right TCD are shown in the top frames and ABP measured from left and right hands are
plotted in the bottom frames for an arbitrary recordings
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proc, o0l27vis1, at Channel: Capnofinst.)

—— 1
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Measured €O, level and the trigger CO, are shown in top frames. And below frames shows the measured and target lower
body negative pressure (LBNP) for an arbitrary recordings
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Systolic CBFV from left and right TCD are shown in above frames (cyan and red respectively). Diastolic CBFV from left and
right TCD are shown in bottom frames (cyan and red respectively)
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Heart rate calculated from ECG and ABP are shown in above frames (cyan and red respectively). Mean ABP calculated
from left and right hands are shown in bottom frames (cyan and red respectively).

Command lists

1. The user can press “cnt+0” or choose from the top bar to open a new file. The program can
read matlab files (.m) or .par files which was the original format for the collected data from
our collaborator in Leicester

2. The program saves the modified data as matlab files (.m).

Pressing “cnt+s” or choosing from the top bar allows the user to save the data.

4. To remove a section: Press “a” at the beginning and “b” at the end of the end of the desired
section to be removed. If the section that is required to be removed is at the end of a signal,
just press “a” at the beginning and the end would automatically be the end of the signal. If
the section that is required to be removed is at the beginning of the signal, just press “b” at
the end of the section that is required to be removed. The removed section will be shown in
“blue”. The start and the end of the removed section are shown with red and green vertical
lines (below figure).
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Start and end of a section to be removed are shown with red and green vertical lines using “a” and “b” commands

5. To delete a mark (such as ‘a’ or ‘b’) that was previously applied, press “d” near where it was

applied.

” "

6. Pressing “q”, “h”, “j” and “k” puts a marker on the signal with different colours (To mark

start or end of experimental protocol).

wu_n

7. Pressing “s” would switch between the top and bottom plots. This can also be done by just

clicking on the desired plot.

8. Pressing “E” would automatically select different protocols from the data, this protocols are:
high CO, (HCO,), low CO, (LCO,),Random high CO,(RHCO,), LBNP, high CO, with LBNP
(HCO, — LBNP)and LBNP with random high CO,(RHCO, — LBNP) . It also saves these

sections in different folders. If the program does not manage to find any of these protocols,

it only saves the one that it finds. If the program finds two or more section with the same

property of a protocol (HCO, for example), it chooses the longer section. The program also

removes the first 5 sec from each section. If the user has already applied markers in the

original recordings, the markers and those changes will be automatically applied and saved

in each section.

9. By pressing “w” once the program puts a green vertical line on that signal with circles on the

ends, if “w” is pressed again somewhere else on that signal another green vertical line is

plotted. Now by pressing the “c” command the program cuts that specific section and allows

the user to save that section under a different name in a folder. This can be used to

manually select different sections in different protocols.
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10. To manually modify a signal (if there is glitch or artefact in signal), the user can press “i” on a
signal and the program replace the nearest point of that signal to the curser with the value
of the curser on the plot, however the usage of this property is very time-consuming.

11. To recalculate all the parameters from the recorded signals (systolic, diastolic and mean, left
and right CBFV and ABP, heart rate from ECG and ABP left and right, ETCO,, R — R
intervals, respiratory from CO,, CrCP and RAP), press “m” command. This would enable
the user the recalculate these parameters if any change or modification was done on any

recorded signal.

The main GUI function is called GUI_main.m (GUI_main.fig for the interface) and the functions it

required are listed below:

Aread.m
chop_spa.m
edit_data.m
find_etco2.m
nan_interp.m
nan_sig.m
peakfinder.m

plottting_data.m

W ® N o v kW NR

Save_Box.m

=
o

. save_hco2_lco2.m

[EnY
=

. save_LBNP.m

[E
N

. save_txt.m

[E
w

. sig_calc.m

=
o

. sig_calc_ 2.m
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