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Abstract 

In recent years a heightened awareness of the vulnerability of our environment to anthropogenic 

activity combined with the need for better management of natural resources to sustain a rapidly 

growing population has drawn attention to the importance satellite remote sensing. Remotely 

sensed estimations of the biophysical variables of vegetation are applicable at many spatial scales 

with many uses. Each new generation of satellites provides opportunities to refine the retrieval of 

such variables and accordingly this thesis will focus on evaluating the potential of the future 

Sentinel series of satellites for the retrieval of vegetation biophysical variables. Sentinel-3 (S-3), 

tentatively planned for launch in mid-2015, will provide a continuation of the successful MERIS 

sensor with enhanced temporal resolution. Alternatively Sentinel-2 (S-2) will acquire high spatial 

resolution (20 m) reflectance measurements operationally across an unprecedented number of 

bands on, and around, the red edge and is set for launch in April 2015. Initial research 

investigated the effect of the soil background on the L2 operational MERIS product the MTCI. 

MERIS imagery was used to explore the vegetation green up period and subsequently to establish 

the Soil Discrimination Index, a flag to enhance the robustness of the MTCI at low canopy covers. 

Following work utilised data from two field campaigns, SicilyS2EVAL and SEN3Exp, to compare LAI 

and LCC measurements with synthetic S-2 data generated from contemporaneous hyperspectral 

acquisitions. Two new methods were proposed to estimate the biophysical variables of vegetation 

using S-2, IRECI which incorporates four bands situated on and either side of the RE and S2REP, a 

version of Red Edge Position (REP) estimation for S-2 using linear interpolation. Next the 

application of MTCI using S-2 and S-3 was investigated as well as the feasibility to downscale 

between the sensors. With regards to S-3 the view angle of the sensor will be tilted 12.58o away 

from the sun to minimise glint. This will lead to a maximum observed view angle of 55.6o, 15.6o 

higher than that of MERIS while application of the MTCI using S-2 is more complicated due to the 

large spectral differences the sensor has with Envisat MERIS. The combined effect means that 

S2TCI will be between 44.28% and 68.8% higher than the MTCI and an initial formula has been 

provided to convert between the indices. Findings also indicate that using MSI band 7 will be 

more favourable than band 6 in the S2TCI formula.  

Successfully downscaling between S-3 and S-2 could increase the temporal coverage of S-2 

dramatically. A first trial of this was achieved via fusion modelling that synergised MERIS and 

CHRIS data to represent S-3 and S-2 respectively. Synthetic S-2 imagery was generated from S-3 

images at times of the year where high resolution imagery was not available. Results strongly 

indicate that the time of the year that S-2 and S-3 imagery is linked will be of critical importance 

and optimal results were achieved when the canopy was at maximum density. Finally a test 

application of the Sentinel satellites was conducted in the evergreen forests of Edo, a state in 

Nigeria, to assess degradation using a seven year MERIS dataset within the REDD+ framework. By 

using the MTCI to estimate forest cover it was found that between 2005 and 2011 99.09 km2 of 

evergreen forest had been completely deforested while 415.71 km2 had been significantly 

degraded. These figures are between 4% and 16.4% of the total area of evergreen forest that had 

covered the Edo state in 2005. It was shown that it is possible to indicate deforestation by year 

using MERIS data with a method easily quantifiable using threshold analysis. By using the default 

Tier 1 guidance values of AGB from the IPCC the MTCI was successfully used to predict the total 

loss of potential carbon sequestration. It was estimated that the primary forests of the Edo state 

sequestered 131,095 t less of carbon in 2011 than in 2005. 
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 Introduction Chapter 1:

1.1. Background 

In recent years a heightened awareness of the vulnerability of our environment to anthropogenic 

activity combined with the need for better management of natural resources to sustain a rapidly 

growing population has drawn attention to the importance satellite remote sensing. Remotely 

sensed estimates of the biophysical variables of vegetation have many uses at many spatial scales. 

They provide key inputs into global climate models, regional monitoring of desertification and 

deforestation and at a field scale as a commercial tool in precision agriculture. Chlorophyll, a 

green pigment in vegetation, is a critical component of photosynthesis; consequently a measure 

of chlorophyll can be indicative of vegetation health and the photosynthetic capacity of a given 

area. Remote sensing of vegetation depends on the biophysical composition of vegetation giving 

it unique spectral properties. Chlorophyll strongly absorbs energy in the blue and red parts of the 

spectrum while leaf internal structure determines reflectance in the near-infrared (NIR). This 

resulting contrast in reflectance over the 680-750 nm range is referred to as the red edge (RE). 

The position of the RE, defined as the point of greatest change in reflectance, is related to total 

chlorophyll content (Collins 1978; Horler et al. 1983). A measure of red edge position (REP) can be 

retrieved remotely at a global scale through spaceborne sensors that contain narrow bands in the 

680-750 nm range. The Medium Resolution Imaging Spectrometer (MERIS) is such a sensor 

aboard the Environmental Satellite (Envisat) which was launched on the 1st of March 2002 and 

operated until the 8th of April 2012. The MERIS sensor measured the Earth’s surface spectral 

reflectance features every 3 days in 15 spectral bands between 412.5-900 nm. These bands can in 

turn be used by the MERIS Terrestrial Chlorophyll Index (MTCI), a vegetation index (VI), to 

estimate REP and consequently provide a surrogate measure of chlorophyll content. The MTCI has 

been implemented operationally as a full L2 MERIS product.   

Each new generation of satellites provides opportunities to refine the retrieval of biophysical 

variables at enhanced scales. The next generation of satellites will be part of Europe’s Copernicus 

programme which was previously known as Global Monitoring for Environment and Security 

(GMES).  Of the total five Sentinel missions planned for with Copernicus, the Sentinel-2 (S-2) and 

Sentinel-3 (S-3) missions have a key focus on global vegetation monitoring and are capable of 

making measurements in the RE. The S-3 Ocean and Land Cover Imager (OLCI), tentatively 

planned for launch in mid-2015, will ensure continuation of the 10 year long MERIS dataset into 

the future with the discontinuation of Envisat. Such long running datasets are paramount in 

providing perspective for investigations into surface and climate change and the impacts they 
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bring for ecological viability and phenological transitions in vegetation (Zhu et al. 2013). The S-2 

Multi-Spectral Instrument (MSI) is set for launch in April 2015 and will enable measurements in 

the RE potion of the electromagnetic spectrum at a greatly enhanced spatial resolution of 20m. 

There is much uncertainty in the characterisation of heterogeneous landscapes using MERIS data 

at full resolution of 300 m due to pixels of mixed vegetation type. The issue is particularly relevant 

in Europe due to irregular and small field sizes in agriculture compared to agriculture in other 

parts of the world. The enhanced spatial resolution of S-2 should mitigate this issue, reducing 

mixed class anomalies and incorrectly classified pixels.  

1.2. Aims of the Research 

This study aims to investigate the use of remote sensing to monitor vegetation condition and 

distribution through time while evaluating the scope for improvement using the upcoming 

Sentinel series over current methods and sensors. One of the key objectives of the analysis will be 

to advance the MERIS Terrestrial Chlorophyll Index (MTCI) which was adopted operationally as a 

full MERIS product. It is unknown specifically how the MTCI will perform at the increased spatial 

(20 m) and spectral resolutions available via S-2 with multiple bands situated on and around the 

RE; a region sensitive to chlorophyll concentration. Furthermore there is scope for investigation 

into creating a synergy product that combines the attractive properties of S-2 with the greater 

spatial coverage and temporal resolution of S-3. This research is important as there are many 

scientific and commercial applications that rely on local, regional and global estimations of the 

biophysical variables of vegetation. Consequently there is room for detailed analysis into the 

opportunities the future Sentinel sensors bring when combined with robust algorithms for the 

practice of vegetative remote sensing Research therefore shall be divided into three parts. Firstly, 

the study aims to investigate the opportunities and implications that the future sensors S-2 and S-

3 have for the MTCI and also their compatibility. Secondly, the study aims to investigate the 

possibility for retrieval of biophysical parameters for S-2 and S-3 and the key scientific 

opportunities of these future sensors. Finally the work aims to apply research findings and 

develop methodology within the Reducing Emissions from Deforestation and Degradation 

(REDD+) framework. 

This thesis builds upon research conducted at the University of Southampton during the ESA 

funded MTCI-EVAL project which was focused on validation of the MTCI using the MERIS platform 

with additional preliminary investigations into application of the MTCI to S-2 and S-3. Each 

chapter is a novel piece of work conducted separate to the MTCI-EVAL project and where data or 

figures are incorporated they are clearly referenced. 
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1.2.1. Objectives of the Research 

1 Review existing literature on the retrieval of vegetation biophysical variables with an 

emphasis on operational applicability at a global scale. 

   

2 Investigate the uncertainties in retrieval of biophysical variables using remotely sensed data 

and assess if any of these uncertainties can be mitigated through algorithm changes or the 

development of flags with specific investigation for the MTCI. Reduction in associated 

uncertainty and accounting for unknown uncertainty in the retrieval of biophysical variables is 

paramount in the development of methods which are as robust as possible.   

 

3 Evaluate S-2 and the Multispectral Instrument (MSI) for the opportunities they bring for the 

EO of vegetation and specifically the retrieval of biophysical parameters. Current algorithms 

will need to be assessed using an extensive and suitable dataset which will need to match the 

high spatial and spectral characteristics of the sensor. Improved methods for retrieval of 

biophysical parameters using S-2 should be proposed if justified enhancements are observed. 

 

4 Investigate the opportunities for application of MTCI on S-3 and the feasibility to downscale 

to S-2 creating a synergy product. If possible creation of a synergy product of S-2 and S-3 

could allow the high spatial scale of S-2 with the rapid temporal scale of S-3. 

 

5 Apply scientific findings of previous objectives to develop methodology to measure change in 

the photosynthetic capability of forested areas to demonstrate the operational use of Earth 

Observation data within the REDD+ framework. 
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1.3. Chapter Overview 

 

Figure 1.1: Chapter Overview of the thesis highlighting where datasets are utilised. 
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Chapter 2 – Literature Review. 

An initial literature review was performed on material relevant to the research objectives in the 

first few months of the project timeframe. Since then this has been adjusted and updated as 

required resulting in the current format. A particular focus was put on fully reviewing the Sentinel 

satellites, their prospects and possible applications.  Furthermore an investigation into 

uncertainties associated with the retrieval of vegetative biophysical variables was performed that 

included the following topics: hardware deterioration, view geometry, atmospheric variance, 

background condition, canopy structure, spatial resolution and phenology.  

Chapter 3 – The Soil Discrimination Index and its Application to the MTCI. 

As a result of the literature review and preliminary investigations it was found that the 

background variation can have a significant effect on the output of VIs and especially the MTCI. It 

was decided that a flag should be developed for the MTCI product to account for uncertainty due 

to soil without changing its formulation. Consequently a dataset of background reflectances was 

acquired and compared to a long running dataset of agricultural land in Iowa. The output was a 

new Soil Discrimination Index (SDI) which should enhance the robustness of the MTCI at low 

canopy covers and subsequently an initial validation was performed in Texas and the Iberian 

Peninsula. Results of the analysis were presented in September 2010 at the Remote Sensing and 

Photogrammetry Society (RSPSoc) 2010 Conference and an extended abstract, ‘Quantifying the 

Effect of Soil on Retrieval of Chlorophyll Content from Remotely Sensed Data’, was accepted for 

inclusion into the proceedings (Frampton et al. 2010). 

Chapter 4 – Evaluating the Capabilities of Sentinel-2 for Quantitative Estimation of Biophysical 

Variables in Vegetation. 

During a review of current of field campaigns that involved ground chlorophyll content 

measurements the majority were found to be insufficient to achieve one of the key objectives of 

this research; evaluating the opportunities of S-2 for the retrieval of biophysical parameters, due 

to the spatial and spectral characteristics of S-2. Consequently a data collection field campaign, 

SicilyS2EVAL, was planned and conducted in May 2010. It involved 2025 Minolta SPAD-502™ 

measurements of 225 plants across 25 elemental sampling units (ESUs) of ground measurements 

of leaf chlorophyll concentration (LCC) as well as 450 leaf area index (LAI) measurements using a 

Li-Cor LAI-2000. Contemporaneous hyperspectral airborne data acquired by the Natural 

Environment Research Council (NERC) Airborne Research & Survey Facility (ARSF) from which 

synthetic S-2 data could be generated. In addition to this, another dataset, SEN3Exp which took 

place in June 2009 in Barrax, Spain was acquired from the European Space Agency (ESA). Current 
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methods and algorithms were considered for retrieval of LAI, LCC and canopy chlorophyll content 

and two novel algorithms presented; Sentinel-2 Red Edge Position (S2REP) and the Inverted Red 

Edge Chlorophyll Index (IRECI). The findings were presented as a talk at RSPSoc 2011 and 

accepted as an extended abstract for inclusion in the conference proceedings (Frampton et al. 

2011). A further version of the chapter was published as FRAMPTON, W. J., DASH, J., 

WATMOUGH, G. R., and MILTON, E. J., 2013, Evaluating the capabilities of Sentinel-2 for 

quantitative estimation of biophysical variables in vegetation. Journal of Photogrammetry and 

Remote Sensing, 82, 83-92.   

