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ABSTRACT

University of Southampton,

Faculty of Engineering, Science and Mathematics

School of Physics and Astronomy

DOCTOR OF PHILOSOPHY

“Leptoquark Production at Next-to-Leading Order”

by Jason Benjamin Hammett

In this thesis we study the effective leptoquark model of Buchmüller, Rückl

and Wyler, focusing on a particular type of scalar (R2) and vector (U1) leptoquark.

The primary aim is to perform the calculations for leptoquark production at next-

to-leading order (NLO) to establish the importance of the NLO contributions and in

addition to this to determine how effective the narrow-width-approximation (NWA)

is at NLO.

For both the scalar and vector leptoquarks it is found that the NLO contri-

butions are large, with the largest corrections occurring to the vector leptoquark

calculations. For the scalar leptoquark it is found that the NWA provides a good ap-

proximation for determining the resonant peak, however the NWA is not as effective

for the vector leptoquark - where large differences are observed at NLO. For both

the scalar and vector leptoquarks it is found that there are large contributions away

from the resonant peak, which are missing from the NWA results, and these make a

significant difference to the total cross-section.
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Chapter 1

Introduction

With the success of the Glashow-Weinberg-Salam (GWS) model [1–3] - which unifies

the electromagnetic and weak nuclear forces into a single electroweak theory - the

holy grail of theoretical particle physics has been to develop a grand unified theory

(GUT). Such a theory would further combine the electroweak force and the strong

nuclear force into a single unifying symmetry: allowing us to describe these forces

with a single set of laws.

One of the consequences of developing a GUT, however, is the introduction of

additional particles beyond those we see in the standard model. One such additional

particle is the leptoquark (LQ) and it is this particle which will be our focus.

The primary aim of this thesis is to study the process of LQ production, with

the following key objectives:

Compare the leading order (LO) and next-to-leading order (NLO) calculations

of LQ production within the framework of perturbative quantum field theory.

Study how effective the narrow-width approximation (NWA) is at approximat-

ing LQ production at both LO and NLO.

In this chapter we will start by discussing where LQs come from and then

discuss the motivation for studying LQ production along with the importance of

including NLO calculations. Finally we will describe the NWA and its use in studying

LQ production.

1



1.1 Where do Leptoquarks Come From?

There are a number of different models which predict the existence of LQs, including

general supersymmetric models with R-parity violation, extended technicolor models

and composite models of quarks and leptons. In addition to these they are also

predicted by various GUTs including the SU(4) Pati-Salam model [4] and the SU(5)

Georgi-Glashow model [5]. Vector LQs would naturally arise as gauge bosons in GUT

theories whereas scalar LQs would be found in other models such as supersymmetry

with R-parity violation. To see more explicitly how LQs can appear in a model we

will consider the SU(5) model of Georgi and Glashow.

1.1.1 The SU(5) Grand Unified Theory

The SU(5) Georgi-Glashow model is a suitable GUT to use as an example since SU(5)

is the smallest group that contains the standard model symmetry SU(3)⊗ SU(2)⊗

U(1). We will give a brief introduction to this model and show how it naturally

introduces gauge bosons which mix the quark and leptonic sectors i.e. giving rise to

LQs.

The SU(5) model has one complication, in order to represent all of the matter

content (i.e. all of the quarks and leptons), not only do we need to consider the funda-

mental representation ψµ - a 5 representation of SU(5) - but also the antisymmetric

tensor representation ψµν - a 10 representation. In the fundamental representation

ψµ is given by

ψ =




di

νe

e−




(1.1)

In this representation di is a colour triplet of d quarks with i = 1 . . . 3 representing

the colour indices and νe and e− represent the electron neutrino and electron fields

respectively.

Note: The matter content in the SU(5) model is comprised of both left and

right-handed particles and since the SU(5) gauge transformations do not mix the two
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it is possible to treat all particles as having the same chirality - without adding any

confusion. For notational convenience all of the fields in SU(5) are treated as left-

handed and this is achieved by charge conjugating all of the right-handed fields. It is

for this reason the right-handed d-quark in eq.(1.1) appears as charge-conjugated.

In group notation eq.(1.1) can be represented by the quantum numbers

ψ ≡ (3,1, 1/3)⊕ (1,2,−1/2) (1.2)

where the quark is a triplet of SU(3) and a singlet of SU(2) with hypercharge 1/3

(representing a right-handed d-quark) and the lepton pair is an SU(3) singlet and

an SU(2) doublet with hypercharge −1/2 (representing the left-handed electron and

electron neutrino).

From the interaction term of the covariant derivative, the gauge bosons of the

theory can be represented by a set of twenty-four 5 × 5 matrices. The 9 matrices,

which are of the form 


G 0

0 0


 (1.3)

(where G are 3× 3 matrices) represent the gluons and part of the U(1) gauge boson.

In the fundamental representation the quark is an SU(3) triplet and SU(2) singlet

and so this gives the QCD interaction of the right-handed d-quark.

The three matrices of the form




0 0

0 W


 (1.4)

(where W are 2 × 2 matrices) represent the electroweak gauge fields. In the funda-

mental representation the leptons are SU(3) singlets and SU(2) doublets and this

gives the electroweak interaction of the left-handed electron and electron neutrino.

The remaining fermions - the left and right-handed u-quarks, the left-handed

d-quark and the right-handed electron - are in the anti-symmetric 10 representation

of SU(5). The interaction of this representation with the gauge bosons generates
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the QCD interactions between quarks of the same flavour and helicity as well as the

charged weak interactions between u-quarks and d-quarks.

In addition to these twelve matrices there still remain an additional twelve

matrices which make up the full SU(5) adjoint representation. These are the matrices

which have the off-diagonal form




0 X + Y

X + Y 0


 (1.5)

It is these matrices which give a new set of gauge bosons: allowing direct mixing

between the quark and leptonic sectors. Within SU(5) the new X and Y bosons

(i.e. leptoquarks) provide a direct coupling between leptons and quarks (as shown in

figure 1.1).

X

d e−

Y

u e−

Figure 1.1: The leptoquark interactions of the X and Y bosons. These
give a direct coupling between the quark and leptonic sectors.

1.1.2 SU(5) and Proton Decay

The X and Y bosons also couple quarks and anti-quarks as shown in figure 1.2,

in this case the leptoquarks behave like diquarks. Having both the leptoquark and

diquark interactions presents a problem with the SU(5) model because it provides a

channel for proton decay (see figure 1.3). In principle this is not a problem, however

experimentally it is known that the lifetime of the proton is > 1031 years [6] and

the only way to make SU(5) consistent with experiment is for the mass of the X

and Y bosons to be of the order of the GUT scale i.e. ∼ 1016 GeV. This restriction

on the mass puts the energy far above anything we can probe with current collider

4



X

u u

Y

d u

Figure 1.2: The diquark interactions of the X and Y bosons showing
the quark and anti-quark interactions. These interactions allow the trans-
formation of quarks into anti-quarks - violating baryon number. This is
indicated by the clashing fermion lines.

Proton

u

u

d

u

u
π0

e+

X

Figure 1.3: The SU(5) model introduces possible decay channels for the
proton. In this example p→ π0 + e+ via the exchange of an X boson.

technology. In order to make LQ production a suitable topic for study we need a

model which does not restrict the LQ mass to such high energies.

1.2 A General Leptoquark Model

The reason the SU(5) GUT model introduces decay channels for the proton is because

the theory does not conserve lepton and baryon number. Thus by considering a

LQ model which does conserve these numbers the problem of proton decay can be

avoided.

One such model - the one we will be using in this thesis - is the model of

Buchmüller, Rückl and Wyler (the BRW model) [7]. In this model they consider an

effective Lagrangian containing lepton and baryon number conserving LQs which are

also consistent with the SU(3)⊗ SU(2)⊗U(1) symmetry of the standard model. In
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addition to this the model also uses flavour-diagonal LQ couplings, thereby removing

the problem of flavour changing neutral currents.

Due to the lepton and baryon number conserving interactions of the LQs one

of the main features of the BRW model is that it allows for a relatively light LQ

mass without the problem of proton decay. Within the model the conservation of

baryon and lepton number is achieved by restricting the type of LQ interactions

which can appear. For each type of LQ the effective Lagrangian only allows one type

of interaction with a quark and lepton. In terms of the Feynman rules this means

that for a given type of LQ there is only one possible type of vertex. This restriction

makes the BRW model lepton and baryon number conserving by construction.

Another feature of the BRW model is its bottom-up approach. Instead of

considering a specific theory or set of theories which predict the existence of LQs

they assume LQs do exist and then propose an effective model which includes all

possible baryon and lepton number conserving LQs which are consistent with the

standard model.

The BRW model includes both scalar and vector LQs and these fall into two

categories: those with fermion number 1 |F | = 0 and those with fermion number

|F | = 2, see table 1.1. In total there are 10 different types of LQs: S1, S̃1, S3, R2

and R̃2 represent the scalar LQs and V2, Ṽ2, U1, Ũ1 and U3 represent the vector LQs.

In the BRW model the effective Lagrangian for the interactions of LQs with

leptons and quarks is

Lquark+lepton = L|F |=2 + L|F |=0 (1.6)

with

L|F |=2 = (g1L q
c
L iτ2 lL + g1R u

c
R eR)S1

+ g̃1R d
c
R eR S̃1 + g3L q

c
L iτ2τ lL S3

+ (g2L d
c
Rγ

µ lL + g2R q
c
Lγ

µ eR)V2µ

+ g̃2L u
c
Rγ

µ lL Ṽ2µ + c.c. (1.7)

1Fermion number F is defined as F = 3B+L where B and L are the baryon and lepton numbers
respectively
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Spin |F | SU(3) SU(2) U(1) T3 Qem

S1 0 2 3 1 +1
3 0 +1

3

S̃1 0 2 3 1 +4
3 0 +4

3

+1 +4
3

S3 0 2 3 3 +1
3 0 +1

3

–1 −2
3

+1
2 +4

3

V2 1 2 3 2 +5
6

−1
2 +1

3

+1
2 +1

3

Ṽ2 1 2 3 2 −1
6

−1
2 −2

3

+1
2 +5

3

R2 0 0 3 2 +7
6

−1
2 +2

3

+1
2 +2

3

R̃2 0 0 3 2 +1
6

−1
2 −1

3

U1 1 0 3 1 +2
3 0 +2

3

Ũ1 1 0 3 1 +5
3 0 +5

3

+1 +5
3

U3 1 0 3 3 +2
3 0 +2

3

-1 −1
3

Table 1.1: Taken from [7] this table shows the quantum numbers for the
various scalar and vector LQs in the BRW model. For example S1 is a
scalar LQ which is a colour triplet of SU(3) and an electroweak singlet of
SU(2) with hypercharge +1/3.
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and

L|F |=0 = (h2L uR lL + h2R qL iτ2 eR)R2 + h̃2L dR lL R̃2

+ (h1L qL γ
µ lL + h1R dR γ

µ eR)U1µ

+ h̃1R uR γ
µeR Ũ1µ + h3L qL τγ

µ lL U3µ + c.c. (1.8)

where qL and lL are the left-handed quark and lepton doublets respectively and eR,

uR, dR are the right handed charged leptons, u and d-quarks respectively.

For the interaction of scalar and vector LQs with gluons, the effective La-

grangian [8] is given by

Lgluon = LgS + LgV (1.9)

with

LgS =
∑

scalars

[(
Dµ
ijΦ

j
)† (

Dik
µ Φk

)
−M2

SΦi†Φi

]
(1.10)

and

LgV =
∑

vectors

{
− 1

2
V i†
µνV

µν
i +M2

V Φi†
µΦµ

i

− igs
[
(1− κG)Φi†

µ t
a
ijΦ

j
νGµνa +

λG
M2
V

V i†
σµt

a
ijV

jµ
ν Gνσa

]}
(1.11)

where gs is the strong coupling constant, ta are the generators of SU(3) and MS and

MV are the scalar and vector LQ masses respectively. The parameters κG and λG

are related to the anomalous magnetic and quadrupole moments of the vector LQ

and for the purpose of this thesis we set κG = 1 and λG = 0. The scalar and vector

LQ fields are Φ and Φµ respectively and the field strength tensors of the gluon and

vector LQ fields are

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGµbGνc (1.12)

and

V i
µν = Dik

µ Φνk −Dik
ν Φµk (1.13)
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with the covariant derivative given by

Dij
µ = ∂µδ

ij − igstija Gaµ (1.14)

1.2.1 Leptoquark Single and Pair Production

In the paper by Belyaev et. al. [9] the BRW model is studied: making a comparison

between single LQ production and pair production. LQ pair production is a result

of quark-antiquark or gluon-gluon interactions (see figure 1.4) whereas single LQ

production results from (anti-)quark-gluon interactions (see figure 1.5). In both of

these cases the signatures are the same, giving either:

2 leptons + jets

1 lepton + jets + missing transverse energy

jets + missing transverse energy

Figure 1.4: Diagrams representing LQ pair production, where the LQs
are represented as scalars.

Figure 1.5: Diagrams representing single LQ production, where the lepton
is represented as a double fermion line.

Since the signatures are the same it is not experimentally possible to separate

out the two types of processes. However in their study Belyaev et. al. showed that

for both scalar and vector LQs pair production dominates for low LQ masses (i.e.

mLQ ∼ 100 GeV) and as the mass is increased single production becomes the more

9



dominant contribution.

1.2.2 Single Leptoquark Production and the NWA

One of the key objectives of this thesis is to study the effectiveness of the NWA at

NLO. As detailed in section 1.5 the NWA is only valid when a single massive particle

(with a narrow decay-width) is produced, for this reason the focus of this thesis will

be on single LQ production.

Due to the large number of possible LQs (see table 1.1) we will focus our study

on only two, choosing a scalar (R2) and a vector (U1) - both of these have fermion

number |F | = 0.

1.3 Motivation for Studying Leptoquark Production

As already mentioned there are number of different models which predict the ex-

istence of LQs and searching for them will be a good test of beyond the standard

model (BSM) physics. Also, with the development of the LHC we are now able to

perform particle collisions at higher energies than ever before and are entering the

energy region where we may start seeing evidence of LQs.2

It should be emphasised that the LHC can only test for BSM particles in the

mass range of about 500 - 1000 GeV. This restriction makes the SU(5) Georgi-

Glashow model unsuitable for study, but is ideal for the BRW model which allows a

much lower LQ mass.

1.4 Including Next-to-Leading Order Corrections

A perturbative quantum field theory calculation can essentially be thought of as a

series expansion: with the LO calculations being the lowest order in terms of the

coupling constant and the NLO calculations being the next highest order, and so on.

2The search for LQs is an important consideration for the ATLAS and CMS experiments at the
LHC. See for example [10–13].
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The squared matrix element for a perturbative calculation will, in general, have the

form

|A|2 = α|ALO|2 + α2|ANLO|2 + · · · (1.15)

where α = g2

4π and g is the coupling. Within perturbation theory the first few terms

of the series appear to converge and when considering weakly coupled interactions

(where α� 1) the leading order term will tend to give a good approximation, however

for strongly coupled interactions the NLO contributions become more important.

From a theoretical point of view including NLO corrections improves the ac-

curacy of perturbative calculations (especially when considering strongly coupled

interactions), but these corrections also become important when making a compari-

son with experimental results. The reason for this being that experimental particle

physics is now being done at a higher precision than ever before and it is important

to match this precision in our calculations.

1.5 The Narrow-Width Approximation

Performing theoretical calculations can be a time consuming process and theorists

often resort to approximations to simplify the job. One particular type of approxi-

mation, which we will discuss here, is the narrow-width approximation (NWA).

The NWA is an important approximation to consider when studying the pro-

duction of a massive particle, such as a LQ, as there is the subsequent decay into

lighter particles. The NWA assumes that, in the process of scattering into the decay

products of the massive particle, the production of a single intermediate LQ is the

dominant state. The reason for this is two-fold:

The decay-width of the particle is narrow and so the dominant contribution

will come from kinematic region where the invariant mass of the intermediate

state is close to the mass of the intermediate particle.

States with more than one intermediate particle will not produce a resonance

near this mass and will therefore only add a small contribution.
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Under these assumptions the dominant contribution to the process can be factorised

into a production amplitude Aprod and a decay amplitude Adecay - this is shown

schematically in figure 1.6. Within the NWA the amplitude for this process can be

Aprod

Adecay

p1

p2

q1

qm

...

qm+1
...
qn

p

Figure 1.6: When a scattering process can be factorised into a production
and decay process there will be a large contribution from the resonance of
the intermediate massive particle. Any non-factorisable contributions will
be non-resonant and therefore only add a small contribution to the process.

written as

A(p1, p2 → q1 · · · qn) =
∑

λ

1√
Z
Aprod(p1, p2 → q1 · · · qm, p;λ)× i

p2 −m2
0 + Σ(p2)

× 1√
Z
Adecay(p→ qm+1 · · · qn;λ) (1.16)

with the momenta pi and qi as shown in figure 1.6 and where (in general) the internal

particle with momentum p will have helicity λ. The full amplitudeA is constructed by

multiplying the production amplitude Aprod and the decay amplitude Adecay with the

propagator for the intermediate massive particle and summing over the intermediate

particle’s helicity.

The massive propagator is expressed in terms of the bare mass m0 and includes

loop corrections: contained within the self-energy term Σ(p2). Being part of a larger

amplitude A the internal legs of the production and decay parts would clearly not

have external leg corrections (see section 3.2.3), however we want to treat the pro-

duction and decay amplitudes, Aprod and Adecay, as complete processes which do

include these external leg corrections. To make Aprod and Adecay consistent with A

a factor 1√
Z

needs to be included for each amplitude (where Z is the wavefunction

renormalisation factor for the massive internal particle).
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The propagator connecting the production and decay amplitudes can be written

as

1

p2 −m2
0 + Σ(p2)

≈ Z

p2 −m2 + imΓtot
(1.17)

where m is the on-shell renormalised mass and Γtot is the total decay-width of the

particle. Using this, the amplitude in eq.(1.16) can be rewritten as

A(p1, p2 → q1 · · · qn) ≈
∑

λ

Aprod(p1, p2 → q1 · · · qm, p;λ)× i

p2 −m2 + imΓtot

×Adecay(p→ qm+1 · · · qn;λ) (1.18)

and so the cross section (for massless initial state particles) is

σ =
1

2s

∫ n∏

i=1

d4qi
(2π)3

δ(q2
i −m2

i )(2π)4δ(4)

(
p1 + p2 −

n∑

i=1

qi

)∣∣∣∣∣
∑

λ

Aprod ×Adecay

p2 −m2 + imΓtot

∣∣∣∣∣

2

(1.19)

The first approximation of the NWA is to assume that the interference between

Aprod and Adecay for different λ is negligible. This approximation allows the sum over

helicities in eq.(1.19) to be taken outside the entire expression. By doing this and

inserting unity in the form

1 =

∫
d4q

(2π)3
(2π)4δ(4)(q − p)

∫
dp2

(2π)
δ(q2 − p2) (1.20)

the cross-section can be rewritten as

σ ≈
∑

λ

m

π

∫
dp2σp(p1, p2 → q1 · · · qm, q;λ)× Γ(q → qm+1 · · · qn;λ)

(p2 −m2)2 +m2(Γtot)2
(1.21)

with q2 = p2 and where the quantities σp and Γ are

σp(p1, p2 → q1 · · · qm, q;λ) =
1

2s

∫ m∏

i=1

d4qi
(2π)3

δ(q2
i −m2

i )
d4q

(2π)3
δ(q2 − p2)

(2π)4δ(4)

(
p1 + p2 −

m∑

i=1

qi − q
)

|Aprod(p1, p2 → q1 · · · qm, q;λ)|2 (1.22)
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and

Γ(q → qm+1 · · · qn;λ) =
1

2m

∫ n∏

i=(m+1)

d4qi
(2π)3

δ(q2
i −m2

i )(2π)4δ(4)(q −
n∑

i=(m+1)

qi)

|Adecay(q → qm+1 · · · qn;λ)|2

(1.23)

The second approximation of the NWA is to assume that the total decay-width Γtot is

narrow (i.e. Γtot � m)3. This means the intermediate propagator 1
(p2−m2)2+m2(Γtot)2

can be approximated by a Dirac δ function and the production and decay parts of

the process can be treated as being on-shell (i.e. with q2 = m2). In this situation the

quantities σp and Γ can be considered as a production cross-section and decay-width

respectively. Using this approximation the integral over p2 can be done separately to

give ∫ ∞

0
dp2 1

(p2 −m2)2 +m2(Γtot)2
≈ π

mΓtot
(1.24)

The final result for the cross-section can therefore be approximated by

σ ≈
∑

λ

σp(p1, p2 → q1 · · · qm, q;λ)× Γ(q → qm+1 · · · qn;λ)

Γtot

∣∣∣∣
q2=m2

(1.25)

and can be thought of as an on-shell production cross-section multiplied by the

branching ratio for the massive intermediate particle.

