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Abstract

In recent years a heightened awareness of the vulnerability of our environment to anthropogenic
activity combined with the need for better management of natural resources to sustain a rapidly
growing population has drawn attention to the importance satellite remote sensing. Remotely
sensed estimations of the biophysical variables of vegetation are applicable at many spatial scales
with many uses. Each new generation of satellites provides opportunities to refine the retrieval of
such variables and accordingly this thesis will focus on evaluating the potential of the future
Sentinel series of satellites for the retrieval of vegetation biophysical variables. Sentinel-3 (S-3),
tentatively planned for launch in mid-2015, will provide a continuation of the successful MERIS
sensor with enhanced temporal resolution. Alternatively Sentinel-2 (S-2) will acquire high spatial
resolution (20 m) reflectance measurements operationally across an unprecedented number of
bands on, and around, the red edge and is set for launch in April 2015. Initial research
investigated the effect of the soil background on the L2 operational MERIS product the MTCI.
MERIS imagery was used to explore the vegetation green up period and subsequently to establish
the Soil Discrimination Index, a flag to enhance the robustness of the MTCI at low canopy covers.
Following work utilised data from two field campaigns, SicilyS2EVAL and SEN3Exp, to compare LAI
and LCC measurements with synthetic S-2 data generated from contemporaneous hyperspectral
acquisitions. Two new methods were proposed to estimate the biophysical variables of vegetation
using S-2, IRECI which incorporates four bands situated on and either side of the RE and S2REP, a
version of Red Edge Position (REP) estimation for S-2 using linear interpolation. Next the
application of MTCI using S-2 and S-3 was investigated as well as the feasibility to downscale
between the sensors. With regards to S-3 the view angle of the sensor will be tilted 12.58° away
from the sun to minimise glint. This will lead to a maximum observed view angle of 55.6°, 15.6°
higher than that of MERIS while application of the MTCI using S-2 is more complicated due to the
large spectral differences the sensor has with Envisat MERIS. The combined effect means that
S2TClI will be between 44.28% and 68.8% higher than the MTCI and an initial formula has been
provided to convert between the indices. Findings also indicate that using MSI band 7 will be
more favourable than band 6 in the S2TCI formula.

Successfully downscaling between S-3 and S-2 could increase the temporal coverage of S-2
dramatically. A first trial of this was achieved via fusion modelling that synergised MERIS and
CHRIS data to represent S-3 and S-2 respectively. Synthetic S-2 imagery was generated from S-3
images at times of the year where high resolution imagery was not available. Results strongly
indicate that the time of the year that S-2 and S-3 imagery is linked will be of critical importance
and optimal results were achieved when the canopy was at maximum density. Finally a test
application of the Sentinel satellites was conducted in the evergreen forests of Edo, a state in
Nigeria, to assess degradation using a seven year MERIS dataset within the REDD+ framework. By
using the MTCI to estimate forest cover it was found that between 2005 and 2011 99.09 km” of
evergreen forest had been completely deforested while 415.71 km?* had been significantly
degraded. These figures are between 4% and 16.4% of the total area of evergreen forest that had
covered the Edo state in 2005. It was shown that it is possible to indicate deforestation by year
using MERIS data with a method easily quantifiable using threshold analysis. By using the default
Tier 1 guidance values of AGB from the IPCC the MTCI was successfully used to predict the total
loss of potential carbon sequestration. It was estimated that the primary forests of the Edo state
sequestered 131,095 t less of carbon in 2011 than in 2005.
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Chapter 1: Introduction

1.1. Background

In recent years a heightened awareness of the vulnerability of our environment to anthropogenic
activity combined with the need for better management of natural resources to sustain a rapidly
growing population has drawn attention to the importance satellite remote sensing. Remotely
sensed estimates of the biophysical variables of vegetation have many uses at many spatial scales.
They provide key inputs into global climate models, regional monitoring of desertification and
deforestation and at a field scale as a commercial tool in precision agriculture. Chlorophyll, a
green pigment in vegetation, is a critical component of photosynthesis; consequently a measure
of chlorophyll can be indicative of vegetation health and the photosynthetic capacity of a given
area. Remote sensing of vegetation depends on the biophysical composition of vegetation giving
it unique spectral properties. Chlorophyll strongly absorbs energy in the blue and red parts of the
spectrum while leaf internal structure determines reflectance in the near-infrared (NIR). This
resulting contrast in reflectance over the 680-750 nm range is referred to as the red edge (RE).
The position of the RE, defined as the point of greatest change in reflectance, is related to total
chlorophyll content (Collins 1978; Horler et al. 1983). A measure of red edge position (REP) can be
retrieved remotely at a global scale through spaceborne sensors that contain narrow bands in the
680-750 nm range. The Medium Resolution Imaging Spectrometer (MERIS) is such a sensor
aboard the Environmental Satellite (Envisat) which was launched on the 1* of March 2002 and
operated until the 8" of April 2012. The MERIS sensor measured the Earth’s surface spectral
reflectance features every 3 days in 15 spectral bands between 412.5-900 nm. These bands can in
turn be used by the MERIS Terrestrial Chlorophyll Index (MTCI), a vegetation index (VI), to
estimate REP and consequently provide a surrogate measure of chlorophyll content. The MTCI has

been implemented operationally as a full L2 MERIS product.

Each new generation of satellites provides opportunities to refine the retrieval of biophysical
variables at enhanced scales. The next generation of satellites will be part of Europe’s Copernicus
programme which was previously known as Global Monitoring for Environment and Security
(GMES). Of the total five Sentinel missions planned for with Copernicus, the Sentinel-2 (S-2) and
Sentinel-3 (S-3) missions have a key focus on global vegetation monitoring and are capable of
making measurements in the RE. The S-3 Ocean and Land Cover Imager (OLCI), tentatively
planned for launch in mid-2015, will ensure continuation of the 10 year long MERIS dataset into
the future with the discontinuation of Envisat. Such long running datasets are paramount in
providing perspective for investigations into surface and climate change and the impacts they

1
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bring for ecological viability and phenological transitions in vegetation (Zhu et al. 2013). The S-2
Multi-Spectral Instrument (MSI) is set for launch in April 2015 and will enable measurements in
the RE potion of the electromagnetic spectrum at a greatly enhanced spatial resolution of 20m.
There is much uncertainty in the characterisation of heterogeneous landscapes using MERIS data
at full resolution of 300 m due to pixels of mixed vegetation type. The issue is particularly relevant
in Europe due to irregular and small field sizes in agriculture compared to agriculture in other
parts of the world. The enhanced spatial resolution of S-2 should mitigate this issue, reducing

mixed class anomalies and incorrectly classified pixels.

1.2. Aims of the Research

This study aims to investigate the use of remote sensing to monitor vegetation condition and
distribution through time while evaluating the scope for improvement using the upcoming
Sentinel series over current methods and sensors. One of the key objectives of the analysis will be
to advance the MERIS Terrestrial Chlorophyll Index (MTCI) which was adopted operationally as a
full MERIS product. It is unknown specifically how the MTCI will perform at the increased spatial
(20 m) and spectral resolutions available via S-2 with multiple bands situated on and around the
RE; a region sensitive to chlorophyll concentration. Furthermore there is scope for investigation
into creating a synergy product that combines the attractive properties of S-2 with the greater
spatial coverage and temporal resolution of S-3. This research is important as there are many
scientific and commercial applications that rely on local, regional and global estimations of the
biophysical variables of vegetation. Consequently there is room for detailed analysis into the
opportunities the future Sentinel sensors bring when combined with robust algorithms for the
practice of vegetative remote sensing Research therefore shall be divided into three parts. Firstly,
the study aims to investigate the opportunities and implications that the future sensors S-2 and S-
3 have for the MTCI and also their compatibility. Secondly, the study aims to investigate the
possibility for retrieval of biophysical parameters for S-2 and S-3 and the key scientific
opportunities of these future sensors. Finally the work aims to apply research findings and
develop methodology within the Reducing Emissions from Deforestation and Degradation

(REDD+) framework.

This thesis builds upon research conducted at the University of Southampton during the ESA
funded MTCI-EVAL project which was focused on validation of the MTCI using the MERIS platform
with additional preliminary investigations into application of the MTCl to S-2 and S-3. Each
chapter is a novel piece of work conducted separate to the MTCI-EVAL project and where data or

figures are incorporated they are clearly referenced.
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1.2.1. Objectives of the Research

1

Review existing literature on the retrieval of vegetation biophysical variables with an

emphasis on operational applicability at a global scale.

Investigate the uncertainties in retrieval of biophysical variables using remotely sensed data
and assess if any of these uncertainties can be mitigated through algorithm changes or the
development of flags with specific investigation for the MTCI. Reduction in associated
uncertainty and accounting for unknown uncertainty in the retrieval of biophysical variables is

paramount in the development of methods which are as robust as possible.

Evaluate S-2 and the Multispectral Instrument (MSI) for the opportunities they bring for the
EO of vegetation and specifically the retrieval of biophysical parameters. Current algorithms
will need to be assessed using an extensive and suitable dataset which will need to match the
high spatial and spectral characteristics of the sensor. Improved methods for retrieval of

biophysical parameters using S-2 should be proposed if justified enhancements are observed.

Investigate the opportunities for application of MTCI on S-3 and the feasibility to downscale
to S-2 creating a synergy product. If possible creation of a synergy product of S-2 and S-3

could allow the high spatial scale of S-2 with the rapid temporal scale of S-3.

Apply scientific findings of previous objectives to develop methodology to measure change in
the photosynthetic capability of forested areas to demonstrate the operational use of Earth

Observation data within the REDD+ framework.
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1.3. Chapter Overview

CHAPTER 1: Introduction

CHAPTER 2: Literature Review

DATASETS:

CHAPTER 3: The Soil Discrimination
Index and its Application to the MTCI

* ASTER Soil Library
« lowa Globcover

* MERIS: Dalhart Texas
* MERIS: Albacete

CHAPTER 4: Evaluating the Capabilities
of Sentinel-2 for Quantitative Estimation
of Biophysical Variables in Vegetation

* SEN3Exp
* SicilyS2EVAL

CHAPTER 5: Investigating the Opportunities
for Application of MTCI using Sentinel-2
and Sentinel-3 and the Feastibility
to Downscale

« SEN3Exp
« SPARC 2004

CHAPTER é: Quantification of Change in
Photosynthetic Capabilities of Deforested
Locations and Opportunity for Future
Recovery under the REDD+ Framework

« MODIS: MODOD6
» MERIS: Edo, Nigeria

CHAPTER 7: Conclusions and Future work

Figure 1.1: Chapter Overview of the thesis highlighting where datasets are utilised.
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Chapter 2 — Literature Review.

An initial literature review was performed on material relevant to the research objectives in the
first few months of the project timeframe. Since then this has been adjusted and updated as
required resulting in the current format. A particular focus was put on fully reviewing the Sentinel
satellites, their prospects and possible applications. Furthermore an investigation into
uncertainties associated with the retrieval of vegetative biophysical variables was performed that
included the following topics: hardware deterioration, view geometry, atmospheric variance,

background condition, canopy structure, spatial resolution and phenology.
Chapter 3 — The Soil Discrimination Index and its Application to the MTCI.

As a result of the literature review and preliminary investigations it was found that the
background variation can have a significant effect on the output of VIs and especially the MTCI. It
was decided that a flag should be developed for the MTCI product to account for uncertainty due
to soil without changing its formulation. Consequently a dataset of background reflectances was
acquired and compared to a long running dataset of agricultural land in lowa. The output was a
new Soil Discrimination Index (SDI) which should enhance the robustness of the MTCI at low
canopy covers and subsequently an initial validation was performed in Texas and the Iberian
Peninsula. Results of the analysis were presented in September 2010 at the Remote Sensing and
Photogrammetry Society (RSPSoc) 2010 Conference and an extended abstract, ‘Quantifying the
Effect of Soil on Retrieval of Chlorophyll Content from Remotely Sensed Data’, was accepted for

inclusion into the proceedings (Frampton et al. 2010).

Chapter 4 — Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical

Variables in Vegetation.

During a review of current of field campaigns that involved ground chlorophyll content
measurements the majority were found to be insufficient to achieve one of the key objectives of
this research; evaluating the opportunities of S-2 for the retrieval of biophysical parameters, due
to the spatial and spectral characteristics of S-2. Consequently a data collection field campaign,
SicilyS2EVAL, was planned and conducted in May 2010. It involved 2025 Minolta SPAD-502™
measurements of 225 plants across 25 elemental sampling units (ESUs) of ground measurements
of leaf chlorophyll concentration (LCC) as well as 450 leaf area index (LAl) measurements using a
Li-Cor LAI-2000. Contemporaneous hyperspectral airborne data acquired by the Natural
Environment Research Council (NERC) Airborne Research & Survey Facility (ARSF) from which
synthetic S-2 data could be generated. In addition to this, another dataset, SEN3Exp which took

place in June 2009 in Barrax, Spain was acquired from the European Space Agency (ESA). Current
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methods and algorithms were considered for retrieval of LAI, LCC and canopy chlorophyll content
and two novel algorithms presented; Sentinel-2 Red Edge Position (S2REP) and the Inverted Red
Edge Chlorophyll Index (IRECI). The findings were presented as a talk at RSPSoc 2011 and
accepted as an extended abstract for inclusion in the conference proceedings (Frampton et al.
2011). A further version of the chapter was published as FRAMPTON, W. J., DASH, J.,
WATMOUGH, G. R., and MILTON, E. J., 2013, Evaluating the capabilities of Sentinel-2 for
guantitative estimation of biophysical variables in vegetation. Journal of Photogrammetry and

Remote Sensing, 82, 83-92.

Chapter 5 — Investigating the Opportunities for Application of MTCl using S-2 and S-3 and the

Feasibility to Downscale

This chapter investigated the application of MTCI using S-2 and S-3 as well as the feasibility to
downscale between the sensors. With regards to S-3 the view angle of the sensor will be tilted
12.58° away from the sun to minimise glint. This will lead to a maximum observed view angle of
55.6° 15.6° higher than that of MERIS while application of the MTCI using S-2 is more complicated
due to the large spectral differences the sensor has with Envisat MERIS. The combined effect
means that S2TCl will be between 44.28% and 68.8% higher than the MTCl and an initial formula
has been provided to convert between the indices. Findings also indicate that using MSI band 7
will be more favourable than band 6 in the S2TCI formula. Successfully downscaling between S-3
and S-2 could increase the temporal coverage of S-2 dramatically. A first trial of this was achieved
via fusion modelling that synergised MERIS and CHRIS data to represent S-3 and S-2 respectively.
Synthetic S-2 imagery was successfully generated from S-3 images at times of the year where it
was not available achieving a relative accuracy of 20-50%. Results strongly indicate that the time
of the year that S-2 and S-3 imagery is linked will be of critical importance and the best results

were achieved when the canopy was at maximum density.

Chapter 6 — Quantification of Change in Photosynthetic Capabilities of Deforested Locations and

Opportunity for Future Recovery under the REDD+ Framework

Chapter 6 tested an application of the Sentinel satellites in the evergreen forests of Edo state,
Nigeria. Research assessed forest degradation using a seven year MERIS dataset within the REDD+
framework. By using the MTCI to estimate forest cover it was found that between 2005 and 2011
99.09 km? of evergreen forest had been completely deforested while 415.71 km?* had been
significantly degraded. These figures are between 4% and 16.4% of the total area of evergreen
forest that had covered the Edo state in 2005. It was shown that it is possible to indicate
deforestation by year using MERIS data with a method easily quantifiable using threshold analysis.

By using the default Tier 1 guidance values of above-ground biomass (AGB) from the IPCC the
6
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MTCI was successfully used to predict the total loss of potential carbon sequestration. It was
estimated that the primary forests of the Edo state sequestered 131,095 t less of carbon in 2011
than in 2005.

Chapter 7 — Conclusions and Future Work

Chapter 7 provides a summary of the achievements of this research, highlights key findings and

proposes several new lines of investigation for future work.
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Chapter 2: Literature Review

2.1. Measurements of Vegetation Biophysical Variables

Biophysics is the concept of combining physics and chemistry by using mathematical analysis and
modelling to fundamentally understand biological systems. With respect to vegetation the
structure of the canopy and leaf chemistry are key biophysical variables in interpreting the

dynamics of these biological systems.

2.1.1. Leaf Pigments

Leaves are mainly constituted by chlorophyll, water filled vacuoles, nitrogen and cell walls made
up from cellulose and pectin (Campbell and Reece 2005). Chlorophyll, a vital molecule for
photosynthesis, is embedded in the membrane of chloroplasts in all green vegetation. The
pigment serves two purposes; firstly it absorbs light energy and secondly uses this to perform a
redox reaction converting water and carbon dioxide into carbohydrate and oxygen. It should be
noted that plants also use carotenes (oxygen free carotenoids) and xanthophylls (carotenoids
containing oxygen) to absorb light energy (Campbell et al. 2006), however as Gates et al. (1965)
noted chlorophyll accounts for 60-75% of the energy absorption by the plant in the visible part of
the spectrum while Verdebout et al. (1994) highlighted that chlorophyll is ten times more
concentrated than carotenoids. There are two types of chlorophyll, chlorophyll-a and chlorophyll-
b. Chlorophyll-a is the primary pigment responsible for the biochemical action of photosynthesis
while chlorophyll-b is an accessory that collects additional energy to supply chlorophyll-a with
(Lichtenthaler 1987). As well as collecting additional energy chlorophyll-b has been shown to
regulate the antenna array which links the reaction centre to the chlorophyll absorbing energy

(Hankamer et al. 1997; Green and Durnford 1996; Tanaka and Tanaka 2000).

Chlorophyll can be assessed destructively or in vivo, i.e. within the living. Destructive leaf sampling
involves removal of the chlorophyll from the leaf using a solvent. Moran and Porath (1980; Moran
1982) found Dimethylformamide to be the most suitable solvent for chlorophyll extraction
superior to acetone as it enabled extraction from intact tissues. To achieve consistent results the
same area of leaf should be removed from each sample, easily achieved using a circular hole
punch, and added to a fixed quantity of solvent. It should also be noted that the location on the
leaf that the cutting is taken from is important as chlorophyll density varies. After chlorophyll has
been extracted from chloroplasts by the solvent the solution is placed into a spectrophotometer
which measures absorption at very high spectral resolution to derive the wavelengths of

maximum absorption of the solution. Deriving absorption maxima in vivo at a canopy scale
8



William James Frampton

involves taking chlorophyll measurements in a fixed area and directly comparing them with
remotely sensed reflectance data using regression analysis to find the most strongly related
wavelength. Chlorophyll content estimations can also be derived using handheld devices such as
the Minolta SPAD-502™ which measures absorption at 440 nm and 670 nm and subsequently

correlates the results with destructive measurements.

2.1.2. Leaf Area Index

Leaf area index (LAI) is a key biophysical variable that determines, with leaf chlorophyll
concentration (LCC), the total canopy chlorophyll content per metre of ground area. LAl is
effectively canopy density and has important implications for the energy balance of the land due
to the reflective nature of vegetation in the NIR (Bonan 1995). Consequently LAl is key in
determining photosynthetic activity and gross primary productivity (GPP). LAl is widely measured
as the total area of leaves per square metre of ground (m?*/m?)(Wilhelm et al. 2000). In the case of
non-flat leaves such a pine needles LAl can be defined as half the total surface area of the needle

per ground unit area (Chen and Black 1992).

LAl can be sampled directly or indirectly. Direct measurement involves destructive leaf sampling
where leaves are physically removed from the canopy and area is measured. Indirect
methodologies involve the use of models and optical instruments (Chen et al. 1997). Direct
sampling can be time and resource intensive depending on the scale of the investigation.
Morisette et al. (2006) noted indirect LAl measurements are most commonly made using an Li-
Cor LAI-2000™ (Campbell and Norman 1990) or a Tracing Radiation and Architecture of Canopies
(TRAC)(Chen 1996; Leblanc 2002). The LAI-2000 uses 5 concentric rings from 0-75° (approximately
0-13°, 16-28°, 32-43°, 47-58°, 61-74°)(Li-COR INC. 1992) to measure the transmitted light in the
blue part (400-490 nm) of the spectrum through the canopy (Chen et al. 1997). In turn it uses
these measurements over five zenith angles to calculate gap fraction (Miller 1967). TRAC
measures the percentage of absorbed radiation (PAR) over a larger range of 400-700 nm than the
LAI-2000 (Leblanc 2002). Through the use of a data logger TRAC records canopy gap fraction and
size over planned transects and calculates LAl. Ground measurements of LAl are in turn correlated
to remotely sensed data to in turn validate algorithms to retrieve LAl and provide an estimate of
vegetation density at the required scale. While LAl determines the density of the canopy the leaf
angle distribution (LAD) is an important factor in determining the amount of light incepted by the
canopy (Clevers et al. 1994). Due to this LAD has an impact of crop growth and measurements

made by optical sensors.
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2.2. Spectral Properties of Vegetation

Incoming solar radiation intercepted by vegetation is partly reflected, absorbed and transmitted.
Biophysical variables of vegetation affect these light interactions and consequently give the
vegetation unique spectral properties. The absorption features that can be seen in vegetation
under spectral analysis are due to electron transitions and vibrational stretching of molecular
bonds (Curran et al. 1992). Chlorophyll strongly absorbs energy in the blue (450-475 nm) and red
(620-740 nm) parts of light while conversely the cell walls, primarily composed of cellulose, and
gaps between them reflect and transmit energy in the visible and NIR (Curran 1989; Glenn et al.
2008) preventing damage that would occur due to overheating through excess energy absorption.
As chlorophyll absorbs red and blue light the lack of absorption in the green (495-570 nm) part of
the spectrum gives vegetation its colour. The green colour of vegetation is dependent on the
absence of species specific high concentrations of carotenoids, anthocyanins and betalains which
are non-green pigments. The described absorption and reflectance features of chlorophyll and

cellulose are presented in Figure 2.1.
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Figure 2.1: Example of a typical vegetative spectra. Figure shows average spectral reflectance of

50 corn fields during July-August 2005 in central-western lowa.

Early work by Jordan (1969) and Federer and Tanner (1966) highlighted the combined maximum
absorption to be at 675nm while Tucker (1979) presented it to be at 690nm in vivo at a canopy
scale. Destructive work by Vernon (1960) and Moran (1982) separated chlorophyll a and b and
noted the maximum absorptions to be at wavelengths of 664 nm and 647 nm respectively while
Curran (1989) reported them to be at 0.66 pum (660 nm) and 0.64 um (660 nm). Gross (1991)

highlighted essentially the same result at a finer spectral resolution of 662 nm and 642 nm while
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Wellburn (1994) found the maxima to be at 665 nm and 647 nm. It can be seen that there are
differences between the maxima for in vivo and destructive results. Lichtenthaler (1987) reported
spectral shifts of 10 nm between the methods which agree with results from literature. The
differences can be linked to the influence of the solvent and that chlorophyll, in vivo, are
combined with proteins and other pigments (Verdebout et al. 1994). Wellburn (1994) showed the
variation in central wavelength maxima retrieved depending on the solvent used. He compared
chloroform, dimethylformamide and dimethylsulphoxide and found 2 nm variance in both
chlorophyll-a and b. Variation of leaf water content has been found to not affect the optical and
NIR parts of the spectrum up to 800 nm (Ceccato et al. 2001). Nevertheless there have been many
studies which use the Short-Wave Infrared (SWIR) region (located between 800 — 1700 nm),
which is sensitive to change in water content, to establish leaf water content (Tucker 1980a;

Eidenshink et al. 1990; Paltridge and Mitchell 1990; Chuvieco et al. 1999).

The Beer-Lambert law relates the attenuation of light to the properties of the material through
which the light is travelling (Daintih 2009). Consequently an increase in chlorophyll content causes
both a broadening and deepening of the absorption feature. However in very dense canopies with
high leaf chlorophyll concentrations saturation can occur resulting in an asymptotic relationship
(Tucker 1977). This saturation point will be reached first at the absorption maxima. As the off-
centre wavelength feature broadens with increased chlorophyll it is less affected by saturation.
Therefore off-centre wavelengths can sometimes be more accurate estimators of chlorophyll

content than the absorption maxima itself.

2.3. Satellite Sensors

2.3.1. Envisat MERIS

The first EO satellite launched by the European Space Agency (ESA) was the European Remote-
Sensing Satellite-1 (ERS-1) in 1991 (ESA 2012b). ERS-1 carried the Along-Track Scanning
Radiometer (ATSR) which was capable of making measurements in the infrared and microwave
parts of the spectrum. Its successor ERS-2 came into service in 1995 with an improved ATSR-2
which included channels in the green (550 nm), red (670 nm) and NIR (870 nm) and consequently
was the first European satellite able to quantify the Normalized Difference Vegetation Index

(NDVI) and a range of other Vis.

Envisat was launched on the 1* of March 2002 and reached a sun synchronous polar orbit at an
altitude of 790 km (ESA 2012a). Envisat orbits the Earth every 101 minutes and has a repeat cycle

of 35 days. MERIS, a spectrophotometer aboard Envisat, has 15 programmable spectral bands
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within the range of 390-1040 nm (Rast et al. 1999). Table 2.1 shows the bands MERIS retrieves

surface reflectance for in operational mode.

Table 2.1: Details of the spectral characteristics of MERIS bands in operational mode.

Band Number | Central Wavelength (hnm) | Band Width (nm)
1 412.5 10
2 442.5 10
3 490 10
4 510 10
5 560 10
6 620 10
7 665 10
8 681.25 7.5
9 708.75 10

10 753.75 7.5
11 760 3.75
12 775 15
13 865 20
14 890 10
15 900 10

In full resolution mode (FR) MERIS has a spatial resolution of 300 m and 1200 m in reduced
resolution mode (RR) (Kealy and Dewart 1999). Selecting a spatial resolution to meet study
specific requirements is important as FR data is 12 times larger than RR and can add significant
computation unnecessarily. MERIS has a large swath of 1150 km at a field of view of 68.5° which
results in a global temporal resolution of 7 days at the equator improving to nearly 2 days at 70°
latitude (Rast et al. 1999). Although MERIS was optimised for oceanic applications Verstraete et
al. (1999) noted that with its fine spectral and moderate spatial resolution MERIS was a great
opportunity for EO of the terrestrial environment. With respect to vegetation EO the key benefit
of MERIS to other spaceborne sensors are the several high spectral resolution bands in the RE
region. MERIS band 9 was the first spaceborne sensor to obtain reflectance information

operationally in the RE.

When launched Envisat had a 5-year nominal lifetime. A limited supply of hydrazine fuel was
carefully managed through orbital manoeuvre adjustment to allow extension of the lifetime a
further three and a half years up until 2010. The expected lifecycle of Envisat was further
extended in October 2010 until 2014 through moving to a lower orbit and disabling inclination
controls meaning that Envisat no longer has orbit maintenance performed. The disabling of these
controls has possible inclination drift consequences which could reduce accuracy of the ground

tracking (ESA 2010b). However on the 8" of April 2012 communication with Envisat was lost.
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Although a series of attempts were made to reconnect with Envisat there was no response and
now the chances of recovering the satellite are extremely low. Consequently there is increased
urgency to produce the next series of European satellites with capabilities in the Red Edge; the

Sentinels.

2.3.2. Copernicus Program

Copernicus is the programme for establishment of a European capacity for EO (GMES 2012).
Copernicus aims to provide accurate and reliable data that can aid decision makers in developing
the most appropriate environmental and security policies. With the EO devices rapid monitoring
capacity Copernicus will support prompt response to natural disasters, industrial accidents or
humanitarian crises to provide worldwide aid relief. Copernicus is coordinated by the European
Commission, ESA and the European Environment Agency. Five spaceborne sensors, named the
Sentinel series, are currently being developed by ESA that will provide EO data for the Copernicus

program (ESA 2012c). Of the five, two are specifically relevant to the EO of vegetation.