Chapter 5 – Investigating the Opportunities for Application of MTCI using S-2 and S-3 and the 

Feasibility to Downscale  

This chapter investigated the application of MTCI using S-2 and S-3 as well as the feasibility to 

downscale between the sensors. With regards to S-3 the view angle of the sensor will be tilted 

12.58o away from the sun to minimise glint. This will lead to a maximum observed view angle of 

55.6o, 15.6o higher than that of MERIS while application of the MTCI using S-2 is more complicated 

due to the large spectral differences the sensor has with Envisat MERIS. The combined effect 

means that S2TCI will be between 44.28% and 68.8% higher than the MTCI and an initial formula 

has been provided to convert between the indices. Findings also indicate that using MSI band 7 

will be more favourable than band 6 in the S2TCI formula. Successfully downscaling between S-3 

and S-2 could increase the temporal coverage of S-2 dramatically. A first trial of this was achieved 

via fusion modelling that synergised MERIS and CHRIS data to represent S-3 and S-2 respectively. 

Synthetic S-2 imagery was successfully generated from S-3 images at times of the year where it 

was not available achieving a relative accuracy of 20-50%. Results strongly indicate that the time 

of the year that S-2 and S-3 imagery is linked will be of critical importance and the best results 

were achieved when the canopy was at maximum density.  

Chapter 6 – Quantification of Change in Photosynthetic Capabilities of Deforested Locations and 

Opportunity for Future Recovery under the REDD+ Framework  

Chapter 6 tested an application of the Sentinel satellites in the evergreen forests of Edo state, 

Nigeria. Research assessed forest degradation using a seven year MERIS dataset within the REDD+ 

framework. By using the MTCI to estimate forest cover it was found that between 2005 and 2011 

99.09 km2 of evergreen forest had been completely deforested while 415.71 km2 had been 

significantly degraded. These figures are between 4% and 16.4% of the total area of evergreen 

forest that had covered the Edo state in 2005. It was shown that it is possible to indicate 

deforestation by year using MERIS data with a method easily quantifiable using threshold analysis. 

By using the default Tier 1 guidance values of above-ground biomass (AGB) from the IPCC the 
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MTCI was successfully used to predict the total loss of potential carbon sequestration. It was 

estimated that the primary forests of the Edo state sequestered 131,095 t less of carbon in 2011 

than in 2005. 

Chapter 7 – Conclusions and Future Work 

Chapter 7 provides a summary of the achievements of this research, highlights key findings and 

proposes several new lines of investigation for future work.  
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 Literature Review Chapter 2:

2.1. Measurements of Vegetation Biophysical Variables 

Biophysics is the concept of combining physics and chemistry by using mathematical analysis and 

modelling to fundamentally understand biological systems. With respect to vegetation the 

structure of the canopy and leaf chemistry are key biophysical variables in interpreting the 

dynamics of these biological systems. 

2.1.1. Leaf Pigments 

Leaves are mainly constituted by chlorophyll, water filled vacuoles, nitrogen and cell walls made 

up from cellulose and pectin (Campbell and Reece 2005). Chlorophyll, a vital molecule for 

photosynthesis, is embedded in the membrane of chloroplasts in all green vegetation. The 

pigment serves two purposes; firstly it absorbs light energy and secondly uses this to perform a 

redox reaction converting water and carbon dioxide into carbohydrate and oxygen. It should be 

noted that plants also use carotenes (oxygen free carotenoids) and xanthophylls (carotenoids 

containing oxygen) to absorb light energy (Campbell et al. 2006), however as Gates et al. (1965) 

noted chlorophyll accounts for 60-75% of the energy absorption by the plant in the visible part of 

the spectrum while Verdebout et al. (1994) highlighted that chlorophyll is ten times more 

concentrated than carotenoids. There are two types of chlorophyll, chlorophyll-a and chlorophyll-

b. Chlorophyll-a is the primary pigment responsible for the biochemical action of photosynthesis 

while chlorophyll-b is an accessory that collects additional energy to supply chlorophyll-a with 

(Lichtenthaler 1987). As well as collecting additional energy chlorophyll-b has been shown to 

regulate the antenna array which links the reaction centre to the chlorophyll absorbing energy 

(Hankamer et al. 1997; Green and Durnford 1996; Tanaka and Tanaka 2000). 

Chlorophyll can be assessed destructively or in vivo, i.e. within the living. Destructive leaf sampling 

involves removal of the chlorophyll from the leaf using a solvent. Moran and Porath (1980; Moran 

1982) found Dimethylformamide to be the most suitable solvent for chlorophyll extraction 

superior to acetone as it enabled extraction from intact tissues. To achieve consistent results the 

same area of leaf should be removed from each sample, easily achieved using a circular hole 

punch, and added to a fixed quantity of solvent. It should also be noted that the location on the 

leaf that the cutting is taken from is important as chlorophyll density varies. After chlorophyll has 

been extracted from chloroplasts by the solvent the solution is placed into a spectrophotometer 

which measures absorption at very high spectral resolution to derive the wavelengths of 

maximum absorption of the solution. Deriving absorption maxima in vivo at a canopy scale 
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involves taking chlorophyll measurements in a fixed area and directly comparing them with 

remotely sensed reflectance data using regression analysis to find the most strongly related 

wavelength.   Chlorophyll content estimations can also be derived using handheld devices such as 

the Minolta SPAD-502™ which measures absorption at 440 nm and 670 nm and subsequently 

correlates the results with destructive measurements.  

2.1.2. Leaf Area Index 

Leaf area index (LAI) is a key biophysical variable that determines, with leaf chlorophyll 

concentration (LCC), the total canopy chlorophyll content per metre of ground area. LAI is 

effectively canopy density and has important implications for the energy balance of the land due 

to the reflective nature of vegetation in the NIR (Bonan 1995). Consequently LAI is key in 

determining photosynthetic activity and gross primary productivity (GPP). LAI is widely measured 

as the total area of leaves per square metre of ground (m2/m2)(Wilhelm et al. 2000). In the case of 

non-flat leaves such a pine needles LAI can be defined as half the total surface area of the needle 

per ground unit area (Chen and Black 1992). 

LAI can be sampled directly or indirectly. Direct measurement involves destructive leaf sampling 

where leaves are physically removed from the canopy and area is measured. Indirect 

methodologies involve the use of models and optical instruments (Chen et al. 1997). Direct 

sampling can be time and resource intensive depending on the scale of the investigation. 

Morisette et al. (2006) noted indirect LAI measurements are most commonly made using an Li-

Cor LAI-2000™ (Campbell and Norman 1990) or a Tracing Radiation and Architecture of Canopies 

(TRAC)(Chen 1996; Leblanc 2002). The LAI-2000 uses 5 concentric rings from 0-75o (approximately 

0–13o, 16–28o, 32–43o, 47–58o, 61–74o)(Li-COR INC. 1992) to measure the transmitted light in the 

blue part (400-490 nm) of the spectrum through the canopy (Chen et al. 1997). In turn it uses 

these measurements over five zenith angles to calculate gap fraction (Miller 1967). TRAC 

measures the percentage of absorbed radiation (PAR) over a larger range of 400-700 nm than the 

LAI-2000 (Leblanc 2002). Through the use of a data logger TRAC records canopy gap fraction and 

size over planned transects and calculates LAI. Ground measurements of LAI are in turn correlated 

to remotely sensed data to in turn validate algorithms to retrieve LAI and provide an estimate of 

vegetation density at the required scale. While LAI determines the density of the canopy the leaf 

angle distribution (LAD) is an important factor in determining the amount of light incepted by the 

canopy (Clevers et al. 1994). Due to this LAD has an impact of crop growth and measurements 

made by optical sensors. 



William James Frampton    

10 
 

2.2. Spectral Properties of Vegetation 

Incoming solar radiation intercepted by vegetation is partly reflected, absorbed and transmitted. 

Biophysical variables of vegetation affect these light interactions and consequently give the 

vegetation unique spectral properties. The absorption features that can be seen in vegetation 

under spectral analysis are due to electron transitions and vibrational stretching of molecular 

bonds (Curran et al. 1992). Chlorophyll strongly absorbs energy in the blue (450-475 nm) and red 

(620-740 nm) parts of light while conversely the cell walls, primarily composed of cellulose, and 

gaps between them reflect and transmit energy in the visible and NIR (Curran 1989; Glenn et al. 

2008) preventing damage that would occur due to overheating through excess energy absorption. 

As chlorophyll absorbs red and blue light the lack of absorption in the green (495-570 nm) part of 

the spectrum gives vegetation its colour. The green colour of vegetation is dependent on the 

absence of species specific high concentrations of carotenoids, anthocyanins and betalains which 

are non-green pigments. The described absorption and reflectance features of chlorophyll and 

cellulose are presented in Figure 2.1.  

 

Figure 2.1: Example of a typical vegetative spectra. Figure shows average spectral reflectance of 

50 corn fields during July-August 2005 in central-western Iowa. 

Early work by Jordan (1969) and Federer and Tanner (1966) highlighted the combined maximum 

absorption to be at 675nm while Tucker (1979) presented it to be at 690nm in vivo at a canopy 

scale. Destructive work by Vernon (1960) and Moran (1982) separated chlorophyll a and b and 

noted the maximum absorptions to be at wavelengths of 664 nm and 647 nm respectively while 

Curran (1989) reported them to be at 0.66 µm (660 nm) and 0.64 µm (660 nm). Gross (1991) 

highlighted essentially the same result at a finer spectral resolution of 662 nm and 642 nm while 
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Wellburn (1994) found the maxima to be at 665 nm and 647 nm. It can be seen that there are 

differences between the maxima for in vivo and destructive results. Lichtenthaler (1987) reported 

spectral shifts of 10 nm between the methods which agree with results from literature. The 

differences can be linked to the influence of the solvent and that chlorophyll, in vivo, are 

combined with proteins and other pigments (Verdebout et al. 1994). Wellburn (1994) showed the 

variation in central wavelength maxima retrieved depending on the solvent used. He compared 

chloroform, dimethylformamide and dimethylsulphoxide and found 2 nm variance in both 

chlorophyll-a and b. Variation of leaf water content has been found to not affect the optical and 

NIR parts of the spectrum up to 800 nm (Ceccato et al. 2001). Nevertheless there have been many 

studies which use the Short-Wave Infrared (SWIR) region (located between 800 – 1700 nm), 

which is sensitive to change in water content, to establish leaf water content (Tucker 1980a; 

Eidenshink et al. 1990; Paltridge and Mitchell 1990; Chuvieco et al. 1999). 

The Beer-Lambert law relates the attenuation of light to the properties of the material through 

which the light is travelling (Daintih 2009). Consequently an increase in chlorophyll content causes 

both a broadening and deepening of the absorption feature. However in very dense canopies with 

high leaf chlorophyll concentrations saturation can occur resulting in an asymptotic relationship 

(Tucker 1977). This saturation point will be reached first at the absorption maxima. As the off-

centre wavelength feature broadens with increased chlorophyll it is less affected by saturation. 

Therefore off-centre wavelengths can sometimes be more accurate estimators of chlorophyll 

content than the absorption maxima itself.  

2.3. Satellite Sensors 

2.3.1. Envisat MERIS 

The first EO satellite launched by the European Space Agency (ESA) was the European Remote-

Sensing Satellite-1 (ERS-1) in 1991 (ESA 2012b). ERS-1 carried the Along-Track Scanning 

Radiometer (ATSR) which was capable of making measurements in the infrared and microwave 

parts of the spectrum. Its successor ERS-2 came into service in 1995 with an improved ATSR-2 

which included channels in the green (550 nm), red (670 nm) and NIR (870 nm) and consequently 

was the first European satellite able to quantify the Normalized Difference Vegetation Index 

(NDVI) and a range of other VIs. 

Envisat was launched on the 1st of March 2002 and reached a sun synchronous polar orbit at an 

altitude of 790 km (ESA 2012a). Envisat orbits the Earth every 101 minutes and has a repeat cycle 

of 35 days. MERIS, a spectrophotometer aboard Envisat, has 15 programmable spectral bands 
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within the range of 390-1040 nm (Rast et al. 1999). Table 2.1 shows the bands MERIS retrieves 

surface reflectance for in operational mode. 

Table 2.1: Details of the spectral characteristics of MERIS bands in operational mode. 

Band Number Central Wavelength (nm) Band Width (nm) 

1 412.5 10 

2 442.5 10 

3 490 10 

4 510 10 

5 560 10 

6 620 10 

7 665 10 

8 681.25 7.5 

9 708.75 10 

10 753.75 7.5 

11 760 3.75 

12 775 15 

13 865 20 

14 890 10 

15 900 10 

   

In full resolution mode (FR) MERIS has a spatial resolution of 300 m and 1200 m in reduced 

resolution mode (RR) (Kealy and Dewart 1999). Selecting a spatial resolution to meet study 

specific requirements is important as FR data is 12 times larger than RR and can add significant 

computation unnecessarily. MERIS has a large swath of 1150 km at a field of view of 68.5o which 

results in a global temporal resolution of 7 days at the equator improving to nearly 2 days at 70o 

latitude (Rast et al. 1999). Although MERIS was optimised for oceanic applications Verstraete et 

al. (1999) noted that with its fine spectral and moderate spatial resolution MERIS was a great 

opportunity for EO of the terrestrial environment. With respect to vegetation EO the key benefit 

of MERIS to other spaceborne sensors are the several high spectral resolution bands in the RE 

region. MERIS band 9 was the first spaceborne sensor to obtain reflectance information 

operationally in the RE.  

