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Cerebral autoregulation is the process of maintaining blood flow to the brain almost constant 
despite changes in arterial blood pressure (   ) with the assumption that changes to other 
physiological condition are small. Assessment of cerebral autoregulation plays a key role in 
diagnosis, monitoring and prognosis of cerebrovascular disease clinically. In this work Transcranial 
Doppler Ultrasound was used to measure middle cerebral artery velocity, arterial blood pressure 
(   ) was non-invasively measured using a finger cuff device (Finapres). 

Mathematical models that characterize the cerebral autoregulatory system have been used in the 
quantitative assessment of function/impairment of autoregulation as well as in furthering the 
understanding cerebral hemodynamics. Using spontaneous fluctuations in arterial blood pressure 
(   ) and     as inputs and cerebral blood flow velocity (    ) as output, the autoregulatory 
mechanism has been modeled using linear and nonlinear (Laguerre Volterra Networks), single-input 
(  , only    ) and multi-input (  ,     and    ) approaches. From these models, a small number 
of measures have been extracted to provide an overall assessment of autoregulation. It was also 
investigated whether or not some of the poor performance previously reported can be overcome by 
improved modeling (characteristics of the nonlinear models) and choice of autoregulation 
parameter to extract cerebral autoregulation. In this work, lower inter and intra subject variability of 
the parameters were considered as the criteria for identifying improved measures of autoregulation. 

Search for improved analysis is then extended, using the data-driven approach based on subspace 
distance (   ). The performance of this method is compared to alternatives previously proposed, 
using data from healthy volunteers in normo- and hyper-capnia (to induce transient impairment of 
autoregulation). The subspace distance (   ) provides a means of determining the distance of an 
estimated model to others known to have been obtained from normal or impaired autoregulation, 
considerably. The smallest average distance with respect to each of these sets then determines how 
far from normal/impaired a given recording lies. For comparison, indexes of autoregulation were 
obtained from methods used in previous work, including the phase of the frequency response at 

       (  ), and the     parameter of a     order     model (  ). The main advantage of this 
method is that it does not require picking parameters but is driven by the data (the model) itself. 
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The method was found to be promising and provided better distinction between normocapnia and 
hypercapnia compared to other autoregulatory parameters studied in this section. 

Multivariate adaptive filters (multivariate recursive least square (      )) and multivariate 
moving window (     ) to study the effect of       

 in the dynamic of time-varying 

characteristic of cerebral autoregulation were applied to study the multivariate, time-varying 
characteristics of cerebral autoregulation. Here also       ,      ,       and        
methods to baseline, hypercapnia and normocapnia measurements from our volunteers individually 
were applied. Autoregulation was quantified by both time-varying phase-lead and amplitude using 
pressure pulse input. It was also noticed that multivariate models deal very well with the transient at 
the beginning of hypercapnia compared to univariate models and autoregulatory parameters 
extracted from        provide the least variation. The results from multivariate time-varying 
coherence showed that it can provide significantly higher values at low frequencies (         ) 
and the transient between normocapnia and hypercapnia compared to univariate time-varying 
coherence. 

Finally, a new tentative approach of hardware and software system for the measurement of blood 
flow control was carried out in Southampton General Hospital which allowed the inducement of 
random, step-wise changes in blood pressure and inspired carbon dioxide (   ) level that can be 
easily and safely repeated and may be applicable as a clinical tool. This experiment benefited from 
the use of      (Lower-body-negative pressure). It generates a controllable pressure variation, 
built around the lower limbs of a subject resulting in temporary lowering the blood pressure. The 
initial assessment of this dataset is presented.  
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Chapter 1 : Introduction 

1.1 Overview 

 

Autoregulation is one of the mechanisms in the automatic adjustment of blood flow to supply the 

required nutrition and remove waste in proportion to the tissue’s requirement at any instant in time 

[2, 3]. For the brain, cerebral autoregulation refers to an active process of the brain by which 

cerebral blood flow is controlled at steady state despites the changes in the arterial blood pressure 

to ensure the required supply of the blood for the cerebral tissues. Cerebral autoregulation attracts 

considerable attention in the literature as it is thought to be an important mechanism in the 

development of some strokes, and also in the occurrence of the secondary damage, following 

stroke, head injury and cerebrovascular disease [4]. Having a good assessment of the cerebral 

autoregulation can potentially be used in clinics and hospitals where the changes in cerebral 

autoregulation may be observed. These changes can indicate variations in the patient’s health and 

may be used to modify their medical treatment in order to help to manage their therapy and 

improve their recovery. Autoregulation is impaired by too low or too high cerebral perfusion 

pressure (   ) when compared to autoregulation with normal     (between    to 85     ).  

The inducement of changes in arterial blood pressure (   ), middle cerebral blood flow velocity 

(    ) and partial pressure of end-tidal carbon dioxide        
  are the most common parameters 

used to stimulate the regulating mechanisms. Infrared plethysmography (Finapres), transcranial 

Doppler ultrasound and capnography are used respectively for these measurements as they can be 

used non-invasively and are commonly available. 

The main aims of this project are to propose innovative experimental and signal analysis techniques 

for the robust assessment of cerebral blood flow control to determine the nature of the 

autoregulation mechanisms and increase understanding of the dynamic interaction between     , 

    and        
 based on modelling of experimental data using multivariate and data driven 

methods. 
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1.2 Layout of the thesis: 

 

In chapter 2 of this thesis a brief summary of the relevant anatomy and physiology of cerebral blood 

flow and cerebral autoregulation is given. 

The technical details for analysis of the response to the pressure and blood flow changes, for both 

static and dynamic cerebral autoregulation, are presented in chapter 3.  

In chapter 4 the system identification methods to assess dynamic cerebral autoregulation by using a 

previously published model: the Tiecks [5] model, and frequency response, coherence and transfer 

function gain and phase are discussed which help to identify some challenges that exist in this field. 

The results from these well-known approaches are used as a ground for new findings and to 

compare new results to these approaches.  

In chapter 5, multi-input (   ,      
) Nonlinear Laguerre network (   ) is used, to model, and to 

extract new autoregulatory parameters from the response of the system to pressure pulse (  ) 

input which has not frequently been extensively investigated. The variability between and within 

subject is studied. The aim of this chapter is to find the optimal model characteristics for different 

    and to test and compare the performance of these different models in term of assessment of 

autoregulation. 

In chapter 6, subspace distance as a novel and data-driven approach to assess autoregulation is 

used. The performance of this methodology is studied by comparing it with some well-known 

autoregulatory parameters. 

In chapter 7, time-varying multivariate models using multivariate recursive least square (      ) 

and multivariate moving window (     ) are applied to study the time-varying characteristics of 

dynamic cerebral autoregulation and the performance is compared with the univariate version of 

these approaches. 

In chapter 8, the new approach in data collection using constant/random lower body negative 

pressure (    ) with constant/random high     (      is studied in order to test whether      

can produce more variability in      and as the result of that can help to get more robust 

assessment of autoregulation. 

In chapter 9, we conclude the work that has been carried out on this thesis.  
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1.3 List of original contributions 

1. Proposal of optimal method and orders for two-input Laguerre Volterra networks (   ) 

with different combinations of inputs and linearity/non-linearity: linear    , linear      
, 

nonlinear    , nonlinear       
, nonlinear interaction between     and       

 with a 

focus on extracting parameters for assessing autoregulation in the models.  Assessment of 

autoregulation was also done by looking at the variability between and within subjects and 

the robustness of different autoregulatory parameter estimates were studied. 

2. Proposal of a new data-driven approach, and showing the superiority of this method over 

some other well-known autoregulatory parameters in term of assessing autoregulation and 

distinguishing between normo- and hypercapnia. 

3. Applying uni- and multivariate time-varying methods for the assessment of autoregulation, 

showing that, having        
 as the secondary input can improve the normalized mean 

square error in the training. The results also showed that the contribution of 

       
  towards the spontaneous changes in      is significantly higher in hypercapnia 

compared to normocapnia. The result also indicated that the multivariate time-varying 

model can improve the coherence value at low frequency range and also in the transient 

between normocapnia and hypercapnia and vice versa. The results also showed that the 

effect of        
 on the variation of      is more significant when the subject is in 

hypercapnia. 

4. Analysis of data collection from random Lower Body Negative Pressure (      in 

Southampton to induce bigger variations in    . Different autoregulatory parameters were 

used and it was shown that more robust assessment of autoregulation can be achieved with 

this new data collection approach. The results also showed significant reduction in the 

variability of autoregulatory parameters  from baseline to      
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Chapter 2 : Literature review  

2.1 Cerebral circulation 
 

The brain is the most remarkable and complex biological structure known. The brain weighs only 2% 

of total body mass, it consumes     of the total body oxygen and     of total body glucose [6]. 

In normal condition the amount of glucose supplied to the brain is seven times the necessary 

requirement, however the supplied oxygen to the brain is about two or three times the required 

amount. As a result cerebral blood flow may be halved without any distinct change in cerebral 

function but if it goes considerably below    , then failure of normal brain function will very rapidly 

become apparent due to an insufficient supply of oxygen [7, 8]. It is thus vital for human life, that the 

brain always received an adequate supply of blood. 

2.2 Anatomy 
 

The anatomy of the cerebral circulation was first documented by Willis in 1664 where he described, 

at the base of the brain, the arterial structures. He described the circle of arteries that distributes 

most of the blood supply to the cerebral cortex and is now named after him. 

Blood is pumped to large elastic arteries from the heart and these themselves branch into smaller 

arteries. The structure of the arteries changes with their sizes. As the size of the arteries gets smaller 

their structure changes from having walls with a large amount of elastic tissues and a smaller 

amount of smooth muscle to structures with walls that have a smaller amount of elastic tissues and 

a larger amount of smooth muscle. With respect to this structure the arteries can be divided into 

three categories: elastic arteries, muscular arteries and arterioles. Elastic arteries have the largest 

diameter and the least amount of smooth muscle. Muscular arteries have relatively thick vessel walls 

compared to their diameter. The arterioles have small diameters and branch out of the arteries to 

transport blood from arteries to the capillaries. 

There are four main arteries in the neck which supply the blood to the brain as can be seen in 

Figure ‎2-1. These arteries are connected at the base of the brain to the circle of Willis, as mentioned 

above. The four major cerebral arteries are left and right carotid arteries and left and right vertebral 

arteries (Figure ‎2-1). 
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The major cerebral network varies from one individual to another individual significantly. These 

differences can be in arterial dimension, complete absence of some vessels, point of bifurcation and 

even inclusion of additional duplicated vessels [9]. 

 

Figure ‎2-1 Major cerebral arteries that supply the human brain and the circle of Willis [10]  

2.2.1 The carotid arteries 

 

The left and right carotid arteries follow the same path through the soft tissues of the neck but with 

different origins. Both of the common carotid arteries divide to form an internal and external carotid 

artery; the internal carotid artery is responsible for supplying the blood to the brain while the 

external carotid artery supplies blood to the face, scalp and the neck. The internal carotid artery 

travels up into the skull from the behind of the eyes’ orbit through the carotid foramen and joins the 

anterior part of the Circle of Willis. The internal carotid arteries contain barorepectors which are 

sensors that detect the blood pressure flowing through them. These sensors are located in a 

thickening of the arterial wall called the carotid sinus. The communication between baroreceptors 

themselves is done via the sinus nerves which are also responsible for regulating heart rate and 

strength of contraction. Under normal conditions, the blood flow through both of the left and right 

carotid arteries are the same and together they are responsible for     of the blood flow to the 

brain while the two vertebral arteries are responsible for the remaining    . 
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2.2.2 The Vertebral and Basilar arteries 

 

The left and right vertebral arteries originate from the subclavian arteries and they enter the 

vertebral column at the level of the sixth vertebrae. They both then enter the skull through the 

foramen magnum at the top of the spine and then join together to form the basilar artery which 

itself terminates in the two posterior cerebral arteries of the circle of Willis. Several small arteries 

from the vertebral arteries and basilar arteries supply essential blood to the cerebellum, spinal chord 

and brain stem. Under normal conditions, just a little mixing between bloods in the communicating 

vessels occurs. 

2.2.3 The cerebral arteries 

 

The two hemispheres which form the human brain receive their blood supply entirely from the Circle 

of Willis. There are three major arteries that originate from the Circle of Willis to supply the blood to 

each hemisphere, conveniently named; anterior, middle and posterior cerebral arteries. Under 

normal circumstances, the left and right carotid artery supply the required blood to the left and right 

anterior and middle cerebral arteries respectively. The basilar arteries as mentioned above, supply 

the blood to the two posterior cerebral arteries. In other words under normal conditions the right 

and left carotid arteries supply the right and left lateral and anterior cortex respectively while the 

Basilar artery supply the required blood to the posterior cortex. Even though no communication 

between these three arteries is required, they are linked close to their origin, by the anterior 

communicating artery and each carotid artery is also linked to the corresponding posterior cerebral 

artery by a posterior communicating artery. As the result of the mentioned arteries and 

communicators the blood supply to the cerebral hemispheres is not exclusively dependent on just 

one vessel. 
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2.2.4 The middle cerebral artery 

 

As mentioned above, the middle cerebral artery (   ) is one the three major arteries that are 

responsible for the blood supply to the cerebrum1.  The     is largest artery out of the three and is 

responsible for supplying a significant proportion of the lateral surface of the cerebral hemispheres 

such as: cortical regions controlling, auditory, and motor and speech activities. The cerebral blood 

flow is commonly measured by transcranial Doppler ultrasound (   ) in the     which will be 

discussed in more details in ‎2.6 . The     is chosen not just because it is the largest vessel, but 

because it shows the least anatomical variation and also the initial segment of    , travels almost 

horizontally outwards, from the circle of Willis (Figure ‎2-1), for about      , with little tapering, 

feeding the main arteries that supply the centre of the brain. It is the fairly straight initial segment of 

the     is used to obtain the majority of     measurements [11]. 

2.3 Cerebral circulation 
 

So far primarily the anatomy of cerebral circulation was discussed. In order to understand cerebral 

autoregulation it is necessary to look at the blood flow and its dynamics. The dynamics of the blood 

circulation involves the inter-relationships between blood pressure, blood flow, resistance and the 

control mechanism that regulate blood flow and blood pressure in the vessels, and which play a 

critical role in the functionality of the cerebral circulatory system. 

2.3.1  Cerebrospinal fluid (   ) 

 

Cerebrospinal fluid (   ) circulation exists intracranially in addition to cerebral blood circulation. 

The     is a clear, colourless liquid that fills the ventricles of the brain and the subarachnoid spaces 

[9]. The     supports the central nervous system against trauma. The brain weighs around        

in the air whilst this is only      when immersed in    . One of the other responsibilities of     is 

to remove waste products of neuronal metabolism, drugs and other substances which diffuse into 

the brain from the blood [12]. 

The brain inside the skull is incompressible and as the result of that the overall combined volume of 

the brain,     and intracranial blood must be maintained at a constant level. This means that if one 

of these three parameters increases, it is at the expense of other two components to be reduced 

according to Munro-Kellie hypothesis [13]. 

                                                           
1
  The cerebrum with diencephalon, constitute the forebrain. It is the most superior (in human) region of the 

vertebrate central nervous system. 
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It has been reported that the rate of formation of the     is independent of short-term variation of 

intracranial pressure [14]. The     formation only slightly decreases from             to      

       when intracranial pressure (   ) increases from less that         to more than    

     [14]. 

2.3.2 Blood pressure and blood flow 

 

Blood pressure is the measurement of the pressure (force per unit area) that blood exerts on the 

walls of blood vessel walls. Blood flow can be described as the volume of blood that passes a specific 

point in a blood vessel at a certain point of time. The flow can be modelled using the pressure 

difference also known as perfusion pressure between two sections of the vessels. We expect the 

blood to flow from the point with high pressure (  ) flows towards the points with low (with respect 

to   ) pressure (  ). The blood vessels have resistance ( ) which is oppose the blood flow. The flow 

can now be mathematically expressed as (Darcy’s law): 

 
     

     

 
 ‎2.1 

For the case of the brain, the blood flow in the brain is driven by the difference between the arterial 

blood pressure (  ) and the pressure in the skull (intra-cranial pressure2    ). The vascular 

resistance in the above equation is known as the cerebral vascular resistance (   ) for the brain 

mechanisms. The blood flow resistance can be modelled using the Hagen-Poiseuille’s law as below: 

 
   

  

  
  

 

 
  ‎2.2 

where in the above equation   is the blood viscosity,   is the length of the vessel and   is the blood 

vessel radius. From the above equation it can be seen that the blood flow resistance is greatly 

related to the radius of the vessel (  ) and proportional to the length of the blood vessel and the 

viscosity of the blood. 

Each blood vessel has a critical closing pressure (   ); the pressure below which the vessel collapse 

and blood flow through the vessel stops. This can happen under the conditions of shock. 

2.3.3 Vascular mechanics 

 

It is known that the blood vessels are distensible. It results in the fact that the width of a vessel 

depends on two factors: 1. Blood pressure 2. Tension in the wall. The radius of the vessel controls 

                                                           
2
 Elevation of the pressure in the cranium 
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the amount of tension in the wall in response to a given pressure drop. This principle is commonly 

known as Laplace’s law. 

       ‎2.3 

where in above equation,   is the circumferential tension,   is the pressure difference between the 

inside and outside of the vessel and   is the vessel radius. There is an assumption in writing above 

equation that the vessel wall thickness is negligible with respect to the inner radius. However this is 

not the case when arteries or arterioles are studied as they have significantly thick walls with respect 

to internal radius. In this case the tension can be expressed by:  

                           ‎2.4 

where         and    in above equation denote intravascular pressure, extravascular pressure, 

intravascular radius and extravascular radius respectively and   is wall stress and        is wall 

thickness [15].  

2.3.4 Intra-cranial pressure (   ) 

 

As mentioned in section ‎2.1 cerebral blood flow to the brain must be maintained in order for the 

brain to receive required oxygen and glucose and removal of ‘waste ’products. This maintenance 

depends of a balance between the intra-cranial pressure (   ) and arterial blood pressure, usually 

quantified by the mean arterial pressure (    ) with the mean value calculated over each heart 

rate. The overall task of physiological regulation of     and     is to maintain a constant blood 

flow. Thus for example when blood pressure falls, physiological mechanisms attempt reduce     to 

maintain flow and prevent ischemia and conversely with an increase in     increase 

cerebrovascular resistance (   ) to prevent excessive flow. 

As mentioned before     is the pressure within the rigid skull. High     can cause internal or 

external herniation3 of the brain, “distortion and pressure on cranial nerves and vital neurological 

centres [16]”. 

Inside the skull is the brain (   ), blood (   ) and cerebrospinal fluid (   ) (8%) [10]. As 

mentioned before if there is an increase in the volume of either the brain or blood the normal initial 

response is a reduction in     volume within the skull.     is forced out into the spinal sac. Thus 

the pressure within the skull,    , is initially maintained. If the pathological process progresses with 

further increase in volume, venous blood and more     is forced out of the skull.  So if the brain 

                                                           
3
 Deadly side effect of very high intracranial pressure that occurs when the brain shifts across structures within 

the skull. 
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enlarges (megalencephaly which may occur as the result of neurological problems such as: seizures 

or mental retardation), some of the blood or     inside the skull must escape to avoid a rise in 

pressure. If this process fails, a rapid increase in     from the normal range (5-13     ) will occur 

[17, 18]. 

Non-invasive measurement of    , is very desirable but is only currently applicable to a newborn. 

Pressure changes within the cranium are transmitted through the open fontanelle of the neonate 

and can adequately reflect changes in     .  

There have been researches to develop mathematical models to predict      non-invasively [19-21], 

however there has not been any clinical applicability as the     prediction is still poor as the result 

of changes in physiological conditions which lead to     changes. 

2.3.5 Cerebral perfusion pressure (   ) 

 

Cerebral perfusion pressure (   ) is defined as the difference between mean arterial and intra-

cranial pressure.  

             ‎2.5 

The normal value for     is around        . If     falls below        , there is a good 

evidence of ischemia and reduced brain electrical activity ceases. It has been observed that 

inadequate CPP (        ) is a major factor in the poor outcome of patients with raised 

    [22]. 

For the purpose of this project it is assumed that     is constant and     can be measured instead 

of    . The issues in measuring     are discussed in the section 2.3.4. 

 

2.4 Autoregulation processes 
 

The autoregulation system is one of the mechanisms that maintain the blood flow that is required 

for all the regions in the brain. The target flow is derived from a complex balance of metabolic 

requirements of the brain. The balance is not yet fully understood [16]. Without having any accurate 

information about the required blood flow [23] it is impossible to conclude if the autoregulation is 

functioning correctly or is impaired. A broad range of resting cerebral blood flow (   to    
  

        
) 

is found in the normal population [24]. Theoretically it may be possible to assess autoregulation by 
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its failure or success in keeping cerebral blood flow in this normal range. However in practice this is 

not appropriate because in extreme cases cerebral blood flow may go outside the normal region and 

it could be wrongly assumed that autoregulation has failed, where it is actually responding well to an 

abnormal blood or brain chemistry abnormality or perhaps the demand. It can be concluded that 

only measuring cerebral blood flow cannot tell us if cerebral autoregulation is working properly or 

not [25]. 

In order to understand the challenges behind autoregulation it is necessary that the mechanism of 

cerebral autoregulation is tested. The basic system is considered to have blood pressure as the input 

and cerebral blood flow as the output.  It is assumed that an intact autoregulation would maintain 

the cerebral blood flow approximately constant during a change in the central arterial blood 

pressure, but it will not be able to maintain flow, if it is impaired. It can be concluded that if cerebral 

blood flow is changed when blood pressure changes then cerebral autoregulation is unreliable, 

unless this change in cerebral blood flow was provoked by another known reason, which is normally 

not the case. In such complex scenarios, it may not be possible to obtain a reliable estimate of 

cerebral autoregulation.  

Before the mid of 1990’s, most studies looked at what is now called static autoregulation. In static 

autoregulation, the steady state relationship between arterial blood pressure and cerebral blood 

flow is measured. Such studies were the only option, due to the lack of availability of continuous 

recordings of cerebral blood flow with high temporal resolution [26]. For these static measurements, 

a measurement of cerebral blood flow is obtained first at a constant baseline     and    , 

followed by another steady state measurement that is taken after the autoregulatory response to a 

manipulation of     has been completed [5]. 

Figure ‎2-1 shows the three stages associated with the measurement of the cerebral blood flow with 

respect to changes to arterial blood pressure in classic autoregulation, where the range of blood 

pressure and blood flow for a healthy volunteer during normal daily activities is shown. At very low 

and very high pressures where autoregulation is not active, cerebral blood flow will change with 

arterial blood pressure. At intermediate pressures there is however a plateau region where 

autoregulation is said to be active and changes in blood pressure will not greatly alter cerebral blood 

flow.  This plateau region, in which the autoregulation is functioning correctly, is from about    to 

150     . This range can change from patient to patient and is considerably higher in 

hypertensive patients. 
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Figure ‎2-2 Relationship between Arterial Blood pressure and Cerebral blood Flow assuming classical autoregulation [27] 

 

2.5 The importance and pathophysiology of cerebral autoregulation  
 

Assessment of autoregulation plays a key role in diagnosis prognosis and monitoring cerebrovascular 

diseases clinically. Cerebral autoregulation is vital for assuring that the metabolic needs of the brain 

are maintained and protect the brain from ischemia due to decreased cerebral perfusion pressure. 

However this key mechanism can be disturbed, impaired or modified in several brain diseases or 

injuries. Good and early assessment of cerebral autoregulation can help clinical staff and doctors to 

monitor the development of brain conditions better and undertake any necessary treatment 

promptly.  

It has been shown by Czosnyka et al. [28] that, patients whose cerebral autoregulation was severely 

impaired or disturbed during the first two days after a severe injury, are more likely to die. It has also 

been reported [11] that, cerebral autoregulation is asymmetric in the two hemispheres of the brain 

in patients with head-injuries with lateral brain contusions. The difference in side-to-side 

hemodynamic reserve of the injured brain can be taken as a fatal outcome following head injury and 

correlates with the side of contusion or brain expansion [11]. 

Cerebral autoregulation is a vulnerable mechanism which can deteriorate diffusely in addition to 

areas of acute or subactute cerebral lesions [29]. Paulson et al. [29] listed eight pathophysiological 

reasons which can lead to the impairment of cerebral autoregulation. 

1. Hypertension 

2. Diabetes Mellitus 

3. Ischemic cerebrovascular diseases 
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4. Infections 

5. Spreading migraine 

6. Acute hypertensive encephalopathy 

7. Intracranial tumours and other space-occupying lesions 

As the result of the discussion here, the monitoring of cerebral autoregulation can be used to guide 

autoregulation therapy.  

 

2.5.1 The mechanism of cerebral autoregulation 

 

There are different numbers of mechanism that have been suggested to explain the nature of 

cerebral autoregulation. Three main hypotheses were raised: myogenic, metabolic and neurogenic 

mechanisms. It has been shown that cerebral autoregulation can be explained by either one of these 

mechanisms or a by their combinations [30]. 

The myogenic mechanism theory suggests that smooth muscle of blood vessels reacts to the 

stretching of the muscle by opening ion channels and leading to muscle contraction, is responsible to 

changes in transmural pressure [30, 31]. It has been shown that the response of autoregulation is 

initially within few seconds after changes in transmural pressure and fully completed within       

   , and is consistent with a myogenic response [29]. 

A tight coupling between    metabolic supply and brain’s demand can explained cerebral 

autoregulation, or at least part of it [32, 33]. There are many chemical factors that can cause 

vasodilation 

1. Decrease in    or nutrient levels 

2. Increase in     level locally 

3. Decrease in     

4. Increase in adenosine, lactic acid 

However the role of these substances in the coupling between flow and metabolism is still unclear 

[29]. It is known that hypercapnia causes an increase in cerebral blood flow globally. It has been also 

reported [34]. Although the speed of the autoregulatory response has been linked with the 

myogenic hypothesis, Paulson et al. [29] reported that flow changes may occur essentially in 

response to metabolic changes. 
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The studies done on the effect of a neurogenic mechanism on cerebral autoregulation is very diverse 

and controversial [35, 36]. There are many factors that make it very difficult to reach a 

comprehensive understanding of cerebral blood flow neurogenic control system. Ursino et al. [15] 

summarized these factors as follow 

1. The neurogenic mechanism can be easily be damaged during in vivo experiments 

2. We don’t have a complete knowledge of nerve supply to cerebral vessels 

3. It is difficult to reach nerves that supply cerebral vessels 

However the results of wide research on neurogenic control system support the neurogenic 

hypothesis that autonomic neural control is likely to have a significant effect in cerebral 

autoregulation [35]. 

2.6  Technical and experimental techniques for assessing static & dynamic 

autoregulation 
 

In this section the methods for assessing autoregulation are discussed. As mentioned before, in 

general, most cerebral autoregulation experiments attempt to measure the regulation of blood flow 

in the brain by changing the blood pressure in different ways. The reason behind changing blood 

pressure instead of manipulating the metabolic requirement is that changes in blood pressure are 

easier to process, control and monitor [37] and also manipulating the metabolic rate is not clinically 

applicable. Throughout this thesis these changes in blood pressure to assess blood flow regulation 

are studied. 

Experiments to assess cerebral autoregulation can be categorized in to two forms, static and 

dynamic.  In section 3.1, experiments to assess static autoregulation are discussed.  In section 3.2 

the methods to measure blood flow and blood pressure in order to assess dynamic autoregulation 

are presented.  

System identification methods to assess dynamic cerebral autoregulation are studied in the 

following section. 
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2.7 Static autoregulation experiments 
 

Up to mid    ’s, most of the studies that were carried out on cerebral autoregulation were 

performed under ‘steady-state’ condition. This was due to the fact that, there was no method of 

continuous recordings of cerebral blood flow with high temporal resolution.  

Cerebral autoregulation (  ), as mentioned previously refers, to the ability of the brain to maintain 

constant blood flow regardless of the changes in cerebral perfusion pressure (   ) [3, 29, 38, 39]. 

Before the development of transcranial Doppler ultrasound (section 3.2.1), evaluation of    was 

carried out under steady-state condition.  In order to measure autoregulation discussed in section 

2.4, cerebral blood flow (   ) is first measured at a constant baseline value of arterial blood 

pressure (   ) and constant    . After that another (steady-state) measurement is carried out 

with a change in     provoked in some ways and maintained at a new level for a while (around 

      minutes [40, 41]), and then blood flow is recorded [5]. 

Most of the experiments carried out using static autoregulation require very time-consuming and/or 

invasive procedures.  This is due to the time needed to maintain the imposed changes on the blood 

pressure in order for the blood flow to be measured. Most of the procedures carried out in static 

autoregulation used Xenon [40, 42] or krypton radio-isotope [40, 42] and manipulation of the blood 

pressure using vasoactive medications [43]. For example the time needed for measuring blood flow 

after manipulation of blood pressure for Xenon is around    minutes. Other methods have been 

proposed in order to change the mean     are: head tilting [44] and lower body negative pressure 

[18, 45] which did not attract much attention as they could not be carried out for period of long time 

which is the requirement for static autoregulation. 