2.3.3. Sentinel 2

Sentinel 2 (S-2) will provide systematic global acquisitions of high resolution multispectral imagery
for Copernicus. The Multi-Spectral Instrument (MSI) aboard S-2 is the solitary sensor and has been
designed to enable the continuity of Satellite Pour I'Observation de la Terre (SPOT) and Landsat
type data into the future. S-2 however it will provide an enhanced spectral resolution, with 13
bands used to follow on from the MODerate-resolution Imaging Spectroradiometer (MODIS) and
MERIS. The S-2 mission envisions of a pair of satellites simultaneously circulating the Earth in a
sun-synchronous 180° phase orbit with a 290km swath (ESA 2010). The first satellite, S-2A, is
planned for launch in April 2015 which is to be followed by S-2B tentatively planned for launch
two years after S-2A (ESA 2011a). Tandem operation of S-2A and B will deliver a revisit period of
up to five days under cloud free conditions at a band dependant 10-60 m spatial resolution with

key vegetation bands having a spatial resolution of 10 and 20 m highlighted in Table 2.2.
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Table 2.2: Spectral bands of S-2 MSI.

S-2 Central Bandwidth Spatial Resolution
Band | Wavelength (nm) (nm) (m?)
1 443 20 60
2 490 65 10
3 560 35 10
4 665 30 10
5 705 15 20
6 740 15 20
7 783 20 20
8 842 115 10
8a 865 20 20
9 945 20 60
10 1375 30 60
11 1610 90 20
12 2190 180 20

There is much uncertainty in the characterisation of heterogeneous landscapes using MERIS
operating at full resolution of 250-300 m due to pixels of mixed vegetation type. The issue is
particularly relevant in Europe due to irregular and small field sizes in agriculture compared to
agriculture in other parts of the world. The enhanced spatial resolution of S-2 should mitigate this

issue reducing mixed class anomalies and incorrectly classified pixels.

2.3.4. Sentinel 3

Sentinel 3 (S-3) is designed to support Copernicus services related to the marine environment
while also providing contributions to terrestrial EO and security. Like S-2, S-3 will function as a
series of satellites to allow enhanced temporal resolution. Three satellites are planned to operate
in a sun-synchronous orbit at an altitude of 814 km with a swath of 1270 km. A pair alone in
operation will enable the entire terrestrial environment to be monitored every two days at the
equator improving with increasing latitude (ESA 2011b). S-3 will have an extensive payload of
seven sensors with the Ocean and Land Colour Instrument (OLCI) providing measurements in the
visible and NIR parts of the spectrum. Like MERIS OLCI will operate at two resolutions, 300 m at
FR and 1200 m at RR. OLCl includes 21 bands (Table 2.3) that take heritage from MERIS and SPOT
and will have improved radiometric stability compared to MERIS (ESA 2011b). S-3A is planned for
launch in mid-2015 followed by S-3B 18 months later while S-3C is tentatively planned for launch
before 2020 (ESA 2011a).
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Table 2.3: Spectral bands of S-3 OLCI.

S-3 Central Bandwidth
Band Wavelength (nm) (nm)
1 400 15
2 412.5 10
3 442.5 10
4 490 10
5 510 10
6 560 10
7 620 10
8 665 10
9 673.75 7.5
10 681.25 7.5
11 708.75 10
12 753.75 7.5
13 761.25 2.5
14 764.375 3.75
15 767.5 2.5
16 778.75 15
17 865 20
18 885 10
19 900 10
20 940 20
21 1020 40

S-3 will ensure continuation of the 10 year long MERIS dataset into the future as Envisat reaches
the end of its intended lifetime. Such long running datasets are paramount in providing
perspective for investigations into surface and climate change and the impacts they bring for

ecological viability and phenological transitions in vegetation (Zhu et al. 2013).

2.3.5. Non-Operational/Commercial Sensors with RE Capabilities

The Compact High Resolution Imaging Spectrometer (CHRIS) is the main sensor of Proba-1, ESA’s
smallest satellite. Proba-1 is a technology demonstrator, albeit a highly successful one that
resulted in continuation of the series with Proba-2 launched in November 2009 and Proba-V
(Proba Vegetation) in May 2013 (ESA 2014b). CHRIS is an opportunistic sensor which targets
planned sites at specified times. Typically only one or two sites are observed each day with
irregular revisit times to accommodate accepted research proposals. In operational mode 1 CHRIS
acquires reflectance in 63 separate spectral bands for a ground area of 13 km? at a spatial

resolution of 34 m.
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The Hyperspectral Imager (Hyperion) is one of the sensors aboard NASA’s Earth Observing-1
Mission (EO-1) satellite which measures reflectance for 220 wavelengths at 30 m spatial
resolution for a 7.7 km by 42 km area (NASA 2014). Originally the sensor was designed for a 12
month lifecycle when launched of the 21° of November 2000 however it is still in operation today.
Like CHRIS observations are opportunistic and subject to a successful data acquisition request

application.

RapidEye is a constellation of five satellites that was launched on the 29" of August 2008 capable
of collecting reflectance values in spectral five bands covering up to 5,000,000 km” at 5 m spatial
resolution each day (Blackbridge 2014). Bands are positioned at 475 nm, 555 nm, 657.5 nm, 710

nm and 805 nm covering the blue, green, red, RE and NIR respectively.

2.4. Importance of the Red Edge Position

2.4.1. The Red Edge

The RE is denoted as the region of great change in vegetation reflectance due to the opposing
features of plant pigment absorption in the red and cellulose reflectance in the NIR (Gates et al.
1965; Horler et al. 1983; Curran 1989; Glenn et al. 2008). The RE has been shown to be indicative
of biophysical variables (Collins 1978; Horler et al. 1983). Increases in chlorophyll content causes
both a broadening and deepening of the absorption feature centred around 665-680 nm
(Banninger 1991; Dawson and Curran 1998). This causes a shift in the RE slope towards longer
wavelengths (Clevers et al. 2002; Horler et al. 1983). The point of maximum change of the RE has
been dubbed the REP and this inflexion point has been shown to be related to total chlorophyll
content (Horler et al. 1983; Clevers and Bliker 1991; Dawson and Curran 1998; Dash and Curran
2006). The REP can be calculated at various spatial scales and accuracies depending on availability
of reflectance band measurements and spectral scales in the RE. MERIS meets such requirements
with band 9 (Table 2.1) consequently becoming the first spaceborne sensor to obtain global
reflectance information operationally in the RE. Estimation of REP on discontinuous data was
undertaken for MERIS by Dawson and Curran (1998) where they proposed a technique based on
the three-point Lagrangian interpolation (Jeffery 1985). Clevers et al. (2002) noted that use of the
Lagrangian technique resulted in a jumping feature in a nonlinear REP/chlorophyll content
relationship (Dash and Curran 2004). Consequently the method would require manual
confirmation of the first derivative reflectance maxima and therefore could not be used
operationally. A second method of REP estimation as proposed by Guyot et al. (1988) involves
linear interpolation using the red and NIR reflectance. Clevers et al. (2002) applied the method for

MERIS bands and can be seen below (Eq. (2.1)).
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TNIR+TR

—TRE1
REP (MERIS) = 708.75 + 45 « L2 )

TRE2—-TRE1 Ea. (2.1)

Where rNIR is the reflectance at 775 nm, rR at 665 nm, rRE1 at 708.75 nm (originally 705 nm) and
rRE2 at 753.75 nm.

While the method has the advantage of being computationally simple Clevers et al. (2002)
reported the relationship was a robust method of estimating REP. However, there are some issues
with this method when applied using MERIS bands as accurate measurement requires both the RE
inputs to be directly on the linear slope of the RE. While this is the case with RE1, RE2 is located
beyond this linear part as the gradient flattens towards the NIR plateau. It should be highlighted
that, while discussed in more detail further into the chapter, the band positions of S-2 in theory

should allow enhanced estimation of the REP using this method over MERIS or S-3.

2.4.2. The MTCI

The MTCI (Eq. (2.2)) is a surrogate REP index which became an official MERIS level-2 product of
ESA in March 2004 (Dash and Curran 2004).

rNIR-TRE _ r753.75nm—r708.75nm

MTCI = =
TrRE—-TrRed r708.75nm—-r681.25nm

Eqg. (2.2)

Dash and Curran (2004) reported the MTCI to be more sensitive than using a measure of REP for
high chlorophyll content values. Follow up work showed MTCI to be strongly positively related to
chlorophyll indirectly through comparison to concentrations of herbicide used in Vietnam (Dash
and Curran 2006). Dash et al. (2010a) compared the MTCI to ground chlorophyll measurements in
southern England and found, with the exclusion of an outlier, an R? of 0.8 with an accuracy
estimation (in relation to the mean) of 71%. The MTCI has also been used in studies not directly
measuring chlorophyll but processes where it could be used as a proxy. Harris and Dash (2010)
reported that the across site relationship of MTCI compared to GPP performed with a stronger
relationship than the MODIS GPP or Enhanced Vegetation Index (EVI). Wu et al. (2008) also used
the MTCl in a GPP analysis of wheat and showed it to outperform other chlorophyll-related Vis.
The MTCI has also been used by Jeganathan et al. (2010) and Dash et al. (2010b) to assess
phenological transitions in India at a regional scale. Boyd et al. (2011) further used the MTCl as a
surrogate for chlorophyll content while monitoring the phenology of woodland and grass/heath
land in Southern England. Findings supported the use of MTCI for constructing phenological
profiles due to its sensitivity with canopy chlorophyll content. Boyd et al. (2012) also incorporated
the MTCl into three GPP models which were correlated with flux tower GPP measurements across
30 sites in USA, Canada and Brazil. Results indicated that the MTCI, as a surrogate measure of

chlorophyll content, was able to give favourable approximations of GPP.
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The MTCI dataset reached over a decade of global coverage with the 10" anniversary of the
Envisat launch in March 2012. Continuation of this long running dataset was originally thought to
be likely without significant disruption as, at the time, S-3 was scheduled for launch in 2013 and
orbital adjustments to Envisat were thought to have ensured the operation of MERIS until 2014.
However on the 8" of April 2012 contact was lost with Envisat and chances of recovery are
extremely low meaning until the launch of S-3 the MTCl is limited to past acquisitions. Long
running datasets such as the MERIS dataset are specifically useful to phenological studies with

regards to climate variability and change.

2.5. Retrieval of Biophysical Variables from Satellite Data

2.5.1. Modelling

Modelling of vegetation is based on radiative transfer theory; the fundamental idea that changes
to radiation intensity are related to local absorption along the ray path. Consequently models link
the spectral variation of the canopy, governed by the pigment concentrations, with the directional
variation which is influenced by the canopy structure. PROSAIL (Baret et al. 1992, Jacquemoud et
al. 2009) is the combination of the PROSPECT leaf optical properties model (Jacquemound and
Baret 1990) and the Scattering by Arbitrary Inclined Leaves (SAIL) canopy bidirectional reflectance
model (Verheof 1984; 1985). The model can be used to simulate canopy reflectance for a range of
leaf biochemistry and canopy parameters which the user can select. Consequently the user can
easily produce a dataset for validation purposes for a range of biophysical variables in the optical
region at a 1 nm spectral resolution. Nevertheless a dataset that is derived from a model will be
limited to how well it represents reality almost certainly missing out on natural dynamic response

of vegetation.

SAIL was developed by Verhoef (1984) to simulate reflectance at the canopy level and was later
extended by Kuusk (1991) to account for the hot spot effect. The SAIL model simulates canopy bi-
directional reflectance as a function of three structural parameters: LAl, average leaf angle (ALA)
and the hot spot parameter (HOT). HOT can be considered an empirical parameter that is strongly
related to the sharpness of the hot spot peak; which, as a guideline, one can use the ratio of leaf
width to canopy height as an estimate of its magnitude (Verhoef and Bach 2003). SAIL also
incorporates the soil spectral reflectance, fraction of diffuse irradiance and the view and
illumination geometry. PROSPECT simulates leaf reflectance and transmittance as a function of
four structural and biochemical leaf parameters: LCC, dry matter content, leaf water thickness
and a leaf mesophyll structural parameter (N). The combination of these two models, PROSAIL,

has been reported to produce realistic results of bi-directional reflectance spectra for many
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different crops in various investigations. Andrieu et al. (1997) found a good agreement for SAIL

using the structure of sugar beet canopies outside of the hot-spot direction. Jacquemoud et al.

(1995) also investigated the performance of the model using sugar beet data, however, with less

success attributing the performance to especially bright soils. Major et al. (1992) found the model

adequate at predicting the LAl of maize throughout the entire growing season. Examples of

PROSAIL model inputs are presented in Table 2.4 and an overview of the model is exhibited in

Figure 1.1Figure 2.2 which was used in the MTCI-EVAL project (Watmough et al. 2011)

level

Cano

Leaf variables:

-N
Leaf
: g:|a+b I >| Leafmodel |00 > reflctance
G transmittance
IHlumination
E:::j> &
Canopy structure: Canopy :
I ] View
- LAI model <:| geometry
- HOT _
- ALA RO
74
J]7 Soil

REFLECTANCE

[ CANOPY

Reflectance

J

Figure 2.2: Schematic representation of PROSAIL: the coupling of the leaf (PROSPECT) and canopy

(SAIL) models. First presented in the MTCI-EVAL project (Watmough et al. 2011).

Table 2.4: Example of input variables for PROSAIL.

Model Variables Units Range
PROSPECT
N Leaf structure index Unitless 1.5
Cab Leaf chlorophyll content = [pg cm?] 5-70
Cn Leaf dry matter content [g cm?] 0.009
SAIL
LAI Leaf area index [m2m? 0-8
ALA Average leaf angle [°] 35
HotS Hot spot parameter [m m™] 0.01
S Sun zenith angle [°] 30
% View zenith angle [°] 10
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2.5.2. Use of Vis

Since the early 1970s early Earth observation (EO) spaceborne platforms such as Landsat 1 and
the National Oceanic and Atmospheric Administration (NOAA; NOAA 2011) series, which were
equipped with the Advanced Very High Resolution Radiometer (AVHRR) sensor, have provided the
capability of measuring reflectance within the red and near-infrared (NIR) regions to researchers.
These bands were quickly exploited through the use of Vegetation Indices (VIs) to simply and
quickly identify areas of vegetation and draw further conclusions about their ‘state’. The basis of
the algorithms is that the biophysical composition of vegetation gives it unique spectral
properties, as discussed in section 2.2. and Error! Reference source not found.., compared to
on-vegetated surfaces such as soil. Vs are combinations of multiple reflectance measurements
where multispectral imagery is available (Chuvieco and Huete 2010) and enhance the vegetative
signal in remotely sensed data consequently enabling the extraction of useful information about
the vegetation (Asrar et al. 1992; Gutman 1991). The Normalized Difference Vegetation Index
(NDVI; Eq. (2.3)) was the earliest large scale use of a VI which was first formally reported by Rouse
et al. (1973) (see Kreigler et al. 1969; Tucker 1979) and remains today as the most widely used

method of monitoring vegetation at a global scale.

NDV] = NMR-TRed e (2.3)
rNIR+1rRed

VIs aim to measure the amount of photosynthetically active vegetation by manipulating bands
within a spectral signature gained remotely at varying scales (Curran et al. 1997). The majority of
Vls, like the NDVI, build upon the difference between the reflectance in the NIR and the red which
was theorised before the NDVI in two ways by Jordan (1969) in the form of the Simple Ratio (SR;
Eg. (2.4)) and the Difference Vegetation Index (DVI; Eq. (2.5)).

rNIR
rRed

SR = Eq. (2.4)

DVI = rNIR — TR Eqg. (2.5)

While studies have shown the DVI to be superior at low canopy covers (Roujean and Breon 1995)
due to being less affected by the spectral signature of the background the NDVI is more robust in
full canopies mitigating solar and atmospheric variation. The NDVI is effectively an optical
measure of canopy ‘greenness’, which is a composite between LCC and LAl while taking into
account the effect of variation in the structure of the canopy. LCC is typically measured in g chl m™
(grams of chlorophyll per square metre of leaf) while LAl is widely measured as the total area of
leaves per square metre of ground (Wilhelm et al. 2000). More recent Vls use reflectance

measurements in the RE to estimate REP. The MERIS Terrestrial Chlorophyll Index (MTCI; Eq. 2.2)
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(Dash and Curran 2004) enabled estimation of the REP at a global scale operationally in 2002 with
the launch of the Environmental Satellite (Envisat) and the Medium Resolution Imaging

Spectrometer (MERIS) on board.

Various field studies and theoretical analysis using modelling have shown that the results of Vls
are near-linearly related to photosynthetically active radiation absorbed by the vegetative canopy
(Jordan 1969; Tucker 1979; Huete 1988). Being computationally simplistic was a key strength of
Vls in early EO. A VI such as the NDVI can be applied at varying scales to any multi- or hyper-
spectral data with a red and NIR band. With few requirements and data from spaceborne sensors
the resulting temporal resolution of a global acquisition a given VI can achieve is high. As an
example MERIS operating in reduced operation mode (1000-1200 m) has a revisit time of 3 days,
although local weather conditions can effectively reduce this figure if a specific area of study is
required. Due to these strengths Vis hold great opportunity for many practical uses. VIs have
become essential tools for; large scale land management within the farming industry, assessing
forest health, desertification (United Nations Conference of Desertification 1977), rate of
deforestation (Hecht and Cockburn 1989), and predicting the local and regional impact of drought
to name but a few examples (Pettorelli et al. 2005, Kerr et al. 2003). With respect to climate
change Vls quantify plant density and vigour at a global scale which can in turn be used to

estimate carbon sequestration through photosynthesis (Paruelo et al. 2004).

Table 2.5: Summary of Key Vegetation Indices.

Vegetation Index Formulation Original Author
SR NIR/R Jordan 1969
DVI NIR-R Jordan 1969
NDVI (NIR-R)/(NIR+R) Rouse et al. 1973
REP 700+40*((((NIR+R)/2)-RE1)/(RE2-RE1)) Guyot and Baret 1988
SAVI ((NIR-R)/(NIR+R+L))*(1+L) Huete 1988
MSAVI SAVI where L = 1-2y*NDVI*(NIR-yR) Qi et al. 1994
RDVI (NIR-R)/V(NIR+R) Roujean and Breon 1995
GNDVI (NIR-G)/(NIR+G) Gitelson et al. 1996
OSAVI (NIR-R)/(NIR+R+0.16) Rondeaux et al. 1996
MCARI [(RE-R)-0.2(RE-G)]*(RE-R) Daughtry et al. 2000
TVI 0.5(120(NIR-G)-200(R-G)) Broge and Leblanc 2000
GESAVI (NIR-BR-A)/(R+2) Gilabert et al. 2002
MTCI (NIR-RE)/(RE-R) Dash and Curran 2004
MTVI 1.2(1.2(NIR-R)-2.5(R-G)) Haboudane et al 2004
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2.6. Applications of Satellite Derived Biophysical Variables

2.6.1. Global Climate Models

Global Climate Models (GCMs) are used for weather forecasting, understanding our current
climate and predicting how it might change in the future. The carbon cycle is the transfer of
carbon between the atmosphere, hydrosphere and the terrestrial environment and it has a large
input in the Earth’s current and future climate. Carbon dioxide (CO,) is a greenhouse gas which is
an insulator in the atmosphere and has been significantly increasing in concentration due to
anthropogenic activity since 1750 (Fung 2002). Before 1750 CO, concentrations had been stable
below 280 parts per million (ppm) for 400,000 years however since have increased to 380 ppm in
2005 (Keeling et al. 1996; IPCC 2007). Increasing concentrations of CO, have been linked to
increasing global temperatures which would likely lead to rising sea levels and land surface
change putting pressures on an increasing population. Consequently in the last decade there has
been increased interest in CO, sequestration by the oceans and terrestrial vegetation through
photosynthesis. Satellite derived measurements of LAl and LCC can be used to estimate global
and regional photosynthetic capacities and in turn the amount of carbon that can sequestrated.
There are many global scale carbon models which incorporate an estimation of vegetation to
derive an estimation of photosynthesis such as the BioGeochemical Cycles model (BIOME-BGC)
(Running and Coughlan 1988) or the Lund-Potsdam-Jena Dynamic Global Model (LPJ) (Sitch et al.
2003). Estimates of the photosynthetic capability of an area depend on the performance of the
algorithm that is used to calculate chlorophyll content. Consequently VIs, a commonly utilised
method in GCMs, depend on the spectral capabilities of the sensor combined with adequate
temporal and spatial characteristics. As S-2 will provide multiple spectral reflectance
measurements directly on the RE at 20 m spatial resolution with global coverage every five days it
holds much opportunity for enhancing inputs into GCMs. However using 20 m spatial resolution
data will increase the size of data greatly and it could be argued whether it would provide much
more accuracy than a medium or low spatial resolution. Multiple S-3 satellites will enable global
calculation of the MTCI every two days at 300 m providing unparalleled temporal coverage and

excellent scope as a surrogate measurement of chlorophyll content into GCMs.

2.6.2. Monitoring Forest

Forests are important areas for biodiversity and a source of livelihood for many and cover 30% of
the total land surface (FRA 2010). Monitoring the rate of deforestation is important as forests
account for 90% of the annual interchange of carbon between the atmosphere and the land

surface. The Global Forest Resources Assessment 2010 (FRA 2010) highlights that there is more
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carbon in the world’s forest than in the atmosphere or remaining oil stocks. An estimated net loss
of 13.5 million hectares of forest has occurred in the last 20 years although there was 37% less net
deforestation in 2000-2010 than in 1990-2000 which suggests the rate is slowing. The Reduced
Emissions from Deforestation and Degradation (REDD+) policy was launched at the United
Framework Convention on Climate Change (UNFCCC) summit 2008 with the key aim to provide
the framework for financial compensation to countries who are able to reduce emissions from
deforestation (REDD 2012). The key sections of the REDD+ proposal involve defining which
activities are eligible, how emission reductions are calculated and over what time period, who
finances the reduction and where the compensation goes. Conditions allowing satellite derived
measurements of a forest’s photosynthetic capabilities can be directly used within the REDD+
framework to quantify deforestation over a set period. It is important to highlight the difference
between total clearance of the forest and degradation. Thresholds of VIs can be used to indicate
land cover change, such as total forest loss, which are combined with class based sequestration
values to calculate change in sequestration rates. Alternatively if the relationship that a VI has
with photosynthetic capability has been established sequestration rates can be monitored as a
function of change in the VI output. This method is especially useful for monitoring degradation of
the forest. As previously discussed as the future Sentinel satellites provide enhanced spatial and
temporal resolution therefore there is great opportunity for refined estimations of forest
degradation. IPCC guidelines suggest, if possible, high spatial resolution satellite data is
incorporated into the REDD+ framework. With regards to calculation of the MTCI S-2 will be the

first sensor to allow operational calculation at the suggested high spatial resolution.

2.6.3. Precision Agriculture

With impressive spatial, temporal and spectral characteristics in the visible and RE S-2 will provide
new opportunities for precision agriculture. Precision agriculture is a farming management
concept that provides satellite and geospatial information to optimise farming practices to crop
and field specific needs. Precision agriculture can aid the proficient use of fertilizers through
understanding the spatial distribution of plant health by using remotely sensed biophysical
variables which in turn can lead to financial savings and protection of the environment through
reduced nitrate leaching and greenhouse gas emissions (Kim and Dale 2008). The Farmstar
programme by EADS Infoterra is a good example of a precision agriculture scheme that provides

information (Farmstar 2011).
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2.7. Uncertainty in Vegetation Indices

Due to their attractive properties for vegetation monitoring, ease of implementation and
seemingly robust use as a proxy for many phenomena, Vls receive much cross-disciplinary use by
users often unfamiliar with the more complex intricacies of remote sensing. Without background
knowledge within the area the user is at risk of not accounting for uncertainty, which in turn will
affect the overall interpretation. Myneni et al. (1995) described uncertainty within vegetation
monitoring as a series of caveats which to the unknowing can significantly degrade the value of
remotely sensed data. Accounting for uncertainty and specifically working with the resulting

limitations is a significant finesse within remote sensing.

Problems of uncertainty are often simplified when criteria only require assessment of a single
date or short period. Generally investigations over longer temporal periods have larger the ranges
of uncertainties to account for. Nevertheless it is more often the case in the application of Vis
that monitoring a change over multiple acquisitions is required. Consequently the temporal
context significantly exacerbates problems of uncertainty as there are many unwanted variables
which change with time such as: atmospheric conditions, view geometry, soil moisture content,
the physical canopy structure and the transition of the phenology of the plant (Myneni et al. 1995;
Foody and Atkinson 2002). Each of these variables can influence the results of the investigation if
unaccounted for and in turn imply mistaken or inallccurate vegetative change. There are also
uncertainties governed by hardware such as satellite sensor drift (Hay 2000). This work suggests
uncertainty to be divided into two groups; the first containing uncertainty independent of the
vegetation and ground conditions and the second governed by scene specifics. The reason for the
divide is to establish and account for universal uncertainties within remote sensing while
recognising those which require further information and understanding about the ground level

vegetation.
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Figure 2.3: Flow diagram highlighting the uncertainties affecting the retrieval of the biophysical

variables of vegetation.
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2.7.1. Universal Uncertainties

2.7.1.1. Hardware Deterioration

Satellite sensor drift is the change in performance of satellite sensors as their components age
(Gorman and McGregor 1994). Kaufman and Holben (1993) reported deterioration for NOAA-9 of
10 £ 3% in the visible band and 16 + 2% in the NIR band shortly after launch and 22 £ 2% in both
bands three years later. This can be attributed to vibration during launch, out-gassing in the
vacuum of space, temperature changes and electronic degradation. These changes consequently
resulted in variation of calculated NDVI by 0.0-0.09 effectively the difference between bare soil
and a sparsely vegetated canopy at a low range of NDVI. If bands were to deteriorate at different
rates this would also affect estimations of the REP when using popular methods such as the MTCI
or linear interpolation methods (Guyot and Baret 1988, Clevers et al. 2000). Recently Wang et al.
(2012) found that NDVI calculated using MODIS was decreasing at a rate of 0.001-0.004 per year.
Hardware deterioration is in most cases accounted for through post launch calibration, often
through methods like vicarious calibration (Thome 2004), which use large, homogenous,
topographical and change stable surfaces with high reflectance such as dry lake beds (Thome et

al. 1998) to assess temporal variance which can then be accounted for.

2.7.1.2. Atmospheric Conditions

The process of atmospheric correction (AC) is well documented by the Network for Calibration
and Validation of Earth Observation Data (NCAVEOQ 2005). The group states that although
performing AC is of benefit in the majority of examples within remote sensing it holds extra value
to Vls as the influence of the atmosphere is not uniform along the spectrum. This means that
there will be varying degrees of uncertainty in the separate bands that are used in VIs adding
further complexity to the problem. The net influence of the atmosphere is the difference between
the top-of-the-atmosphere (TOA) and the top-of-the-canopy (TOC) values. This net atmospheric
effect decreases almost linearly with increasing surface reflectance (Kaufman 1989). Thus the
relationship allows methods such as the Empirical Line Method (Ferrier 1995, Smith and Milton
1999) to account for, and ultimately mitigate, atmospheric conditions over a discrete or
continuous temporal scale. Atmospheric influences have a positive effect on radiance in the
shorter wavelengths, namely the blue and green bands (Milton et al. 1994), and a slightly negative
effect at longer wavelengths, such as the NIR, due to the domination of absorption by aerosols
(Myneni et al. 1995). With regards to the influence of the atmosphere on REP studies by Guyot et

al. (1988) concluded that it was unaffected (Clevers et al. 2000).

The Atmospherically Resistant Vegetation Index (ARVI; Eq. (2.6)) (Kaufman and Tanré 1992) has

been designed to improve the vegetation signal through de-coupling of the atmospheric
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influences. Kaufman and Tanré (1992) showed ARVI to be on average four times less sensitive to
atmospheric effects than the NDVI and that the improvements are even greater for vegetated

surfaces than soils.

