The University of Southampton
University of Southampton Institutional Repository

Development of infrared techniques for practical defect identification in bonded joints

Development of infrared techniques for practical defect identification in bonded joints
Development of infrared techniques for practical defect identification in bonded joints
Identification of kissing defects in adhesive bonds has been reported to be an area of concern across a range of industries. To date the majority of work on this matter has focused on the development of advanced ultrasonic techniques. The current thesis focuses on the use of thermography, specifically pulsed and pulse phase thermography (PT and PPT), for the identification of kissing defects. Initially the thesis focuses on the application of PT and PPT for the identification of a range of defect types in a variety of materials to establish the effect of material properties on identification of defects. A numerical model has been developed to simulate the thermal evolution created during a PT or PPT experiment. After validation through a series of case studies, this model has then been used as a predictive tool to relate defect detectability to the thermal property contrast between defect and bulk materials. Where insufficient thermal property contrast exists defects have a limited effect on heat propagation through a component and therefore are not detected using PT or PPT. A means of producing realistic kissing defects in bonded joints is established. The addition of a small load to bonds containing kissing defects was found to open the defects sufficiently to enable their detection. Initial experiments use the application of a tensile load, via a test machine, to successfully investigate simulated kissing defects in single lap joints. A technique using vacuum loading on one adherend of an adhesive bond while PPT is carried out from the other adherend was successfully trialled. Vacuum loading enables the technique to be taken out of the laboratory. A low cost infrared detector, Flir Tau320, compared to the research based photon detector, Flir SC5000, was demonstrated to be suitable for application in PT, thus enabling a significantly lower cost tool to be developed.
Waugh, R.C.
c9b89876-c7d5-4738-8d65-4f67634e904a
Waugh, R.C.
c9b89876-c7d5-4738-8d65-4f67634e904a
Barton, Janice
9e35bebb-2185-4d16-a1bc-bb8f20e06632

Waugh, R.C. (2014) Development of infrared techniques for practical defect identification in bonded joints. University of Southampton, Faculty of Engineering and the Environment, Doctoral Thesis, 209pp.

Record type: Thesis (Doctoral)

Abstract

Identification of kissing defects in adhesive bonds has been reported to be an area of concern across a range of industries. To date the majority of work on this matter has focused on the development of advanced ultrasonic techniques. The current thesis focuses on the use of thermography, specifically pulsed and pulse phase thermography (PT and PPT), for the identification of kissing defects. Initially the thesis focuses on the application of PT and PPT for the identification of a range of defect types in a variety of materials to establish the effect of material properties on identification of defects. A numerical model has been developed to simulate the thermal evolution created during a PT or PPT experiment. After validation through a series of case studies, this model has then been used as a predictive tool to relate defect detectability to the thermal property contrast between defect and bulk materials. Where insufficient thermal property contrast exists defects have a limited effect on heat propagation through a component and therefore are not detected using PT or PPT. A means of producing realistic kissing defects in bonded joints is established. The addition of a small load to bonds containing kissing defects was found to open the defects sufficiently to enable their detection. Initial experiments use the application of a tensile load, via a test machine, to successfully investigate simulated kissing defects in single lap joints. A technique using vacuum loading on one adherend of an adhesive bond while PPT is carried out from the other adherend was successfully trialled. Vacuum loading enables the technique to be taken out of the laboratory. A low cost infrared detector, Flir Tau320, compared to the research based photon detector, Flir SC5000, was demonstrated to be suitable for application in PT, thus enabling a significantly lower cost tool to be developed.

PDF
RWaugh_Thesis_final.pdf - Version of Record
Download (6MB)

More information

Published date: 29 May 2014
Organisations: University of Southampton, Engineering Science Unit

Identifiers

Local EPrints ID: 375146
URI: http://eprints.soton.ac.uk/id/eprint/375146
PURE UUID: 43f81a99-d700-4753-afc3-8d12515fc9a0

Catalogue record

Date deposited: 22 Jun 2015 12:14
Last modified: 17 Jul 2017 21:19

Export record

Contributors

Author: R.C. Waugh
Thesis advisor: Janice Barton

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×