When launched Envisat had a 5-year nominal lifetime. A limited supply of hydrazine fuel was 

carefully managed through orbital manoeuvre adjustment to allow extension of the lifetime a 

further three and a half years up until 2010. The expected lifecycle of Envisat was further 

extended in October 2010 until 2014 through moving to a lower orbit and disabling inclination 

controls meaning that Envisat no longer has orbit maintenance performed. The disabling of these 

controls has possible inclination drift consequences which could reduce accuracy of the ground 

tracking (ESA 2010b). However on the 8th of April 2012 communication with Envisat was lost. 



William James Frampton    

13 
 

Although a series of attempts were made to reconnect with Envisat there was no response and 

now the chances of recovering the satellite are extremely low. Consequently there is increased 

urgency to produce the next series of European satellites with capabilities in the Red Edge; the 

Sentinels.   

2.3.2. Copernicus Program 

Copernicus is the programme for establishment of a European capacity for EO (GMES 2012). 

Copernicus aims to provide accurate and reliable data that can aid decision makers in developing 

the most appropriate environmental and security policies. With the EO devices rapid monitoring 

capacity Copernicus will support prompt response to natural disasters, industrial accidents or 

humanitarian crises to provide worldwide aid relief. Copernicus is coordinated by the European 

Commission, ESA and the European Environment Agency. Five spaceborne sensors, named the 

Sentinel series, are currently being developed by ESA that will provide EO data for the Copernicus 

program (ESA 2012c). Of the five, two are specifically relevant to the EO of vegetation. 

2.3.3. Sentinel 2 

Sentinel 2 (S-2) will provide systematic global acquisitions of high resolution multispectral imagery 

for Copernicus. The Multi-Spectral Instrument (MSI) aboard S-2 is the solitary sensor and has been 

designed to enable the continuity of Satellite Pour l’Observation de la Terre (SPOT) and Landsat 

type data into the future.  S-2 however it will provide an enhanced spectral resolution, with 13 

bands used to follow on from the MODerate-resolution Imaging Spectroradiometer (MODIS) and 

MERIS. The S-2 mission envisions of a pair of satellites simultaneously circulating the Earth in a 

sun-synchronous 180o phase orbit with a 290km swath (ESA 2010). The first satellite, S-2A, is 

planned for launch in April 2015 which is to be followed by S-2B tentatively planned for launch 

two years after S-2A (ESA 2011a). Tandem operation of S-2A and B will deliver a revisit period of 

up to five days under cloud free conditions at a band dependant 10-60 m spatial resolution with 

key vegetation bands having a spatial resolution of 10 and 20 m highlighted in Table 2.2. 
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Table 2.2: Spectral bands of S-2 MSI. 

S-2 

Band 

Central 

Wavelength (nm) 

Bandwidth 

(nm) 

Spatial Resolution 

(m2) 

1 443 20 60 

2 490 65 10 

3 560 35 10 

4 665 30 10 

5 705 15 20 

6 740 15 20 

7 783 20 20 

8 842 115 10 

8a 865 20 20 

9 945 20 60 

10 1375 30 60 

11 1610 90 20 

12 2190 180 20 

 

There is much uncertainty in the characterisation of heterogeneous landscapes using MERIS 

operating at full resolution of 250-300 m due to pixels of mixed vegetation type. The issue is 

particularly relevant in Europe due to irregular and small field sizes in agriculture compared to 

agriculture in other parts of the world. The enhanced spatial resolution of S-2 should mitigate this 

issue reducing mixed class anomalies and incorrectly classified pixels. 

2.3.4. Sentinel 3 

Sentinel 3 (S-3) is designed to support Copernicus services related to the marine environment 

while also providing contributions to terrestrial EO and security. Like S-2, S-3 will function as a 

series of satellites to allow enhanced temporal resolution. Three satellites are planned to operate 

in a sun-synchronous orbit at an altitude of 814 km with a swath of 1270 km. A pair alone in 

operation will enable the entire terrestrial environment to be monitored every two days at the 

equator improving with increasing latitude (ESA 2011b). S-3 will have an extensive payload of 

seven sensors with the Ocean and Land Colour Instrument (OLCI) providing measurements in the 

visible and NIR parts of the spectrum. Like MERIS OLCI will operate at two resolutions, 300 m at 

FR and 1200 m at RR. OLCI includes 21 bands (Table 2.3) that take heritage from MERIS and SPOT 

and will have improved radiometric stability compared to MERIS (ESA 2011b). S-3A is planned for 

launch in mid-2015 followed by S-3B 18 months later while S-3C is tentatively planned for launch 

before 2020 (ESA 2011a). 
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Table 2.3: Spectral bands of S-3 OLCI. 

S-3 

Band 

Central 

Wavelength (nm) 

Bandwidth 

(nm) 

1 400 15 

2 412.5 10 

3 442.5 10 

4 490 10 

5 510 10 

6 560 10 

7 620 10 

8 665 10 

9 673.75 7.5 

10 681.25 7.5 

11 708.75 10 

12 753.75 7.5 

13 761.25 2.5 

14 764.375 3.75 

15 767.5 2.5 

16 778.75 15 

17 865 20 

18 885 10 

19 900 10 

20 940 20 

21 1020 40 

 

S-3 will ensure continuation of the 10 year long MERIS dataset into the future as Envisat reaches 

the end of its intended lifetime. Such long running datasets are paramount in providing 

perspective for investigations into surface and climate change and the impacts they bring for 

ecological viability and phenological transitions in vegetation (Zhu et al. 2013). 

2.3.5. Non-Operational/Commercial Sensors with RE Capabilities 

The Compact High Resolution Imaging Spectrometer (CHRIS) is the main sensor of Proba-1, ESA’s 

smallest satellite. Proba-1 is a technology demonstrator, albeit a highly successful one that 

resulted in continuation of the series with Proba-2 launched in November 2009 and Proba-V 

(Proba Vegetation) in May 2013 (ESA 2014b). CHRIS is an opportunistic sensor which targets 

planned sites at specified times. Typically only one or two sites are observed each day with 

irregular revisit times to accommodate accepted research proposals. In operational mode 1 CHRIS 

acquires reflectance in 63 separate spectral bands for a ground area of 13 km2 at a spatial 

resolution of 34 m. 
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The Hyperspectral Imager (Hyperion) is one of the sensors aboard NASA’s Earth Observing-1 

Mission (EO-1) satellite which measures reflectance for 220 wavelengths at 30 m spatial 

resolution for a 7.7 km by 42 km area (NASA 2014). Originally the sensor was designed for a 12 

month lifecycle when launched of the 21st of November 2000 however it is still in operation today. 

Like CHRIS observations are opportunistic and subject to a successful data acquisition request 

application. 

RapidEye is a constellation of five satellites that was launched on the 29th of August 2008 capable 

of collecting reflectance values in spectral five bands covering up to 5,000,000 km2 at 5 m spatial 

resolution each day (Blackbridge 2014). Bands are positioned at 475 nm, 555 nm, 657.5 nm, 710 

nm and 805 nm covering the blue, green, red, RE and NIR respectively.  

2.4. Importance of the Red Edge Position 

2.4.1. The Red Edge 

The RE is denoted as the region of great change in vegetation reflectance due to the opposing 

features of plant pigment absorption in the red and cellulose reflectance in the NIR (Gates et al. 

1965; Horler et al. 1983; Curran 1989; Glenn et al. 2008). The RE has been shown to be indicative 

of biophysical variables (Collins 1978; Horler et al. 1983). Increases in chlorophyll content causes 

both a broadening and deepening of the absorption feature centred around 665-680 nm 

(Banninger 1991; Dawson and Curran 1998). This causes a shift in the RE slope towards longer 

wavelengths (Clevers et al. 2002; Horler et al. 1983). The point of maximum change of the RE has 

been dubbed the REP and this inflexion point has been shown to be related to total chlorophyll 

content (Horler et al. 1983; Clevers and Büker 1991; Dawson and Curran 1998; Dash and Curran 

2006). The REP can be calculated at various spatial scales and accuracies depending on availability 

of reflectance band measurements and spectral scales in the RE. MERIS meets such requirements 

with band 9 (Table 2.1) consequently becoming the first spaceborne sensor to obtain global 

reflectance information operationally in the RE. Estimation of REP on discontinuous data was 

undertaken for MERIS by Dawson and Curran (1998) where they proposed a technique based on 

the three-point Lagrangian interpolation (Jeffery 1985). Clevers et al. (2002) noted that use of the 

Lagrangian technique resulted in a jumping feature in a nonlinear REP/chlorophyll content 

relationship (Dash and Curran 2004). Consequently the method would require manual 

confirmation of the first derivative reflectance maxima and therefore could not be used 

operationally. A second method of REP estimation as proposed by Guyot et al. (1988) involves 

linear interpolation using the red and NIR reflectance. Clevers et al. (2002) applied the method for 

MERIS bands and can be seen below (Eq. (2.1)).  
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𝑅𝐸𝑃 (𝑀𝐸𝑅𝐼𝑆) =  708.75 + 45 ∗
(

𝑟𝑁𝐼𝑅+𝑟𝑅

2
)−𝑟𝑅𝐸1

𝑟𝑅𝐸2−𝑟𝑅𝐸1
  Eq. (2.1) 

Where rNIR is the reflectance at 775 nm, rR at 665 nm, rRE1 at 708.75 nm (originally 705 nm) and 

rRE2 at 753.75 nm.   

While the method has the advantage of being computationally simple Clevers et al. (2002) 

reported the relationship was a robust method of estimating REP. However, there are some issues 

with this method when applied using MERIS bands as accurate measurement requires both the RE 

inputs to be directly on the linear slope of the RE. While this is the case with RE1, RE2 is located 

beyond this linear part as the gradient flattens towards the NIR plateau. It should be highlighted 

that, while discussed in more detail further into the chapter, the band positions of S-2 in theory 

should allow enhanced estimation of the REP using this method over MERIS or S-3.    

2.4.2. The MTCI  

The MTCI (Eq. (2.2)) is a surrogate REP index which became an official MERIS level-2 product of 

ESA in March 2004 (Dash and Curran 2004).  

𝑀𝑇𝐶𝐼 =  
𝑟𝑁𝐼𝑅−𝑟𝑅𝐸

𝑟𝑅𝐸−𝑟𝑅𝑒𝑑
=

𝑟753.75𝑛𝑚−𝑟708.75𝑛𝑚

𝑟708.75𝑛𝑚−𝑟681.25𝑛𝑚
 Eq. (2.2) 

Dash and Curran (2004) reported the MTCI to be more sensitive than using a measure of REP for 

high chlorophyll content values. Follow up work showed MTCI to be strongly positively related to 

chlorophyll indirectly through comparison to concentrations of herbicide used in Vietnam (Dash 

and Curran 2006). Dash et al. (2010a) compared the MTCI to ground chlorophyll measurements in 

southern England and found, with the exclusion of an outlier, an R2 of 0.8 with an accuracy 

estimation (in relation to the mean) of 71%. The MTCI has also been used in studies not directly 

measuring chlorophyll but processes where it could be used as a proxy. Harris and Dash (2010) 

reported that the across site relationship of MTCI compared to GPP performed with a stronger 

relationship than the MODIS GPP or Enhanced Vegetation Index (EVI).  Wu et al. (2008) also used 

the MTCI in a GPP analysis of wheat and showed it to outperform other chlorophyll-related VIs. 

The MTCI has also been used by Jeganathan et al. (2010) and Dash et al. (2010b) to assess 

phenological transitions in India at a regional scale. Boyd et al. (2011) further used the MTCI as a 

surrogate for chlorophyll content while monitoring the phenology of woodland and grass/heath 

land in Southern England. Findings supported the use of MTCI for constructing phenological 

profiles due to its sensitivity with canopy chlorophyll content. Boyd et al. (2012) also incorporated 

the MTCI into three GPP models which were correlated with flux tower GPP measurements across 

30 sites in USA, Canada and Brazil. Results indicated that the MTCI, as a surrogate measure of 

chlorophyll content, was able to give favourable approximations of GPP. 
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The MTCI dataset reached over a decade of global coverage with the 10th anniversary of the 

Envisat launch in March 2012. Continuation of this long running dataset was originally thought to 

be likely without significant disruption as, at the time, S-3 was scheduled for launch in 2013 and 

orbital adjustments to Envisat were thought to have ensured the operation of MERIS until 2014. 

However on the 8th of April 2012 contact was lost with Envisat and chances of recovery are 

extremely low meaning until the launch of S-3 the MTCI is limited to past acquisitions. Long 

running datasets such as the MERIS dataset are specifically useful to phenological studies with 

regards to climate variability and change. 