NIR—rRed— Blue—rRed
ARV = DErRedmyGBluevRed) 5 6)

rNIR+rRed—y(rBlue—rRed)

Where y can have either, as suggested by Kaufman and Tanré (1992), a fixed value of 1 or be

varied based on the atmospheric and background conditions.

Included within the uncertainty due to the atmosphere is the adjacency effect; the issue that the
radiance field measured by the remote sensor may also contain contributions of reflectance from
outside the field of view (FOV) that has been scattered by the atmosphere (Myneni et al. 1995).
As well as possibly including reflectance from outside the target study area; the resulting loss of

contrast due to the adjacent effect can impair visual interpretation of the image (NCAVEO 2005).

2.7.1.3. Background: Soil Condition

Light which reaches the ground through the canopy interacts with the surface; spatial variations in
the albedo will in turn have a varying effect on the TOC radiation measurements. Accounting for
variation in background reflectance is important for vegetation monitoring as 70% of the Earth’s
terrestrial surface consists of open canopies (Graetz 1990). Kauth and Thomas (1976) highlighted
the difference between dark and light bare soil and importantly that although initially different
with respect to absolute red and NIR reflectances they converge to similar reflectance values as
canopy cover reaches a maximum. Previous work by Condit (1970) analysed 160 soil spectral
reflectances in North America between 320-1000 nm and found that soils could be classified into
three general types. Type 1 curves have low reflectance with a shallow increment in gradient
giving a concave form while type 2 curves have decreasing gradient till 600 nm which results in a
convex shape. The gradient of type 3 curves decay less than that of type 2 soils however at 760
nm the gradient reduces sharply and even becomes negative because of an absorption feature
present due to the high iron content. Stoner and Baumgardner (1981) analysed 485 soils from
520-2320 nm and presented five distinct soil spectral reflectance types from the 30 suborders of
the 10 orders of soil taxonomy. Their five types included the three Condit proposed while adding
two further subclasses to type 3 soils using the 800-1300 nm region. Type 4 and 5 related to high
iron contents with varying organic concentrations which consequently cause type 4 soil to exhibit
lower reflectance in the optical region and higher NIR reflectance than type 5 soils. Work in turn
coined the term the soil line which refers to the near constant gradient that a soil spectra exhibits

over the visible and NIR wavelengths (Figure 2.4).
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Figure 2.4: 50 corn (blue) and 50 soybean (red) averaged bimonthly reflectances derived from

GLOBCOVER MERIS FR imagery for 2005.

A typical soil line can be witnessed in Mar-Apr while by May-Jun crops have grown and exhibit
clear vegetation spectra. These lines are important to consider as Vls differentiate between this
background reflectance with the presence of vegetation as the red reflectance decreases because
of chlorophyll absorption while overall infrared reflectance increases with the presence of leaf
mesophyll structure and cellulose. Thus, deviations of spectral data from the bare soil line may be
attributed to the presence of green biomass (Widlowski et al. 2004). The uncertainty due to the
soil is exacerbated by weather as local water content will have a varying effect on the reflectance.
While it is well documented that wet soils will overall reflect less than drier brighter soils (Baret et
al. 1993) as most vegetation indices use ratios of reflectance bands the impact of this is negligible
and soil type is the main factor in variation of the soil line (Baret et al. 1993). The background has
the largest impact when vegetative cover is in the region of 40-60% as the combined effect of
background reflectance with the transmissive properties of the open canopy increase the possible

noise in the VI output (Huete et al. 2002).

Like the ARVI for accounting for atmospheric influences the Soil-Adjusted Vegetation Index (SAVI;
Eqg. (2.7)) (Huete 1988) was developed with the aim to mitigate the variation due to background

reflectance.

SAV] = MRTTREA 9 L 1) £q.(27)

rNIR+rRed+L

SAVI introduces a soil-brightness dependent correction factor, L, into the NDVI equation which
Huete (1988) argued was very sensitive to background radiation. Prior to the work of Huete et al.

(1984) it was common place to assume a universal ‘global’ soil line encompassing a wide range of
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soil types in remote sensing practice (Miller et al. 1984). It could be argued that a better
representation actually consists of numerous nonparallel soil lines that represent soil-moisture
variations within scene specific types, however correcting for this is would be a significant

undertaking (Asrar 1989).

2.7.1.4. View Geometry

To obtain repeated global coverage at a high temporal and spatial scale it is unfeasible for space-
borne sensors to use consistent solar and small view angle range to collect data. Changing solar
and view zenith angles in turn cause variation in the consistency of measured reflectance from
the target area. Research by Kollenkark et al. (1982) showed that, apart from an initial decrease
up to a solar zenith angle of 10 degrees, the reflectance of areas with near total vegetation cover
does not significantly change as solar zenith increases in both the red and NIR bands. However
diurnal variations had significant implications for canopies of 64% cover with red reflectance
decreasing by half between 0 and 30 degree solar zenith. Importantly NIR reflectance did not
change significantly for this percentage cover. Consequently the results support the argument
that as the solar zenith increases canopy shadowing becomes a significant factor influencing

spectral reflectance of an area of vegetation that does not completely cover the background.

Uncertainty does not only come from varying solar angle but also changing the sensor view
geometry. This is due to the way a vegetative canopy creates a gradient of scattered solar flux
with a maximum at the top of the canopy and a minimum at the bottom. In turn, as the nadir view
angle increases the sensors FOV includes a larger proportion of upper canopy, which is scattering
the most solar flux, and the proportion of the lower canopy in the FOV decreases (Kimes 1983).
This effect depends on leaf inclination, density and the scattering coefficient of the leaves to their

transmittance properties as these factors influence the gradient of scattering through the canopy.

If the canopy cover is low and therefore shadowing is occurring (especially relevant at higher solar
zenith angles an increasing sensor zenith will contain a higher proportion of vegetative material
and less effect from shadows and soils in the FOV thus theoretically increasing measured
vegetation. It must be considered however that the described variations due to solar and sensor
zenith angle can conflict with each other and their influence on the output reflectance. Jordan
(1969) highlighted the robustness of Vs that incorporate ratios, such as the SR, to varying solar
intensity. Although the intensity of light received by the canopy dropped by half the NIR and the
red wavelengths reflectance of light decreased equally and therefore the output of the VI showed

insignificant variation.
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2.7.1.5. Spatial Resolution

Studies can be limited by the spatial resolution of the available sensor (Boyd and Foody 2010).
With regards to vegetation this often leads to a mixed pixel problem where two separate
vegetation classes are contained within a single physical pixel as the targets physical size is smaller
than the resolution of the sensor. This issue is more relevant in some locations than others. For
example MERIS in full resolution (300 m) will have many more mixed pixels observing
heterogeneous European cropland than the larger homogenous fields of North America. Ideally
the desire is to have imagery with a spatial resolution finer than the size of the features of interest
(Woodcock and Strahler 1987). Single trees or a row of crops could be considered the smallest
features for a vegetative study, however to differentiate between these and the soil background
sub metre resolution data would be required (Boyd and Foody 2010). Most sensors that acquire
data at this level are either not operational or retrieving reflectance measurements on the RE. As
S-2 will operationally acquire spectral measurements on the RE at 20 m spatial resolution
calculation of the REP and MTCI will be possible with far fewer mixed pixels than was previously

possible with MERIS and the uncertainty due to this reduced.

2.7.2. Vegetation Specific Uncertainties

2.7.2.1. Canopy Structure
The significance of an open or closed canopy and the consequential effect depending on the view
angle has been discussed previously in the view geometry section as have the implications canopy

cover has with regards to the influence of the background reflectance.

The output of VIs are structured to reduce if red reflectance gets higher, theoretically due to lack
of chlorophyll, and greaten if the NIR increases, suggesting a more dense canopy. Relationships of
Vls frequently hold strong for low values of LAI, with saturation occurring at higher LAl values due
to lack of reflection in the red part of the spectrum. NDVI has been shown to lack sensitivity above
an LAl of around 2-2.5 and become non-linear with an increase in biophysical parameters
(Lillesaeter 1982, Asrar et al. 1984, Baret and Guyot 1991, Gitelson 2004). The relationship of Vls
with LAl has been tested in a number of studies (Curran 1980; Badhwar et al. 1986) for varying
cover types. Generally results over arable land were non-linear with LAl but near linear
relationships were found over forested areas. While LAl determines the density of the canopy the
leaf angle distribution (LAD) is an important factor in determining the amount of light incepted by
the canopy (Clevers et al. 1994). Sellers (1985) found that canopies with heterogeneous LAD
display more variance in output of reflectance. Nevertheless it should be considered that the
impact of canopy structure variation is often mitigated by the large scales that Vs operate at

compared to average plant canopy size.
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2.7.2.2. Phenology

Senescence is the biological aging of an organism. Deciduous plants are genetically programmed
to respond to seasonal weather through structural and metabolic changes (Boyer et al. 1988).
During leaf senescence chlorophylls degrade faster than carotenoids (Sanger 1971), consequently
over the course of senescence leaves will change colour to shades of yellow or orange/red. Sanger
(1971) reported that oak leaves that had dropped from the tree in the autumn still had
measureable quantities of the carotenoids lutein (xanthophyll) and B-carotene (carotene) in the
spring while aspen and hazel leaves were devoid of all pigments. Resulting changes in pigment
content due to senescence have impacts on the spectral reflectance of the canopy specifically in
the visible region while structural changes affect canopy reflectance in the NIR (Boyer et al. 1988).
Such changes can add uncertainty to the output of Vls in the autumn season both in deciduous
forests and also for crops. During review it was found that there is a distinct lack of research into

the effect of phenological transitions on the RE and specifically REP.

2.8. Conclusion

Spectral VIs aim to provide near-linear estimates of a given areas photosynthetic capacities and
canopy variables. They provide measurements at otherwise unfeasible temporal and spatial scales
for a variety of scientific uses. This literature review has explored the current methods for deriving
biophysical variables using spaceborne sensors and assessed the future opportunities of S-2 and
S-3. The uncertainties within the use VIs have been presented as a series of caveats.
Understanding uncertainty processes are an inconvenient reality as the concept and application
of VIs can appear simple; this combined with their attractiveness to fields outside vegetative
observation as a proxy can produce misguided results to the unknowing. Although the problems
are numerous there is no other feasible way to requisition the biophysical parameters of
vegetation at such a high scale both spatially and temporally with our current technology. In turn
the field must accentuate accounting for uncertainty and ensure that good practice is universally
applied to reduce the limitations that are faced. Importantly this will bring heightened
dependability to draw conclusions and accordingly allow faster development and testing of ideas
within the remote sensing community, as well as increased assuredness that current paths of

thought are a worthwhile investment.

There is great worth in the RE to retrieve the biophysical parameters of vegetation without
saturation at high vegetation densities due to avoiding algorithm dependence on reflectance in
the red region. This has been shown by the MTCI at MERIS FR (300 m). Sentinel-2 provides

enhanced spectral resolution in the RE compared MERIS with two bands directly over the RE.
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These two bands should allow improved operational retrieval of biophysical parameters at a fine
spatial resolution of 20 m. Consequently S-2 holds great appeal for precision agriculture especially
in Europe where heterogeneous field sizes often cause large error due to mixed pixels.
Alternatively with the recent end of MERIS operation Sentinel-3 will have the important role of
continuing the 10 year dataset. It is currently not known how the operational MERIS product the

MTCI will perform for S-2 and S-3 and this leaves scope for investigation in this research.
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Chapter 3: The Soil Discrimination Index and its
application to the MTCI

3.1. Introduction

The MTCI-EVAL project was conducted to evaluate and validate the MTCI algorithm. Several key
factors were established that influenced its performance; the soil background, view geometry and
aerosol optical thickness. It was found that as the MTCI puts large weight on the reflectance of
the RE band in relation to the position of the red and NIR the effect of the soil background
reflectance at low canopy covers can cause significant uncertainty. Preliminary investigations into
equating this uncertainty using guidelines suggested by the Quality Assurance Framework for
Earth Observation (QA4EQ) suggested below an MTCI of 2 for sparse canopy covers the variation
in the background condition could affect the output of the algorithm by up to 20% (Watmough

2011). Consequently a study has been devised to account for this uncertainty.

Variation of the reflective properties of soil combined with the structural, optical and geometric
attributes of vegetation cover within a scene dictates the overall influence that the background
will have on top of the canopy (TOC) radiation measurements (Miller et al. 1984). Accounting for
variation in the background reflectance is important in vegetation monitoring as 70% of the
Earth’s terrestrial surface consists of open canopies where this can add significant uncertainty to
the output of Vegetation Indices (VIs) (Graetz 1990). With reference to discussion in section
2.7.1.3. this chapter aims to investigate the variance in the common soil types of North America
and the influence that they have on the MTCI product. In turn work aims to provide additional
functionality for the algorithm to account for or mitigate this uncertainty. North America has been
chosen for the focus of the study due to the large homogenous fields which are well documented

with regards to phenology and crop type as well as having a freely available soil library.

3.1.1. Discussion on Current Soil Discriminators

Prior to work of Huete’s (1988) Soil Adjusted Vegetation Index (SAVI; Eq. (2.7)) it was common
place to assume a universal global soil line encompassing a wide range of soil types (Miller et al.
1984). However, SAVI works through applying an adjustment (L) to the NDVI based upon LAl or
fraction of green cover. Huete (1988) suggested that using a constant value for L of 0.5 would
improve remotely sensed vegetation interpretations by minimizing soil noise; however Huete
(1988) also noted that the use of a constant L results in a loss of response in the dynamic range of

vegetation. This loss of dynamic response can be attributed to the L constant of 0.5 usually being
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much larger than a pixels red reflectance (MERIS band 8, see Figure 3.4 for examples) therefore

buffering variation that could occur.

SAV] = IR-xRed 1+1L Eq. (2.7)

rNIR+rRed+L

Rondeaux et al. (1996) further added to development of SAVI through publishing data that
suggested that there was no benefit to using an L value of above 0.1-0.2 and instead proposed

Optimized SAVI (OSAVI; Eqg. (3.1)) using an L value of 0.16.

rNIR—-rRed
OSAVI = Eq. (3.1)
rNIR+rRed+0.16

Qi et al. (1994) proposed the Modified Soil Adjusted Vegetation Index (MSAVI) which self-adjusted
the L factor to account for these shortcomings. The L factor (Eq. (3.3)) in MSAVI is adjusted based

upon the NDVI and the Weighted Difference Vegetation Index (WDVI; Eq. (3.2)) (Clevers 1988);

rNIR—rRed
NDV] = ———— Eq. (2.3)
rNIR+1rRed

WDVI =rNIR — yrRed Eq. (3.2)

L=1—-2y NDVIxWDVI Eq. (3.3)
Where y is the soil line parameter.

It is questionable that L is partly based upon the NDVI which Huete (1988) presented SAVI as
trying to improve through trying to account for the soil effect. Furthermore there are issues with
the practicality for global application of MSAVI as the WDVI which is used to self-adjust L depends
on varying the soil line based on variation of the background conditions of the target location

which would require extensive information to implement operationally.

Gilabert et al. (2002) proposed the Generalized SAVI (GESAVI) which was reported to have better
performance than the other SAVI derivatives as the algorithms isolines in the NIR-R plane are
neither parallel to the soil line nor convergent at the origin. The formula uses two soil line

parameters as well as a soil adjustment factor and is presented as Eq. (3.4).
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GESAVI = rNIR—BrRed—-A Eq. (3.4)

rRed+Z

Where A and B are soil line parameters and Z is the cross point between the soil line and

vegetation isolines.

The key underlying issue with SAVI and the subsequent modifications is that to effectively adjust
the L value, and account for soil, ground knowledge of LAl is required (Rondeaux et al. 1996;
Gilabert et al. 2002) a parameter which is not commonly known and the NDVI is often used to
estimate. Also it should be considered that every study reviewed made L adjustments based upon
LAl irrespective of variation in chlorophyll concentration. As previously mentioned in section
2.7.1.3. while it could be argued that the idea solution consists of numerous nonparallel soil lines
that represent soil-moisture variations within scene specific types, applying a correction for this

would be a significant undertaking and beyond the objectives and possibilities of this research.

During the validation of the MTCl investigations found that the MTCI as well as other indices
based around the RE were less robust in areas of low canopy cover than other vegetation indices
such as the NDVI. In the process of researching what was the best way to enhance the robustness
of the MTCI it was found that many of the methods accounted for the influence and effects of soil
through requirement of extra field data which is not feasible at an operational level. Consequently
there is scope to develop a new method to account for soil while, if possible, not changing the

MTCI algorithm.

3.2. Development of a Suitable Measure to Distinguish Soil for Vegetation

Indices and Specifically the MTCI

With the limitations considered of the current most prolific soil based index work has proceeded
to develop a suitable measure to distinguish soil from vegetation. With doing so the method will
allow as clear as possible differentiation between soil and vegetation to assess areas of
contamination. The method should be able to be implemented operationally without requirement

of extra site information not available using MERIS.

3.2.1. Study Sites

3.2.1.1. lowa
lowa was chosen as a study area due to its large homogenous fields of well documented crops;
soybean and corn. In addition as the field sizes are exceptionally large at 1500 m x 1500 m (Figure

3.5) with frequently only one crop grown per field uncertainties such as the adjacency affect and
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problems with heterogeneous canopies are mitigated. The vast coverage of agriculture across the
majority of the state also provided great scope for selection of optimal study areas over an

extensive time period after a cloud mask had been applied. An area 180 km? north west of Des

Moines was chosen and is highlighted in Figure 3.1.

Figure 3.1: Test site location north west of Des Moines, lowa, North America.

3.2.1.2. Dalhart Texas

Dalhart’s economy is focused around agribusiness with warm wet summers that are idea for crop
production (NOAA 2012). Dalhart was chosen as a study site to test methods developed from the
lowa data set. Dalhart would be suitable for this because of the contrast between large fields of
crops with dense homogenous canopy cover and the large amount of land dedicated to ranching
with sparser to open canopies that the methodology could account for. The test site is highlighted

in Figure 3.2.

Figure 3.2: Test site location surrounding Dalhart, Texas, North America.
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3.2.2. Data and Methods

3.2.2.1. Advanced Spaceborne Thermal Emission and Reflection Radiometer Spectral

Library Hyperspectral Reflectance Records

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Spectral Library

(v2.0) is a collection of hyperspectral reflectance records from the Jet Propulsion Laboratory,

Johns Hopkins University and the United States Geological Survey which were generated with

field reflectance measurements using hand held radiometers such as the Analytical Spectral

Devices FieldSpec (see Baldridge et al. 2009) as part of activities to validate the ASTER sensor. To

understand how variations in the soil background affect the MTCI 42 separate soil spectra were

acquired from the ASTER library and converted into MERIS bands according to spectral response

documents (Figure 3.3; see Weinreb et al. 1981).
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Figure 3.3: MERIS band normalised spectral response functions.

A selection of the spectral response of the various soil types are presented in Figure 3.4.
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Figure 3.4: Synthetic MERIS band spectral reflectances for various soil types derived from the

ASTER spectral soil library.

3.2.2.2. MERIS Data: lowa and Dalhart Texas

To investigate the spectral signatures at satellite sensor level land cover information was taken
from the GlobCover Bimonthly MERIS FR mosaics at a spatial resolution of 300 m; six resulting
composite images cover the year of 2005 (Figure 3.5). The GLOBCOVER project is conducted by
ESA and several other large organisations such as: the United Nations Environment Programme
(UNEP), the Food and Agriculture Organisation (FAQ), the European Commission’s Joint Research
Centre (JRC). The result is a well processed data set for the year 2005-2006. GLOBCOVER MERIS
acquisitions had already been geometrically corrected as well as screened for cloud with Rayleigh
scattering, aerosol and smile corrections applied (POSTEL 2012). Consequently the data is

immediately useable without much further processing.

Contemporaneous high resolution (56 m) crop cover information was obtained from the United
States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) (Figure
3.5). The 2009 USDA NASS report for lowa estimated 97.85% and 96.95% accuracy for corn and

soybean respectively.
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Figure 3.5: High spatial resolution (56 m) crop cover information from the USDA NASS for 2005
(left) and false colour FR (300 m) MERIS data (right) showing site selection and standard field size
(1500 m x 1500 m).

A single MERIS FR acquisition was chosen from Dalhart Texas acquired on 23-06-2005 that could
be seen to have established vegetative canopies and clear soil backgrounds. This would in turn

provide scope for training sites and the contrast would aid initial VI analysis (Figure 3.6).

Figure 3.6: Landsat image courtesy of Google Earth (Landsat) of the study site in Dalhart Texas

(left) where SDI distribution analysis was performed with the corresponding MERIS image (right).

3.3. Development of the Soil Discrimination Index

During MTCI-EVAL it was found that the MTCI ranged between 1.5 and 5 for sparse to densely
vegetated pixels (Watmough et al. 2011). With the hyperspectral records of the ASTER soil library
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synthesised into MERIS bands the MTCI could be calculated for the comprehensive list of soil
backgrounds. Average MTCI of the dataset was 1.9 with a variance of 0.07, standard deviation of
0.31 and a max of 2.52 (Figure 3.7). Applying the NDVI using MERIS bands 10 and 8 as the NIR and
red produced an average of 0.10 with a standard deviation of 0.04 and a max of 0.16. These
results highlight the key problem with uncertainty due to soil on RE focused Vls such as the MTCI;
a low output of the VI could be either due to sparse vegetation or a pure soil background with a

spectral reflectance which produces higher than anticipated VI results.

MCTI

Figure 3.7: Applying the MTCI to a selection of soils from the ASTER soil library.

A sequential investigation was developed to assess pixel values of an agricultural location over an
entire growing season. Monitoring the entire phenological cycle of a given pixel would effectively

require spectral measurements from bare to fully vegetated to senescent and bare once again.

50 fields each for corn and soybean were selected from homogeneous areas of each crop in
central-western lowa using the USDA NASS crop data for 2005. The average field size in the study
area is 1500 m’ resulting in 25 MERIS FR pixel per field. Single pixels were chosen in fields
dominated by one crop (Figure 3.5); consequently the spectral reflectance of the target pixels
should be unmixed and uncertainty from the adjacency effect significantly reduced. To
understand how the vegetated pixels should have varied over the course of a year details of
planting and harvest for lowa were obtained from the USDA NASS (1997; 2010) and are presented
in Table 3.1.
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Table 3.1: Table to indicate key crop production times for lowa in 1996 and 2009.

Planting Harvest
Year | Crop Begin Most Active End | Begin Most Active End
1996 | Corn izl;: 2" May to 16" May = 3™ Jun ;Z: 7 chctto 3 ,tz:\h,
1996 | soybean | 1a”Mayto2iun | 70| 2 OGRS
2009 | Corn l?ot: 197 A&ra:/o 18" ’\2/|63t; E;F: 57 Oct to 9" Nov ili\t/
2009 | Soybean l\i:y 8" May to 2" Jun Jlf: gig " S%pc:o & Zlc:

Although the records in Table 3.1 are not for 2005 which is the year the GLOBCOVER acquisitions

occurred they still correlate with sources found in further review (Lefebure 2005, ICPB 2008).

Agricultural records from 2005 suggest that it was a good year for crop production in lowa; corn

was planted in late April for and soybean in the first week of May. Harvest began in September

with the vast majority of fields reaped by October. With qualitative estimates of the key crop

production dates assessment could in turn be made to investigate if field reflectances agreed.

Reflectance
© o o o o
[ N w H v

o

Corn

0.5

4 3
c 0.3

/ 8

[$]
9 0.2

=

o
0.1
T T 0

400 600 800

Wavelength (nm)

Soybean

I/- e Jan-Feb
e \ar-Apr
=== May-Jun

e Jul-Aug

T T Sep-Oct
400 600 800 — Nov-Dec

Wavelength (nm)

Figure 3.8: 50 corn and 50 soybean averaged bimonthly reflectances derived from GLOBCOVER

MERIS FR imagery for 2005.

42




William James Frampton

Jan-Feb Mar-Apr
0.5 0.5
0.4 0.4
3 3
c 0.3 c 0.3
S S
] ]
= 0.2 T 02
o o
0.1 __/ 0.1
0 T T O T T
400 600 800 400 600 800
Wavelength (nm) Wavelength (nm)
May-Jun Jul-Aug
0.5 0.5
0.4 0.4 C‘
5] 3
£ 03 £ 03
- -
] 3
% 02 ﬁ/A = 0.2 I
o o
—— ,
0 T T 0 T T
400 600 800 400 600 800
Wavelength (nm) Wavelength (nm)
Sep-Oct Nov-Dec
0.5 0.5
0.4 0.4
()] (]
€03 €03
©
] o]
= 0.2 — = 0.2
[} ()
: y/
0.1 / 0.1
0 T T 0 T T
400 600 800 400 600 800
Wavelength (nm) Wavelength (nm)

Figure 3.9: 50 corn (blue) and 50 soybean (red) averaged bimonthly reflectances derived from

GLOBCOVER MERIS FR imagery for 2005.

Initial investigations were conducted into the differences between corn and soybean
development. Both can be seen to have similar spectral responses representing soil lines in Jan-

Feb and Mar-Apr. During May-Jun initial growth can be seen where corn appears to develop
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faster with greater absorption in the red and increased reflectance in the NIR compared to
soybean. These results are supported by work by Gitelson et al. (2005) where it was found that
soybean reached peak canopy chlorophyll content half a month after corn did. The difference can
also be attributed to (with reference to Table 3.1) that for the years 1996 and 2009 soybean was
planted two weeks after corn which would suggest this also occurred in 2005. In the sequential
bimonth during the peak of the growing season soybean has increased reflectance in the NIR
compared to corn which could suggest a denser canopy structure or the influence of a different
LAD. However the result could be also be attributed to the sharper degradation of chlorophyll in
corn after the canopy structure has peaked (Gitelson et al. 2005). The increased NIR can be seen
to extend into Sep-Oct however it should be noted that the bare soil line reflectances are higher

for soybean than corn which this difference could be attributed to.
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Figure 3.10: NDVI and MTCI values for 50 corn and 50 soybean locations in lowa for 2005.

Figure 3.8 shows the MTCl and NDVI for corn and soybean over the entire growing season. In Jul-
Aug the MTCl is higher for corn than soybean whereas the NDVI can be seen to saturate;
saturation is well covered in literature due to the high influence of the red band in the NDVI

algorithm (Asrar et al. 1984; Baret and Guyot 1991; Gitelson 2004; Lillesaeter 1982).
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Figure 3.11: Bimonthly average surface reflectances for 100 corn and soybean sites in lowa for

2005.

When amalgamating the dataset it can be seen that pixel spectral reflectances (Figure 3.11)
display typical soil lines for bimonths 1 (Jan-Feb), 2 (Mar-Apr) and 6 (Nov-Dec) across all sites;
while 3 (May-Jun), 4 (Jul-Aug) and 5 (Sep-Oct) showed evidence of vegetative cover with a distinct
RE. These results coincide with the crop production pattern for the area previously described
(Lefebure 2005; lowaCorn 2008). Therefore, a threshold needs to discriminate between the
described months which represent soil and vegetated pixel spectra. To assess what possible band
combinations to utilise to best discriminate between vegetation and soil based on this dataset the
percentage difference between the average pixel reflectance for all site locations during the May-

Jun composite and the combined soil dominated months was calculated (Figure 3.12).
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Figure 3.12: Percentage difference between initial vegetation growth (bimonth 3) and soil

dominated bimonths (1, 2 and 6).