From the definition of cerebral autoregulation,     is required to be measured, but normally the 

measurement of     is used. This is based on the assumption that any change in     would be 

proportional to the change in    . This is a valid assumption when the intracranial pressure (   ) 

can be considered to be constant. This assumption is more questionable if the patient that is treated 

has raised    , for instance head injury or hydrocephalus [46]. 

The main disadvantage of static autoregulation is the constrained number of experiments that can 

be performed on each individual. Most of the works reported in this area are based on two 

measurements, one before and one after the inducement of changes    . This makes it difficult to 

predict the shape of the autoregulatory response curve for an individual. Some researchers  [32, 40], 

in order to overcome this problem, have accumulated the results for different individuals with the 
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assumption that the autoregulation for “normal disease-free” subjects have identical autoregulation 

curves [32], however in different and repeated studies it has been clearly shown that this is not the 

case and it is vital that each individual should be considered based on their own data [20, 47]. 

Static autoregulation has some difficulties and problems which may be summarized as follows: 

 It is difficult to assess steady state     alterations in humans over a large range 

while keeping other parameters stable [5]. It is common to take two measurements 

per subject, one just before and one after the induced change in     which makes 

it impossible to measure the shape of autoregulation for individuals. 

 In order to capture large spontaneous changes in mean     without externally 

inducing a change in     (depending on spontaneous variations) very large 

intervals e.g.    hours measurements are required. However over such large time 

intervals, it is hard to keep other variables such as       
 and    

constant. 

 In order to cancel out the effects of the individual physiological characteristics of 

volunteer, for the pooled data method, many subjects need to be involved in the 

measurements [32]. 

 Static autoregulation is unable to show changes in real time, due to the measuring 

techniques [16]. 

As the results of the limitation of static autoregulation, further work in this thesis is concentrated on 

dynamic autoregulation methods.  
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2.8 Data collection and measurement Techniques for dynamic 

autoregulation 
 

In this section some of the most used methods for collecting cerebral blood flow velocity and blood 

pressure are discussed. 

2.8.1 Measurement of cerebral blood flow using Transcranial Doppler sonography 

 

The use of Doppler ultrasound as a non-invasive technique to estimate blood flow velocity was first 

described in by Satomura and Kaneko [48] in 1960 who measured blood flow velocity by recording 

the shifted frequency of ultrasound reflected off red blood cells. However it was in the early 1980’s 

when ultrasound devices were developed sufficiently to allow penetration through the skull to carry 

out relatively quick non-invasive measurements of the blood flow velocity within the intracranial 

circulation [16]. In order to achieve bone penetration low frequency ultrasound is usually used 

(      is conventional). At low frequencies   to      , the attenuation in bone and soft tissues is 

considerably less than at higher frequencies. The thickness of the skull varies between regions, and 

the bone of the temporal region is relatively thin, which makes it an ideal region for the penetration 

of the ultrasound [16]. 

 

 

 

 

 

 

 

 

In the work done by Satomura and Kaneko et al. [48] the frequencies used, were in the range of 

      and       .  One transducer transmits and receives the ultrasound beam, and in 

Transcranial Doppler sonography (   ) this transducer is nearly always stationary. The moving 

blood cells back-scatter the transmitted beam and the reflected waves indicate the flow velocity of 

the blood [16]. These echoes return with a wide range of Doppler-shifted frequencies. 
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Figure 2-3 Schematic diagram of transcranial Doppler ultrasonography [1] 
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In order to understand the process of the Doppler ultrasound, consider a single blood cell travelling 

with velocity   as shown in Figure ‎2-3. The relative speed of the transmitted waveform after hitting 

the cell is:   | |     , where   is the speed of sound in the medium,   is the angle between the 

blood cell velocity and the ultrasound wave as shown in Figure ‎2-3. By using the mentioned equation 

   | |     , the frequency of the ultrasound hitting the blood cell,    say, is [16]: 

    
 

  | |     
   ‎2.6 

   

where    is the transmitted frequency. By assuming that there is some reflection by the blood cell, 

the frequency of the ultrasound reflected back off the blood cell towards the transducer is   . In 

order to calculate the speed of the reflected wave, it has to be considered that the cell has moved a 

distance of | |         whilst transmitting one whole wavelength, and as the result of that the 

relative speed of the reflected waves is   | |      and the resulting wave frequency received by 

the transducer (  ) will be shifted further. By further assuming that there is not full absorption by the 

tissue or bone, we get some reflected waveform, the received frequency,   can be written as: 

 
   

  | |     

 
   ‎2.7 

By replacing eq.‎2.6 in eq.‎2.7 we get: 

 
   

  | |     

  | |     
         ‎2.8 

Since the speed of sound through tissue is             and the flow velocity in the middle 

cerebral artery (   ) is around         , and         , the equation below gives a good 

approximation. 

 
   

 | |     

 
   ‎2.9 

The above equation gives us a very easy formula to calculate the velocity of the single blood cell just 

from    ,      and    [1]. 

In    , more than just a single velocity is measured, as the velocity varies across an artery. Usually 

the whole cross-section of an arterial segment is captured in a single measurement, and some of its 

branches may be included. This kind of measurement results in having many reflected waves from 

many cells which contain a mixture of Doppler shifts [16]. Power Spectral distribution of velocities 

within the target volume is determined by analysing of phase difference between     or more 



  

20 
 

consecutive pulses [16]. The normal pulse repetition frequency4 is in the order of       . This signal 

power is directly proportional to the number of cells travelling at that velocity.  

The blood flow which is the required parameter in term of the cerebral autoregulation is 

proportional to the mean velocity across the artery, if the radius of the vessel is not being monitored 

and the form of the velocity profile does not change.     can enable the measurement of a 

distribution of blood velocities which means it has the capability to provide the mean velocity. 

In practise the mean velocity cannot be accurately and reliably measured. In order to obtain a good 

accuracy in calculating the blood velocity in clinical measurements, set of conditions needs to be 

satisfied, such as; the angle between the transducer and the vessel being interrogated is less that 

    [16], patients should not move and other conditions also stay unchanged. As the result of this 

issue in most applications maximum velocity (    ) which corresponds to the largest Doppler shift is 

considered as a more reliable measurement as it is not affected by the assumption made for the 

mean blood velocity. This maximum velocity corresponds to the blood velocity at the centreline of 

the major vessel in the sample volume [16]. 

The     measurement explained briefly above has led to the “dynamic” assessment of 

autoregulation, which consists of real-time measurement of both arterial blood pressure and 

cerebral blood flow velocity, usually in the     as well as arterial blood pressure. Information about 

the time delay of the control mechanism and the rate of regulation can be extracted from real-time 

measurement, which can help researchers gain more insight into dynamic autoregulation and the 

parameters involved with it. 

2.8.2 Measurement of blood pressure  

 

It is vital to be able to measure blood pressure accurately in order to assess cerebral autoregulation. 

The ‘gold standard’ technique is an invasive approach, which is able to direct hydraulic coupling of 

the vessel to a pressure transducer, or even better, has a small tip pressure transducer at the end of 

the catheter inside the blood vessel [49]. The standard procedure to measure the blood pressure is 

to use a strain gauge pressure transducer, connected to the vessel via a saline-filled rigid-walled 

catheter. This method can be used to collect the blood pressure in many different vessels including 

the chambers of the heart, the pulmonary artery as well as the more easily accessible venous and 

arterial systems. The short rigid-walled catheters provide an excellent frequency response which 

                                                           
4
 Number of pulses transmitted per second  
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enables the capture of blood pressure fluctuations throughout the cardiac cycle5. The main 

disadvantage of this method is obviously its invasive nature. 

Invasive blood pressure measurements such as brachial artery cannulation [50, 51] provide excellent 

recordings but they are uncomfortable and involve a risks for the subjects. As a result of these 

disadvantages, non-invasive methods are preferred for measurements on volunteers. The most 

standard non-invasive method to measure blood pressure is using an arm-cuff. The arm-cuff is first 

inflated to a pressure above the expected systolic value to occlude flow in the artery. After that the 

cuff pressure is gradually reduced while an assessment of the blood pressure is made. This is usually 

done by listening to the Korotkoff6 sounds. The Arm-cuff provides us with reasonable measurement 

of the blood pressure that are sufficiently accurate for clinical purposes but measurement can only 

be made once every about          [5] which is not fast enough to capture rapid fluctuations of the 

blood pressure when dynamic assessment of cerebral autoregulation is needed. 

The non-invasive measurement of the blood pressure are not fast enough to be used to assess 

dynamic cerebral autoregulation but can be used in static assessment of cerebral autoregulation 

with pharmaceutical manipulation of blood pressure. As a result of that most of the studies done in 

this field [5, 16, 32, 50, 52-54] have used Infrared plethysmogpragy (Finapres) to measure the blood 

pressure because they ensure accurate results.  

2.8.2.1 Infrared plethysmography 

 

This method of continuous assessment of the arterial blood pressure was first introduced in 1976 by 

Penaz et al. [55]. This method uses a small cuff on the finger of the subject which can be inflated 

through the normal range of blood pressures. The cuff contains an infrared transmitter which is 

placed on one side of the finger and a receiver on the other side. The infrared light transmitted 

through the finger is measured. This transmission is found to oscillate with the cardiac cycle. It has 

been found that the cuff pressure with the largest amplitude oscillations corresponds to the mean 

finger arterial pressure. The mean value of the transmitted light is measured which corresponds to 

the mean blood pressure. This is done as a set point for calibration. Once the calibration process is 

finished, a rapid and continuous inflation and deflation of the cuff is applied through servo control 

feedback, in order to maintain the transmitted light at a constant level. With the help of the above 

                                                           
5
  Refers to any of the events related to the flow or pressure of blood that occurs from the beginning of one 

heartbeat to the beginning of the next 
6
 Sounds that medical personnel listen for when they are taking blood pressure using a non-invasive procedure 
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process the arterial pressure waveform can be measured as it is the same as the cuff pressure 

applied. 

The method described is known as the volume clamp technique and is the basis of a commonly used 

device called the Finapres. Many studies have looked at the accuracy of the blood pressure 

measured by the Finapres, and the results from all these studies agree that under normal 

circumstances, there is a good agreement with invasive arterial pressure measurements [23, 54, 56].  

However the calibration process is not always accurate, so in order to overcome this shortage the 

calibration process is usually done every    heart beats [57] which is approximately every one 

minute. The recalibration process gives an unwanted artefact during the assessment of 

autoregulation but can be turned off. One further concern with using the Finapres for measurement 

of blood pressure is the unknown influence of peripheral vasoaction in the finger being measured, as 

it can increase the arterial volume and reduce the transmission of the infrared light through the 

finger. This can be misinterpreted by the Finapres as an increase in blood pressure, which would 

result in false trends in the blood pressure recorded by the Finapres. 

A completely different method for continuous non-invasive measurement of the arterial pressure is 

the use of tonometry [58, 59], which uses a pressure transducer applied to the skin and continuously 

presses and deflates an artery on to a bone surface. A comparison of autoregulation estimated by 

these two methods has been carried out by Birch et al. [60] and shown that the difference between 

the models is insensitive to peripheral vasoactivity mediated by local endothelial or myogenic 

mechanisms.  
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2.9 Assessment of dynamic autoregulation using system identification 

methods 
 

The dynamic measures of autoregulation focus on the transient response of     to the changes of 

of     on     (or alternatively     when     is not available) as cerebral autoregulation acts 

through vasomotor effectors that control cerebrovascular resistance (   ) [38]. Active 

autoregulation generates a rapid response of     and regulates     towards a baseline level, 

whereas impaired autoregulation results in a passive response of     following the changes of 

blood pressure. The very first time that the transient response was investigated was in animal 

studies [61]. After that the first transient response in humans was reported in humans was during 

the Valsalva manoeuvre which causes rapid changes of     [62]. The most common method for 

inducing a sudden drop of     to study dynamic autoregulation was first introduced by Aaslid et al. 

in 1989 [63], and is known as the thigh cuff experiment.  

 

2.9.1 Thigh cuff and Lower Body Negative Pressure (    ) experiments 

 

As mentioned above Aaslid et al. [63] developed a method to induce step changes in arterial blood 

pressure (   ) through the deflation of thigh cuffs. In this method the thigh cuffs around both legs 

are inflated which causes the blood flow in the legs to decrease and after   minutes the cuffs are 

released. As the result of the deflation, the     is reduced by about         [3], which is 

equivalent to a decrease in     of around     from its baseline. Aaslid et al. [63] showed that the 

step decrease in pressure last for up to   seconds before it starts to recover, and takes about    to 

   seconds before returning back to its base level. Aaslid et al. [63] also showed that in the case of 

intact cerebral autoregulation, the blood flow velocity recovers to its original level, in about   

seconds, which is much faster compared to the restoration of    . He also observed that in some 

cases an overshoot in the maximum velocity, of up to     above the baseline value,   to    

seconds after the drop in blood pressure. 

Another indication of the subject’s autoregulatory capacity introduced by Aaslid was the half 

maximal response time     . The half maximal response time was defined as the time taken for the 

percentage drop in maximum blood flow velocity to be reduced by half. Aaslid et al. [26] found that 

the average value of       for healthy subjects was     seconds. 
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Aaslid et al. [63] compared the assessment of dynamic autoregulation using the thigh cuff technique 

with static assessment analysed from a         drug induced rise in    , in    normal 

volunteers during normocapnia, hypocapnia and hypercapnia. He suggested that dynamic 

assessment of cerebral autoregulation has more value since more aspects of autoregulation capacity 

such as delay and rate of regulation can be extracted from it, whilst static autoregulation can just 

show the effectiveness of the autoregulation process.  

Since the introduction of the thigh cuff test, dynamic autoregulation has attracted much of attention 

amongst researchers, and extensive studies have been carried out in this area. The reasons for the 

increasing studies of dynamic autoregulation can be summarized as:  

 Transcranial Doppler ultrasonography (   ) and servo-controlled finger 

photoplethysmography (Finapres) have enabled the investigation of the relationship 

between     and      of the cerebral circulation as they can be applied noninvasively and 

can offer very high temporal resolution       seconds for     to monitor changes in     

[16]) 

 Dynamic    has the ability to reduce the effect of other parameters such as        and 

mental activities over short periods of time required for the test. 

 Dynamic    can be carried out safely and repeatedly and avoids major change in     

remaining within the normal    control range [16]. 

As mentioned above, the thigh cuff experiment introduced by Aaslid et al. [3] induces a step 

decrease in    by rapid deflation of cuffs around both thighs, following an inflation for about   

minutes.  

Another method to reduce    is lower body negative pressure (    ) introduced by Schmidt et al. 

[34]. The mechanism behind this method is that if the atmospheric pressure around the lower body 

(enclosed in a sealed box) is decreased. During the initial stage the effective peripheral vascular 

resistance of the lower body is lowered and flow to the lower limbs increases causing a drop in 

central arterial pressure. After this initial stage, it would result in a reduction of extravascular 

pressure, which itself results in dilation of veins and lowered vascular resistance, resulting in 

increased in-flow to the lower limbs [64]. Sinusoidal      has been used to produce a periodic 

variation in blood pressure and has shown to provide a repeatable and controllable stimulus for 

assessment of cerebral autoregulation [65]. 

Both the thigh cuff and the lower body negative pressure techniques have been developed to be 

used in patients in the supine position. A major difficulty in using the thigh cuff method is that it can 
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be painful [66] and it is not the ideal method for elderly subjects. The discomfort is an issue for lower 

body negative pressure also, and it cannot be applied in obese subjects. As a results of that these 

two methods cannot readily be used to assess dynamic cerebral autoregulation (     in elderly 

patients, and alternative methods to induce oscillations in     are needed. 

Other proposed methods for a step decrease in blood pressure are placing a hand in iced water or 

sustained hand-grip, which stimulates sympathetic efferent pathways [17, 67]. But the      

response to these changes is diverse. 

One of the easiest ways to induce changes in    to assess     is the sit-to-stand procedure. The 

reduction in    and decreased in total peripheral resistance upon standing is presumably caused by 

cardiopulmonary baroreflex mechanisms 7[68]. The advantage of this method is that, it is a useful 

and feasible method to test     in elderly subjects and benefits from being realistic, as it reflects a 

physiologic challenge that occurs in daily life. 

All the methods mentioned above (apart from sinusoidal (     ) provide a single-step decrease in 

the blood pressure and create a single-step challenge in cerebral hemodynamics. An alternative 

method is creating periodic oscillation of     and study the response of CBFV. This approach was 

first introduced by Birch et al. and Diehl et al. [65, 69]. Diehl et al. [69] used periodic breathing with 

controlled the frequency of     oscillation at        (  breaths per minute), on the other hand 

periodic squatting with oscillation rate of     at         was used by Birch et al. [65]. The results 

from both above studies provided the same information regarding the oscillation of      giving 

significant phase lead over the changes of    , with normal   . Birch et al.  [65] reported a phase-

lead of        at         and Diehl et al. [69] reported a phase-lead of            at       . 

Both of the mentioned studies agree on phase-lead reduction when autoregulation is impaired. This 

phase-lead has since been become one of the most important measures of cerebral autoregulation 

as will be discussed in section 2.11.2. 

Other methods that employed technique of periodic oscillation in    to produce almost sinusoidal 

oscillation are pressure and oscillatory thigh cuff inflation and deflation [70].  

Apart from the methods mentioned above, humans have spontaneous ongoing    oscillation during 

their normal daily and nightly activities that vary from      to        without the need of external 

induced    changes. It has been shown that if spectral analysis of    over a day is carried out three 

different frequency bands are distinguishable: the first band at around the respiratory frequency 

with    peaks per minute (       to       , the high frequency region); the second band due to 

                                                           
7
 One of the body’s homeostatic mechanism for maintaining blood pressure 
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variations in vasomotor tone with   cycles per minute (the mid-frequency region, Mayer waves at 

      ); the third band whose cause is still not very well understood with   cycle per minute (the 

low-frequency region,      to        ) [71, 72]. It can be concluded that spontaneous fluctuation of 

   and      respectively can be very useful for assessing     and form the basis for the easiest 

method for assessing of    , as it does not require externally imposed alteration in the   , and can 

thus be used in a clinical setting.  

2.10 Modeling of dynamic cerebral autoregulation  
 

In the above section possible methods to create change in    were discussed. After inducing this 

change, the relationship between the    and     has to be modelled. In this section the most 

common and well known methods in this area are presented. In this section all the methods assume 

that linearity exists between     and    . The linear modelling of dynamic    (     can be 

divided into three different categories: grading autoregulation, time domain analysis, and frequency 

domain analysis. The common point of all these three categories is that they are all black-box 

models. In this section some of the most well-known methods in these areas are briefly explained. 

In the study of    , the system can be assumed as a control system, and the response of      is 

analysed when a step change or spontaneous fluctuations or induced ongoing in     occur. This 

system can be considered as a system with     as the input variable and CBFV as the output 

variable [73]. By having such a model, the system transfer function and time- and frequency-domain 

characteristics of    can be studied (section 2.11.2). Giller et al. [73] was the first person to employ 

the spontaneous fluctuations of     and      as the system input and output in order to develop 

the transfer function of the cerebral autoregulation. In his attempt, the spontaneous data of     

and      were used to estimate the amplitude, gain of frequency response and coherence, but not 

the phase of the frequency response. Giller et al. [73] showed that the coherence obtains higher 

values when the autoregulation is impaired compared with healthy subjects (intact autoregulation), 

indicating that      follows the fluctuations of     linearly (passively) with the lack of blood flow 

control.  

In 1995 Tiecks et al. [5] devised  a methodology using the alteration in cerebrovascular resistance 

index (             ) in relation to the change in    during the thigh cuff manoeuvres.  This 

method used a second order parametric model in order to describe the response of      using    

pre-defined levels of autoregulation thus defining the autoregulatory index (   ). In this model     

of   indicates that      passively follows    (absence of   ) and     of   indicates that      

recovers much faster than    following a step change in   . This method has been used as a 
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starting point for other research that treats cerebral autoregulation as a “black box”, tries to model 

the system mathematically and identify the coefficients of this mathematical model in order to 

extract useful information from the time, frequency, impulse and step responses of the identified 

system [32, 74, 75]. 

Czosnyka et al. [28] used spontaneous variations of     and     , in order to assess cerebral    

continuously. In this method Pearson’s correlation coefficient (called the index of 

autoregulation,   ) between     and      in patients with head injury was used. In this study 

negative and zero correlation coefficients indicate active blood flow control in the brain [76].  

In the next section, some of the most common methods for modelling cerebral autoregulation 

mentioned above are looked at. 
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2.11 Univariate Ceberal autoregulation models 
 

In this section assessment of autoregulation based on filtering the data and not concentrating on its 

physiological aspect are studied. Tiecks model nonparametric approaches (coherence, spectra 

analysis and transfer function) are shown in the following sections. 

2.11.1 Tiecks model 

 

Tiecks et al. [5] introduced the first model in order to describe the response of      with respect to 

a pure step change in    , to assess the dynamics of cerebral autoregulation In this method a 

simple, second-order linear differential equation which can be expressed in the form of a state-

space model was used to describe the relationship between cerebral blood pressure as the input and 

cerebral blood flow velocity as the output of this black box model.  

Figure ‎2-4 illustrates the Tiecks model where a sudden drop in blood pressure is generated and the 

response of the blood flow has been shown for 10 different autoregulation levels with step wise 

drop of     of     at     for each step. From top to bottom;       denotes “perfect” 

autoregulation and   denotes “absence” of autoregulation or in other words the autoregulation 

mechanism is completely abolished. 

In this state space model state variables    and    which were assumed to be equal to   initially and 

after the step change in    , the equations are solved in steps of        (sampling rate, 

       ). The model can be expressed as below: 

                           ‎2.10 

                        ‎2.11 

                     ‎2.12 

                        ‎2.13 

where    is the normalized change in mean     (    ),      is the initial     ,     is the 

critical closing pressure,   is the sampling frequency and       is the initial      (before the 

sudden drop).  ,   and   indicate time constant, damping factor and autoregulation dynamic gain. 

These parameters are related to the dynamic autoregulatory index (   ) [5]. In order to work with 

this model, for each patient or volunteer the step response of the      is estimated by finding the 

best-fit step-response using a correlation criterion for that patient.  By running the     with 

different combinations of parameters ( ,   and   as can be seen in Table ‎2.1) through the Tiecks 

model, and simulating      and comparing this with the measured     , the autoregulatory index 
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(   ) can be estimated. These parameters were related to the dynamic autoregulatory index and to 

the dynamic rate of regulation (    ) as shown by Aaslid et al. [16] as: 

    
    

  
 

 

           
 
           

    
 ‎2.14 

where in above equation     is the cerebrovascular resistance which can be calculated using 

eq.‎2.1. ‘Baseline’ in above equation refers to the values before the thigh cuff deflation. The     

lacks robustness as it only depends on two measured values of     and mean cerebral artery 

velocity       . 

  

Figure ‎2-4 Responses of ceberal Autoregulation model to a step change in blood pressure according to the model adopted 

from [5] 

 

              

                                    

                     

                     

                      

                      

                                                

                      

                      

                      

                                              

Table ‎2.1 Comparison of Autoregulation Index to rate of regulation,      is the dynamic rate of regulation 
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2.11.2 Nonparametric methods using correlation, spectral and transfer function analysis 

 

Over the years, the main tool for analysing the recorded data from spontaneous     and      

fluctuation and      is frequency domain analysis. Frequency domain analysis of cerebral 

autoregulation was first devised by Giller et al. [73]. In his test, he measured the data over the 

intervals of more than    seconds. His experiment should be considered as an assessment of static 

autoregulation as he investigated the effects of blood pressure oscillations with periods of around 

one minutes. Giller  et al. [73] used the coherence   between pressure and velocity as  : 

 
  

      

√            
 ‎2.15 

where        is the cross-spectrum between pressure and velocity, and        and        are the 

squared auto-spectra of pressure and velocity respectively. Giller et al. [73] suggested that for 

healthy subjects the coherence is less than      and this value increased to     in the patients with 

subarachnoid hemorrhage. The author also illustrated that low coherence does not always imply 

effective autoregulation as it depends on the form of the     present at the time. This means that 

for example if the     of one patient does not vary at a given frequency and as the result of that 

the coherence is low, it would not be possible to predict how efficient blood flow mechanism would 

be for another experiment on the same subject.  

Many works have been carried out on the frequency domain analysis of cerebral autoregulation 

based on the study of Giller (Kuo et al. [77], Diehl et al. [78], Panerai et al. [32]). In these works, the 

authors investigated    via the transfer function      between     and      as: 

  ̅         ̅    ‎2.16 

Where  ̅    and  ̅    are the Fourier transform of the flow      and      respectively. In the above 

equation the transfer function can be obtained from the cross-spectrum and auto (power) spectrum 

between pressure and velocity introduced above using the recorded data, as: 

 
     

      

      
 ‎2.17 

By using the equations above the transfer function can be rewritten as: 

 

      √
      

      
 ‎2.18 

The above equation relates coherence and transfer function. The modulus/phase parts of the 

complex transfer function are as below: 
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 |    |  [     
       

 ]    ‎2.19 

   

 
          *

     

     
+ ‎2.20 

Where |    | is the gain (modulus) of the transfer function or frequency response and      is the 

phase of the transfer function. In the above equation subscripts   and   indicates the imaginary and 

real parts of     . These two parameters describe the relative amplitude and time relationship 

between the alteration in     and      over a specified frequency range [79]. 

By using spectral analysis of cerebral blood flow, Kuo et al. [77] identified three different frequency 

ranges for spontaneous fluctuations, which are similar to the three frequency ranges introduced first 

by Parati et al. [80]. These ranges are: very low frequency (   ,                ); assumed to 

be due to a synchronisation with B-wave8 fluctuations in    , low frequency (  ,        

       ), as the results of the     activity due to baroreflex, i.e. nerve stimulation of vessels and 

heart and high frequency (  ,              ), due to the respiratory cycle. Kuo et al. [77] 

showed that coherence between     and     are high for    and    regions, but low coherence 

was reported in     oscillations. The low coherence in     fluctuations tells us that there is little 

linear relation between     and     velocity, and as the result of that the true mechanism behind 

autoregulation that produces fluctuation in velocity in this range is in question. For the reason 

mentioned above Kuo et al. [77] and Diehl et al. [78] used the frequency range of               

for their calculations. Kuo et al. [77] found          while the phase found by Diehl et al. [78] 

was            both at    fluctuation (especially         ;   ). Both authors observed a 

significant drop in the phase in the    fluctuation range;     and     found by Kuo et al. [77] and 

Diehl et al. [78] respectively at       . They both also observed that the phase falls to almost zero in 

the    range and they suggested that this is because autregulation is not active for high 

frequencies. They both suggested that the reduction of phase for high frequencies can be used to 

model the autoregulation as a high pass filter. In terms of gain Kuo et al. [77] did not comment on 

this parameter as he did not find a significant relationship between frequency and |    | where 

increase in |    | was expected with increase in frequency. For instance, they both found 

approximately the same results for gain such as |    |      for         , and |    |      for 

         which contradict the high-pass filter criterion, which is due to the dynamic “input 

impedance principle which states that vessel resistance decrease as frequency increases even if 

active autoregulation is present” [78].   

                                                           
8
 Slow and rhythmic oscillations in intracranial pressure (   ) 
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One of the important factors in assessment of cerebral autoregulation is “false autoregulation”. 

False autoregulation refers to an “alteration of autoregulation in which the apparent maintenance of 

a constant cerebral blood flow (   ) when increasing cerebral perfusion pressure (   ) is due to an 

increase in brain tissue pressure” [81]. False autoregulation is frequently found in patients after a 

severe head injury. These patients do not benefit from an increase in      to obtain a better     

as     is not modified or may even be reduced [81].  

Panerai et al. [52] also looked at the frequency domain analysis of cerebral autoregulation on both 

pre-mature newborns and adult volunteers respectively. The gain |    | showed that for both of 

these groups (pre-mature newborns and adult volunteers) the gain increased with respect to the 

increase in frequency. For instance, in the case of adult volunteers |    | rose from   at        

to     at          and stayed almost constant up to the point of           where it again 

increased to |    |    at around          . The results for the phase for the adults volunteers 

agrees with the results found by Diehl et al. [78] and Kuo et al. [77] whereas it decreased giving 

      for           and it dropped to     and    for          and           

respectively. However the results found by Panerai et al. [46] for pre-mature newborns did not agree 

and the observed increased phase with frequency. Panerai et al. [46] proposed that the reason that 

the phase increases with frequency in newborns is that the dynamic input impedance9 principle is 

more prevalent in the younger subjects considered in his research. Panerai et al. [52]  suggested that 

the first mechanism responsible for the slow response of      to the fluctuation of     in the 

frequency range of               could be a metabolic mediator. He also suggests that the 

second mechanism which is responsible for the response of blood flow control for the frequency 

range of               is a fast response compatible with a myogenic mechanism.  