2.5. Retrieval of Biophysical Variables from Satellite Data 

2.5.1. Modelling 

Modelling of vegetation is based on radiative transfer theory; the fundamental idea that changes 

to radiation intensity are related to local absorption along the ray path. Consequently models link 

the spectral variation of the canopy, governed by the pigment concentrations, with the directional 

variation which is influenced by the canopy structure. PROSAIL (Baret et al. 1992, Jacquemoud et 

al. 2009) is the combination of the PROSPECT leaf optical properties model (Jacquemound and 

Baret 1990) and the Scattering by Arbitrary Inclined Leaves (SAIL) canopy bidirectional reflectance 

model (Verheof 1984; 1985). The model can be used to simulate canopy reflectance for a range of 

leaf biochemistry and canopy parameters which the user can select. Consequently the user can 

easily produce a dataset for validation purposes for a range of biophysical variables in the optical 

region at a 1 nm spectral resolution. Nevertheless a dataset that is derived from a model will be 

limited to how well it represents reality almost certainly missing out on natural dynamic response 

of vegetation. 

SAIL was developed by Verhoef (1984) to simulate reflectance at the canopy level and was later 

extended by Kuusk (1991) to account for the hot spot effect. The SAIL model simulates canopy bi-

directional reflectance as a function of three structural parameters: LAI, average leaf angle (ALA) 

and the hot spot parameter (HOT). HOT can be considered an empirical parameter that is strongly 

related to the sharpness of the hot spot peak; which, as a guideline, one can use the ratio of leaf 

width to canopy height as an estimate of its magnitude (Verhoef and Bach 2003). SAIL also 

incorporates the soil spectral reflectance, fraction of diffuse irradiance and the view and 

illumination geometry. PROSPECT simulates leaf reflectance and transmittance as a function of 

four structural and biochemical leaf parameters: LCC, dry matter content, leaf water thickness 

and a leaf mesophyll structural parameter (N). The combination of these two models, PROSAIL, 

has been reported to produce realistic results of bi-directional reflectance spectra for many 
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different crops in various investigations. Andrieu et al. (1997) found a good agreement for SAIL 

using the structure of sugar beet canopies outside of the hot-spot direction. Jacquemoud et al. 

(1995) also investigated the performance of the model using sugar beet data, however, with less 

success attributing the performance to especially bright soils. Major et al. (1992) found the model 

adequate at predicting the LAI of maize throughout the entire growing season. Examples of 

PROSAIL model inputs are presented in Table 2.4 and an overview of the model is exhibited in 

Figure 1.1Figure 2.2 which was used in the MTCI-EVAL project (Watmough et al. 2011)  

 

Figure 2.2: Schematic representation of PROSAIL: the coupling of the leaf (PROSPECT) and canopy 

(SAIL) models. First presented in the MTCI-EVAL project (Watmough et al. 2011). 

Table 2.4: Example of input variables for PROSAIL. 

Model Variables Units Range 

PROSPECT       

N    Leaf structure index Unitless 1.5 

Cab     Leaf chlorophyll content [µg cm-²] 5-70 

Cm       Leaf dry matter content [g cm-²] 0.009 

 SAIL     

LAI  Leaf area index [m² m-2] 0-8 

ALA  Average leaf angle [°] 35 

HotS  Hot spot parameter [m  m-1] 0.01 

S Sun zenith angle [°] 30 

V View zenith angle [°] 10 
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2.5.2. Use of VIs 

Since the early 1970s early Earth observation (EO) spaceborne platforms such as Landsat 1 and 

the National Oceanic and Atmospheric Administration (NOAA; NOAA 2011) series, which were 

equipped with the Advanced Very High Resolution Radiometer (AVHRR) sensor, have provided the 

capability of measuring reflectance within the red and near-infrared (NIR) regions to researchers. 

These bands were quickly exploited through the use of Vegetation Indices (VIs) to simply and 

quickly identify areas of vegetation and draw further conclusions about their ‘state’. The basis of 

the algorithms is that the biophysical composition of vegetation gives it unique spectral 

properties, as discussed in section 2.2. and Error! Reference source not found.., compared to 

on-vegetated surfaces such as soil. VIs are combinations of multiple reflectance measurements 

where multispectral imagery is available (Chuvieco and Huete 2010) and enhance the vegetative 

signal in remotely sensed data consequently enabling the extraction of useful information about 

the vegetation (Asrar et al. 1992; Gutman 1991). The Normalized Difference Vegetation Index 

(NDVI; Eq. (2.3)) was the earliest large scale use of a VI which was first formally reported by Rouse 

et al. (1973) (see Kreigler et al. 1969; Tucker 1979) and remains today as the most widely used 

method of monitoring vegetation at a global scale. 

𝑁𝐷𝑉𝐼 =  
𝑟𝑁𝐼𝑅−𝑟𝑅𝑒𝑑

𝑟𝑁𝐼𝑅+𝑟𝑅𝑒𝑑
 Eq. (2.3) 

VIs aim to measure the amount of photosynthetically active vegetation by manipulating bands 

within a spectral signature gained remotely at varying scales (Curran et al. 1997). The majority of 

VIs, like the NDVI, build upon the difference between the reflectance in the NIR and the red which 

was theorised before the NDVI in two ways by Jordan (1969) in the form of the Simple Ratio (SR; 

Eq. (2.4)) and the Difference Vegetation Index (DVI; Eq. (2.5)).  

𝑆𝑅 =  
𝑟𝑁𝐼𝑅

𝑟𝑅𝑒𝑑
 Eq. (2.4) 

𝐷𝑉𝐼 =  𝑟𝑁𝐼𝑅 − 𝑟𝑅 Eq. (2.5) 

While studies have shown the DVI to be superior at low canopy covers (Roujean and Breon 1995) 

due to being less affected by the spectral signature of the background the NDVI is more robust in 

full canopies mitigating solar and atmospheric variation. The NDVI is effectively an optical 

measure of canopy ‘greenness’, which is a composite between LCC and LAI while taking into 

account the effect of variation in the structure of the canopy. LCC is typically measured in g chl m-2 

(grams of chlorophyll per square metre of leaf) while LAI is widely measured as the total area of 

leaves per square metre of ground (Wilhelm et al. 2000). More recent VIs use reflectance 

measurements in the RE to estimate REP. The MERIS Terrestrial Chlorophyll Index (MTCI; Eq. 2.2) 
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(Dash and Curran 2004) enabled estimation of the REP at a global scale operationally in 2002 with 

the launch of the Environmental Satellite (Envisat) and the Medium Resolution Imaging 

Spectrometer (MERIS) on board.  

Various field studies and theoretical analysis using modelling have shown that the results of VIs 

are near-linearly related to photosynthetically active radiation absorbed by the vegetative canopy 

(Jordan 1969; Tucker 1979; Huete 1988). Being computationally simplistic was a key strength of 

VIs in early EO. A VI such as the NDVI can be applied at varying scales to any multi- or hyper-

spectral data with a red and NIR band. With few requirements and data from spaceborne sensors 

the resulting temporal resolution of a global acquisition a given VI can achieve is high. As an 

example MERIS operating in reduced operation mode (1000-1200 m) has a revisit time of 3 days, 

although local weather conditions can effectively reduce this figure if a specific area of study is 

required. Due to these strengths VIs hold great opportunity for many practical uses. VIs have 

become essential tools for; large scale land management within the farming industry, assessing 

forest health,  desertification (United Nations Conference of Desertification 1977), rate of 

deforestation (Hecht and Cockburn 1989), and predicting the local and regional impact of drought 

to name but a few examples (Pettorelli et al. 2005, Kerr et al. 2003). With respect to climate 

change VIs quantify plant density and vigour at a global scale which can in turn be used to 

estimate carbon sequestration through photosynthesis (Paruelo et al. 2004). 

Table 2.5: Summary of Key Vegetation Indices. 

Vegetation Index Formulation Original Author 

SR NIR/R Jordan 1969 

DVI NIR-R Jordan 1969 

NDVI (NIR-R)/(NIR+R) Rouse et al. 1973 

REP 700+40*((((NIR+R)/2)-RE1)/(RE2-RE1)) Guyot and Baret 1988 

SAVI ((NIR-R)/(NIR+R+L))*(1+L) Huete 1988 

MSAVI SAVI where L = 1-2y*NDVI*(NIR-yR) Qi et al. 1994 

RDVI (NIR-R)/√(NIR+R) Roujean and Breon 1995 

GNDVI (NIR-G)/(NIR+G) Gitelson et al. 1996 

OSAVI (NIR-R)/(NIR+R+0.16) Rondeaux et al. 1996 

MCARI [(RE-R)-0.2(RE-G)]*(RE-R) Daughtry et al. 2000 

TVI 0.5(120(NIR-G)-200(R-G)) Broge and Leblanc 2000 

GESAVI (NIR-BR-A)/(R+Z) Gilabert et al. 2002 

MTCI (NIR-RE)/(RE-R) Dash and Curran 2004 

MTVI 1.2(1.2(NIR-R)-2.5(R-G)) Haboudane et al 2004 
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2.6. Applications of Satellite Derived Biophysical Variables 

2.6.1. Global Climate Models 

Global Climate Models (GCMs) are used for weather forecasting, understanding our current 

climate and predicting how it might change in the future. The carbon cycle is the transfer of 

carbon between the atmosphere, hydrosphere and the terrestrial environment and it has a large 

input in the Earth’s current and future climate. Carbon dioxide (CO2) is a greenhouse gas which is 

an insulator in the atmosphere and has been significantly increasing in concentration due to 

anthropogenic activity since 1750 (Fung 2002). Before 1750 CO2 concentrations had been stable 

below 280 parts per million (ppm) for 400,000 years however since have increased to 380 ppm in 

2005 (Keeling et al. 1996; IPCC 2007). Increasing concentrations of CO2 have been linked to 

increasing global temperatures which would likely lead to rising sea levels and land surface 

change putting pressures on an increasing population. Consequently in the last decade there has 

been increased interest in CO2 sequestration by the oceans and terrestrial vegetation through 

photosynthesis. Satellite derived measurements of LAI and LCC can be used to estimate global 

and regional photosynthetic capacities and in turn the amount of carbon that can sequestrated. 

There are many global scale carbon models which incorporate an estimation of vegetation to 

derive an estimation of photosynthesis such as the BioGeochemical Cycles model (BIOME-BGC) 

(Running and Coughlan 1988) or the Lund-Potsdam-Jena Dynamic Global Model (LPJ) (Sitch et al. 

2003). Estimates of the photosynthetic capability of an area depend on the performance of the 

algorithm that is used to calculate chlorophyll content. Consequently VIs, a commonly utilised 

method in GCMs, depend on the spectral capabilities of the sensor combined with adequate 

temporal and spatial characteristics. As S-2 will provide multiple spectral reflectance 

measurements directly on the RE at 20 m spatial resolution with global coverage every five days it 

holds much opportunity for enhancing inputs into GCMs. However using 20 m spatial resolution 

data will increase the size of data greatly and it could be argued whether it would provide much 

more accuracy than a medium or low spatial resolution. Multiple S-3 satellites will enable global 

calculation of the MTCI every two days at 300 m providing unparalleled temporal coverage and 

excellent scope as a surrogate measurement of chlorophyll content into GCMs.        

2.6.2. Monitoring Forest 

Forests are important areas for biodiversity and a source of livelihood for many and cover 30% of 

the total land surface (FRA 2010). Monitoring the rate of deforestation is important as forests 

account for 90% of the annual interchange of carbon between the atmosphere and the land 

surface. The Global Forest Resources Assessment 2010 (FRA 2010) highlights that there is more 
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carbon in the world’s forest than in the atmosphere or remaining oil stocks. An estimated net loss 

of 13.5 million hectares of forest has occurred in the last 20 years although there was 37% less net 

deforestation in 2000-2010 than in 1990-2000 which suggests the rate is slowing. The Reduced 

Emissions from Deforestation and Degradation (REDD+) policy was launched at the United 

Framework Convention on Climate Change (UNFCCC) summit 2008 with the key aim to provide 

the framework for financial compensation to countries who are able to reduce emissions from 

deforestation (REDD 2012). The key sections of the REDD+ proposal involve defining which 

activities are eligible, how emission reductions are calculated and over what time period, who 

finances the reduction and where the compensation goes.  Conditions allowing satellite derived 

measurements of a forest’s photosynthetic capabilities can be directly used within the REDD+ 

framework to quantify deforestation over a set period. It is important to highlight the difference 

between total clearance of the forest and degradation. Thresholds of VIs can be used to indicate 

land cover change, such as total forest loss, which are combined with class based sequestration 

values to calculate change in sequestration rates. Alternatively if the relationship that a VI has 

with photosynthetic capability has been established sequestration rates can be monitored as a 

function of change in the VI output. This method is especially useful for monitoring degradation of 

the forest. As previously discussed as the future Sentinel satellites provide enhanced spatial and 

temporal resolution therefore there is great opportunity for refined estimations of forest 

degradation. IPCC guidelines suggest, if possible, high spatial resolution satellite data is 

incorporated into the REDD+ framework. With regards to calculation of the MTCI S-2 will be the 

first sensor to allow operational calculation at the suggested high spatial resolution.    