For the 100 corn and soybean ESUs in lowa the largest difference in reflectance between sparsely
vegetated and barren pixels can be seen in the NIR (band 10) part of the spectrum. A negative
difference can be observed in the red part of the spectrum (band 8) while the green band (band 5)
also has significant value. In turn the red can be contrasted with the green and NIR to discriminate
between soil and vegetation.

rRed

Green Dif ference = ——
rGreen

Eqg. (3.5)

As discussed in detail in section 2.2. the green part of the spectrum, represented by MERIS band
5, has increased reflectance for a vegetated pixels compared to the red and blue wavelengths due
to the chlorophyll absorption minima. On the other hand the chlorophyll absorption maximum is
found in the red part of the visible spectrum. Using these two relationships together can be
described as the Green Difference (GD; Eq. (3.5)) which is negatively related to increasing
chlorophyll content. According to Carter et al. (1996), Gitelson et al. (1997) and Metternicht
(2003) the use of the green and red can highlight the differences between healthy and stressed
vegetation. The GD expression can tend from 0 to infinity, however in reality it has a range of 0.5

for green vegetation to 3 for bright red soils.
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Simple Ratio = % Eq. (2.4)

The Simple Ratio (Jordan 1969) combines the absorption in the red part of the spectrum with the
sharp increase of scattering around 700 nm (RE). Consequently this expression is strongly linked
to vegetation density and the output ranges in reality between 1 for soil to 5 or higher for a
densely vegetated surface. These two ratios can be combined into a new formulation which

utilises the negative relationship with chlorophyll of the GD with the positive of the SR.

rNIR/rRed
rRed/rGreen

Soil Discrimination Index = Eqg. (3.6)

Effectively three key reflectance features of vegetation are combined into the Soil Discrimination
Index (SDI; Eq. (3.6)) which aims to be as sensitive as possible to low density vegetation canopies.
The use of reflectance directly on the slope of the RE has been omitted from this index as
although it has been shown by the MTCI to be strongly related to increasing chlorophyll at high
contents, without as much saturation that the NDVI, it is less robust in areas of sparse vegetation

which is the most important density for the SDI.
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Figure 3.13: Example of discrimination between sparse canopy cover using the SDI for three target

locations in lowa. Series one (purple) and three (orange) show bare soil pixels for bimonth 6 in

lowa; series two (blue) shows a sparsely vegetated location in bimonth 3.
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Figure 3.13 shows an example of the benefits of utilising the GD in conjunction with the SR
compared to dependence on the NIR and red alone. Series one (purple) and three (orange) show
bare soil pixels for bimonth 6 in lowa; series two (blue) shows a sparsely vegetated location in
bimonth 3. Close examination of the RE between bands 8 to 10 highlight this. NDVI values can be
seen to be similar for all locations and it should be highlighted that series two (sparse vegetation)
is lower than series three (background reflectance). As a ratio of differences, rather than a ratio of
ratios, NDVI alone has been unable to discriminate between the slight, yet important, differences
in green, red and NIR reflectance with respect to the overall gradient of the soil line. Conversely
the SDI has distinguished between the locations with a high relative difference; this in turn makes

it easier to apply a threshold to differentiate between vegetation and bare soil.

3.4. Devising a Threshold

When accounting for the effect of soil on the MTCl it is important to establish clear aims.
Changing the formulation should clearly be avoided unless overriding issues are discovered. Work
using the ASTER soil library also showed that there is little chance an MTCI result of above 2.3 can
be due to soil alone. In turn developing a flag to discriminate between values due to soil and
values due to sparse vegetation will return robustness to the MTCI for low canopy cover. With this
considered a flag of a specific threshold SDI value could highlight pixels for the user which exhibit

the spectral reflectances likely due to soil.
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Figure 3.14: SDI values for 40 example soil reflectances from the ASTER spectral soil library.
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To use the SDI as a soil flag for the MTCI an analysis was carried out to test its performance for
bare soil locations in North America. The SDI was applied to a range of 40 soil locations from the
ASTER spectral soil library (Figure 3.14). It can be seen that the SDI has a maximum of 0.94 for
white gypsum sand. This is due to the very high reflectance characteristics it exhibits which can be
attributed to its high quartz content (Chuvieco and Huete 2010). The next highest result was for
light yellowish brown clay with 0.88 and the lowest was reddish brown fine sandy loam with 0.52.
It should be noted that due to the high saline nature of white gypsum it cannot support dense
vegetation and will not be populated by more than sporadic bushes resulting in a an extreme
heterogeneous canopy. Nevertheless these extreme surface VI results are important to consider
when vegetation density is estimated at a regional or global scale as an input into a carbon
sequestration model as a surface with a naturally high VI result could add error to the analysis

exaggerating an areas capability for photosynthesis.

Subsequently the SDI was applied to Dalhart Texas for varying thresholds to assess what MTCI

value pixels are flagged for a specific SDI value.
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Figure 3.15: Graph to show the percentage of total pixels from the Dalhart MERIS scene that are
flagged at a specific SDI threshold and their MTCI value.

Depending on the SDI threshold applied up to 7% of the total pixels in the full resolution MERIS
scene (2005-06-23) are flagged. Figure 3.15 shows that the flag can be seen to operate most
effectively to pixels within the target MTCI range of soil. However for the higher thresholds of SDI

(0.9+) the distribution shows a resurgence of flagged pixels with MTCl values of 2 to 2.3
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(highlighted in Figure 3.15). These pixels are likely sparsely vegetated or mixed vegetation
locations which are undesirable for the SDI to flag. As the transition from bare soil with naturally
high VI results to sparse is gradual the threshold applied needs to flag the most possible soil pixels
while not adversely flagging a large proportion of sparse vegetation. Taking into account the lowa
dataset and the distribution analysis results from Texas an SDI value of 0.9 is recommended as a
threshold for the flag. Using this threshold on the 600,000 pixels from the Texas dataset only 18

out of 50,000 pixels with an MTCI greater than 2.1 were flagged.
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Figure 3.16: Comparing the use of SDI < 0.9 as a flag to account for soil pixels in the MTCI
algorithm on corn locations in lowa 2005. Spectral reflectances shown are for pixels in corn fields

taken from FR MERIS data as previously highlighted.

Figure 3.16 visualises the benefits of the SDI < 0.9 flag. Spectral reflectances for pixels in corn
fields taken from FR MERIS data as previously highlighted are shown. All 6 examples produce
similar MTCl values of 1.9 to 1.95. However examination of the RE shows that the first three series
are soil lines while series 4, 5 and 6 are vegetated pixels. It is not possible to discriminate between
the soil and vegetated pixels using the MTCIl in this example however the proposed threshold of

0.9 SDI clearly flags the first three series of pixels as soil.
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3.5. Validation of the Soil Discrimination Index

To validate the performance of the SDI in a different part of the world to North America a study
site was selected around Albacete in Spain. Albacete is a market centre for agricultural produce
which dominates the land use of the surrounding area and is the most populated city in the
autonomous community Castilla-La Mancha. To assess the performance of the SDI in a forested
environment an additional site was chosen to the south-west of Albacete and the north-east
province of Jaén. The test site covers several national parks including Parque Natural Sierras de
Cazorla which is Spain’s largest protected natural area. Both test sites are presented in Figure 3.17

and Figure 3.18.

n}z"’-‘-“!
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Figure 3.18: Location of the forest test site to the south-west of Albacete.

Total area of the agricultural test site is 5760 km?” while the forest test site is slightly smaller at
4860 km”. Test sites were selected to cover a range of canopy covers as well as pure soil pixels.
The forest test site covers a wide range of trees including evergreen pine forests and deciduous

oak climax communities which will affect the MTCI outputs accordingly (UNESCO 2007). MERIS
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images were acquired monthly for an entire growing season in 2004 from March to December
which covered both test sites from the EOLI-SA (Earth Observation Link — Stand Alone) portal.
Images from April and May were unusable due to high cloud cover. BOA (Bottom of Atmosphere)
MTCI and reflectance data were reprojected and the SDI flag applied with the previously devised

threshold of 0.9. Figure 3.19 shows the changing average MTCI of both test sites throughout 2004.
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Figure 3.19: Average MTCI of the agricultural and forest test sites in Albacete, Spain for 2004.

As would be expected MTCI steadily increases to a peak in August with an average MTCI of 1.94
and standard deviation of 0.08 for the agricultural site and an average of 1.91 with a standard
deviation of 0.09 for the forest site which decreases as the areas senesce in the autumn. During
the autumn and spring months the MTCI of the forest test site is higher than the agricultural test
site due to the stable evergreen forest for which MTCI does not significantly change unlike the
agricultural land for which crop canopy maxima are in the summer months. Nevertheless the

MTCI of the forest site still decreases due to the part cover of deciduous forest.

Table 3.2: Table to summarise performance of the SDI for the agricultural test site.

Agricultural Site Mar Jun Jul Aug Sep Oct Nov Dec

Total Pixels 63495 | 64562 | 63495 | 64737 | 64035 | 63494 | 63494 | 63493

Pixels Where MTCI > 2 2016 | 6909 | 11911 | 19338 | 7603 | 4127 | 1529 818

Pixels Where MTCI > 2

SDI < 0.9 33 42 548 992 114 70 9 0

Pixels Where MTCI > 2
SDI < 0.9 as a Percentage of | 0.05% | 0.06% | 0.86% | 1.53% | 0.17% | 0.11% | 0.01% | 0.00%
Total

Pixels Where MTCI > 2
SDI < 0.9 as a Percentage of | 0.19% | 0.61% | 4.60% | 5.13% | 1.50% [ 1.70% | 0.59% | 0.00%
MTCI > 2
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To assess the performance of the SDI flagged pixels that had an MTCI value of higher than two are
presented in Table 3.2. MTCI values of two are generally indicative of medium density vegetation
and ideally should not be flagged by the SDI. It can be seen that the highest percentage of flagged
pixels, as a percentage of total test site pixels, with an MTCI value of higher than two was 1.53%
during August. When these values are calculated as a percentage of total pixels with an MTCI
value of higher than two the figure increases to 5.13%. Interestingly while there are a significant
number of pixels (6909) with an MTCI of higher than two in June, a time by which many crops will
have already reached a canopy maximum, the SDI flags a much smaller percentage , 0.61%, than
in July, August, September or October. The reason for this is likely to be crop senescence where
changes in pigment content impact the spectral reflectance of the canopy (Boyer et al. 1988) as
highlighted in section 2.7.2.2.. Consequently it is possible that the inclusion of green band
reflectance into the SDI formula, which helps it to distinguish between vegetation and soil during

initial growth, makes it less robust at differentiating as crops yellow in the autumn.

Table 3.3: Table to summarise performance of the SDI for the forest test site.

Fo.rest Mar Jun Jul Aug Sep Oct Nov Dec
Site
Total Pixels 51712 | 51705 | 51713 | 52633 | 51235 | 51713 | 51713 | 51712

Pixels Where MTCI > 2 12594 | 14334 | 17009 | 20505 | 16737 | 15657 | 14054 | 13260

Pixels Where MTCI > 2

SDI < 0.9 o 35 | 248 | 386 | 281 | 147 | 9 0

Pixels Where MTCI > 2
SDI < 0.9 as a Percentage of | 0.00% | 0.07% | 0.48% | 0.73% | 0.55% | 0.28% | 0.02% | 0.00%
Total

Pixels Where MTCI > 2
SDI < 0.9 as a Percentage of | 0.00% | 0.24% | 1.46% | 1.88% | 1.68% | 0.75% | 0.06% | 0.00%
MTCI > 2

It can be seen that for the forest test site the highest percentage of flagged pixels, as a percentage
of total test site pixels, with an MTCI value of higher than two was 0.73% during August which is
1.88% of total pixels with an MTCl value of higher than two in that month. This value is
significantly lower than the agricultural test site result of 5.13% for August. Moreover the forest
site had less vegetated pixels flagged relative to the total pixels with an MTCI value of two or
more in all months except September. This suggests the flag performs better outside of an
agricultural environment. In March only 3.18% of the agricultural test sites land cover had an
MTCI of greater than two compared to the forest site of which 24.35% was greater than two. Of
these 12,594 pixels not one was flagged by the SDI with similar result witnessed in December.
Results for the forest test site are similar to that of the agricultural one with regards to the

difference in performance between June and post July results further suggest that senescence
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causes the SDI to be less robust at differentiating as vegetation yellows in the autumn.
Nevertheless with on average 0.35% and 0.27% and at most 1.53% and 0.73% of pixels incorrectly
flagged by the SDI for the agricultural and forest test sites respectively overall the flag has

performed well for the study location.

3.6. Conclusions

As the MTCI puts large weight on the reflectance of the RE band in relation to the position of the
red and NIR the effect of the soil background reflectance at low canopy covers can cause
uncertainty. It was considered to make adjustments to the MTCI algorithm specifically at low
values to account for this however such a method would affect the use of the index as a linear
surrogate measure of chlorophyll content. By creating the SDI as an independently functional flag
the original MTCI formulation is retained which will not affect compatibility with previous
investigations. It was found that 0.9 was a suitable threshold to use for the SDI in Dalhart Texas
and it flagged all 40 types of soil that were retrieved from the ASTER soil library. Subsequently
the SDI was applied to two study sites in Spain as an initial validation of the flag. While it
performed well analysis highlighted two issues that are worth investigating in future study. Firstly,
that inclusion of green reflectance into the formula results in less robust flagging of senescent
vegetation and secondly, that the flag performs better in a forest environment than an
agricultural setting. Nevertheless applying the SDI with a threshold of 0.9 as a soil flag will warn
the user that the MTClI result is likely due to a soil background with a naturally high VI output
consequently increasing the robustness of the MTCI at values below two. The flag will be most
useful when using the MTCI across large scenes with many varying canopy covers and soil
background types and conditions and should increase accuracy of the MTCI when used to

estimate photosynthetic capabilities of an area.
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Chapter 4: Evaluating the Capabilities of Sentinel-2 for
Quantitative Estimation of Biophysical variables in
Vegetation

4.1. Introduction

Europe’s Copernicus programme (ESA 2011a) includes two Sentinel-2 (S-2) satellites designed to
provide systematic global acquisitions of high resolution multispectral imagery. The Multi-Spectral
Instrument (MSI) aboard S-2 has been designed to enable the continuity of Satellite Pour
I’Observation de la Terre (SPOT) and Landsat type data into the future. MSI also builds upon the
heritage of the MERIS and NASA MODerate-resolution Imaging Spectroradiometer (MODIS)
instruments in providing more spectral bands than Landsat or SPOT. Bands known to be
important in sensing vegetation will have a spatial resolution of 10 m or 20 m, others will have

60 m resolution. S-2 will have a radiometric accuracy of <5% and operate at 12 bit radiometric
resolution (ESA 2010) which is suitable for vegetation (Tucker 1980b). The mission envisions a pair
of satellites simultaneously circulating the Earth in a sun-synchronous 180° phase orbit with a 290
km swath (ESA 2010). The first satellite, S-2A, is planned for launch in April 2015 followed by S-2B
which is tentatively planned for launch two years after (ESA 2011a). Tandem operation of S-2A

and B will deliver a revisit period of up to five days under cloud-free conditions.

Knowledge of canopy chlorophyll content and LCC can indicate plant health and potential gross
primary productivity (Gitelson et al. 2006; Boyd et al. 2012), while LAl can provide an insight into
the function and structure of the canopy (Wilhelm et al. 2000). Land cover (including vegetation
type), LAl and the fraction of absorbed photosynthetically active radiation (FAPAR) are all Global
Climate Observing System (GCOS) Essential Climate Variables (ECVs) required by the United
Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on
Climate Change (IPCC) (GCOS 2010). Satellite derived estimations of LAl and canopy chlorophyll
content are key inputs into climate models as they provide estimates of carbon sequestration
(Ciais et al. 1997). Consequently they have been used in services such as the Farmstar programme
by EADS Infoterra to provide information supporting precision agriculture through timely and
efficient use of fertilisers (Farmstar 2011). A number of techniques have evolved in the past to
derive the biophysical variables of vegetation using remote sensing data; these can be grouped
into three broad categories: the inversion of radiative transfer models (Shultis and Myneni 1988),
machine learning (neural networks) (Carpenter et al. 1999) and the use of Vegetation Indices
(VIs). Methods based on Vs have the benefit of being computationally simple while they are
generally less site specific and more universally applicable than the other methods. Consequently
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Vls are a widely used method to provide quantitative ground measurements of the biophysical
parameters of vegetation by contrasting specific spectral reflectance characteristics of vegetation
and are frequently implemented operationally using remotely sensed data. Satellite derived Vls
provide one of the best possible ways to obtain the biophysical parameters of vegetation over
large areas (regional or global) while retaining the high temporal coverage required for many

applications and consequently their development and validation is of great importance.

The first VIs contrasted the strong reflectance in the near-infrared (NIR) by plant matter with
strong absorption by chlorophyll in the red part of the electromagnetic spectrum to quantify
vegetation greenness parameters. Jordan (1969) made references to the retrieval of canopy
chlorophyll content and LAI using the ratio of NIR/R which became known as the Simple Ratio
(SR). The SR is the basis of the Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1973)
which is currently the most widely used VI as a measure for many variables. Much work has been
done investigating the optimal reflectance wavelengths for use in the SR and the NDVI algorithms
(for example, the Pigment Specific Simple Ratio (PSSR,), Blackburn 1998). Although VIs such as the
NDVI were primarily developed for the purpose of LAl retrieval they have also been argued to be
capable of accurate canopy chlorophyll content estimations (Myneni et al. 1995, Huete et al.
2002). Refinements of the NDVI and SR such as the Perpendicular Vegetation Index (PVI)
(Richardson and Wiegand 1977) and the Soil Adjusted Vegetation Index (SAVI) (Huete 1988)
aimed to account for uncertainty due to variation in background condition. The PVI achieved this
through implementing NIR and red reflectance measurements of soil pixels into the equation
while SAVI incorporated the correction factor L into the NDVI formula. L accounts for soil variation
by varying the factor between 1, for low vegetation, and 0, for dense vegetation. This effectively
retains original NDVI output at higher values of vegetation density. Qi et al. (1994) subsequently
presented a modified version of the SAVI (MSAVI) which utilised a self-adjusting L factor as the
product of NDVI and the Weighted Difference Vegetation Index (WDVI) (Clevers 1988) which
incorporates the slope of the soil line. It should be noted that the self-adjusting L means MSAVI
adjusts SAVI, an index based around the NDVI, by NDVI and WDVI and in the process results in a
loss in the vegetation dynamic response (Qi et al. 1994). Other Vs have also been developed to
account for aerosol variation such as the atmospherically resistant vegetation index (ARVI) which
makes use of aerosol resistance coefficients to reduce atmospheric influences (Kaufman and
Tanré 1992). Sequentially a combination of SAVI and ARVI was presented by Huete et al. (2002) as
the enhanced vegetation index (EVI). Although NDVI refinements have aimed to account for, or
mitigate, many of the uncertainties in VIs through doing so they often require additional scene
specific information. Acquiring and applying such scene specific information can adversely affect

the universal application of VIs as well as their dynamic response.
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A wealth of VIs have been developed to estimate canopy chlorophyll content with varying
strengths and levels of robustness (e.g., Daughtry et al. 2000, Broge and Mortensen 2002, Dash
and Curran 2004, Gitelson et al. 2005). Many such Vls presented band variations of the NDVI
formula such as the Green Normalized Difference Vegetation Index (GNDVI) (Gitelson et al. 1996)
which challenged the approach of using red reflectance and instead used the green reflectance in
its place. It was argued to be at least five times more sensitive to chlorophyll-a concentration than
the NDVI and specifically useful for differentiation in stressed and senescent vegetation. Daughtry
et al. (2000) presented a modified chlorophyll absorption in reflectance index (MCARI) which was
developed for minimising the effects of non-photosynthetic materials. Work reported strong
response to LCC variation while noting that the index encounters issues at low LAl due to higher

influence of background variation.

After the success of the NDVI and its specialised refinements subsequent work made use of
developments in spectral capabilities to provide better characterisation of the RE which is the
prominent spectral feature of vegetation located between the red absorption maximum and high
reflectance in the NIR. Quantification of the RE is often achieved through calculation of the REP
which is recognised as the point of maximum slope along the RE and has been argued to provide
enhanced estimates of LCC and canopy chlorophyll content (Horler et al. 1983, Curran et al. 1990).
Evaluation of the REP at a global scale with high temporal resolution was first achieved using data
from the MERIS sensor. MERIS had a spectral band located directly on the RE (band 9 708.75 £ 5
nm) which led to the development of the MERIS Terrestrial Chlorophyll Index (MTCI) (Dash and
Curran 2004) a surrogate REP index which has been implemented operationally as a standard
level 2 global product from the Envisat MERIS sensor. The MTCI has demonstrated that it is
possible to use the REP parameter to estimate chlorophyll content over very extensive spatial

areas at a high temporal resolution (Dash and Curran 2006).

Table 4.1: Spectral bands of Sentinel-2 MSI.

S-2 Band 1 2 3 4 5 6 7 8 8a 9 10 11

Central
Wavelength (nm)

Bandwidth (nm) | 20 | 65 | 35 | 30 | 15 [ 15 | 20 | 115 20 | 20 30 90

Spatial

. 60 10 10 10 20 20 | 20 10 | 20 | 60 60 20
Resolution (m)
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As S-2 will enable multiple operational reflectance measurements on and around the RE at a
greatly enhanced spatial resolution of 20 m with a short revisit time it holds much appeal for
vegetation monitoring. The combination of S-2 bands 5 and 6 (Table 4.1) provide the opportunity
for improved characterisation of the RE than was previously possible operationally at a global
scale. Consequently there is much scope for the development of algorithms to retrieve the
biophysical parameters of vegetation using S-2. Some algorithms have already been presented in
work by Delegido et al. (2011b) which specifically investigated the optimal bands to use in the
NDVI formula with synthesised S-2 data. Research found that bands 4 and 5 were the optimal
combination and the formula will be further investigated in this analysis and referred to as the
NDI45. There are many different VIs each designed for a separate purpose and validated at
varying levels using different datasets. Consequently each has its own strengths and weaknesses
in application and some are more optimal at retrieving certain parameters of vegetation than
others. With the caveat of saturation considered, this chapter will investigate the strength of Vls
presented in Table 4.2 for the SicilyS2EVAL and SEN3Exp field campaigns. VIs have been selected
that do not self-normalise or linearise which forfeits sensitivity to vegetation variance. Also VIs
that require the use of scene specific information that consequently affects their universal

applicability and operational use with S-2 have also been excluded from analysis.

Table 4.2: A list of Vegetation Indices that have been analysed for use with Sentinel-2 using field

data.
Vegetation
Formulation S-2 Bands Used Original Author
Index
NDVI (NIR-R)/(NIR+R) (B7-B4)/(B7+B4) Rouse et al. 1973
NDI45 (NIR-R)/(NIR+R) (B5-B4)/(B5+B4) Delegido et al. 2011b
MTCI (NIR-RE)/(RE-R) (B6-B5)/(B5-B4) Dash and Curran 2004

MCARI [(RE-R)-0.2(RE-G)]*(RE-R) | [(B5-B4)-0.2(B5-B3)]*(B5-B4) | Daughtry et al. 2000

GNDVI (NIR-G)/(NIR+G) (B7-B3)/(B7+B3) Gitelson et al. 1996

PSSR, NIR/R B7/B4 Blackburn 1998

4.2. Data and Methods

The approach adopted in this chapter compared simulated S-2 data with field measurements and
the output of an established vegetation canopy model (PROSAIL) (Baret et al. 1992, Jacquemoud

et al. 2009). The simulated data were derived from two airborne hyperspectral sensors, an Itres
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Instruments Compact Airborne Spectrographic Imager (CASI-1500) and a Specim AISA Eagle
instrument collected during two field campaigns: SEN3Exp (SEN3Exp 2011), and SicilyS2EVAL.
SEN3Exp was conducted in June and July 2009 to prepare for the Sentinel-3 mission and to aid the

development of scientific algorithms; however, ground data is highly suitable for S-2

investigations.

Figure 4.1: Location of test site (courtesy of google earth, Landsat 04/10/2013) with flight lines

added from the SEN3Exp campaign acquisition report (SEN3Exp 2011).

SicilyS2EVAL was a campaign conducted in Sicily 2010 which was funded by ESA specifically to
support validation of vegetation products for S-2. The combination of these two field campaign
datasets provided 60 elementary sampling units (ESUs), from which ground canopy chlorophyli
content measurements were obtained from sample areas of 10 x 10 m and 20 x 20 m to represent

the spatial resolution of S-2.
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Figure 4.2: SicilyS2EVAL test site with example of the crop canopy.

4.2.1. PROSAIL Model Data

PROSAIL is the combination of the PROSPECT-5 leaf optical properties model (Jacquemound and
Baret 1990) and the 4SAIL canopy bidirectional reflectance model (Verhoef 1984, 1985). The
model was used to simulate canopy reflectance for a range of leaf biochemistry and canopy
parameters (Table 4.3). During the model simulation both LAl and LCC were varied to provide a
good range (LAl was varied from 0-8, whereas LCC was varied from 5-70 ug cm-2). Other
parameters were taken as an average value from the literature; this was to ensure that the
changes in the modelled spectral reflectance are only due to changes in LAl and leaf chlorophyll
content. Two datasets were generated; All PROSAIL Data and SEN3Exp PROSAIL. The ‘All PROSAIL
Data’ was the correlation between reflectance and canopy chlorophyll content for a wide range of
biophysical variables between the wavelengths of 500-800 nm. Alternatively, the SEN3Exp
PROSAIL dataset represented reflectances generated from the PROSAIL model while using the
same ESU biophysical variables of the SEN3Exp campaign. SicilyS2EVAL was not considered due to
the low range of LAl and LCC compared to SEN3Exp.

Table 4.3: Biophysical parameters chosen for PROSAIL data set.

Model Variables Units Range
PROSPECT
N Leaf structure index Unitless 1.5
Cab Leaf chlorophyll content = [pg cm?] 5-70
Cn Leaf dry matter content [g cm?] 0.009
SAIL
LAI Leaf area index [m2m?] 0-8
ALA Average leaf angle [°] 35
HotS Hot spot parameter [m m™] 0.01
S Sun zenith angle [°] 30
v View zenith angle [°] 10
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4.2.1.1. In Situ Data Collection: SicilyS2EVAL

SicilyS2EVAL targeted a single crop type, grillo (grapevine) during May 2010. Each of the 25 ESUs
was a composition of multiple LAl and LCC measurements representing a 10 x 10 m sample area.
LAl was systematically sampled 18 times at different locations within each ESU using the Li-Cor

LAI-2000 near dusk and dawn under diffuse radiation conditions.

«—>
@ ~150 cm ®
® @
® @
@ @
East
~80-100 cm IQ | ¢
@ @
@ GPS position @ South
@ @
West
16 readings below

= @ @
2 reference
readings above
canopy

Figure 4.3: Sampling strategy for LAl measurements from SicilyS2EVAL campaign. 16 readings
were taken below the canopy spread throughout the 10 x 10 m sampling area centred on a GPS

coordinate. Two above the canopy readings were taken to adjust for changes in solar intensity.

A total of 81 Relative LCC measurements were taken using a Minolta SPAD-502™ (Delegido et al.
2011a), these measurements were spread evenly across the canopy of 9 separate plants at each
ESU. In addition to the SPAD measurements leaf cuttings (5 mm diameter) were removed from 30
separate plants selected using a systematic sampling strategy. The leaf cuttings were taken at a
consistent position of each leaf and stored in dimethylformamide for later analysis. Absorption in
647 nm and 664 nm were measured using a Rayleigh UV-1800™ spectrophotometer and used to
estimate chlorophyll a and chlorophyll b of the sample using Eq. (4.1) and Eq. (4.2) (Moran and
Porath 1980, Moran 1982). Total chlorophyll concentration estimated from this analysis was

correlated with the SPAD measurements to provide an absolute LCC value using Eq. (4.3).
Chlorophyll a = 11.65*Agg4-2.69* Ags7 Eq. (4.1)
Where Agi; and Agg, are sample absorptions at wavelengths of 647 nm and 664 nm.

Chlorophyll b =20.81*Ags; - 4.53*%Ases  Eq. (4.2)
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Where Ag;;and Aggs are sample absorptions at wavelengths of 647 nm and 664 nm.
Total Chlorophyll = 3.79*S + 79.79 Eq. (4.3)
Where S is the representative SPAD value.