Another simple parametric approach taken by Simpson et al. [74] was to use a first order finite 

impulse response (   ) filter and look at the second coefficient (  ) from different recordings 

during normocapnia and hypercapnia. Simpson et al. [74] reported strong evidence that the     

coefficients reflect autoregulatory activity by observing high-pass filter responses and showed 

significant difference between normocapnia and hypercapnia recordings using    was also 

apparent.  

  

                                                           
9
  The dynamic impedance refers to a circuit with an inductance and a capacitance in parallel at the frequency 

at which this impedance has a maximum value. 
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2.12 Assumption of linearity and time invariance 
 

All the models discussed in section 2.11 for the assessment of autoregulation, there is an assumption 

that our system is linear and time invariant. These assumptions have been made in a large 

proportion of the literature in the area of assessing cerebral autoregulation, and linear techniques 

have been used to describe and model the behaviour of dynamic autoregulation (   ). These 

assumptions are made in the frequency domain analysis (gain, phase, frequency response function, 

coherence) and in the Tiecks model described in section 2.11.1).The question of validity of this 

assumption has been raised by some authors (Panerai et al. [82], Mitsis et al. [83], Giller et al. [84]). 

This is a crucial question to be addressed because if a system is nonlinear then its behaviour cannot 

be fully described using linear techniques and a single frequency response function with a single 

phase and gain. It has been argued [35, 46, 84] that cerebral autoregulation is a nonlinear response 

when it is studied over a large pressure range see Figure ‎2-2. One can consider two extreme cases: 

one with a small step change in blood pressure and one with a massive drop to almost zero blood 

pressure. In the first case, blood flow drops and is quickly restored to baseline by autoregulation. In 

the second case, blood flow drops to zero and remains at zero (autoregulation cannot bring it back) 

[85]. From the above argument, it is obvious that the output (blood flow) and the response of the 

system depend on the scale of the input (blood pressure), which, by definition, makes the system 

nonlinear. However the main question is whether it would be a safe assumption to treat the 

autoregulation response linearly within a limited range of blood pressure.  

Panerai et al. [46] collected     and middle cerebral artery velocity from a large number of healthy 

subjects. They then used one set of data collected from each subject and by using different 

mathematical models (  linear models and one non-linear: Volterra-Wiener kernels10) to develop the 

relationship between     and     . Then the models for each individual were applied to the 

second set of data collected and the results were compared for different models. The authors found 

that the nonlinear model gave much more promising results compared to the linear models when 

they were applied to the same set of data, on which the model was developed. However when the 

models were applied to other sets of data, the result from the nonlinear model was relatively poor. 

The authors argue that the nonlinear models are more flexible and provide a better fit to the data in 

the training set. However nonlinear models may fail even when tries to fit new recording from the 

same subject. That means when the coefficients of the model are calculated using the training set of 

data, they would try to fit the noise as well. Noise can be assumed as non-linearity which includes in 

                                                           
10

 For details see appendix I 
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our measurements, and when they are applied to different sets of recordings, as they are very 

sensitive to the training signals, they would not provide promising results in term of signal to noise 

ratio      . The authors state that it cannot be a solid explanation but acknowledge that the 

“nonlinear model becomes too sensitive to the particular blood pressure temporal pattern of the 

training set (over-training)” [46]. 

Mitsis et al. [83] argues that the nonlinear behaviour of cerebral autoregulation has multiple 

components that operate in different frequency bands. They argue that the assumption of linearity 

would give satisfactory results when the system is studied over high frequencies (       

      ), but nonlinearity would model the data better (data-fitting and grading autoregulation) 

when low frequencies (              ) are studied. Mitsis et al. [83] used a Volterra-Wiener 

approach, that utilizes the Laguerre-Volterra11 network with two filter banks to model the system 

nonlinearly with two dynamics: fast and slow. Their results prove that nonlinear model provides 

better results compared to linear models in term of data fitting. They argue that this improvement is 

due to the representation of the system over the low frequency range.  

Another method that has been applied by Chacon et al. [82] was the use of a time lagged recurrent 

neural network to model the relationship between     and      as input and output respectively. 

They showed that this new approach is superior in the prediction of      compared to transfer 

function analysis, but not to time-domain linear methods. The existence of nonlinear behaviour was 

also observed in the          relationship, involving not only an amplitude factor, but possibly 

a directional effect as well. However they did not comment on the difference between this novel 

approach and more common methods in term of the assessment of autoregulation.  

Autoregulation is known to be nonlinear [35, 85], which raises the question of the validity of linear 

approaches in assessing autoregulation. However it is been shown that over high frequencies 

(         ), [84] and normal range of blood pressure, the linearity assumption is a safe 

assumption and gives adequate results [35, 46, 52]. At lower frequencies no models appear to be 

available to represent the response of the system and neither linear nor nonlinear models proposed 

so far can accurately predict the relationship between arterial blood pressure and middle cerebral 

artery velocity. The evidence so far suggests that some nonlinear models can be useful in terms of 

modelling the behaviour of the system at low frequencies but perhaps due to our lack of knowledge 

of other extraneous signals, especially cerebral metabolism changes and       
 variation, a good 

and accurate model remains to be found. 

                                                           
11

 For details see appendix II 
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Another assumption that has been made by most of the researchers and authors in the area of 

quantifying cerebral autoregulation is the time-invariance of the system. It can be said that the 

mechanism itself is time-varying as mentioned before. So introducing a time-varying model would be 

sensible choice. However it is possible that the complex mechanisms of the systems that are 

responsible for autoregulation have time-varying responses depending on the local brain activity and 

on the history of the blood pressure changes, arterial     changes and so on.  As a result of that the 

measurements of autoregulation may vary even from minute to minute as the measurements 

continue. 

It has been shown that the autoregulation response varies for healthy subjects [47]. Panerai  et al. 

[47] used a period of over    minutes of non-invasive recordings of      from both left and right 

    with Doppler ultrasound and simultaneous beat-to-beat     [47] and showed that the 

mechanisms of cerebral autoregulation are time-varying. However the conventional analysis 

assumes time-invriance and therefore it may be desirable to split the data up into invariant sections. 

But this is difficult to achieve in practice usually, therefore time-invariance is assumed for short 

segments of data and estimates are usually taken by averages across those sections. Panerai et al. 

[47] has shown that continuous estimates of dynamics    can be used to derive continuous cerebral 

autoregulation index (   ). He suggested that more work can be done in this area especially on 

short-term variability of autoregulatory mechanisms. It has been suggested by many authors [53, 86, 

87] that time-varying parameters should be given the second priority (after non-linearity) where a 

more advanced model is considered. 

2.13 Multivariate models 
 

In section 2.12, the non-linear characteristic of cerebral autoregulation was discussed. However it is 

known that the process of blood flow regulation is probably also multivariate [46, 83]. It is known 

that the variations in      is not entirely driven by pressure. There are other main physiological 

parameters that are responsible for controlling blood flow such as: arterial    (     
), and    

(    
) levels. The reactivity of      

 and     
 can be assessed by       

 and end-tidal    (      
). 

Different studies have investigated the dynamic charactrestics of the          relationship using 

the measurments of      response to a step change in       
 [88, 89] or continuous measurement 

of breath-by-breath fluctuations of       
 [90, 91]. There are also work done on dynamic cerebral 

autoregulation by Mitsis et al. [35, 92], which used multivariate nonlinear system using both     

and       
 as inputs and employed the Laguerre-Volterra network methodology and showed that 

    fluctuations and the interaction between     and     have a considerable effect on      
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variation at low frequency bands. He argued that the results of these studies show, that     on its 

own is not enough to explain      variability in low frequency bands. Kouchakpour et al. [93], 

showed that nonlinear multivariate models of      can improve assessment of autoregulation and 

can reduce both inter- and intra-subject variability when compared to univariate linear and 

nonlinear models 

2.14 Summary 
 

In this chapter, a brief anatomy of arteries and cerebral circulation were studied. Cerebral circulation 

and autoregulation process and their importance were also discussed. It is vital to monitor cerebral 

autoregulation as it plays a key part in diagnosis and monitoring cerebrovascular diseases. Myogenic, 

metabolic and neurogenic mechanisms which are known to be responsible for the cerebral 

autoregulation were also discussed.  

Next two types of behaviour of cerebral autoregulation; static and dynamic were discussed. The 

reasons why assessment of the control system in clinical application and research now lean more 

towards dynamic autoregulation were considered. 

Next different models of cerebral autoregulation were studied. Tiecks model which allows to grade 

cerebral autoregulation into    different autoregulatory levels was discussed. By assuming this to be 

a linear single-input-single-output (    ) system, frequency-, gain-, phase-, step-, impulse-response, 

coherence and transfer function can be calculated, using linear, time-invariant estimates. More 

details about how cerebral autoregulation can be assessed using time- and frequency-domain 

analysis will be given in the next chapter. 

Different approaches have been taken by different authors in order to assess    . For example, 

Carey et al. [66, 94] used the autoregulation index values using step response analysis and showed 

that     is unaffected by aging. Lipsitz et al. [95] and Narayanan et al. [96] both used transfer 

function analysis and showed that elderly normotensive and hypertensive elderly subjects retain 

   , and     in healthy elderly subjects is intact in the low frequency ranges. 

Although many different models using different approaches have been proposed to assess cerebral 

autoregulation, none of the methods have been accepted for clinical applications and usage, which 

gives us the motivation to address this issue and try new methods and investigate them further. 
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Chapter 3 : Assessment of Autoregulation; 

Two-input (   ,       
) models using 

Laguerre-Volterra Network 

Autoregulation refers to the automatic adjustment of blood flow to supply the required oxygen and 

glucose to each tissue in the body in proportion to the tissue’s requirement at any instant in time. In 

other words for the brain, cerebral autoregulation is an active process of the brain by which cerebral 

blood flow is controlled at a steady state despite the changes in the arterial blood pressure. Having a 

good assessment of the cerebral autoregulation by a model that characterizes this system can 

potentially be used in various number of important clinical and hospital conditions, such as 

prematurity, birth asphyxia, stroke, head injury, carotid artery disease, hypertension and vasovagal 

syncope. Spontaneous beat-to-beat variation arterial blood pressure (   ), breath-to-breath end-

tidal carbon dioxide (      
) as inputs and cerebral blood flow velocity (    ) as output are used 

as signals to model the autoregulatory mechanism (Multi-Input-Single-Output;      model). In this 

study a non-linear multivariate approach, based on Volterra-type kernels estimation models are 

employed. The results are compared with linear, nonlinear Single-Input-Single-Output        and 

linear      models. The mean squared error is used as the criteria of the performance of each 

model in assessing cerebral autoregulation. Our simulation results corroborate that for relatively 

short signals (around     seconds), nonlinear multiple-input model based on Volterra-model 

perform better that other models and can considerably improve the system model error. Results 

from 13 different healthy volunteers reveal that nonlinear models with additional input (      
) 

have the least  inter- and intra-subject variability compared to single-input linear and nonlinear and 

linear and two-input models. Moreover it is found that simple linear using just     as an input 

perform relatively well when short a data sample is available.  
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3.1 Introduction 
 

As explained in section ‎2.9 , it is well documented in the literature that changes in arterial     

tension causes vascular responses in cerebral vessels [29], and this reactivity of cerebral vessels, 

causes changes in     regulation (hypercapnia can cause vasodilation and hypocapnia causes 

vasoconstriction). The effect of step changes in     on      has been investigated in number of 

studies [88, 90]. It has been shown that, this effect is not instantaneous and takes around    

seconds to develop fully.  

In this chapter, the nonlinear dynamic relationship between     and     as inputs, and      as 

output is studied12.  In order to simplify the problem of observing changes in arterial     tension, 

the breath-to-breath, end-tidal     (       ) variations was used. This measurement as mentioned 

in section 2.13 can be used as a secondary input in addition to     and      as the output in order 

to test whether routine assessment of cerebral autoregulation and additional     reactivity have 

potential clinical usage for  patients with cerebrovascular disorders. Panerai et al. [90] used the same 

two-input model to model dynamic cerebral autoregulation (    and       
 as inputs and      

variations as output), but employed causal     filters to assess the effect of arterial     on       

in a linear manner. In this study, Panerai et al. [90] used spontaneous beat-to-beat fluctuations in 

      and breath-by-breath variability in end-tidal     in continuous recordings. It was found that 

having     alongside with     improves the prediction error of the model considerably. He also 

used impulse response to show the dynamic characteristics of the      and       
 to      . 

Panerai et al. [90] observed no significance interaction between the two inputs. 

This chapter starts by employing, a two-input format of Laguerre Volterra Network (   ) modelling 

approach (section 3.3.1) to assess the nonlinear dynamic effects of      and        on       

and the effect of their interaction [83]. The performances of different models (linear-    , 

nonlinear-    , linear-    , and nonlinear-    ) are compared and the structure of each model 

are selected individually for each recording and later a general model structures for all the 

recordings based on model fit (normalized mean square error;     ) are presented . 

This is then followed by data fitting using multi-input Laguerre-Volterra Network (   ) and the 

performance of different models based on their ability to assess autoregulation is studied. 

 

                                                           
12

  Part of this chapter was presented at IEEE EMBSS [93] 



  

39 
 

Another issue that is of interest is the robustness of estimated step and impulse response which has 

been intensively used to assess autoregulation from the models is then investigated [75, 88, 97]. 

However spontaneous fluctuations of blood pressure and their central frequency is not entrained or 

synchronized with the changes in     (around       ) [74] (Figure ‎3-4).  

In this section, a new input (Cosine shape input modulated by a Gaussian, which has more realistic 

characteristics, i.e. closer to changes observed in spontaneous fluctuations of blood pressure) is used 

[98] and the response of the system to this input is studied and then compared, with some well-

established autoregulatory parameters. Next the issues of inter- and intra-subject variability of the 

autoregulatory parameters extracted from different models in order to assess the robustness of 

these methods, was studied. In order to compare the proposed methods (Wiener) to previously used 

methods, and to determine whether any improvement is due to the methods or just random effects 

resulting from the specific dataset in question and whether the results are generalizable, a 

permutation test between the models was used. This is a statistical significance test in which the 

distribution of the test statistic under the null hypothesis is obtained by calculating all possible 

values of the test statistic under rearrangements of the labels on the observed data points [99].  

3.2 Subjects and measurements 
 

The data used in this study was kindly provided by Prof. D.H. Evans and Prof. R. Panerai, and was 

collected at the Leicester Royal Infirmary (Leicester, UK).    healthy volunteers (age          

years) were involved in this study and the study was approved by the Leicestershire Research Ethics 

Committee. All the measurements were collected with the volunteers in the supine position with 

their head elevated. Transcranial Doppler Ultrasound (Scimed        ,) was used to measure 

middle cerebral artery velocity using a       transducer, held in position by an elastic headband. 

Simultaneously arterial blood pressure (   ) was non-invasively measured using a finger cuff device 

(Ohmeda      Finapres monitor). 

The signals were pre-processed off-line. The maximum velocity envelope from the spectra of the 

Doppler signal was extracted using a microcomputer-based analyzer that performs a fast Fourier 

transform (   ) every     . The     signals were digitized at       . Short periods of evident 

artefact as well as any spikes on the signals were removed by linear interpolation and the signals 

(       ) were low pass filtered with an eighth-order Butterworth digital filter (applied forward 

and reverse to give zero phase shift) with a cut-off frequency of      . The start of each heart cycle 

was automatically identified (with visual correction) from the     signal, after which the average 
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    and     s from the right and left     were calculated for each heartbeat. This time series 

was then interpolated with a third-order polynomial, and sampled at a constant rate of       

3.2.1 Data analysis 

 

For each measurement, data segments of approximately     seconds in duration were available. 

The recordings of          and        
 were converted to a percent change with respect to the 

mean value of each data segment, in order to remove the dependence on inter-individual variations 

in mean level. 

3.3 Methods 

3.3.1 Laguerre-Volterra kernel 

 

The Laguerre-Volterra Network (     methodology was chosen to study the relationship between 

blood pressure,     and blood flow in this chapter. The     has been shown to be an accurate 

nonlinear method for short stimulus-response recordings [83] and “is the best implementation of 

the kernel expansion approach in term of simplicity, to date” [100]. The     is a combination of 

artificial neural networks with the Laguerre expansion technique (   ). The     for multivariate 

models consists of two input layers of two Laguerre filter banks (Figure ‎3-2) (may be the same set of 

filters) and a hidden layer with   hidden units using polynomial activation functions. The     model 

consists of individual dual-input static nonlinearities associated with each input-output pair. 

The Laguerre functions have been used for the expansion of Wiener kernels due to its orthogonally 

over a domain from zero to infinity (appendix II) which is in consistent with the kernel domain [100]. 

The Laguerre expansion technique (   ) for the Volterra kernel estimations is implemented by the 

use of the orthonormal13 set of discrete Laguerre functions (    ) given by [100] as shown in 

Figure ‎3-1. 

 

       
   

 ⁄      
 
 ∑     (

 

 
)(

 

 
)

 

   

            ‎3.1 

Where       denotes the    -order orthonormal     (the impulse response of the     filter in the 

filter-bank), the integer   ranges from 0 to     (  is the memory-bandwidth; the length of the 

                                                           
13

 Two vectors in an inner product space are called orthonormal if they are orthogonal and unit vectors. 
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impulse response), and the real positive number   ranging from   to  , which is the critical     

parameter that determines the rate of exponential decline of these functions. 

 

Figure ‎3-1 Discrete Laguerre functions (   ) of orders 0-5, for       plotted over the first    lags (    ) 

The output of the filter-banks (     ) are generated as the convolution of the two inputs     and 

      
and the different      and the filter outputs are fully connected to a layer of hidden units 

with polynomial activation functions [83]. 
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 ‎3.2 

where,   is the order of orthonormal     and   is the input and in this study can be either   or   

representing      or       
 and   

    denotes the basis function that is the impulse response of 

the  th filter in the  th filter-bank.  

The outupt is formed by simple summation of the output of the hidden units and an offset   . 
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Where   is the order of nonlinearity and    is the polynomial static nonlinearity.       is the 

internal variable of the  th hidden unit and it is composed as a weighted summation of all filter 

banks outputs: 

 

      ∑    
   

  
   

   

  

   

∑    
   

  
   

   

  

   

 ‎3.5 

 

As mentioned before the value of   (eq.‎3.1) determines the convergence of the Laguerre expansion 

for a given kernel function. So the choice of    is very important in order to achieve an efficient 

model representation of a system with fast and slow dynamics. In this work, this value was chosen 

based on the number of filter-banks for each kernel and the length of the impulse response for that 

input based on the work done by Westwick et al. [101]. The equivalent     model of our system 

with two-input, second-order nonlinearity is shown in Figure ‎3-2. 

 

Figure ‎3-2 The Laguerre-Volterra network (   ) with two-inputs, with each input pre-processed through a different filter 

bank (  
   

) and respectitive filter bank outputs are fed into the hidden units of the hidden layer with polynomial activation 

functions (  ), and the output is calculated as the summation of the outputs of the hidden units (     ) and offset    

[100]. 
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The system output      according to the Volterra model can be written as: 
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‎3.6 

where    
    denotes the convolution of    with    (either      or       

). It has to be noted that 

each input may also employ its own set of basis function. The unknown 

parameters                 in above equations are the expansion coefficients of      (eq.‎3.10). 

The above equation can be simplified by: 

        ‎3.7 

Where in the above equation the matrix   is constructed using the output of the filter-banks and   is 

the error term and   is the output. It needs to be noted that  ,   and   are all also vectors. For 

instance, for a second-order system, the nth row of the   matrix is in the format of: 

[
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 ‎3.8 

Where the expansion coefficients (  ) takes into account the symmetries of the Volterra kernels: 

                               ‎3.9 

Where    depends on the multiplicity of the specific indices          and      ) are the coefficients 

of the     order kernel expansion. For instance, if all indices are distinct, then       ; but if the 

indices form   groups with multiplicities             and           , then      

         The error term   incorporates possible model truncation error and noise/interference in 

the data. 

The Volterra kernels can be expressed in term of    s and the expansion coefficients of      as 

below: 
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‎3.10 

It has to be noted that the indices          correspond to the first input (    ) and the indices 

     to      correspond to the second input        
). The value of   and   in the kernels (    ) 

denotes the order of that kernel (  would denote linear model and   would denote second-order 

non-linearity). So                  or                  corresponds to the self-kernels, and 

describes the effect of both linear (     ) or nonlinear (     ) of that input on the 

output, and if      , then                    denotes the cross-kernels and describe nonlinear 

interaction between the inputs and its effect on the output. 

The expansion coefficients in the model can be estimated through linear least-squares procedure 

because they enter linearity into the model [100]. 

The most important issue when it comes to applying     is the determination of the structure 

parameters   and  , which determine the size of the matrix  . It is obvious that by going to higher 

order in  , we can deal with higher order nonlinearity and the system memory ( ) defines the time 

elapsed for the diminution of the causal effect of an impulsive input stimulus. The key to the efficacy 

of the kernel expansion is in finding the proper    (based on the   value and  ), as   is fixed before 

choosing other parameters, and the number of columns in the   matrix in eq.‎3.8 only depends on 

              (order of Laguerre Wiener functions; two linear models, two self-kernel nonlinear 

model and one cross-kernel). In this work the order of nonlinearity was set to 2 (   ) due the 

small data sample and going to the third order would increase the number of kernels and require 

bigger data sample in order to be able to validate the method. Also going to higher orders would 

result into over training the validation dataset. Setting the      the number of columns in matrix 

  is: 

 
          

         

 
   

         

 
     

  ‎3.11 

 

In above equation, we can set any of              , to zero, and we simply won’t have that kernel 

in our model (for example, setting             to zero, would result into a simple linear single-input 

model).  

In the next section normalized mean-square error (    ) of the output on test data was used as 

the criterion to select the structure of the multi-input     (             ) and length of the 
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impulse response (     ). The output prediction      is defined as the sum of squares of the 

output residuals (difference between true output and the predicted output) of the model prediction 

normalized by the sum of squared of the true output. In order to avoid over fitting the network, we 

use training and validation method (training on half of data samples and validation on the other half 

and vice versa). 

3.3.2 Selection of Autoregulatory Parameters 

 

Different approaches have been made to assess autoregulation as described in section 2.9 in both 

time and frequency domains. A very common method used by [46, 47, 65, 98] to assess 

autoregulation is to look at the final value of the response of the model to a step or phase-lead at 

        [65] and autoregulation index (   ) [5], developed from time- and frequency-domain 

analysis have been proposed to assess the status of cerebral autoregulation.  The system responses 

to a step and impulse change are shown in Figure ‎3-3. As it can be seen in this figure, variability 

across the subjects is large and they also suffer from considerable inter- or intra-subject variability 

and may show very large fluctuation over short periods of time [47]. 

 

Figure ‎3-3 Top left: step, Bottom Left: Impulse from a 6 seconds-long     model, Right: response to cosine shape input 

modulated by a Gaussian (pressure-pulse (   ), for all thirteen subjects. The inputs are indicated as bold-dotted lines and 

the responses are shown in solid lines. Large dispersion is observed in the step compared to the pressure pulse response. 

Simpson et al. [102] proposed an alternative test-input to assess model responses shown in 

Figure ‎3-3. In this method, instead of feeding a step or an impulse to the system and calculating the 

response, they used a cosine wave modulated by a Gaussian envelope (pressure pulse,   ) and use 

the system response to this input. The reason behind choosing this model is that, this input has 

more realistic characteristics to our real input (spontaneous fluctuations of blood pressure) and its 

central frequency can be chosen with refer to the autoregulatory system where the variations in the 

     seem to be entrained or synchronized with the changes in     (around       ) [103].  The 
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power spectral density for an arbitrary set of      and     and three different inputs (step, 

impulse and new pulse input) shown in Figure ‎3-3 are shown in Figure ‎3-4. As it can be seen, our 

     and      has most of their powers at frequencies between                  , 

however impulse has a flat power spectrum at all frequencies and step input has most of its power 

at low frequencies which are not feasible with our system in hand. However it can be seen that the 

   has more realistic characteristic to our real data in term of power spectra density so more 

meaningful results are expected from this novel input.  

 

Figure ‎3-4 Power spectral density for a set of      and    , and step, impulse and pressure pulse input. 

The high-pass characteristics of the autoregulatory response showed by [18, 77, 103] can be seen in 

Figure ‎3-5, from the left-shift (phase lead) in the pressure pulse response (   ). 

In this work, the response of the system to the pulse input for all 13 volunteers during normo- and 

hypercapnia is studied and the distance between their amplitude at different point are measured, 

and the ones with the largest difference and highest trend follow across all datasets are chosen. 

A typical system response to this pressure pulse and the autoregulatory parameters used from this 

response are shown in Figure ‎3-5. demonstrated that, from simulations based on the Tiecks model 

[5] and preliminary work on the recorded data, pulse response at     seconds (    ), and the 

amplitude at   seconds (  ) provide good  separation of different levels of autoregulation and are 

used from now on in this chapter for the assessment of autoregulation. 
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Figure ‎3-5 The test-input of the shape of pressure pulse response (   ) in dotted-line and the estimated response in the 

solid-line. The parameters used to access autoregulation are also shown (amplitude of the response at     and   seconds) 

Angarita-Jaimes et al. [104] compared some of the most used parameters in the literature. These 

include the following: The percentage change during the initial segments of the step response (   ) 

was calculated from amplitude of the step response after   seconds which has shown to provide 

more robust result than the previously proposed parameter of the final value (non-parametric 

estimates) [98]. Average phase (   ) from         to       , measured from the transfer function 

analysis proposed by Zhang et al. [75]. From the response of the linear and nonlinear models to the 

step input, the final value (amplitude) is estimated (   ). Coherence (   ) over the same frequency 

range [103, 105], the correlation method (  ) using the Pearson’s correlation coefficient of 

segments of      and       time series proposed by Piechnik et al. [106] have been widely 

used. The autoregulatory index (   ) calculated by evaluating the set of models proposed by Tiecks 

et al. [5] using the parameter values given by the authors (for each recording, the model by the 

authors was applied to     , and the model which provided the highest correlation coefficient 

between the measured       and the generated velocity determined the    ) is another widely 

used method. The parametric approach proposed by Simpson et al. [74], the coefficients of a first-

order (two lags)     filter which is the simplest applicable model proposed by and choosing the 

second coefficient of the filter as an autoregulatory parameter (  ) is also approach used in this 

thesis. Angarita-Jaimes et al. [104] found that    and    (phase at       ) provide the most robust 

results in term of assessing autoregulation and inter- and intra-subject variability compared to most 

commonly used autoregulatory parameters mentioned at the beginning of the this section, even 

though it performs poorly on data fit as shown in Table ‎3.3.  

  

A1.5 

A8 
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3.3.3 Statistical Analysis 

 

For each set of data and each model, the predicted output (    ) was compared to the desired 

output and the performance was evaluated using the     . Accurate model representation was 

carried out using cross-validation, in which model parameters were estimated on one data segment 

(training set) and      then calculated on a second segment (validation set). Both segments 

(training and validation sets) were around     seconds long for the same recording. The model 

parameters were measured with the transient at the beginning (as univariate models have a lag of 

      and multivariate models can have a lag of up to    seconds) of the training half removed, and 

then the model performance was measured in the validation half.  This procedure was then 

repeated, swapping training and validation segments [93]. The number of filter-banks (  
    ) for 

each set of measurements was evaluated using the      between the responses of      to 

changes in     as a linear system (just     ,      in eq.‎3.10), and this valued was later used in more 

complex models (linear and nonlinear multivariate models).  

In order for the     model to estimate the kernels precisely the number of filter-banks should be 

large enough, as a smaller number of filter-banks would results in having a     model which is just 

a sub-set of the actual solution.  

In this work by scanning through all the models to find the optimum number of filter-banks (  to    

for linear kernels and   to   for nonlinear kernels) are chosen by having      on the validation 

segment as the criteria repeated on all the recordings. The choice of    for linear and   for nonlinear 

kernels come from analyzing dataset. The      for different combinations of filter-banks showed 

that the lowest      for linear model for different individual measurement was achieved with 

filter-banks in the range of   to   . However in term of second-order kernels, the largest number of 

filter-banks that provided the lowest      was with   filter-banks and the smallest number of 

filter-banks that resulted in the lowest      was with no filter-banks which represent no non-

linearity (  or     in eq.‎3.10). The validity of the results based on the criteria of      [93] was 

proven as higher orders showed to worsen the result on the validation dataset (due to the small 

sample size).  