2.6.3. Precision Agriculture 

With impressive spatial, temporal and spectral characteristics in the visible and RE S-2 will provide 

new opportunities for precision agriculture. Precision agriculture is a farming management 

concept that provides satellite and geospatial information to optimise farming practices to crop 

and field specific needs. Precision agriculture can aid the proficient use of fertilizers through 

understanding the spatial distribution of plant health by using remotely sensed biophysical 

variables which in turn can lead to financial savings and protection of the environment through 

reduced nitrate leaching and greenhouse gas emissions (Kim and Dale 2008). The Farmstar 

programme by EADS Infoterra is a good example of a precision agriculture scheme that provides 

information (Farmstar 2011). 
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2.7. Uncertainty in Vegetation Indices 

Due to their attractive properties for vegetation monitoring, ease of implementation and 

seemingly robust use as a proxy for many phenomena, VIs receive much cross-disciplinary use by 

users often unfamiliar with the more complex intricacies of remote sensing. Without background 

knowledge within the area the user is at risk of not accounting for uncertainty, which in turn will 

affect the overall interpretation. Myneni et al. (1995) described uncertainty within vegetation 

monitoring as a series of caveats which to the unknowing can significantly degrade the value of 

remotely sensed data. Accounting for uncertainty and specifically working with the resulting 

limitations is a significant finesse within remote sensing.  

Problems of uncertainty are often simplified when criteria only require assessment of a single 

date or short period. Generally investigations over longer temporal periods have larger the ranges 

of uncertainties to account for.  Nevertheless it is more often the case in the application of VIs 

that monitoring a change over multiple acquisitions is required. Consequently the temporal 

context significantly exacerbates problems of uncertainty as there are many unwanted variables 

which change with time such as: atmospheric conditions, view geometry, soil moisture content, 

the physical canopy structure and the transition of the phenology of the plant (Myneni et al. 1995; 

Foody and Atkinson 2002). Each of these variables can influence the results of the investigation if 

unaccounted for and in turn imply mistaken or ina11ccurate vegetative change. There are also 

uncertainties governed by hardware such as satellite sensor drift (Hay 2000). This work suggests 

uncertainty to be divided into two groups; the first containing uncertainty independent of the 

vegetation and ground conditions and the second governed by scene specifics. The reason for the 

divide is to establish and account for universal uncertainties within remote sensing while 

recognising those which require further information and understanding about the ground level 

vegetation.  
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Figure 2.3: Flow diagram highlighting the uncertainties affecting the retrieval of the biophysical 

variables of vegetation. 
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2.7.1. Universal Uncertainties 

2.7.1.1. Hardware Deterioration 

Satellite sensor drift is the change in performance of satellite sensors as their components age 

(Gorman and McGregor 1994). Kaufman and Holben (1993) reported deterioration for NOAA-9 of 

10 ± 3% in the visible band and 16 ± 2% in the NIR band shortly after launch and 22 ± 2% in both 

bands three years later. This can be attributed to vibration during launch, out-gassing in the 

vacuum of space, temperature changes and electronic degradation. These changes consequently 

resulted in variation of calculated NDVI by 0.0-0.09 effectively the difference between bare soil 

and a sparsely vegetated canopy at a low range of NDVI. If bands were to deteriorate at different 

rates this would also affect estimations of the REP when using popular methods such as the MTCI 

or linear interpolation methods (Guyot and Baret 1988, Clevers et al. 2000). Recently Wang et al. 

(2012) found that NDVI calculated using MODIS was decreasing at a rate of 0.001-0.004 per year. 

Hardware deterioration is in most cases accounted for through post launch calibration, often 

through methods like vicarious calibration (Thome 2004), which use large, homogenous, 

topographical and change stable surfaces with high reflectance such as dry lake beds (Thome et 

al. 1998) to assess temporal variance which can then be accounted for.  

2.7.1.2. Atmospheric Conditions 

The process of atmospheric correction (AC) is well documented by the Network for Calibration 

and Validation of Earth Observation Data (NCAVEO 2005). The group states that although 

performing AC is of benefit in the majority of examples within remote sensing it holds extra value 

to VIs as the influence of the atmosphere is not uniform along the spectrum. This means that 

there will be varying degrees of uncertainty in the separate bands that are used in VIs adding 

further complexity to the problem. The net influence of the atmosphere is the difference between 

the top-of-the-atmosphere (TOA) and the top-of-the-canopy (TOC) values. This net atmospheric 

effect decreases almost linearly with increasing surface reflectance (Kaufman 1989). Thus the 

relationship allows methods such as the Empirical Line Method (Ferrier 1995, Smith and Milton 

1999) to account for, and ultimately mitigate, atmospheric conditions over a discrete or 

continuous temporal scale. Atmospheric influences have a positive effect on radiance in the 

shorter wavelengths, namely the blue and green bands (Milton et al. 1994), and a slightly negative 

effect at longer wavelengths, such as the NIR, due to the domination of absorption by aerosols 

(Myneni et al. 1995). With regards to the influence of the atmosphere on REP studies by Guyot et 

al. (1988) concluded that it was unaffected (Clevers et al. 2000).   

The Atmospherically Resistant Vegetation Index (ARVI; Eq. (2.6)) (Kaufman and Tanré 1992) has 

been designed to improve the vegetation signal through de-coupling of the atmospheric 



William James Frampton    

27 
 

influences. Kaufman and Tanré (1992) showed ARVI to be on average four times less sensitive to 

atmospheric effects than the NDVI and that the improvements are even greater for vegetated 

surfaces than soils. 

𝐴𝑅𝑉𝐼 =
𝑟𝑁𝐼𝑅−𝑟𝑅𝑒𝑑−𝑦(𝑟𝐵𝑙𝑢𝑒−𝑟𝑅𝑒𝑑)

𝑟𝑁𝐼𝑅+𝑟𝑅𝑒𝑑−𝑦(𝑟𝐵𝑙𝑢𝑒−𝑟𝑅𝑒𝑑)
 Eq. (2.6)  

Where y can have either, as suggested by Kaufman and Tanré (1992), a fixed value of 1 or be 

varied based on the atmospheric and background conditions. 

Included within the uncertainty due to the atmosphere is the adjacency effect; the issue that the 

radiance field measured by the remote sensor may also contain contributions of reflectance from 

outside the field of view (FOV) that has been scattered by the atmosphere (Myneni et al. 1995). 

As well as possibly including reflectance from outside the target study area; the resulting loss of 

contrast due to the adjacent effect can impair visual interpretation of the image (NCAVEO 2005).     

2.7.1.3. Background: Soil Condition 

Light which reaches the ground through the canopy interacts with the surface; spatial variations in 

the albedo will in turn have a varying effect on the TOC radiation measurements. Accounting for 

variation in background reflectance is important for vegetation monitoring as 70% of the Earth’s 

terrestrial surface consists of open canopies (Graetz 1990). Kauth and Thomas (1976) highlighted 

the difference between dark and light bare soil and importantly that although initially different 

with respect to absolute red and NIR reflectances they converge to similar reflectance values as 

canopy cover reaches a maximum. Previous work by Condit (1970) analysed 160 soil spectral 

reflectances in North America between 320-1000 nm and found that soils could be classified into 

three general types. Type 1 curves have low reflectance with a shallow increment in gradient 

giving a concave form while type 2 curves have decreasing gradient till 600 nm which results in a 

convex shape. The gradient of type 3 curves decay less than that of type 2 soils however at 760 

nm the gradient reduces sharply and even becomes negative because of an absorption feature 

present due to the high iron content. Stoner and Baumgardner (1981) analysed 485 soils from 

520-2320 nm and presented five distinct soil spectral reflectance types from the 30 suborders of 

the 10 orders of soil taxonomy. Their five types included the three Condit proposed while adding 

two further subclasses to type 3 soils using the 800-1300 nm region. Type 4 and 5 related to high 

iron contents with varying organic concentrations which consequently cause type 4 soil to exhibit 

lower reflectance in the optical region and higher NIR reflectance than type 5 soils. Work in turn 

coined the term the soil line which refers to the near constant gradient that a soil spectra exhibits 

over the visible and NIR wavelengths (Figure 2.4).  
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Figure 2.4: 50 corn (blue) and 50 soybean (red) averaged bimonthly reflectances derived from 

GLOBCOVER MERIS FR imagery for 2005. 

A typical soil line can be witnessed in Mar-Apr while by May-Jun crops have grown and exhibit 

clear vegetation spectra. These lines are important to consider as VIs differentiate between this 

background reflectance with the presence of vegetation as the red reflectance decreases because 

of chlorophyll absorption while overall infrared reflectance increases with the presence of leaf 

mesophyll structure and cellulose. Thus, deviations of spectral data from the bare soil line may be 

attributed to the presence of green biomass (Widlowski et al. 2004). The uncertainty due to the 

soil is exacerbated by weather as local water content will have a varying effect on the reflectance. 

While it is well documented that wet soils will overall reflect less than drier brighter soils (Baret et 

al. 1993) as most vegetation indices use ratios of reflectance bands the impact of this is negligible 

and soil type is the main factor in variation of the soil line (Baret et al. 1993). The background has 

the largest impact when vegetative cover is in the region of 40-60% as the combined effect of 

background reflectance with the transmissive properties of the open canopy increase the possible 

noise in the VI output (Huete et al. 2002).  

Like the ARVI for accounting for atmospheric influences the Soil-Adjusted Vegetation Index (SAVI; 

Eq. (2.7)) (Huete 1988) was developed with the aim to mitigate the variation due to background 

reflectance.  

𝑆𝐴𝑉𝐼 =
𝑟𝑁𝐼𝑅−𝑟𝑅𝑒𝑑

𝑟𝑁𝐼𝑅+r𝑅𝑒𝑑+𝐿
   (1 + 𝐿)

 
Eq. (2.7) 

SAVI introduces a soil-brightness dependent correction factor, L, into the NDVI equation which 

Huete (1988) argued was very sensitive to background radiation. Prior to the work of Huete et al. 

(1984) it was common place to assume a universal ‘global’ soil line encompassing a wide range of 
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soil types in remote sensing practice (Miller et al. 1984). It could be argued that a better 

representation actually consists of numerous nonparallel soil lines that represent soil-moisture 

variations within scene specific types, however correcting for this is would be a significant 

undertaking (Asrar 1989). 

2.7.1.4. View Geometry 

To obtain repeated global coverage at a high temporal and spatial scale it is unfeasible for space-

borne sensors to use consistent solar and small view angle range to collect data. Changing solar 

and view zenith angles in turn cause variation in the consistency of measured reflectance from 

the target area. Research by Kollenkark et al. (1982) showed that, apart from an initial decrease 

up to a solar zenith angle of 10 degrees, the reflectance of areas with near total vegetation cover 

does not significantly change as solar zenith increases in both the red and NIR bands. However 

diurnal variations had significant implications for canopies of 64% cover with red reflectance 

decreasing by half between 0 and 30 degree solar zenith. Importantly NIR reflectance did not 

change significantly for this percentage cover. Consequently the results support the argument 

that as the solar zenith increases canopy shadowing becomes a significant factor influencing 

spectral reflectance of an area of vegetation that does not completely cover the background.  

Uncertainty does not only come from varying solar angle but also changing the sensor view 

geometry. This is due to the way a vegetative canopy creates a gradient of scattered solar flux 

with a maximum at the top of the canopy and a minimum at the bottom. In turn, as the nadir view 

angle increases the sensors FOV includes a larger proportion of upper canopy, which is scattering 

the most solar flux, and the proportion of the lower canopy in the FOV decreases (Kimes 1983). 

This effect depends on leaf inclination, density and the scattering coefficient of the leaves to their 

transmittance properties as these factors influence the gradient of scattering through the canopy.  

If the canopy cover is low and therefore shadowing is occurring (especially relevant at higher solar 

zenith angles an increasing sensor zenith will contain a higher proportion of vegetative material 

and less effect from shadows and soils in the FOV thus theoretically increasing measured 

vegetation. It must be considered however that the described variations due to solar and sensor 

zenith angle can conflict with each other and their influence on the output reflectance. Jordan 

(1969) highlighted the robustness of VIs that incorporate ratios, such as the SR, to varying solar 

intensity. Although the intensity of light received by the canopy dropped by half the NIR and the 

red wavelengths reflectance of light decreased equally and therefore the output of the VI showed 

insignificant variation. 
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2.7.1.5. Spatial Resolution 

Studies can be limited by the spatial resolution of the available sensor (Boyd and Foody 2010). 

With regards to vegetation this often leads to a mixed pixel problem where two separate 

vegetation classes are contained within a single physical pixel as the targets physical size is smaller 

than the resolution of the sensor. This issue is more relevant in some locations than others. For 

example MERIS in full resolution (300 m) will have many more mixed pixels observing 

heterogeneous European cropland than the larger homogenous fields of North America. Ideally 

the desire is to have imagery with a spatial resolution finer than the size of the features of interest 

(Woodcock and Strahler 1987). Single trees or a row of crops could be considered the smallest 

features for a vegetative study, however to differentiate between these and the soil background 

sub metre resolution data would be required (Boyd and Foody 2010). Most sensors that acquire 

data at this level are either not operational or retrieving reflectance measurements on the RE.  As 

S-2 will operationally acquire spectral measurements on the RE at 20 m spatial resolution 

calculation of the REP and MTCI will be possible with far fewer mixed pixels than was previously 

possible with MERIS and the uncertainty due to this reduced.  

2.7.2. Vegetation Specific Uncertainties 

2.7.2.1. Canopy Structure 

The significance of an open or closed canopy and the consequential effect depending on the view 

angle has been discussed previously in the view geometry section as have the implications canopy 

cover has with regards to the influence of the background reflectance. 