4.2.1.2. In Situ Data Collection: SEN3Exp

Data from the SEN3Exp campaign, which took place in June and July 2009, included 35 canopy
chlorophyll content measurements from agricultural sites in the Barrax region of Spain (SEN3Exp
2011). The crop dataset composition consisted of: corn, garlic, oat, onion, potato, sunflower,
alfalfa and grapevine. Within each of the 20 x 20 m ESUs, 24 LAl field measurements were taken
using a Li-Cor LAI-2000™ (SEN3Exp 2011) and relative LCC measurements were made using a
SPAD. Relative LCC measurements were converted to absolute LCC using destructive leaf sampling
of a subset of five samples per ESU in a Varian spectrophotometer after extraction of chlorophyll
with dimethylformamide (SEN3Exp 2011). Table 4.4 provides a summary of the field campaign

data used in this analysis.

Table 4.4: Summary of field campaign data used in analysis.

Campaign Location Number of ESUs | ESU Size Date
SicilyS2EVAL | Castelvetrano - Sicily 25 10x10m May 2010
SEN3Exp Barrax — Spain 35 20x20 m | June/July 2009

4.2.2. Airborne Acquisitions

SEN3Exp hyperspectral data was collected using a CASI-1500 sensor operating at 2.4 nm spectral
and 1.5 m spatial resolution. Five flight lines were acquired with an overlap of 50% at an altitude
of 2743 m. Atmospheric conditions were good with some reported high cloud appearing during
the survey (SEN3Exp 2011). For the SicilyS2EVAL campaign hyperspectral airborne data was
collected and processed to level 1B by the natural environment research council (NERC) airborne
research and survey facility (ARSF) using a Specim EAGLE sensor. The sensor operated at a
spectral resolution of 2.2 nm between the range of 400-1000 nm with a spatial resolution of less
than 1.5 m flying at an altitude of 5000 m under clear sky conditions with a solar zenith angle of

70°. All ESUs were contained within two flight lines with an overlap of 50%.

4.2.3. Band Weighting and Data Processing

Prior to simulating S-2 bands, the Eagle data from SicilyS2EVAL were geometrically corrected

using a parametric method, AZGCORR (Azimuth Systems 2005) based on in-flight altitude and
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heading data. Geometrically corrected images were atmospherically corrected using ATCOR-4
(ReSe Applications 2011) which is based around an atmospheric look-up table (Richter 2008) that
contains the results of radiative transfer calculations from the MODTRAN-4 model. After
atmospheric correction the available S-2 bands were synthesised from CASI and Eagle data using a

weighting function based on the S-2 spectral response files.

4.3. Designing Optimal Indices for Biophysical Variable Retrieval from

Sentinel-2 Data

Direct assessments have been made between canopy chlorophyll content measurements and
spectral reflectances for available wavelengths. Canopy chlorophyll content (g m™), the product of
LCC and LA, is the total amount of chlorophyll in a given area. The following results show how
reflectance is affected for a range of canopy chlorophyll contents over a large part of the visible
and NIR spectrum. The method aimed to highlight the strongest vegetative absorption and
reflectance signatures and subsequent analysis explored how well they could be harnessed using
the available S-2 bands with the goal of formulating the optimal vegetation index for deriving
each of the key biophysical variables previously outlined in section 2.1.. An optimal index, for all
intents and purposes, is the most accurate combination of reflectance measurements to provide a

surrogate measure, over the entire natural range, of the biophysical variable in question.

4.3.1. Relationship Between Spectral Reflectance Generated from PROSAIL and Canopy

Chlorophyll Content.

Analysis of the PROSAIL results provided insight into; (i) how reflectance related to the biophysical
variables of interest, and; (ii) how these correlations compared to ground data from the field
campaigns presented in this chapter. This method of investigation highlighted the most highly
correlated vegetative features with respect to wavelength for the two PROSAIL datasets and is

presented in Figure 4.4.
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Figure 4.4: Comparing the correlation coefficient (R) between spectral reflectance and canopy

chlorophyll content with changing wavelength for both PROSAIL datasets.

LAl and LCC were varied between 0-8 using increments of 0.2 and 5-70 pg cm™ using increments
of 5 pug cm™ respectively for the All PROSAIL Data while SEN3Exp PROSAIL represented
reflectances generated from the PROSAIL model by inputting biophysical variables attributes as
the SEN3Exp campaign. There were issues with using the all PROSAIL dataset in this correlation
analysis as the difference between the lower and higher step values of LCC cause the RE to be
more drawn out, as can be seen in Figure 4.4, in comparison to the smaller SEN3Exp PROSAIL
dataset. PROSAIL was found to highlight the correlation between reflectance and canopy
chlorophyll content in the red to peak between 705-735 nm and after a very steep and narrow RE
it can be seen that spectral reflectance is positively correlated to canopy chlorophyll content

above 750 nm.

4.3.2. Relationship between Spectral Reflectance and Canopy Chlorophyll Content for
SicilyS2EVAL.

Figure 4.5 illustrates the relationship between canopy chlorophyll content and spectral
reflectance for 25 ESU locations in SicilyS2EVAL. Firstly, assessing the NIR correlation showed that
the relationship was consistently positive above 745 nm. Increased reflectance in the NIR due to
vegetation is a well-documented feature of vegetation density due to internal leaf scattering
(Gausman 1974, Knipling 1970). The correlation coefficient (R value) of the relationship between
the canopy chlorophyll content and wavelength in the NIR was low partly due to the vegetative
sample having a relatively low LAl range (0.16-1.05) but also due to the influence of soil

background reflectance at low LAI. Although the resulting correlation strength was low (Figure
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4.5) and the p value of > 0.05 indicated that the result was not significant, the change in

correlation with respect to the transition of the RE is noteworthy when compared to results from

SEN3Exp highlighted in section 3.3. During atmospheric correction several bands in the red (680-

690 nm) had to be removed due to sensor saturation issues. Noting this caveat, the red part of

the spectrum was found to have a strong and statistically significant (p < 0.05) negative

relationship between spectral reflectance and canopy chlorophyll content with maximum

correlation at 678 nm. This was primarily due to absorption by canopy chlorophyll content. The

strength of the red correlation decayed either side of this narrow peak, especially above 690 nm.

Correlation between visible light reflectance and canopy chlorophyll content can be seen to decay

to a minimum strength in the green (543 nm +/- 15 nm) where chlorophyll absorption reached a

minimum. The green relationship had a negative correlation with canopy chlorophyll content due

to the sparse ESU locations of bright soil having higher reflectance than the vegetated pixels.

Nevertheless, the trend specifically showed the strongest green signal according to this dataset

(528-558 nm).
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Figure 4.5: Comparing the correlation coefficient (R) between spectral reflectance and canopy

chlorophyll content with changing wavelength for the SicilyS2EVAL and SEN3Exp field campaigns

with indications of S-2 band positions and dashed lines to show where p = 0.
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4.3.3. Relationship between Spectral Reflectance and Canopy Chlorophyll Content for
SEN3Exp

Figure 4.5 displays the correlation between the spectral reflectance and canopy chlorophyll
content at specific wavelengths for the 35 ESU SEN3Exp dataset. The NIR correlation can be seen
to be stronger and statistically significant (p < 0.05) compared to the SicilyS2EVAL data above 750
nm reaching maximum strength above 770 nm. The correlation between red reflectance and
canopy chlorophyll content reached a maximum at 680 nm and, as with the SicilyS2EVAL dataset,
quickly decayed above 690 nm. Similar to the SicilyS2EVAL results the SEN3Exp results show

visible absorption correlation decayed to a minimum in the green at 540 nm (+/- 15 nm).

4.3.4. Comparison between Field Campaign Data and PROSAIL.

Table 4.5 summarises the outcomes of the correlation coefficient analysis for both SEN3Exp,
SicilyS2EVAL and the PROSAIL SEN3Exp data. The ‘central wavelength’ is the point at which the
correlation reaches a maximum strength of R in the NIR, red and green. However, in the case of
‘RE 0’ it was where the correlation in the RE = 0. It should be noted that ‘RE 0’ was not a REP
measurement but used as a statistical measure to compare between datasets. In Table 4.5 the
‘range of correlation’ is the extent of the strongest correlation with regards to wavelength for
each dataset that can be used to characterise the three key spectral reflectance features in the

green, red and NIR.

Table 4.5: Outcomes of correlation signal investigation.

Central Wavelength Range of Correlation
Part of . PROSAIL . PROSAIL
SicilyS2EVAL | SEN3Exp SicilyS2EVAL SEN3Exp
Spectrum SEN3Exp SEN3Exp
NIR 750 nm 770 nm 770 nm 750 nm+ 750 nm+ 760 nm+
REO 730 nm 730 nm 742 nm n/a n/a n/a
Red 678 nm 677 nm 725 nm 660-685 nm | 600-690 nm | 705-735 nm
Green 543 nm 540 nm 555 nm 528-558 nm | 525-555 nm | 545-565 nm

Table 4.5 highlights close similarities between the two field campaigns in most parts of the visible
and NIR spectrum with the only noticeable differences being; (i) the width of the red correlation
feature which is narrower in SicilyS2EVAL towards the green than SEN3Exp, and; (ii) the strength,

but not position, of the NIR reflectance feature. However there are significant differences
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between the field and PROSAIL datasets.
1

0.8

0.6

0.4 !:’
0.2 /4

Value of R Between Canopy Chlorophyll
Content (g m2) and Reflectance

0 T T T T T 1
/ ]
0.2 '
J
0.4 |

A
0.6 — "
08 moo o - - === — I
=== S<_/
1
500 550 600 650 700 750 800

SEN3Exp
— — =-SEN3Exp PROSAIL

Wavelength (nm)

Figure 4.6: Comparing the correlation coefficient (R) between canopy chlorophyll content and
spectral reflectance for the SEN3Exp field campaign and SEN3Exp PROSAIL with changing

wavelength.

The PROSAIL model data was compared with SEN3Exp data in which is displayed in Figure 4.6. It is
interesting to note that the PROSAIL data had a strong negative correlation with canopy
chlorophyll content until 735 nm. This was not the same for the SEN3Exp and SicilyS2EVAL field
data where the correlation between spectral reflectance and canopy chlorophyll content in the
red part of the spectrum rapidly decreased above 690nm (see Figure 4.5) and is positive above

730 nm.
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Figure 4.7: Comparison of PROSAIL SEN3Exp (b and d) and SEN3Exp field data (a and c) at 680nm
(aand b) and 730nm (c and d).

In light of the differences in correlation between the field and PROSAIL data in the RE reflectance
was compared at 680 nm and 730 nm (Figure 4.7). It can be seen that at 680 nm the field data
(Figure 4.7(a)) and the PROSAIL data (Figure 4.7(b)) show a decline in reflectance with an increase
in chlorophyll content. However, at 730 nm no relationship was present for the field data (Figure
4.7(c)) while the RTM (Figure 4.7(d)) remained negative with an R’ of 0.87 where p < 0.001.
Although the slope between reflectance and canopy chlorophyll content at this wavelength was
0.05 for the RTM this still results in a 23% reduction in absolute reflectance over the range of
0.05-1.84 g m™ canopy chlorophyll content. In the NIR part of the spectrum, RTM results are
similar to the field campaign data becoming strongly positive at 750 nm and reaching maximum
strength at 770 nm (Figure 4.7). There was also a difference between the datasets in the green.
The field data showed a weakening of the negative relationship while the PROSAIL data showed
the negative relationship becoming slightly stronger. Upon further investigation the cause of this
difference with the PROSAIL data was an issue of saturation of canopy chlorophyll content with

change in green reflectance. When ESUs with high canopy chlorophyll content values were
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removed the R? between canopy chlorophyll content and spectral reflectance in the green was
weaker than in blue and red for the SEN3Exp PROSAIL dataset correlating with the SEN3Exp field

data trend.

4.3.5. Suitability of S-2 Bands for Retrieval of Biophysical Variables.

SicilyS2EVAL and SEN3Exp field campaigns correlation results at specific wavelengths are
combined in Figure 4.5 which also highlights the available bands for S-2 near the RE (Table 4.2).
Firstly, according to the two field campaign datasets, S-2 band 3 (542.5-577.2 nm, green band)
does not cover the optimal wavelengths where, due to increased canopy chlorophyll content, the
green reflectance is less strongly correlated to canopy chlorophyll content than in the red and
blue parts of the visible spectrum. Using a band width of 525 to 555 nm would be theoretically
optimal for the datasets presented. Secondly S-2 band 4 (red band) captures absorption due to
chlorophyll as its bandwidth extends until just before the RE where spectral reflectance beings to
shift from a negative to positive relationship with canopy chlorophyll content. Furthermore, the
bandwidth of S-2 band 4 is not adversely wide whereas, according to the two datasets and
especially SicilyS2EVAL, if the lower band limit extended below 650 nm the bands strength of
characterising the chlorophyll absorption feature would be weakened. The MERIS continuation RE
band (S-2 band 5: 705 nm +/-7.5 nm) has increased spectral bandwidth compared to MERIS band
9 (708.75 nm +/-5 nm). However, with the central band position only slightly changed this should
not make significant impact for RE characterisation considering it is situated over a linear part of
the RE. S-2 band 6 is a new RE/NIR band with respect to previous satellite sensors such as
RapidEye and MERIS. Considering vegetative monitoring and capturing the NIR feature S-2 band 6
will, as a replacement for MERIS band 10 (753.75 nm +/- 3.75 nm), receive increased mixed signal
from the RE as it is situated at the peak of the RE rather than slightly beyond it. However the
position of the band and its combination with S-2 band 5 will, consequently, provide the
opportunity for enhanced estimation of the REP compared to MERIS or RapidEye. Finally S-2 band
7, which is similar to MERIS band 12 (775 nm +/- 7.5 nm), is the optimal band in the NIR for

capturing the vegetative signal in the NIR based on SicilyS2EVAL and SEN3Exp data sets.

It should be highlighted that, with reference to Table 4.5, the correlation in vegetation spectral

reflectance and canopy chlorophyll content shown between these two separate field campaigns is
consistent considering their differences with respect to airborne sensor, location, operating team,
time of year and field campaign procedures. Taking this into account gives confidence in using this
presented dataset to compare methods for canopy chlorophyll content, LAl and LCC retrieval from

S-2 data.
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4.3.6. New Vegetation Indices for S-2

Based on the relationship between spectral reflectance in individual S-2 MSI bands and canopy
chlorophyll content, LAl and LCC, this chapter proposes two new methods to estimate biophysical
variables for use with S-2 MSI data. First, the Inverted Red Edge Chlorophyll Index (IRECI, Eq. (4.4))
which incorporates the reflectance in four S-2 bands to estimate canopy chlorophyll content, and
second, the Sentinel-2 Red Edge Position (S2REP, Eq. (4.5)); a version of REP estimation for S-2

using linear interpolation (Guyot and Baret 1988, Clevers et al. 2000).

rNIR-rR __ 1r783-1665
rRE2/TRE1  1705/r740

IRECI = Eq. (4.4)

IRECI makes use of both RE bands, that S-2 will provide, to characterise the RE slope by using the
reflectance at 740nm and 705nm (Table 4.1) while also making use of the maximum and
minimum vegetation reflectances found in the NIR and red at 783 nm and 665 nm respectively. By
using the LCC indicative RE reflectance IRECI does not put heavy emphasis on the red, which will
help to avoid saturation, while still utilising the strong contrast of the SR sensitive to LAl Based on
field dataset from SEN3Exp and SicilyS2EVAL campaigns, IRECI is a near direct calculation of field
measured canopy chlorophyll content (g m?) with a slope of 0.9004 and intercept of 0.1795 with
a coefficient of determination of 0.87 (see section 4.3., Table 4.6). However, further validation will

be required with other datasets and specifically a larger range of canopy chlorophyll content.

~ (TNI};+TR)_ - (T783-2I-T665)_r705
S2REP =705+ 35 * =705+ 35 % Eq. (4.5)
TrRE2—-TrRE1 r740—-1r705

S2REP ( Eq. (4.5)) is based on linear interpolation as presented by Guyot and Baret (1988) where
the reflectance at the inflexion point is estimated and in turn the REP is retrieved through
interpolation of S-2 band 5 and 6 which are positioned on the RE slope. This linear interpolation
method has been previously applied to MERIS data by Clevers et al. (2000) and was found to be
more robust than the Lagrangian method (Dawson and Curran 1998) with the benefit of requiring
a limited number of spectral bands making it suitable for spaceborne sensors (Clevers et al. 2002).
S-2 has a key benefit compared to MERIS for the application of the linear interpolation method. S-
2 band 6 (740 nm) measures the reflectance situated at the top of the linear part of the RE slope
whereas MERIS band 10 (753.75 nm) measures reflectance slightly above the linear part of the RE
where the gradient in decreasing as it reaches the NIR plateau. In theory this means that S2REP
should provide better characterisation of the RE slope compared to application of the method

using the MERIS or the future Sentinel-3 sensors.
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4.4. Evaluation of the Spectral Indices

Each VI output was derived from the synthesised S-2 data for the field campaigns presented in

Table 4.4. The correlation with LAI, LCC and canopy chlorophyll content for each assessed VI is

presented in Table 4.6.

Table 4.6: Coefficient of determination results of each Vegetation Index for varying field data sets

and biophysical variables, light green highlights where 0.7 < R* < 0.8 and dark green highlights

where 0.8 < R%. Results denoted with * have p values of <0.001.

Variable Data Set NDVI NDI45 MTCI MCARI GNDVI PSSR S2REP IRECI
Canopy | Combined | 070° 078 051" 042" 066 | 072" 047 | 0.87
Chlorophyll | SicilyS2EVAL | 0.83° 0.78° 0.65 = 0.66 = 0.45 0.84 035 0.64"
Content SEN3Exp 062° 070" 024 075 058 059" 023 084
Combined 063 076 039 055 @ 058 061 036 0.88

LAI SicilyS2EVAL | 0.86°  0.84 055 072" 042" 0.83° 0.19 0.74
SEN3Exp 057 068 015 0.88° 049 051" 012 0.84

Combined 056 030 077 0 058 036 091 0.24

LCC SicilyS2EVAL | 0.62°  0.63° 039 = 0.35 054" 062" 024 035
SEN3Exp 0 0 0.25 0 002 003 0.51 0

4.4.1. Leaf Chlorophyll Concentration

Although majority of VIs had poor correlation with LCC (Table 4.6) the MTCI and S2REP achieved

strong correlation with LCC with R” of 0.77 and 0.91 respectively Figure 4.8.
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Figure 4.8: Coefficient of determination comparisons between MTCI, S2REP and LCC.

The MTCI and S2REP are the only two VIs in the analysis that solely characterise the RE which has

been shown to be sensitive to variation in LCC (Horler et al. 1983, Curran et al. 1990, Dash and

Curran 2004). Increases in LCC result in a broadening of the major red absorption feature which

causes a shift in the REP towards longer wavelengths (Boochs et al. 1990). Previous experimental
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studies have shown low LCC to be associated with REP values near 700 nm and high LCC to attain
REP results closer to 725 nm (Boochs et al. 1990, Horler et al. 1980, Lamb et al. 2002). S2REP
performed with similar results for the combined SicilyS2EVAL and SEN3Exp datasets producing
REP results of 711-728 nm for LCC values of 0.16-0.41 g/m?. The high MTCl outliers are discussed

later in the thesis.

4.4.2. Leaf Area Index.
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Figure 4.9: IRECI and NDI45 compared for LAl from SEN3Exp and SicilyS2EVAL field campaigns.

The IRECI and the NDI45 were the best performing Vls with respect to LAl with R values of 0.88
and 0.76 respectively. Although developed for correlation with canopy chlorophyll content IRECI is
shown in Figure 4.9 to be linear with LAl. When compared for lower values of LAl below 2 the

IRECI and the NDI45 have an R? of 0.77 and 0.62 (p < 0.001) respectively.
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4.4.3. Canopy Chlorophyll Content.

2.5 0.7

% 0.6
2 Pad

IRECI

0 1 2 3 0 1 2 3
Canopy Chlorophyll Content (g m2) Canopy Chlorophyll Content (g m2)

25

0.9 L
0.8 ¢ / * Mt
0.7 *

*
0.6 - 15 MR
0.5

0.4
0.3
0.2
0.1

0 T T !
1 2 3

Canopy Chlorophyll Content (g m2) Canopy Chlorophyll Content (g m?)

20 *

>0y

NDVI
PSSR

i
}

o

Figure 4.10: IRECI, NDI45, NDVI and PSSR compared to canopy chlorophyll content for field data
from SicilyS2EVAL and SEN3Exp field campaigns.

The four best performing VIs (NDVI, PSSR, NDI45 and IRECI) (Table 4.6) in terms of correlation
coefficient with respect to canopy chlorophyll content are compared in Figure 4.10. Saturation is
noticeably present above a canopy chlorophyll content value of 1 g/m? for the NDVI (R? = 0.70)
due to saturation of red reflectance (Kanemasu 1974, Tucker 1979, Horler et al. 1983, Buschmann
and Nagel 1993.) The PSSR (R’ = 0.72) functions linearly with canopy chlorophyll content although
its spread increases significantly at higher values. When comparing the NDVI and the NDI45 this
dataset suggests the change from using reflectance measurements in the NIR (band 7) to RE1
(band 5) has increased spread at lower canopy chlorophyll content values but made NDI45 more
linear with less saturation at higher values than the NDVI. The IRECI was the best performing
measure of canopy chlorophyll content using synthesised S-2 field data for the two presented
campaigns. The index can be seen to have a strong linear relationship with canopy chlorophyll

content without saturation at higher values. As highlighted earlier in section 5, the IRECI also has
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the useful trait of being a near direct calculation of canopy chlorophyll content in g/m? for this
dataset. The inclusion of RE bands improved correlation over the entire data set while mitigating
the saturation effect at higher canopy chlorophyll content. However, the inclusion of these bands
also increased the spread of the IRECI at very low canopy chlorophyll content (<0.13 g/m?)

compared to the NDVI and PSSR,.

4.5. Conclusions

S-2 provides a great opportunity for global vegetation monitoring due to its enhanced spatial,
spectral and temporal characteristics compared with Landsat and SPOT. Simulated S-2 data has
been compared to a combined field dataset of 60+ ESUs across two field campaigns covering eight
separate crops. Although the field campaigns varied with respect to year, location, airborne
sensors and field teams, similar relationships between spectral reflectance and canopy
chlorophyll content were obtained. All bands around the RE have been shown to be useful in
assessing vegetation condition, specifically canopy chlorophyll content. However, there is a need
for further investigation of the green reflectance region 525-555 nm and its potential role in
estimating canopy chlorophyll content. The results suggest that the wavelengths covered by the
S-2 green band may not be optimal to capture the changes in reflectance due to canopy

chlorophyll content.

It has been highlighted that many VIs attempt to correct for uncertainties or inaccuracies through
incorporation of scene specific parameters or normalisation functions. Application of such
methods affects the universal applicability and ease of operational use. S2REP has been presented
and shown as the most suitable method for quantifying LCC using these datasets; nevertheless
the MTCI also had noteworthy results. A novel index the IRECI has been shown to be linearly
related to canopy chlorophyll content at a near 1:1 ratio in g m™ while still performing well for LAI
up to and beyond the common saturation point. It achieves this as it utilises the opportunities S-2
bands 5 and 6 present for RE characterisation while still incorporating the robustness of the SR.
Further validation is required with other field campaigns and synthetic S-2 data to reinforce

findings.
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Chapter 5: Investigating the Opportunities for
Application of MTCI using Sentinel-2 and Sentinel-3 and
the Feasibility to Downscale

5.1. Introduction

The MTCl is an already well-established algorithm for the retrieval of biophysical parameters in
vegetation, specifically as a surrogate measure of chlorophyll content. During the 10 years MERIS
was active the MTCI was produced as an operational product. With the loss of Envisat on the 8"
of April 2012 the future of the MTCI will therefore be dependent on the S-2 and S-3 missions. S-2
is currently planned for launch in April 2015 while S-3 is tentatively set for Mid-2015 (ESA 2011a).
Although due to this there will be a gap in MTCI coverage long running datasets can be integral to
certain vegetative studies. Furthermore while S-3 will continue global acquisitions of the MTCI at
300 m spatial resolution S-2 will allow operational calculation of the MTCI at 20 m spatial
resolution. Consequently there is need for research to investigate the opportunities of application
of the MTCI with S-2 and S-3 and the possible differences that must be accounted for. The
availability of reflectance bands of S-3 and S2 compared to MERIS is summarised in Table 5.1 and
bands of specific interest between 500 and 800 nm are overlaid onto a typical vegetative

reflectance spectra in Figure 5.1, Figure 5.2 and Figure 5.3 for MERIS, S-2 and S-3 respectively.
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Table 5.1: Summary of Spectral band of MERIS, Sentinel-2 and Sentinel 3.

77

MERIS Sentinel-3 Sentinel-2
Band Wac:c:lter:;th Bar;:::i)dth Band Wac:el]:r:;th Bar;:xi)dth Band W:::I::;th Bar;:::i)dth
(nm) (nm) (nm)
1 400 15
1 412.5 10 2 412.5 10
2 442.5 10 3 442.5 10
3 490 10 4 490 10
4 510 10 5 510 10
5 560 10 6 560 10
6 620 10 7 620 10
7 665 10 8 665 10
8 681.25 7.5 10 681.25 7.5
9 708.75 10 11 708.75 10
10 753.75 7.5 12 753.75 7.5
11 760 3.75 13 761.25 2.5
14 764.375 3.75
15 767.5 2.5
16 778.75 15
17 865 20 8 842 115
14 890 10 18 885 10
15 900 10 19 900 10
20 940 20 8a 865 20
21 1020 40 9 945 20
10 1375 30
11 1610 90
12 2190 180
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Figure 5.1: Positions of MERIS reflectance bands with width indicators overlaid onto the spectra of

sunflower ESU from Sen3EXP measured using the hyperspectral AISA Eagle sensor.
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Figure 5.2: Positions of S-2 reflectance bands with width indicators overlaid onto the spectra of

sunflower ESU from Sen3EXP measured using the hyperspectral AISA Eagle sensor.
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Figure 5.3: Positions of S-3 reflectance bands with width indicators overlaid onto the spectra of

sunflower ESU from Sen3EXP measured using the hyperspectral AISA Eagle sensor.

5.2. Continuation of the MTCI using S-3

Continuation of the MERIS dataset is one of the mission objectives of S-3. Fortunately for the
MTCI, all bands that were used in its formulation are available using the Ocean and Land Colour
Imager (OLCI) on-board S-3. Application of the MTCI using S-3 will hereby be referred to as OTCI
(Eq. (5.1); Ocean and Land Colour Imager Terrestrial Chlorophyll Index).

rNIR-TRE __ r753.75nm-r708.75nm _ OLCI b12—-0LCI b11

OTCI = = =
rRE-7rRed r708.75 nm—-r681.25 nm OLCI b11-0LCI b10

Eq. (5.1)

5.2.1. Spectral Changes

S-3 bands used in the OTCI share central wavelengths and bandwidths with the heritage MERIS
bands used in the MTCI formula. Furthermore the spectral response function of the shared bands

is identical meaning the two sensors are directly comparable.
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5.2.2. View Angle Changes
One of the unique aspects of OLCl is that unlike MERIS the sensor will be tilted by 12.58° away

from the sun to minimise the glint impact. Consequently the view angle will not be symmetrical

with the centre of the swath in the image as visualised in Figure 5.4.

50 1 = MERIS = OLCI

Centre of the swath

Figure 5.4: Representation of the view angle across a scene using MERIS and OLCI to emphasise

the tilt of S-3 and the resulting increased view angle compared to MERIS.

The tilt of the OLCI will mean that the maximum view angle observed will be 55.6° at the far side

of the image, 15.6 ° higher than the maximum in a MERIS scene.
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Figure 5.5: Average MTCI output of dataset over the 2009 growing season.