The filter length was chosen differently for     and         as their response is different and based 

on previous works, filter lengths of    seconds for     and    seconds for         are chosen [23, 

39, 74, 97].  For each set of data (   ,         and     ), by fixing the filter length, the    (see 

eq.‎3.1) was calculated based on the work of Westwick et al. [101] (based on the length of the data 

and the filter length) and the number of filter-banks as shown in Figure ‎3-2, varied as mentioned 
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above, and the      for each iteration was calculated. Out of all possible combinations, the 

number of filter-banks and    that provided the smallest      was chosen as the characteristics of 

the model for that specific set of data.   

It has to be considered that in this work the kernels up to the second order were calculated. In each 

model the number of filter-banks for each kernels varied from ‘ ’ (absence of that kernel) to the 

maximum of filter-banks for that specific kernel (   for linear and   for nonlinear kernels). It was 

found that the maximum number of filter-banks for the nonlinear kernels was   and for linear 

kernels this was found to be twenty. In some cases, it was observed that in some set of data, the 

best model was not the most complex model but a simpler model and adding the nonlinearity did 

not improve our model prediction. 

In this work the “distinction between normo- and hyper-capnia” and “inter-subject” and “intra-

subject” variability as the benchmarks for the assessment of cerebral autoregulation were used 

which will be discussed below.  

3.3.3.1 Inter-Subject Variability 

 

We used inter-subject variability (normalized standard deviation;    ) as an indication of how good 

an autoregulatory parameter (   ) separate between    and    and thus considered to provide 

us with the best distinction between intact and impaired autoregulation. 

              
         ‎3.12 

              
         ‎3.13 

where in above equations       
 and       

 indicate different autoregulatory parameters 

(             ) during    and    for all    recordings. The mean of these parameters are then 

removed and normalized by the difference between the mean of these two groups (   and   ) to 

remove the effect of the scales using: 

 
        

     

|     |
          ‎3.14 

 
        

     

|     |
          

‎3.15 

where in above equation    and    are the mean of the    and    across    recordings 

respectively. The inter-subject variability is finally defined as the mean between the variation 

(standard deviation;    ) of the normalized autoregulatory parameters defined in eq.‎3.14 and 

eq.‎3.15 as: 
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                 ‎3.16 

                 ‎3.17 

        
         

 
 

‎3.18 

3.3.3.2 Intra-subject Variability 

 

In order to test the robustness of different autoregulatory parameters and the influence of additive 

noise in the recordings, intra-subject variability (    ; normalized standard deviation) is evaluated.  

        
                 ‎3.19 

        
                 ‎3.20 

where in above equations     
 and     

are the standard deviation of the autoregulatory 

parameters for each recording during    and    respectively. As no model can provide a perfect fit 

to the data, random estimation errors are expected in both model fit and as the result of that in 

autoregulatory parameters for each recording. By assuming that the underlying autoregulatory 

response is time-invariant, such random errors would reflect the repeatability of measurements, or 

the intra-subject variability. In order to assess these, Angarita-Jaimes et al. [104], used Monte-Carlo 

simulations, as they allow not only the errors in model parameters but also the derived 

autoregulation indexes to be assessed. The idea behind this method is to use computer-generated 

data to determine the amount of variation in sample statistics. In this work by Angarita-Jaimes et al. 

[104],     simulated signals were generated for each of the recordings. Surrogate       signals 

were generated by applying the identified models (   or    linear or nonlinear) to the      signals 

for that recording, and then adding random noise to simulate residuals. The generated noise was 

modeled based on the residual error in       using an    (autoregressive) model of order   

selected based on the Akaike’s information criterion [107]. Then for each recording, the standard 

deviation for the     simulated signals for different autoregulatory parameters were calculated, and 

considered as the intra-subject variability.  

By using the standard deviation of autoregulatory parameters for each recordings, intra-subject 

variability (    ) can be defined as using below equations 

                  
   ‎3.21 

                  
   ‎3.22 

          
     

|     |
 

‎3.23 
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|     |
 

‎3.24 

as: 

              
            

 
  

‎3.25 

Low values of     and      thus indicate low dispersion and/or wide separation between groups 

indicating improved ability to distinguish between normal and impaired autoregulation 

In order to calculate the variability (standard deviation) more accurately in this work, a mathematical 

based approach was used in this work. In the next section, an introduction to this approach is first 

given and a comparison between this method and Monte-Carlo simulation is presented to validate 

this technique.  

3.3.3.3 Variation; Mathematical Approach 

 

The linear regression is the simplest type of parametric approach which can be written as: 

                        ‎3.26 

Where      is a measurable quantity,      is an (   ) matrix of known quantities and   is an n-

vector of unknown parameters and      is the error.  

   (   )
  

      ‎3.27 

The covariance matrix of the unknown parameter estimates   can be calculated by [108]: 

                           ‎3.28 

where it is assumed that   is a positive definite matrix: 

          ‎3.29 

where in above equation   is the expected value of the entry. The variance of our autoregulatory 

parameters can be calculated using the covariance matrix of the parameters in the system. The 

agreement between Monte-Carlo simulation (    simulations) and covariance matrix for the 

parameters extracted from the pressure pulse response for all    datasets (13   , 13   ) for linear 

two-input model (   model in Table ‎3.4) are shown in Figure  3-6. 
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Figure ‎3-6 Agreement between confident limit (variation and mean) measured by Monte-Carlo simulation (    runs) in 

solid-red and covariance matrix in solid-black for all 13 subjects in both normo- and hyper-capnia using linear two-input 

model (     and       
) for top A)     , bottom B)   , the length in the box represents the standard deviation of 

autoregulatory parameters in that measurement. 

The variations measured from covariance matrix is more reliable compared to the Monte-Carlo 

simulation as the robustness of Monte-carlo simulation depends on the number of repetitions. 

However as mentioned before covariance matrix is linear approach to measure the variance and 

consequently the standard deviation, and is not generalizable for different parameters where a 

linear relationship between the population parameter and the input-output relationship exists.  

In the current study, the variation measured from the covariance matrix, of the autoregulatory 

parameters was used to measure intra-subject variability of different models. Paired t-test were 

used to test the significance difference between normo- and hypercapnia for all autoregulatory 

parameters extracted from different models (      linear and nonlinear). Results are considered 

statistically significant at       .  

Another approach that has been taken in this work was to look at trend following as the criterion to 

test how good the autoregulatory parameter is. As an example the    is expected to decrease from 

   to    as reported by other authors [52, 73, 109]. However this test on its own does not provide 

any information regarding the significant difference between autoregulatory parameters during    

and   . 
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3.3.3.4  NC and HC significant difference 

 

In order to test whether different autoregulatory parameters calculated from different models 

(  ,   linear or nonlinear) during    and    are significantly different, a null hypothesis that there 

is no difference in their mean difference was assumed and the difference in their dispersion is 

measured. The dispersion (intra-subject variablity) is calculated for each subject as: 

 
   (    

      
 )

 
             ‎3.30 

and then a t-test is measured between different   ,   linear or nonlinear to test the significance 

between the dispersions from these models. 

3.3.3.5 Randomization test 

 

The difference between the models can be tested indirectly by setting up a null hypothesis which 

says that any difference between the two model means is purely due to chance. If this null 

hypothesis is consistent with the data then there is no reason to reject this in favor of the alternative 

hypothesis. This can be interpreted in the same way as for conventional tests of significance: if it is 

less that    this provides some evidence that the null hypothesis is unlikely to be true. 

Randomization testing is a way of determining whether the null hypothesis is reasonable or not [99].  

Significance difference between the inter- and intra-subject variability of different     extracted 

from different model was measured using randomization [99]. Randomization has the downfall that, 

it is not necessarily possible to generalize the conclusions form a randomization test to a population 

of interest. “What randomization tell us is that a certain pattern in data is or is not likely to have 

arisen by chance” [99]. However this disadvantage has very little value for our problem as this lack of 

generalizability is not in our interest. 

This method of statistical analysis can be used when the sample sizes are small. Consider now a 

randomization test of inter- and intra-subject variability for two different ARP measured from 

different models. As mentioned before, variability of the     can be calculated using its mean and 

variance. The randomization test on    volunteers (   measurements including both    and   ), 

can be based on the idea that if there is no difference then the distribution of these measurements 

(measurements is    in our case) seen in the two inter- and intra-subject variability sample will just 

be a typical result of allocating the    measurements at random into two groups of size   . The test 

therefore involves comparing the observed inter- and intra-subject variability (using the     mean 

and variance) difference between the groups with the distribution of differences found with random 



  

54 
 

allocation. If the inter- and intra-subject variability found from observed result looks like a typical 

value from the randomization distribution then it can be concluded that the allocation of 

measurements to the two different     in reality does not have any significance difference. On the 

other hand if the inter- and intra-subject variability from the observed result is unusually different 

compared to the randomization result, then the data are unlikely to have arisen if the null model is 

true and it can be concluded that the alternative hypothesis is more plausible. For this matter again 

    as the level of significance was used.  

3.4 Results 

3.4.1 Model Performance 

 

The mean and standard deviation of     ,       
 and       for the    subjects are given in 

Table ‎3.1. 

                   
 (%)                

Normocapnia                                     

Hypercapnia                                     

Table ‎3.1 mean ± standard deviation (   ) of     ,       
 and      , averaged over    subjects for normo- and 

hypercapnia 

Typical data segments of    ,       
 and      are shown in Figure ‎3-7. The data are high-pass 

filtered, zero-meaned to eliminate their effect on intra-subject variability. 
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Figure ‎3-7 Representative segments of          and     for one measurement, Top: Cerebral Blood Flow Velocity 

(    ) and Arterial Blood Pressure (   ), Bottom:    . The phase lead characteristics of cerebral autoregulation can be 

seen in the top figure. 
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Table ‎3.2 mean      of      across all 13 subjects during training and validation, the last column shows the mean 

number of parameters that were used for the best combination of filter-banks for each measurement.  

The average output prediction achieved in the training and validation for linear, nonlinear single-

input (   ), and linear, nonlinear two-input (   ,      
)     models are presented in Table ‎3.2. 

The last column of the table show the average number of parameters used. The numbers of 
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parameters vary from one dataset to another; in some cases the best model based on the      

was linear, single-input with only   filter-banks whilst in some other cases it was a nonlinear multi-

input models with all second-order nonlinear terms, the average number of parameters for each 

model is given in this table. 

For all the measurements, better performance (in terms of     ) was observed for training data, 

as expected from theory [101]. The results show that by adding       
 the      of the     model 

prediction in the validation data reduces compared to single-input linear and nonlinear models. The 

average reduction in     % from the single-input, linear model and single-input, nonlinear model 

to two-input nonlinear models are        and      in validation respectively, indicating the 

multivariate and nonlinear natures of cerebral regulation. However, the results also showed that for 

  measurements in the first half training, and   measurements in the second half training, linear 

single-input (   ) gave the best performance in terms of the validation     . It has to be 

considered that no significant test was done on the improvement of      from simpler models to 

the more sophisticated one. It has to be emphasized that the reason behind this was that as 

mentioned in section 3.1, the separation and distinction between    and    is the criteria in this 

work and data fit is not the aim in this chapter.  

Finding the best number of filter-banks for each dataset is very time consuming as it requires 

scanning through all possible combinations of filter-banks, for this reason the number of filter-banks 

that resulted in the lowest mean      across all    subjects during    and    for linear and 

nonlinear kernels were chosen. 

The results from comparing different models showed that cross-kernel term which is the interaction 

between two inputs can have great impact on the assessment of autoregulation. As the result of this 

and in order to show the great effect of the cross-term, the number of filter-banks in the cross-

kernel term in model   (   as shown in Table ‎3.3) was increased. The results show that by fixing the 

model order the simpler the model the better it can be generalized for different datasets. It is also 

clear that more complex models (more parameters) perform well on the training data but are not 

generalizable and perform poorly on the validation set. These results (which are in agreement with 

the finding of others [110, 111]) suggest that little benefit is achieved from the more sophisticated 

models when it comes to the validation data and/or the variability between and within subjects 

(inter- and intra-subject variability) is large in comparison between the differences between models. 
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Model order Total 

number of 

Parameters 

used 

Training 

    % 

Validation 

    % 

 Models    

Lags 

Linear 

    

Linear 

      
 

Quadratic 

    

Quadratic 

      
 

Cross 

term 

      

M1 12 4 0 0 0 0 5                     

M2 12 4 4 0 0 0 9                      

M3 20 4 4 0 0 4 25                      

M4 20 3 3 0 0 7 56                    2 

M5 20 4 4 4 4 4 45                     

H1 FIR- 2 coefficients 2 36.4  17.5 47.5 25.4 

Table ‎3.3      comparison for some pre-fixed models 

In Figure ‎3-8 the measured      and the predicted       (whole of the recording) along with the 

contribution of linear and nonlinear self and cross-terms (with     ,                    ,     ) for a 

typical measurement (arbitrarily chosen) data set is shown. In Figure ‎3-8b the power spectrum for 

the same dataset is compared with the power spectrum for the entire model prediction and first-

order models are compared. It can be seen from this figure that linear models can predict the      

at higher frequencies whilst by adding nonlinearity low frequency components, can be explained, 

consistent with previous work [83]. 
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Figure ‎3-8 Top A) measured      and model prediction (total) for an arbitrary volunteer (randomly chosen), and the 

contribution of different terms for a typical data segment. B) Spectra of the desired output for the same volunteer and the 

model prediction (whole model with     ,                    ,     ) and single-input linear model, two-input linear models. 

The contribution of different terms of the     are shown in Figure ‎3-8.A and Figure ‎3-8.B. In 

Figure ‎3-8.A, on the top trace the desired output for the model is shown. The second trace shows 

the model prediction (two-input, linear and nonlinear terms     ,                    ,     ), third 

trace corresponds to the single-input linear model (             ,      ), fourth trace shows the 

0 50 100 150 200 250
-20

0

20

Measured Output

0 50 100 150 200 250
-20

0

20

Total Model NMSE: 18.4% with K10,K01,K20,K02,K11

0 50 100 150 200 250
-20

0

20

 Linear ABP, K10

0 50 100 150 200 250
-20

0

20

Linear CO2, K01

0 50 100 150 200 250
-20

0

20

Nonlinear interaction, K20,K02,K11

A

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

400

450

500

Frequency (Hz)

 

 

True Output

Linear MABP Residuals

Linear MABP+CO2 Residuals

Total Model Residuals

B



  

59 
 

contribution of the linear       
     ,     , and finally the last trace corresponds to the second-order 

nonlinear terms (self and cross terms as explained in eq.‎3.10;          ,     ). Over the whole 

thirteen subjects the average contribution of linear     toward the total model prediction power 

was     of the overall power of the model prediction, whilst this for linear       
 and nonlinear 

terms was,     and     respectively which is in good agreement with the finding of Mitsis et al. 

[83] where he found     for linear    , and     for        
 and     for nonlinear terms. It was 

also found that the cross-kernel terms between the     and       
 had a strongest effect on the 

     than either of the second order self-kernels (   ). The spectra of the desired output (    ) 

and the residual of different model prediction for one set of data are shown in Figure ‎3-8.B, the 

results are consistent amongst all the subjects. It can be observed that most of the contribution of 

    is at higher frequencies (        ) which agrees with previous work [105] which states that 

most of the output signal (    ) can be explained linearly at these frequencies by     . It can 

also be seen that by having       
 and nonlinearity (specially the cross-kernel terms) as the 

secondary input, the power spectra of the residual at these low frequencies can be reduced.  

The first order      Volterra kernel for one subject calculated using the     (  ) model is shown 

in Figure ‎3-9.A. The shape of the response is consistent among all the dataset where it starts with an 

overshoot, followed by an undershoot and gradually returns to the steady state and in agreement 

with the finding of previous work on the step response using other methods [32, 46, 52, 75]. The 

average first-order       
 Volterra kernel again calculated using the     model is shown in 

Figure ‎3-9 for one typical subject. The slower response of first-order       
 compared to      is 

observable (around       seconds) from these figures. Mitsis el al. [83] studied the standard 

deviation and frequency responses of the above kernels in great detail and observed high-pass and 

low-pass characteristics on the kernels in the frequency-domain respectively. However no clear 

method for assessing autoregulation was reported. It is in great clinical interest that a method to 

distinguish between normocapnia and hypercapnia can be achieved. As only model fitting cannot 

provide any insight to the question of assessment of autoregulation itself and should be considered 

as a middle stage when addressing the problem of distinguishing between intact and impaired 

autoregulation. 

Typical second-order      and      
 self-kernels and the corresponding cross-kernel are shown in 

Figure ‎3-9.B. The second-order kernels show (Figure ‎3-9.C, d and E) considerable variability amongst 

the datasets which is in agreement of the finding of Mitsis el al. [83]. As previously mentioned Mitsis 

also studied the frequency responses of the second-order kernels but no meaningful results as a 

criterion for     circulation was reported. In the next section the assessment of autoregulation 
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using different autoregulatory parameters extracted from the model proposed in this section is 

studied. The robustness of the models are examined using inter- and intra-subject variability to see 

the effect of different terms of     (linear     and       
 and nonlinear terms).  

In this section, the performance of different models entirely based on model fit is studied. The 

results in this section demonstrated that by having a second order multivariate models data fit can 

be improved. However it is mentioned that this improvement has little benefit in the validation data 

when a fix model for all the recordings is used (Table ‎3.3), however with precise choice of model 

orders for each recording individually the improvement in the validation set can also be achieved 

(Table ‎3.2). The contribution of different linear and nonlinear (each input and their interaction) 

inputs was also shown. However as mentioned in section 3.4.1, having a good model fit to the data, 

is not necessarily the best criteria for assessing models in the analysis of autoregulation. It the next 

section, in the different autoregulatory parameters that can be employed to assess the      

control system are investigated. 

 

Figure ‎3-9 Typical Volterra kernels calculated for one dataset from the LVN (  ) method A) top left: first-order      

kernel B) top right: first-order       
 C) middle left: second-order      D) middle-right: second-order       

E) second-

order cross-kernels     -      
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3.4.2 Assessment of autoregulation 

 

The results from different autoregulatory parameters calculated from single-input      model by 

Angarita-Jaimes et al. [104], showed that for all of the mentioned autoregulatory parameters 

(   s), significant differences were found between    and    using paired t-test, with       , 

confirming that all respond to the impairement of autoregulation introduced through hypercapnia. 

In this paper it was found that     ,    (section 3.3.2‎3.3.2 ) calculated from   , linear and nonlinear 

models and    (section 5.3.1.2) provided good separation between    and    compared to other 

parameters studied. They also provided the smallest inter- and intra-subject variability. In order to 

reduce the number of parameters studied in this section, in this work, these parameters (    ,    

and   ) from    are used to be compared to the  multi-input      linear and nonlinear models, 

    and      estimates, indicating inter- and intra-subject variability are presented for      and 

   calculated from all   models shown in Table ‎3.3 and   . Variation measured from the 

mathematical approach discussed in section 3.3.3.3 for different autoregulatory parameters are 

used to calculate intra-subject variability. 

3.4.2.1 Inter-subject variability (   ) 

 

A small value of     indicats small within group (     ) dispersion relative to the difference 

between the groups, which is evidently the goal of suitable parameter as it provides the clearest 

distinction between normal and impaired autoregulation. The normalization also aims to allow 

different parameters with often quite different scales to be compared. 

Angarita-Jaimes et al. [104] reported that         (linear),    (nonlinear) and     had the lowest 

   . It was observed in this work that magnitude of the     at       for linear and non-linear 

multivariate models (    ) has lower     (around    ) compared to H1 (   ) shown in 

Figure ‎3-10. Wilcoxon matched pair test also shows significance difference between the magnitude 

of    between    and    (significance level of   ) for all models. The results also show that      

performed relatively well when a linear model is used but it has very high     when two-inputs 

especially when a nonlinear model is applied.    proves to be the best parameter when two-input 

nonlinear models are applied (    ) and shows to have considerably low model influence.  

Previously the advantage of using these novel autoregulatory parameters was reported [104]. 

However, these results show that nonlinear two-input models, mainly when cross-kernels between 
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    and       
 is included, have considerably lower inter-subject variability (     in 

Figure ‎3-10). This is in agreement with our finding in section 3.4.1.  

The effect of cross-kernels is large, compared to self-kernels. The results show that even though 

some models may not fit the data well; either under-fitting such as     filter with only   lags or 

over-fitting. For example     and    in Table ‎3.3, they can provide good autoregulatory parameters 

(  ) as shown in Figure ‎3-10. 

 

3.4.2.2 Intra-subject variability (    ) 

 

As discussed in section 3.3.3.2, when the robustness of different autoregulatory parameters with 

different scales, and the influence of additive noise in the recordings is important,      can be 

evaluated. The results for intra-subject variability are shown in Figure  3-10 and Table  3.4. 

Given that here thirteen standard deviation measurement are available in both    and    for each 

   , significance tests can be readily carried out whereas in the case of    , this was not possible. 

The intra-subject variability showed no significant difference between normo- and hypercapnia for 

any of the autoregulatory parameters studied here, using paired t-test (      ).  No significance 

difference between the      measured from the parameters extracted from the linear model 

(single-input and two-inputs) was observed (     ) which is in agreement with Angarita-Jaimes 

et al. [104]. However pair wise comparison (t-test) between the parameters, showed that the 

parameters extracted from the models in Table ‎3.4, circled in Figure ‎3-10 are significantly different 

to all other parameters but not different to each other’s (     ). The results showed that two-

input nonlinear models      ) provide the best intra-subject variability compared to all other 

methods and can be used to reduce the observed intra-subject variability. 
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Figure ‎3-10 Different autoregulatory parameters extracted from different single-input, two-input linear and non-linear 

models. Dashed circle shows the autoregulatory parameters with the lowest     and     . The first 5 columns shown 

with arrows, are for    autoregulatory parameter and the last 5 columns are for      autoregulatory parameter. 

3.4.2.3 NC and HC significance difference  

 

In the previous subsection, the variability of different autoregulatory parameters       for different 

models was studied to measure the robustness of different     measured from different models. 

The significance difference for intra-subject variability was also carried out. However it was not 

possible to test the significance difference for inter-subject variability as it is not possible to do a 

significant difference test between   numbers. Another criterion that can be measured to test the 

goodness of these    , is to test whether these     during    and    are significantly different 

or not.  

The criterion of how many volunteers (of    tested) followed the expected trend of either lower 

    during    compared to    (   and     ) or vice versa (  ). The comparison between    

during    and    shows that in    cases    was smaller in    compared to    which was in 

agreement with previous work [32, 52, 74, 75, 112]. The result for autoregulatory parameters 

extracted from the pressure pulse response (     and   ) are shown in Table ‎3.4. The results show 

that both of these    , perform very well (   and    in most cases) when trend following is the 

criterion. The results also show that    extracted from models when cross-terms are used perform 

notably well with all the volunteers followed the same trend. This result again emphasizes the 

importance of cross-term when     is used. It has to be noted for parameters extracted from 
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the    , in multivariate and nonlinear models, the second-order and cross-kernel terms are set to 

zero in order to be able to study the response of the system to   . 

The results from the significant difference test mentioned in section 3.3.3.4 is shown in the third 

column of Table ‎3.4 (labeled as ‘number of patients passed the significant difference test’). The 

results show that      extracted from all the models did not perform well as a distinction between 

normo- and hypercapnia using this significance test (   subject passed the significance different 

test). However    and    perform notably well as can be seen in Table ‎3.4 (10 and 11 respectively).  

Up to this point, the performance of various models based on the      and different    s, based 

on their robustness quantified by their variability between and within subjects has been studied. 

However by looking at Table ‎3.4, it is very hard to say which     from which model is superior to 

the others. Both    and    perform notably well when “Trend Following” or “Significance Test” or 

even when inter- and intra-subject variability’s are the criterions. It can be argued that    to    

have better performance, compared to    when variability (especially inter-subject) is considered 

(    and     respectively). However the significance of this difference is questionable, or even 

more doubtfully in the case of    to    models (    and    ). 

 

Model Trend Follow Number of 

patients passed 

the significant 

difference test 

Intra-subject 

Variability (    ) 

Inter-subject 

variability(   ) 

       lags, second coefficient (  ) 12 10 25.22 58.20 

                                 

                                      

                                        

                                        

                                         

                                        

Table ‎3.4 Summary of analysis between different autoregulatory parameters from different models, lags in above table 

explain the length of the impulse response. The second column titled with Trend Follow, shows how many subjects out of    

follow the expected trend; third column illustrates how many subjects passed the significance difference test, and fourth and 

fifth columns show the inter- and intra-subject variability for different models. 
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3.4.2.4 Randomization test 

 

A summary of the results for the randomization test is shown in Table ‎3.5. Pseudo-random number 

generator was used to generate      repetitions to determine random assignment of    test scores 

to two groups of   , and randomization can be made based on that.  

 

 

 

 

 

 

 

 

It can be seen from Table ‎3.5 that the result of randomizing inter- or intra-subject variability with 

inter- or intra-subject variability of the same model, is consistent with chance (   ). The results 

show that no inter- or intra-subject variability calculated from any     measured from any model is 

significantly different to all other methods, in other words some     from some methods show 

significant differences with other     from other methods (e.g. intra-subject variability of    and 

        , or intra-subject variability of    and         ) but no method in particular 

provides strong evidence against the null model, and therefore in favor of the alternative. It has to 

be noted that it is expected that the above matrix will be symmetric with respect to its diagonal, and 

the slight differences in the values are the result of using a finite numbers of realisations of the 

pseudo random generator. 

The results also shows that by having a more complete and sophisticated models that provides 

slightly better results, still a simple model    performs fairly well (       between    and   ). In 

other words even though a complex model (nonlinear multivariate model) provides better inter- and 

Model Randomization result significance               runs  

                   

                                          

                                    

                                       

                                  

                                           

                                     

                                          

                                        

                                           

                                        

                                         

                                     

Table ‎3.5 Results from randomization test on the inter- and intra-subject variability for different models. The results 

show that no model is significantly different compared with others methods 
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intra-subject variability in these set of measurements, there is no solid evidence that the same 

model would still provide the same results in other sets of data. In other words, there is no solid 

evidence that the improvement using nonlinear multivariate models that provided improvement in 

assessment of autoregulation (less inter- and intra-subject variability) can be repeated in other 

datasets. It can also be said that no model performed significantly better than the other models. 

3.5 Discussion 
 

Spontaneous fluctuations of      and       have been proven to be useful in analyzing the 

characteristics of autoregulation [2, 35, 69, 73, 74, 98, 113]. However cerebral autoregulation is 

affected by many other physiological mechanisms [5, 29, 46]. 

The reactivity of cerebral vessels to     changes is one of these parameters. Changes in arterial     

tension causes vascular responses in cerebral vessels [29], and this reactivity of cerebral vessels, 

causes changes in     regulation (hypercapnia can cause vasodilation and hypocapnia causes 

vasoconstriction) [46, 90].  

In this chapter, the problem of effective modeling of cerebral autoregulation using spontaneous 

variation in      and       
 as inputs and      as the output was studied. It has been reported 

[46] that           relationship exhibits considerable nonlinearities specially at low 

frequencies (        ). The combination of Laguerre expansion with feedforward artificial neural 

networks in the form of Laguerre-Volterra network, which has been shown to provide a good 

estimation of nonlinear system with short input-output records, was used to model the cerebral 

autoregulation system. At first, the characteristics of the     were estimated separately for each 

dataset (all    measurements) using      (Table ‎3.3). Alpha value and consequently number of 

filterbanks for each input with      as the criterion for each measurement are estimated in the 

network based on the data and memory bandwidth. It was found that by having two-input nonlinear 

(second-order) models the performance of the model based on the      improved by        in 

validation in relation to the single-input linear model. This result initiated study of the existence of 

nonlinearity in the autoregulatory system. It was also found that adding nonlinearity or       
in all 

the datasets will always improve our      in the training (as more parameters are involved) but 

may not necessarily improve our      on the validation segment. It was also shown that the 

maximum number of filterbanks that reduced the      in the validation data, was twenty whilst 

this was only   for nonlinear     and       
 and the cross-term. This maybe may be due to the 

small size of the data set. Faster response of       
 compared to previous works (   to    seconds) 
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compared to    seconds found by some other authors [23, 29, 83, 114]) was observed in this work, 

however it is unclear how fast autoregulation changes as a result of the transients in partial pressure 

of     in the blood. The time required for autoregulation to become impaired following 

hypercapnia, and the recovery on return to normocapnia is unclear. 

By looking at the contribution of each input towards the final model prediction Figure  3-8.A, it was 

found that      explained the biggest fraction of       variability (   ) which as it can be seen 

in Figure  3-8.B was at high frequencies.  Linear       
 explained mostly low frequency ranges and 

had the contribution of    , whilst the self- and cross-kernels nonlinear terms had more effect in 

term of contribution toward power spectra of the predicted      than linear       
 with the 

contribution of    . It was also observed (Table  3.3) that cross-kernels between     -      
 had 

the most effect amongst the nonlinear terms (    order self- and cross-terms for       
 and    ) 

which indicate the importance of this term (in agreement with [83]). The spectral analysis of the 

      and the model prediction and the spectra of the residual from different terms of the 

Laguerre-Volterra network showed that most of the effect of       
 and nonlinearity lies at low 

frequencies.  