In addition to the above mentioned assumptions, the studies by Kauer et.

al. [14–16] identify other factors which need to be considered when using the NWA.

These include the effect of non-factorisable contributions and the break-down of the

NWA when the decay involves a daughter mass that approaches the mass of the

parent particle. The effect of non-factorisable contributions will be an important

part of this thesis, however the second consideration does not affect LQ production

in the NWA since the LQ decay products are assumed to be massless in the high

energy limit.

3For both scalar and vector LQs the decay-width is ∼ 5% of the LQ mass - see eq.(3.46) and
eq.(4.6). This validates the use of the NWA in studying LQ production
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1.6 Thesis Plan

Having motivated the study of LQ production at NLO the plan for the rest of this

thesis is as follows:

Chapter 2 will discuss the divergences that are usually encountered with NLO

corrections and then detail the numerical tools and techniques used to deal with

these.

Chapters 3 and 4 are the key chapters of the thesis and will respectively discuss

a scalar and vector LQ process.

Chapter 5 will conclude the thesis with an analysis and comparison of the

results from chapters 3 and 4.
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Chapter 2

Perturbative QFT - Higher

Order Corrections

The higher order corrections discussed in this chapter refer to next-to-leading or-

der (NLO) corrections, and are comprised of two types: virtual corrections and

bremsstrahlung corrections.

The virtual corrections at NLO are the one-loop Feynman diagrams and involve

performing an integration over a loop momentum k. For some loop diagrams, when

|k| → ±∞, the integration diverges - known as an ultraviolet divergence - which can

be removed by implementing a suitable renormalisation scheme.

At the other extreme, when |k| → 0, some of the loop diagrams will experience

divergences known as soft divergences. Also when k2 → 0 and the particle runs

parallel to a massless external particle some of the diagrams will experience collinear

divergences. Collectively these types of divergences are known as infrared diver-

gences and they are not removed by the process of renormalisation. Instead these

can removed by including the bremsstrahlung corrections. The bremsstrahlung cor-

rections also have infrared divergences and when they are combined with the virtual

corrections the divergences cancel.
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2.1 Loop Calculations

We will focus first on the 1-loop virtual corrections and how their ultraviolet and

infrared divergences can be regularised (i.e. separated from the finite part of the

result) using a numerical approach.

2.1.1 Dimensional Regularisation

The simplest way to regularise the divergences in loop integrals is to introduce ul-

traviolet and infrared cut-offs to the integration limits, however this method has

the consequence of breaking gauge invariance. A preferred method, which maintains

gauge invariance, is to use dimensional regularisation.

Using Feynman parametrisation any loop integral can be written in the form

I =

∫
d4k

(2π)4

N (k)

(k2 −∆)n
(2.1)

where N (k) is the loop numerator, which is polynomial in k, and ∆ is a constant

term with respect to k. The denominator is raised to a power n which depends on

the topology of the loop, a loop with a single vertex (a tadpole loop) would have

n = 1 and loop with two vertices (a bubble loop) would have n = 2 and so on.

This 4-dimensional integral can be generalised to the d-dimensional case and in

the case where N (k) is independent of k or quadratic in k the integral can be written

as ∫
ddk

(2π)d
1

(k2 −∆)n
=

(−1)n i

(4π)d/2
Γ(n− d

2)

Γ(n)

(
1

∆

)n− d
2

(2.2)

or ∫
ddk

(2π)d
k2

(k2 −∆)n
=

(−1)n−1 i

(4π)d/2
d

2

Γ(n− d
2 − 1)

Γ(n)

(
1

∆

)n− d
2
−1

(2.3)

respectively. In these examples the left-hand side of eq.(2.2) or eq.(2.3) are only

defined in an integer number of dimensions, however the right hand side can be

analytically continued to complex d and the ultraviolet and infrared divergences

manifest themselves as poles at d = 4. By evaluating the integrals in the limit d→ 4

the divergences in these integrals can be regularised. The usual convention is to set
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d = 4− 2ε and then take the limit ε→ 0, which in general gives a result of the form

I =
i

16π2

[
A

ε2
+
B

ε
+ C

]
(2.4)

The first two terms are divergent quantities in the limit ε → 0. The first term (the

double pole) is due to the the infrared divergence and the second term (the single

pole) is due to both ultraviolet and infrared divergences. The final term (the finite

part) always contains Euler’s constant γ and log(4π), in the MS-bar scheme these

two terms are eliminated from eq.(2.4) by multiplying by the factor (4π)ε

Γ(1−ε) .

2.1.2 Unitary Cuts - A Numerical Approach

Evaluating the integrals in d-dimensions and then taking the limit d → 4 is useful

when performing a loop calculation analytically. It is, however, not possible to di-

rectly implement this approach numerically because the calculations need to be done

in an integer number of dimensions.

A general n-point scalar integral has the form

I(n) =

∫
ddk

(2π)d
1

[k2 −m2
0][(k + q1)2 −m2

1] · · · [(k + qn)2 −m2
n]

(2.5)

where mi are the masses of the particles in the loop and the momenta qi are deter-

mined as shown in fig 2.1. Only being a function of the qi’s and mi’s makes a scalar

loop integral a standard function which needs to be calculated once.

It can be shown that, in 4-dimensions, any n-point loop integral (i.e. one with

n external legs) can be reduced to a sum of scalar integrals which are 4-point or less.

Thus a general n-point loop integral can be written as

I =
∑

i

C
(4)
i I

(4)
i +

∑

j

C
(3)
j I

(3)
j +

∑

l

C
(2)
l I

(2)
l +

∑

m

C(1)
m I(1)

m (2.6)

where C
(n)
i is the i-th coefficient for the scalar n-point integral and the sum over i

includes all permutations of the original denominators in the scalar integrals.
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p1

p2 p3

p4

pn

m0

m1

m2

m3

k

k + q1

k + q2

k + q3

q1 = p1

q2 = p1 + p2

q3 = p1 + p2 + p3

:

qn = p1 + · · · + pn

Figure 2.1: A general n-point loop diagram illustrating the momenta flow
around the loop.

Once the coefficients C
(n)
i have been determined the results of the d-dimensional

scalar loop integrals can be looked up and the regularised result of the original integral

can then be determined.

A common technique for reducing loop calculations to a sum of scalar integrals

is Passarino-Veltman reduction [17], however this requires algebraic manipulation

of the original loop integral and so is not suitable for a numerical approach. Also,

for a large number of external particles this technique generates a large number

of terms and would therefore become impractical. In recent years work has been

done using the technique of unitary cuts [18, 19] which allows the reduction of loop

integrals to be performed numerically. The idea behind the unitary cut technique

is quite straightforward and is implemented by putting various combinations of the

loop propagators on-shell (the so-called unitary cuts). The complexity of the unitary

cut technique becomes apparent when one tries to find suitable parametrisation of

the momenta so that the various combinations of cuts can be performed.

A Simple 2-Dimensional Example

To illustrate the technique a simple 2-dimensional example will be considered. This

has the advantage of simplifying the algebra while still illustrating the key concepts.

Consider the following bubble loop in 2-dimensions with external moment p
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and loop particles with masses m1 and m2.

I =

∫
d2k

(2π)2

4(k · p)2

[k2 −m2
1][(k + p)2 −m2

2]
(2.7)

In 2-dimensions any loop integral can be reduced to a sum of scalar 2-point integrals

and lower, therefore the numerator N (k, p) = 4(k · p)2 can be written in the form

N (k, p) = [(k + p)2 −m2
2]A1 + [k2 −m2

1]A2 +B (2.8)

resulting in two scalar tadpole loops with coefficients A1 and A2 and one scalar bubble

loop with coefficient B. The coefficients A1, A2 and B are independent of k and only

depend on p, m1 and m2.

It should be mentioned that, in general, the numerator may not be as simple

as shown in eq.(2.7) because a general 2-dimensional bubble integral may have been

obtained from some higher dimensional loop integral. This would be achieved by

“pinching” the n-point graph in all possible ways to obtain all possible bubble graphs.

For example, pinching the n-point graph as shown in figure 2.2 gives a bubble integral

A1 A2

k

k + P

p1

pj

p2

pj+1

pn−1

pn

m0

mj

Figure 2.2: A general n-point integral can be “pinched” to give an effec-
tive 2-point topology where P = p1 + · · ·+ pj. By performing the pinch the
effective vertices A1 and A2 will now contain propagator denominators.

of the form

I =

∫
d2k

(2π)2

A1A2

[k2 −m2
0][(k + P )2 −m2

j ]
(2.9)

When the numerator from this is put in the similar form as eq.(2.8) the coefficients A1,
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A2 and B will now be more complicated, containing both propagator denominators

and a dependency on the loop momenta k. These coefficients, however, will be finite

for the selected loop momenta used in performing the unitary cuts.

Returning to the simple example of eq.(2.7), the determination of the coefficient

B requires both of the propagators to be cut (i.e. put on-shell) which has the effect

of projecting out the two tadpole coefficients i.e.

B = N (k, p)|k2=m2
1;(k+p)2=m2

2
(2.10)

In a similar way the tadpole coefficients can be determined by cutting each of the

propagators in turn. Using eq.(2.10) this gives

A1 =
N (p, k)−B

(k + p)2 −m2
2

∣∣∣∣
k2=m2

1

(2.11)

A2 =
N (p, k)−B
k2 −m2

1

∣∣∣∣
(k+p)2=m2

2

(2.12)

Cutting the propagators requires a suitable choice of parametrisation of k and in

2-dimensions this is best done using light-cone coordinates i.e.

p = (p+, p−) (2.13)

k = (αp+, βp−) (2.14)

where α and β are the parameters to be determined for the various cuts. In light-cone

coordinates

p2 = 2p+p− (2.15)

k2 = 2αβp+p− = αβp2 (2.16)

k.p = (α+ β)p+p− =
(α+ β)

2
p2 (2.17)
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Cutting both propagators requires the following conditions to be satisfied

k2 = m2
1 ⇒ αβ =

m2
1

p2
(2.18)

(k + p)2 = m2
2 ⇒ α+ β =

m2
2 − p2 −m2

1

p2
(2.19)

This fixes both α and β, leading to the following solutions

α ≡ α0 =
1

2p2

[
m2

2 − p2 −m2
1 ±

√
λ(p2,m2

1,m
2
2)

]
(2.20)

β ≡ β0 =
1

2p2

[
m2

2 − p2 −m2
1 ∓

√
λ(p2,m2

1,m
2
2)

]
(2.21)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz. With this choice of parametri-

sation these solutions are applicable to any 2-dimensional bubble loop where both

propagators have been cut. This gives the general solution for B as

B = N (k, p)|k2=m2
1;(k+p)2=m2

2

= N (α0, β0) (2.22)

For our particular example with N (p, k) = 4(k · p)2 ≡ (α+ β)2p4 the coefficient B is

B = (α0 + β0)2p4

= (m2
2 − p2 −m2

1)2 (2.23)

For the tadpole coefficient A1 only one of the propagators needs to be cut, in which

case the only condition that holds is eq.(2.20). This fixes α only, giving

α ≡ α0(β) =
1

β

m2
1

p2
(2.24)

Using eq.(2.11) and the fact that

(k + p)2 −m2
2

∣∣
k2=m2

1
= k2 + p2 + 2k · p−m2

2

∣∣
k2=m2

1

= p2 [(α0(β) + β)− (α0 + β0)] (2.25)
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the general solution for A1 is

A1 =
N (p, k)−B

(k + p)2 −m2
2

∣∣∣∣
k2=m2

1

=
1

p2

N (α0(β), β)−N (α0, β0)

(α0(β) + β)− (α0 + β0)
(2.26)

For a renormalisable theory the numerator N is at most quadratic in β therefore the

most general form of eq.(2.26) is

1

p2

N (α0(β), β)−N (α0, β0)

(α0(β) + β)− (α0 + β0)
= C0 + C1α0(β) + C2β (2.27)

By selecting three different values of β eq.(2.27) can be thought of as a set of lin-

ear equations which can easily be solved using a computer. Thus once a suitable

parametrisation of the loop momenta has been determined any tadpole coefficient

can be determined numerically. The last two terms on the r.h.s. of eq.(2.27) are

effectively linear in the integration variable k and will give zero after integration,

therefore we end up with the general result

A1 = C0 (2.28)

Using eq.(2.26) our example gives1

A1 = p2 (α0(β) + β)2 − (α0 − β0)2

(α0(β) + β)− (α0 + β0)

= p2 [(α0(β) + β) + (α0 + β0)] (2.29)

and comparing this with the r.h.s. of eq.(2.27) we see C0 = p2(α0 + β0) and so

A1 = p2(α0 + β0)

= m2
2 − p2 −m2

1 (2.30)

The simplest way to evaluate the tadpole coefficient A2 is to bring the tadpole integral

1The simple example of N = 4(k · p)2 is most easily solved directly to find C0, however in general
this could be done by solving a set of linear equations as described above.
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into a standard form by shifting the integration variable k → k − p. This gives

A2 =
N (p, k − p)−B
(k − p)2 −m2

1

∣∣∣∣
k2=m2

2

(2.31)

With this shift the on-shell conditions become

k2 = m2
2 ⇒ αβ =

m2
2

p2
(2.32)

(k − p)2 = m2
1 ⇒ α+ β = −m

2
1 − p2 −m2

2

p2
(2.33)

and following the same procedure as before, our example with N (p, k−p) = 4(k ·p−

p2)2 results in

A2 = −m
2
1 − p2 −m2

2

p2
(2.34)

Combining the coefficients A1,A2 and B gives the final reduced integral as2

∫
d2k

(2π)2

4(k · p)2

[k2 −m2
1][(k + p)2 −m2

2]
=

(p2 +m2
1 −m2

2)2

∫
d2k

(2π)2

1

[k2 −m2
1][(k + p)2 −m2

2]

+(m2
2 − p2 −m2

1)

∫
d2k

(2π)2

1

k2 −m2
1

+(m2
1 + 3p2 −m2

2)

∫
d2k

(2π)2

1

(k + p)2 −m2
2

(2.35)

It should be noted that, in general, there is one complication - the result of the

unitary cut should be consistent with dimensional regularisation. For loop integrals

which are ultraviolet divergent it is necessary to account for the rational part, which

arises when the dimensionality of the loop integral is altered. This is mentioned for

completeness, but does not need to be considered for the above example.

2.1.3 SAMURAI - A Unitary Cut Tool

The discussion in the previous section illustrates how, with a suitable choice of

parametrisation of the loop momenta, a general 2-dimensional n-loop integral can

2As a check this integral could also be reduced using Passarino-Veltman reduction which would
give the same result as calculated using the unitary cut technique.
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be reduced to a sum of scalar bubble and tadpole integrals. For 4-dimensional in-

tegrals, the principal is exactly the same, but in practice (and as detailed in [18]

and [19]) doing this is rather complicated. The reason for this being the need to

calculate the coefficients for scalar box and triangle integrals as well as the bubbles

and tadpoles. This makes the algebra more involved and it is preferable to find an

existing tool which automates the unitary cut technique in 4-dimensions.

There are several such tools available including CutTools [20], Golem [21] and

SAMURAI [22]. For this project the tool of choice is SAMURAI and the main reasons

for this choice are that it

has the versatility to deal with one-loop Feynman integrals in both massless

and massive theories.

automatically calculates the full rational term according to the d-dimensional

approach.

SAMURAI is implemented as a FORTRAN 90 library with the option to use either

the OneLOop [23] or QCDLoop [24] libraries to evaluate the d-dimensional scalar

integrals. Both of these libraries contain the standard scalar box, triangle, bubble and

tadpole integrals - which are the only ones needed in 4-dimensions. After comparing

the two scalar loop libraries it was decided that QCDLoop would be the better

choice as it produces more stable results and also has the advantage that the extra-

dimensional mass scale µ2 can be varied without the need to reinitialise SAMURAI.

The process of calculating a one-loop integral in SAMURAI is simple to imple-

ment and is detailed in [22], but the key components are:

1. Calculating the numerator for the loop integral in terms of the SAMURAI loop

momentum variable k, with the important substitution that k2 → k2−µ2. This

is required for d-dimensional consistency.

2. Getting each of the n denominators into the form [(k − qi)2 −m2
i ] so that the

momenta qi and masses m2
i can be extracted and passed to SAMURAI.

The output from SAMURAI has a similar form to eq.(2.4) and is given as a complex-

valued array comprised of three components, a double pole, a single pole and a finite
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part.

2.2 Bremsstrahlung Calculations

Having found a suitable approach to numerically calculate divergent d-dimensional

loop integrals we also need to find a numerical approach to evaluate the divergent

bremsstrahlung calculations.

The usual way of dealing with divergent bremsstrahlung calculations is to per-

form the phase-space integral with the kinematics of the radiated bremsstrahlung

particle evaluated in d-dimensions. In a similar approach to the loop calculations,

this process regularises the infrared singularities 3 which can then be cancelled off

against the corresponding singularities from the loop corrections.

This cancellation is due to the Kinoshita-Lee-Nauenberg (KLN) theorem [25,

26] which states that when all initial and final state bremsstrahlung processes are

combined with the loop corrections the perturbative calculation will be infrared finite.

However, since we are calculating a scattering process - which involves only two initial

state particles - it is not possible to include all possible initial radiation states. In this

situation the KLN theorem does not apply and there are some remaining divergences

associated with radiation from the initial-state particles.

To deal with this situation, these remaining divergences - contained within the

Altarelli-Parisi splitting functions [27] - are absorbed into the parton distribution

functions (PDFs). Up to a factorisation scale µF the divergences in the splitting

functions cancel the corresponding divergences in the PDFs, making the PDFs in-

frared finite. The remaining finite portion of the splitting function - above the scale

µF - are then included with the NLO calculations.

As discussed previously, dealing with d-dimensional integrals is not suitable

for numerical implementation as it requires the phase-space integration to be done

analytically i.e. in a non-integer number of dimensions. Fortunately there are two

3In this context infrared singularities encompass both soft and collinear singularities. Soft singu-
larities result when the momenta of the radiated particle approaches zero and collinear singularities
occur when the momenta of the radiated particle runs parallel to another massless particle.
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different approaches whereby the infrared divergences can be regularised while per-

forming the integrations numerically, these are the method of phase-space slicing [28]

and the dipole subtraction method [29]. 4 Since the dipole method is the approach

we will be using for this project we will describe this further in the next section.