The output of VIs are structured to reduce if red reflectance gets higher, theoretically due to lack 

of chlorophyll, and greaten if the NIR increases, suggesting a more dense canopy. Relationships of 

VIs frequently hold strong for low values of LAI, with saturation occurring at higher LAI values due 

to lack of reflection in the red part of the spectrum. NDVI has been shown to lack sensitivity above 

an LAI of around 2-2.5 and become non-linear with an increase in biophysical parameters 

(Lillesaeter 1982, Asrar et al. 1984, Baret and Guyot 1991, Gitelson 2004). The relationship of VIs 

with LAI has been tested in a number of studies (Curran 1980; Badhwar et al. 1986) for varying 

cover types. Generally results over arable land were non-linear with LAI but near linear 

relationships were found over forested areas. While LAI determines the density of the canopy the 

leaf angle distribution (LAD) is an important factor in determining the amount of light incepted by 

the canopy (Clevers et al. 1994). Sellers (1985) found that canopies with heterogeneous LAD 

display more variance in output of reflectance. Nevertheless it should be considered that the 

impact of canopy structure variation is often mitigated by the large scales that VIs operate at 

compared to average plant canopy size.  
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2.7.2.2. Phenology 

Senescence is the biological aging of an organism. Deciduous plants are genetically programmed 

to respond to seasonal weather through structural and metabolic changes (Boyer et al. 1988). 

During leaf senescence chlorophylls degrade faster than carotenoids (Sanger 1971), consequently 

over the course of senescence leaves will change colour to shades of yellow or orange/red. Sanger 

(1971) reported that oak leaves that had dropped from the tree in the autumn still had 

measureable quantities of the carotenoids lutein (xanthophyll) and β-carotene (carotene) in the 

spring while aspen and hazel leaves were devoid of all pigments. Resulting changes in pigment 

content due to senescence have impacts on the spectral reflectance of the canopy specifically in 

the visible region while structural changes affect canopy reflectance in the NIR (Boyer et al. 1988). 

Such changes can add uncertainty to the output of VIs in the autumn season both in deciduous 

forests and also for crops. During review it was found that there is a distinct lack of research into 

the effect of phenological transitions on the RE and specifically REP. 

2.8. Conclusion 

Spectral VIs aim to provide near-linear estimates of a given areas photosynthetic capacities and 

canopy variables. They provide measurements at otherwise unfeasible temporal and spatial scales 

for a variety of scientific uses. This literature review has explored the current methods for deriving 

biophysical variables using spaceborne sensors and assessed the future opportunities of S-2 and 

S-3. The uncertainties within the use VIs have been presented as a series of caveats. 

Understanding uncertainty processes are an inconvenient reality as the concept and application 

of VIs can appear simple; this combined with their attractiveness to fields outside vegetative 

observation as a proxy can produce misguided results to the unknowing. Although the problems 

are numerous there is no other feasible way to requisition the biophysical parameters of 

vegetation at such a high scale both spatially and temporally with our current technology. In turn 

the field must accentuate accounting for uncertainty and ensure that good practice is universally 

applied to reduce the limitations that are faced. Importantly this will bring heightened 

dependability to draw conclusions and accordingly allow faster development and testing of ideas 

within the remote sensing community, as well as increased assuredness that current paths of 

thought are a worthwhile investment. 

There is great worth in the RE to retrieve the biophysical parameters of vegetation without 

saturation at high vegetation densities due to avoiding algorithm dependence on reflectance in 

the red region. This has been shown by the MTCI at MERIS FR (300 m). Sentinel-2 provides 

enhanced spectral resolution in the RE compared MERIS with two bands directly over the RE. 
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These two bands should allow improved operational retrieval of biophysical parameters at a fine 

spatial resolution of 20 m. Consequently S-2 holds great appeal for precision agriculture especially 

in Europe where heterogeneous field sizes often cause large error due to mixed pixels. 

Alternatively with the recent end of MERIS operation Sentinel-3 will have the important role of 

continuing the 10 year dataset. It is currently not known how the operational MERIS product the 

MTCI will perform for S-2 and S-3 and this leaves scope for investigation in this research. 
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 The Soil Discrimination Index and its Chapter 3:
application to the MTCI 

3.1. Introduction 

The MTCI-EVAL project was conducted to evaluate and validate the MTCI algorithm. Several key 

factors were established that influenced its performance; the soil background, view geometry and 

aerosol optical thickness. It was found that as the MTCI puts large weight on the reflectance of 

the RE band in relation to the position of the red and NIR the effect of the soil background 

reflectance at low canopy covers can cause significant uncertainty. Preliminary investigations into 

equating this uncertainty using guidelines suggested by the Quality Assurance Framework for 

Earth Observation (QA4EO) suggested below an MTCI of 2 for sparse canopy covers the variation 

in the background condition could affect the output of the algorithm by up to 20% (Watmough 

2011). Consequently a study has been devised to account for this uncertainty.  

Variation of the reflective properties of soil combined with the structural, optical and geometric 

attributes of vegetation cover within a scene dictates the overall influence that the background 

will have on top of the canopy (TOC) radiation measurements (Miller et al. 1984). Accounting for 

variation in the background reflectance is important in vegetation monitoring as 70% of the 

Earth’s terrestrial surface consists of open canopies where this can add significant uncertainty to 

the output of Vegetation Indices (VIs) (Graetz 1990). With reference to discussion in section 

2.7.1.3. this chapter aims to investigate the variance in the common soil types of North America 

and the influence that they have on the MTCI product. In turn work aims to provide additional 

functionality for the algorithm to account for or mitigate this uncertainty. North America has been 

chosen for the focus of the study due to the large homogenous fields which are well documented 

with regards to phenology and crop type as well as having a freely available soil library.  

3.1.1. Discussion on Current Soil Discriminators 

Prior to work of Huete’s (1988) Soil Adjusted Vegetation Index (SAVI; Eq. (2.7)) it was common 

place to assume a universal global soil line encompassing a wide range of soil types (Miller et al. 

1984). However, SAVI works through applying an adjustment (L) to the NDVI based upon LAI or 

fraction of green cover. Huete (1988) suggested that using a constant value for L of 0.5 would 

improve remotely sensed vegetation interpretations by minimizing soil noise; however Huete 

(1988) also noted that the use of a constant L results in a loss of response in the dynamic range of 

vegetation. This loss of dynamic response can be attributed to the L constant of 0.5 usually being 
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much larger than a pixels red reflectance (MERIS band 8, see Figure 3.4 for examples) therefore 

buffering variation that could occur. 

𝑆𝐴𝑉𝐼 =
𝑟𝑁𝐼𝑅−r𝑅𝑒𝑑

𝑟𝑁𝐼𝑅+𝑟𝑅𝑒𝑑+𝐿
   (1 + 𝐿)

  
Eq. (2.7)  

Rondeaux et al. (1996) further added to development of SAVI through publishing data that 

suggested that there was no benefit to using an L value of above 0.1-0.2 and instead proposed 

Optimized SAVI (OSAVI; Eq. (3.1)) using an L value of 0.16. 

𝑂𝑆𝐴𝑉𝐼 =
𝑟𝑁𝐼𝑅−r𝑅𝑒𝑑

𝑟𝑁𝐼𝑅+𝑟𝑅𝑒𝑑+0.16
  Eq. (3.1) 

Qi et al. (1994) proposed the Modified Soil Adjusted Vegetation Index (MSAVI) which self-adjusted 

the L factor to account for these shortcomings. The L factor (Eq. (3.3)) in MSAVI is adjusted based 

upon the NDVI and the Weighted Difference Vegetation Index (WDVI; Eq. (3.2)) (Clevers 1988); 

𝑁𝐷𝑉𝐼 =  
𝑟𝑁𝐼𝑅−𝑟𝑅𝑒𝑑

𝑟𝑁𝐼𝑅+𝑟𝑅𝑒𝑑
  Eq. (2.3) 

𝑊𝐷𝑉𝐼 = 𝑟𝑁𝐼𝑅 −  𝛾𝑟𝑅𝑒𝑑 
Eq. (3.2)  

𝐿 = 1 − 2𝛾 𝑁𝐷𝑉𝐼 ∗ 𝑊𝐷𝑉𝐼 
Eq. (3.3)  

Where γ is the soil line parameter. 

It is questionable that L is partly based upon the NDVI which Huete (1988) presented SAVI as 

trying to improve through trying to account for the soil effect. Furthermore there are issues with 

the practicality for global application of MSAVI as the WDVI which is used to self-adjust L depends 

on varying the soil line based on variation of the background conditions of the target location 

which would require extensive information to implement operationally. 

Gilabert et al. (2002) proposed the Generalized SAVI (GESAVI) which was reported to have better 

performance than the other SAVI derivatives as the algorithms isolines in the NIR-R plane are 

neither parallel to the soil line nor convergent at the origin. The formula uses two soil line 

parameters as well as a soil adjustment factor and is presented as Eq. (3.4). 
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𝐺𝐸𝑆𝐴𝑉𝐼 =
𝑟𝑁𝐼𝑅−𝐵𝑟𝑅𝑒𝑑−𝐴

𝑟𝑅𝑒𝑑+𝑍

  
Eq. (3.4)  

Where A and B are soil line parameters and Z is the cross point between the soil line and 

vegetation isolines. 

The key underlying issue with SAVI and the subsequent modifications is that to effectively adjust 

the L value, and account for soil, ground knowledge of LAI is required (Rondeaux et al. 1996; 

Gilabert et al. 2002) a parameter which is not commonly known and the NDVI is often used to 

estimate. Also it should be considered that every study reviewed made L adjustments based upon 

LAI irrespective of variation in chlorophyll concentration. As previously mentioned in section 

2.7.1.3. while it could be argued that the idea solution consists of numerous nonparallel soil lines 

that represent soil-moisture variations within scene specific types, applying a correction for this 

would be a significant undertaking and beyond the objectives and possibilities of this research. 

During the validation of the MTCI investigations found that the MTCI as well as other indices 

based around the RE were less robust in areas of low canopy cover than other vegetation indices 

such as the NDVI. In the process of researching what was the best way to enhance the robustness 

of the MTCI it was found that many of the methods accounted for the influence and effects of soil 

through requirement of extra field data which is not feasible at an operational level. Consequently 

there is scope to develop a new method to account for soil while, if possible, not changing the 

MTCI algorithm.  

3.2. Development of a Suitable Measure to Distinguish Soil for Vegetation 

Indices and Specifically the MTCI  

With the limitations considered of the current most prolific soil based index work has proceeded 

to develop a suitable measure to distinguish soil from vegetation. With doing so the method will 

allow as clear as possible differentiation between soil and vegetation to assess areas of 

contamination. The method should be able to be implemented operationally without requirement 

of extra site information not available using MERIS.  

3.2.1. Study Sites 

3.2.1.1. Iowa 

Iowa was chosen as a study area due to its large homogenous fields of well documented crops; 

soybean and corn. In addition as the field sizes are exceptionally large at 1500 m x 1500 m (Figure 

3.5) with frequently only one crop grown per field uncertainties such as the adjacency affect and 
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problems with heterogeneous canopies are mitigated. The vast coverage of agriculture across the 

majority of the state also provided great scope for selection of optimal study areas over an 

extensive time period after a cloud mask had been applied. An area 180 km2 north west of Des 

Moines was chosen and is highlighted in Figure 3.1. 

 

Figure 3.1: Test site location north west of Des Moines, Iowa, North America. 

     

3.2.1.2. Dalhart Texas 

Dalhart’s economy is focused around agribusiness with warm wet summers that are idea for crop 

production (NOAA 2012). Dalhart was chosen as a study site to test methods developed from the 

Iowa data set. Dalhart would be suitable for this because of the contrast between large fields of 

crops with dense homogenous canopy cover and the large amount of land dedicated to ranching 

with sparser to open canopies that the methodology could account for. The test site is highlighted 

in Figure 3.2. 

 

Figure 3.2: Test site location surrounding Dalhart, Texas, North America. 
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3.2.2. Data and Methods 

3.2.2.1. Advanced Spaceborne Thermal Emission and Reflection Radiometer Spectral 

Library Hyperspectral Reflectance Records 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Spectral Library 

(v2.0) is a collection of hyperspectral reflectance records from the Jet Propulsion Laboratory, 

Johns Hopkins University and the United States Geological Survey which were generated with 

field reflectance measurements using hand held radiometers such as the Analytical Spectral 

Devices FieldSpec (see Baldridge et al. 2009) as part of activities to validate the ASTER sensor. To 

understand how variations in the soil background affect the MTCI 42 separate soil spectra were 

acquired from the ASTER library and converted into MERIS bands according to spectral response 

documents (Figure 3.3; see Weinreb et al. 1981). 

 

Figure 3.3: MERIS band normalised spectral response functions. 

A selection of the spectral response of the various soil types are presented in Figure 3.4.   
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Figure 3.4: Synthetic MERIS band spectral reflectances for various soil types derived from the 

ASTER spectral soil library. 