Different indices for the assessment of dynamic cerebral autoregulation base on the changes in 

      
 levels which provokes temporary impairment of autoregulation was then studied. The 

response to a cosine shape input modulated by a Gaussian, (pressure pulse response,    ) which 

was introduced by Simpson et al. [74] was used, which is more physiologically realistic compared to 

step or impulse inputs. The results (Figure  3-5) showed the phase-shift characteristics expected of 

cerebral autoregulation.  Next the parameters that provided us with the best separation between 

good and impaired autoregulation were chosen. Amplitude at     seconds and   seconds (     and 

  ) offered good distinction between intact and impaired autoregulation.   

The primary goal of this chapter was to test the performance of different models; however this 

should only be an intermediate step in answering the question of how to quantify autoregulation 

when only spontaneous fluctuations in     and      are present. High-inter subject variability and 

poor reproductively have been reported [47, 74]. This work was carried on by looking at a novel 

approach for assessing autoregulatory parameters using a criterion, the ability to distinguish 

between    and   . This was done by performing a formal analysis to measure the standard 

deviation using the covariance matrix analysis. 

 It was found that    when extracted from two-input nonlinear models, in particular when the cross-

kernel terms were included provided the lowest variability (in terms of inter- and intra-subject, 



  

68 
 

Figure  3-10). The good performance of    is also very notable as can be seen in Figure  3-10.    

extracted from two-input nonlinear models and    followed the expected trend (increase in    and 

decrease in    from    to   ) in    and    out of    subjects respectively.  

Intra-subject variability has been reported previously by other authors using repeated recording with 

only spontaneous variations [47], controlled breathing recordings with a sliding window [110] or 

repeated thigh cuff tests [90]. Most of the mentioned methods use     and showed large intra-

subject variability. In this work it was shown that again    extracted from two-input nonlinear 

models, especially when cross-kernels were employed alongside   , provided the smallest change 

of the parameter’s magnitude.  These results suggest that having model fit (    ) alone, as shown 

in Table  3.3, is not a good indicator for assessing autoregulation as    coming from an under-fitting 

model (poor training and validation     ), or    coming from an over-fitting model (good training 

and poor validation     )    (Table ‎3.3), provided the best distinction between intact and 

impaired autoregulation.  

 

3.5.1 Limitations 

 

It is obvious that a large number of possible parameters can be used to assess autoregulation. In this 

work only a relatively small number of these were studied, and the current work can thus only 

indicate the best methods among those analyzed here. In the paper by Angarita-Jaimes et al. [104] 

different autoregulatory parameters, including parameters taken directly from the model (  ) were 

investigated but none were superior to ones presented here. The small dataset (   volunteers) and 

small sample size (around     seconds) were the main limitations of the study presented in this 

chapter.  It can be argued that the results provided here from different methods are relative to the 

effect in this particular dataset in question. However the large difference reported from different 

methods here, can be taken as a hint of which autoregulatory parameters should be considered for 

further research with a larger dataset.  Repeated recordings of spontaneous changes in       
 and 

baseline (no       
) from the same volunteers should allow testing the repeatability of the methods 

and more robust estimates of the inter- and intra-subject variability.  

There are other factors in addition to noise in the signals, the difference between volunteers and the 

effect of       
 which were studied in this chapter, that should be considered when investigating 

the large scatter reported in the results. Some of these factors are the effect of other physiological 
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variables such as:    
, cerebral metabolic rate, intracranial and venous pressure and brain activity [5, 

32, 46]. 

   presented in this work measured from a very simple model, provided small variation in term of 

inter- and intra-subject variability (    and     ). One main advantage of this parameter is its 

small number of free parameters which does not require big data sample and can be applied to 

short data recordings. 

The effect of large variations in       
 and     should also be considered and to test whether 

these changes can provide more robust results and smaller inter- and intra-subject variability. This 

will be address in the next chapter. 

 

3.6 Conclusion 
 

In this chapter, the performance of different models (linear and nonlinear single-input, linear and 

nonlinear two-inputs) was compared and different autoregulatory parameters were measured. 

Some of them were extracted directly from the model (  ) and some were extracted from the 

proposed pressure pulse response (     and   ). The    extracted from nonlinear two-input 

models showed less variability (inter- and intra-subject) when compared to other autoregulatory 

parameters. This parameter provided the best distinction between intact and impaired 

autoregulation. However a very simple parameter (  ) provided notable good result in term of 

small coefficient of variation (    and     ) with the added advantage of suitability for use in a 

very short dataset.  
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Chapter 4 : Evaluation of autoregulation 

using subspace distance  

4.1 Introduction 
 

In the previous chapter, data fit of different Wiener method with the Laguerre expansion technique 

for all the possible combinations of linear/nonlinear single-input (        ) and 

linear/nonlinear two-input (   ,      
     ) models was studied. Next the inter- and intra-

subject variability of different autoregulatory parameters (pressure pulse and   ) was compared. It 

was found that the pressure pulse (  ) as a new autoregulatory parameter extracted from nonlinear 

two-input model was superior to other autoregulatory parameters and provided very good 

separation between intact and impaired autoregulation and showed to be a robust parameter to the 

system noise, amongst  other possible autoregulatory parameters studied in section 2.10, which 

have shown to provide good assessment of autoregulation by previous authors [73-75] on the 

dataset examined. However as mentioned in section 3.6, there are other parameters that have been 

proposed in both time- and frequency-domain in the literature which represent the status of 

cerebral autoregulation which were not examined. These parameters are usually extracted from the 

estimated step or frequency responses [47, 52, 74, 75] as described in ‎Chapter 3.  

In all the above methods, to address the assessment of autoregulation, there is an intermediate step 

between black box model and setting the autoregulatory parameter which is to test the 

performance of the model or to get a response of the system (step- or impulse-response) and 

extract a parameter from it. However we showed in the previous chapter that good data-fit does not 

necessary lead to good assessment of autoregulation, as both under-fitting; large      in both 

training and validation (    filter with only   lags) and over-fitting; small      in training and large 

in validation (nonlinear two-input model), provided the best distinction between healthy and 

impaired autoregulation on the dataset examined (Table ‎3.3). 

A major challenge of the methods used for the assessment of autoregulation is the issue of choosing 

an autoregulatory parameter that could work on different datasets. Furthermore the lack of a “gold 

standard” for assessment of dynamic cerebral autoregulation does not allow a robust reference, to 

which alternative methods could be compared. Autoregulatory parameters are sensitive to many 

physiological variables that can influence     (      
, brain activity,    content, temperature, etc.) 
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as has already been observed by other authors [52, 90, 92]. Furthermore, there is a dearth of studies 

using multiple methods or performing inter-method comparisons [32]. Dynamic cerebral 

autoregulation can also vary from one patient to another and over time [115]. For example, the 

choice of phase at        proposed by Giller et al. [73] has been extensively used, but there is no 

physiological proof that this is the best autoregulatory parameter for every patient. As another 

example in the previous chapter, it was proposed that careful choice of index (the amplitude at     

seconds or   seconds from the    ) can lead to significant improvement in the ability to distinguish 

between normal and impaired autoregulation, but large inter- and intra-individual variations in 

result persist and these parameters were chosen primarily based on visual inspection from the 

response of the system.  

So far all the work that has been done on dynamic assessment of autoregulation has been 

concentrated on choosing an autoregulatory parameter extracted from different methods from 

either  time-domain analysis such as the correlation coefficient (  ) between averaged      and 

    over time [73]. Some other works used autoregulatory index (   ) calculated by evaluating the 

set of models proposed by Tiecks et al. [5] using the parameter values given by the author (for each 

recording, the model by the authors was applied to     , and the model which provided the 

highest correlation coefficient between the measured       and the generated velocity 

determined the    ) [5]. Frequency domain analysis; transfer function analyses (   ), on gain, 

coherence and phase [32, 46, 52, 75, 116] or multi-input models (   ,       
) [35, 46, 90, 93, 113, 

117]. Most of the autoregulatory parameters are usually extracted from the estimated step or 

frequency responses [47, 52, 73, 74]. 

However, this autoregulatory parameter requires long stable     signal, typically more than an 

hour, which is very hard to achieve. Other challenge with    is that it does not measure     

directly and it is only surrogate measure of autoregulation and the observed changes may be as the 

result of factors that do not have a direct translation to     and could be as the result of the 

calculation method [118]. 

The objective of this chapter is to propose and test a new data-driven method for assessing 

autoregulation using subspace distance (   ) between two autoregressive moving average (    ) 

models, without studying primarily the performance of the models in term of data fit and choosing 

an arbitrarily autoregulatory parameter by visual inspection as used in section 3.3.2. 

Martin et al. [119] showed that by treating an      model as a complex rational function, one can 

define a metric on the set of complex rational  function, and so measure the distance between two 
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     models. The subspace distance (     has been used in dynamic models [120], observability 

of linear hybrid system [121], bioengineering humans [122, 123]. Bissacco et al. [123] used     to 

recognize different types of human gait in the space of dynamical systems.  

Here,     is used to find the distance between new a measurement which is required to be 

analysed to a group of normocapnia and also to a group of hypercapnia, and decide which group 

that measurement belongs to by finding which set provides the smallest overall distance. This would 

also help to construct the distance matrix and perform cluster analysis. In order to test whether this 

approach is feasible to our system, it is first tested on Tiecks model as it is an acceptable model of 

autoregulation. Later this method is applied to measure data from volunteers to test the 

performance of this new approach. 

In this chapter, the search for improved analysis is extended, using the data-driven approach based 

on the subspace distance (   ) (section 4.3.4.2). The performance of this method is compared to 

alternatives previously proposed methods including the phase of the frequency response at        

(  ) and the     parameter of a     order     model (  ), which is used in previous studies [46, 

52, 73-75] and results from  Chapter 3, showed this to be among the best indexes in terms of intra- 

and inter-subject variability and its ability to distinguish between normo and hypercapnia.  

4.2 Subjects and measurements  
 

Signals were recorded from    subjects (      years old);    of them came back for the second 

recording and with the three subjects that only participated in one session total of    recordings 

were used for this study altogether. Subjects were in the supine position, free from any known 

cerebrovascular or cardiovascular diseases. The data was collected in the Leicester Royal Infirmary 

by Dr E. Katsogridakis.      was monitored and measured non-invasively using the arterial volume 

clamping method (Finometer, Ohmeda). Freehand transcranial Doppler (Companion III, Viasys 

Healthcare) identification of the both middle cerebral arteries (   ) was performed using       

probe, which was then held in place by a custom built head frame. A face-mask was connected to 

the     delivery system, and by a line to a capnograph (Datex, Normocap 200) to measure end-tidal 

    levels. Data were recorded at rest (with only spontaneous changes in    ) in both 

normocapnia and hypercapnia (inhalation of         for   minutes).  The mean arterial     and 

     was then calculated by low-pass filtering (cut-off frequency       ; zero phase filter) and 

normalized by its mean value, to give the relative change in these signals. The resultant signals were 

resampled at     .  
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4.3 Methods 
 

In this chapter, the subspace distance       as a model to measure the distance between two 

     models is studied. It is shown that the Tiecks can be approximated by a second-order      

model. The     approach is used to measure the distance between different Tiecks models using 

their second-order      coefficients to validate the     on the dynamic    system. In order to 

show the advantage of using     by going to the cepstrum domain (section 4.3.4.1), the distance 

between two      models in the frequency domain is also measured and the results are compared 

with the findings from the    . In the following section, the     for measured data is calculated 

and the distance between different conditions of the volunteers (   and   ) is measured.  

In order to compare the result from     to the chosen autoregulatory parameters (   and   ), 

firstly for all possible pairs of recordings,  the distance calculated by     for      models and also 

alternative autoregulatory parameters (   and   ) (all three autoregulatory parameters) are 

calculated. The distances between all normocapnia, hypercapnia and between normpcapnia and 

hypercapnia (                       ,                        and             

           ) measurements are calculated, and the average values are computed as the cluster for 

that pair and these values are compared with each other (section 4.3.5.1). The       approach is 

then used to calculate the average value for each of these groups (             and             ) 

and then measure the distance between the out dataset and the average value for each of these 

groups and map that specific measurement to either one of these groups. Finally, cluster separation 

was used to see which of our used autoregulatory parameters would give us better inter/intra-

subject variability. 
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4.3.1 System Identification 

 

System identification is the field of modeling dynamic system from experimental data [124]. A 

dynamic system is driven by input variables       which are controllable and usually contains of 

disturbance      which can be controlled, and an output     . In the case, our application, the input 

is arterial blood pressure (   ) and the output is cerebral blood flow velocity (     .  

     model, expresses a system function of a discretely sampled process as a rational function in 

the   domain. Martin et al. [119] showed that by treating an      model as a complex rational 

function, one can define a metric on the set of complex rational  functions, and measure the 

distance between two      models. 

     models with     as input and      as output are used to fit data using a least-squares 

approach for each set of recordings. The estimated filter parameters provide the input to the sub-

space distance method. In order to see if     can be applied to the assessment of autoregulation, 

by considering Tiecks model (section 2.11.1), and calculating the      coefficents (re-expressing 

the Tiecks model in      form) for different     s the accuracy of the measured coefficients are 

measured by comparing the step response of the      models, with the original Tiecks model. The 

     approach is then used to model real          relationship and assessing    . 

4.3.2 Linear parametric models  

 

The general model of a single input and single output system is given by [124] 

                         ‎4.1 

where  ,  and   are system input, output and disturbance  respectively.  

where 
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where       and       and       are the parameters of the model and ‎4.1 can be rewritten as 

                             ‎4.7 

The above equation is known as an autoregressive moving average model with an exogenous signal 

(      model; Figure ‎4-1) 

 

Figure ‎4-1       model 

There are several special cases of       models which are described below: 

An autoregressive (  ) model is obtained when        . 

               ‎4.8 

A moving average (  ) model is obtained with        . 

               ‎4.9 

An autoregressive moving average (    ) is the combination of the previous two models and is 

given when      

                   ‎4.10 

Another case is when       is known as autoregressive with an exogenous input (   ). 

                        ‎4.11 

Tiecks autoregulation index (   ) model (section 4.3.3) is essentially a second order state-space 

model. 

In this work a simple second-order      model (       ) which is sufficient to re-express the 

Tiecks model (section 4.3.3) as shown by [47] is used.  
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Suppose one of above models have been chosen, and parameterized as a model structure which can 

be rewritten as: 

                   ‎4.12 

Where   is the parameter vector and    is the regression vector. The   in above equation denotes 

the prediction error. For the case of      model (eq.‎4.11),      is given by: 

      [                             ] ‎4.13 

  [            ]
  ‎4.14 

There are different approaches that can be taken to measure the coefficients. Least mean square 

method is most commonly used. 

Least mean square estimate aims to minimize the sum of squared prediction error, which is given by: 

 ̂                 ‎4.15 

Where    is known as loss function, given by: 

      
 

 
∑     

 

   

 ‎4.16 

The parameter vector   that minimises the sum of squared equation errors is given by 

 ̂  [
 

 
∑          
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] ‎4.17 

 ̂          ̂ ‎4.18 

Derived from the general form of the      model shown in eq.‎4.11, the second-order      

model can be expressed as: 

 
 ̂    

      
      

  

     
      

  
     ‎4.19 

Where                are the filter coefficients. 

The transfer function of a second-order      model can be derived from eq.‎4.19 as: 
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 ‎4.20 

In the next subsection,  the coefficients for a second-order      for    pre-defined step responses 

of the Tiecks model [5] is calculated.  

4.3.3 Second-order      model of Tiecks models 

 

The         step responses for the     in the Tiecks model [5], were originally defined at    

     , however they can be calculated at any desired frequency. The approach for measuring the 

     coefficient from Tiecks model is shown in appendix III. The                coefficients of the 

     model coefficients for    different Tiecks models based on the values of       and    were 

calculated and are shown in Table ‎4.1.  

Model (   )                

0 0 0 1 0 0 

1 -1.8375 0.8400 1 -1.8380 0.8400 

2 -1.8475 0.8500 1 -1.8485 0.8500 

3 -1.8825 0.8850 1 -1.8840 0.8850 

4 -1.9075 0.9100 1 -1.9095 0.9100 

5 -1.9183 0.9211 1 -1.9208 0.9211 

6 -1.9148 0.9187 1 -1.9185 0.9187 

7 -1.9014 0.9083 1 -1.9081 0.9083 

8 -1.8672 0.8805 1 -1.8801 0.8805 

9 -1.8225 0.8462 1 -1.8457 0.8462 

Table ‎4.1      coefficients for different Tiecks models          

The result of the agreement between different using the 10 pre-defined step responses and 10 

different coefficients using the      model (Table ‎4.1) of these models is shown in Figure ‎4-2. 

The Tiecks model originally is defined at      , however in this work for the assessment of 

autoregulation, recordings of     and      were down-sampled to      after being have a low-

pass filter applied to them with a Btterworth filter (    order) with the cutoff frequency of       . 

The step responses calculated from their corresponding      models at       and      are 

shown in Figure ‎4-2. The note that has to be considered is that as mentioned before, in the original 

proposed model by Tiecks et al. [5], the sampling frequency of       was used. However, different 

sampling frequency can be used in the original second-order differential equations proposed by 
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Tiecks et al. [5]. The only point that has to be considered is that if lower sampling frequency is used 

(       as used in most of the work in this thesis). 

In the next section we introduce the subspace distance proposed by Martin et al. [119] as a novel 

approach to measure the distance between two      models. We use this approach to measure 

the distances between different      models shown in Table ‎4.1, measured from the Tiecks 

models.  

 

 

Figure ‎4-2 Agreement between step responses calculated from      models from Tiecks method at      and      
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4.3.4 Subspace distance  

 

In the previous section it was shown that the well-established Tiecks model can be realized as an 

     model with different     in the models, corresponding to different      coefficients 

(Table ‎4.1). 

Eq.‎4.19 can be written in the  -domain in term of the system function as: 

 
     

∑    
   

   

∑    
   

   

 
∏         

 
   

∏         
 
   

 ‎4.21 

 Where    and    are defined to be one in this chapter. The    and    are the positions of the poles 

and zeros of the model and   is a rational function of  .  

Section 4.3.3 described the coefficients     and    for the Tiecks models for different    s. However 

addressing the question of how two      models can be compared, to find a metric for the space 

for      models would be very useful.  

One approach is to compute      models for subject with intact and impaired autoregulation and 

then, for a new patient, the      model can be fitted and compared with these two general 

models and whichever gives the smaller distance would provide an indication of the stage of the 

new patient.  

Martin et al. [119] proposed that what is actually required is a method for comparing two spectra. 

He introduced a purely algebraic approach to model comparison in the cepstrum domain. 

 

4.3.4.1 Cepstrum 

 

Cepstrum has been widely used in literature in processing signals containing echoes in seismology, 

for measuring properties of reflecting surfaces, in loudspeaker design, for dereverberation, 

restoration of acoustic recording, estimating parameters of the speech models, or calculating the 

minimum phase spectrum corresponding to a given log amplitude spectrum [125]. 

The cepstrum is the inverse Fourier transform of the log magnitude of the Fourier transform (     

of a signal.  

          |       |  ‎4.22 
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Where   is the     and     is the inverse    . It has to be noted that    in above equation is the 

cepstrum coefficients and are not the same as eq.‎4.6 and from this point in this chapter are 

regarded as the cepstrum coefficients. 

As defined in eq.‎4.22, the cepstrum is the inverse Fourier transform of the logarithm of power 

spectrum of a signal. If the signal of the system is discrete then its log-spectrum is periodic and the 

inverse Fourier transform is just a Fourier series 

          ∑    
  

   
 ‎4.23 

The note that has to be considered is that the independent variable  , of the cepstrum has the 

dimension of time, and is known as “quefrency”. “High quefrency” represents rapid fluctuations 

(small frequency spacing) in the spectrum and “low quefrency” represents slow changes (large 

frequency spacing) with frequency. Note that quefrency does not say anything about the absolute 

frequency but only about frequency spacing.  

The cepstrum of a discrete-time process is a Hermitian sequence14           
      and it is a 

relatively simple function of the model poles and zeros [126]. Using an      model in the time-

domain requires convolution between the time-domain signals, which gives us multiplication in the 

frequency-domain, and thus addition in the cepstrum-domain. This can simplify the calculation when 

filters are used for system identification.  

4.3.4.2 Subspace distance (   ) 

 

Martin et al. [119] defines a metric for the set of single input single output (      linear time-

invariant system      models. This new approach is based on the inner product of the cepstra of 

     models. If, there are two systems,   and    be      models with cepstrum coefficients    

and   
 ,             

Definition: [119] The distance between   and   with cepstrum coefficeints    and   
  is defined as: 

        ∑   |     
 | 

 

   

 ‎4.24 

Where    in above equation are fixed, positive weights. It has to be noted that the prime symbol   is 

used in this chapter to distinguish between models. 

                                                           
14

  Hermitian matrix (general form of a sequence) is a matrix whose transpose is equal to the matrix of the 
complex conjugates of its entries 
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Definition: Martin et al. [119] used the cepstrum domain analysis and proposed that if we have two 

     models with transfer functions (    ), which are stable, (all poles and zeros are inside the 

unit circle) with cepstrum coefficients for discrete cepstrum,      
 , the distance between these 

models is defined as 

 

        √∑ |     
 | 

 

   

 ‎4.25 

However there are many questions that can arise from this definition. 1. How can a good set of 

weights be chosen. Does it contain any good system-theoretic properties? e.g. one can argue that 

the system should be more sensitive to the poles near the unit circle in comparison to the poles near 

the origin as they indicate strong resonances in the system [119]. 3. One may propose that, the 

metric does not care whether the models are stable or not. So it is very important not to make a 

naive comparison between two model coefficients in order to decide how different they are.  

It is apparent from ‎4.25 that it has the Euclidean property: 

                         ‎4.26 

The above equation can be generalized to      models based on the property of the cepstrum: 

                       ‎4.27 

Where   and    in above equation is the transfer function of the two      models and     is an 

arbitrary stable transfer function. This shows that if two      models are filtered with linear filters 

(    or    ), their new distance is unaltered compared to the original distance. This is a direct 

consequence of measuring the metric in the cepstral domain, as convolution of a signal with a 

filtered impulse response results in the addition of their cepstra. This can be explored further: if 

there is an      model with   
 

 
, then by applying a filter with system function (

 

 
), the process 

can be whitened, and if there is another process with system function     
  

  ), by applying the 

same filter to this process, a third process with system function   (
   

   ) is obtained. If it is 

assumed that   and    are two identical processes, then   would be constant (white noise), 

otherwise it is ‘coloured’. So         can be regarded as a measure of how coloured        is. 

Different choices for    are discussed by Martin et al. [119]. Cepstrum analysis was originally used 

because if two signals are convolved in the time-domain, their cepstra are combined additively then 

this characteristic was used by Martin et al. [119] as the cepstrum coefficients give information 
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about the autocorrelation properties of signal. The cepstrum coefficients (  ) with small values of   

are related to time-domain effects that are correlated only on short time scales which corresponds 

to ‘slowly varying’ features in the spectrum. Larger values of   in the cepstrum coefficients 

correspond to strongly coherent elements in the signal and sharper spectral features. This property 

will later be used when weighting the cepstrum coefficients are applied  (cepstrum filtering or 

homomorphic filtering) [127]. By setting     , Martin et al. [119], gave more weight to the 

cepstrum coefficients at large quefrency and as the result of that bolded the effect of sharper 

spectral features. Another reason for choosing     , was that, this choice gave a metric in which 

the infinite summation can be performed explicitly: the metric becomes a finite product in the pole-

zero domain [119]. 

Martin et al. [119] started the work first by measuring the distance between two    models (   

model is a sub-model of      model). It was shown that for two    models with transfer functions 

 

 
 and 

 

   with order   and    and poles             and poles   
            the following 

equality holds: 

 
          ( 

 

 
 
 

  
 )

 

      
∏ ∏        

    

    
 
   ∏ ∏      

   
  

    
  

   

∏ ∏        
  

    
 
   

∏ ∏      
   

    

    
  

   

  ‎4.28 

Now if there are two      models with transfer functions of  

 
     

    

    
       

     

     
  ‎4.29 

Where in the above equations the order of the models are   and   . By taking        
     

         
 , 

Martin et al. [119] concludes that the distance between two      can be measured from the 

equation below: 

 
          (

    

    
 
     

     
 ) ‎4.30 

Which itself is equal to: 

 
 (

 

         
 

 

         
)   (

     

         
 

     

         
) ‎4.31 

As both   and    are stable, the resulting    models from the      models are stable as well. In 

other words, the      models can be treated as two    models with the transfer functions as 

shown above.  
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In the next subsection leave-one-out cross-validation (     ) as method to test the performance 

of different autoregulatory (   and   ) parameters and     are be discussed.  

The     approach is then applied to the different second-order      models corresponding to 

Tiecks model to illustrate the method and later it will be applied to the recorded data to assess its 

performance in distinguishing between autoregulation in normocapnia and hypercapnia. 

4.3.5 Assessment of autoregulation using     

 

So far in this chapter, having shown that by using subspace distance (   ) and going to the 

cepstrum domain the distance between two autoregressive (    or autoregressive with moving 

average (    ) model can be measured. However the main question that requires answering is 

whether this new approach can help us with the assessment of autoregulation. In this chapter, 

different approaches that can be taken for this assessment are studied. As it has been mentioned 

throughout this thesis, the main task of this work is to be able to distinguish between    and   . 

For this purpose, it is tried in this chapter to allocate a recording to either one of the    and    

groups using leave-one-out cross-validation approach (     ). Another approach that can be taken 

to study the effectiveness of an approach for assessment of autoregulation is to test the distance 

between clusters of autoregulatory parameters in    and   . These approaches are studied in the 

next two sections. 

4.3.5.1 Leave-one-out cross-validation (LOOCV) 

 

Cross-validation is a method for assessing the quality of the results of a statistical analysis [128]. One 

of the most common method for cross-validation involves partitioning a sample of data into subsets 

and performing the analysis on one subset (training set), and validating the analysis on the other 

subset (validation set). There are four frequently used types of cross-validation:   fold cross-

validation, repeated random sub-sampling validation,   fold cross-validation and leave-one-out 

cross-validation.   

In k-fold cross-validation, the data is randomly partitioned into   subsamples and from the   

subsamples, one is retained as the validation data for testing, and the rest as the training data. This 

process is repeated   times and each of the subsamples are used exactly once as the validation set.  

  fold cross-validation has exactly the same process as   fold cross-validation but the data are 

randomly assigned to two sets, and then training on one subsample and validation on the other one, 

and vice versa.  
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In repeated random sub-sampling validation, the dataset is randomly split into training and 

validation data, and the model is fit to the training data and assessed on the validation data and 

averaged over the splits. This method has the advantage that the proportion of the 

training/validation split is not dependent on the number of iterations over the   fold cross-

validation. However as the samples are randomly split, some observations may never be selected in 

the validation subsample and the result may vary if the procedure was to be repeated (Monte-Carlo 

variation). 

The last method is leave-one-out-cross-validation (     ) which uses a single observation from the 

original samples as the validation data, and treats the rest as the training data. Then this process is 

repeated as many times as the number of observations that we have (same as   fold-cross-

validation but   is equal to the number of our observations). This process may be very time 

consuming if the number of observations is large.  

In this work       method is used to test the performance of     and other autoregulatory 

parameters (   and   ) on each volunteer’s measurement during normocapnia and hypercapnia, 

and classify each set of measurements (   and   ) individually with the rest of the measurements 

as the reference (training).  

4.3.5.2 Cluster separation 

 

In order to be able to compare different autoregulatory parameters in different scales, cluster 

separation was used as the criterion of measurement for good distinction between normocapnia 

and hypercapnia. The average distances within each class (   and   ) and between classes were 

used to calculate the ratio between their mean difference and the mean (across each group; 

            and      ) of their standard deviations (variation across each subspace 

distance;             and      ) in order to remove the effect of mean from the 

separation between all    sets of measurements during normocapnia and hypercapnia.  

           
           

           ‎4.32 

           
           

          ‎4.33 

           
           

          ‎4.34 

           
           

           ‎4.35 

The mean and standard deviation (   ) of above matrices are: 

              (      
)           (      

) ‎4.36 
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         (      
)           (      

) 

         (      
)           (      

) 

         (      
)           (      

)  

 

By using above equations the cluster separation (  ) between the groups can be defined as: 

 

            | 
         

 
 
              

| ‎4.37 

 

            | 
         

 
 
              

| 

‎4.38 

 
       

               

 
 

‎4.39 

The smaller values of     would provide higher values of cluster separation so, higher value of 

cluster separation provides better distinction between    and    for the autoregulatory 

parameter. 