2.2.1 The Dipole Subtraction Method

Using a similar notation to [29] the standard procedure for calculating the cross-

section σ for a 2 → n scattering process at NLO involves a sum of phase-space

integrals

σ =

∫

n
dσtree

︸ ︷︷ ︸
LO

+

∫

n
dσ1-loop +

∫

n+1
dσbrem

︸ ︷︷ ︸
NLO

(2.36)

where dσtree, dσ1-loop and dσbrem represent the tree-level, 1-loop and bremsstrahlung

differential cross-sections respectively and
∫
m represents the phase-space integral over

an m-body final state.

As previously discussed, the two NLO terms in eq.(2.36) are both infrared

divergent, however their sum - when carried out in consistent regularisation schemes

- will give an infrared finite result. With the 1-loop corrections calculated with

SAMURAI the first two terms in eq.(2.36) can be integrated numerically, however

the bremsstrahlung term needs to be integrated analytically in d-dimensions so that

the infrared divergences can be regularised in a consistent way with SAMURAI.

By introducing an auxiliary cross-section dσA, which has the same divergent

structure as dσbrem, the dipole subtraction method allows all of the phase-space

integrals to be evaluated numerically (i.e. in 4-dimensions). Using this method the

NLO contribution to the cross-section can be rewritten as

σNLO =

∫

n

[
dσ1-loop +

∫

1
dσA

]

d=4

+

∫

n+1

[
dσbrem − dσA

]
d=4

(2.37)

where both integrals are now finite in 4-dimensions.

The dipole subtraction method makes use of the fact that the infrared diver-

4For a comparison between these two methods see for example [30]
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gences can be factored out into terms known as dipoles. This is possible because, for

a given bremsstrahlung process, when the radiated particle becomes soft or collinear

then the propagator connecting to the rest of the diagram goes on-shell. This allows

the divergent part to effectively be factored out into the dipole terms - separate from

the rest of the process.

In practice each of the dipoles are determined for a pair of particles, which are

known as the emitter and spectator. By combining the dipole terms dVdipole with

the tree-level cross section 5 and summing over all dipoles (i.e. all combinations of

emitter and spectator particles) the auxiliary cross-section dσA is created. This can

be written schematically as

dσA =
∑

dipoles

dσtree ⊗ dVdipole (2.38)

This construction has the same singular structure as dσbrem and since the singular

nature of the process is factorised into dVdipole it is possible to integrate out the

momenta of the radiated bremsstrahlung particle separately from the rest of the

process. This integral can be done analytically in d-dimensions allowing the infrared

divergences in the dipole terms to be regularised. So from eq.(2.38) we get

∫

n+1
dσA =

∑

dipoles

∫

n
dσtree ⊗

∫

1
dVdipole

=

∫

n

[
dσtree ⊗ I

]
(2.39)

where

I =
∑

dipoles

∫

1
dVdipole (2.40)

This will contain a double pole, a single pole and a finite part.

The dipole method provides all of the dipole terms dVdipole so that the auxiliary

cross-section dσA for a specific bremsstrahlung process can be calculated. It also

provides the insertion terms I so that the infrared poles can be cancelled with the

5The precise details on how the dipole and tree-level cross-section are combined requires (amongst
other things) a suitable parametrisation and scaling of the momenta used in dσtree. Further details
of this procedure are given in [29]
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poles arising from the 1-loop calculations.

Schematically the dipole method is implemented as

σNLO =

∫

n

[
dσ1-loop + dσtree ⊗ I

]
d=4

+

∫

n+1


dσbrem −


 ∑

dipoles

dσtree ⊗ dVdipole





d=4

(2.41)

The second term in eq.(2.41) is infrared finite in 4-dimensions because the subtraction

term
∑

dipoles dσtree⊗dVdipole cancels the divergences in dσbrem. The subtraction term

is then reinserted as dσtree⊗I and the pole parts of this expression cancel the infrared

poles from dσ1-loop making the first term in eq.(2.41) finite in 4-dimensions as well.

For completeness it should be mentioned that, in general, eq.(2.41) includes an

extra term. The form of eq.(2.41) holds when there are no initial-state singularities,

but (as already discussed) the uncancelled initial state singularities - which are dealt

with in the PDFs - introduce Altarelli-Parisi splitting functions to the NLO calcu-

lations. When including initial state singularities the extra term which needs to be

added has the form ∫ 1

0
dx

∫

n
dσtree(xp)⊗ (P +K)(x) (2.42)

where there is an extra integration over x and dσtree(xp) represents that the incoming

momenta p for the tree-level cross-section is scaled by x. The P (x) and K(x) terms

are the Altarelli-Parisi splitting functions and other functions which are described

in [29].

2.3 Set-Up for Performing the Perturbative Calculations

To make a comparison with the experimental data from the LHC the perturbative

calculations in this thesis need to be set-up accordingly.

Since the LHC is a proton-proton particle collider the parton-level calculations

need to be folded with suitable parton distribution functions (PDFs). For this thesis

two different PDF sets will be used: CTEQ6M and CTEQ6L [31,32]. The CTEQ6M
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PDF set is calculated in the MS-scheme whereas CTEQ6L is calculated at leading

order. Further details of the PDF folding process are given in section 3.2.7.

The energy choice used for these calculations will be
√
s = 14 TeV (i.e. the

maximum beam energy of the LHC). The renormalisation and and factorisation scales

µ and µF will be set to µ = µF =
√
ŝ. Where ŝ = x1x2s and x1 and x2 are defined

in section 3.2.7 - see eq.(3.43).

As already mentioned the focus of our study will be on the R2 scalar and U1

vector LQ. In both of these cases we will use the same value for the LQ mass mLQ =

750 GeV - consistent with the limits in [6]. In addition to this all of the couplings will

be based on the value of αs evaluated at mLQ i.e. h1L = h1R︸ ︷︷ ︸
U1 couplings

= h2L = h2R︸ ︷︷ ︸
R2 couplings

= 1.07.
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Chapter 3

Scalar Leptoquarks

With regards to calculating NLO corrections, scalar particles are easier to deal with

than vector particles. In particular there is no need to consider contributions from

Goldstone bosons or Faddeev-Popov ghosts. Being the simpler case it therefore makes

sense to consider a scalar LQ process as our starting point.

For the purpose of this chapter we will be looking at the scalar LQ type R2 as

described in [7], this type of LQ forms an SU(2) doublet with electric charges +5/3

and +2/3. Initially we will only consider the factorisable process where a +5/3 LQ is

produced, and subsequently decays, via the process u+ g → e− +R2 → e− + e+ + u

(see figure 3.1).

The naming convention being used for the momenta is as follows: the incoming

up-quark and gluon have momenta p1 and p2 respectively and the outgoing electron,

positron and up-quark have momenta q1, q2 and q3 respectively. To distinguish

between a quark and a lepton in the Feynman diagrams, a fermion line representing

a lepton will be double lined. It should be noted that, in the high energy limit, the

masses of the first generation quarks and leptons can be assumed to be zero.
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u

g

e−

e+

u

R2

Figure 3.1: The factorisable contribution to u + g → e− + e+ + u with
the production of an intermediate scalar LQ. This process will be useful for
calculating NLO corrections in the NWA.

3.1 Helicity Projections

Even though scalar LQs present an easier starting point than vector LQs, there is one

complication that needs to be dealt with. Since the production and decay of the LQ

involves fermions there is the complication of handling spinors and γ-matrices. To

make the numerical calculations easier to implement in FORTRAN the spinors and

γ-matrices need to be traced out. When squaring amplitudes the tracing out of γ-

matrices happens automatically, however our numerical results need to be calculated

at the amplitude level. In this situation the tracing can be achieved by doing helicity

projections for the incoming and outgoing fermions.

It can be shown (see appendix A) that for scalar LQs, which always involve an

even number of γ-matrices, the amplitude for LQ production Aprod is given by

eiηAprod(λ1) =
1√

2 p1 · q1
Tr

[
/q1

(
1− λ1γ

5

2

)
Γeven /p1

]
(3.1)

where Γeven is a string of an even number of γ-matrices, λ1 is the helicity of the

outgoing electron and η is an arbitrary phase which is introduced as part of doing

the helicity projection. Since all production amplitudes will have the same phase

factor it can safely be ignored.
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Likewise the amplitude for LQ decay Adecay is given by

eiη
′Adecay(λ2) =

1√
2 q2 · q3

Tr

[
/q3

(
1− λ2γ

5

2

)
Γeven /q2

]
(3.2)

were λ2 is the helicity of the outgoing positron and η′ is the arbitrary phase which is

the same for all decay amplitudes so again it can be ignored.

3.2 Scalar Leptoquarks in the NWA

Within the NWA the only NLO corrections which need to be considered are those

which have a factorisable topology as shown in 3.1. This has the advantage that

the NLO corrections to the LQ production process and decay process can be treated

separately as discussed in section 1.5.

3.2.1 Virtual Corrections to the Production Process

At leading-order the LQ production process is made up of two topologies see (fig 3.2).

The virtual corrections to this process are comprised of three types; QCD corrections,

u

g

e−

R2

u

g

e−

R2

i

j

a

µ

i

a

µ j

Figure 3.2: The leading-order contributions to u + g → e− + R2 where
the u-quark has colour i, the LQ has colour j and the gluon has Lorentz
index µ and colour a.

electroweak corrections and LQ corrections. Each of these types can be grouped into

three different loop topologies:

bubble diagrams - consisting of loops with two vertices

triangle diagrams - having three vertices

and box diagrams - having four.
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Figures 3.3 to 3.5 illustrate all of the virtual QCD corrections to the LQ production

process. For completeness figure 3.3 consists of all valid bubble diagrams, however it

should be noted that due to the colour algebra the contribution from diagram B3 is

in fact zero.

B1 B2 B3

B4 B5

Figure 3.3: QCD bubble graphs for LQ production.

T1 T2 T3

T4 T5 T6

T7

Figure 3.4: QCD triangle graphs for LQ production.

Figures 3.6 to 3.8 show the virtual electroweak corrections to the LQ production

process. The Feynman diagrams for the electroweak corrections show the virtual

gauge boson as a photon, however there are two further copies of these diagrams -

one with the photon replaced by a Z-boson and another with the photon replaced by
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BX1 BX2 BX3

Figure 3.5: QCD box graphs for LQ production.
Note: These graphs illustrate the different topologies, but do not show the
in and out states in a consistent way.

a W-boson. Being a charged gauge boson, however, there is no W-boson contribution

to diagrams EWT2, EWT5 and EWBX3.

EWB1 EWB2 EWB3

EWB4

Figure 3.6: Electroweak bubble graphs for LQ production.

Finally, figures 3.9 and 3.10 show the virtual LQ corrections to the LQ produc-

tion process.

3.2.2 Virtual Corrections to the Decay Process

At leading-order the LQ decay process is a single Feynman diagram (see fig 3.11). The

virtual corrections to the decay process, figures 3.12 and 3.13, are comprised of QCD

corrections and electroweak corrections and consist only of triangle diagrams. As with

the electroweak production graphs there are also three versions of the electroweak

decay graphs - containing either a virtual photon, Z or W-boson. Due to charge

conservation there is no W-boson contribution to EWT13.
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EWT1 EWT2 EWT3

EWT4 EWT5 EWT6

EWT7 EWT8 EWT9

EWT10

Figure 3.7: Electroweak triangle graphs for LQ production.

3.2.3 External Leg Corrections

The virtual corrections described in the previous section are considered to be inter-

nal corrections, however the loop corrections for the external legs still need to be

determined.

From the LSZ reduction formula [33] the relationship between an S-matrix and

the Feynman diagrams takes the form 1

〈q1 · · · qm|S|p1 · · · pn〉 =
√
Zp1 · · ·

√
Zqm

Amp.

p1

pn

q1

qm (3.3)

where the shaded diagram on the right of eq.(3.3) represents the amputated tree-level

1This is based on the description of the LSZ reduction formula given in [34]
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EWBX1 EWBX3EWBX2

EWBX4

Figure 3.8: Electroweak box graphs for LQ production.
Note: These graphs illustrate the different topologies, but do not show the
in and out states in a consistent way.

LQB1 LQB2

Figure 3.9: Leptoquark bubble graphs for LQ production.

Feynman diagrams i.e. those without external leg corrections.

The Zi functions represent the wavefunction renormalisation factors for each

incoming and outgoing particle 2 and account for the higher-order corrections to the

external legs. By calculating the Z’s at 1-loop order the external leg corrections can

therefore be determined.

The u-quark

The wavefunction renormalisation factor for the massless u-quark Zu can be calcu-

lated from

Z−1
u = 1− dΣ

d/p

∣∣∣∣
/p=0

(3.4)

where −iΣ(/p) represents the 1-loop diagrams as shown in fig 3.14, each of which has

the form given in eq.(B.2).

2For a decay process the number of incoming particles, labelled pi, would be one and for a
scattering process it would be two. The number of outgoing particles, labelled qi, would typically
be between two and four.
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LQT1 LQT2

Figure 3.10: Leptoquark triangle graphs for LQ production.

R2 i

e+

uj

Figure 3.11: The leading-order contribution to R2 → e+ + u where the
LQ has colour i and the u-quark has colour j.

Since dΣ
d/p

∣∣∣
/p=0
� 1 this means that

√
Zu ≈ 1 +

1

2

dΣ

d/p

∣∣∣∣
/p=0

= 1 +
1

2
δZu (from eq.(B.5)) (3.5)

The δZu term is determined from the sum of the QCD, electroweak and LQ contri-

butions and since the gluon and photon are massless the only contributions to δZu

come from the W and Z-bosons and the LQ (see appendix B).

From the Feynman rules given in appendix C and using eq.(B.8) the final result

for
√
Zu is

√
Zu ≈ 1 +

1

16π2

[
g2
W

(
2

ε
− 2 log

(
M2
W

µ2

)
+ 1

)
+ g2

Z(u)

(
2

ε
− 2 log

(
M2
Z

µ2

)
+ 1

)

+g2
LQ

(
1

ε
− log

(
M2
LQ

µ2

)
+

1

2

)]

(3.6)

where gW and gLQ are the respective couplings for the W-boson and LQ and gZ(u) is

the coupling of the Z-boson to the u-quark. In general these couplings are functions

of the u-quark helicity and are defined in appendix C.

Details of the remaining external leg corrections can be found in appendix D.
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T8

Figure 3.12: QCD triangle graph for LQ decay.

EWT11 EWT12 EWT13

Figure 3.13: Electroweak triangle graphs for LQ decay.

3.2.4 Preparing the Virtual Corrections for SAMURAI

Having calculated the external leg corrections analytically the remaining virtual cor-

rections need to be encoded in FORTRAN so that the loop integrals can be evaluated

by SAMURAI. Using the Feynman rules (as given in appendix C) and the helicity pro-

jection technique each of the loop topologies can be written as a trace of γ-matrices.

Most of these trace expressions contain a string of several γ-matrices and to perform

these traces the symbolic manipulation language FORM [35] was used. This tool is

ideally suited to performing traces of γ-matrices and has the added advantage that

it can output its results directly in FORTRAN format. As discussed in section 2.1.3

SAMURAI evaluates the loop integrals in d = 4 − 2ε dimensions in the limit that

ε→ 0, but it should be noted that with the exception of the loop momenta all other

quantities, including the external momenta, are assumed to be 4-dimensional. This

approach, known as dimensional reduction [36], means that the contractions of the

γ-matrices can been done in 4-dimensions - which simplifies the loop expressions.

Using SAMURAI to perform the loop calculations does add one complication.

All of the loops are evaluated in the MS-scheme, however we require the LQ mass

to be consistent with on-shell mass renormalisation. The only diagrams which are

problematic are the ones with a bubble loop correction to an internal LQ. In the

NWA these are the t-channel graphs B2, EWB2 and LQB2.

39



QCD correction Electroweak corrections LQ correction

Figure 3.14: External leg corrections to the u-quark

Schematically the tree-level and 1-loop corrections can be written as

+ ∼ 1
t−m2

LQ
+

Σ(t)

(t−m2
LQ)(t−m2

LQ)

(3.7)

where Σ(t) represents the 1-loop bubble corrections to the LQ propagator evaluated

at p2 = t. Expanding Σ(t) as a Taylor series about m2
LQ

Σ(t) = Σ(m2
LQ) + (t−m2

LQ)
dΣ

dt

∣∣∣∣
t=m2

LQ

+O(t−m2
LQ)2 (3.8)

and subtracting the term
Σ(m2

LQ)

(t−m2
LQ)(t−m2

LQ)
(3.9)

from eq.(3.7) we end up with

1

t−m2
LQ

+
Σ(t)

(t−m2
LQ)(t−m2

LQ)
→

1 + dΣ
dt

∣∣
t=m2

LQ

t−m2
LQ

∼ ZLQ

t−m2
LQ

(3.10)

which is consistent with on-shell mass renormalisation at this order of perturbation

theory. In practice all that is required to make the LQ propagator loops consistent

with on-shell mass renormalisation is to subtract the term

Σ(m2
LQ)

t−m2
LQ

×Atree (t-channel) (3.11)

from the 1-loop LQ production results calculated in SAMURAI, where Atree (t-channel)

is the t-channel contribution to the tree-level production amplitude.
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3.2.5 Bremsstrahlung Corrections to the Production Process

To deal with the infrared singularities encountered in the bremsstrahlung corrections

to the LQ production process the dipole subtraction method will be used. The first

step in implementing the dipole subtraction method is to identify all pairs of emitters

and spectators, of which there are four types of combinations

Final-state emitter and final-state spectator

Final-state emitter and initial-state spectator

Initial-state emitter and final-state spectator

Initial-state emitter and initial-state spectator

When considering QCD bremsstrahlung corrections (see figure 3.15) there is no gluon

emission from the outgoing lepton and so there is no final-state emitter or spectator

corresponding to this leg. In comparison, for the QED bremsstrahlung corrections

(see figure 3.16) there is no photon emission from the incoming gluon leg and so no

corresponding initial-state emitter or spectator.

QCD corrections

Note: In the following expressions for the dipole insertions any terms not explicitly

defined can be found in [29]

To illustrate the dipole subtraction method a particular choice of emitter and

spectator will be used as an example. Consider the case where the quark is the

incoming emitter and the leptoquark is the outgoing spectator - as illustrated in

3.17.

