The University of Southampton
University of Southampton Institutional Repository

Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer

Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer
Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer
This paper reports for the first time a planarised optical fiber composite formed using Flame Hydrolysis Deposition (FHD). As a way of format demonstration a Micro-Opto-Electro-Mechanical (MOEMS) hot wire anemometer is formed using micro-fabrication processing. The planarised device is rigidly secured to a silicon wafer using optical quality doped silica that has been deposited using flame hydrolysis and consolidated at high temperature. The resulting structure can withstand temperatures exceeding 580K and is sensitive enough to resolve free and forced convection interactions at low fluid velocity.
Holmes, C.
16306bb8-8a46-4fd7-bb19-a146758e5263
Gates, J.C.
b71e31a1-8caa-477e-8556-b64f6cae0dc2
Smith, P.G.R.
8979668a-8b7a-4838-9a74-1a7cfc6665f6
Holmes, C.
16306bb8-8a46-4fd7-bb19-a146758e5263
Gates, J.C.
b71e31a1-8caa-477e-8556-b64f6cae0dc2
Smith, P.G.R.
8979668a-8b7a-4838-9a74-1a7cfc6665f6

Holmes, C., Gates, J.C. and Smith, P.G.R. (2015) Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer. SPIE Photonics West '15, , San Francisco, United States. 07 - 12 Feb 2015. 8 pp .

Record type: Conference or Workshop Item (Paper)

Abstract

This paper reports for the first time a planarised optical fiber composite formed using Flame Hydrolysis Deposition (FHD). As a way of format demonstration a Micro-Opto-Electro-Mechanical (MOEMS) hot wire anemometer is formed using micro-fabrication processing. The planarised device is rigidly secured to a silicon wafer using optical quality doped silica that has been deposited using flame hydrolysis and consolidated at high temperature. The resulting structure can withstand temperatures exceeding 580K and is sensitive enough to resolve free and forced convection interactions at low fluid velocity.

This record has no associated files available for download.

More information

Published date: 13 March 2015
Venue - Dates: SPIE Photonics West '15, , San Francisco, United States, 2015-02-07 - 2015-02-12
Organisations: Optoelectronics Research Centre

Identifiers

Local EPrints ID: 375127
URI: http://eprints.soton.ac.uk/id/eprint/375127
PURE UUID: 0afc7772-9b54-424c-9b55-4171d70a99c2
ORCID for C. Holmes: ORCID iD orcid.org/0000-0001-9021-3760
ORCID for J.C. Gates: ORCID iD orcid.org/0000-0001-8671-5987
ORCID for P.G.R. Smith: ORCID iD orcid.org/0000-0003-0319-718X

Catalogue record

Date deposited: 13 Mar 2015 10:09
Last modified: 30 Jun 2022 01:41

Export record

Contributors

Author: C. Holmes ORCID iD
Author: J.C. Gates ORCID iD
Author: P.G.R. Smith ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×