4.4 Results 
 

4.4.1 Subspace distance and Tiecks models 

 

Section 4.3.4.2 shows that by having two      models from two systems,     can be used to 

measure the distance between the two models. The Tiecks model has the parameter     varying 

from   representing the absence of autoregulation to   representing full autoregulation. In this 

subsection the     between different     (   ) is measured.  The result is shown in Figure ‎4-3. In 

this figure each line represents the     of a reference model, and the x-axis in the figure 

corresponds to the     of the Tiecks model to which it is compared. The y-axis corresponds to the 

subspace distance (   ), which varies from   (when the reference model and test model are the 

same) to 1.81 (when they are most different). It is evident that the distance between models when 

both correspond to the same     is zero, and as the models differ more, the subspace distance 

increases. The symmetry of Figure ‎4-3 can also be observed, so the subspace distance between      

and      is the same as the subspace distance between      and     . 
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Another notable feature of applying this method to the Tiecks model is that the     between any 

two adjacent     is most similar among all the combinations of     (                    
 

           ). This helps to interpret the     when applied to measured data with different 

autoregulatory statues.  

 

Figure ‎4-3 Subspace distance between different Autoregulatory indexes (   ) from Tiecks model varying from    , 

measured from second-order      models. 

The next subsection considers the alternative approach based on distance measures based simply on 

the frequency responses of different Tiecks models.  
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4.4.2 Distances in the frequency responses 

 

In the previous section, the Tiecks model was used [5], and the distance between different    ’s in 

the cepstrum domain using the subspace distance (   ) were calculated. The previous section 

demonstrated that the     provides a convenient means of distinguishing between different levels 

of    s (Figure ‎4-3). However, there are evidently many other ways of doing so and therefore in this 

section this method is compared to one alternative. There are obviously other alternative 

approaches that could have been taken, however in this work, the original approach taken by Martin 

et al. [119] was used (due to its simplicity and the fact that going to cepstrum domain has the 

advantage of simplicity as convolution in time domain becomes addition in cepstrum domain) and 

compared to this alternative. A related question can be raised on why the 2-norm of the logarithm of 

the cepstrum is used in preference to the  -nrom of the spectrum itself. In this section, the distance 

between two models (     models) based on the difference between their gains was measured: 

 

     √ ∑ |   
     

 
|
 

  

   

  ‎4.40 

Where in the above equation    
  and    

 
 are the frequency responses of the two models whose 

distance is to be measured.    in above equation is the sampling frequency. The distance is 

measured over the full frequency range of the models. 

The distance between different Tiecks models measured using the above equation is shown in 

Figure ‎4-4. The symmetry between the distances is also observable in this figure (distance between 

      and       is the same as the distance between       and      ,     vary from   to 

 ). The distance between models varies from   (two identical models) to       (      and     

 ). However the distances between different models are not as separated as Figure ‎4-3. It can be 

seen (shown by a dotted circle) that the change in distances between a wide range of    s can be 

quite small, making it difficult to distinguish between them. This can be a problem as if the 

autoregulation of a subject with       deteriorates; it would be very hard to see if it came down 

to       or all the way to      .  

To clarify thus further, it can be seen from Figure ‎4-4, that the     between       and       

is     , and the     between       and       is     , so the difference between two     is 

    . However the     between       and       is       and the     between       and 
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      is      , which makes the difference only    , and makes it harder to distinguish between 

different      levels.  

Given that for autoregulation only frequencies between                 are of main interest 

[73], the calculations in eq.‎4.40 were repeated, restricted to this band, with results plotted in 

Figure ‎4-5. A similar bunching of lines of result as Figure ‎4-4 was observed (though now near     

 ), and same argument as before holds here as it is hard to say whether the condition of a patient 

which was previously measured at       improved to       or      . 

 

Figure ‎4-4 Distance between different Autoregulatory indexes (   ) from Tiecks model varying from    , calculated from 

the frequency response over the whole range of the frequencies, using the second-order      models. Each line 

represents a different level of autoregulation in the reference model, and the value on the x-axis that for in the test model. 

The red dotted circle indicates the area where the    s are very close to each other and would make it very difficult to 

distinguish between them. 
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Figure ‎4-5 Distance between different Autoregulatory indexes (   ) from Tiecks model varying from 0-9, calculated from 

the frequency response over the frequency range of              , and using the second-order      models. Each line 

represent a different level of autoregulation in the reference model, and the value on the x-axis that for in the test model. 

The red dotted circle indicates the area where the     are very close to each other and making it almost impossible to 

distinguish between them 

In the next section, the     method mentioned is applied to measured data in both the    and    

conditions. 

 

4.4.3 Recorded data 

 

In this section, recorded data are used, and the     method was applied to measure the distance 

between    and    in the same subject (pairwise measurements) and then the distance between 

the estimated      models from different subjects during    and   . In order to measure the 

pairwise distance between the measurements, matrix of format shown in Figure ‎4-6 was created. As 

can be seen this matrix is symmetric with respect to its diagonal (with zero in the diagonal), so the 

matrix has 
       

 
      unique entries.  From this number 

     

 
      belong to the     

between       and,      to       and the rest (    ) is the distance between      . 

The distance between       itself forms a square matrix, where the diagonal is the distance 

between the     measurement during    and   . In order to make this matrix compatible with the 

   s measured from the other two groups (      and      ), the upper triangle of this 

square matrix (     ) was used. 

ARI 0 ARI 1 ARI 2 ARI 3 ARI 4 ARI 5 ARI 6 ARI 7 ARI 8 ARI 9
0

0.5

1

1.5

2

2.5

3

3.5

Models

D
is

ta
n

c
e
 m

e
a
s
u

re
d

 f
ro

m
 f

re
q

u
e
n

c
y
 r

e
s
p

o
n

s
e
 (

0
.0

4
-0

.1
5
 H

z
)

 

 

ARI 0

ARI 1

ARI 2

ARI 3

ARI 4

ARI 5

ARI 6

ARI 7

ARI 8

ARI 9

 



  

90 
 

 

Figure ‎4-6 Format of the matrix created to measure the subspace distance between      ,       and       

Table ‎4.2 shows mean of the pairwise     between recordings during      ,       and 

      for all    measurements in    and    shown in Figure ‎4-6 and explained above. It can be 

seen from this table that the     between       is larger than the other two (      and 

     ). This finding is in agreement with the initial expectation that the models from different 

autoregulatory conditions tend to be more different than the models of measurements with the 

same autoregulatory status (intact or impaired). 

Subjects Normocapnia     Hypercapnia     

Normocapnia                     

Hypercapnia                     

Table ‎4.2 Mean     of the subspace distance for    recordings between normo-nomo, hyper-normo and hyper-

hypercania 

Evidence so far suggests that     provides a means of comparing models with each other. However 

in order to compare the results obtained from    , to other autoregulatory parameters discussed at 

the beginning of this chapter (   and   ), the Euclidian distance between measurements of these 

autoregulatory parameters are assessed.  For the autoregulatory indexes (   and   ), the distance 

between two measurements (all possible pairwise comparison) are calculated, as the difference 

between their autoregulatory parameter, and matrices in the same format as the matrix shown in 

figure 6.5 are created using eq.‎4.41 and eq.‎4.42.  
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As explained in    , the Euclidian distance between the normocapnia measurements (     ) 

and between hypercapnia measurement (     ) and between normocapnia and hypercapnia 

(     ) form a sub-matrix of our matrix in Figure ‎4-6 with zero on diagonal (Euclidian distance 

between a measurement and itself is zero). The mathematical formula for calculating the Euclidian 

distance for    and    are shown below 

       
 |                   |             ‎4.41 

       
 |                   |              ‎4.42 

where in above equation,               or               represent    or    during either normocapnia 

or hypercapnia and would lead us to create the matrix of format shown Figure ‎4-6. As the matrices 

for     and    are symmetrical, only one side of the diagonal was used for our calculations. This 

would result in having (
       

 
     ) paired-wise Euclidian distances for each group (   

         and       and      ).  

Subjects Normocapnia 

   

Hypercapnia 

   

Normocapnia 

   

Hypercapnia 

    

Normocapnia                     

Hypercapnia                     

Table ‎4.3 Mean of the Euclidian distance of    and    for 57 volunteers between normo-nomo, hyper-normo and hyper-

hypercapnia 

Table ‎4.3 shows the Euclidian distance for    and    for all the groups (     ,      

and      ). As it can be seen from this table, the distance between       for    is slightly 

higher (0.27 for       compared to      for       and      for      ), whilst this is not 

the case for   .  

4.4.3.1 Statistical analysis 

In order to evaluate the performance of this approach (    for assessment of autoregulation), 

      is applied. In order to remove the effect of each subject, both of the recordings from the 

same subject are removed (from the dataset). 

The result from 57 different       on     is shown in Table ‎4.4. In this approach, by removing 

each subject’s    and   ,    subjects during    and    (    total) are left. The average value of 

    of the left-out recording with the    recordings during    and    is calculated. The distance 

that has the smallest value with that specific group would be the category for the recording in hand. 
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Misclassification would refer to a condition when the left out subject’s     between its    or    

with the groups of    or    respectively is larger than distance to the other family. The 

misclassifications for     are indicated by a star in this Table ‎4.4.  

The results show only   misclassification using the     whilst these are    and    for    and   , 

respectively. Some of these misclassifications were from the same recordings but there was no 

overall pattern that suggested these misclassifications was dependent of the recordings or 

volunteers. The results from two sample z-test of two proportions shows that misclassification of   

in     is significantly different to both misclassification for    and    with             and 

            however,    and    are not significantly different (     ).     
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94 
 

                       

                       

                      

                       

                       

                       

                       

                       

                       

                       

                      

                       

                       

                       

                      

                      

Table ‎4.4 Result from 57       on volunteers data with arterial blood pressure (   ) as input and cerebral blood flow 

velocity (    ) as output. The second column in this table is the     between the left out measurement during    and 

the average      model calculated over all other       measurements, the second column is the     between the left 

out measurement during    and the average      model calculated over all other       measuremnets, the third and 

fourth columns represent the     between the left out   ,   measurement with the average      model calculated 

over all other          respectively. It is expected that the distance between for example the left out    measurement 

with the reference      model during    be smaller that when this is compared with the reference      model 

during   . The ones that do not follow the expected trend for both    and    are indicated with a star.  

The result for the cluster separation is shown in Table  4.5. The results from cluster separation shows 

that     gives us better separation compared to    and   . 

 

 

 

 

 

 

Model Normo/Normo Hyper/Normo Hyper/Hyper Cluster 

Separation 

Normalized  
                           

                                       

                                      

        2.26                          

Table  4.5 Mean cluster separation between normo/normo, hyper/normo and hyper/hypercania, using 

subspace distance (   ) and phase at        (  ) and second coefficient of FIR filter with 2 lags (  )  
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4.5 Discussion  
 

The conventional approach to assess autoregulation is to model the relationship between     and 

     (     approach) and from this model an autoregulatory parameter is extracted. In term of 

the assessment of autoregulation, this thesis has concentrated on choosing an autoregulatory 

parameter from different methods in both time or frequency domain, using linear or nonlinear 

system identification methods  [5, 11, 39, 46, 75, 90, 93, 106, 116, 129, 130]. These parameters are 

usually extracted from the estimated step or frequency responses [47, 52, 73, 74]. There are other 

approaches to assessment of autoregulation that does not require choosing a parameter from the 

step or frequency responses such as correlation coefficient (  ) between cerebral perfusion 

pressure (     and blood flow velocity (   ) [28, 118], however this approach does not measure 

    directly and provides a surrogate measure of autoregulation [118]. 

In this chapter a new data-driven approach for assessing autoregulation using subspace distance 

(   ) between two      models is proposed which avoids the need for prior choice of the 

autoregulatory parameter. It has to be noted that whilst there are many alternative approaches that 

could have been chosen, the original approach by Martin et al. [119] is used. 

In this chapter, it is first shown that by applying     to the      responses proposed by Tiecks [5], 

good and effective separation between all    autoregulatory responses     can be achieved. To this 

end an      model is used (with order    ) and adapted for a sampling frequency of     . It is 

shown that the step responses obtained from the different sampling frequencies are in good 

agreement (Figure ‎4-2).  

Next, it is showed that by going to the cepstrum domain, the distance between to      models can 

be measured as the difference between their cepstrum coefficients [119, 131]. Moving  to the 

cepstrum domain has the advantages of simplicity (convolution in time domain is addition in 

cepstrum domain) and reduction of the dimension of the spectral vector [132]. Based on the 

simulation using Tiecks models, it is shown that in dynamic assessment of autoregulation, going to 

the cepstrum domain, gives clearer separation between different levels of than simple distances 

between frequency responses (Figure ‎4-4 and Figure ‎4-5). Then      models with order     are 

applied to the     and      data recorded in volunteers and the     between different 

combinations of normocapnia and hypercapnia (            and      ) are calculated. 

The results show that the     between two different conditions (     ) are greater than the 

distance calculated from two measurements with the same condition (      or      ); 1.27 

for       compared to      and      for       and       respectively. The Euclidian 
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distance for    and    are calculated for all the conditions (     ,       and      ). 

The results of the mean of the distances for these three groups are shown in Table ‎4.3. 

In order to test the benefit of this novel data driven approach using    , similar methods on some 

more conventional autoregulatory parameters are employed [73-75] and are used in previous 

chapters. Comparisons are made using       (section 4.3.5.1). The results from this test shows 

considerable superiority of     over    and    with only   misclassifications compared to    and 

   for    and   , respectively. Next cluster separation is used as a criteria of how separated the 

three difference groups (            and      ) are from each other.   

Inter- and intra-subject variability is a big issue when it comes to the assessment of cerebral 

autoregulation [47, 74, 97, 102]. There is no ‘gold standard’ in the assessment of autoregulation [47, 

74, 133, 134]. In order to study the variability of this novel approach and compare it to our other 

autoregulatory parameters, cluster separation is used. The result showed the advantage of using 

    over    and    with the cluster separation of      for    , compared to      and      using 

other two autoregulatory parameters respectively (Table ‎4.5). 

One requirement in applying     as a method for assessing autoregulation is the need to choose 

the order of the      models, which might have a major effect on results. In this work      

model of order       is used to facilitate comparison with the initial simulations based on the Tiecks 

model. This model order has also been used by other authors [97]. In order to probe this choice 

further, the method is also applied using a simpler model of          model (    filter with only   

lags which was originally used by Simpson et al. [102]) and almost similar results were found. The 

reason behind choosing the original      model with     was to be compatible with our original 

order chosen for the Tiecks model and to be in agreement with the literature [97], however as 

mentioned, with simpler model, slightly better result are achieved, which suggest further 

investigation can be carried out in this section (maybe     to calculate the best model order). 

An important point that has to be considered is that, in order to measure the     between two 

models, it is not required that both models have the same orders (they only need to be stable), and 

the distance can be measured from two      models with different orders and structures. This 

might be appropriate when recordings have very different durations (where the principle of 

parsimony would indicate that for shorter recordings lower model orders are indicated) or 

recordings may show very different spectral characteristics. However in this work, average      

model is used as the reference model and using models with different orders cannot be applied.  
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The results from       showed   misclassification for     and    and    for    and   , 

respectively. The results one-tailed z-test of two proportions showed that classification using     

was significantly different compared to    and   , however classification using    and    showed 

no significant difference. The poorer result may be result from the effect of each subject in both 

training and validation (even though they were measured in two different seasons, but deeper 

analysis is required in this area).  

One issue in using     as a method to assess cerebral autoregulation is that the      models are 

required to be stable [119]. However this will not always be the case (especially with higher order 

models), but with small order      models this is usually the case. In the case of assessment of 

autoregulation in the dataset in hand, no measurement found to be unstable with the chosen orders 

in this chapter.  

Another issue of using the     is that the models fed to the model are required to be single-input-

singe-output (    ) models. However, it may be possible that this model can be extended to 

measure the distance between multi-input-single-output (    ). This may permit the inclusion of 

for, example       
, which the previous chapter showed to improve the assessment of 

autoregulation. However, multivariate model of     has not be done and could be the next stage in 

this work. 

Another issue using     that has arisen, is the big dispersion of autoregulatory parameters within 

the groups, as can be seen from the large standard deviation in each group shown in Table ‎4.5 

compared to their mean values. This indicates that it is hard to separate the groups from each other 

and grey area between the groups still exists as reported by others [93, 97, 102]. However the 

results from cluster separation shows better separation between these groups using     compared 

to    and   . The results suggest that the grey area between the cluster of     of      , 

      and       are separated better compared to    and   .   

4.6 Conclusion 

 

The results from this work show that subspace distance can provide a novel approach for assessing 

autoregulation, and the results suggest better performance than more conventional alternatives. 

The method requires that the models are stable. The main advantage of this method is that it does 

not require the choice of parameters to quantify autoregulation to be picked by the researcher, but 

is driven by the data (the model) itself. The method is found to be promising, but requires further 

evaluation with larger datasets. Orders of the      models are chosen based on the model orders 
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chosen previously used in Tiecks models. However model investigation on the order of      model 

using probably     would be ideal as the choice of the order      plays an important role in 

applying    . Multivariate     can also be the next step in applying     to cerebral autoregulation 

as we have already shown in  Chapter 3 that including       
 can improve the assessment of 

autoregulation.  
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Chapter 5 : Multivariate time-varying 

analysis of cerebral autoregulation in 

response to changes in       
 

 

In this work, the contributions of spontaneous beat-to-beat mean arterial blood pressure (   ) and 

breath-by-breath carbon dioxide of end-tidal     (      
) on fluctuations of beat-to-beat cerebral 

blood flow velocity (    ) variation using linear time-varying models in normal subjects at rest is 

studied.  

Cerebral autoregulation has been widely studied using linear filter system using arterial blood 

pressure (   ) and cerebral blood flow velocity (    ) as input and output respectively. The time-

varying characteristic of cerebal autoregulation during step-wise changes in arterial       
using 

adaptive filters has already been studied [114]. The aim of this chapter is to investigate time-varying 

characteristic of dynamic cerebral autoregulation using multivariate (    and       
) adaptive 

filters (multivariate recursive least square (      ) and multivariate moving window (   

  )). Here single input RLS (      ), single input moving window (     ), multi-input 

moving window (     ) and        methods are also applied to baseline, hypercapnia and 

normocapnia (second baseline; after hypercapnia) measurements from volunteers, individually. 

Autoregulation is quantified by both time-varying phase lead and amplitude using pressure pulse 

response (   ) as discussed in section 3.3.2, it is noticed that the multivariate models can remove 

the transient at the beginning of hypercapnia compared to the univariate models and autoregulatory 

parameters extracted from        provide the least variation over time (  and          for the 

mean of variations for the phase at       ), as well as the largest separation between normo- and 

hypercapnia. The analysis of experimental measurements from healthy volunteers shows that by 

using time-varying multiple coherence of     , with     and       
, significantly higher values in 

the transient phase between normocapnia to hypercapnia compared to the values obtained from 

univariate time-varying coherence function at these stages. The results illustrate that at low 

frequencies and for the transients, the low value of univariate coherence may be due to the effect of 

      
 on the variations of     .  
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5.1 Introduction  

 

The coherence function between     and     , exhibits low values in the low frequency region, 

which questions the validity of the linear          relationship of the cerebral autoregulation at 

these frequencies [135, 136]. More sophisticated system identification can be applied to study the 

effect of nonlinearity and non-stationarity of cerebral autoregulation [23, 35, 92, 93, 137] although 

this is not universally accepted. They showed that by including       
 and nonlinearity and the 

cross-effect of       
 on     (section 2.9), variation in      can be almost fully explained. Peng et 

al. [91], used a multivariate coherence function with           
 and end-tidal oxygen (     

) as 

inputs and showed that multiple coherence provide significantly higher values at           

compared to the corresponding univariate coherence with     which indicate that alongside 

nonlinearity and non-stationarity in the system and signals respectively, other physiological signals 

also have great impact on      [90, 138].  

On the other hand, there is large inter- and intra-subject variability in the assessment of 

autoregulation when short periods of data was analyzed using only spontaneous variations in     

and      [47, 74, 90, 114, 133, 139, 140]. It is known that increasing arterial     causes cerebral 

vasodilation, and impairs cerebral autoregulation temporarily. This can be exploited by switching 

between ambient air and in air/       mixture to assess cerebral autoregulation to investigate 

impairment statuses [46, 88, 90, 93, 114, 141-143]. Liu et al. [114] studied the speed of the changes 

in autoregulation as a result of transient in partial pressure of     in the blood (     
).   

In this chapter, the assessment of autoregulation using multivariate time-varying methods is 

explored. The aim of this chapter is to assess the transient changes in autoregulation as the result of 

breathing        using both     and       
 as inputs to adaptive filters and comparing it to a 

univariate model with just     as input. 

In the next section, the data acquisition procedure is introduced. Then the adaptive filter methods 

are described, followed by a description of the autoregulatory parameters used for the assessment 

of cerebral autoregulation are outlined. In the following section, the results of tracking time-varying 

dynamic autoregulation are shown, followed by discussion and suggestions for future work. 
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5.2 Methods 

5.2.1 Data Collection and processing 

 

The same dataset used in the ‎Chapter 4 was used in this work (section 4.2). Participants were asked 

to assume a supine position. After a brief settling down period, brachial ABP was measured and the 

thigh cuffs were placed. Once connected to the inflation system, a trial inflation/deflation cycle was 

performed to familiarize participants with the procedure. ABP was monitored non-invasively using 

the arterial volume clamping method (Finapres, Ohmeda     , Louisville, CO, USA). Freehand 

transcranial Doppler (SciMed QVL    , SciMed, Bristol, UK) identification of the right middle 

cerebral artery (   ) was performed using a       probe, which was then held in place by an 

elastic head-band during data acquisition. Following a   minutes baseline recording, each participant 

underwent four more   minutes recordings, corresponding to all possible combinations between the 

two sequences and the two high thigh cuff pressure settings. All manoeuvres were performed in a 

random order. However for the sake of this chapter, only the baseline and high     (  ) and 

second baseline (normpcapnia) recordings are used. 

The mean arterial     and      are then calculated by low-pass filtering (cut-off frequency 

      ; zero phase filter [39, 46]) and the mean was removed from the signals. The resultant signals 

were resampled at       

5.2.2 System identification 

 

As mentioned above the segments of data obtained at baseline, hypercapnia and second baseline 

(normocapnia) are visually inspected and the mean values were removed. From the time series 

for     [    ],       
 [    ] and      [    ], the latter is modeled as below [144] where      is 

modeled with      and      as inputs. 

 

     ∑              ∑             

     

   

     

   

       5.1 

where      is noise and        and        are the coefficients of the causal     filter which are 

estimated using a multivariate least-squares fit, using 

      
       5.2 

Here    is the matrix of the     coefficients 



  

102 
 

   [            (     )                      ]   5.3 

In above equation     and     are the lengths of the     filters for     and    , respectively. 

    [
      

      
] is the auto-correlation matrix of the inputs and     [

   

   
] is the cross-

correlation matrix between the inputs and     .  

The above equations for the multivariate model can be simplified to a univariate model by removing 

one input. For instance, by removing the effect of       
 the auto-correlation and cross-correlation 

matrices employed in eq. 5.2 would become,     [   ] and     [   ]. 

In this work,   and    seconds are chosen for     and     respectively. These values are chosen 

based on the previous work done by other authors [29, 90, 91, 141]. It has been shown that these 

impulse response lengths can cover most of the important effects of     and       
.  

In order to estimate the time-varying characteristics of autoregulation, a sliding-window version of 

above equation with a window size (  ) of        [53] are used to be able to capture variations in 

     and the characteristics of cerebral autoregulation. The   matrix is recalculated for each 

window and the window is advanced by one sample steps. Different autoregulatory parameters are 

then calculated from   to quantify cerebral autoregulation as is explained later. 
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5.2.3 Multivariate     analysis 

 

The univariate     model previously used by Liu et al. [114] was extended to a multivariate     

method as [144] 

 
      

              

                    
                        ‎5.4 

 
      

              

                    
                        ‎5.5 

where in the above equations       is the forgetting factor and        
   is the inverse 

autocorrelation matrix of the input signals at sample   and      is the Kalman gain vector. The error 

at the     sample was the calculated using 

                       ‎5.6 

Where      in above equation is a vector and         in above equation is 

 
       [

        

        
] ‎5.7 

          [                            ] ‎5.8 

          [                      ] ‎5.9 

In order to be able to put two rows of different length (as the length of impulse response for     

and       
 are chosen differently) into one vector,     was zero-padded to have the same length as 

   . This was also done for     . 

 
     [

     

     
] ‎5.10 

       [                        ] ‎5.11 

       [                   ] ‎5.12 

These are updated sample by sample using 

                       ‎5.13 

where  

 
     [

     

     
] ‎5.14 

Next      for each input was updated and the output      are calculated and the error from the 

measured      is updated. 
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           ‎5.15 

                            ‎5.16 

where in above equation     indicates either   or  .  

In order to improve the performance of the models, the system is initialized with      calculated 

from a multivariate     filter (Wiener filter) using the whole set of data. This helps to reduce the 

large error at the beginning of the process whilst the     method converges. In this study, same 

values used by Liu et al. [114] for         is used, as these values showed relatively low error 

estimation at the beginning of the adaptation of the datasets.  

5.2.4 Multivariate Coherence function 

 

          and      as the frequency-domain transforms of           and      are computed using 

an     algorithm. The power spectrum and the cross spectrum of these signals can be measured 

using [124]: 

               [                   ] ‎5.17 

            [             ] ‎5.18 

where              are the power spectrum of      or      or      and        is the cross-

spectrum between     or       
 and, and the expected value of the complex product is obtained 

with the Welch method by smoothing the spectra with a     point Hanning window (    seconds; 

which gives good resolution to study the effect of cerebral autoregulation at around       ) with 

    overlap. 

The univariate coherence function   
     between   and   is defined by: 

 
  
     

|      |
 

            
 ‎5.19 

The coherence function tells how much of the output can be linearly explained by the input over 

different frequency ranges.  

It has also been shown [138] that the complex transfer function        and         can model the 

output signal with      and      as inputs using 

                            ‎5.20 

By using above equations the system auto-spectrum of the model input can be written in matrix 

form as: 
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         [         ] ‎5.21 

By using above equations and the definition of coherence as the explained variation of the output 

over the total variation, the multiple coherence   
     is defined as: 

 
  

     
      

      
 ‎5.22 

In this chapter, both the univariate and multivariate coherence at different samples are calculated to 

be able to capture the autoregulatory parameter characteristic as the state of autoregulation 

changes: 

 
  

        
         

         
 

           

‎5.23 

Where    in the above equation is the sample time,   is the length of the signals (in samples) and 

   is the window size. Thus the coherence is estimated using the last    samples of the measured 

          and     . 

5.2.5 Autoregulatory parameters 

 

By applying univariate and multivariate time-varying models (    and moving window) discussed in 

the previous section, different autoregulatory parameters can be extracted as the characteristics of 

the models changes with time using these different techniques. In this work, time-varying 

autoregulation is estimated using the phase lead between      and      at 
 

  
   which has been 

widely used [65, 73, 98] as an indication of the status of cerebral autoregulation. Birch et al. [139] 

reported a mean phase-lead of        at         and Diehl et al. [69] reported a phase-lead of 

          at       . Both of the mentioned studies agree on phase-lead reduction when 

autoregulation is impaired. This phase-lead has since been become one of the most important 

measures of cerebral autoregulation. In this work, the impulse responses for the     (   ), 

calculated from the different univariate and multivariate time-varying moving-window and     

filters are transformed into frequency domain by    , and the phase angle (phase lead) is estimated 

at         for each estimate. 

The amplitude at       (  ) of the response of the system to a pressure pulse input (   ) as 

introduced in section 3.3.2 is also considered. It was shown that this novel input has more realistic 

characteristics as our real input in term of power spectrum  as shown in Figure ‎3-4 [102]. This has 

also been shown to be superior to phase at         for the assessment of autoregulation in terms 

of inter- and intra-subject variability and robustness (section 3.3.3.1 and 3.3.3.2). In this method, 
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instead of feeding a step or an impulse to the system and calculating the response a cosine wave 

modulated by a Gaussian envelope is used. It is shown Figure ‎3-4 that this input has more realistic 

characteristics compared to step and impulse input, with respect to those observed in 

spontaneously varying     and its central frequency can be chosen considering the autoregulatory 

system where is often selected around        [73, 139]. This allows us to study autoregulation in 

frequency bands where autoregulation is known to be working. It can also be seen that     has a 

wider frequency range around        which enables to capture more information around this 

frequency which would result in better assessment of autoregulation. 

The time-varying models introduced in section 5.2.2 are then applied on recorded    ,       
 and 

     to capture the time-varying characteristics and multivariate structure of cerebral 

autoregulation during baseline, hypercapnia and normocapnia. The changes of the phase lead and 

the amplitude at   seconds from the pressure pulse response (   ) are also looked at to firstly 

observe how fast the autoregulatory parameters change following step-wise changes in       
, and 

secondly to study the effect of multivariate time-varying models compared to univariate time-

varying models. In the next section, the results from these models are presented. 