Referring to the relevant section of [29] the dipole subtraction term Daij for this

is

Daij (q1, q23, k; p1, p2) = − 1

2 p1 · k
1

xij,a
〈q1, q̃23; p̃1, p2|

T j · T ai

T 2
ai

V ai
j |q1, q̃23; p̃1, p2〉

(3.12)
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BR1 BR2 BR3

BR4

BR5 BR6 BR7

BR8 BR9

Figure 3.15: QCD bremsstrahlung corrections to the LQ production pro-
cess.

where

T j · T ai = −(CF − CA/2) (3.13)

T 2
ai = CF (3.14)

〈V ai
j 〉 = 8παsCF

{
2

2− xij,a − z̃j
− 1− xij,a

}
(3.15)
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EBR1

EBR4

EBR3EBR2

EBR5
EBR6

EBR7

EBR9EBR8

Figure 3.16: QED bremsstrahlung corrections to the LQ production pro-
cess.

with

xij,a =
p1 · q23 + p1 · k − p1 · q23

p1 · q23 + p1 · k
(3.16)

z̃j =
p1 · q23

p1 · q23 + p1 · k
(3.17)

The bra-ket component can be equivalently written as

〈q1, q̃23; p̃1, p2|q1, q̃23; p̃1, p2〉 ≡ |Atree|2 (p̃1, p2; q1, q̃23) (3.18)

where |Atree|2 (p̃1, p2; q1, q̃23) is the matrix element squared for the tree-level produc-
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k

k

Emitter Spectator

b

ν
p1

p2

q1

q23

i

a

µ j

p1

p2

q1

q23

i

a

µ j

b

ν

Figure 3.17: A diagrammatic representation of the dipole subtraction
term for an initial-state emitter and final-state spectator indicating the
momenta and colours of the various external particles.

tion process with momenta substitutions p1 → p̃1 and q23 → q̃23 where

p̃µ1 = xij,ap
µ
1 (3.19)

q̃µ23 = qµ1 + qµ23 − (1− xij,a)pµ1 (3.20)

For the LQ production process there is a second dipole term (with initial quark

emitter and initial gluon spectator) which is also proportional to (p1 ·k)−1. Together

these two dipole terms are responsible for cancelling the soft and collinear divergences

which arise from a gluon emission from the incoming quark. The remaining four

dipole subtraction terms will likewise cancel the soft and collinear divergences for

emissions from the incoming gluon and outgoing LQ.3

Having calculated the dipole subtraction terms the corresponding insertion

term also needs to be determined. In practice the insertions are all calculated together

based on the final formulae section given in [29]. For the LQ production process,

which has two initial-state partons, the insertion term has the following form

I(ε, µ2; {q23,mLQ}, p1, p2) = I1(ε, µ2; {q23,mLQ}, p1) + I2(ε, µ2; {q23,mLQ}, p2)

+
αs
2π

{
1

2

CA
CF

[(
µ2

s12

)ε(
CF
ε2

+
γq
ε

)
− CF

π2

3
+ γq +Kq

]

+
1

2

[(
µ2

s21

)ε(
CA
ε2

+
γg
ε

)
− CA

π2

3
+ γg +Kg

]}
(3.21)

3It should be noted that the scalar LQ is not a standard QCD particle and is treated as a scalar
supersymmetric particle - a squark - within the dipole formalism.
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with

I1(ε, µ2; {q23,mLQ}, p1) =
αs
2π

(CF − CA/2)

CF

{

[
CF

(
µ2

s31

)ε(
Vq̃(s31,mLQ, 0, {}; ε)−

π2

3

)

+ Γq̃(µ,mLQ, {}; ε) + γq̃ ln
µ2

s31
+ γq̃ +Kq̃

]

+

[
CF

(
µ2

s13

)ε(
Vq(s13, 0,mLQ, {}; ε, 2/3)− π2

3

)

+
γq
ε

+ γq ln
µ2

s13
+ γq +Kq

]}
(3.22)

and

I2(ε, µ2; {q23,mLQ}, p2) =
αs
2π

{
1

2

CA
CF

[
CF

(
µ2

s32

)ε(
Vq̃(s32,mLQ, 0, {}; ε)−

π2

3

)

+ Γq̃(µ,mLQ, {}; ε) + γq̃ ln
µ2

s32
+ γq̃ +Kq̃

]

+
1

2

[
CA

(
µ2

s23

)ε(
Vg(s23, 0,mLQ, {}; ε, 2/3)− π2

3

)

+
γg
ε

+ γg ln
µ2

s23
+ γg +Kg

]}

(3.23)

where

s12 = s21 = 2 p1 · p2 (3.24)

s13 = s31 = 2 p1 · q23 (3.25)

s23 = s32 = 2 p2 · q23 (3.26)

To match the dipole subtractions the insertion term I(ε, µ2; q1, q23, p1, p2) has to be

multiplied by the tree-level production process |Atree|2 (p1, p2; q1, q23).

Since the LQ production process contains initial state partons there are addi-

tional insertion terms which are required. These are essentially the Altarelli-Parisi

splitting functions which are required because of uncancelled divergences in the ini-
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tial state. To implement these additional terms requires, in turn, the momentum for

each emitting incoming particle to be scaled by the longitudinal momentum fraction

x. The final phase-space thus includes an extra integration over x ranging from 0 to

1.

When the momentum for the incoming quark (with momentum p1) is scaled

the additional insertion terms are

P (x;µ2
F ; q23, xp1, p2) = P q,q

m (x;µ2
F ; q23, xp1)− αs

2π
P qq(x)

1

2

CA
CF

ln
µ2
F

xs12
(3.27)

and

K(x; {q23,mLQ}, p1, p2) = Kq,q
m (x; {q23,mLQ}, p1)

+
αs
2π

CA
2

{
1

CF
P qqreg(x) ln(1− x)

+

[
2

(
ln(1− x)

1− x

)

+

− π2

3
δ(1− x)

]}
(3.28)

These insertion terms need to be multiplied by the tree-level production process

|Atree|2 (xp1, p2; q1, q23) with p1 scaled by x.

When the momentum for the incoming gluon (with momentum p2) is scaled

the insertion terms are

P (x;µ2
F ; q23, p1, xp2) = P g,g

m (x;µ2
F ; q23, xp2)− αs

2π
P gg(x)

1

2
ln

µ2
F

xs21
(3.29)

and

K(x; {q23,mLQ}, p1, p2) = Kg,g
m (x; {q23,mLQ}, p2)

+
αs
2π

CA
2

{
1

CA
P ggreg(x) ln(1− x)

+

[
2

(
ln(1− x)

1− x

)

+

− π2

3
δ(1− x)

]}
(3.30)

These insertion terms also need to be multiplied by the tree-level production process,

but with p2 scaled by x.
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QED corrections

The dipole subtraction method can also be used for the QED bremsstrahlung correc-

tions. The whole approach is exactly the same as for the QCD case with the following

two modifications. Firstly, since QED is a colourless Abelian gauge theory the colour

factors need to be changed to CF = 1 and CA = 0. Secondly, the strong coupling αs

needs to be changed to the QED coupling αe.

In the QED case the dipole subtraction term (where the quark is the initial-

state emitter with charge +2/3 and the LQ is the final-state spectator with charge

+5/3) will have components

T j · T ai = −10

9
(3.31)

T 2
ai =

4

9
(3.32)

〈V ai
j 〉 = 8π

4

9
αe

{
2

2− xij,a − z̃j
− 1− xij,a

}
(3.33)

with all other quantities as in the QCD case.

The insertion terms would also change accordingly, however they will have a

slightly different form than the QCD corrections because for QED there is only one-

initial state parton to consider (i.e. the quark) because the photon does not couple

to the gluon.

When considering QED bremsstrahlung corrections one should ideally use a

corresponding PDF set which also includes QED corrections in the parton evolution,

however it has been shown that including QED corrections does not have a significant

effect on the evolution (see for example [37]). Therefore, to good approximation, we

are justified in using the CTEQ6M and CTEQ6L PDF sets, which only include QCD

corrections.

3.2.6 Bremsstrahlung Corrections to the Decay Process

For the LQ decay process there is no initial state collinear singularity since the ini-

tial state is a massive LQ. Also the structure of infrared singularities is sufficiently
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straightforward that the cancellations can be carried out analytically without resort-

ing to the dipole subtraction method.

QCD corrections

The QCD bremsstrahlung corrections involve a gluon emission from the incoming

LQ leg and the outgoing quark leg (see figure 3.18). By parametrising the momenta

BR10 BR11

Figure 3.18: QCD bremsstrahlung corrections to the LQ decay process.

for the decay process, as described in appendix E, the 3-body phase-space (with the

bremsstrahlung momentum evaluated in d = 4−2ε dimensions) can be given in terms

of the variables y and z giving

∫
d3

LIPS =
1

128π3
m2

LQ

(
m2

LQ

µ2

)−ε ∫ 1

0
dy

∫ 1

0
dz

1− y
(1− yz)2

y1−2εz−ε(1− z)−ε (3.34)

With this parametrisation of the phase-space the decay process |Adecay brem|2 becomes

a function of y and z, and combining this with d3
LIPS the bremsstrahlung decay-width

is given by

Γbrem =
1

256π3

(
m2

LQ

µ2

)−ε ∫ 1

0
dy

∫ 1

0
dz

1− y
(1− yz)2

y1−2εz−ε(1−z)−ε |Adecay brem(y, z)|2

(3.35)

With |Adecay brem|2 evaluated in FORM and combined with the integration measure

as shown in eq.(3.35) the final result is an expression containing a series of integrals

of the form ∫ 1

0
dy yα(1− y)β

∫ 1

0
dz zγ(1− z)δ (3.36)

or ∫ 1

0
dy yα(1− y)β

∫ 1

0
dz zγ

(1− z)δ
(1− yz)η (3.37)
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For some values of the parameters α,β,γ,δ and η these integrals are divergent, but

by working in d = 4 − 2ε these divergences are regularised. Using Mathematica the

integrals were evaluated as a series expansion in ε to give the final result as

Γbrem =
1

256π3
g2g2

LQmLQCF

(
m2

LQ

µ2

)−ε [
4

ε2
+

10

ε
+ 23 +

2

3
π2

]
(3.38)

QED corrections

The same analytic approach used for the QCD corrections can also be applied to the

QED corrections, which are shown in figure 3.19. With the QED corrections there

EBR10 EBR11 EBR12

Figure 3.19: QED bremsstrahlung corrections to the LQ decay process.

is an extra diagram because the photon couples to the lepton, other than this the

procedure follows as before giving the final result as

Γbrem =
1

256π3
e2g2

LQmLQ

(
m2

LQ

µ2

)−ε
1

9

[
52

ε2
+

178

ε
+ 467 +

26

3
π2

]
(3.39)

3.2.7 Combining the Production and Decay Processes

For NLO calculations the amplitudes for the tree level and virtual corrections - having

the same initial and final states - are added together to give

APtree+virtual = APtree +
∑

{QCD,EW,LQ}

APvirtual (3.40)

where the sum in the second term is over the QCD, electroweak and LQ virtual

corrections and the P superscript is to indicate that these are production amplitudes.
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At NLO the matrix element squared |Atree+virtual|2 is thus4

|APtree+virtual|2 → APtree

(
APtree

)†
︸ ︷︷ ︸

|APtree|2

+
∑

{QCD,EW,LQ}

APtree

(
APvirtual

)†
+
(
APtree

)†APvirtual︸ ︷︷ ︸
|AP1-loop|2

(3.41)

where the remaining terms are dropped because they contribute to the NNLO cor-

rections. At NLO the squared matrix element is a sum of the tree-level and the

1-loop matrix elements, |APtree|2 and |AP1-loop|2. It should be noted that in this no-

tation |AP1-loop|2 is not to be mistaken for an amplitude squared, instead it is the

interference between the tree and virtual amplitudes giving the NLO corrections to

the process.

The bremsstrahlung corrections for the production process - having a three-

body final state - are squared on their own to give
∑

{QCD,QED}

|APbrem|2 where the sum

is over the QCD and QED bremsstrahlung corrections.

Both |AP1-loop|2 and |APbrem|2 contain infrared divergences which are dealt with

by using the dipole subtraction method. Implementing the dipole subtraction method

the total production cross-section at NLO 5 is

σPNLO =
1

2s

∫
d2

LIPS|APtree|2
︸ ︷︷ ︸

σtree

+
∑

{QCD,EW,LQ}

1

2s

∫
d2

LIPS|AP1-loop|2 + I ⊗ |APtree|2
︸ ︷︷ ︸

σ1-loop

+
∑

{QCD,QED}

1

2s

∫
d3

LIPS|APbrem|2 −D ⊗ |APtree|2
︸ ︷︷ ︸

σbrem

+
∑

{QCD,QED}

1

2s

∫ 1

0
dx

∫
d2

LIPS(x)(P +K)⊗ (|APtree|2)

︸ ︷︷ ︸
σA-P

(3.42)

where I ⊗ |APtree|2 and D ⊗ |APtree|2 are the dipole insertions and subtractions re-

spectively and σA-P are the Altarelli-Parisi splitting functions due to the initial-state

4In calculating all of the squared matrix elements it should be noted that summing over helicities
and averaging over incoming helicities and initial colour states has also been included.

5After implementing the dipole subtraction method the total production cross-section at NLO
still contains ultraviolet divergences. In the MS-scheme these divergences are removed by subtracting
the remaining single pole from the final result.
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singularities.

The details of the parametrisation of the 2-body and 3-body Lorentz invariant

phase-spaces d2
LIPS, d3

LIPS and scaled 2-body phase-space d2
LIPS(x) in eq.(3.42) are

given in appendix E.

It should be noted that the cross-section shown in eq.(3.42) is at the parton

level. To calculate the physical cross-section each of the terms in eq.(3.42) must be

folded with fu and fg - the PDFs for the u-quark and gluon respectively. To illustrate

the folding process, σtree has been used as an example:

σtree →
∫ 1

0
dx1

∫ 1

0
dx2 [fu(x1, µF )fg(x2, µF ) + fu(x2, µF )fg(x1, µF )]σtree(x1x2s)

(3.43)

with the folding of the remaining terms in eq.(3.42) done in the same way. The

integration variables x1 and x2 represent the proportion of the energy taking part

in the parton level collision. It should be noted that the expression in eq.(3.43) is

symmetric in x1 and x2 and accounts for the fact that u-quark and gluon could come

from either proton in the collision.

Note: To keep the notation compact it is to be understood that σPNLO, σtree etc.

now represent the folded cross-sections.

The procedure for calculating the total decay-width follows in a similar way to

the production cross-section. The final expression for the total-decay width is

ΓNLO =
1

2mLQ

∫
d2

LIPS|ADtree|2
︸ ︷︷ ︸

Γtree

+
∑

{QCD,EW,LQ}

1

2mLQ

∫
d2

LIPS|AD1-loop|2
︸ ︷︷ ︸

Γ1-loop

+
∑

{QCD,QED}

1

2mLQ

∫
d3

LIPS|ADbrem|2
︸ ︷︷ ︸

Γbrem

(3.44)

where the D superscript is to indicate that these are the decay amplitudes. Since

the infrared divergences in Γbrem have been regularised in d-dimensions the total

decay-width is infrared finite.

Combining eq.(3.42) and eq.(3.44) the NWA gives the total cross-section at
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NLO as

σNLO ≈
mLQ

π

∫ s

0
dp2 1

(p2 −m2
LQ)2 +m2

LQ(Γtot)2

[
σtree × Γtree

+
∑

{QCD,EW,LQ}

(σtree × Γ1-loop + σ1-loop × Γtree)

+
∑

{QCD,QED}

(σtree × Γbrem + σbrem × Γtree + σA-P × Γtree)

]
(3.45)

This expression does not include all terms from the product σPNLO × ΓNLO because

some of the terms are part of the NNLO calculations. Also being a scalar there is

no sum over the LQ helicity and since the R2 scalar LQ has only one decay channel

Γtot = Γtree.

The expression for the total decay-width Γtot is

Γtot =
1

24π

[
h2

1L + h2
1R

]
mLQ = 22.86 GeV (3.46)

and since mLQ = 750 GeV this confirms the validity of the NWA.

3.2.8 Additional NLO contributions in the NWA

The physical process we are interested in is the collision between two protons - pro-

ducing a single intermediate scalar LQ which subsequently decays into an anti-lepton

and a jet and the quantity we are interested in is the distribution of the invariant

mass of this anti-lepton/jet system. At LO (within the NWA) the only contribution

to this process is the one described above (i.e. the u-quark/gluon initial state) 6,

however when going to NLO there are additional partonic initial state contributions

which need to be included.

The additional NLO contributions are grouped into three different classes, de-

pending on their initial state (see figure 3.20). These contributions are all tree-level

6The process with an anti-u-quark and gluon in the initial state produces the same final state (i.e.
a lepton, anti-lepton and a jet), however it is not valid to include this within the NWA approximation.
The reason for this is because the anti-lepton/jet system is now composed of an anti-lepton from
the on-shell production process and the jet from the on-shell decay process which is not a valid
distribution within the NWA.
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quark+quark initial state quark+anti-quark initial state

gluon-gluon initial state

Figure 3.20: The additional factorisable NLO contributions to the LQ
production process.

graphs, some of which contain initial state singularities (see figure 3.21). In principal

Figure 3.21: An example process with an initial state singularity. In
this example the singularity occurs when the radiated anti-quark becomes
collinear to the internal quark line.

these initial state singularities could be regulated by introducing a transverse momen-

tum (pT ) cut-off, in which case the calculations could be done using a program such

as CalcHEP [38] - a tool which automatically evaluates tree-level Feynman diagrams.

Introducing a pT cut-off, however, would be inconsistent with the dipole sub-

traction method, which is implemented as an inclusive calculation (i.e. without a

pT cut-off). Therefore, for consistency, the initial state singularities arising from the

additional NLO contributions also need to be dealt with using the dipole subtraction

method.

Since the additional NLO contributions only involve initial state singulari-
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ties and there are no corresponding NLO virtual corrections the dipole subtraction

method in this instance does not contain any insertion terms. Instead there are only

the dipole subtraction terms, which render the additional NLO contributions infrared

finite, and the corresponding P (x) and K(x) Altarelli-Parisi splitting functions (see

eq.(2.42)). These are for the uncancelled initial state singularities, which are dealt

with in the PDFs (see section 2.2.1).

3.2.9 Validating the Results: The Ward-Takahashi identity

Having calculated all of the contributions to LQ production in the NWA it is impor-

tant to validate them before producing the final results. There are a large number

of Feynman diagrams, particularly with regards to the virtual corrections, and it is

important to ensure that all of them have been included and there are no errors in

the calculations.

Since most of the Feynman diagrams, with the exception of the tree-level LQ

decay process, have at least one external gauge boson the most useful check that can

be performed is to confirm the Ward-Takahashi identity. For a process Aµ with an

external gauge boson (i.e. a photon or gluon) with Lorentz index µ and momentum

k the Ward-Takahashi identity states that

kµAµ(k) = 0 (3.47)

The Ward-Takahashi identity confirms that the process is gauge invariant and the

check is performed by contracting the gauge boson with its own momenta - as shown

in eq.(3.47).

For example, the virtual corrections to the LQ production process have one ex-

ternal gauge boson - a gluon with momentum p2 and Lorentz index µ. By contracting

APvirtual with pµ2 and checking the result is zero confirms that all of the contributions

have been included and there are no issues with colour factors or sign errors etc.

The Ward-Takahashi identity has been used on all diagrams and has confirmed

that all contributions have been included and are correct (i.e. they all form gauge
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invariant sets).

3.2.10 Results in the NWA

Having validated the calculations with the Ward-Takahashi identity and combined

the production and decay processes we can present the results of LQ production in

the NWA.

These results show the differential cross-section versus the invariant mass of

the jet + anti-lepton system. From eq.(3.45) the invariant mass is defined by the

integration variable p2, for producing the results the range was taken to be 0 < p <

2mLQ.

Looking first at the CTEQ6M results, figure 3.22 shows the LO contribution.

As can be seen from the plot the NWA provides a symmetrical resonance with a peak
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Figure 3.22: LO results for producing a scalar LQ - comparing the NWA
to the full non-factorisable process (CTEQ6M).

near mLQ = 750 GeV with a height of 8.46 × 10−3 pb/GeV. The total cross-section

at LO is 0.74 pb
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For easier comparison the results for the NWA and the full non-factorisable

process are usually combined into a single plot. As can be seen (for example in figure

3.22) the NWA and non-factorisable results both exhibit the same resonant behaviour

which is due to the production of an on-shell LQ. Away from the resonant region

there is an enhancement to the full non-factorisable distribution and this is due to

the non-factorisable contributions which are ignored in the NWA. These are common

features which will be seen throughout - for both scalar and vector LQs.

The NLO calculations can be split into QCD, electroweak, LQ contributions

along with the additional NLO calculations. The QCD corrections include the virtual

gluon loop corrections along with bremsstrahlung process with a radiated gluon.