3.2.2.2. MERIS Data: Iowa and Dalhart Texas 

To investigate the spectral signatures at satellite sensor level land cover information was taken 

from the GlobCover Bimonthly MERIS FR mosaics at a spatial resolution of 300 m; six resulting 

composite images cover the year of 2005 (Figure 3.5). The GLOBCOVER project is conducted by 

ESA and several other large organisations such as: the United Nations Environment Programme 

(UNEP), the Food and Agriculture Organisation (FAO), the European Commission’s Joint Research 

Centre (JRC). The result is a well processed data set for the year 2005-2006. GLOBCOVER MERIS 

acquisitions had already been geometrically corrected as well as screened for cloud with Rayleigh 

scattering, aerosol and smile corrections applied (POSTEL 2012). Consequently the data is 

immediately useable without much further processing.   

Contemporaneous high resolution (56 m) crop cover information was obtained from the United 

States Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) (Figure 

3.5). The 2009 USDA NASS report for Iowa estimated 97.85% and 96.95% accuracy for corn and 

soybean respectively. 
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Figure 3.5: High spatial resolution (56 m) crop cover information from the USDA NASS for 2005 

(left) and false colour FR (300 m) MERIS data (right) showing site selection and standard field size 

(1500 m x 1500 m). 

A single MERIS FR acquisition was chosen from Dalhart Texas acquired on 23-06-2005 that could 

be seen to have established vegetative canopies and clear soil backgrounds. This would in turn 

provide scope for training sites and the contrast would aid initial VI analysis (Figure 3.6). 

 

Figure 3.6: Landsat image courtesy of Google Earth (Landsat) of the study site in Dalhart Texas 

(left) where SDI distribution analysis was performed with the corresponding MERIS image (right). 

3.3. Development of the Soil Discrimination Index 

During MTCI-EVAL it was found that the MTCI ranged between 1.5 and 5 for sparse to densely 

vegetated pixels (Watmough et al. 2011). With the hyperspectral records of the ASTER soil library 
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synthesised into MERIS bands the MTCI could be calculated for the comprehensive list of soil 

backgrounds. Average MTCI of the dataset was 1.9 with a variance of 0.07, standard deviation of 

0.31 and a max of 2.52 (Figure 3.7). Applying the NDVI using MERIS bands 10 and 8 as the NIR and 

red produced an average of 0.10 with a standard deviation of 0.04 and a max of 0.16. These 

results highlight the key problem with uncertainty due to soil on RE focused VIs such as the MTCI; 

a low output of the VI could be either due to sparse vegetation or a pure soil background with a 

spectral reflectance which produces higher than anticipated VI results. 

 

Figure 3.7: Applying the MTCI to a selection of soils from the ASTER soil library. 

A sequential investigation was developed to assess pixel values of an agricultural location over an 

entire growing season. Monitoring the entire phenological cycle of a given pixel would effectively 

require spectral measurements from bare to fully vegetated to senescent and bare once again.  

50 fields each for corn and soybean were selected from homogeneous areas of each crop in 

central-western Iowa using the USDA NASS crop data for 2005. The average field size in the study 

area is 1500 m2 resulting in 25 MERIS FR pixel per field. Single pixels were chosen in fields 

dominated by one crop (Figure 3.5); consequently the spectral reflectance of the target pixels 

should be unmixed and uncertainty from the adjacency effect significantly reduced. To 

understand how the vegetated pixels should have varied over the course of a year details of 

planting and harvest for Iowa were obtained from the USDA NASS (1997; 2010) and are presented 

in Table 3.1. 
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Table 3.1: Table to indicate key crop production times for Iowa in 1996 and 2009. 

   
Planting 

  
Harvest 

 
Year Crop Begin Most Active End Begin Most Active End 

1996 Corn 
22nd 
Apr 

2nd May to 16th May 3rd Jun 
17th 
Sep 

7th Oct to 31st 
Oct 

17th 
Nov 

1996 Soybean 
4th 

May 
14th May to 2nd Jun 

17th 
Jun 

21st 
Sep 

1st Oct to 15th 
Oct 

27th 
Oct 

2009 Corn 
19th 
Apr 

19th Apr to 18th  
May 

26th 
May 

21st 
Sep 

5th Oct to 9th Nov 
21st 
Nov 

2009 Soybean 
2nd 

May 
8th May to 2nd Jun 

16th 
Jun 

21st 
Sep 

28th Sep to 20th 
Oct 

31st 
Oct 

 

Although the records in Table 3.1 are not for 2005 which is the year the GLOBCOVER acquisitions 

occurred they still correlate with sources found in further review (Lefebure 2005, ICPB 2008). 

Agricultural records from 2005 suggest that it was a good year for crop production in Iowa; corn 

was planted in late April for and soybean in the first week of May. Harvest began in September 

with the vast majority of fields reaped by October. With qualitative estimates of the key crop 

production dates assessment could in turn be made to investigate if field reflectances agreed. 

 

Figure 3.8: 50 corn and 50 soybean averaged bimonthly reflectances derived from GLOBCOVER 

MERIS FR imagery for 2005. 
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Figure 3.9: 50 corn (blue) and 50 soybean (red) averaged bimonthly reflectances derived from 

GLOBCOVER MERIS FR imagery for 2005. 
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development. Both can be seen to have similar spectral responses representing soil lines in Jan-
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faster with greater absorption in the red and increased reflectance in the NIR compared to 

soybean. These results are supported by work by Gitelson et al. (2005) where it was found that 

soybean reached peak canopy chlorophyll content half a month after corn did. The difference can 

also be attributed to (with reference to Table 3.1) that for the years 1996 and 2009 soybean was 

planted two weeks after corn which would suggest this also occurred in 2005. In the sequential 

bimonth during the peak of the growing season soybean has increased reflectance in the NIR 

compared to corn which could suggest a denser canopy structure or the influence of a different 

LAD. However the result could be also be attributed to the sharper degradation of chlorophyll in 

corn after the canopy structure has peaked (Gitelson et al. 2005). The increased NIR can be seen 

to extend into Sep-Oct however it should be noted that the bare soil line reflectances are higher 

for soybean than corn which this difference could be attributed to.  

 

Figure 3.10: NDVI and MTCI values for 50 corn and 50 soybean locations in Iowa for 2005. 

Figure 3.8 shows the MTCI and NDVI for corn and soybean over the entire growing season. In Jul-

Aug the MTCI is higher for corn than soybean whereas the NDVI can be seen to saturate; 

saturation is well covered in literature due to the high influence of the red band in the NDVI 

algorithm (Asrar et al. 1984; Baret and Guyot 1991; Gitelson 2004; Lillesaeter 1982).    
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Figure 3.11: Bimonthly average surface reflectances for 100 corn and soybean sites in Iowa for 

2005. 

When amalgamating the dataset it can be seen that pixel spectral reflectances (Figure 3.11) 

display typical soil lines for bimonths 1 (Jan-Feb), 2 (Mar-Apr) and 6 (Nov-Dec) across all sites; 

while 3 (May-Jun), 4 (Jul-Aug) and 5 (Sep-Oct) showed evidence of vegetative cover with a distinct 

RE. These results coincide with the crop production pattern for the area previously described 

(Lefebure 2005; IowaCorn 2008). Therefore, a threshold needs to discriminate between the 

described months which represent soil and vegetated pixel spectra. To assess what possible band 

combinations to utilise to best discriminate between vegetation and soil based on this dataset the 

percentage difference between the average pixel reflectance for all site locations during the May-

Jun composite and the combined soil dominated months was calculated (Figure 3.12). 
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Figure 3.12: Percentage difference between initial vegetation growth (bimonth 3) and soil 

dominated bimonths (1, 2 and 6). 

For the 100 corn and soybean ESUs in Iowa the largest difference in reflectance between sparsely 

vegetated and barren pixels can be seen in the NIR (band 10) part of the spectrum. A negative 

difference can be observed in the red part of the spectrum (band 8) while the green band (band 5) 

also has significant value. In turn the red can be contrasted with the green and NIR to discriminate 

between soil and vegetation.  

𝐺𝑟𝑒𝑒𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑟𝑅𝑒𝑑

𝑟𝐺𝑟𝑒𝑒𝑛
  

 
Eq. (3.5) 

As discussed in detail in section 2.2. the green part of the spectrum, represented by MERIS band 

5, has increased reflectance for a vegetated pixels compared to the red and blue wavelengths due 

to the chlorophyll absorption minima. On the other hand the chlorophyll absorption maximum is 

found in the red part of the visible spectrum. Using these two relationships together can be 

described as the Green Difference (GD; Eq. (3.5)) which is negatively related to increasing 

chlorophyll content. According to Carter et al. (1996), Gitelson et al. (1997) and Metternicht 

(2003) the use of the green and red can highlight the differences between healthy and stressed 

vegetation. The GD expression can tend from 0 to infinity, however in reality it has a range of 0.5 

for green vegetation to 3 for bright red soils. 
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𝑆𝑖𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑖𝑜 =
𝑟𝑁𝐼𝑅

𝑟𝑅𝑒𝑑
   Eq. (2.4) 

The Simple Ratio (Jordan 1969) combines the absorption in the red part of the spectrum with the 

sharp increase of scattering around 700 nm (RE). Consequently this expression is strongly linked 

to vegetation density and the output ranges in reality between 1 for soil to 5 or higher for a 

densely vegetated surface. These two ratios can be combined into a new formulation which 

utilises the negative relationship with chlorophyll of the GD with the positive of the SR.   

𝑆𝑜𝑖𝑙 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =
𝑟𝑁𝐼𝑅/r𝑅𝑒𝑑

𝑟𝑅𝑒𝑑/r𝐺𝑟𝑒𝑒𝑛
  

 
Eq. (3.6) 

Effectively three key reflectance features of vegetation are combined into the Soil Discrimination 

Index (SDI; Eq. (3.6)) which aims to be as sensitive as possible to low density vegetation canopies. 

The use of reflectance directly on the slope of the RE has been omitted from this index as 

although it has been shown by the MTCI to be strongly related to increasing chlorophyll at high 

contents, without as much saturation that the NDVI, it is less robust in areas of sparse vegetation 

which is the most important density for the SDI.  

Figure 3.13: Example of discrimination between sparse canopy cover using the SDI for three target 

locations in Iowa. Series one (purple) and three (orange) show bare soil pixels for bimonth 6 in 

Iowa; series two (blue) shows a sparsely vegetated location in bimonth 3. 
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Figure 3.13 shows an example of the benefits of utilising the GD in conjunction with the SR 

compared to dependence on the NIR and red alone. Series one (purple) and three (orange) show 

bare soil pixels for bimonth 6 in Iowa; series two (blue) shows a sparsely vegetated location in 

bimonth 3. Close examination of the RE between bands 8 to 10 highlight this. NDVI values can be 

seen to be similar for all locations and it should be highlighted that series two (sparse vegetation) 

is lower than series three (background reflectance). As a ratio of differences, rather than a ratio of 

ratios, NDVI alone has been unable to discriminate between the slight, yet important, differences 

in green, red and NIR reflectance with respect to the overall gradient of the soil line. Conversely 

the SDI has distinguished between the locations with a high relative difference; this in turn makes 

it easier to apply a threshold to differentiate between vegetation and bare soil.        

3.4. Devising a Threshold     

When accounting for the effect of soil on the MTCI it is important to establish clear aims. 

Changing the formulation should clearly be avoided unless overriding issues are discovered. Work 

using the ASTER soil library also showed that there is little chance an MTCI result of above 2.3 can 

be due to soil alone. In turn developing a flag to discriminate between values due to soil and 

values due to sparse vegetation will return robustness to the MTCI for low canopy cover. With this 

considered a flag of a specific threshold SDI value could highlight pixels for the user which exhibit 

the spectral reflectances likely due to soil. 
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Figure 3.14: SDI values for 40 example soil reflectances from the ASTER spectral soil library. 
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To use the SDI as a soil flag for the MTCI an analysis was carried out to test its performance for 

bare soil locations in North America. The SDI was applied to a range of 40 soil locations from the 

ASTER spectral soil library (Figure 3.14). It can be seen that the SDI has a maximum of 0.94 for 

white gypsum sand. This is due to the very high reflectance characteristics it exhibits which can be 

attributed to its high quartz content (Chuvieco and Huete 2010). The next highest result was for 

light yellowish brown clay with 0.88 and the lowest was reddish brown fine sandy loam with 0.52. 

It should be noted that due to the high saline nature of white gypsum it cannot support dense 

vegetation and will not be populated by more than sporadic bushes resulting in a an extreme 

heterogeneous canopy. Nevertheless these extreme surface VI results are important to consider 

when vegetation density is estimated at a regional or global scale as an input into a carbon 

sequestration model as a surface with a naturally high VI result could add error to the analysis 

exaggerating an areas capability for photosynthesis.  

Subsequently the SDI was applied to Dalhart Texas for varying thresholds to assess what MTCI 

value pixels are flagged for a specific SDI value. 

 

Figure 3.15: Graph to show the percentage of total pixels from the Dalhart MERIS scene that are 

flagged at a specific SDI threshold and their MTCI value. 

Depending on the SDI threshold applied up to 7% of the total pixels in the full resolution MERIS 

scene (2005-06-23) are flagged. Figure 3.15 shows that the flag can be seen to operate most 

effectively to pixels within the target MTCI range of soil. However for the higher thresholds of SDI 

(0.9+) the distribution shows a resurgence of flagged pixels with MTCI values of 2 to 2.3 
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(highlighted in Figure 3.15). These pixels are likely sparsely vegetated or mixed vegetation 

locations which are undesirable for the SDI to flag. As the transition from bare soil with naturally 

high VI results to sparse is gradual the threshold applied needs to flag the most possible soil pixels 

while not adversely flagging a large proportion of sparse vegetation. Taking into account the Iowa 

dataset and the distribution analysis results from Texas an SDI value of 0.9 is recommended as a 

threshold for the flag. Using this threshold on the 600,000 pixels from the Texas dataset only 18 

out of 50,000 pixels with an MTCI greater than 2.1 were flagged.  