5.3 Results 

 

The mean  standard deviation of           
 and      averaged over the time of recordings for 

all    recordings are given in Table ‎5.1. The results here are in agreement with literature which 

indicates the increase of      in the hypercapnia stage. The results from the paired-wise test 

shows that the increase in      during hypercapnia stage is significantly different to both baseline 

and normocapnia stage (      ), whilst it was the case for     (       ). 

 Mean     of      Mean      of       
 Mean      of      

Baseline                                    

Hypercapnia                                    

Normocapnia                                    

Table ‎5.1           of    ,      and      for all    measurements 

Table ‎5.2 presents the normalize mean square error (      for the comparison between the 

desired      and the model outputs averaged over all the measurements in baseline, normocapnia 

and hypercapnia. It can be observed that the      for the multivariate     improved        

relative to       . A decrease in variability across subjects is also noticed (      ). The same 

improvement is also observed from multivariate to univariate moving window models (       and 
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       respectively). A paired t-test is then employed to analyse the statistical significance of the 

difference between the univariate and multivariate models. The results illustrates that the      

from the multivariate models are significantly different with the significant level of      ). 

However the results also show that the multivariate     and moving-window methods are not 

significantly different (        ). This illustrates that the multivariate     and moving window 

models are not significantly different in terms of model fit. 

Model           ( ) 

Single-Input                 

Multiple-Input                

Single-Input Moving Window             

Multiple-Input Moving Window            

Table ‎5.2 Normalized mean square error (     %) for different signal processing models  

Figure ‎5-1 shows the results for the autoregulatory parameters; phase lead and    averaged over    

measurements calculated during different stages (baseline, hypercapnia, second baseline; 

normocapnia). It can be noted that in hypercapnia there is a transient from normocapnia to the 

opening of the valve of     (Figure ‎5-3). There is also an adaptation period for the coefficients and 

the corresponding autoregulatory parameters which can be seen at the beginning of all the stages as 

is shown in Figure ‎5-1.  The positive phase indicates that      leads     which is in agreement 

with other studies [65, 69]. The results also show that phase lead and    both decrease with the 

incensement of       
 which impairs autoregulation as shown by other authors [65, 69]. It can be 

seen from Figure ‎5-1, that the average autoregulatory parameters over all    recordings extracted 

from different models provide almost the same results when they are in the normocapnia stage, 

however the results differ when the subject are in the hypercapnia stage. This indicates that the 

effect of variation in       
 on      is more apparent when the subject experiences hypercapnia.  
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Figure ‎5-1 Phase at        and amplitude at      averaged over all    measurements for different     levels 

It has to be noted that the filters are initialized using a univariate or multivariate     filter to reduce 

the adaptation period at the beginning of the procedures. This adaption period can be seen at the 

start of all autoregulatory parameters (lower values at the start). 

Different autoregulatory parameters are then synchronized at the hypercapnia stages based on the 

trigger of step-up or down of       
 as shown in Figure ‎5-2 the      of       

 was used as the 

trigger point. The top row shows the first     seconds of the autoregulatory parameters at the 

onset and the bottom row shows the last     seconds of the autoregulatory parameters in the 

hypercapnia stage. It can be seen that       
 takes up to almost    seconds from opening the valve 

to reach hypercapnia (to the dashed line in Figure ‎5-2). In order to synchronize different 

autoregulatory parameters, the point of hypercapnia is used as the trigger of hypercapnia. The mean 

of the synchronized phase lead and    based on the trigger of       
 are shown in Figure ‎5-2. It can 

be seen from the top row in Figure ‎5-2, that the delay in the phase leads due to slowness of     

response calculated from the    models are more evident at        step-up compared to step-

down.  
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The mean value of      during normocapnia (Table ‎5.1) and its increase at the onset of 

hypercapnia and its decrease when in baseline are in agreement with previous works [46, 63, 88, 

112, 142]. As mentioned before, phase lead and    both decreased during hypercapnia as 

autoregulation is impaired and returned at the end of hypercapnia as reported previously [46, 73, 

90, 142]. Liu [145] also showed that autoregulation deteriorates rather more slowly during the onset 

of hypercapnia compared to its recovery on return to normocapnia. However, here it is shown that 

that by including       
 in the models the transient of the autoregulatory parameters can be 

reduced at the onset of       
 (Figure ‎5-2). The results show that at the onset of hypercapnia the 

univariate models require around         to reach a plateau whilst multivariate models show a 

much more abrupt change. At the offset of       
 the results have more consistency between the 

models with the difference being at the mean values (Figure ‎5-2, bottom row)  

 

Figure ‎5-2 the first         and the last         of phase at        and amplitude at        at the onset (top row) and 

offset of hypercapnia (bottom row), shown with the dashed line averaged over    recordings  

Figure ‎5-4 shows the mean results of the last     seconds of the normocapnia followed by the 

starting     seconds after the onset of hypercapnia (opening of the valve; Figure ‎5-3) of the 

synchronized autoregulatory parameters.  
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Figure ‎5-3       
 during hypercapnia averaged over all recordings, The dashed lines show the triggers of the onset and 

offset of high     

Figure ‎5-4 also shows the last     seconds before the offset of hypercapnia followed by the first 

    seconds of the normocapnia of the adjusted autoregulatory parameters with respect with the 

onset and offset of high    . The standard deviations of these parameters at different stages are 

also shown in the figure with vertical bars. The results showed wide inter-subject variability which 

was expected as shown previously [97, 98, 139]. The vertical bars in this figure, corresponds to the 

    of the mean values, during the window of     to     seconds or     to     seconds. The 

reason behind choosing these windows are to be able to compare the models after passing the 

transient stage.  

At the onset of hypercapnia, the models are adapting to the change from normocapnia to 

hypercapnia. As the last     seconds of normocapnia is used for the comparison between    and 

  , as this stage the initial transient while the     filter adaptation has passed as can be seen 

Figure ‎5-1. 
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Figure ‎5-4 The last     seconds normocapnia followed by the first     seconds of hypercapnia at the onset of hypercapnia 

(top row) and the last     seconds of hypercapnia followed by the first     seconds of normocapnia (bottom row), 

averaged over    recordings phase at        and amplitude at   seconds. The vertical lines correspond to the     of the 

models averaged over windows of     to     seconds and     to     seconds. The discountinouty between different 

protocols should be considered (shown with three dots) 

It has to be noted that, there would appear to be a discontinuity between normocapnia and 

hypercapnia in above figure at     seconds, this is an artifact because two sets of results are shown 

together in the above figure. Another point that needs to be considered is that, the adaptation is 

stopped at the end of each recording and each stage (baseline, hypercapnia and second baseline) 

and is started again for the next recording or stage; consequently, the sets of results are not 

dependent.  

Table ‎5.3 shows the mean     of the autoregulatory parameters along time across all the 

measurements for the different     seconds segments mentioned above.  The results show the 

decrease of       to      from univariate to multivariate     method in the hypercapnia at the 

start of the onset of high     using the phase lead. It has to be noted that a smaller mean and the 

higher     value for univariate models in the hypercapnia stages were as the result of the transient 

at the beginning of the process. The reduced     from the multivariate model compared to 

univariate model shows the ability of multivariate model to deal with the transient. 
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This reduction in     was also considerable when the last     seconds of hypercapnia at the offset 

of       
 is considered.  Standard deviation and mean values are not good indications of a good 

model in terms of the assessment of autoregulation, as they are related and it is hard to compare 

results of small     with small mean with large     with a large mean value. 

Table ‎5.4 shows the results for the cluster separation which can be used as a criteria of how 

separated the results from different groups are. Cluster separation (section 3.4.2.3) uses the mean 

and the standard deviation of each segment and measures the average between their standard 

deviation normalized by the difference between their mean values (eq.‎4.37-eq.‎4.39). Bigger values 

in cluster separation correspond to better separation between    and   . The results show that for 

the     models, in phase lead, the separation can be improved by 190% and 123% for the onset and 

the offset of hypercapnia respectively whilst these values were -       (i.e worse) and      

for   . The results also show that the univariate and multivariate moving window methods perform 

poorly compared to     methods. It has to be noted that for these analysis the transient at the 

beginning of the data are removed. 

 

 

 

 

 Phase at        

Model    in          in          in          in       

Single-Input                                                   

Multiple-Input                                                 

Single-Input Moving Window                                                

Multiple-Input Moving Window                                                

 Amplitude at   seconds (  ) (     ) 

Single-Input                                                    

Multiple-Input                                                     

Single-Input Moving Window                                                 

Multiple-Input Moving Window                                                 

Table ‎5.3 Averaged            for phase        and amplitude at       during different data sections for different 

models at the onset and offset of     
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By using the coherence function discussed in section 5.2.4. Figure ‎5-5 shows the time-varying 

univariate coherence measured between     as input and      as output and time-varying 

multivariate coherence measured with           
 as inputs and      as output, averaged over all 

   recordings. In this work, the data are synchronized by the trigger of onset and offset of       
 

and show the last         of normocapnia and first         of hypercapnia after the trigger of the 

valve. In this figure, the coherence as a function of both time and frequency can be observed. 

It is apparent from the results that univariate coherence provides lower values at low frequencies 

(         ) at all the stages of measurement (  
         ). However at these frequencies the 

multivariate coherence function provides much higher values (  
           for different levels of 

      
 which is in agreement with the finding of previous authors [91, 138]. It is also observed 

multivariate coherence provided higher values (  
           when the subject is in hypercapnia 

(impaired autoregulation). It has to be noted that as the recordings were low-pass filtered with cut-

off frequency at       .  

 Phase at        Amplitude at       

Model                             

Single-Input                            

Multiple-Input                            

Single-Input Moving Window                      

Multiple-Input Moving Window                      

Table ‎5.4 Cluster separation value for the onset and offset of     for 

different time-varying models 
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Figure ‎5-5 Univariate (left column) and multivariate (right column) coherence function at different times at the onset and 

offset of     averaged over all    recordings 

It can also be seen from above figure that at the transient between baseline to hypercapnia at the 

onset of hypercapnia and also at the transient between hypercapnia to normocapnia at the offset of 

hypercapnia, coherence measured from the univariate model provides lower values (  
         ) 

compared to coherence calculated from multivariate mode (  
         ) in the frequency ranges 

               . However the results at other frequency bands or in the steady state of the 

measurements provide similar results. This illustrates that the contribution of the additional input 

(      
      ) is firstly at low frequencies which is consistent with the finding of [35, 46, 93], and it 

can also improve the linear model fit and hence ability to explain of      at higher 

frequencies               ) when the transient section is studied.  

A paired t-test analysis is also carried out in order to check the significance difference between 

univariate and multivariate coherence function at different frequency range and also at different 

times.  
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Figure ‎5-6 paired t-test between univariate and multivariate coherence functionat different times at the onset and offset of 

    averaged over    recordings  

Figure ‎5-6 illustrates the results of this test. The trigger between normocapnia and hypercapnia and 

vice versa is at       seconds. It is apparent from Figure ‎5-6 that time-varying multivariate 

coherence using     and       
 provides significanltly different results when it is compared to 

univariate coherence with just     at both low frequencies (         ) and in the transient 

between the onset and offset of        (top figure). However the results show that time-varying 

models are not significantly different at frequencies               in steady stage which 

indicates that univariate time-varying models with only     is adequate to explain the 

characteristics of      at those frequencies.  
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5.4 Discussion 

 

Univariate and multivariate time-varying analysis of the dynamics of cerebral autoregulation using 

    and moving-window analysis have been carried out in this study. This is achieved by using the 

relationship between          and            
      during step-wise changes in       

. 

The results showed that by adding       
to univariate model (        ) in addition to the 

improvement to the model fit, better assessment of autoregulation in term of better separation 

between normocapnia and hypercapnia using autoregulatory parameters used in this chapter (phase 

at        and amplitude at   seconds using    ) can be achieved. The results also show that the 

effect of       
 toward the spontaneous changes in      is significantly higher in hypercapnia 

compared to normocapnia. It is also shown that multivariate coherence provided higher values at 

the transient phase between normocapnia to hypercapnia and vice versa and it is also shown that it 

is significantly different to univariate models during this transients and at low frequencies 

(        ) (Figure ‎5-6).  

Many authors have used univariate models using     as input to study      variability. However it 

is known that     is not the only factor for the spontaneous changes in      [23, 35, 90, 93].     

is one of many factor or a specially important one and it has vasodilatory effect on cerebral vessels, 

increasing      [73]. Different studies have been carried out to characterize the dynamic 

relationship between          by either measuring the response of      to a step change in 

end-tidal     [88, 89], or by continuous recording of breath-by-breath spontaneous fluctuations in 

    [39, 74, 98, 114]. The multivariate analysis of the dynamic cerebral autoregulation using linear 

and nonlinear methods has also been studied [35, 90-93]. Mitsis et al. [92] and Kouchakpour  et al. 

[93], showed that       
 as the secondary input can improve the model fit and  further showed that 

the nonlinear interaction between     and       
 has also a major contribution toward      

variability. Peng et al. [91] also showed that the low values of coherence in low frequency range 

(      ) is partly due to the effect of    . Mitsis et al. [35] and in section 3.3.2 confirmed this 

result by showing the power spectra of the residual using multivariate nonlinear model can be 

brought down to almost zero over the whole of the frequency range (        ) which suggest that 

     variability can almost be explained to a very large extent using nonlinear model with     and 

      
 as inputs. 

It is also known that the dynamic relationship between     and      is time varying [85, 87]. Liu 

et al. [114], showed that the dynamic relationship between     and      can be studied using 

time-varying adaptive     method. Liu et al. [114] used phase lead as the autoregulatory parameter 
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to assess autoregulation and found that the cerebral autoregulation responses to the       
 step-up 

are significantly slower than those to the       
 step-down. Peng et al. [146] used     reactivity to 

modify the phase relationship between     and      in the low-frequency band. Payne et al. 

[146] suggested that the low value of the synchronization index at low frequency does not mean 

that     and      are not related but they relationship is distorted in that frequency range by 

   . He showed that by including     the estimated phase shift of          system can be 

increased significantly in the low-frequency band.  

In this work the univariate time-varying adaptive     algorithm is modified to include the effect of 

      
 on the variation of     , both univariate and multivariate moving-window methods are also 

applied to assess cerebral autoregulation. The results show that multivariate models improve the 

model fit compared to univariate models for     and moving-windows by        and        

(    ) respectively. Phase lead and amplitude at   seconds from the response of the system to a 

pressure pulse response (   ) are used as autoregulatory parameters to assess autoregulation. The 

results show reduction in the autoregulatory parameters when the subjects went from normocapnia 

to hypercapnia in all the models. However multivariate     method shows better cluster separation 

compared to other univariate time-varying adaptive methods.  

The results from the coherence function using both univariate and multivariate models also show 

that the impact of       
 on the variation of      is higher when the subject in hypercapnia 

compared to normocapnia.  

The results from the time-frequency coherence function also show that the low values of coherence 

at low frequencies is partly due to the effect of       
, which is in agreement with the finding of 

Peng et al. [91], but also the low values at the transient between normocapnia and hypercapnia can 

be increased by including       
 which has not been noted previsouly. The results also show that 

the improvement in separating    at the onset and offset of     from    for        and 

       is small and large scatter between subjects is observed. However the results from cluster 

separation of phase lead demonstrate that the multivariate time-varying models provide better 

results compared to the corresponding univariate models. The significance test comparing univariate 

and multivariate time-frequency coherence (Figure ‎5-6) show that the improvements in the low 

frequency range and at the transient between normocapnia to hypercapnia and vice versa are 

significant which shows the importance of       
 in the assessment of autoregulation.       

 and 

    are not the only parameters to affect      variability (even though they can explain most of 

the variability), so models to study the effect of other parameters such as    may improve the 

estimation of the dynamics of the cerebral autoregulation system. This can be used as the next step. 
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It has to be noted that the difference between     and    models is raised based on the choice of 

the window length and the value of  . As the result of these differences, it is impossible to simply 

and objectively compare the performance of these two approaches as their initialization is different 

[86]. However the results suggest that by adding       
 as a secondary input to the univariate 

model, in both cases the analysis can be improved in term of both model fit and the assessment of 

autoregulation. 

5.5 Conclusion 
 

In this chapter the dynamic relationship between arterial blood pressure and cerebral blood flow 

velocity was viewed as time-varying and nonlinear and time-varying algorithms (    and moving 

window) are shown to be able to track time-varying characteristics of dynamic cerebral 

autoregulation. In this work, it is first shown that by having       
 as the secondary input, the 

     is improved compared to univariate models (as mathematically necessary). However in this 

work only training data could be used and no validation dataset was available. 

Previous finding of other authors [91, 138] showed a low coherence value at low frequencies which 

suggested that univariate models cannot explain the variability of      at these low frequencies. It 

was also shown that the phase lead between     and      can be used in the univariate time-

varying     method as an assessment of autoregulation. The results now show that multivariate 

time-varying model (      ) with     and       
 can overcome the overshoot at the beginning 

of the transient in the set of data from normo- to hypercapnia. 

In this chapter it is also shown that the effect of       
on the variation of      is more significant 

when the subject is in hypercapnia. The result also indicated that the multivariate time-varying 

model can improve our coherence value at low frequency range and also at the transient between 

normocapnia and hypercapnia and vice versa.  
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Chapter 6 : Analysis of new protocol of data 

collection using pseudorandom step-wise 

changes in pressure using      

 

6.1 Introduction 
 

In the previous chapters data from spontaneous variations in      and     were analyzed during 

   and   . For the measurement of dynamic cerebral autoregulation many different experimental 

and signal analysis methods have been proposed, without a “gold-standard” having emerged [139]. 

The exploitation of spontaneous variations in arterial blood pressure (   ) and cerebral blood flow 

velocity (    ) is now perhaps most common, as it requires minimal interference with the patients. 

However, low variability in arterial blood pressure has been associated with limited performance 

[139]. Different techniques have been employed to oscillate arterial blood pressure but 

measurement reproducibility has been poor. Some of these approaches to create blood pressure 

stimuli which have been widely used are: complex changes from natural spontaneous variation  [2, 

32, 75, 85],  periodic variation induced by rhythmic postural changes or slow breathing [65] , step 

changes induced by the use of thigh cuffs or carotid artery compression [5, 63]. All these techniques 

generate a time series with blood pressure as the input and blood flow velocity as the output. 

At Southampton General Hospital a new hardware and software system was developed, for the 

measurement of blood flow control, which allowed the inducement of small random, step-wise 

changes in blood pressure and inspired carbon dioxide (   ) level that can be easily and safely 

repeated and may be applicable as a clinical tool. This new tool was used to collect a dataset from 

   healthy subjects in two separate sections. The current chapter presents initial results from that 

dataset. 

This experiment benefited from the use of      (Lower-body-negative pressure) discussed in 

section 2.9.1 which generates a controllable pressure variation, around the lower limbs of a subject 

resulting in temporary lowering the blood pressure [64]. The experiment also used a valve system to 

control the flow of inspired air/    mixture.   
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The main aim of this newly proposed experimental paradigm is to increase the variability in the 

changes in blood pressure in order to obtain more robust assessment of cerebral autoregulation, 

given that it has already been established that increasing     variability can improve estimates of 

cerebral autoregulation [74, 97]. The protocol of pseudorandom step-wise changes in pressure is 

well tolerated by the volunteers. It appears promising for the study of cerebral autoregulation, as a 

means of inducing small, well controlled transient increases in blood flow and pressure and is, 

somewhat surprisingly, associated with increased performance of autoregulation.  

A new     (Graphical User Interface) is also built in order to review and edit the collected data and 

save it in different formats for further use (Appendix IV). 

The first section introduces the experiment and data collection procedure. In the following sections, 

data collection procedure and results from the analysis of cerebral autoregulation during different 

experimental phases are presented and discussed. 

6.2 Methods 

6.2.1 Data Collection 

 

All the measurements were performed on    healthy adult volunteers between the age of    and 

   with no history of cardiovascular disease or other serious medical conditions, under no 

medication, not pregnant and with waist measurements below 40 inches.  

Each data from each subject were collected in two separate seasons. One subject did not come back 

for the second recording (   recordings all together). 

The measurement of blood pressure was carried out using Finapres (section 2.8.2) (Ohmeda 

Finapres     ). The finger which was used for the measurement of blood pressure was rested at 

approximately the level of the heart. The blood flow velocity was monitored with a       pulsed 

transcranial Doppler ultrasound (ulti-Dop T, manufactured by DWL Elektronische Systeme GmbH, 

Sipplingen, Germany) from both middle cerebral arteries. The probes were held in position by an 

elastic head strap. For the measurement of end tidal carbon dioxide, a computer controlled valve 

switched inspired air to        in air mixture (fed from a           Douglas bag). The experiment 

consisted of   procedures carried out in random order (apart from baseline which was always 

collected at the beginning of the experiment).  

1. Baseline (  ); the volunteer at rest  

2. Hypercapnia (    );        air 
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3. Random lower body negative pressure (    ) 

4. Hypercapnia lower body negative pressure (         ) 

5. Random        (     ) 

6. Random        +lower body negative pressure (          ) 

6.2.2 Data pre-processing 

 

A typical raw data from all the channels is shown in Figure ‎6-2.    ,      and     were digitized 

at        whilst the original sampling frequency of     was        in order to be able to measure 

heart rate (  ) accurately. 

 

Figure ‎6-1 Schematic representation of the lower body negative pressure chamber. Taken from [139] 

The signals are visually inspected, narrow spikes and artifacts were removed and the     signal 

calibrated at the beginning of each recording. The systolic and diastolic       and     were 

calculated automatically by identifying the maximum and minimum values in each heart-beat. Mean 

    (    ) and               were calculated with a     order Butterworth filter (applied in 

the forward and reverse direction to give zero phase shift) with a cut-off frequency of       . The 

start of each heart cycle was automatically identified from both left and right     and     and    

is calculated from these signals.    was calculated from all these three different signals (left    , 

right     and    ). 
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Figure ‎6-2 typical recorded signals 

The signals are then down-sampled to      to increase numerical robustness in parameter 

estimation. The resampled data are then band-pass filtered using a     order Butterworth filter with 

a cuff-off frequency of         and        to remove very slow variation and baseline shift and high 

frequency components. The removed sections in the data are marked as      (Not-A-Number) in 

the calculations. Data are then normalized by their mean value using the following equation to give 

the relative changes in the signals 

 
   

       

     
 ‎6.1 

Where    in above equation refers to both     and      and    is the normalized variation of the 

data. 

The start and end of different procedures are automatically selected from the trigger signals of 

     and     switch valve (Appendix IV). 

In this work, following visual inspection,      and      signals from either the left or right side 

from Finapres or     respectively are chosen for further analysis. Other signals extracted from the 

measurements are available for future analysis.  
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6.3 Analysis of autoregulation 
 

The phase at        (  ) [52, 73, 116] and second coefficient of an     filter with   lags (  ) [74] 

are used (section 3.4.2) as parameters for the assessment of cerebral autoregulation.     has been 

extensively used in the literature and shown to be a powerful and easy parameter to extract from 

recorded data [52, 73, 116]. In ‎Chapter 3 it was shown that   , despite its simplicity can provide 

robust assessment of autoregulation. In this work, these two autoregulatory parameters for this 

preliminary analysis of the novel protocol for data collection are studied. Mont-Carlo simulation is 

also used to measure the variability of these autoregulatory parameters as discussed in ‎Chapter 3. 

6.3.1 Statistical analysis 

 

The Wilcoxon signed-rank is adopted as a non-parametric statistical hypothesis test to compare the 

effect of selected parameters on the classification of autoregulatory responses. It is also used to test 

the mean values of     and      and their variations during different protocols. The variation of 

different autoregulatory parameters (     ) calculated from Monte-Carlo simulation is also tested. 

A significance level of    is used. 

6.3.1.1 Intraclass correlation (   ) 

 

Intraclass correlation (   ) is a measure of the reliability of measurements. It is a general 

measurement of agreement, where the measurements used are assumed to be continuous and have 

a normal distribution. It is widely used when agreement between two or more evaluation methods 

on the same set of subjects is assessed. It can be used to assess the agreement between repeated 

measurements  [147].   

The key difference between     and Pearson correlation coefficient is that in     the data are 

centered and scaled using a pooled mean and standard deviation (   ), whilst in the Pearson 

correlation, each individual variable is centered and scaled by its own mean and     therefore 

Pearson’s correlation quantifies how close two measurements are to a best-fit straight lit but not 

how the values agree [147]. 

Intraclass correlation ( ) for two groups consisting of   paired data points (         ) is introduced 

as [147] 
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where in above equation      is the number of degree of freedom. 

6.4 Results 
 

As previously mentioned, a total of    subject of age    to    are studied on two separate days. All 

volunteers came back for the second measurement apart from one. Total number of    

measurements were collected. All these measurements are of sufficient quality to be analyzed. After 

some initial adjustments to the protocol to increase comfort, the procedure was generally 

considered acceptable by the volunteers; the need for a face-mask to deliver and measure     

levels, was deemed the least comfortable aspect. The average drop in blood pressure following each 

‘suction’ is     , confirming that the gas mixture was inspired. This is calculated by synchronizing 

the falling edge and raising edge of      during each suction for each recording and calculating the 

mean drop in pressure for all measurements (Figure ‎6-3). 

 

Figure ‎6-3 Normalized      and       during the raising edge of       averaged over all recordings 
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Figure ‎6-4 Normalized      and       during the falling edge of       averaged over all recordings 

 An overview of the mean     of          and     for different protocols is presented in 

Table ‎6.1.  The increase in mean      from baseline to      by              shows the effect of 

high    . The    increase in     from baseline to      is also apparent from the result. The     

during all procedures is in the range    to        .   

Signals                                         

 Mean     Mean      Mean      Mean      Mean      Mean      

    (    )                                                                         

     (    )                                                                         

                                                                     

Table ‎6.1 An overview of signals during different procedures averaged across    recordings  

Table  6.2 depicts the result from p-values using Wilcoxon signed-rank pair-wise test on the mean 

values of     and      during different procedures. The results show that the mean      is 

significantly different between all measurements apart from between baseline and     . 
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Procedures                                      

                                             

      

      

         

       

0.01
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            0.008    

      

         

      

      

                          

      

     

          

      

      

Table ‎6.2 p-values calculated using significance test (Wilcoxon) between the mean value of     and      during 

different procedures (Significant difference is indicated by bold numbers) 

The main aim of this new protocol is to increase the variability in     and as a result of that, obtain 

better estimation of autoregulation. For this purpose, the effect of different procedures on the 

variability (   ) of both     and      is studied. The average of the variation of different 

procedures across all recordings through the period of the data collection is given in Table ‎6.3. It can 

be seen that the     has increased in procedures with      compared to the respective 

procedure without      (                       and                  ). 

Signals                                             

                         

    (    )                               

     (    )                               

                                       

Table ‎6.3     of different procedures averaged across all recordings through the period of data collection 

Table ‎6.4 shows the result of this significance test. The results show that     of     and       

during baseline are significantly different to corresponding      and      during            

     and            but not to others (      ). On the other hand, the     of     and 

     signals are not significantly different from the      to           and          . 

No significant difference was also seen between    and    for either of the measured signals. 
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Procedures                                          

                                             

      

      

   

      

               

      

   

      

               

      

   

      

         

       

   

      

             

      

   

      

            

         

      

   

      

               

      

   

      

              

      

   

      

            

         

      

    

      

Table ‎6.4 p-values calculated using significance test between the      of     and      during different procedures 

The above table shows that by introducing      , the variability in     has increased (from 

baseline       ,               and                 ) which is in agreement 

with the expectation that      increases variability and suggests that the protocol is affecting     

and      as expected. Next, different autoregulatory parameters are studied to test whether this 

increase in variability has led to better assessment of autoregulation. 

Table ‎6.5 shows the mean     of the chosen autoregulatory parameters (   and   ) for all 

available measurements during the different procedures carried out. Figure ‎6-5 shows the 

autoregulatory parameters extracted from each volunteer recording during different procedures 

plotted against each other. The    for all procedures is positive, and larger at baseline compared to 

     which is in agreement with the finding of others [52, 65, 73, 116]. The reduction in    from 

     to           can also be seen in Table ‎6.5, which is in agreement with the expectation in 

previous works [52, 73, 116]. 

The result of    also met our expectation [74] with larger mean absolute values (less negative) in 

hypercapnia compared to the relevant normocapnia stages. It can be seen that during normocapnia 

the majority of    are larger in    than      and thus lie below the line of identity. The result also 

shows that    during      is larger than during   . The reason being that during      the 

subject is still in normocapnia and is expected to behave in that manner. The same structure of 

result is also delivered by    where,   s are larger (less negative) in hypercapnia compared to both 

normocapnia and     . However the comparison between      and           for both    

and    suggests that the values not to be clearly different. 
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Figure ‎6-5 Comparison between different autoregulatory parameters for    (top two rows) and    (bottom two rows). In 

this plot each point represents one recording from one subject. The blue line is the separation line and is used for better 

visual observation 
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 Mean     of    Mean     of    

                          

                            

                            

                                 

                             

                          

Table ‎6.5 Mean     of different autoregulatory parameters for different procedures 

However in order to test whether these differences shown in Table ‎6.5 are significant, Wilcoxon 

signed-rank pair-wise tests for both    and    during these different procedures is used (Table ‎6.6).  