Referring to figure 3.23 the QCD corrections make a significant contribution to the
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Figure 3.23: NLO results for producing a scalar LQ - comparing the NWA
to the full non-factorisable process (CTEQ6M). These results include the
QCD corrections only.

process. There is still a symmetric resonant peak, but now with a height of 1.31 ×

10−2 pb/GeV which gives an enhancement of 55% over the LO result. For the QCD

corrections the total cross-section is 1.14 pb giving an increase of 54% over the LO

56



result.

The electroweak corrections include the virtual photon, W and Z-boson loop

corrections along with the bremsstrahlung process with a radiated photon. From
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Figure 3.24: NLO results for producing a scalar LQ in the NWA
(CTEQ6M). These results include the electroweak corrections only, which
are neglected in the full non-factorisable process.

figure 3.24 it can be seen that, in comparison to the QCD corrections, the electroweak

corrections provide only a small enhancement to the LO process. The height of the

resonant peak is 9.11 × 10−3 pb/GeV, giving an enhancement of 8% over the LO

result. The EW corrections have a total cross-section of 0.80 pb giving an increase of

8% over the LO result.

The LQ corrections include virtual LQ and fermion loop corrections (see for ex-

ample figure 3.9) and, being infrared finite, do not include bremsstrahlung processes.

From figure 3.25 it is clear that the effect of the LQ corrections are opposite to the

QCD and electroweak corrections. Instead of enhancing the LO result the LQ correc-

tions decrease it. The height of the resonant peak is decreased to 6.24×10−3 pb/GeV

giving a reduction over the LO result by 26%. The LQ corrections give a total cross-
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Figure 3.25: NLO results for producing a scalar LQ - comparing the NWA
to the full non-factorisable process (CTEQ6M). These results include the
LQ corrections only.
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section of 0.55 pb which decreases the LO result by 26%.

Finally the additional contributions are shown in figure 3.26. These additional
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Figure 3.26: Additional NLO results for producing a scalar LQ in the
NWA (CTEQ6M). In addition to the QCD and LQ corrections these results
include the EW corrections, which are neglected in the full non-factorisable
process.

contributions also enhance the LO process. The height of the resonant peak is 1.02×

10−2 pb/GeV giving an enhancement of 21% over the LO result. The total cross-

section is 0.91 pb which gives an increase over the LO result of 23%.

The combined results are shown in figure 3.27 and give the total NLO contri-

butions to the LQ production process in the NWA. The total NLO contributions give

a resonant peak height of 1.33× 10−2 adding a sizeable enhancement of 57% to the

LO result. The total cross-section at NLO is 1.17 pb which gives a 58% increase over

the LO result. These results are summarised in tables 3.1 and 3.2.

The above results were obtained by folding the parton-level results with the

CTEQ6M PDF set. To determine the impact of the choice of PDF sets the results

were recalculated using the CTEQ6L PDF set. It was found that the choice of PDF
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Figure 3.27: Total NLO results for producing a scalar LQ in the NWA
(CTEQ6M). In addition to the QCD and LQ corrections these results in-
clude the EW corrections, which are neglected in the full non-factorisable
process.

Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 8.46× 10−3 -

QCD 1.31× 10−2 +55%

EW 9.11× 10−3 +8%

LQ 6.24× 10−3 –26%

Additional 1.02× 10−2 +21%

Total 1.33× 10−2 +57%

Table 3.1: Summary of the CTEQ6M scalar results for the NWA.

Correction Type Total cross-section (pb) Percentage change on LO

Tree 0.74 -

QCD 1.14 +54%

EW 0.80 +8%

LQ 0.55 –26%

Additional 0.91 +23%

Total 1.17 +58%

Table 3.2: Summary of the CTEQ6M scalar results for the NWA.
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Figure 3.28: Total NLO results for producing a scalar LQ in the NWA
comparing the CTEQ6M and CTEQ6L PDF sets. These results include
the QCD and LQ corrections as well as the EW corrections.
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set did not make much of a difference to the end result. As can be seen from figure

3.28 the CTEQ6L presents a very similar distribution to CTEQ6M. The full CTEQ6L

results are summarised in tables 3.3 and 3.4.

Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 8.43× 10−3 -

QCD 1.31× 10−2 +55%

EW 9.11× 10−3 +8%

LQ 6.23× 10−3 –26%

Additional 1.03× 10−2 +22%

Total 1.34× 10−2 +58%

Table 3.3: Summary of the CTEQ6L scalar results in the NWA.

Correction Type Total cross-section (pb) Percentage change on LO

Tree 0.73 -

QCD 1.13 +55%

EW 0.79 +8%

LQ 0.54 –26%

Additional 0.90 +23%

Total 1.16 +59%

Table 3.4: Summary of the CTEQ6L scalar results in the NWA.

QCD and LQ Corrections Only

From the above results it is clear that the main contributions come from the QCD

and LQ corrections and for this reason the electroweak corrections will be excluded

when calculating the non-factorisable process. Therefore, to make a valid comparison

between the NWA and the non-factorisable process we must compile a set of NWA

results which exclude the EW corrections. Most of the corrections have already been

separated into different types, however the additional calculations had to be rerun to

exclude the EW contributions (see figure 3.29).

Figure 3.30 shows the total QCD and LQ contributions for the CTE6QM fold-

ing. When the electroweak corrections are neglected there is still a large enhancement

to the resonant peak of 49% and also a large increase to the total cross-section of

50%.

To make a a comparison between the LO and total NLO QCD and LQ contri-
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Figure 3.29: Additional NLO results for producing a scalar LQ - compar-
ing the NWA to the full non-factorisable process (CTEQ6M). These results
include the QCD and LQ corrections only.
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Figure 3.30: Total NLO results for producing a scalar LQ - comparing
the NWA to the full non-factorisable process (CTEQ6M). These results
include the QCD and LQ corrections only.
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butions these are combined and shown in figure 3.31.
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Figure 3.31: A comparison between the LO and NLO contributions for
producing a scalar LQ in the NWA (CTEQ6M). These results include the
QCD and LQ corrections only.

As before, the CTEQ6L folding produced very similar result to the CTEQ6M

folding. A summary of the results of the QCD and LQ corrections are shown in tables

3.5 and 3.6 for the CTEQ6M results and tables 3.7 and 3.8 for the CTEQ6L results.

Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 8.46× 10−3 -

QCD 1.31× 10−2 +55%

LQ 6.24× 10−3 –26%

Additional (ex EW) 1.03× 10−2 +22%

Total 1.26× 10−2 +49%

Table 3.5: Summary of the CTEQ6M scalar results in the NWA including
QCD and LQ corrections only.
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Correction Type Total cross-section (pb) Percentage change on LO

Tree 0.74 -

QCD 1.14 +54%

LQ 0.55 –26%

Additional (ex EW) 0.90 +22%

Total 1.11 +50%

Table 3.6: Summary of the CTEQ6M scalar results in the NWA including
QCD and LQ corrections only.

Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 8.43× 10−3 -

QCD 1.31× 10−2 +55%

LQ 6.23× 10−3 –26%

Additional (ex EW) 1.02× 10−2 +21%

Total 1.27× 10−2 +51%

Table 3.7: Summary of the CTEQ6L scalar results in the NWA including
QCD and LQ corrections only.

Correction Type Total cross-section (pb) Percentage change on LO

Tree 0.73 -

QCD 1.13 +55%

LQ 0.54 –26%

Additional (ex EW) 0.89 +22%

Total 1.11 +52%

Table 3.8: Summary of the CTEQ6L scalar results in the NWA including
QCD and LQ corrections only.
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3.3 Scalar Leptoquarks: The Full Non-Factorisable Pro-

cess

All of the production and decay diagrams discussed within the context of the NWA

will be needed when calculating the full non-factorisable process, but now we need

to include the additional non-factorising topologies as well.

At LO the factorisable production and decay diagrams (see figures 3.2 and

3.11) can be combined by treating the LQ as an off-shell particle. This gives the two

Feynman diagrams shown in figure 3.32. In addition to this we also need to include

Figure 3.32: The factorisable LO contributions to the LQ production
process.

one non-factorisable LO contribution - as shown in figure 3.33. This additional con-

Figure 3.33: The non-factorisable LO contribution to the LQ production
process.

tribution cannot be factorised into a LQ production and decay process and makes

a non-resonant contribution to the final result. This non-factorisable diagram also

suffers from an initial state singularity - when the outgoing quark becomes collinear

with the incoming gluon. As with the additional NLO contributions this infrared di-

vergence is dealt with using the dipole subtraction method implemented in a similar

way as discussed in section 3.2.8.
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The purpose of calculating the full non-factorisable process at NLO is to make a

comparison with the NWA and determine how good the NWA is at approximating the

full process at NLO. From the NWA results it is clear that the largest contributions

come from the QCD and LQ corrections and so the EW corrections will be neglected

when calculating the full non-factorisable process.

To determine the factorisable contributions at NLO the virtual QCD and LQ

corrections to the production process need to be combined with the decay tree-

level amplitude (treating the LQ as off-shell) and likewise the production tree-level

amplitudes need to be combined with the virtual QCD corrections to the decay

process.

As an example, combining the virtual QCD production topology B1 and the

decay tree gives the factorisable topology shown in figure 3.34. The remaining fac-

torisable topologies can be combined in the same way.

Figure 3.34: An example factorisable NLO contribution to the LQ pro-
duction process.

3.3.1 Non-Factorisable Virtual Contributions

Having constructed the factorisable contributions the remaining non-factorisable di-

agrams need to be determined. These non-factorisable virtual corrections can be

grouped into four different topologies. These are the familiar bubble, triangle and

box diagrams, but now there are also pentagon diagrams (i.e. loops with five ver-

tices). The new topologies for the QCD corrections are shown in figures 3.35 to 3.38

and the new topologies for the LQ corrections are shown in figure 3.39.

These non-factorisable diagrams are also calculated using the helicity projection
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NFB1 NFB2

NFB4

NFB3

Figure 3.35: Non-factorisable QCD bubble graphs.

NFT1 NFT2 NFT3

NFT4 NFT5

Figure 3.36: Non-factorisable QCD triangle graphs.

technique (see appendix A). For the full non-factorisable process the procedure for

including the external leg corrections and preparing the calculations for SAMURAI

is the same as discussed in section 3.2.

3.3.2 Instabilities in the Non-Factorisable Virtual Corrections

It was found that some of the non-factorising graphs suffered from instabilities around

the resonant region of phase-space and was caused by two different problems.

The first problem comes from topologies NFB1 and NFB2 as well as NFLQB1

and NFLQB2. Labelling the momentum of the outgoing anti-lepton and quark as
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NFBX3
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Figure 3.37: Non-factorisable QCD box graphs.
Note: These graphs illustrate the different topologies, but do not show the
in and out states in a consistent way.

q2 and q3 respectively, these diagrams become divergent when (q2 + q3)2 → m2
LQ.

This is because of the 1
(q2+q3)2−m2

LQ
propagator terms in the diagrams. By making

the substitution

→ i
p2−m2

LQ−ΣR(p
2)+imLQΓ

(3.48)

for the 1-loop propagators in NFB1 and NFB2 the instability in these two diagrams

is removed. In eq.(3.48) p2 = (q2 + q3)2 and ΣR(p2) = Σ(p2) − Σ(mLQ) is the mass

renormalised 1-loop propagator with

−iΣ(p2) =
(3.49)

In a similar manner the instabilities in NFLQB1 and NFLQB2 are removed by

making the following substitution for the 1-loop propagators

→ i
p2−m2

LQ−ΣR(p
2)+imLQΓ

(3.50)
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NFP1 NFP2 NFP3

NFP4

Figure 3.38: Non-factorisable QCD pentagon graphs.
Note: These graphs illustrate the different topologies, but do not show the
in and out states in a consistent way.

NFLQB1 NFLQB2

NFB4

NFLQB3

Figure 3.39: Non-factorisable LQ bubble graphs.

where

−iΣ(p2) =

(3.51)

Further details about this calculation are given in appendix B.

The second problem comes from topologies NFT1, NFBX1 – NFBX3 and

NFP1 – NFP3. Within SAMURAI these topologies also become unstable when

(q2 + q3)2 → m2
LQ and is because SAMURAI does not include a decay-width in the

LQ loop propagators. To remedy this the unstable amplitudes Aunstable were changed
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to

Aunstable → Aunstable ×
(q2 + q3)2 −m2

LQ

(q2 + q3)2 −m2
LQ + imLQΓ

(3.52)

Away from the unstable region
(q2+q3)2−m2

LQ

(q2+q3)2−m2
LQ+imLQΓ

≈ 1 and near the unstable region

this “fix” effectively simulates a decay-width for the LQ propagators inside the loops,

thereby removing the instability.

Despite implementing the above fixes the graphs NFBX3 and NFP3 were still

found to be suffering from numerical instabilities. Within FORTRAN the numerical

precision of SAMURAI was increased from double to quadruple precision, however

this did not resolve the problem. The details and resolution to this problem will be

discussed further in section 3.3.6.

3.3.3 Non-Factorisable Bremsstrahlung Corrections

As with the factorisable virtual diagrams, the factorisable bremsstrahlung diagrams

can be obtained by combining the production bremsstrahlung graphs with the de-

cay tree-level graph and combining the production tree-level graphs with the decay

bremsstrahlung graphs. In addition to this there are also non-factorisable interfer-

ences which need to be considered, these are shown in figure 3.40.

NFBR1 NFBR2 NFBR3

NFBR4 NFBR5

Figure 3.40: Non-factorisable QCD bremsstrahlung graphs.
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Dealing with the the infrared divergences for the full non-factorisable process

is simpler than in the NWA. This is because the production and decay are no longer

treated as independent processes which need to have their divergences dealt with

separately.

The infrared divergences can be entirely dealt with using the dipole subtraction

method and follows the same procedure as discussed in section 3.2.5. For the dipole

subtraction terms there are only three emitter-spectator pairs: for the incoming quark

& gluon and the outgoing quark. The insertion terms are calculated in a similar way

as before - where again there is the need to deal with two partons in the initial state.

3.3.4 Calculating the Cross-Section

The expression for the final cross-section is also simpler than in the NWA. Using the

same notation as in section 3.2.7 the total cross-section is

σNLO =
1

2s

∫
d3

LIPS|Atree|2
︸ ︷︷ ︸

σtree

+
∑

{QCD,LQ}

1

2s

∫
d3

LIPS|A1-loop|2 + I ⊗ |Atree|2
︸ ︷︷ ︸

σ1-loop

+
1

2s

∫
d4

LIPS|Abrem|2 −D ⊗ |Atree|2
︸ ︷︷ ︸

σbrem

+
1

2s

∫ 1

0
dx

∫
d3

LIPS(x)(P +K)⊗ (|Atree|2)

︸ ︷︷ ︸
σA-P

(3.53)

where I ⊗ |Atree|2 and D ⊗ |Atree|2 are the dipole insertions and subtractions re-

spectively and σA-P are the Altarelli-Parisi splitting functions due to the initial-state

singularities. The expression shown in eq.(3.53) shows the parton-level cross-section,

to get the physical cross-section this expression needs to be folded with the PDFs as

described in section 3.2.7.

All of the phase-space integrals in this project are done using a VEGAS Monte-

Carlo integrater and, for the full non-factorisable process, the differential cross-section

w.r.t to the invariant mass of the anti-lepton/jet system is calculated during this

integration routine. For the 3-body final states there is only one jet, however for the
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4-body final state there are two jets. In most cases it is not physically possible to

distinguish between different jets and so for the 4-body final state the invariant mass

of the anti-lepton/jet system is calculated by including both jets.

3.3.5 Additional Contributions to the Full Process

As in the NWA, there are additional NLO contributions to be included with the full

process. These include the same quark+quark, quark+anti-quark and gluon+gluon

initial states discussed in section 3.2.8, but now also include the non-factorisable

topologies.

There is also the additional contribution coming from u-quark+gluon initial

state. This process has the same topology as the primary u-quark+gluon process,

but with the fermion lines reversed. This means the previous calculations can be

reused, but the now the jet/anti-lepton invariant mass distribution will make a non-

resonant contribution to the final result.

When considering the non-factorisable process there is also an additional LO

contribution which needs to be included - this process is shown in figure 3.41. Being

Figure 3.41: The additional LO process: u+ u→ e+ + e− + g.

LO the correct procedure, when studying the full non-factorising process, would be to

include the NLO corrections for this additional LO process as well. Since this process

is a non-resonant channel for LQ production it only makes a small contribution

compared to the resonant LO process (see section 3.3.6). To a good approximation

we are safe to only include this process at LO since the NLO corrections would be

even smaller.
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3.3.6 Results for the Full Process

In this section we present the results for the NLO QCD corrections to the full non-

factorisable LQ production process. As before these were produced using two different

PDF sets: CTEQ6M and CTEQ6L. The range for the invariant mass distribution

minv is 0 < minv < 2mLQ.

To ensure the validity of the results these calculations have been checked using

the Ward-Takahashi identity (see section 3.2.9) to ensure they are gauge invariant.

Considering first the CTEQ6M results, figure 3.22 shows the LO contribution to

the process.7 In common with the NWA result the main feature in the distribution

is the resonance with a peak near mLQ = 750 GeV. This has a peak height of

8.61 × 10−3 pb/GeV which is very close to the NWA result. The key difference

between the new result and the NWA result is that the distribution is no longer

symmetric around the peak and we see that the non-factorisable contributions give

an enhancement to the distribution for values of the invariant mass minv < mLQ.

The total cross-section at LO is 1.08 pb in comparison to the NWA the total cross-

section is larger. This is due to the enhancement to the distribution away from the

resonance.

The similarities in the results between the NWA and full non-factorisable pro-

cess are due to the resonant behaviour of both sets of calculations and the reason

for the differences come from non-factorisable contributions which are not included

in the NWA.

The NLO contributions can be split into QCD and LQ corrections. The results

for the QCD corrections are shown in figure 3.23 and give a similar distribution to the

LO results, with an enhancement to the resonant peak. The peak height is increased

by 51% to 1.30 × 10−2 pb/GeV and comparing this with the NWA peak the peaks

are again very close. For the QCD corrections the total cross-section is 1.56 pb which

again is larger than the cross-section in the NWA and gives an enhancement over the

LO cross-section of 44%.

7Note: The LO contribution does not include the additional LO contribution as shown in figure
3.41. The results for this are shown separately in figure 3.42.
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The results for the LQ corrections are shown in figure 3.25 and also give a

similar distribution to the LO results, but with a reduction to the resonant peak.

The peak height is decreased by 25% to 6.43× 10−3 pb/GeV and again is very close

to the NWA peak height. The total cross-section is 0.87 pb, which is larger than the

cross-section in the NWA, and gives a reduction over the LO cross-section of 19%.

The results for the additional LO process (as shown in figure 3.41) are given in

figure 3.42. Being a non-resonant process there is no resonant peak and the largest

contribution is at low minv. The total cross-section for the additional LO process is

0.41 pb and is much smaller than the cross-section for the resonant LO result. This

validates the decision to only include this process at LO.
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Figure 3.42: Additional LO results for producing a scalar LQ in the full
non-factorisable process (CTEQ6M).

The additional NLO results (which include the contribution from the additional

LO process) are shown in figure 3.29. This also gives a similar distribution to the

LO result, but in addition to an enhancement to the resonant peak there is also a

further enhancement in the region minv < mLQ. The resonant peak has a height
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of 1.08 × 10−2 pb/GeV giving an enhancement over the LO result of 25%. Again

comparing the peak height with the peak in the NWA the peak heights are close.

The total cross-section with the additional NLO results is 1.80 pb this is a lot larger

than the cross-section from NWA and in part is due to the contribution from the

additional LO process.