To perform preliminary investigations for the effect this difference in view angle will have
MTCI/OTCI was tracked over the growing season for 12 MERIS acquisitions from 2009 (Figure 5.5)
for locations in Barrax Spain. Spectral reflectances were extracted from randomly selected pixels
that exhibited maximum canopy extent during the summer (based upon MTCI) and subsequently
canopy variables were estimated through inversion of the PROSAIL model (Baret et al. 1992;

Jacquemoud et al. 2009). In turn, canopy variables retrieved by the inverted model were used to

80



William James Frampton

simulate reflectance using the PROSAIL model in forward mode with the change in view angle
accounted for from MERIS to OLCI. Subsequently MTCI and OTCI were calculated for given
locations according to the new MERIS view angle and the corresponding OLCI view angle as can be
seen in Figure 5.6 where values for two example cases are presented with the relative percentage

difference between OTCIl and MTCI.

Rel diff -« OLCI SIM - = - MERIS SIM Rel diff -« OLCI SIM - = - MERIS SIM
40 r 10 — 5.0 r 10 =
g8 By < g » &
3.0 4 r L 8 @ 4.0 w : L 8 g
s ‘ 5 i 5
s . 6 5 o 3.0 ‘ h\\ -8 =
L 20 1. o ’ ?rE’ = e " b E
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Acquisition number Acquisition number

Figure 5.6: OTCl and MTCI generated from PROSAIL data over an entire growing season for

example locations in Barrax, Spain.

It can be seen that due to the view angle disparity between MERIS and OLCI that the differences
between MTCI and OTCI ranged between 0.35% and 5.3% with a mean relative difference of 2.3%.
A key goal of S-3 is the continuation of MERIS. This analysis gives a preliminary idea of what the
possible difference between MTCI and OTCI should be based on the changed view angle. It should
be noted that when S-3 is operational there will be much scope for investigation into this
difference using image based studies rather than the model approach used here. However it is
unfortunate that there will be no overlap in operation of MERIS and OLCI as it would have given
excellent opportunity for investigations of this nature. Consequently there is much scope for
analysis in the difference in performance of the sensors and methods will have to be devised to
test this without contemporaneous operation. Nevertheless the MTCI will be continued by OLCI as
an operational product and with so few changes between the sensors after initial comparisons are
made validation of the MTCI that was performed using MERIS should be carried over and

continued using OLCI.

5.3. Estimation of the MTCI Using S-2

Due to the high spatial resolution of the MSI sensor aboard S-2, extensive swath and global
coverage the data volume will be substantial. As an example the Level-2A product, which will

provide bottom-of-atmosphere reflectances in cartographic geometry, will be 600 MB for each
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100x100 km? (ESA 2014). Consequently, unlike MERIS which provided biophysical operational
products for each downloaded scene, S-2 will only provide band reflectances to minimise data
volume. While initial application of the MTCI using synthetic S-2 data has been shown in
previously in Chapter 4 analysis in this chapter aims to more thoroughly highlight the important
differences in spectral band positions and the consequences they will have on the output of the
MTCI. It can be seen in Table 5.1 that unlike S-3 bands that were used to calculate the MTCI using
MERIS will not be available using S-2. Therefore application of the MTCI using S-2 will require new

spectral bandwidths and will be labelled as S2TCI (Eq. (5.2)).

rNIR—rRE __ (r783 or 740 nm)—r705 nm
rRE—rRed r705 nm—-r665 nm

S2TCI =

Eq. (5.2)

5.3.1. Spectral Changes

There are three key changes for the S2TCI: a choice of NIR bands to use, the RE band is now
positioned at 705 nm rather than 708.75 nm and the red band is situated further from the RE at
665 nm. To investigate the impact of these changes hyperspectral data are required to accurately
generate synthetic S-2 data using spectral weighting estimations of sensor performance. The
SEN3Exp field campaign that was used during the analysis in Chapter 4 was reprocessed to
generate additional MERIS bands according to spectral weighting files from the CASI hyperspectral

data. The three key changes are highlighted in Figure 5.7 and Figure 5.8.
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Figure 5.7: S-2 and MERIS band positions located on a CASI hyper-spectral reflectance curve

between 500-800 nm for a potato ESU evaluated during the SEN3Exp field campaign.
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Figure 5.8: MERIS and S-2 spectral bands located near the RE generated from CASI hyperspectral
data of a potato ESU evaluated during the SEN3Exp field campaign. Annotated with absolute

reflectance values and bandwidth indicators.

5.3.1.1. Spectral Changes in the Red

Compared to MERIS, S-2 only has one available band in the red part of the spectrum at 665 nm.
MERIS band 7 has the same band central wavelength at 665 nm however S-2 band 4 has an
increased bandwidth of 30 nm compared to MERIS band 7 which is a narrower 10 nm.
Nevertheless the MTCI does not use MERIS band 7 but MERIS band 8 which has a central
wavelength of 681.25 nm. As this spectral bandwidth is not available with S-2 the impact of using
a band focused at 665 nm must be considered. The percentage difference between MERIS band 8
and S-2 band 4 was calculated with each ESU from the SEN3Exp field campaign. The average
difference between the bands was -1.5% in relative reflectance for the 33 ESU dataset. Upon
further investigation the percentage change was found to be not random; when the ESU locations
were compared based on their chlorophyll content there was a statistically significant (p < 0.05)
relationship between the two red bands shown in Figure 5.9. It should be noted that the
difference between the bands will be described in a standard format in this discussion where the
percentage denotes how S-2 changes compared to MERIS; i.e. 5% would mean reflectance in S-2
would be 5% greater than the comparable MERIS band while -6% indicates 6% less relative

reflectance.
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Figure 5.9: Comparing percentage change in absolute reflectance from MERIS band 8 to Sentinel-2

band 4 by chlorophyll content for 33 ESUs from the SEN3Exp field campaign.

It can be seen that at very low chlorophyll values the change in S-2 band 4 relative reflectance is
up to -3.5% less than reflectance for the same ESU location using the synthesised MERIS band 8
whereas at higher chlorophyll contents there is minimal change in reflectance between the two
bands. The relationship exhibits a statistically significant (p < 0.05) moderate correlation where
the coefficient of determination (R?) is 0.47. There is a clear reason why this relationship would
occur: lower chlorophyll contents indicate sparse canopy cover which would suggest spectra
dominated by a soil line, consequently, in at such locations, the reflectance at 681.25 nm will be
higher than 665 nm. On the other hand the spectra of dense canopies with high chlorophyll
contents would exhibit a prominent, and saturating, absorption feature in the red. The width of
this feature would consequently mean there was little difference in reflectance between 681.25
and 665 nm. With this relationship in mind and consideration given to the formulation of the
MTCI algorithm a lower absolute reflectance in the red, which is incorporated negatively into the
denominator of the equation, in turn means a lower overall value of MTCI. As this is the case only
at lower chlorophyll content values there is likely to be a slight improvement in signal for the
S2TCl compared to the MTCI as the index value of sparsely vegetated pixels are reduced while

closed canopy locations are retained.

5.3.1.2. Spectral Changes on the Red Edge

The situation for RE band availability using S-2 is similar to that of the red band. The MTCl used
MERIS band 9 centrally located at 708.75 nm whereas the first band available directly on the RE
using S-2 is centred at 705 nm. Although the difference between the spectral bands (3.75 nm) is

smaller than that of the red bands the change in reflectance for vegetation is much greater in this
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part of the spectrum as the bands are located directly on the RE. Consequently we find that the
average relative change in reflectance for the SEN3Exp dataset is -12.12% between MERIS band 9
and S-2 band 5, much higher than the difference observed between the red bands. Like the red
band dissimilarity there is a clear correlation when the relative difference in reflectance is plotted

against chlorophyll content for the two RE bands as shown in Figure 5.10.
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Figure 5.10: Comparing percentage change in absolute reflectance from MERIS band 9 to Sentinel-

2 band 5 by chlorophyll content for 33 ESUs from the SEN3Exp field campaign.

It can be seen that the relative change in reflectance increases with chlorophyll content. The
correlation of the relationship was found to be statistically significant (p < 0.05) with a moderate
strength R” of 0.56. The reason for this is that higher chlorophyll contents should have a steeper
RE with a greater rate of change in reflectance compared to a less densely vegetated soil line.
Consequently even the small difference in central spectral band position of 3.75 nm can resultin a
change in measured reflectance of up to -19.29%. This is very significant for S2TCl as the central
RE band is incorporated twice into the formula. The decreased measured reflectance using S-2
band 5 will mean an increased numerator and decreased denominator in the M/S2TCl formula,
accordingly the output of the algorithm will be significantly increased especially at higher
chlorophyll contents which in theory increases the ability of S2TCl to retrieve biophysical

parameters of vegetation compared to the MTCI.

5.3.1.3. Spectral Changes in the NIR

Investigating the differences in the capabilities between S-2 and MERIS in the NIR is a different
case to the red and central RE as there are two optional bands. MERIS band 10 is located at
753.75 nm while S-2 has bands located at 740 nm and 783 nm. The average relative difference in

reflectance between MERIS band 10 and S-2 band 6 is -11.54% for the SEN3Exp dataset. The
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reason for difference is the same as for the bands at the centre of the RE. MERIS band 10 is
located just above the RE at the start NIR plateau while S-2 band 6 at 740 nm is located on the RE
meaning the band has lower measured reflectance. When the relative difference is compared
with the chlorophyll content of each ESU as can be seen in Figure 5.11 the relationship is clearly
negative with a statistically significant (p < 0.05) R? of 0.73. High chlorophyll contents have up to -
19.15% less reflectance using the 740 nm S-2 band rather than the 753.75 nm MERIS band while

the difference at very low chlorophyll contents is much less.
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Figure 5.11: Comparing percentage change in absolute reflectance from MERIS band 10 to MSI

band 6 by chlorophyll content for 33 ESUs from the SEN3Exp field campaign.

If band 6 is incorporated into the S2TCI formula the large change in measured reflectance will
have significant impact on the output of the algorithm. The decreased reflectance of S-2 band 6
included in the numerator of the S2TCI formula would reduce the output of the algorithm, more
so at higher chlorophyll content values than lower values. Consequently in theory this would
decrease the ability of S2TCI to retrieve biophysical parameters of vegetation compared to the

MTCI.

While S-2 band 6 should be recognised as a second band directly on the RE, S-2 band 7 is a
definitive NIR band situated at 783 nm on the plateau. Consequently compared to MERIS band 10,
which has a central bandwidth of 681.75 nm, S-2 band 7 has increased reflectance which, for the
SEN3Exp dataset, was on average 7.48% higher. Comparing the change in relative reflectance with
chlorophyll content as shown in Figure 5.12 yields a statistically significant (p < 0.05) positive
relationship with an R? of 0.69. This relationship can be attributed to the higher relative increase
in reflectance from leaf structure at high chlorophyll contents compared to the lower NIR

observed in sparse canopies typically demonstrating a soil line. With consideration given to the
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M/S2TCI formula the increased reflectance measured in the NIR would mean the output of S2TCl
would be higher than the MTCI, especially at higher chlorophyll contents. In theory this would

slightly increase the ability of S2TCI to retrieve biophysical parameters of vegetation compared to

the MTCI.
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Figure 5.12: Comparing percentage change in absolute reflectance from MERIS band 10 to MSI

band 7 by chlorophyll content for 33 ESUs from the SEN3Exp field campaign.

5.3.2. Comparison of NIR S-2 Bands 6 and 7

NIR reflectance is incorporated into the M/S2TCl formula in positive way so that increased
reflectance increases the output of the algorithm which indicates increased chlorophyll content.
Consequently it is undesirable for reflectance to decrease with increased chlorophyll content as
the output of the algorithm will be lower for higher chlorophyll contents; such is the case if S-2
band 6 is used in the S2TCl formula as a replacement for MERIS band 10. Conversely if S-2 band 7
is used the relative reflectance between the two bands increases at higher chlorophyll contents
which subsequently should improve the ability of the algorithm to retrieve chlorophyll content.

Therefore analysis suggests that when applying the MTCI to S-2 band 7 is used as the NIR band.

5.3.3. Impact of Each Band on the S2TCI Output

To investigate the effect each individual band change has on the output of the MTCI MERIS band
reflectances was calculated from the CASI hyperspectral imagery from the SEN3Exp dataset. One
by one the red, RE and NIR bands were replaced in the formula with synthetic S-2 bands to

investigate the quantitative change attributed to each band in the algorithm. It is important to
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establish the difference between the MTCI and the S2TCl to investigate the possible comparability

of the algorithms across sensor.
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Figure 5.13: Correlation of the MTCI with chlorophyll content for the SEN3Exp field campaign.

Figure 5.13 highlights the relationship of the MTCI with chlorophyll content from the SEN3Exp
field campaign. The correlation has a moderate strength with an R of 0.45 and is statistically
significant (p < 0.05). Having established the correlation of the MTCI with chlorophyll content

subsequent sections will investigate the change in correlation using S-2 bands.

5.3.3.1. S-2 Red Band 4

Section 5.3.1.1. highlighted that using S-2 band 4 will reduce the measured reflectance at low
chlorophyll contents more than in dense canopies compared to MERIS band 8. Consequently a
lower absolute reflectance in the red in turn means a lower output value of S2TCI compared to
the MTCI at lower chlorophyll contents. To quantify the change in TCl output for the SEN3Exp
dataset the MTCI formula was modified to use S-2 band 4 instead of MERIS band 8 as the input of
red reflectance while using still using MERIS band 10 and 9 and will be described as TestTCI1 (Eq.
(5.3)).

rNIR—-TRE __ MERIS b10—MERIS b9 _ r753.75 nm—-r708.75 nm

TestTCI1 = =
rRE—TRed MERIS b9—-S2 b4 r708.75 nm—-r665 nm

Eq. (5.3)

88



William James Frampton

Percentage Difference Between the

2.00%

0.00%

-2.00%

L 4
4

¢ % e

-4.00%

-6.00%

-8.00%

-10.00% *

-12.00%

Ouput of the TestTCI1 and the MTCI

-14.00%

0.5 1 1.5 2
Chlorophyll Content (g/m?)

Figure 5.14: Changing relative percentage difference between the TestTCI1 and the MTCI with

chlorophyll content taken from the SEN3Exp field campaign.

It can be seen in Figure 5.14 that incorporation of S-2 band 4 causes significant reduction to the

MTCI at low chlorophyll content values of up to -13.3%. Conversely, the wide, prominent red

absorption feature and resulting stable reflectance in the red region produced at higher

chlorophyll content values mitigates the change of using reflectance at 665 nm rather than 681.25

nm which results in negligible change above a chlorophyll content of 0.5 g/m”.
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Figure 5.15: Comparing the correlation of the MTCI and the TestTCI1.

Figure 5.15 compares the relationships between the MTCI, the TestTCI1 and chlorophyll content.

As the reduction in reflectance, which results in a lower TCl output, only occurs only at low
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chlorophyll content values there is a slight improvement in correlation for the TestTCI1 compared

to the MTCI with an R? of 0.50 and 0.45 respectively where p < 0.05.

5.3.3.2. S-2 Red Edge Band 5

Section 5.3.1.2. highlighted that using band 5 will reduce the measured reflectance at high
chlorophyll contents more than in sparse canopies using the S2TCl compared to the MTCI.
Consequently a lower absolute reflectance in the RE in turn means a significantly higher output of
the S2TCl compared to the MTCI. To quantify the exact change for the SEN3Exp dataset the MTCI
formula was modified to use S-2 band 5 instead of MERIS band 9 as the input of RE reflectance

while using still using MERIS band 10 and 8 and will be described as TestTCI2 (Eq. (5.4)).

rNIR-TRE _ MERIS b10—-S2 b5 __ r753.75 nm—-r705 nm

TestTCI2 = = = Eq. (5.4)
rRE—TRed S2 b5—-MERIS b 8 r705 nm—-r681.25 nm
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Figure 5.16: Changing relative percentage difference between the TestTCI2 and the MTCI with

chlorophyll content taken from the SEN3Exp field campaign.

It can be seen that the output of TestTCI2 is significantly higher than the MTCI by between 54.14%
and 41.89% over a range of chlorophyll contents. The lower increase in output at higher
chlorophyll contents can be attributed to the rate of change in reflectance of the RE between
708.25 nm and 705 nm. As the RE is typically only linear between 740 nm and 715 nm the
gradient of the RE decreases between 708.25 nm (MERIS band 9) and 705 nm (S-2 band 5).
Conversely for soil line reflectance and very sparse canopy cover there is very little to no decrease
in gradient. This means that the difference in rate of change between high and low chlorophyll

contents becomes less between 708.25 nm and 705 nm. The resulting undesirable decrease in
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TestTCI2 output at higher chlorophyll contents means it has a slightly lower correlation with

chlorophyll content with an R? of 0.41 compared with the MTCI of 0.45 (Figure 5.13).

5.3.3.3. S-2NIRBand 7

Section 5.3.1.3. highlighted that using S-2 band 7 will increase the measured reflectance at high
chlorophyll contents more than in sparse canopies with the S2TCl compared to using MERIS band
10 with the MTCI. Consequently a higher absolute reflectance in the NIR also means a higher
output of the S2TCI. To quantify the exact change for the SEN3Exp dataset the MTCI formula was
modified to use S-2 band 7 instead of MERIS band 10 as the input of NIR reflectance while using
still using MERIS band 9 and 8 and will be described as TestTCI3 (Eq. (5.5)).

rNIR—-TRE S2 b7—MERIS b9 __ 1783 nm—-r708.75 nm
rRE—rRed  MERIS b9—MERISb8  1r708.75 nm—1681.25 nm

TestTCI3 = Eq. (5.5)
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Figure 5.17: Changing relative percentage difference between the TestTCI3 and the MTCI with

chlorophyll content taken from the SEN3Exp field campaign.

TestTCI3 is between 6.08% and 20.34% higher than the MTCI over a range of chlorophyll contents.
Compared to the replacement of the red and RE bands changing the NIR exhibits a weaker
correlation between change in TCl output and chlorophyll with an R? of 0.18 but is still statistically
significant (p < 0.05). The reason for this is likely due to variation in soil reflectance exhibited by
sparse canopy locations with low LAI. A smaller relative change in reflectance of a very bright soil
will increase TCl output more than a darker soil location. If the SEN3Exp dataset is filtered to only
include ESUs with an LAl above 1 the relationship instead exhibits a statistically significant (p <

0.05) moderate strength correlation where the R? is 0.46. Although the relationship is weak the
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increased output of TestTCI3 at higher chlorophyll contents compared to the MTCI means the

index has a slightly stronger R* of 0.47 compared to the MTCI where R = 0.45 (Figure 5.13).

5.3.4. S2TCI

Section 5.3.1. began by highlighting the three key changes that must be considered when applying
the MTCI using S-2. Having analysed each affect individually amalgamating these spectral impacts

can be seen to result in a significantly higher TCI output.
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Figure 5.18: Changing relative percentage difference between the S2TCl and the MTCI with

chlorophyll content taken from the SEN3Exp field campaign.

The output of the S2TCl is between 44.28% and 68.8% higher than MTCI. The change is linear with
increasing chlorophyll content with an R? of 0.61. When compared to chlorophyll content for the
SEN3Exp dataset S2TCl has an R? of 0.52 which is higher than the MTCI R? of 0.45. The
improvement in correlation can be attributed to the better performance of the red and NIR bands

which more than compensate for the slight loss in signal from the RE.
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Figure 5.19: Comparison between S2TCl and the MTCI derived from CASI hyperspectral

reflectance data for the SEN3Exp field campaign.

Comparing the MTCI and S2TCI for the SEN3Exp dataset results in a relationship with an R? of 0.99

for the following equation.
S2TCI = 1.6866 + MTCI — 0.3406  Eq. (5.6)

This equation is a starting point for direct comparison between the MTCI or OTCI and S2TCI with
the caveat that it is highly likely to be scene specific. Any change in a range of variables such as
the sensor type used to generate the synthetic data, vegetation type, view geometry and
background condition would almost certainly result in a different comparison equation. Although
this analysis has given an initial insight into how the MTCI will change with application using S-2
much further validation with other datasets at different locations would be required to enable a
method to be developed to allow direct comparison between data of the two sensors. It should
be noted that there is great worth in such a development as the ten year MERIS MTCI dataset
could be compared with the high spatial resolution opportunities available using S-2 to monitor
change in phenology where mixed pixels are a problem. Although such preliminary equations can
be developed using hyperspectral data to generate synthetic bands a true comparison equation
will only likely be available when both satellites are in operation where they will provide great
opportunity for cross-validation through contemporaneous acquisitions in large, homogenous

fields where mixed pixels will not be a problem.
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5.4. Feasibility to Downscale to S-2 from S-3 and MERIS Data

Downscaling is the practice of combining high temporal, low spatial resolution imagery with low
temporal, high spatial acquisitions. The method aims to create a synergy product that enables a
high temporal, spatial and spectral resolution dataset. Consequently development of such a
technique between S-2 and S-3 has high appeal for studies in areas where heterogeneous
vegetation cover mean that the even in 300 m full resolution mode S-3 spatial resolution would
be insufficient and lead to significant uncertainty due to the mixed pixels. There are multiple
methods that have created fusion products such as work by Gao et al. (2006) creating the Spatial
and Temporal Adaptive Reflectance Fusion Model (STARFM) with Landsat and MODIS data (see
Walker et al. 2012) or Zurita-Milla et al. (2009) using MERIS. Recently Amords-Lépez et al. (2013)
tested a fusion approach to monitor small and medium sized crops using the spatial
characteristics of Landsat while retaining the fine spectral and temporal resolution of MERIS.
Earlier work by Nuiez et al. (1999) merged SPOT and Landsat data which was very interesting as it
used panchromatic SPOT data, which had a spatial resolution of 10 m, to enhance multispectral

Landsat data (30 m).

5.4.1. Data and Methods

5.4.1.1. Data and Study Site

To investigate the opportunities of downscaling using S-2 and S-3 either synthetic or surrogate
multi-temporal contemporaneous data was needed with ground based knowledge of vegetative
condition. To generate synthetic data for S-2 hyperspectral, high spatial resolution data is needed
which is rare at the multi-temporal level required for analysis. Consequently a review was
conducted into the suitability of sensors with capabilities of reflectance measurements in the RE
region to use as a surrogate for S-2. The most suitable is Proba-1 ESA’s smallest satellite. The main
sensor of Proba-1 is the Compact High Resolution Imaging Spectrometer (CHRIS). CHRIS is an
opportunistic sensor which targets planned sites at specified times. Typically only one or two sites
are observed each day with irregular revisit times to accommodate accepted research proposals.
In operational mode 1 CHRIS acquires reflectance in 63 separate spectral bands for a ground area
of 13 km? at a spatial resolution of 34 m. Band positions are similar to S-2 and are presented in

Table 5.2.
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Table 5.2: Most suitable CHRIS bands as surrogate data of Sentinel 2.

CHRIS (Mode 1) Sentinel-2
Band W::;ter:;th Bar;:xi)dth Band W:\i;::;th Bar;:mi)dth
(nm) (nm)

2 442 9 1 443 20
7 490 9 2 490 65
14 561 10 3 560 35
24 661 11 4 665 30
30 703 6 5 705 15
36 742 7 6 740 15
42 785 8 7 783 20
47 841 9 8 842 115
50 868 9 8a 865 20
57 940 20 9 945 20

Section 5.2. highlighted the considerable variance in measured reflectance and algorithm output
with spectral changes between S-3 and S-2. However the differences between CHRIS and S-2 are
significantly smaller than those analysed previously and should not have a significant impact in
assessing the feasibility of a synergy product between S-2 and S-3. Fortunately, FR MERIS imagery

is a much simpler surrogate for S-3 and is widely available globally.

To investigate the feasibility of downscaling from S-3 to S-2 vegetation with both homogenous
and heterogeneous fields, with respect to FR-MERIS pixels, would be required. The availability of
CHRIS data was the key limiting factor in site selection due to the irregular revisit time of the
sensor and that few test sites were adequately documented with ground data, specifically crop
information. Ideally monthly CHRIS acquisitions were required with availability of
contemporaneous FR-MERIS imagery. In the summer of 2004 the ESA and the University of
Valencia organised SPectra bARrax Campaign (SPARC) (ESA 2004) which occurred in tandem with
CHRIS acquisitions. Vegetative ground measurements and specific crop information were
documented. It should be noted that this is the same test location as the SEN3Exp 2009 field
campaign previously used in this chapter as well as in Chapter 4 and is highlighted in Figure 5.20

and Figure 5.21.
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Figure 5.20: Location of Barrax test site in Spain. Landsat image (04/10/2013) courtesy of NOAA,

accessed via Google Earth.

Figure 5.21: CHRIS true colour image of Barrax test site (16/07/2004).
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CHRIS availability was analysed using the Earth Observation Link (EOLI) portal via ESA. Six CHRIS
acquisitions were found for Barrax in 2004 with a large portion of the 13 km? scene shared
between them. In turn the availability of FR-MERIS data was analysed using EOLI with the
intention of matching each CHRIS scene with a clear sky MERIS image as close as possible to the

date of each CHRIS acquisition.

Table 5.3: Summary of CHRIS and MERIS images used and the gap between possible base pairs.

CHRIS MERIS Difference
in Days
Image Name Date Image Name Date
CHRIS_BR_040323_3F20_41 | 23/03/2004 | MER_FR__2PNEPA20040321 | 21/03/2004 -2
CHRIS_BR_040527_416E_41 | 27/05/2004 | MER_FR__2PNEPA20040520 | 20/05/2004 -7
CHRIS_BR_040630_42C7_41 | 30/06/2004 | MER_FR__2PNEPA20040628 | 28/06/2004 -2
CHRIS_BR_040716_436C_41 | 16/07/2004 | MER_FR__2PNEPA20040720 | 20/07/2004 +4
N/A N/A MER_FR__2PNUPA20040824 | 24/08/2004 N/A
N/A N/A MER_FR__2PNUPA20040922 | 22/09/2004 N/A
N/A N/A MER_FR__2PNUPA20041023 | 23/10/2004 N/A
CHRIS_BR_041116_49CF_41 | 16/11/2004 | MER_FR__2PNEPA20041118 | 18/11/2004 +2
CHRIS_BR_041228 4BAF_41 | 28/12/2004 | MER_FR__2PNEPA20041223 | 23/12/2004 -5

It can be seen that there is at most seven days between the paired images and for half the dates
there is only two days difference. It is desirable to minimise the difference in time between
acquisitions to mitigate the uncertainty from change in vegetative state in the base pairs.
Unfortunately the CHRIS images are not equally distributed throughout the year with a significant
four month gap between acquisitions in July to November. In agricultural terms for summer crops
this means the period of senescence and harvesting will be missed at high spatial resolution.
MERIS imagery was available for the period and obtained to generate synthetic high resolution

imagery for the period using the other base pairs. All CHRIS images are provided in Figure 5.22.
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16/07/2004

Figure 5.22: All CHRIS acquisitions for the Barrax test site. A geometrically similar red ring has

been added to aid visual comparison.

Level 2 FR-MERIS data is delivered as top of the canopy reflectance data. Consequently the only
processing required was to investigate pixel positional error between the MERIS dates. User
supervised geometric correction was consequently applied to the images to ensure pixels can be
directly compared throughout the time series. Processing of the CHRIS data however was

computationally more strenuous and performed using Basic ERS & Envisat (A)ATSR and MERIS
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(BEAM) software and the CHRIS Toolbox plugin available. Noise reduction was performed first
which helps to remove vertical striping caused by the slit effect and superposition of high-
frequency noise. The algorithm can be reviewed in more depth in a paper by Gdmez-Chova et al.
(2008). Subsequently atmospheric correction was applied to convert top of the atmosphere
radiance to top of the canopy reflectance measurements. The process uses MODTRAN4 (Berk et
al, 2003) to update the spectral characterisation of the CHRIS data and uses the aerosol optical
thickness at 550 nm and columnar water vapour at 940 nm to retrieve surface reflectance. Finally
the process performs spectral polishing on the data. The processes can be reviewed in more
depth in papers by Guanter et al. (2005a, 2005b). Finally after atmospheric correction the data
was geometrically corrected using CHRIS telemetry files which are available for all CHRIS
acquisitions. It was found that the correction performed by the CHRIS Toolbox required some
further user supervised geometric correction using ground control points from georeferenced

SPOT imagery.