The results show that baseline    is significantly different to    for      and     , but not 

others. The result also shows that    for      is significantly different to all other procedures.  

 

Procedures                                          

                              

            

      

   

      

                                          

         

      

   

      

                      

      

            

                                 

      

   

      

                                   

                   

Table ‎6.6 Wilcoxon signed-rank test for     and     during different procedures over all measurements 

The results for    show that during baseline they are significantly different to      and      and 

           but not the others. It can also be seen that    during      is significantly 

different to all other procedures but to           . On the other hand the    autoregulatory 

parameter during      is significantly different to all other procedures.  

As mentioned before, the main aim of this new protocol is to obtain a more robust assessment of 

autoregulation. In order to study the robustness of this protocol, Monte-Carlo simulation   

introduced in section 3.4.2.3 is used to measure the variability of    and    during these different 

procedures and then Wilcoxon signed-rank pair-wise test is used to compare the variability between 

them.  



  

130 
 

 Mean     of     of    Mean     of     of H1 

                           

                             

                             

                                  

                              

                                   

Table ‎6.7 Mean     of the variation of the autoregulatory parameters (     ) during different procedures over all 

recordings 

Table ‎6.7 shows the overall Mean      of variation of both    and    during all   procedures 

carried out and Table ‎6.8 the corresponding p-values computed from these parameters. The result 

shows reduction of the mean and the variation of both    and    from baseline to     . The 

result of the mean variation of our autoregulatory parameters from      to           shows 

an increase in variability which is in contradiction our initial expectation that      will provide 

more robust assessment of autoregulation (reduction in variability in autoregulatory parameters). 

Procedures                                          

                              

                

      

   

      

   

       

                              

              

      

          

      

                        

          

       

        

      

   

      

         

      

                                

      

                   

Table ‎6.8 Wilcoxon signed-rank test of the variation of autoregulatory parameters (     ) during different procedures 

over all measurements 

It can be seen in Table ‎6.8 that the variability of    and    during    are only significantly different 

to,      and          .  

In order to test the agreement between repeated measurements on different days, intraclass 

correlation (   ) introduced in section 6.3.1.1 between the autoregulatory parameters obtained on 

different days. The results are shown in Table ‎6.9. The results show that     for    has increased 

from         and                 , which indicates better repeatability can be 
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achieved with     . However the results from    is not in agreement with   . On the other hand 

reasonably high value of     for       requires further analysis.  

      for         for     

               

                 

                 

                      

                  

                       

Table ‎6.9 Intraclass correlation for the autoregulatory parameters (   and   ) on different days 

6.5 Discussion 
 

The results from the mean of our signals shown in Table ‎6.1 and Table ‎6.2 demonstrated a significant 

increase in      from baseline to      and           (       and       respectively) 

which reflects the known cerebral vasodilation as the effect of increased arterial tension of     [5, 

23, 141]. Significant reduction in both     and      from baseline to      is also observed which 

is in agreement of the finding of others [130, 148] and expected from pooling of blood in the legs. 

The point that has to be emphasized here is that the volunteers in      stage are still in 

normocapnia and are expected to behave in similar format to baseline with respect to hypercapnia. 

The results in Table ‎6.2, confirmed this, as a significant difference between      and baseline for 

both     and      is also observed in     . The results also showed significance different 

between           with      and    for      but not for     (      and       

respectively for    , Table ‎6.2). These results seem to confirm the observation of Balldin and Sun et 

al. [130, 148] that      reduces with     . 

As mentioned in the introduction, the main aim of this new study is to increase variability in     

and      and hopefully as the result of that, obtain more robust assessment of autoregulation. In 

Table ‎6.4, it is observed that a significant differences in the variation of     and      as the result 

of     . The results in Table ‎6.7 show that    during      provides the lowest within 

measurement variability compared to all other procedures apart from     . It is also shown by 

Birch et al. [139] that      increases variability in    . The result of significance test between 

procedures without      (baseline,      and      ) and corresponding procedures with      

(    ,           and           ) agreed with the finding of Birch et al. [139] regarding 
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the increase in variability of     and     . The result shows very clear effect of      on our 

volunteers. 

Two independent autoregulatory parameters (  ; phase at        of the frequency response,   ; 

second coefficient of     filter with   lags) are measured and used for the assessment of 

autoregulation.  Table ‎6.5 shows the calculated autoregulatory parameters from all our 

measurements. A significant increase of        and reduction        for    and    from 

baseline to      is observed, which is in agreement of findings of others [52, 65, 73, 74, 116]. The 

same changes is also observed from      to           for both    and    (     and 

       respectively). No significant difference is observed for either    and    between baseline 

and       (      and      ). The results also show no significant difference for 

   between       and            (     ). This may be due to the fact that       does 

not impair autoregulation significantly and it takes some time for autoregulation to respond 

(see ‎Chapter 5 and [86, 114]). On the other hand      enhances cerebral autoregulation and 

      reduces it, so they may have little overall effect. 

In order to study the effect of      on more robust assessment of autoregulation, Table ‎6.7 shows 

the Mean     of variation of our autoregulatory parameters. The results show smaller variations in 

autoregulatory parameters and as the result of that, better assessment of autoregulation was 

achieved from         and                  .  Table ‎6.7 shows significant reduction 

in variability for both    and    from baseline to      of (      and       respectively), 

however the result of variation between      and           did not follow the reduction 

pattern expected, and an increase of         and        for    and    respectively is observed. 

This might be due to individual movement of the head-mask and induce leakage in mask and as the 

result of this,        is not achieved during the protocols as      pushes the volunteers into the 

chamber and introduces movement to the head-mask; however a more robust investigation is 

required.  

 The intra-subject analysis for two measurements is carried out on the same subject on two different 

days using intraclass correlation (   ) (Table ‎6.9). The results show that by introducing      the 

    for    has increased and showed better agreement between the measurements on the same 

subject on two different days compared to   . The same result is also observed from       

          , however                did not show an expected increase in     which 

may again be due to a fault in the measurement or the head-mask during the protocols as discussed 

above. The small values of      also requires further analysis, and significance test between these 

values should be studied in more details. 
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Even though the current protocol is not appropriate for assessing dynamics of autoregulation due to 

it being quite uncomfortable and its distressing nature as the result of the force on the body induced 

by the vacuum. However it does have distinct advantages over previous methods. The 

autoregulatory parameters used in this chapter (   and   ) can be continuously calculated (it has to 

be noted these are not the only parameters that could be used) and the result of the measurement 

is a quantitative value on a continuous scale. This would allow us to study the changes and trends in 

a subject from one stage to another, which could be over a course of physiological events.  

Some of the steps that can be taken in future are: 

1. The number of recordings that were available in this protocol was limited. In order to limit 

the inter-subject variability and improve the robustness of the analysis, larger sample should 

be studied. 

2. It can be argued that two measurements from the same subjects are not independent from 

each other and should not be studied as two independent measurements. This issue was 

tackled in ‎Chapter 4  by removing the second recordings from the same subject. However 

deeper analysis should be carried out to study the repeatability within and between 

sessions. 

3. In Figure ‎6-3 and Figure ‎6-4, the speed of changes in     and      to rising and falling 

edge of      was shown. However deeper analysis of the speed of response to      can 

be carried out. This can also be done on the falling and raising edge of     and the speed of 

response to the changes in     can be studied. 

4. It was shown in ‎Chapter 3 and many others [35, 46, 86, 92, 93, 135, 137] that cerebral 

autoregulation is a nonlinear system. Non-linear effects comparing the transients to increase 

and decrease in blood pressure induced by      can be carried out in future work to 

investigate whether nonlinearity is more evident with the larger transitions induced by 

    . 

6.6 Conclusion 
 

In this chapter a new dataset collected from    healthy volunteers at Southampton General Hospital 

using a new hardware and software system for the measurement of blood flow control, which 

allowed the inducement of small random, step-wise changes in blood pressure and inspired carbon 

dioxide (   ) level was analysed. This new experiment used      to generate controllable 

pressure variation and also used a valve system to control the flow of inspired air/    mixture. The 

main aim of this work was to increase variability in     and      and to study the robustness of 
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assessment of autoregulation. The results showed that the autoregulatory parameters had 

significantly lower variability with       compared to the corresponding recording section without 

it. The results from intraclass correlation (   ) on the same subject on two different increased for 

   when      was present apart from when      was studied. It could be as the result of a fault 

in the measurement or the mask-head, however this requires further analysis.  

The result from this new protocol generated a more robust estimate of cerebral autoregulation 

compared to those obtained with conventional methods, however the improvement that could be 

obtained while ensuring user comfort still does not allow impairment to be detected in every 

individual subject and further analysis and refinement is still required. 
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Chapter 7 : Conclusion and Future Work 

7.1 Conclusion 
 

The research presented in this thesis has used different mathematical, signal processing and 

measurement methodology methods to investigate the cerebral autoregulation process in different 

experiments that were designed to assess a subject’s autoregulatory state. It has been shown that 

these new approaches have provided us with deeper insight into understanding of non-invasive 

assessment of cerebral autoregulation. The main conclusions are summarized for each of the main 

elements of the thesis. 

7.2 Physiological parameters and measurement techniques 

 

Cerebral autoregulation is an active physiological process by which cerebral blood flow is controlled 

at an approximately steady level despite changes in arterial blood pressure, providing other 

physiological conditions are maintained in a stable level. This physiological control system is highly 

complex and yet not fully understood.  There are no ‘gold standard’ methods for assessing dynamic 

autoregulation, and clinical use is still very limited.  

The advent of transcranial Doppler ultrasonography (   ) for the measurement of cerebral blood 

flow velocity (    ) usually from the middle cerebral artery (     ) and servo-controlled finger 

photoplethysmography (Finapres) for continuous measurement of arterial blood pressure (   ), 

have enabled the investigation of the dynamical relationship between     and       of the 

cerebral circulation. It is also known that cerebral autoregulation is very sensitive to     [23, 53, 89, 

91, 98, 138], and end-tidal      is a good indicator of cerebral autoregulation for healthy individual 

subjects under a range of experimental conditions. 

Simultaneous measurement of    ,      and end-tidal     (      
), under normocapnia and 

hypercapnia condition were carried out in this research. This procedure enables the relationship 

between different inputs (    and       
) and      as output to be modeled and finally the state 

of cerebral autoregulation to be assessed.  

7.3 Autoregulation models and parameters 
 

In this thesis, different methods for assessment of autoregulation were studied.  Most of the 

concentration of work in this field has been on the relationship between spontaneous fluctuations of 
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    and      [3, 39, 47, 52, 53, 65, 69, 73, 84, 112, 133, 134, 149, 150]. Cerebral blood flow is also 

affected by other physiological signals such as     [23, 53, 89, 91, 98, 138]. A linear relationship 

between     and      is assumed by many authors (section 2.12). The effect of     and 

metabolic activity on flow is another assumption that is usually made when linear relationship 

between     and      is studied. 

In  Chapter 3, the combination of Laguerre expansion with feedforward artificial neural networks in 

the form of a Laguerre-Volterra network, which has been shown to provide a good estimate of 

nonlinear systems with short input-output records [151], was used to model the cerebral 

autoregulation system. It was found that by having two-input nonlinear (second-order) models the 

performance of the model based on the      improved by 10% in validation data. This result 

provided further indication for the existence of nonlinearity in the autoregulatory system as found 

by other authors [23, 35, 46, 92, 93, 137].  

Neural networks were previously used by Mitsis et al. [35, 137]. However in his work, the 

characteristic of the system was fixed for all recordings as mentioned before it is known that there is 

no ‘gold standard’, and cerebral autoregulation varies from one individual to another. Another 

limitation of the work by Mitsis et al. [35, 137], was that only the existence of nonlinearity and the 

impulse response of the system were studied, no assessment of autoregulation was reported from 

that model. In  Chapter 3, in order to study the effect of nonlinearity in individuals, the characteristics 

of Laguerre-Volterra network was optimized. The results showed that the effect of     (its 

contribution toward     ) and the cross-kernel (the effect of nonlinear interaction between     

and     toward changes in     ) vary between subjects and even within subjects. In that chapter, 

different indices for the assessment of dynamic cerebral autoregulation, based on the changes 

provoked by altering       
 levels, which leads to temporary impairment of autoregulation in order 

to assess autoregulation, were studied. The Pressure pulse response (   ) was used (section 3.3.2) 

as an autoregulatory parameter as it is more physiologically realistic compared to step or impulse 

inputs usually (section 3.3.2). The amplitude of the response at     seconds (    ) and   seconds 

(  ) were selected as autoregulatory parameters from this novel input. It was found that   , when 

extracted from two-input nonlinear models, especially when the cross-kernel terms were included, 

provided the lowest variability (inter- and intra-subject) and the best separation between       
 

levels and thus autoregulation.  However a very simple parameter (  ; second coefficient of an     

filter with   lags proposed by Simpson et al. [74]) provided good performance in terms of variability 

with the added advantage of suitability for use in a very short dataset in comparison to nonlinear 
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multivariate models where in order to train the system, large data samples are required. With    as 

the result of the small number of free parameters this is not the case. 

A major challenge of the methods used for the assessment of autoregulation is the issue of choosing 

an autoregulatory parameter that could work on different datasets collected from different patients 

under different physiological conditions. Furthermore the lack of a “gold standard” for assessment 

of dynamic cerebral autoregulation does not allow a robust reference, to which alternative methods 

could be compared. Autoregulatory parameters are sensitive to many physiological variables that 

can influence     (       brain activity,    content, haemotacrit, temperature) as has already been 

observed by other authors [52, 90, 92]. Furthermore, there is a dearth of studies using multiple 

methods or performing inter-method comparisons [32]. Dynamic cerebral autoregulation can also 

vary from one patient to another and over time [115]. In  Chapter 4, a new data-driven method for 

assessing autoregulation using subspace distance (   ) between two autoregressive moving 

average (    ) models was proposed and tested, without studying primarily the performance of 

the models in term of data fit or choosing an arbitrarily autoregulatory parameter by visual 

inspection, as used in section 3.3.2 Martin et al. [119] showed that by treating an      model as a 

complex rational function, one can define a metric on the set of complex rational  functions, and 

measure the distance between two      models. In that chapter it was first shown that the Tiecks 

model corresponding to a     order      model can be used to measure the      responses. 

Building on this, the distance between two      models was measured. This could also be 

extended to higher orders. The results from this work showed that subspace distance can provide a 

basis for assessing autoregulation, and the results using cross-validation suggest better performance 

than more conventional alternatives ( Chapter 4). The main advantage of this method is that it does 

not require picking parameters to assess autoregulation, and it is driven by the data (and the model) 

itself. 

In  Chapter 5, we tackle time-varying characteristic of cerebral autoregulation as another issue in the 

assessment of autoregulation (section 2.12) using both univariate and multivariate models and both 

    and moving window approaches. These methods were applied during step-wise changes in     

levels.          and                 during step-wise changes in         respectively 

were studied. The results showed that by including        in a univariate model (        ) in 

addition to the improvement to the model fit, we can also get better assessment of autoregulation 

using different autoregulatory parameters (phase lead;   , and amplitude using pressure pulse input 

(   );    ). The results also showed that the contribution of        towards the spontaneous 

changes in      is significantly higher in hypercapnia compared to normocapnia. It was also shown 
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that the multivariate coherence provided higher values at the transient between hypercapnia to 

normocapnia and vice versa and we also showed that it is significantly different to univariate models 

during these transients and at low frequencies (        ) (Figure ‎5-6). This was concluded that 

the effect of        on the variation of      is more significant when the subject is in 

hypercapnia. The result also indicated that the multivariate time-varying model can improve our 

coherence value at low frequency range and also at the transient between normocapnia and 

hypercapnia and vice versa.  

In ‎Chapter 6, a new experimental approach for generating small random step-wise changes in blood 

pressure and inspired carbon dioxide (   ) level was studied. The aim was to test a protocol that 

can be easily and safely repeated and may be applicable as a clinical tool. In this approach 

pseudorandom lower-body negative pressure (    ) variations were applied as a means to 

provoke a small increase in blood pressure variability. This study consisted of    subjects, with two 

sessions for each subject. A total number of    recordings were available for this study. The increase 

in mean      from baseline to      by              shows the effect of high     on cerebral 

vasodilation. The     during all procedures was in the range of    to         (see Table ‎6.1). 

Significant difference in the variation of     and      as the result of      was also observed 

.The average drop across all recording in blood pressure following each ‘suction’ was     . This was 

calculated by synchronizing the falling edge and raising edge of      during each suction for each 

recording and calculating the mean drop in pressure for all measurements (Figure ‎6-3 and 

Figure ‎6-4). It was also shown that by introducing      , the variability in     has increased (from 

baseline       ,                and                 ) which is in agreement 

with the expectation that      increases variability and suggests that the protocol is affecting     

and     , as expected. 

Significant change in autoregulatory parameters (   and   ) from baseline to      and      to 

          was observed. However no significant different between       and       

     was reported. This could be as the result of       does not impair autoregulation 

significantly. However a leakage in the face-mask was discovered, and as the result of that,        

was not fully achieved, and hypercapnia does not reduce autoregulation as strongly as expected, but 

this requires further analysis.   

 The results also showed significant reduction in the variability of autoregulatory parameters (   and 

  ) from baseline to     . However the variation of the autoregulatory parameters from      to 

          did not follow this reduction, which could be as the result of individual movement of 

the head-mask during the protocols due to the heavy suction of the chamber. The results of 
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intraclass correlation for autoregulatory parameters from the same subject on different days 

showed better agreement between measurements during      compared to baseline and       

to           , but not from      to          . However low values of     and their 

significance different should be studied in more depth. It was shown in this chapter that this new 

protocol can provide more robust estimates of cerebral autoregulation. However the improvement 

that could be obtained while ensuring user comfort still does not allow impairment to be detected in 

every individual subject and further analysis and refinement is required. 

 

7.4 Future work  
 

The cerebral haemodynamic system is known to be nonlinear and non-stationary [46, 87, 92, 135, 

138, 146].  In this work, the nonlinear characteristics of this system were considered with Wiener-

Laguerre models, but more sophisticated ‘black-box’ that could simultaneously address the non-

stationary characteristics of cerebral autoregulation could be applied to this study in the future.  

In chapter 5, a rather time-consuming approach to identifying the optimum system characteristics 

(Laguerre-Volterra Network model orders) for different models for each recording was studied. Even 

though this method resulted in better assessment of autoregulation, due to its computational cost 

this approach would not be feasible for clinical applications. Further investigation of the optimal 

choices for the nonlinear approach for the assessment of cerebral autoregulation would be 

beneficial.  

The research in this thesis has focused on the assessment of autoregulation in healthy volunteers, 

and hypercapnia as the result of inhaling high     was assumed to behave in a similar way to that 

observed in different autoregulation impairments in clinical conditions. This assumption, made 

repeatedly in the field, should be tested on data from patients. 

The intracranial pressure (   ) has been assumed to be constant throughout this work. This 

assumption has led to another assumption that cerebral perfusion pressure (   ) changes is 

proportional to    . However in patients with severe head injury or pathological conditions this 

may not necessary be the case, and more sophisticated model of the relationship between    ,    

and     may be needed.  

Another assumption that was made in ‎Chapter 6 was that the two measurements from the same 

subjects are independent; however measurements from the same subjects are not independent 
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from each other and should not be studied as two independent measurements. The same approach 

has been used in some earlier work [47, 50].  This issue was tackled in ‎Chapter 4  by removing the 

second recordings from the same subject. However deeper analysis should be carried out to study 

the repeatability within and between sessions. 

It was shown in ‎Chapter 3 and many others [35, 46, 86, 92, 93, 135, 137] that cerebral 

autoregulation is a nonlinear system. Non-linear effects comparing the transients of increasing and 

decreasing in blood pressure induced by      on data collected in ‎Chapter 6 can be carried out in 

future work to investigate whether nonlinearity is more evident with the larger transitions induced 

by     . 

A comparison between repeatability of different protocols (data collection from Leicester and 

Southampton) and ability to distinguish between normocapnia and hypercapnia using different 

methods for assessment of autoregulation studied throughout in this thesis should also be studied. 
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Appendix 

 

Appendix I. Volterra Models 
The development of Volterra series relies on mathematical notion of the Volterra series (power 

series expansion), introduced by the Italian mathematician Vito Volterra in 1930. The Volterra series 

can be viewed as a generalization of the Taylor multivariate series expansion of an analytic function, 

f, of m variables as    . The multivariate Taylor series expansion of an analytic function 

           about a reference point    
      

   in the m-dimensional vector space is defined by 

these   variables as: 

               
      

   ∑        
   ∑ ∑       (       

 )(       
 )

 

    

  

 

    

 

   

 

And if    , it will evolves into the Volterra function power series, where the origin of the real 

axis is used as the reference point. Then the vector [       ] turns into a continuous function      

for   in the interval [   ]. The Volterra series expansion can be expressed as: 

 [     ]     ∫           
 

 

  ∫ ∫                    
 

 

       

 ∫  ∫                       
 

 

         

In the above equation    represents the limit of the multivariate Taylor expansion coefficients 

        and is called the “Volterra kernel” of     order. The multiple integrals are called “Volterra 

functional”.  

Another form of the Volterra series that is more commonly used is in the form that can relate to the 

output of a time invariant stable causal system in terms of its input signal using the equation below: 

        ∫              
 

 

 ∫∫                              

 

 

  

  ∫  ∫                                   
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The first-order Volterra kernel,      , is the same as the impulse response function of linear system 

and can be viewed as the linear component of the nonlinear system. The second-order kernel 

          represents the lowest order nonlinear interactions in the Volterra framework, and can be 

viewed as the two-dimensional pattern by which the system weighs all possible pair-wise product 

combinations of input in order to generate the second-order component of the system output. 

Higher-order kernels represent the patterns of nonlinear interactions among a number of input 

epoch values equal to the order of the kernel. 

  



  

143 
 

Appendix II: Wiener-Laguerre 
To date, the best method (in terms of the number of Kernels required) for estimating the kernel 

expansion is the use of discrete Laguerre functions [151]. Laguerre is based on Wiener’s original 

suggestion or expansion of the Wiener kernels, because Laguerre functions are orthonormal over 

the domain from zero to infinity and have a built-in exponential. 

A set of real function       is said to be orthonormal over the interval       if  

∫                  {
              
             

 

 

 

It is shown [35] that function      for which ∫    

 
        can be approximated by   members 

of an orthonormal set with minimum integral-square error over the interval       as 

     ∑       

 

   

 

In which the coefficients   have the value 

   ∫            
 

 

 

The value of the resulting integral-square error is 

   ∫ [     ∑        
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   ∫         ∑   
 

 

   

 

 

 

Also, if the set {     } is complete,            . 

An important complete set of orthonormal functions is the set of Laguerre functions, which can be 

obtained by forming an orthonormal set from the linearly independent set of functions: 

      {
                                                                 

                                              
 

The positive real constant   is a scale factor by which the functions       can be stretched out or 

compressed on the time scale. The Laguerre functions       are defined in terms of the set       

as: 

      ∑         
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With the orthonormal property 

∫                 

 

 

  

So the nth-Laguerre function is a linear combination of the first   members of the set {     }.  
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APPENDIX III:      model of Tiecks model 
Tiecks et al. [5] proposed a second-order differential equation to predict the changes in cerebral 

blood flow velocity (       ) to changes in arterial blood pressure (      ), where: 

      
    

      
 

where in the above equation       is the normalized pressure change and      is a fraction of the 

baseline pressure (       was used in  Chapter 4).  The relative velocity     ̂    can be 

calculated using: 

    ̂                    

where   in above equation is a gain parameter, and different values of gain selected by Tiecks et al. 

[5] is shown in Table ‎2.1.  

The estate variable equations can be expressed based on below second-order linear differential 

equations: 

              
               

   
 

               
                   

   
 

Where in the above equations   is the sampling frequency,   is the time-interval and   is the 

damping factor.     and   are also pre-defined values and only    combinations of these 

parameters are reported by Tiecks et al. [5] (shown in  Chapter 4) and each combination represents 

one value for    . 

By taking a   transforms of above the equations, the transfer function between        and 

        can be obtained 

                      

               
             

  
 

               
                

  
 

where in the above equation       . Solving above equations leads to the transfer function 

between      and     
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The above equation can be re-written as: 
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Where   (  
 

  )
 

,   (
 

   
 

  

    ) and      
  

    

By applying the inverse   transform to above equation, we get: 

                 [                  ]   [                  ] 

As it can be seen from above equation, it is indeed has a format of an      model, where the past 

samples of both      and     are weighted by the same coefficients.  
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Appendix IV: Manual for “Graphical User Interface (GUI)” for Data Analysis 
A GUI interface was created to ease the process of data analysis and visualization. In this program 

four different channels can be observed at the same time with two channels being plotted on top of 

each other to ease comparison. It also gives the option to the user to zoom into the channels and 

look at the signals in more details. The data can be saved as .mat files.  

Some snapshots of the GUI for different signals for an arbitrary recording are shown below. 

 

 

Measured      from left and right TCD are shown in the top frames and     measured from left and right hands are 
plotted in the bottom frames for an arbitrary recordings 
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Measured     level and the trigger     are shown in top frames. And below frames shows the measured and target lower 
body negative pressure (    ) for an arbitrary recordings 

 

Systolic      from left and right TCD are shown in above frames (cyan and red respectively). Diastolic      from left and 
right     are shown in bottom frames (cyan and red respectively) 
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Heart rate calculated from     and     are shown in above frames (cyan and red respectively). Mean     calculated 
from left and right hands are shown in bottom frames (cyan and red respectively). 

Command lists 

1. The user can press “cnt+o” or choose from the top bar to open a new file. The program can 

read matlab files (.m) or .par files which was the original format for the collected data from 

our collaborator in Leicester 

2. The program saves the modified data as matlab files (.m).  

3. Pressing “cnt+s” or choosing from the top bar allows the user to save the data. 

4. To remove a section: Press “a” at the beginning and “b” at the end of the end of the desired 

section to be removed. If the section that is required to be removed is at the end of a signal, 

just press “a” at the beginning and the end would automatically be the end of the signal. If 

the section that is required to be removed is at the beginning of the signal, just press “b” at 

the end of the section that is required to be removed. The removed section will be shown in 

“blue”. The start and the end of the removed section are shown with red and green vertical 

lines (below figure).  
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Start and end of a section to be removed are shown with red and green vertical lines using “a” and “b” commands 

5. To delete a mark (such as ‘a’ or ‘b’) that was previously applied, press “d” near where it was 

applied.  

6. Pressing “q”, “h”, “j” and “k” puts a marker on the signal with different colours (To mark 

start or end of experimental protocol). 

7. Pressing “s” would switch between the top and bottom plots. This can also be done by just 

clicking on the desired plot. 

8. Pressing “E” would automatically select different protocols from the data, this protocols are: 

high     (    ), low     (    ),Random high    (     ),     , high     with      

(         )and      with random high    (          ) . It also saves these 

sections in different folders. If the program does not manage to find any of these protocols, 

it only saves the one that it finds. If the program finds two or more section with the same 

property of a protocol (     for example), it chooses the longer section. The program also 

removes the first   sec from each section. If the user has already applied markers in the 

original recordings, the markers and those changes will be automatically applied and saved 

in each section. 

9. By pressing “w” once the program puts a green vertical line on that signal with circles on the 

ends, if “w” is pressed again somewhere else on that signal another green vertical line is 

plotted. Now by pressing the “c” command the program cuts that specific section and allows 

the user to save that section under a different name in a folder. This can be used to 

manually select different sections in different protocols. 
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10. To manually modify a signal (if there is glitch or artefact in signal), the user can press “i” on a 

signal and the program replace the nearest point of that signal to the curser with the value 

of the curser on the plot, however the usage of this property is very time-consuming. 

11. To recalculate all the parameters from the recorded signals (systolic, diastolic and mean, left 

and right      and    , heart rate from     and     left and right,      ,     

intervals, respiratory from    ,      and    ), press “m” command. This would enable 

the user the recalculate these parameters if any change or modification was done on any 

recorded signal. 

The main GUI function is called GUI_main.m (GUI_main.fig for the interface) and the functions it 

required are listed below: 

1. Aread.m 

2. chop_spa.m 

3. edit_data.m 

4. find_etco2.m 

5. nan_interp.m 

6. nan_sig.m 

7. peakfinder.m 

8. plottting_data.m 

9. Save_Box.m 

10. save_hco2_lco2.m 

11. save_LBNP.m 

12. save_txt.m 

13. sig_calc.m 

14. sig_calc_2.m 
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