Combining the results gives the total NLO contribution to the non-factorising

LQ process and is shown in figure 3.30. The height of the resonant peak is 1.31×10−2

which gives an enhancement of 52% compared to the LO peak there is also a further

enhancement in the region minv < mLQ which is primarily due to the additional

NLO contributions. The cross-section for the total NLO result is 2.08 pb which is

an increase of 93% over the LO result. For comparison, the LO and total NLO

contributions are shown in figure 3.43.
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Figure 3.43: A comparison between the LO and NLO contributions for
producing a scalar LQ in the non-factorisable process (CTEQ6M).

A summary of these results is shown in tables 3.9 and 3.10.

The parton level-results were also folded with the CTEQ6L PDF set giving a
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Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 8.61× 10−3 -

QCD 1.30× 10−2 +51%

LQ 6.43× 10−3 –25%

Additional 1.08× 10−2 +25%

Total 1.31× 10−2 +52%

Table 3.9: Summary of the CTEQ6M scalar results for the non-
factorisable process.

Correction Type Total cross-section (pb) Percentage change on LO

Tree 1.08 -

QCD 1.56 +44%

LQ 0.87 –19%

Additional 1.80 +67%

Total 2.08 +93%

Table 3.10: Summary of the CTEQ6M scalar results for the non-
factorisable process.

very similar distributions to the CTEQ6M results (see figure 3.44). The results are

summarised in tables 3.11 and 3.12.
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Figure 3.44: Total NLO results for producing a scalar LQ in the full non-
factorisable process - comparing the CTEQ6M and CTEQ6L PDF sets.
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Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 8.54× 10−3 -

QCD 1.30× 10−2 +52%

LQ 6.39× 10−3 –25%

Additional 1.07× 10−2 +25%

Total 1.30× 10−2 +52%

Table 3.11: Summary of the CTEQ6L scalar results for the non-
factorisable process.

Correction Type Total cross-section (pb) Percentage change on LO

Tree 1.07 -

QCD 1.54 +44%

LQ 0.86 –20%

Additional 1.77 +65%

Total 2.03 +90%

Table 3.12: Summary of the CTEQ6L scalar results for the non-
factorisable process.

Dealing With the Remaining Instabilities

In producing the above results it was first necessary to fix the remaining instabilities

in the SAMURAI calculations. These remaining instabilities were found in graphs

NFBX3 and NFP3 and manifested as a sign flip at the resonant region in the

distribution. When the invariant mass of the anti-lepton/jet system is close to on-

shell there are instabilities in the solution which gives the cuts required to determine

the coefficients of some of the standard scalar integrals. These coefficients become

large but change sign when passing though the resonance. Isolating the contributions

from these graphs the instability is shown in figure 3.45. To reduce the effect of this

instability on the final distribution the value of the three bins either side of point

where the resonance flips sign were averaged together thereby reducing the effect of

the instability.
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Figure 3.45: The unstable contributions from graphs NFBX3 and
NFP3.
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Chapter 4

Vector leptoquarks

Having studied the effectiveness of the NWA for a scalar LQ, this chapter will continue

the study for the case where the LQ is a vector. For the purpose of this chapter we will

be looking at the vector LQ type U1 as described in [7], this type of LQ is an SU(2)

singlet and has charge +2/3. The core process we will consider is d+g → e−+e+ +d

starting with the factorisable process d+ g → e− + U1 → e− + e+ + d.

To calculate the results at the amplitude level the helicity projection technique

will be used, but in the case of vector LQs the expressions involve an odd number

of γ matrices. Details of projecting out an odd number of γ matrices are given in

appendix A.

The U1 LQ couples in the same way as the R2 does to the other particles,

this means that we can carry over wholesale all of the topologies which were used in

the discussion on scalar LQs. The only fundamental difference being that the single

fermion line now represents a d-quark and the scalar line for the R2 LQ should be

replaced with a zigzag line representing a massive gauge boson. With this understood

it is unnecessary to repeat the topologies detailed in chapter 3.

In terms of the Feynman diagrams the vector LQs do add one complication

due to our choice of gauge: the Feynman gauge. In this gauge we need to include

contributions from Goldstone bosons and Faddeev-Popov ghosts and this adds some

complexity to some of the topologies we wish to re-use from chapter 3.
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The coupling of the Goldstone bosons to the fermions is proportional to the

fermion mass and since we are treating the fermions as massless these couplings can

be ignored. This situation reduces the number diagrams which would otherwise need

to include Goldstone contributions.

From the previous chapter it is clear that the QCD corrections dominate and

so we restrict the analysis of this chapter to QCD corrections only.

4.1 Vector Leptoquarks in the NWA

Dealing with vector LQs in the NWA follows the same procedure as with the scalar

LQs, the primary difference being that the NWA will now need to include a sum over

helicities for the intermediate vector LQ.

4.1.1 Virtual Corrections

The topologies for the virtual QCD corrections to the LQ production amplitude

(shown in figures 3.3 to 3.5) can be reused for the vector LQ as described above, as

can the decay topology (shown in figure 3.12). The only topologies which need to be

modified to include contributions from Goldstone bosons and Faddeev-Popov ghosts

are B1, T5, T6 and BX2.

The 1-loop QCD corrections to the LQ propagator includes Goldstone boson

and Faddeev-Popov ghost corrections and so the topology B1 is modified as shown

in figure 4.1 - where the contributions to the 1-loop propagator are shown in figure

4.2). This means the topology B1 is actually comprised of four separate diagrams.

B1

Figure 4.1: The modified B1 topology for a vector LQ.
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= +

++

Figure 4.2: QCD, Goldstone and Faddeev-Popov ghost corrections to the
LQ propagator.

Likewise the 1-loop corrections to the gluon-LQ triple-point vertex also contain

Goldstone boson and ghost corrections. This also modifies the topologies as shown

in figure 4.3 - where the contributions to the vertex corrections are shown in figure

4.4. Each of these topologies are now also comprised of four separate diagrams.

T5

1

T6

2

Figure 4.3: The modified T5 and T6 topologies for a vector LQ.

Finally BX2 has an additional Goldstone contribution and is now comprise of

two diagrams (see figure 4.5).

Calculating the external leg corrections and preparing the calculations for

SAMURAI follows the same procedure as in the scalar LQ case.

4.1.2 Bremsstrahlung Corrections

The topologies for the bremsstrahlung corrections are the same as described in sec-

tions 3.2.5 and 3.2.6. For the production bremsstrahlung process the dipole subtrac-

tion method is used and as with the scalar LQ case the outgoing vector LQ is treated

as a squark in the dipole formalism.

For the LQ decay process the infrared divergences are again handled analyt-

ically (i.e. in d = 4 − 2ε dimensions), but now this must be done separately for

each helicity of the decaying vector LQ. The reason for this is that in the NWA it is
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Figure 4.4: QCD, Goldstone and Faddeev-Popov ghost corrections to the
gluon-LQ triple-point vertex.

necessary to sum over the helicities of the intermediate LQ. In the rest frame of the

LQ the polarisation vectors for the different helicities are

εL = [0, 0, 0, 1]T (4.1)

ε± =
1√
2

[0, 1,±i, 0]T (4.2)

where εL is the longitudinal polarisation state and ε± are the transverse polarisation

states. Using these polarisation states and the same parametrisation for the momenta

as in section 3.2.6 the final results for the decay bremsstrahlung are

Γbrem =
1

256π3
g2g2

LQmLQCF

(
m2

LQ

µ2

)−ε [
4

ε2
+

14

ε
+

1

12

(
530− 8π2

)]
(4.3)
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BX2

+

Figure 4.5: The modified BX2 topology for a vector LQ.

for the transverse polarisation states (i.e. λ = ±1) and

Γbrem =
1

256π3
g2g2

LQmLQCF

(
m2

LQ

µ2

)−ε [
− 1

3ε
+

1

9

(
257− 24π2

)]
(4.4)

for the longitudinal polarisation state (i.e. λ = 0). As a check on the helicity depen-

dence, when the calculations for the decay bremsstrahlung in eq.(4.3) and eq.(4.4)

are combined with the virtual decay corrections and the helicities are summed over

(as described in section 4.1.3) it has been confirmed that the infrared poles cancel.

4.1.3 Combining the Production and Decay Process

The production and decay processes are combined as in section 3.2.7, however the

production cross-sections and decay-widths are now functions of the LQ helicity λ

and in the final result there is a sum over λ. The final result for the vector LQ in the

NWA is

σNLO ≈
∑

λ={−1,0,1}

mLQ

π

∫ s

0
dp2 1

(p2 −m2
LQ)2 +m2

LQ(Γtot)2

[
σtree(λ)× Γtree(λ)

+ σtree(λ)× Γ1-loop(λ) + σ1-loop(λ)× Γtree(λ)

+ σtree(λ)× Γbrem(λ) + σbrem(λ)× Γtree(λ) + σA-P(λ)× Γtree(λ)

]

(4.5)

with σtree, σ1-loop etc. defined as in section 3.2.7, but now as functions of λ.

For the U1 vector LQ there are two decay channels for the LQ (U1 → d + e+
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and U1 → u+ νe) giving the total decay-width Γtot as

Γtot =
1

24π

[
2h2

1L + h2
1R

]
mLQ = 34.20 GeV (4.6)

and since mLQ = 750 GeV this confirms the validity of the NWA.

4.1.4 Additional NLO Contributions

For the vector LQ the same additional factorisable NLO contributions as shown in

figure 3.20 are also needed. As before some of the diagrams will suffer from initial-

state singularities and these are also dealt with using the dipole subtraction method

as in the case with the scalar LQs.

4.1.5 Results in the NWA

As with the previous results the invariant anti-lepton/jet mass range is 0 < minv <

2mLQ. The results were again folded with two different PDF sets: CTEQ6M and

CTEQ6L.

The NWA result for the vector LQ show the same features as were seen with

the scalar LQ. The invariant mass distribution is symmetrical with a resonant peak

at mLQ = 750 GeV.

Starting with the CTEQ6M folded results, the LO result (see figure 4.6) has

a resonant peak height of 3.79 × 10−2 pb/GeV and comparing this with the NLO

result (see figure 4.7) the peak height has increased to 5.52 × 10−2 pb/GeV giving

an enhancement of 46% over the LO result. There is also an increase in the total

cross-section from 3.30 pb to 4.73 pb giving an enhancement of 43%.

The additional NLO results (see figure 4.8) also show a large enhancement

to the resonant peak. These corrections have a resonant peak height of 5.71 ×

10−2 pb/GeV giving an enhancement of 51% over the LO result. There is also a

large enhancement to the cross-section which is increased by 53% to 5.04 pb.

Combining these corrections, the total NLO result (see figure 4.9) has a peak
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Figure 4.6: LO results for producing a vector LQ - comparing the NWA
to the full non-factorisable process (CTEQ6M).
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Figure 4.7: NLO results for producing a vector LQ - comparing the NWA
to the full non-factorisable process (CTEQ6M).
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Figure 4.8: Additional NLO results for producing a vector LQ - compar-
ing the NWA to the full non-factorisable process (CTEQ6M).

height of 7.44× 10−2 pb/GeV giving a large enhancement of 96% over the LO result.

The cross-section for total NLO process is increased by 96% to 6.47 pb.

To make a a comparison between the LO and total NLO contributions these

are combined and shown in figure figure 4.10.

A summary of the results for the CTEQ6M folding are shown in tables 4.1 and

4.2.

Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 3.79× 10−2 -

QCD 5.52× 10−2 +46%

Additional 5.71× 10−2 +51%

Total 7.44× 10−2 +96%

Table 4.1: Summary of the CTEQ6M vector results for the NWA.

The CTEQ6L folding produced comparable results to the CTEQ6M folding

and only the total NLO results are shown (see figure 4.11). It is observed, however,

that there is a slight decrease in the peak heights and cross-sections when folding with
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Figure 4.9: Total NLO results for producing a vector LQ - comparing the
NWA to the full non-factorisable process (CTEQ6M).
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Figure 4.10: A comparison between the LO and NLO contributions for
producing a vector LQ in the NWA (CTEQ6M).
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Correction Type Total cross-section (pb) Percentage change on LO

Tree 3.30 -

QCD 4.73 +43%

Additional 5.04 +53%

Total 6.47 +96%

Table 4.2: Summary of the CTEQ6M vector results for the NWA.

CTEQ6L. A summary of the results for the CTEQ6L folding are shown in tables 4.3

and 4.4.
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Figure 4.11: Total NLO results for producing a vector LQ in the NWA
comparing the CTEQ6M and CTEQ6L PDF sets.

Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 3.70× 10−2 -

QCD 5.37× 10−2 +45%

Additional 5.60× 10−2 +51%

Total 7.27× 10−2 +96%

Table 4.3: Summary of the CTEQ6L vector results for the NWA.

90



Correction Type Total cross-section (pb) Percentage change on LO

Tree 3.23 -

QCD 4.61 +43%

Additional 4.95 +53%

Total 6.34 +96%

Table 4.4: Summary of the CTEQ6L vector results for the NWA.

4.2 Vector Leptoquarks: The Full Non-Factorisable Pro-

cess

Again the full non-factorisable process for the vector LQs follows the same procedure

as for the scalar LQs. All of the production and decay topologies from the NWA can

be combined as discussed in section 3.3 and only the non-factorisable contributions

need to be determined.

4.2.1 Non-Factorisable Contributions

The non factorisable virtual corrections have the same topologies as those shown in

figures 3.35 to 3.38. Unlike the factorisable graphs there are no additional contribu-

tions with Goldstone bosons and Faddeev-Popov ghost and so the topologies for the

scalar LQ can be reused - with the scalar LQ replaced with a vector LQ.

The non-factorisable virtual corrections for the vector LQ also suffered from

the same instabilities as discussed in section 3.3.2 and these were dealt with following

the same procedures as before.

The same situation follows for the bremsstrahlung contributions, these contri-

butions along with the implementation of the dipole subtraction method are dealt

with in the same way as discussed in section 3.3.3.

The final cross-section for the full non-factorisable process has the same form

as shown in eq.(3.53).
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4.2.2 Additional Contributions to the Full Process

As with the scalar case there are three groups of additional contributions to the

full process. These are the quark+quark, quark+anti-quark and gluon+gluon initial

states. There is also the non-resonant d+gluon initial state which is calculated based

on the main non-factorisable diagrams, but with the fermion lines reversed. Finally

there is additional LO process d + d → e− + e+ + g with the same topology as in

figure 3.41 and, for the same reasons as discussed in section 3.3.5, is only included at

LO.

4.2.3 Results for the Full Process

Using the same invariant anti-lepton/jet mass range as before the CTEQ6M and

CTEQ6L folded results for the full non-factorisable process are presented here.

Starting with the CTEQ6M results the LO contribution (shown in figure 4.6)

shows the same resonant peak at mLQ = 750 GeV as in the NWA, but compared with

the scalar LQ results there is now a noticeable difference between the peak heights

for the NWA and full process. The NWA has a peak height of 3.79 × 10−2 pb/GeV

whereas the full process has a peak height of 4.11×10−2 pb/GeV which is an increase

of 8%.

As in the scalar case the distribution for the full process is not symmetric

and there is an enhancement to the invariant anti-lepton jet invariant mass minv for

minv < mLQ. There is also an increase in the total-cross section, at LO the cross-

section for the full non-factorisable process is 5.57 pb. This increase is primarily due

to the enhancement in the region minv < mLQ.

The NLO corrections (shown in figure 4.7) show a much bigger enhancement

over the LO result than occurs in the NWA. For the full process the peak height

is 6.85 × 10−2 giving a large enhancement of 67% over the LO result. The total

cross-section also has an increase of 59% to 8.85 pb.

The additional LO results (shown in figure 4.12) are non-resonant and don’t

make a large contribution to the main LO result, the cross-section for this process is
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2.90 pb. Again this validates the decision to only include this additional process at

LO.
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Figure 4.12: Additional LO results for producing a vector LQ in the full
non-factorisable process (CTEQ6M).

The additional NLO results (which also include the additional LO contribution)

also show a much bigger enhancement over the LO than occurs in the NWA (see

figure 4.8). For the full process the peak height is 6.93 × 10−2 pb/GeV giving a

large enhancement of 69% over the LO result. The total cross-section also has an

enhancement of 115% to 11.96 pb.

Combining all of the contributions the total NLO results (shown in figure 4.9)

has a resonant peak with a height of 9.67 × 10−2 pb/GeV giving an enhancement

of 135% over the LO result. The cross-section for the total NLO contributions is

increased by 173% to 15.23 pb. For comparison, the LO and total NLO contributions

are shown in figure 4.13. A summary of the CTEQ6M results are given in tables 4.5

and 4.6.

Comparing the peak heights between the NWA and full process at NLO shows
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Figure 4.13: A comparison between the LO and NLO contributions for
producing a vector LQ in the non-factorisable process (CTEQ6M).

Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 4.11× 10−2 -

QCD 6.85× 10−2 +67%

Additional 6.93× 10−2 +69%

Total 9.67× 10−2 +135%

Table 4.5: Summary of the CTEQ6M vector results for the non-
factorisable process.

Correction Type Total cross-section (pb) Percentage change on LO

Tree 5.57 -

QCD 8.85 +59%

Additional 11.96 +115%

Total 15.23 +173%

Table 4.6: Summary of the CTEQ6M vector results for the non-
factorisable process.
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an even bigger difference than at LO. In the NWA the resonant peak has a height of

7.44 × 10−2 pb/GeV and in the full process the peak height is 9.67 × 10−2 pb/GeV

which is 30% increase over the NWA. In going from LO to NLO the discrepancy

of the peak height between the NWA and the full non-factorisable process increases

from 8% to 30% - this is illustrated in figures 4.6 and 4.9.

As in the case with the NWA the CTEQ6L folding gives comparable results to

the CTEQ6M folding, but again there is a systematic decrease in the peak-heights

and cross-sections (see figure 4.14). A summary of the main results is shown in tables

4.7 and 4.8.
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Figure 4.14: Total NLO results for producing a vector LQ in the full non-
factorisable process - comparing the CTEQ6M and CTEQ6L PDF sets.

Correction Type Peak Height (pb/GeV) Percentage change on LO

Tree 3.95× 10−2 -

QCD 6.65× 10−2 +68%

Additional 6.77× 10−2 +71%

Total 9.48× 10−2 +140%

Table 4.7: Summary of the CTEQ6L vector results for the non-
factorisable process.
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Correction Type Total cross-section (pb) Percentage change on LO

Tree 5.12 -

QCD 8.30 +62%

Additional 11.44 +123%

Total 14.62 +186%

Table 4.8: Summary of the CTEQ6L vector results for the non-
factorisable process.
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Chapter 5

Conclusions

Having compiled the results for the NWA and the full non-factorisable process for

both a scalar (R2) and vector (U1) LQ we will conclude with a discussion and com-

parison of these results.

5.1 Scalar Leptoquarks

In general the NWA involving an intermediate scalar particle should give a good

approximation to the full result close to the resonant region. The reason for this is

there is no sum over helicities to consider and so the only approximation needed is

that the decay-width is narrow and the intermediate propagator can be treated as a

Dirac δ function.

Comparing the scalar LQ results between the NWA and the full non-factorisable

process (see tables 3.5 and 3.9) the effectiveness of the NWA approximating the full

non-factorisable process at NLO is confirmed. In particular we see that both sets of

results give good agreement between the heights of the resonant peaks - the dominant

feature in both sets of distributions.

Away from the resonant peak there are differences in the invariant mass dis-

tributions between the NWA and full non-factorisable process. The NWA gives a

symmetric distribution around the resonant peak whereas the non-factorisable pro-
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cess gives a non-symmetric distribution. In particular there is an enhancement to

the distribution for values of the invariant mass minv < mLQ coming from the non-

factorisable contributions to the full process. The enhancement to the distribution

away from the resonant peak does make a large contribution to the total cross-section

(see tables 3.6 and 3.10) and we see a large difference between the cross-sections cal-

culated in the NWA and full non-factorisable process.