5.4.1.2. Methods

STARFM is a widely used blending algorithm (Gao et al. 2006; Hilker et al. 2009; Walker et al.
2012; Emelyanova et al. 2013) that combines low spatial, high temporal resolution MODIS data
with high spatial, low temporal resolution Landsat data to create a high spatial product with
enhanced temporal coverage. This chapter will continue by outlining the theoretical basis of
STARFM and investigate if it will be suitable for use with S-2 and S-3. The process relies on
creating a base pair, from an as near as possible contemporaneous acquisition by both sensors
that are to be fused. The selection of this pair is paramount as the strength of final synthetic
product is dependent on conditions being as similar as possible for the acquisitions (Walker et al.
2012). The theoretical foundation of STARFM is that the difference in pixel reflectance between
the base pair images will remain constant for both preceding and succeeding acquisitions (Gao et
al. 2006). Therefore if the difference can be calculated it can be used to adjust the high temporal,
low spatial resolution data to generate synthetic high spatial resolution data as will be explained

in the following steps.

S2(x,y,to) = S3(x,y,to) + d

Where S2 and S3 represent Sentinel-2 and Sentinel-3 reflectances at pixel locations (x, y) at the

acquisition window ty, where the difference in reflectance between the sensors is d.

Therefore through rearranging the previous equation d can be established in terms of S-2 and S-3

pixel reflectance.

d = S2(x,y,to) - S3(x,y,to)
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If constant and known then the difference (d) between the base pair can be applied to other
acquisitions of the high temporal imagery (S-3) where high resolution acquisitions (S-2) are not

available to create synthetic high resolution data.
SZ(X,y,tn) = 53(Xryrtn) + SZ(X,V,to) - 53(X,V,t0)

Therefore S-2 reflectance for the acquisition date t, is the S-3 pixel reflectance for that date plus
the difference in reflectance between the S-2 and S-3 base pair. Consequently using this method
high resolution synthetic S-2 data can be generated where S-3 data is available if a base pair of

suitable compatibility exists (see Gao et al 2006 for more examples).
CHRIS and MERIS reflectance bands will be linked according to Table 5.4 below.

Table 5.4: Linking of nearest spectral bands between sensors.

CHRIS (Mode 1) Sentinel-2 Sentinel -3 / MERIS
Central Central Central
Band Wavelength Band Wavelength | Band | Wavelength
(nm) (nm) (nm)
2 442 1 443 2 442.5
7 490 2 490 3 490
14 561 3 560 5 560
24 661 4 665 7 665
30 703 5 705 9 708.75
36 742 6 740 10 753.75
42 785 7 783 12 775
50 868 8a 865 13 865

Of specific interest is the best time to select base pairs for the model. Walker et al. (2012)
suggested that when the dates of the base pair are close to the time of maximum vegetation
growth it is probable that the synthetic images will demonstrate less disparity with regards to
vegetation dynamics than they would do if the base pair was observed during the more volatile
growth of spring. Use of such base pairs consequently results in a greater level of accuracy of
spectral correspondence between the images. To investigate the best time to establish base pair
selection multiple base pairs were selected to assess which would provide the most accurate
predictions of synthetic data. Consequently base pairs were established for all available CHRIS
data except December due to similarities with November to assess any disparity in their
performance. It should be noted that the lack of CHRIS data between August and October means

that a large part of the senescent period will be missed from base pair analysis.
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Test sites were established for the following crops: alfalfa, corn, sunflower, potato, sugar beet and
garlic which was possible through using maps from the SPARC 2004 field campaign data

acquisition report (ESA 2004) which can be seen in Figure 5.23.
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Figure 5.23: Crop map from SPARC 2004 taken directly from the final acquisition report (ESA 2004)

highlighting the various crops and their locations.

Spectra of the CHRIS data were assessed for all the months available for all the crop types to
establish phenological state in each image. It was found that for some fields of alfalfa there were
two distinct production cycles in the space of a year while summer crops exhibited growth in May
with a canopy maximum established in June or July. The average MTCI of each crop was
calculated using the available CHRIS acquisitions and each base pair was used to predict high
spatial imagery for all the months where MERIS data was available (Table 5.3). Initial assessment
indicated that the CHRIS data had some issues for November and December that only affected the
reflectance measurements directly on the RE. CHRIS reflectance measurements adjacent to band
30 were affected too meaning that a replacement could not be used. Consequently NDVI was
calculated in addition to the MTCI to enable assessment of the fusion model during the senescent

period in November.
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Figure 5.24: Predicted CHRIS imagery using STARFM forthe July base pair for the NIR.
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5.4.2. Results

Synthetic CHRIS data was produced for all available MERIS dates using the four base pairs. In total
40 predicted images were produced generating high spatial resolution data for any date that the

medium spatial resolution MERIS was available.

Figure 5.24 provides an example output of the fusion model for the July base pair. While eight
predicted images were produced for all MERIS dates that are outlined in Table 5.3 the figure
presents the NIR reflectance for half of these: March, June, September and November. The fusion
model can be seen to utilise the difference in MERIS reflectance in conjunction with the base
pairing to predict reflectance at a high spatial resolution. Visually the data matches well and
differences between the base pair and other MERIS dates are reproduced in the high spatial
predicted data. For example the central dark patch of low NIR reflectance that is present in June,
but not July, is modelled well in the June predicted CHRIS image. Also changes of the two adjacent
fields with very high NIR reflectance located at the eastern limit of the July image are reproduced
well by the fusion model. To investigate this in more detail the MTCI and NDVI of six different
crops was calculated for each base pair and compared to the measurements from actual CHRIS

acquisitions.
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Figure 5.25: Base pair performance at predicting NDVI for alfalfa.

The dashed line in Figure 5.25 represents the NDVI calculated from actual CHRIS acquisition dates,
hence why data is unavailable between August and October. The other series denote the
estimated NDVI for each base pair which can be used to assess performance compared to the
actual field measurements. It can be seen that the Alfalfa canopy was certainly harvested in June

and predicted data suggests also a smaller partial loss of the canopy in August. Although each
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base pair has predicted the NDVI with varying success June has significantly underestimated NDVI.
This is likely due to the fact that the base pairing was made when the field NDVI was at its
minimum which as previously mentioned has been found to be suboptimal in previous studies
(Walker et al. 2012). Pairings that were made during canopy maxima, such as: March, July and
November, do respond to measured reductions as can be seen clearly in Jun and December.
However the results of these canopy maxima pairings do not predict low enough NDVI values for

the minima found in June and December.
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Figure 5.26: Base pair performance at predicting NDVI for corn.

In Figure 5.26 corn can be seen to develop a dense canopy between May and July which is not
tracked well by the March and May pairings which were before growth began. Nevertheless as
was previously highlighted with alfalfa pairings that were made during the vegetative maximum
predict exaggerated NDVI values in months where canopy cover is low. Differences were
calculated between the measured and predicted NDVI values for all the crop types for each
month of the year where MERIS data was available and the percentage differences are

summarised in Table 5.5 for NDVI and Table 5.6 for MTCI.

Table 5.5: Average Difference in NDVI values for each pairing.

Sugar
Alfalfa Corn Sunflower | Potato Beet Garlic = Average
March 19.94%  151.28% | 37.74%  207.33% : 281.93% : 85.50%  130.62%
May 28.73% | 311.87% 167.49%  72.35% | 139.52% @ 41.72% 126.95%
June 94.71% « 58.84% 62.62% 46.94%  47.63% : 41.85% 58.76%
July 20.80% | 51.94% 42.51% 48.18% |« 49.15% | 40.90% @ 42.25%
November | 19.04% | 92.54% 45.08% 74.88%  53.23% | 171.05% @ 75.97%
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Table 5.6: Average difference in MTCl values for each pairing except November.

Sugar
Alfalfa Corn Sunflower | Potato Beet Garlic | Average

Mar 31.44% : 112.65% 106.06% : 66.26% : 115.31% 36.38% = 78.02%
May 34.95% | 156.89% 325.53% | 36.97% | 44.97% @ 23.97%  103.88%
Jun 53.72% | 58.20% 64.90% 32.86% | 48.70% = 29.41% @ 47.96%
Jul 49.25%  48.27% 84.95% 19.77%  13.09% | 26.78% . 40.35%

It can be seen in Table 5.5 that different parings were able to predict some crops better than
others. Assessment of this indicated again that the best performing pairings were those made at
maximum canopy extent. As an example the pairing with the highest average variance, March,
performed well for alfalfa and sunflower, the only two crops where there were already canopies
in March. As the universal applicability of this downscaling method is important the differences
were averaged to see what individual pairing would produce the best results for any crop. July
provided the best results with an average NDVI prediction difference of 42.25% while March and
May resulted in very poor averages at 130.62% and 126.95% respectively. Results for the MTCI
show similar to findings with the July and June base pairs having the best overall average
prediction difference of 40.35% and 47.96% respectively. Results strongly suggest that the best
time of the year to make a pairing using STARFM is when the canopy is the fullest and for the

Barrax region that is in July for the majority of crops.

Although efforts to mitigate uncertainty have been made there are several areas that should be
highlighted. Firstly, while extensively geometrically corrected linking 300 m MERIS and 32 m
CHRIS data is challenging. Secondly, as noted in Table 5.3 the difference in time between the
CHRIS and MERIS base pair acquisitions was up to seven days within which both canopy, solar and
background conditions could have changed. Thirdly, there is no way to establish what crops were
growing outside of the observations made in July during SPARC 2004. This means that what is
presented as corn is only certain to be so during July. Nevertheless as this method is tracking
changes in MTCI and NDVI, which are not crop specific, even if a field was harvested and a
different crop was sown the downscaling method should account for this. Finally, the fusion of
data from different sensors is problematic with differences in view geometry as well as spectral
bands especially considering Proba-1 is a technology demonstrator, albeit a highly successful one
that resulted in continuation of the series with Proba-2 launched in November 2009 and Proba-V

(Proba Vegetation) in May 2013 (ESA 2014b).
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5.5. Conclusions

This chapter has investigated application of the MTCI using the future Sentinel optical sensors.
With regards to S-3 findings indicate that only the effect of increased view angle between MERIS
and OLCI will vary the MTCI by up to 5.3%. For S-2 there are many more considerations. Firstly as
the MSI will have only one band in the red part of the electromagnetic spectrum the MTCI will
effectively have to use MERIS band 7 rather than 8. Results indicate that as the red absorption
feature is wide and relatively stable in vegetated areas the transition will reduce the MTCI by up
to 13% more in sparse, than developed, canopies. A much greater difference is caused by the use
of a RE band at 705 nm rather than 708.75 nm where results imply that measured reflectance on
the RE will decrease by on average 12.12% meaning the MTCI increases by 42-54%. Furthermore
findings suggest that using MSI band 7 will be more favourable than band 6 in the S2TCI formula.
When all the differences are amalgamated results indicate band changes will mean S2TCl is
between 44.28% and 68.8% higher than the MTCI and consequently an initial formula has been
provided to convert between S2TCl and MTCI. Nevertheless it should be considered that results
were derived from a single field campaign and future work using other data would increase

confidence in the preliminary findings that have been presented.

It has been shown that it is possible to downscale from S-3 to S-2 using methods previously
developed by Gao (et al. 2006) for the MODIS and Landsat sensors. Results produced reflectance
values at the 32 m CHRIS resolution from 300 m MERIS data. Data indicates that better
predictions can be made when base pairs are linked during closed canopy conditions supporting
previous findings by Walker (et al. 2012). Future work strongly suggests refining the model by
possibly adding in multiple pairs of data that document the canopy maximum and minimum. This
will effectively give the correct range of values between which the predictions can operate and

use the S-3 data to track changes during the phenological transitions of the target vegetation.
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Chapter 6: Quantification of Change in Photosynthetic
Capabilities of Deforested Locations and Opportunity for
Future Recovery under the REDD+ Framework

6.1. Introduction

Forests are important areas for biodiversity and are a source of livelihood for many as they cover
30% of the total land surface (FRA 2010). Monitoring the rate of deforestation is important as
forests account for 90% of the annual interchange of carbon between the atmosphere and the
land surface. The Global Forest Resources Assessment 2010 (FRA 2010) highlights that there is
more carbon in the world’s forest than in the atmosphere or remaining oil stocks. An estimated
net loss of 13.5 million hectares of forest has occurred in the last 20 years although there was
37% less net deforestation in 2000-2010 than in 1990-2000 which suggests the rate is slowing.
The Reduced Emissions from Deforestation and Degradation (REDD) policy was launched at the
United Framework Convention on Climate Change (UNFCCC) summit 2008 with the key aim to
provide the framework for financial compensation to countries who are able to reduce emissions
from deforestation (REDD 2009). REDD+ adds to this by recognising that it is possible to not only
prevent deforestation and degradation but also enhance the carbon stock (increasing
sequestration) in forests. REDD+ is effectively a mitigation mechanism that non-Annex | Parties
(developing countries) are encouraged to utilise to gain compensation for the results of policies

that have sequestered carbon.

There are several key sections of the REDD+ proposal; defining which activities are eligible, how
emission reductions are calculated over a defined time period, what entity finances the reduction
and where the compensation goes. Satellite acquisitions can be used to derive measurements of
the photosynthetic capabilities of forests over large areas while also monitoring changes that may
occur through regular temporal coverage. Consequently these characteristics make Earth
Observation sensors of paramount importance to REDD+ as they can economically quantify the
amount of carbon sequestered over a defined period. Therefore there is a need for robust
methods for measuring the mitigation performance of a country to enhance the confidence of
both the benefactor and the beneficiary. The UNFCCC has called for development of monitoring,
reporting and verification (MRV) techniques (UNFCC 2011). Depending on the study or source
different MRV approaches are recommended. A tier based performance approach was
recommended by the Intergovernmental Panel on Climate Change (IPCC). The highest confidence
levels are achieved at Tier 3 which utilises data spatially specific to a REDD+ policy. When Tier 3 is
unachievable Tier 2 country specific data could be used and failing that the most universal and
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easily applicable Tier 1 incorporates globally available data. Herold and Skutsch (2011) called for
MRV strategies to be aligned into three groups: conservation, reduced deforestation and positive
impacts on the forest stocks. Furthermore they emphasised focus of Tier 3 MRV activities in areas
where key drivers are the most active and therefore the threats, and possible economic

compensation, are the highest.

Satellite data, with suitable spatial and temporal resolutions, can be used to validate REDD+
activities. Sentinel-3 which is planned for launch in mid-2015 (ESA 2011a) will continue the 10
year MERIS dataset with enhanced temporal resolution. With multiple spectral measurements
taken in the RE region MERIS is highly suitable for retrieving chlorophyll content. This analysis will
use MERIS data to establish and investigate a methodology to derive the change in photosynthetic
capabilities of an area due to deforestation. However it should be considered that the use of
optical remote sensing might not be optimal for rainforest locations and the use synthetic-
aperture radar (SAR) would allow coverage irrelevant of weather conditions which is a significant
concern within these areas. While SAR data is not available operationally, ESA plan to launch
Biomass (ESA 2012d), such a device, in 2020 which has been supported by campaigns such as
BioSAR 2010 (Gustavsson et al 2011). Nevertheless the performance of Biomass, planned to
operate at 200 m spatial resolution (ESA 2014c), is yet to be seen and furthermore there will be a
significant period between the launch of the Sentinels and Biomass where optical remote sensing

will be the only possibility for global monitoring at a high temporal resolution.

6.1.1. Study Location

In 2005 Nigeria was found to have the highest rate of deforestation in the world according to the
Food and Agriculture Organisation of the United Nations (FAO 2010). Deforestation continued
between 2005 and 2010 at 410,100 hectares per year according to Batta et al. (2013). The high
level of deforestation is driven by rapid population growth stimulating agricultural development
and the need for fuel for cooking (Famuyide et al. 2011). Rising energy prices make cooking gas
and kerosene unaffordable for many who consequently rely more heavily on wood. The majority
of Nigeria’s primary forests are tropical and located in the southern part of the country. Benin
City, one of the major cities in this region and the capital of the Edo State, is the centre of
Nigeria’s rubber and palm oil industries. 17,802 km” in size the Edo State is dominated by large
areas of primary and secondary forest accounting for 76.5% of the total land area (Formecu
1999). Preliminary analysis utilising a readily available Global Forest Change product derived from
Landsat data (Hansen et al. 2013) showed Edo to have some of the most concentrated
deforestation in Nigeria between 2000 and 2012. Consequently Edo was set as the focus of the

analysis.
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6.2. Data and Methods

Global Land Cover (GLC) data from 2000 (Mayaux et al. 2003) for Africa was acquired to
distinguish areas of forest from woodland and shrub land (Figure 6.1). According to this the north
east of Edo is primarily deciduous wood and mixed shrub land. Benin City, at the centre of south
west Edo, is also surrounded by shrub land. Further away from the city there are large areas of
mosaicked forest and croplands that constitute 39% of Edo’s total land cover. The majority of
evergreen forests are near the borders of Edo and make up 15% of the total land cover. GLC 2000

data was used to focus test sites at areas of forest and to help distinguish primary deforestation.

. CLOSED EVERGREEN FOREST

DEGRADED EVERGREEN FOREST

. MOSAIC FOREST / CROPLAND

. DECIDUOUS WOODLAND

. DECIDUOUS SHRUBLAND

. BENIN CITY

. WATER BODIES

Figure 6.1: Global Land Cover of the Edo State Nigeria generated using GLC2000 data from
Mayaux et al. (2003).

MERIS data was accessed using the EOLI-SA portal for the lifecycle of the sensor. It was quickly
established that the cloud cover for the region was extensive throughout the majority of the year.
To understand the pattern of the typical cloud characteristics of Nigeria four years of the MODO06
(MODIS Cloud Product) were acquired from the NASA Earth Observations portal biannually
between 2005 and 2011 at a monthly resolution. The data was then extracted within the
boundaries of Nigeria, provided by Global Administrative Areas (GADM 2014), and converted to

total cloud cover.
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Figure 6.2: Monthly cloud cover as a percentage of Nigeria’s total land area for 2005, 2007, 2009
and 2011 using the MODO6 product.

Figure 6.2 indicates that the total cloud cover of Nigeria, based on the years 2005, 2007, 2009 and
2011, follows a consistent monthly pattern. The maximum cloud extend for the country occurs in
August for each year ranging between 88.2-91.5% whereas the minimum cover happened in
December for 2005, 2009 and 2011 and January for 2007. December had the lowest average
cloud cover of 15.5% with January and November following with 25.4 and 27.2% respectively. All
the other months had more than 40% on average with half the year above 70%. This makes the
occurrence of clear sky MERIS imagery very unlikely outside of the November-January minimum.
Moreover cloud cover was found to not be distributed evenly across Nigeria. The majority
occurred over the rainforests located in the south near Edo which meant that clear sky parts of
the MERIS scenes more often than not occurred in areas irrelevant to the focus of the study. To
further investigate this issue MERIS data, which has a repeat acquisition period of three days of
average as this latitude, was assessed. Occurrence of a cloud free acquisition outside of the three
month window was nearly non-existent and consequently analysis would have to work within
these constraints. Accordingly cloud free MERIS images were acquired annually for 2005-2011, as

clear sky acquisitions were not available for 2004 and 2012, which are shown in Table 6.1.
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Table 6.1: Details of MERIS Acquisitions used in analysis.

Year Date

2005 | 2004-11-30 | MER_FR__2PNUPA20041130_093109_000000982032_00308_14390_3647
2006 | 2005-12-29 | MER_FR__2PNUPA20051229_094800_000000982043_00437_20030_3628
2007 | 2006-12-11 | MER_FR__2PNUPA20061211_094226_000000982053_00394_24997_3630
2008 | 2007-12-25 | MER_FR__2PNUPA20071225_093057_000000982064_00308_30422_3634
2009 | 2008-12-28 | MER_FR__2PNUPA20081228_093346_000000982075_00079_35704_3636
2010 | 2010-01-23 | MER_FR__2PNUPA20100123_094501_000000982086_00165_41301_3639
2011 | 2011-01-19 | MER_FR__2PNUPA20110119_094515_000000983098_00338_46473_3646

It can be seen that each acquisition occurred during the cloud free window during January or the

two months prior, e.g. 2009 was acquired between 01-11-2008 and 31-1-2009 under clear sky

conditions with little to no haze. All the data has been processed to level 2 which has the MERIS

Bottom of Atmosphere Vegetation Index (BOAVI) available; a version of the MTCI which is already

atmospherically corrected.

6.3. Total Deforestation in the Edo State

The extent and degree of deforestation that occurred in Edo between 2005 and 2011 can be

indicated by the change in MTCI over that time period. To investigate this the BOAVI (MTCI) data

was cleaned, subset and masked using the closed and degraded evergreen forest GLC 2000 data

to ensure the exclusion of cropland and secondary forest.
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Figure 6.3: Comparison of MTCI histograms for evergreen forests in Edo between 2005 (left) and

2011 (right).
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Figure 6.3 shows that in 2005 99.5% of the evergreen forest had an MTCl of >2.25 which falls to
91.3% in 2011. In 2011 4.28% of pixels, amounting to an area of 107.19 km, previously designated
as primary forest had an MTCI of < 2 which is clearly within the range of soil pixels as established
in Chapter 3 (see Figure 3.7). Comparison between the years in Figure 6.3 highlights that there has
been significant change in pixel MTCI values for evergreen forest in Edo between 2005 and 2011.
There are similarities in the distributions such as the mode which is 2.88 and 2.81 in 2005 and
2011 respectively and the distinct lack of pixels with an MTCI value higher than 3.8. This suggests
consistency between the two images and gives an upper limit of primary evergreen forest MTCI
values. However it can be seen that there are also large changes between the distributions,
namely the group of pixels where MTCI values are < 2 in 2011 which could be argued to have
degraded from prior values of 3.25 in 2005 suggesting a change in MTCI of > 1 to represent
deforestation. To further test the compatibility of MERIS imagery from 2005 and 2011 and
establish the consistency of the change the difference in MTCI pixel values was calculated and the

resulting distribution is presented in Figure 6.4.
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Figure 6.4: MTCI difference for evergreen forest pixels between 2005 and 2011, Edo state,

Nigeria.

As expected it can be seen that the majority of evergreen forest pixels had little to no change in
MTCI between 2005 and 2011 with a consistent symmetrical curve between +/- 0.25 where the
mode is 0.02. Positive MTCI pixel values indicate recovery or growth over the time period. 99% of
the pixels where MTCl increased did so by less than 0.5 and 95% by less than 0.33. On the other
hand of the pixels that decreased over the time period 37.6% were by more than 0.33 and 25.1%
by more than 0.5. Not one of the 18,360 evergreen forest pixels increased in MTCI by over 0.85

yet 1101 decreased by more than 1. As the mode is close to 0 at the centre of a skewed
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distribution it suggests the MERIS imagery and application of the MTCl is stable between the
years for these single images. With the caveat in mind that this is a comparison between two
single images the skewed data suggests that there has been strong deforestation in the Edo state.
Calculating the area of deforestation inside Edo using MTCI requires a threshold to be configured
for which a given pixel is considered to have been deforested. Considering 99% of pixels that
increased with regards to MTCI between 2005 and 2011 did so by less than 0.5 pixel decreases by
more than 0.5 could be argued to be an acceptable threshold to indicate deforestation, or at least
substantial degradation in the forest condition, while a decrease in MTCI of more than 1 suggests
total deforestation. These thresholds will consequently be used to geographically and temporally
present the extent of degradation and deforestation for the region. Nevertheless it should be
noted that change in photosynthetic capability can be represented by absolute change in MTCI
irrelevant of using a threshold for which results are exhibited later on in this chapter in section

6.6.

Table 6.2: Deforestation in the Edo State between 2005-2011 *based from 2000 GLC estimates of

evergreen forest

. Percentage of

Threshold Pixels Flagged Area Total Forest*
0.5 MTCI 4619 415.71 km” 16.4%
1 MTCI 1101 99.09 km?* 4.0%
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MTCILOSS 1>0.5

Figure 6.5: MTCl loss in evergreen forest for the Edo state between 2005-2011. Locations of test

sites are provided for further discussion.

Figure 6.5 shows the extent of deforestation with respect to evergreen forests between 2005 and
2011. It can be seen that the forests in the south west were not significantly affected albeit there
has been 17.1 km?” of flagged deforestation at location A. There has been a similar situation in the
narrow band of forest that follows the Ossiomo River at location B where 14.31 km? of intensive
deforestation has occurred in the northern parts of the forest. Interestingly no deforestation was
found to the south of the river which itself is likely an inconvenience to access from Benin City.
Forests near the north-western borders of Edo at location C are relatively untouched. The same
can also be said about the eastern forests at location D where only minor degradation has

occurred. The most extensive and complete deforestation was found in areas north north east of
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Benin City at location E where 259.29 km? has been flagged as deforested. These findings

correlate with those by Hansen (et al. 2013).

6.4. Deriving Deforestation by Year

Until the launch of Sentinel 2, which will retrieve multiple spectral measurements directly on the
RE at 20 m spatial resolution, the MTCI is limited to acquisitions of 300 m using the MERIS dataset
that will be continued with the launch of Sentinel 3. Consequently by using the MTCI to assess
deforestation means the method is unable to compete with very high spatial resolution maps that
have been produced with sensors such as Landsat at 30 m (Hansen et al. 2013). However MERIS
data has the advantage of excellent temporal resolution which can allow deforestation to be
monitored more frequently or have an increased probability of a clear sky acquisition within a set
time period. The aforementioned Nigerian tropical climate limits the scale of this method to an
annual assessment but it could be used at a higher temporal resolution in other parts of the

world.

The difference in pixel based MTCI measurements was calculated for each of the years between
2005 and 2011 for the entire Edo state. Preliminary histogram analysis of the resulting product
indicated that there were differences between the years. This can be attributed to issues with
atmospheric correction and view geometry in the calculation of BOAVI (MTCI). Examples of this

are shown in Figure 6.6.
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Figure 6.6: MTCI pixel differences in the Edo state for a) 2005-2006 and b) 2006-2007.

It can be seen that there is minimal difference between average MTCI for 2005 and 2006 (Figure
6.6(a)) while there is significant difference for 2006 and 2007 (Figure 6.6(b)). The centre of the

distribution for 2006-2007 is 0.19 which would give the false indication of decreased MTCI across
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the majority of the image in locations where no actual change occurred. Consequently the
differences in distributions were noted so that they could be later applied during threshold
analysis which would enhance continuity throughout the timespan of the dataset. The differences
in MTCI are displayed in Table 6.3. It should be noted that, while there are some variations, the
MTCI for the Edo state is consistently decreasing with time from 2005-2011. This was to be
expected from a region with some of the highest rates of deforestation in Nigeria and will be

further investigated later.

Table 6.3 Differences in average MTCI between 2005 and 2011.

veur 2005- [ 2006~ | 2007- | 2008- | 2009- | 2010- | .
2006 2007 2008 2009 2010 2011 g
Normalised | ) o, 0.19 0.06 0.04 -0.02 0.06 0.06
Difference
Area 337km? | 163 km? | 380 km? | 334 km? | 562 km? | 278 km? | 342 km?
Flagged

To visualise deforestation in the Edo state by the year that it happened a fixed threshold of 0.5
MTCI which then was adjusted by the difference between the years outside of the 0.06 average.
As an example for a pixel to be flagged between 2006-2007 there had to be a change of 0.63 MTCI
whereas for 2009-2010 a smaller change of 0.42 resulted in the pixel being flagged for

deforestation that year. The results are presented in Figure 6.7.
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Figure 6.7: Deforestation by year for the Edo State, Nigeria.