5.2 Vector Leptoquarks

Comparing the vector LQ results the NWA does not provide as good an approxima-

tion to the full non-factorisable process for vector LQs as it does for scalars. The key

reason for this is because in the NWA the interference between the different helicity

states of the intermediate LQ are assumed to be negligible and are ignored. Looking

at the difference between the resonant peak heights in tables 4.1 and 4.5 the agree-

ment between the two sets of results is not as close as in the scalar case and suggests

that the helicity interference terms do make a noticeable contribution.

The anti-lepton/jet invariant mass distribution also shows the same features

as in the scalar LQ case. The NWA gives a symmetric distribution around the

resonance, but the full non-factorisable process also shows an enhancement to the

distribution for values of the invariant mass minv < mLQ. This enhancement makes

a sizeable difference to the total cross-section (see tables 4.2 and 4.6). The total

cross-section for the non-factorisable process is significantly larger than in the NWA

and this increase is primarily caused by the additional NLO corrections.

In general when looking at both the scalar and vector LQ results there are two

important features they have in common:

The NLO corrections are large compared to the LO results, particularly with

regards to the full non-factorisable process, but this is often the case when

including QCD corrections (see for example [39]).

From the non-factorisable results there are substantial corrections below the

resonance, particularly with regards to the vector LQs, and it is possible these
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could be observed to give an indirect hint of the presence of LQs.

5.3 Future Work

The focus of this thesis has been the study of the effectiveness of the NWA at ap-

proximating the LQ production process at both LO and NLO, however it should be

mentioned that performing the calculations at NLO introduces renormalisation and

factorisation scales. In principal the choice of the values of these scales is arbitrary,

however due to the nature of perturbative calculations the NLO calculations will

have some sensitivity to these scales. Based on the work conducted in this thesis it

would be a beneficial to extend the results to determine the sensitivity of the NLO

calculations to the renormalisation and factorisation scales.
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Appendix A

Helicity Projection

The helicity projection technique makes it possible to trace out spinors and γ-matrices

at the amplitude level. This is a useful when performing numerical calculations at the

amplitude level as it avoids the need to encode spinors and γ-matrices in a computer

program.

Since this is a study of high energy physics the masses of the fermions can be

assumed to be zero. This assumption simplifies the helicity projection technique.

A.1 Projecting an Even Number of γ-matrices

The technique of helicity projection can best be understood by example. To sim-

plify the example all non-relevant components of the amplitude, such as coupling

constants, Lorentz indices etc. are being ignored. In the simplest case consider an

amplitude with an even number of γ-matrices with an incoming fermion with mo-

mentum p and helicity λ′ and an outgoing fermion with momentum q and helicity λ.

The amplitude can be written as

A(λ, λ′) = u(q, λ) Γeven u(p, λ′) (A.1)
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where Γeven represents an even number of γ-matrices. If we consider the simple spinor

product

A0(λ, λ′) = u(q, λ)u(p, λ′) (A.2)

then, up to a phase η the amplitude A can be written as

eiηA =
A0A
|A0|

(A.3)

where |A0| =
√∑

λ,λ′ |A0|2.

The γ-matrices can now be traced out in eq.(A.3) by introducing helicity pro-

jection operators as follows

A0A(λ, λ′) = u(p, λ′)u(q, λ)u(q, λ) Γeven u(p, λ′)

=
∑

λ,λ′

u(p, λ′)u(q, λ)u(q, λ)

(
1− λγ5

2

)
Γeven

(
1 + λ′γ5

2

)
u(p, λ′)

= Tr

[
/q

(
1− λγ5

2

)
Γeven

(
1 + λ′γ5

2

)
/p

]

= Tr

[
/q

(
1− λγ5

2

)
Γeven /p

]
(where λ = −λ′) (A.4)

Combining this result with the fact that |A0| =
√

2 p · q gives the final result as

eiηA(λ) =
1√

2 p · qTr

[
/q

(
1− λγ5

2

)
Γeven /p

]
(A.5)

For the purpose of this example it was assumed that the initial and final states were

fermions. In the case of anti-fermions eq.(A.1) would be

A(λ, λ′) = v(q, λ) Γeven v(p, λ′) (A.6)

and to perform the helicity projection A0 would need to be

A0(λ, λ′) = v(q, λ)v(p, λ′) (A.7)

which gives the same result as in eq.(A.5).

From the last line of eq.(A.4) it can be seen that a process with an even number
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of γ-matrices flips the helicity between the incoming and outgoing fermion/anti-

fermion states.

A.2 Projecting an Odd Number of γ-matrices

Dealing with an odd number of γ-matrices is slightly more complicated. If the number

of γ-matrices appearing in eq.(A.5) was odd the result of the trace would give zero.

Dealing with an odd-number of γ-matrices requires the introduction of an auxiliary

momenta w with the properties that

w.w = −1

w.p = w.q = 0 (A.8)

The procedure follows as before with the exception that A0 is replaced with

A0(λ, λ′) = u(q, λ) /w u(p, λ′) (A.9)

where the conditions in eq.(A.8) ensure that |A0| =
√

2p · q as before. This gives

A0A(λ, λ′) = u(p, λ′) /w u(q, λ)u(q, λ) Γodd u(p, λ′)

= Tr

[
/w/q

(
1− λγ5

2

)
Γodd /p

]
(where λ = λ′) (A.10)

which results in

eiηA(λ) =
1√

2p · qTr

[
/w/q

(
1− λγ5

2

)
Γodd /p

]
(A.11)

As before the same result would be reached if the initial and final states were anti-

fermions. In the case that the process has an odd number of γ-matrices the helicity

between the incoming and outgoing fermion/anti-fermion states does not flip.
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A.2.1 Simplifying the Final Expression

In practice the outcome of the traces can result in rather complex expressions, but

in the case of and odd number of γ-matrices these expressions can be simplified by

introducing another vector v(λ) constructed from w as

vµ(λ) =
1

2

(
wµ − iλ 1

p · q e
αβγµ pα qβ wγ

)
(A.12)

This allows eq.(A.11) to be rewritten in the simpler form

eiηA(λ) =
1√

2p · qTr
[
/v(λ)/q Γodd /p

]
(A.13)

A.3 Generalising the Projection

In general an amplitude involving an arbitrary number fermions and anti-fermions

can be written in product form as

A(λi, λ
′
i) = u(q1, λ1) Γ1 u(pi, λ

′
1) · · · v(qn, λn) Γn v(pn, λ

′
n) · · ·

=
∏

i

Ai(λi, λ′i) (A.14)

and the γ-matrices in each of theAi’s can traced out using either eq.(A.5) or eq.(A.13)

depending on whether the number of γ-matrices in each Ai is even or odd.
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Appendix B

Analytic Loop Calculations

Most of the virtual corrections are evaluated numerically using SAMURAI, however

there are specific cases where the corrections are done analytically. This appendix

details these calculations, which are evaluated using dimensional regularisation [40]

and the MS-scheme.

B.1 External Massless Fermions

The virtual corrections for an external massless fermion are determined by calculating

the wavefunction renormalisation factor Z from the 1PI diagrams for the fermion

propagator.

At next-to-leading order the 1PI diagrams −iΣ(/p) are a sum of each of the n

1-loop corrections to the fermion propagator, that is

−iΣ(/p) = −i
(
Σ1(/p) + · · ·+ Σn(/p)

)
(B.1)

The general form of each of these loops is

−iΣj(/p) = −iµ4−d
∫

ddk

(2π)d
C

(1)
j /k + C

(2)
j /p

k2 [(k − p)2 −m2
j ]

(B.2)

where the coefficients C
(i)
j and the mass mj depend on the exact topology of each

105



loop. Expanding in a series about /p = 0 gives

Σj(/p) ≈ Σj(0) +
dΣj

d/p

∣∣∣∣
/p=0

=
dΣj

d/p

∣∣∣∣
/p=0

since Σj(0) = 0 (B.3)

The wavefunction renormalisation factor for fermions is defined as

Z−1 = 1− dΣ

d/p

∣∣∣∣
/p=0

(B.4)

and since dΣ
d/p

∣∣∣
/p=0
� 1 this can be rewritten as

δZ ≈ dΣ

d/p

∣∣∣∣
/p=0

⇒ Σ(/p) ≈ δZ/p (from eq.(B.3))

⇒ δZ ≈ Tr{Σ(/p)/p}
∣∣
/p=0

(B.5)

where δZ = Z − 1. Therefore, from eq.(B.1)

δZ ≈ Tr{Σ1(/p)/p}
∣∣
/p=0

+ · · ·+ Tr{Σn(/p)/p}
∣∣
/p=0

= δZ1 + · · ·+ δZn (B.6)

with

δZj =
µ4−d

p2

∫
ddk

(2π)d
4(C

(1)
j k · p+ C

(2)
j p2)

k2 [(k − p)2 −m2
j ]

∣∣∣∣∣
/p=0

= µ4−d
∫ 1

0
dα

∫
ddk

(2π)d
4(C

(1)
j + C

(2)
j )α

[k2 −∆]2
where ∆ = αm2

j (B.7)

In the second line Feynman parametrisation has been used to bring the integral to

a standard form. From the second line of eq.(B.7) it is clear that δZ = 0 when

m2
j = 0, therefore the only contribution to the external corrections for a massless

fermion come from those diagrams with a massive internal particle.

Performing the integral over k, setting d = 4 − 2ε and taking the limit ε → 0
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gives

δZj =
i

16π2

∫ 1

0
dα

[
4α

ε
− 4α log

(
∆

µ2

)]
(C

(1)
j + C

(2)
j )

=
i

16π2

[
2

ε
− 2 log

(
m2
j

µ2

)
+ 1

]
(C

(1)
j + C

(2)
j ) (B.8)

in the MS-scheme. Using this result all the external leg corrections to a massless

fermion can be readily determined as only the mass mj and coefficients C
(1)
j and C

(2)
j

need to be established.

B.2 External Gluons

As with external fermions the virtual corrections for external gluons are determined

by calculating the wavefunction renormalisation factor Z from the 1PI diagrams for

the gluon propagator.

The only corrections to the gluon propagator come from the standard QCD

loop corrections with the additional corrections from a massive LQ. The combined

set of all n loop diagrams form a gauge invariant set i.e.

iΠµν(p2) = i
(
Πµν

1 (p2) + · · ·+ Πµν
n (p2)

)

= i(gµνp2 − pµpν)Π(p2) (B.9)

where p is the momentum of the gluon and µ and ν are the Lorentz indices for the

gluon propagator. To simplify the notation the colour indices are contained within

the Π factors.

The wavefunction renormalisation factor for gluons is defined as

Z−1 = 1−Π(0) (B.10)

and since Π(0)� 1 this can be rewritten as

δZ ≈ Π(0) (B.11)
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where again δZ = Z − 1.

Each of the iΠµν
j (p2) terms can be written as

iΠµν
j (p2) = Aj(p

2)gµνp2 −Bj(p2)pµpν (B.12)

with all of the coefficients Aj and Bj summing to give the Lorentz structure as shown

in eq.(B.9). In order to determine Π(0) it is necessary to calculate the coefficients

Aj(0) and Bj(0).

For a bubble diagram the general form of the loop integral is

iΠµν
j (p2) = µ4−d

∫
ddk

(2π)d
1

[k2 −m2
j1

][(k − p)2 −m2
j2

]

×
([
C

(1)
j k2 + C

(2)
j k · p+ C

(3)
j p2

]
gµν+

C
(4)
j kµkν + C

(5)
j (kµpν + pµkν) + C

(6)
j pµpν

)
(B.13)

where the coefficients C
(i)
j and masses mj1 and mj2 depend on the exact form of the

loop. Using Feynman parametrisation and exploiting the general structure of the

integral, as given in eq.(B.12), it can be shown that

Aj(0) p2 = µ4−d
∫ 1

0
dα

∫
ddk

(2π)d
(C

(1)
j + C

(4)
j )k2

[k2 −∆]2
(B.14)

Bj(0) = µ4−d
∫ 1

0
dα

∫
ddk

(2π)d
−(C

(4)
j α2 + C

(5)
j α+ C

(6)
j )

[k2 −∆]2
(B.15)

where ∆ = −(α− 1)m2
j1

+ αm2
j2

.

For a tadpole diagram the general form of the loop integral is

iΠµν
j (p2) = µ4−d

∫
ddk

(2π)d
Cj g

µν

[k2 −m2
j ]

(B.16)

giving

Aj(0) p2 = µ4−d
∫ 1

0
dα

∫
ddk

(2π)d
Cj

[k2 −m2
j ]

(B.17)

Bj(0) = 0 (B.18)
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From the form of the integrals in eq.(B.14), eq.(B.15) and eq.(B.17) it is clear that

these are zero in the massless case (i.e. mj1 = mj2 = 0) and since the standard

QCD loop corrections to the gluon propagator only involve massless particles the

only contribution to δZ comes from loops with an internal massive LQ.

In the case of an internal LQ (where mj1 = mj2 = mLQ) the result of the

bubble loop integrals in eq.(B.14) and eq.(B.15) are

Aj(0) p2 =
i

16π2

[
2

ε
+ 1− 2 log

(
m2

LQ

µ2

)]
m2

LQ (C
(1)
j + C

(4)
j ) (B.19)

Bj(0) = − i

16π2

[
1

ε
+ log

(
m2

LQ

µ2

)](
C

(4)
j

3
+
C

(5)
j

2
+ C

(6)
j

)
(B.20)

where d = 4 − 2ε and the integrals are evaluated in the limit ε → 0 using the MS-

scheme.

Likewise, for the tadpole integral

Aj(0) p2 =
i

16π2

[
1

ε
+ 1− log

(
m2

LQ

µ2

)]
m2

LQCj (B.21)

Once the coefficients C
(i)
j for the LQ loops have been found the above integrals can

be readily used to calculate the external leg corrections for a gluon.

B.3 External Scalar Leptoquarks

As with the virtual corrections for external fermions, the corrections for an external

scalar LQ is a sum of 1-loop diagrams (see eq.(B.1)) with each of the 1-loop integrals

having the form

−iΣj(p
2) = −iµ4−d

∫
ddk

(2π)d
C

(1)
j k2 + C

(2)
j k · p+ C

(3)
j p2

[k2 −m2
j ][(k − p)2 −m2

LQ]
(B.22)

or

−iΣj(p
2) = −iµ4−d

∫
ddk

(2π)d
C

(1)
j k2 + C

(2)
j k · p+ C

(3)
j p2

k2(k − p)2
(B.23)

As before the coefficients C
(i)
j and mass mj depend on the particular loop.
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For scalar particles the wavefunction renormalisation factor is

Z−1 = 1− dΣ

dp2

∣∣∣∣
p2=mLQ

(B.24)

and since dΣ
dp2

∣∣∣
p2=mLQ

� 1 this can be expanded to give

δZ ≈ dΣ1

dp2

∣∣∣∣
p2=mLQ

+ · · ·+ dΣn

dp2

∣∣∣∣
p2=mLQ

= δZ1 + · · ·+ δZn (B.25)

Using Passarino-Veltman reduction [17] it can be shown that each δZj , where the

loop is of the form given in eq.(B.22), can be written as

δZj =

(
C

(2)
j

2
+ C

(3)
j

)
I1 +

(
C

(1)
j m2

j +
C

(2)
j

2
m2
j + C

(3)
j m2

LQ

)
I2 (B.26)

where I1 and I2 are

I1 = µ4−d
∫

ddk

(2π)d
1

[k2 −m2
j ][(k − p)2 −m2

LQ]

∣∣∣∣∣
p2=mLQ

(B.27)

I2 = µ4−d d

dp2

∫
ddk

(2π)d
1

[k2 −m2
j ][(k − p)2 −m2

LQ]

∣∣∣∣∣
p2=mLQ

(B.28)

In the MS-bar scheme the result of these integrals are

I1 =
i

16π2

[
1

ε
− log

(
m2

LQ

µ2

)
+ 2− (1− α+) log(1− α+)− α+ log(−α+)

− (1− α−) log(1− α−)− α− log(−α−)

]
(B.29)

I2 = − i

16π2

1

m2
LQ

[
1− α+

(1− α+)

(α+ − α−)
log

(
1− 1

α+

)

− α−
(1− α−)

(α− − α+)
log

(
1− 1

α−

)]
(B.30)

where

α± =
m2
j

2m2
LQ

±
√

m4
j

4m4
LQ

−
m2
j

m2
LQ

(B.31)
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In the case when mj = 0 these integrals simplify to

I1 =
i

16π2

[
1

ε
− log

(
m2

LQ

µ2

)
+ 2

]
(B.32)

I2 = − i

16π2

1

m2
LQ

[
1

2ε
+ 1− 1

2
log

(
m2

LQ

µ2

)]
(B.33)

Again using Passarino-Veltman reduction when the loops are of the form given in

eq.(B.23) each δZj can be written as

δZj =

(
C

(2)
j

2
+ C(3)

)
(
I1 +m2

LQI2

)
(B.34)

where I1 and I2 are

I1 = µ4−d
∫

ddk

(2π)d
1

k2(k − p)2

∣∣∣∣
p2=mLQ

(B.35)

I2 = µ4−d d

dp2

∫
ddk

(2π)d
1

k2(k − p)2

∣∣∣∣
p2=mLQ

(B.36)

and in the MS-bar scheme these result in

I1 =
i

16π2

[
1

ε
− log

(
m2

LQ

µ2

)
+ 2− iπ

]
(B.37)

I2 = − i

16π2

1

m2
LQ

(B.38)

It should be noted that the iπ term appearing in eq.(B.37) is a consequence of

the LQ being an unstable particle (i.e. there is decay channel for a LQ to decay to

two massless particles - a lepton and quark. This imaginary term forms the decay

width, which appears in the propagator of an unstable particle, but only the real

part of eq.(B.37) is needed for calculating the wavefunction renormalisation factor.

B.4 External Vector Leptoquarks

For the vector LQ the only loops being considered come from QCD loop corrections.

As with the external gluon the combined set of all n loop diagrams form a gauge
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invariant set as shown in eq.(B.9).

Being a massive particle the wavefunction renormalisation for LQs is defined

as

Z−1 = 1−Π(m2
LQ) (B.39)

and since Π(m2
LQ)� 1 this can be written as

δZ ≈ Π(m2
LQ) (B.40)

Each bubble diagram has the same form as eq.(B.13) with mj1 = mLQ and

mj2 = 0. This gives

Aj(m
2
LQ) p2 = µ4−d

∫ 1

0
dα

∫
ddk

(2π)d
(C

(1)
j + C

(4)
j )k2

[k2 −∆]2
(B.41)

Bj(m
2
LQ) = µ4−d

∫ 1

0
dα

∫
ddk

(2π)d
−(C

(4)
j α2 + C

(5)
j α+ C

(6)
j )

[k2 −∆]2
(B.42)

where ∆ = (α− 1)2mLQ. The result of these loop integrals are

Aj(m
2
LQ) p2 =

i

16π2

[
2

3ε
+

7

9
− 2

3
log

(
m2

LQ

µ2

)]
m2

LQ (C
(1)
j + C

(4)
j ) (B.43)

Bj(m
2
LQ) = − i

16π2

{[
1

ε
+ log

(
m2

LQ

µ2

)](
C

(4)
j

3
+
C

(5)
j

2
+ C

(6)
j

)

+
11

9
C

(4)
j +

3

2
C

(5)
j + 2C

(6)
j

}
(B.44)
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Appendix C

Feynman Rules

The relevant Feynman rules given in this appendix are in the Feynman gauge and

only those Feynman rules used in this project are included. For the vertices all

momenta are defined to be incoming and the colour flow is taken to be from i to j.

C.1 Standard Model

Propagators:

Massless fermion propagator:
i j

p
iδij/p

p2

Gluon propagator:
µ ν
a b

p
−iδabgµν

p2

Photon propagator:
µ νp

−igµν
p2

W and Z boson propagator:
µ νp

−i(gµν − pµpν/m2)

p2 −m2

Where m = MW or MZ .
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Vertices:

QCD vertices

a

i j

µ

− igT ajiγµ

a µ

b

ν

c

ρ

k1

k2

k3 − gfabc
(
gµν(k1 − k2)ρ

+ gνρ(k2 − k3)µ

+ gρµ(k3 − k1)ν

)

QED vertices

µ

− igAγµ

Electroweak vertices

µ

W

− i gW
2
√

2
γµ

µ

Z

− igZ
2
γµ
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Here g is the strong coupling and gA, gW and gZ are the photon, W and Z boson cou-

plings respectively. For the photon coupling to an electron and u-quark the couplings

are

gA(e) = e (e =
√

4πα)

gA(u) =
2

3
e

For the W boson coupling

gW =





e
sin θW

(λ = −1)

0 (λ = +1)

where θW is the Weinberg angle and λ is the helicity of the fermion. For the Z boson

coupling to an electron and u-quark the couplings are

gZ(e) = gZ ×




−1 + 2 sin2 θW (λ = −1)

2 sin2 θW (λ = +1)

gZ(u) = gZ ×





1− 4
3 sin2 θW (λ = −1)

−4
3 sin2 θW (λ = +1)

where gZ = gW
cos θW

.

C.2 Scalar Leptoquark

Propagators:

Scalar LQ propagator:

i j

p
iδij

p2 −m2
LQ
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Vertices:

Leptoquark vertex

i

j

u e−

− igLQδji

Where

gLQ =





h2L (λ = −1)

h2R (λ = +1)

and λ is the helicity of the electron.

QCD vertices

a

i j

µ

k1 k2

− igT aji(k1 − k2)µ

i j

a b

µ ν

ig2{T a, T b}ji gµν

116



QED vertices

i j

µ

k1 k2

− igAδij(k1 − k2)µ

i j

µ ν

ig2
A 2δij gµν

i j

a

µ ν

− iggA 2T aij gµν
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Electroweak vertices

i j

µ

k1 k2

W

− igW√
2
δij(k1 − k2)µ

i j

µ ν

W W

i

(
gW√

2

)2

2δij gµν

i j

a

µ ν
W

− iggW 2T aij gµν

i j

µ

k1 k2

Z

− igZδij(k1 − k2)µ

i j

µ ν

Z Z

ig2
Z 2δij gµν

i j

a

µ ν
Z

− iggZ 2T aij gµν

For the photon coupling to the LQ

gA(LQ) =
5

3
e
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and for the Z boson coupling to the LQ

gZ(LQ) = gZ

(
1

2
− 5

3
sin2 θW

)

C.3 Vector Leptoquark

For this set of rules, which only involve QCD particles, the zigzag line will now

represent the vector LQ.

Propagators:

Vector LQ propagator:
i j

p

µ ν

−iδij gµν
p2 −m2

LQ

Goldstone boson propagator:

i j

p
iδij

p2 −m2
LQ

LQ ghost propagator:

i j

p
iδij

p2 −m2
LQ

Gluon ghost propagator:

a b

p
iδab
p2

Vertices:

Leptoquark vertex

i

j

d e−

µ

igLQδjiγµ

where

gLQ =





h1L (λ = −1)

h1R (λ = +1)
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and λ is the helicity of the electron.

QCD vertices

a µ

j

ν

i

ρ

k1

k2

k3 igT aji

(
gµν(k1 − k2)ρ

+ gνρ(k2 − k3)µ

+ gρµ(k3 − k1)ν

)

i j

a b

ρ σ

µ ν − ig2
(

(T aT b)ji(gµνgρσ − gµρgνσ)

+ (T bT a)ji(gµνgρσ − gµσgνρ)

+ [T a, T b]ji(gνρgµσ − gµρgνσ)
)
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Goldstone vertices

a

i j

µ

k1 k2

igT aji(k1 − k2)µ

a µ

ji

ν igT ajimLQ gµν

i j

a b

µ ν

− ig2{T a, T b}ji gµν

Ghost vertices

a

b c

µ

k

gfabc kµ

a

i j

µ

k

− igT aji kµ

a

i j

µ

k

igT aji kµ
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i

a j

µ

k

igT aji kµ

i

a j

µ

k

− igT aji kµ
j

a i

µ

k

− igT aji kµ
j

a i

µ

k

igT aji kµ

122



Appendix D

External Leg Corrections

The external leg corrections, as discussed in the main text, have been done analyti-

cally and are detailed here. The first section details the case where the external leg

corrections involve a scalar LQ and the second section details the case for a vector

LQ.

D.1 External Leg Corrections: Scalar Leptoquark

The external leg correction for a massless u-quark is described in the main text

(see section 3.2.3) and the corrections for the remaining external leg corrections are

described in the following sections.

D.1.1 The Electron and Positron

The wavefunction renormalisation factor calculations for the outgoing massless elec-

tron and positron Ze± are essentially the same as for the u-quark (see section 3.2.3)

with the exception that there are no QCD corrections. The Feynman diagrams for

these corrections are shown in fig D.1. The final result for the electron and positron

Electroweak corrections LQ correction

Figure D.1: External leg corrections to the outgoing positron and electron.
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is

√
Ze± ≈ 1 +

1

16π2

[
g2
W

(
2

ε
− 2 log

(
M2
W

µ2

)
+ 1

)
+ g2

Z(e)

(
2

ε
− 2 log

(
M2
Z

µ2

)
+ 1

)

+g2
LQ

(
1

ε
− log

(
M2
LQ

µ2

)
+

1

2

)]

(D.1)

where gW and gLQ are the respective couplings for the W-boson and LQ and gZ(e) is

the coupling of the Z-boson to the electron and positron. In general these couplings

are functions of the u-quark helicity and are defined in appendix C.

D.1.2 The Gluon

The wavefunction renormalisation factor for the gluon leg can be calculated from

Z−1
g = 1−Π(0) (D.2)

where iΠ(p2) represents the 1-loop diagrams as shown in fig D.2.

Standard QCD corrections

Leptoquark QCD corrections

Figure D.2: External leg corrections to the incoming gluon.
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Since Π(0)� 1 this means eq.(D.2) can be written as

√
Zg ≈ 1 +

1

2
Π(0) = 1 +

1

2
δZg (from eq.(B.11)) (D.3)

The δZg term is a sum of the standard QCD corrections with addition of leptoquark

QCD corrections. Each of these corrections is either of the form given in eq.(B.13)

(for bubble corrections) or of the form given in eq.(B.16) (for tadpoles). Since the

standard QCD corrections only involve massless particles it is only the leptoquark

QCD corrections which contribute to δZg.

From appendix B the final result for
√
Zg is

√
Zg ≈ 1 +

1

16π2

g2

6

[
1

ε
− log

(
m2

LQ

µ2

)]
(D.4)

Note: Since there is a doublet of LQs in R2 the result in eq.(D.4) has been multiplied

by a factor of two to account for the fact that there are two types of LQs in the loops

in fig D.2.

D.1.3 The Leptoquark

The wavefunction renormalisation factor for a scalar LQ can be calculated from

Z−1
LQ = 1− dΣ

dp2

∣∣∣∣
p2=mLQ

(D.5)

where −iΣ represent the sum 1-loop corrections shown in figure D.3, each of which

has the form shown in eq.(B.22) or eq.(B.23). The QCD tadpole diagram is omitted

because its contribution is zero, the only contribution to the electroweak tadpole

occurs when there is a massive W or Z-boson in the loop. As in the previous examples

we have
√
ZLQ ≈ 1 +

1

2

dΣ

dp2

∣∣∣∣
p2=m2

LQ

= 1 +
1

2
δZLQ (D.6)
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QCD correction

Electroweak corrections

Leptoquark correction

Figure D.3: External leg corrections to the leptoquark.

From appendix B the final result for
√
ZLQ is

√
ZLQ ≈ 1 +

1

16π2

[
g2

(
1

ε
− log

(
m2

LQ

µ2

)
+ 2

)
− 2g2

(
1

2ε
+ 1− 1

2
log

(
m2

LQ

µ2

))

+g2
W

(
I1(α+, α−)− 2I2(α+, α−)

)
+ g2

Z(LQ)

(
I1(β+, β−)− 2I2(β+, β−)

)

+ g2
A(LQ)

(
1

ε
− log

(
m2

LQ

µ2

)
+ 2

)
+ g2

LQ

(
1

ε
− log

(
m2

LQ

µ2

)
+ 1

)]

(D.7)

where gZ(LQ) and gA(LQ) are the Z-boson and photon couplings to the LQ as defined

in appendix C and where

I1(x+, x−) =
1

ε
− log

(
m2

LQ

µ2

)
+ 2− (1− x+) log(1− x+)− x+ log(−x+)

− (1− x−) log(1− x−)− x− log(−x−) (D.8)

I2(x+, x−) = 1− x+
(1− x+)

(x+ − x−)
log

(
1− 1

x+

)
− x−

(1− x−)

(x− − x+)
log

(
1− 1

x−

)
(D.9)
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with

α± =
m2
W

2m2
LQ

±
√

m4
W

4m4
LQ

− m2
W

m2
LQ

(D.10)

β± =
m2
Z

2m2
LQ

±
√

m4
Z

4m4
LQ

− m2
Z

m2
LQ

(D.11)

D.2 External Leg Corrections: Vector Leptoquark

For the vector LQ case only QCD corrections are being considered. The analytic

results to the various external legs are given in this section.

D.2.1 The Massless Fermions

For the massless fermions the only QCD corrections are to the d-quark and since the

loop diagrams only involve massless particles the external d-quark corrections are

zero.

D.2.2 The Gluon

As with the scalar LQ case the only non-zero corrections to gluon come from the

vector LQ bubble and tadpole diagrams. Being a gauge boson the vector LQ loop

has additional contributions from Goldstone bosons and Faddeev-Popov ghosts as

shown in figure D.4. From appendix B the final result for
√
Zg is

√
Zg ≈ 1 +

1

16π2
g2

[
5

ε
+

17

3
− 5 log

(
m2

LQ

µ2

)]
(D.12)

D.2.3 The Leptoquark

The loop corrections to the LQ also involve Goldstone bosons and Faddeev-Popov

ghost and have the same topologies as shown in figure 4.2. The wavefunction renor-

malisation factor for the LQ can be calculated from

Z−1
LQ = 1−Π(m2

LQ) (D.13)
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Figure D.4: The external leg corrections to the gluon including the Gold-
stone boson and Faddeev-Popov ghost contributions.

where iΠ(p2) represents the 1-loop corrections as shown in figure 4.2.

Since Π(m2
LQ)� 1 from eq. (D.13) we have

√
ZLQ ≈ 1 +

1

2
Π(m2

LQ) = 1 +
1

2
δZLQ (from eq.(B.40)) (D.14)

From appendix B the final result for
√
ZLQ is

√
ZLQ ≈ 1 +

1

16π2

g2

9

[
57

ε
+ 101− 57 log

(
m2

LQ

µ2

)]
(D.15)
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Appendix E

Lorentz Invariant Phase-Spaces

Calculating the various cross-sections and decay-widths requires suitable choices for

the parametrisation of the Lorentz invariant phase-spaces. In this appendix we will

detail the various phase space parametrisations used in this project.

E.1 Phase-Spaces for Scattering Processes

Scattering processes have a 2-body initial state and for these processes the initial

states with momenta p1 and p2 are massless and the outgoing states with momenta

qi contain at most one massive state.

E.1.1 2-Body Phase-Space with a Massive Final State

The incoming momenta p1 and p2 are defined in the centre-of-mass (COM) frame as

p1 =

√
s

2
[1, 0, 0, 1]T (E.1)

p2 =

√
s

2
[1, 0, 0,−1]T (E.2)

where
√
s is the COM collision energy.
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Choosing q1 to be the massive outgoing state with mass m, this is defined as

q1 =

[
s+m2

2
√
s
,

√
λ(s,m2, 0)

2
√
s

n̂

]T
(E.3)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz and n̂ = [sin θ, 0, cos θ]T with θ

being the azimuthal angle in the COM system. By conservation of momentum the

massless outgoing state is q2 = p1 + p2 + q1. With this choice of parametrisation the

2-body phase space is

∫
d2

LIPS =
1

2π

(s−m2)

8s

∫ 1

−1
d cos θ (E.4)

This phase-space measure can also be used for massless final states by setting m2 = 0.

For the dipole subtraction method it is necessary to use a scaled 2-body Lorentz

invariant phase-space where either p1 or p2 is scaled by a variable x with being in the

range [0,1]. Since the phase-space is Lorentz invariant one can still work in the COM

frame by scaling both p1 and p2 by
√
x. This gives the scale 2-body phase space as

∫
d2

LIPS(x) =
1

2π

(xs−m2)

8xs

∫ 1

−1
d cos θ (E.5)

E.1.2 3-Body Phase-Space with a Massive Final State

The incoming momenta p1 and p2 are defined as before and the outgoing momenta

q1 and q2 are chosen to be the massless states with a relative angle θ between them.

These are then rotated into a general direction by the angles α and β to give

q1 = Ex




1

sinα cos θ + cosα cosβ sin θ

sinβ sin θ

cosα cos θ − sinα cosβ sin θ




(E.6)

q2 = E(1− x) [1, sinα, 0, cosα]T (E.7)
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where

E =
(s+m2

12 −m2)

2
√
s

(E.8)

The quantity m2
12 is the invariant squared mass of the q1-q2 system. It is parametrised

by the variable y as

m2
12 = (

√
s−m)2y (E.9)

The quantity x defines the ratio of energy shared between q1 and q2. It is parametrised

by the variable w as

x =
1− v

2
+ vw (E.10)

where

v =

√
λ
(
s,m2

12,m
2
)

s+m2
12 −m2

(E.11)

By momentum conservation, and from the above definitions, the massive outgoing

state with mass m is q3 = p1 + p2 − q1 − q2.

With this parametrisation the 3-body phase-space is

∫
d3

LIPS =
1

(2π)4

∫ 1

0
dw

∫ 1

0
dy

∫ 1

−1
d cosα

∫ 2π

0
dβ

(s+m2
12 −m2)

32s

m2
12

y
v (E.12)

As before this phase-space can be used for a massless final state by setting m2 = 0.

This choice of parametrisation makes it possible to identify the relevant infrared

divergent regions of the phase-space. If we treat q2 as the radiated bremsstrahlung

particle then for example p1 · q2 → 0 occurs when cosα → 1 and p2 · q2 → 0 occurs

when cosα→ −1.

E.1.3 4-Body Phase-Space with Massless Final States

For the 4-body phase-space all outgoing particles are massless. For parametrising

this phase space the incoming momenta p1 and p2 are rotated by angles α and β
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giving

p1 =

√
s

2
[1, sinα cosβ, sinα sinβ, cosα]T (E.13)

p2 =

√
s

2
[1,− sinα cosβ,− sinα sinβ,− cosα]T (E.14)

In the q1-q2 rest-frame the momenta q1 and q2 can defined by the angles θ and φ.

Boosting to the p1-p2 COM frame gives

q1 =

√
s12

2
[γ + vγ cos θ, cos θ sinφ, sin θ sinφ, γ cos θ + vγ]T (E.15)

q2 =

√
s12

2
[γ − vγ cos θ,− cos θ sinφ,− sin θ sinφ,−γ cos θ + vγ]T (E.16)

(E.17)

where

γ =
1√
s12

(
s+ s12 − s34

2
√
s

)
(E.18)

vγ =
1√
s12

√
λ(s, s12, s34)

2
√
s

(E.19)

with s12 and s34 parametrised by x1 and x2 as

√
s12 =

√
s x1(1− x2) (E.20)

√
s34 =

√
s x1x2 (E.21)

In the q3-q4 rest-frame the momenta q3 and q4 can be defined by the angle ψ. Boosting

to the p1-p2 COM frame gives

q3 =

√
s34

2
[γ − vγ cosψ, sinψ, 0, γ cosψ − vγ]T (E.22)

q4 =

√
s34

2
[γ + vγ cosψ,− sinψ, 0,−γ cosψ − vγ]T (E.23)

132



where

γ =
1√
s34

(
s+ s34 − s12

2
√
s

)
(E.24)

vγ =
1√
s34

√
λ(s, s34, s12)

2
√
s

(E.25)

The q3-q4 system needs to be rotated so that q4 is along the z-axis. This can be

achieved by rotating the x and z components of q3 and q4 so that

q
(x)
i → q

(x)
i cos η − q(z)

i sin η (E.26)

q
(z)
i → q

(x)
i sin η + q

(z)
i cos η (i = 3, 4) (E.27)

where η is defined by

tan η =
sinψ

γ cosψ + vγ
(E.28)

With this parametrisation the 4-body phase-space is

∫
d4

LIPS =
1

(2π)7

s
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∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

−1
d cosα

∫ 2π

0
dβ

∫ 1

−1
d cos θ

∫ 2π

0
dφ

∫ 1

−1
d cosψ x3

1x2(1− x2)
√
λ(s, s12, s34)

(E.29)

This choice of parametrisation makes it possible to identify the relevant infrared

divergent regions of the phase-space. If we treat q4 as the radiated bremsstrahlung

particle then for example p1 · q4 → 0 occurs when cosα → 1 and p2 · q4 → 0 occurs

when cosα→ −1.

E.2 Phase-Spaces for Decay Processes

In comparison to the production processes the decay processes have a single massive

initial state. This section describes the parametrisation of the phase-spaces for such

processes. For a decay processes the initial state has momenta p and mass m and

the outgoing states with momenta qi are assumed massless.
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E.2.1 2-Body Phase-Space

In the rest-frame of p the incoming momentum is

p = m [1, 0, 0, 0]T (E.30)

and the outgoing momenta are

q1 =
m

2
[1, 0, 0, 1]T (E.31)

q2 =
m

2
[1, 0, 0,−1]T (E.32)

This gives the trivial phase-space integral as

∫
d2

LIPS =
1

8π
(E.33)

E.2.2 3-Body Phase-Space

The 3-body phase-space for the decay process needs to be treated differently to all the

other phase-space integrals. As discussed in the main text the infrared divergences

coming from bremsstrahlung can be dealt with analytically by performing the integral

over the momentum of the bremsstrahlung particle in d = 4− 2ε dimensions.

With the incoming momentum described as given in eq.(E.30) the outgoing

momenta can be parametrised as

q1 =
xmLQ

2
[1, 0, 0, 1]T (E.34)

k =
ymLQ

2
[1, sin θ, 0, cos θ]T (E.35)

where k is the momenta of bremsstrahlung particle and the final outgoing momenta

is q2 = p− q1 − k. The angle cos θ is given in terms of the parameter z as

cos θ = 1− 2z (E.36)

134



and constraints on the momenta give

x =
(1− y)

(1− yz) (E.37)

With this choice of parametrisation and the momentum k evaluated in d = 4 − 2ε

dimensions the 3-body phase-space integral is

∫
d3

LIPS = d2
LIPS ×

1

16π2
m2

LQ

(
m2

LQ

µ2

)−ε ∫ 1

0
dy

∫ 1

0
dz

1− y
(1− yz)2

y1−2εz−ε(1− z)−ε

=
1

8π
× 1

16π2
m2

LQ

(
m2

LQ

µ2

)−ε ∫ 1

0
dy

∫ 1

0
dz

1− y
(1− yz)2

y1−2εz−ε(1− z)−ε

(E.38)

where d2
LIPS = 1

8π is the trivial two-body phase-space.
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