As the MTCl is a statistical measure of chlorophyll content the method is unable to distinguish
between loss of photosynthetic capability of primary and secondary forest as well as woodland or
agricultural land. To investigate the performance of the method sites of extensive deforestation in
primary forests that had been established previously in Figure 6.5 were selected to further

investigate at an annual scale.
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Figure 6.8: Annual deforestation at sites a, b and e.

Theoretically deforestation should be seen to progress inwards over the temporal period which
has been indicated by the arrows on Figure 6.8. At site A it should be noted that deforestation

was focused at three points from where it spread into the forest (Figure 6.9).

Figure 6.9: MERIS (300 m) imagery highlighting three point deforestation during 2005-2011 for

site A.
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Data indicates there was a large deforestation event during 2007 in middle and south of the test
site. Sequentially in 2009 the central deforestation was expanded and a large new event occurred
towards the north which continued deeper into the forest in 2011. Overall the direction of the
deforestation appears to expand chronologically into the forest. However there are some smaller
discrete areas that were flagged during 2007 and 2008 which are situated deeper than the 2011
deforestation events. These locations are likely to be localised events separate to the continuous
expansions from the east and were not flagged in the 2005-2011 data suggesting partial recovery.
Site B shows strong continuity of the deforestation from the extents of the forest inwards.
Deforestation events that occurred in 2011 are adjacent to events in the previous year and so on.
At site E there is a general trend of deforestation inwards with the 2011 events deepest in the
forest and those that occurred in 2005 furthest out towards the northwest. However between
these two dates the other years of deforestation are not chronological as might be expected. The
data suggests that deforestation has occurred from towards the centre of the site outwards. With
regards to assessing the performance of the annual deforestation data a key assumption has to be
made; that the deforestation begins at the borders of the forest and develops inwards. Without

ground data it is difficult to hypothesise otherwise.

6.5. Establishing Recovery of the Forest.

To be able to investigate how a deforested location recovers an event must be documented early
within the timespan of the dataset. This can be established by subtracting the MTCI of Edo in
2006 from that in 2005. MTCI data for each year was firstly cleaned for erroneous pixels and
subsetted via the evergreen forest GlobCover to ensure only primary forests were assessed. Using
this dataset test sites were established which exhibited the largest levels of deforestation in 2005
which could then be monitored for recovery throughout the remaining time period. Sites are
shown in Figure 6.10 and their areas are documented in Table 6.4. It can be seen that there are
areas of pixels that are within the Edo boundaries but omitted from the analysis as they were

flagged during the BOAVI processing chain.
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Figure 6.10: 2005-2006 deforestation test site locations.

Table 6.4: Size of primary forest deforestation test sites in the Edo state.

Test Site | 1 2 3 4 5

Area 5.04 km?® | 5.22 km? | 15.57 km®> | 26.37km?* | 9.9 km®

Test sites were assigned as irregular polygons as each localised case of deforestation was equally
irregular. At sites 1 and 2 two polygons were selected to increase the overall size of the test site
as the heaviest deforestation was separated by several kilometres. Average MTCI of the test sites
was extracted for each year to assess the deforestation event and if it subsequently recovers. To
investigate the continuity of the data set the average MTCI values of several large areas, totalling
65.34 km”, deep inside south-western and northern evergreen forests were extracted and
compared throughout the time span (Figure 6.11). With the assumption that the MTCI of these
central locations should be stable differences could consequently be attributed to solar and view

geometry variations and then used to normalise the 2005 recovery test site data.
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Figure 6.11: Average MTCI of forest calibration test site.

It can be seen that for the stable forest area the MTCI varied between 2.91 and 3.30. The
percentage difference between the areas MTCl value and the average over the time period was in

turn used to normalise the test sites MTCI data which is presented in Figure 6.12.
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Figure 6.12: Monitoring the MTCI of test sites after a deforestation event.

Results suggest no recovery occurred at any of the sites, in fact MTCI continued to decrease
consistently at every site throughout the time period. This suggests that not the entire canopy
was removed entirely with further degradation in the sequential years. It was considered that this
could be a problem of scale and so 300 m” pixel values were tracked individually in an attempt to
find discrete locations within the test sites that recovered, however results were no different. In

turn locations were investigated that were deforested for the first time during 2007. These
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locations showed the same post event degradation as test sites that were first deforested in 2005.
To monitor the recovery of the photosynthetic capabilities of forest it would ideally require
complete removal of the entire canopy in the space of a year or so. Locations such as this could
not be found at 300 m spatial resolution. These findings suggest that while forest loss year is a
useful indication of when and where deforestation begins, which can be used when establishing
policies and focusing resources for sustainable management, degradation of the photosynthetic

capabilities of the forest occurs over a longer timespan than year of initial detection.

6.6. Predicting the loss of potential carbon sequestration.

Without availability of ground data there is limited possibility to equate localised above-ground
biomass (AGB) values for the evergreen forests in the state of Edo and then quantify the changes
in AGB. There are default values as suggested by the IPCC (2006) under Tier 1 guidance which
states for primary tropical forests the AGB is 30,000 t/km? with a sequestration rate of 700
t/km?/yr. This can be combined with the levels of deforestation that have been previously

presented in Table 6.2 to provide an overall figure in changes in AGB.

Table 6.5: Total loss of AGB and potential sequestration for the Edo region between 2005 and

2011 due to deforestation of primary forests.

Deforestation Pixels Area AGB Gfo(?/veich
Threshold Flagged km? t
g8 (km?) (t) (t/yr)
> 0.5 MTCI 4619 415.71 12,471,000 | 290,997
> 1 MTCI 1101 99.09 2,972,700 69,363

The estimates of how much carbon and potential sequestration that has been lost largely differ
depending on the threshold of MTCI that is considered to have been deforested. Realistically
sequestration rates of locations that changed by 0.5 MTCI between 2005 and 2011 will not have
fallen completely to 0 but have certainly degraded below their original values. To gain an estimate
of this the average MTCI value of the entire area of evergreen forest cover (based on 2000 GLC)
was calculated for each year and normalised based on forest locations which remained

unchanged through the time period.
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Figure 6.13: Average MTCI of evergreen forest for the Edo state between 2005 and 2011 based on
land category from GLC2000 data.

Results indicate that the average MTCI of evergreen forest in Edo has decreased by 0.025 every
year between 2005 and 2011 with a coefficient of determination of 0.87. It should be considered
that the MTCI does not scale linearly from 0 and that locations without any photosynthetic
capabilities can have values of 1 to as high as 1.8. What this means it that the total reduction of
0.15 MTCl is likely to be a 7.5% drop in photosynthetic capability of the total area. Considering
that the estimated area of evergreen forest was 2497.05 km” in 2005 which should be able to
sequestrate 700 t/km?/yr the likely loss in carbon sequestration per year due to deforestation in

Edo is 131,095 t/yr.

6.7. Conclusions

Results have shown that the MTCl is capable of annually investigating deforestation at a Tier 1
level. Estimates suggest 4% of the total evergreen forest present in Edo has been completely
deforested between 2005 and 2011 and 16.4% has been significantly degraded. Analysis into the
average cloud cover of the rainforests of Nigeria suggest that there is a 2-3 month time window of
opportunity each year between November and January in which clear sky acquisitions are likely.
Although one of the key strengths of MERIS is frequent temporal coverage the abundant cloud
cover significantly limits analysis throughout the year. Consequently the use of Landsat or SPOT
focused between November and January would provide enhanced spatial resolution irrelevant of
poor temporal coverage throughout the rest of year compared to MERIS. Using the changes in
MTCI values between years, it was demonstrated that it may be possible to distinguish between

deforestation and degradation. However, the unavailability of any field data and the coarse
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spatial resolution limits this analysis to provide broad assessment of a region rather than
providing location specific information on change in forest cover/condition. It should also be
considered that the use of optical remote sensing might not be optimal for rainforest locations
and the use SAR would allow coverage at a monthly scale rather than annual. ESA plan to launch
Biomass (ESA 2012d), such a device, in 2020. Although this chapter has focused on 300 m
resolution MERIS data which will be continued by OLCI aboard S-3, the methodology described

will easily be reproducible using S-2’s MSI which will operate at 20 m resolution.
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Chapter 7: Conclusions and Future Work

7.1. Summary

For over 40 years since the launch of Landsat in 1972 the difference between the maximum
absorption of red light due to chlorophyll and the high reflectivity of the cell structure in the
adjacent NIR has been used to estimate the biophysical variables of vegetation at a global scale.
The NDVI, first reported by Rouse et al. (1973) and popularised by Tucker (1979), is still today the
most commonly used method for calculating many aspects of vegetation dynamics. During the 20
years after its introduction many investigations sought to enhance calculation of the NDVI
(Clevers 1988; Huete 1988; Kaufman and Tanré 1992; Qi et al. 1994; Rondeaux et al. 1996;
Gilabert et al. 2002) with adjustments that often required additional information to mitigate
uncertainties. The main problem with such adjustments is that incorporation of additional scene
specific information affects the universal applicability, operational use and dynamic response of
the algorithm. During this time many papers were published that looked towards the REP as a
viable calculation of chlorophyll content, a key driver in photosynthesis (Gates et al. 1965; Collins
1978 Horler et al. 1983; Curran 1989; Dawson and Curran 1998), yet no satellite sensors were
capable of its retrieval operationally. These approaches were novel as the majority of studies that
had used the NDVI focused purely on its relationship with LAI. In 2002 the launch of Envisat MERIS
enabled the operational measurement of reflectance directly on the RE at a medium spatial
resolution. While planned as a research and development sensor the success of MERIS lead to
Copernicus (previously GMES) operational services. One such product was the MTCI a surrogate
REP index that was implemented as a standard level 2 global product (Dash and Curran 2004) due

to its correlation with chlorophyll.

Advances in the radiometric, temporal, spectral and spatial attributes of satellite sensors drive
innovation of entirely new algorithms as well as enabling the refinement and validation of current
methods. Out of the five Sentinel missions two will retrieve reflectances in the optical region as
well as measurements directly on the RE which enables estimation of REP. S-3 will continue the
long running MERIS dataset and with three sensors planned for launch the resulting tandem
operation will mean the entire terrestrial environment is monitored every two days at the
equator improving with increasing latitude (ESA 2011b). Long running datasets such as these are
paramount in providing perspective for investigations into surface and climate change and the
impacts they bring for ecological viability and phenological transitions in vegetation (Zhu et al.
2013). On the other hand with two spectral bands measuring reflectance directly on the RE the

radiometric capabilities of S-2 will be unparalleled for an operational satellite sensor for use with
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vegetative studies. Furthermore the sensor will have a fine spatial resolution of 20 m which

should enhance the accuracy of the retrieval of the biophysical parameters of vegetation.

The MTCI-EVAL project was conducted to evaluate and validate the MTCI algorithm. Several key
factors were established that influenced its performance; the soil background, view geometry and
aerosol optical thickness. It was found that as the MTCI puts large weight on the reflectance of
the RE band in relation to the position of the red and NIR the effect of the soil background
reflectance at low canopy covers can cause significant uncertainty. Consequently there is much
scope for research to devise a method to account for or mitigate this uncertainty. Current
methods of accounting for the influence of soil have been argued to have significant issues as
without extensive ground data they result in loss of dynamic vegetation response. To further
investigate this issue on the MTCI MERIS training data were investigated to explore the green up
period for vegetation and subsequently used to establish an algorithm to enhance the capabilities
of the MTCI at low canopy covers which typically have values of below two. Test sites were
selected in lowa to characterise the phenological development of corn and soybean over an entire
growing season in 2005. Various stages of canopy development were documented for both crops
and subsequently each had their spectral reflectances contrasted with background soil
measurements using MERIS data. The largest differences were found using MERIS bands 5, 8 and
10 which were combined to form the Soil Discrimination Index (SDI). Initial investigations showed
that the SDI was more sensitive to low density vegetative changes than the NDVI or the MTCI.
Consequently a suggested threshold was calibrated for the SDI by applying it to 40 separate soils
from the ASTER spectral soil library which found most common soil types varied between 0.6 and
0.9. Sequentially this was applied to a separate data set from Dalhart Texas which found only
0.04% of pixels with an MTCI above 2.1 were flagged with an SDI of 0.9. Application of the SDI as a
soil flag will notify the user that a given MTCI result is likely due to a soil background with a
naturally high VI output thereby increasing the robustness of the MTCI at values below 2. The flag
will be most useful when using the MTCI across large scenes with many varying canopy covers and
soil background types and conditions. Of specific note is that the flag should increase the accuracy
of the MTCI when used to estimate photosynthetic capabilities of an area. As a by-product of the
research it was also found that corn and soybean can be differentiated between using the MTCI
over the growing season. Subsequently the SDI was applied to two study sites in Spain as an initial
validation of the flag. While it performed well analysis highlighted two issues that are worth
investigating in future study. Firstly, that inclusion of green reflectance into the formula results in
less robust flagging of senescent vegetation and secondly, that the flag performs better in a forest

environment than an agricultural setting. While work has applied the SDI to three separate
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environments in different parts of the world utilising multiple datasets further application is

recommended to validate its performance as a soil discriminator.

During the investigation to mitigate the influence of soil while working with multiple Vls, datasets
and test sites it became apparent that ground data would greatly enhance confidence in the
derivation of methods to retrieve the biophysical parameters of vegetation. As S-2 will be the first
sensor to have multiple spectral bands directly on the RE at a high spatial resolution operating at
a global scale it holds much promise for vegetative monitoring. Two field campaigns, SicilyS2EVAL
and SEN3Exp, were used to create a 60 ESU dataset of LAl and LCC measurements to compare
with synthetic S-2 data generated from contemporaneous hyperspectral acquisitions using CASI-
1500 and Specim EAGLE sensors. Investigations into the correlation between LAI, LCC and canopy
chlorophyll content also incorporated data from PROSAIL models (Jacquemound and Baret 1990;
Verhoef 1984, 1985). It was found that the PROSAIL models compared well with the field data in
the NIR and green bands but failed to agree in the red part of the spectrum. The parts of the
spectrum that were most strongly correlated with chlorophyll were between 660-690 nm and
750+ nm. Of note is that S-2 band 3 (542.5-577.2 nm), according to the data presented, will not be
retrieving the optimal wavelengths that were found between 525-555 nm. S-2 band 6, which is a
new RE/NIR band with respect to previous satellite sensors such as RapidEye and MERIS, was
found to, as a replacement for MERIS band 10 (753.75 nm +/- 3.75 nm), receive increased mixed
signal from the RE as it is situated at the peak of the RE rather than slightly beyond it. This meant
that S-2 band 7, which is similar to MERIS band 12 (775 nm +/- 7.5 nm), was found to be the
optimal band for capturing the vegetative signal in the NIR based on the SicilyS2EVAL and
SEN3Exp data sets. Two new methods were proposed to estimate the biophysical variables of
vegetation using S-2 MSI data, IRECI and S2REP. IRECI incorporates four bands on, and either side
of, the RE while S2REP is a version of REP estimation for S-2 using linear interpolation as used on
previous sensors by Guyot and Baret (1988) and Clevers et al. (2000). Each method utilises direct
estimation of the slope of the RE the main capability of S-2 MSI which differentiates it from other
globally operational sensors. IRECI was found to have the highest correlation with canopy
chlorophyll content followed by NDI45 (Delegido et al. 2011b) and the NDVI. A similar conclusion
was drawn for LAl with IRECI and NDI45 the best performers. However for LCC S2REP and the
MTCI, the only two indices that solely characterise the RE, were the methods with the best
correlations. Unlike many previous studies this work incorporates multiple field campaigns with

many sampling points and a wide range of vegetation types.

Following the assessment of the new avenues for investigation that S-2 will bring work proceeded
to evaluate the application of MTCI using S-2 and S-3. With regards to S-3 OLCI it was important to

assess the continuity the platform would have with Envisat MERIS. The only significant difference
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that could be established was that of the view angles as S-3 will be tilted 12.58° away from the
sun to minimise glint. This leads to a maximum observed view angle of 55.6°, 15.6° higher than
that of MERIS. This difference found to cause a mean relative difference of 2.3% to the MTCI by
using an annual data set from Spain with canopy variables forward modelled using the PROSAIL
model (Baret et al. 1992, Jacquemoud et al. 2009). Application of the MTCI using S-2 is much more
complicated than S-3 due to the large spectral differences the sensor has with Envisat MERIS. The
combined effect means that S2TCl will be between 44.28% and 68.8% higher than the MTCl and
an initial formula has been provided to convert between the indices. Also of note is that findings
suggest that using MSI band 7 will be more favourable than band 6 in the S2TCl formula. It should
be noted that this investigation used field campaign data to evaluate the impact of spectral
changes on the MTCI algorithm. This study highlighted the spectral similarities between the
sensors and since both will be in orbit at the same time there is much interest in downscaling
between S-3 and S-2 as it could increase the temporal coverage of S-2 dramatically; especially so
until a pair of S-2 satellites are working in tandem. By using methods which were originally
developed by Gao et al. (2006) for Landsat and MODIS work has synergised MERIS and CHRIS data
to investigate the opportunities for the future Sentinel satellites. Synthetic S-2 imagery was
successfully generated from MERIS images at times of the year where it was not available.
Nevertheless the optimal pairing during July could only achieve a relative accuracy of 20-50%
throughout the year which suggests the use of a single paired image, while useful for certain
applications, is insufficient. Findings strongly indicate that the time of the year that S-2 and S-3
imagery is linked will be of critical importance and the best results were achieved when the
canopy was at maximum density. It should be noted that the point spread function was not
considered which is a possible limitation and should be investigated in future work (Amordés-Lépez
et al. 2013). Nevertheless this study is unique in the sense that it covered the complete growing
season to provide a detailed understanding of the fusion models performance throughout the

year.

A final investigation was devised to showcase a potential application of Sentinel data within a
REDD+ framework. The evergreen forests of Edo, a state in Nigeria, were assessed for degradation
using MERIS data as a surrogate for S-3. The aim of the work was to assess the change in
photosynthetic capabilities of the land cover under the REDD+ framework. It was immediately
found that extensive cloud cover in the area prevented measurements using optical sensors
outside of an annual resolution. A dataset was created using MODOG6 to further investigate the
cloud coverage over Nigeria which indicated that there is a window of opportunity, between
November to January, during which clear sky acquisitions are obtainable. By using the MTCI to

estimate changes in forest cover it was found that between 2005 and 2011 99.09 km? of
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evergreen forest had been completely deforested while 415.71 km?* had been significantly
degraded or deforested. These figures are between 4% and 16.4% of the total area of evergreen
forest that had covered the Edo state in 2005. The investigation showed that will be possible to
indicate deforestation by year using S-3 data with a method easily quantifiable using threshold
analysis and while it has been demonstrated at a regional scale it could easily be applied
nationally or even globally. In addition several sites were investigated for post
degradation/deforestation recovery, however over the studies six year time scale none
experienced overall site regrowth. In fact it was found that the photosynthetic capabilities of the
sites continued to decrease past the initial event. This suggests that deforestation in Edo, at least
at a 300 m scale, is progressive rather than absolute and without ground data a sensor with high
spatial resolution would be required for further investigation. By using the default Tier 1 guidance
values of AGB from the IPCC (2006) the MTCI was used to predict the total loss of potential carbon
sequestration. It was estimated that the primary forests of the Edo state sequestered 131,095 t
less of carbon in 2011 than in 2005. Nevertheless it should be considered that the use of optical
remote sensing might not be optimal for rainforest locations and the use synthetic-aperture radar
(SAR) would allow coverage at a monthly scale rather than annual. While currently technology
such as this does not exist ESA plan to launch Biomass (ESA 2012d), such a device, in 2020.
Although this chapter focused on 300 m resolution MERIS data which will be continued by OLCI
aboard S-3, the methodology described will easily be reproducible using S-2 MSI which will

operate at 20 m resolution substantially enhancing confidence in results.

7.2. Key Outcomes

e Many investigations have sought to enhance calculation of VIs through adjustments that
often require additional information to mitigate uncertainties. The main problem with
such adjustments is that incorporation of additional scene specific information affects the
universal applicability, accessibility for the user, operational use and dynamic response of
Vls and so should be avoided.

e Application of the SDI using a threshold of 0.9 has been shown to increase the robustness
of the MTCI at low canopy covers and has been initially validated in three separate parts
of the world.

e The MTCI has been shown to be a robust measure of LCC and will be applicable to S-2 and
S-3. This study has also suggested which bands to use in the algorithms; S2TCl and OTCI.

e With two spectral bands measuring reflectance directly on the RE the radiometric
capabilities of S-2 will be unparalleled for an operational satellite sensor for use with
vegetative studies allowing accurate characterisation of the RE region and enhanced
estimation of the REP.
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7.3.

131

Multiple field campaigns have been used to develop and validate algorithms to optimally
retrieve the biophysical variables of vegetation using S-2. The following were found as
optimal methods.

o To measure LAl research suggests using the IRECI or the NDVI.

o To measure LCC research suggests using S2REP or the MTCI.

o To measure canopy chlorophyll content research suggests using the IRECI or the

NDVI.

Preliminary comparison between the S-2 and S-3 sensors using S2TCl and OTCl has been

conducted and an equation: S2TCI = 1.6866 * MTCI — 0.3406 (Eq. (7.1)) has been
suggested to directly contrast results between sensors.
The possibilities of a S-2/5S-3 fusion model have been demonstrated through integration of
the STARFM algorithm. Synthetic S-2 data was successfully generated from MERIS
imagery at times of the year where high resolution acquisitions were unavailable.
The MTCI was used to showcase an application of S-3 within the REDD+ framework.
o Deforestation and degradation was presented geographically, a method that is
easily reproducible.
o It was found that 415.71 km” of rainforest was deforested between 2005 and
2011 within the state of Edo, Nigeria; 16.4% of the total primary forest that Edo
had in 2005.

Limitations

Inclusion of the green band makes the SDI more sensitive at low canopy covers when
vegetation is growing and healthy yet, according to preliminary validation, depreciates
the correlation during senescence.

Accurately reproducing S-2 data requires hyperspectral acquisitions which consequently
limits the scope of available field campaigns for validating algorithms pre-launch. While
multiple campaigns have been used to derive the IRECI and S2REP further validation is
required to see if the algorithms produce similar results for other campaigns.

An algorithm has been provided to directly compare between the MTCl and S2TCl,
however, further investigation is required to validate this equation for other datasets in
different parts of the world.

While STARFM was used to synergise S-2 and S-3 there was an average pixel error of 20-
50% for the optimal base pair. A suggestion to enhance this error is provided in 7.4.2..
Using optical sensors such as S-2 and S-3 to monitor rain forest is problematic due to
cloud cover during the majority of the year. Consequently it may indeed be more suitable
to use SAR data in future REDD+ applications. Nevertheless Biomass, which will be the

first operational SAR sensor, is not planned for launch until 2020.
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7.4. Future Work

During the course of research a series of lessons have become apparent from which a number of

recommendations can be proposed for future work to follow.

7.4.1. Enhanced Field Campaign Procedure

Through participation in multiple field campaigns, and processing of many conducted by 3"
parties, during the research of this thesis it has been found that methodologies within vegetative
remote sensing vary considerably. Datasets differ with respect to: sensor, location, operating
team, time of year, view geometry and field campaign procedures. As the discovery of new
methods of retrieving vegetative biophysical parameters, as well as refining current ones,
depends on the quality data sets the aforementioned differences can not only add considerable
uncertainty but affect the compatibility of research. This can consequently result in the
fragmentation of methods and lack of further validation following a successful finding.
Involvement in the validation of the MTCI has emphasised the benefits of extensive research
using a specific vegetation index as the robustness of the product increases with each step taken.
If there was an opportunity to conduct a follow up field campaign, ignorant of project constraints,

this work proposes that several key points are considered.

e LCC and LAl must be treated individually and given equal importance.

e Measurements of LCC should have destructive calibration that follows well
documented procedure (Moran and Porath 1980, Moran 1982)

e ESU size should be well documented and linked as closely as possible to the sensor
being investigated.

e Radiometric and atmospheric adjustments should be as contemporaneous as possible
with the sensor flight.

e  While having multiple measurements in the same field will strengthen the
characterisation of an individual ESU they should be combined and are not a
substitute for variety with respect to crop and spatial distribution.

e Although multiple hyperspectral acquisitions are likely to be costly ideally a field
campaign should be conducted over the length of a growing season thus allowing

methods to account for phenological changes in the study site.

Of significant concern is that methods are only strongly correlated to the field campaign in which
they occurred or even the ‘snapshot’ of the phenological state of the vegetation. Two novel

indices that were presented in Chapter 4, S2REP and IRECI, require extensive cross validation in
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the future to avoid this pitfall. However validating indices of the future Sentinel sensors is

problematic as it requires hyperspectral data before their launch.

7.4.2. Downscaling Method with Multiple Pairings

Chapter 5 highlighted that fusion models used in downscaling perform best when the high and
low spatial pairing is made during the maximum canopy extent. However while such a pairing was
accurate in predicting dense vegetation it overestimated vegetative cover during sparse canopy
conditions. By adding in multiple pairs of data that document the canopy at the maximum and
minimum vegetative states the model could effectively be assigned the correct range of values
between which the predictions can operate. Consequently the use of low spatial resolution data
to track changes during the phenological transitions of the target vegetation should have
significantly increased accuracy. Furthermore as most downscaling methods consider linear
mixture models which may not hold true in a dynamic environment of crops there is opportunity
to perform class based modelling through the analysis of spectral information. Combining
modelling of each class separately and maximum and minimum canopy measurements should

increase robustness of the model and hold many prospects for a S-2 S-3 fusion model.

7.4.3. Retrieval of Biophysical Variables

During the early stages of vegetative remote sensing research focused on correlation with canopy
density. Many studies and field campaigns did not give adequate consideration to LCC and canopy
chlorophyll content which resulted in indices that focused on the SR and sequential enhancing of
the NDVI. Later on the chemistry and biology of vegetation became a significant interest within
remote sensing and focus shifted to the behaviour of the RE to deepen understanding of
vegetation dynamics. LAI, LCC and their combination canopy chlorophyll content all have distinct
uses and equally separate methods of optimal calculation. It is highly recommended that all those
who undertake future research connected to the remote sensing of vegetation realise this. There
is great scope for research in upscaling leaf scale chemistry and the effects of phenological

transitions to help further understand canopy dynamics.

7.4.4. Further Comparison of OTCl and S2TClI

Although this analysis has given an initial insight into how the MTCI will change with application
using future Sentinel sensors using field campaign data further validation with other datasets at
different locations would be required to validate and improve the presented algorithm to directly

compare between data of the two sensors. To achieve this before launch hyperspectral data
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would be required such as CHRIS or airborne acquisitions contemporaneously with a field

campaign that considers discussion in 7.4.1..

7.5. Concluding Remarks

Review of literature suggests LAI, LCC and chlorophyll content are frequently not, as they should
be, treated separately at each stage of vegetative investigation. The findings of this thesis suggest
that LAl is best measured using the SR/NDVI while an estimate of REP is a more robust measure of
LCC. The combination of these two variables, canopy chlorophyll content, is therefore best
derived through characterising each of the spectral regions sensitive to vegetation; the red, RE
and NIR with an index such as IRECI. Findings emphasise that the L2 MERIS product the MTClI,
which has been explored in detail, is a robust measure of LCC and also canopy chlorophyll
content. Finally, it is recommended that emphasis is placed on deriving and validating retrieval
methods using S-2 MSI as the two bands directly on the RE mean it is not only spatially, but
radiometrically superior to S-3 and will consequently allow better characterisation of the RE. This,
and future sensor improvements, will help overcome the problem of saturation and enable the

remote acquisition of the biophysical parameters of vegetation in unprecedented detail.
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