 

Figure 3.16: Comparing the use of SDI < 0.9 as a flag to account for soil pixels in the MTCI 

algorithm on corn locations in Iowa 2005. Spectral reflectances shown are for pixels in corn fields 

taken from FR MERIS data as previously highlighted. 

Figure 3.16 visualises the benefits of the SDI < 0.9 flag. Spectral reflectances for pixels in corn 

fields taken from FR MERIS data as previously highlighted are shown. All 6 examples produce 

similar MTCI values of 1.9 to 1.95. However examination of the RE shows that the first three series 

are soil lines while series 4, 5 and 6 are vegetated pixels. It is not possible to discriminate between 

the soil and vegetated pixels using the MTCI in this example however the proposed threshold of 

0.9 SDI clearly flags the first three series of pixels as soil. 
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3.5. Validation of the Soil Discrimination Index 

To validate the performance of the SDI in a different part of the world to North America a study 

site was selected around Albacete in Spain. Albacete is a market centre for agricultural produce 

which dominates the land use of the surrounding area and is the most populated city in the 

autonomous community Castilla-La Mancha. To assess the performance of the SDI in a forested 

environment an additional site was chosen to the south-west of Albacete and the north-east 

province of Jaén. The test site covers several national parks including Parque Natural Sierras de 

Cazorla which is Spain’s largest protected natural area. Both test sites are presented in Figure 3.17 

and Figure 3.18. 

 

Figure 3.17: Location of the agricultural test site surrounding Albacete. 

 

Figure 3.18: Location of the forest test site to the south-west of Albacete. 

Total area of the agricultural test site is 5760 km2 while the forest test site is slightly smaller at 

4860 km2. Test sites were selected to cover a range of canopy covers as well as pure soil pixels. 

The forest test site covers a wide range of trees including evergreen pine forests and deciduous 

oak climax communities which will affect the MTCI outputs accordingly (UNESCO 2007). MERIS 
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images were acquired monthly for an entire growing season in 2004 from March to December 

which covered both test sites from the EOLI-SA (Earth Observation Link – Stand Alone) portal. 

Images from April and May were unusable due to high cloud cover. BOA (Bottom of Atmosphere) 

MTCI and reflectance data were reprojected and the SDI flag applied with the previously devised 

threshold of 0.9. Figure 3.19 shows the changing average MTCI of both test sites throughout 2004. 

 

Figure 3.19: Average MTCI of the agricultural and forest test sites in Albacete, Spain for 2004. 

As would be expected MTCI steadily increases to a peak in August with an average MTCI of 1.94 

and standard deviation of 0.08 for the agricultural site and an average of 1.91 with a standard 

deviation of 0.09 for the forest site which decreases as the areas senesce in the autumn. During 

the autumn and spring months the MTCI of the forest test site is higher than the agricultural test 

site due to the stable evergreen forest for which MTCI does not significantly change unlike the 

agricultural land for which crop canopy maxima are in the summer months. Nevertheless the 

MTCI of the forest site still decreases due to the part cover of deciduous forest. 

Table 3.2: Table to summarise performance of the SDI for the agricultural test site. 

Agricultural Site Mar Jun Jul Aug Sep Oct Nov Dec 

Total Pixels 63495 64562 63495 64737 64035 63494 63494 63493 

Pixels Where MTCI > 2 2016 6909 11911 19338 7603 4127 1529 818 

Pixels Where MTCI > 2 
SDI < 0.9 

33 42 548 992 114 70 9 0 

Pixels Where MTCI > 2 
SDI < 0.9 as a Percentage of 

Total 
0.05% 0.06% 0.86% 1.53% 0.17% 0.11% 0.01% 0.00% 

Pixels Where MTCI > 2 
SDI < 0.9 as a Percentage of 

MTCI > 2 
0.19% 0.61% 4.60% 5.13% 1.50% 1.70% 0.59% 0.00% 
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To assess the performance of the SDI flagged pixels that had an MTCI value of higher than two are 

presented in Table 3.2. MTCI values of two are generally indicative of medium density vegetation 

and ideally should not be flagged by the SDI. It can be seen that the highest percentage of flagged 

pixels, as a percentage of total test site pixels, with an MTCI value of higher than two was 1.53% 

during August. When these values are calculated as a percentage of total pixels with an MTCI 

value of higher than two the figure increases to 5.13%. Interestingly while there are a significant 

number of pixels (6909) with an MTCI of higher than two in June, a time by which many crops will 

have already reached a canopy maximum, the SDI flags a much smaller percentage , 0.61%, than 

in July, August, September or October. The reason for this is likely to be crop senescence where 

changes in pigment content impact the spectral reflectance of the canopy (Boyer et al. 1988) as 

highlighted in section 2.7.2.2.. Consequently it is possible that the inclusion of green band 

reflectance into the SDI formula, which helps it to distinguish between vegetation and soil during 

initial growth, makes it less robust at differentiating as crops yellow in the autumn.      

Table 3.3: Table to summarise performance of the SDI for the forest test site. 

Forest  
Site 

Mar Jun Jul Aug Sep Oct Nov Dec 

Total Pixels 51712 51705 51713 52633 51235 51713 51713 51712 

Pixels Where MTCI > 2 12594 14334 17009 20505 16737 15657 14054 13260 

Pixels Where MTCI > 2 
SDI < 0.9 

0 35 248 386 281 147 9 0 

Pixels Where MTCI > 2 
SDI < 0.9 as a Percentage of 

Total 
0.00% 0.07% 0.48% 0.73% 0.55% 0.28% 0.02% 0.00% 

Pixels Where MTCI > 2 
SDI < 0.9 as a Percentage of 

MTCI > 2 
0.00% 0.24% 1.46% 1.88% 1.68% 0.75% 0.06% 0.00% 

 

It can be seen that for the forest test site the highest percentage of flagged pixels, as a percentage 

of total test site pixels, with an MTCI value of higher than two was 0.73% during August which is 

1.88% of total pixels with an MTCI value of higher than two in that month. This value is 

significantly lower than the agricultural test site result of 5.13% for August. Moreover the forest 

site had less vegetated pixels flagged relative to the total pixels with an MTCI value of two or 

more in all months except September. This suggests the flag performs better outside of an 

agricultural environment. In March only 3.18% of the agricultural test sites land cover had an 

MTCI of greater than two compared to the forest site of which 24.35% was greater than two. Of 

these 12,594 pixels not one was flagged by the SDI with similar result witnessed in December. 

Results for the forest test site are similar to that of the agricultural one with regards to the 

difference in performance between June and post July results further suggest that senescence 
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causes the SDI to be less robust at differentiating as vegetation yellows in the autumn. 

Nevertheless with on average 0.35% and 0.27% and at most 1.53% and 0.73% of pixels incorrectly 

flagged by the SDI for the agricultural and forest test sites respectively overall the flag has 

performed well for the study location.  

3.6. Conclusions 

As the MTCI puts large weight on the reflectance of the RE band in relation to the position of the 

red and NIR the effect of the soil background reflectance at low canopy covers can cause 

uncertainty. It was considered to make adjustments to the MTCI algorithm specifically at low 

values to account for this however such a method would affect the use of the index as a linear 

surrogate measure of chlorophyll content. By creating the SDI as an independently functional flag 

the original MTCI formulation is retained which will not affect compatibility with previous 

investigations. It was found that 0.9 was a suitable threshold to use for the SDI in Dalhart Texas 

and it flagged all 40 types of soil that were retrieved from the ASTER soil library.  Subsequently 

the SDI was applied to two study sites in Spain as an initial validation of the flag. While it 

performed well analysis highlighted two issues that are worth investigating in future study. Firstly, 

that inclusion of green reflectance into the formula results in less robust flagging of senescent 

vegetation and secondly, that the flag performs better in a forest environment than an 

agricultural setting. Nevertheless applying the SDI with a threshold of 0.9 as a soil flag will warn 

the user that the MTCI result is likely due to a soil background with a naturally high VI output 

consequently increasing the robustness of the MTCI at values below two. The flag will be most 

useful when using the MTCI across large scenes with many varying canopy covers and soil 

background types and conditions and should increase accuracy of the MTCI when used to 

estimate photosynthetic capabilities of an area. 
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 Evaluating the Capabilities of Sentinel-2 for Chapter 4:
Quantitative Estimation of Biophysical variables in 
Vegetation 

4.1. Introduction 

Europe’s Copernicus programme (ESA 2011a) includes two Sentinel-2 (S-2) satellites designed to 

provide systematic global acquisitions of high resolution multispectral imagery. The Multi-Spectral 

Instrument (MSI) aboard S-2 has been designed to enable the continuity of Satellite Pour 

l’Observation de la Terre (SPOT) and Landsat type data into the future. MSI also builds upon the 

heritage of the MERIS and NASA MODerate-resolution Imaging Spectroradiometer (MODIS) 

instruments in providing more spectral bands than Landsat or SPOT. Bands known to be 

important in sensing vegetation will have a spatial resolution of 10 m or 20 m, others will have 

60 m resolution. S-2 will have a radiometric accuracy of <5% and operate at 12 bit radiometric 

resolution (ESA 2010) which is suitable for vegetation (Tucker 1980b). The mission envisions a pair 

of satellites simultaneously circulating the Earth in a sun-synchronous 180o phase orbit with a 290 

km swath (ESA 2010). The first satellite, S-2A, is planned for launch in April 2015 followed by S-2B 

which is tentatively planned for launch two years after (ESA 2011a). Tandem operation of S-2A 

and B will deliver a revisit period of up to five days under cloud-free conditions.  

Knowledge of canopy chlorophyll content and LCC can indicate plant health and potential gross 

primary productivity (Gitelson et al. 2006; Boyd et al. 2012), while LAI can provide an insight into 

the function and structure of the canopy (Wilhelm et al. 2000). Land cover (including vegetation 

type), LAI and the fraction of absorbed photosynthetically active radiation (FAPAR) are all Global 

Climate Observing System (GCOS) Essential Climate Variables (ECVs) required by the United 

Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on 

Climate Change (IPCC) (GCOS 2010). Satellite derived estimations of LAI and canopy chlorophyll 

content are key inputs into climate models as they provide estimates of carbon sequestration 

(Ciais et al. 1997). Consequently they have been used in services such as the Farmstar programme 

by EADS Infoterra to provide information supporting precision agriculture through timely and 

efficient use of fertilisers (Farmstar 2011). A number of techniques have evolved in the past to 

derive the biophysical variables of vegetation using remote sensing data; these can be grouped 

into three broad categories: the inversion of radiative transfer models (Shultis and Myneni 1988), 

machine learning (neural networks) (Carpenter et al. 1999) and the use of Vegetation Indices 

(VIs). Methods based on VIs have the benefit of being computationally simple while they are 

generally less site specific and more universally applicable than the other methods. Consequently 
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VIs are a widely used method to provide quantitative ground measurements of the biophysical 

parameters of vegetation by contrasting specific spectral reflectance characteristics of vegetation 

and are frequently implemented operationally using remotely sensed data. Satellite derived VIs 

provide one of the best possible ways to obtain the biophysical parameters of vegetation over 

large areas (regional or global) while retaining the high temporal coverage required for many 

applications and consequently their development and validation is of great importance. 

The first VIs contrasted the strong reflectance in the near-infrared (NIR) by plant matter with 

strong absorption by chlorophyll in the red part of the electromagnetic spectrum to quantify 

vegetation greenness parameters. Jordan (1969) made references to the retrieval of canopy 

chlorophyll content and LAI using the ratio of NIR/R which became known as the Simple Ratio 

(SR). The SR is the basis of the Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1973) 

which is currently the most widely used VI as a measure for many variables. Much work has been 

done investigating the optimal reflectance wavelengths for use in the SR and the NDVI algorithms 

(for example, the Pigment Specific Simple Ratio (PSSRa), Blackburn 1998). Although VIs such as the 

NDVI were primarily developed for the purpose of LAI retrieval they have also been argued to be 

capable of accurate canopy chlorophyll content estimations (Myneni et al. 1995, Huete et al. 

2002). Refinements of the NDVI and SR such as the Perpendicular Vegetation Index (PVI) 

(Richardson and Wiegand 1977) and the Soil Adjusted Vegetation Index (SAVI) (Huete 1988) 

aimed to account for uncertainty due to variation in background condition. The PVI achieved this 

through implementing NIR and red reflectance measurements of soil pixels into the equation 

while SAVI incorporated the correction factor L into the NDVI formula. L accounts for soil variation 

by varying the factor between 1, for low vegetation, and 0, for dense vegetation. This effectively 

retains original NDVI output at higher values of vegetation density. Qi et al. (1994) subsequently 

presented a modified version of the SAVI (MSAVI) which utilised a self-adjusting L factor as the 

product of NDVI and the Weighted Difference Vegetation Index (WDVI) (Clevers 1988) which 

incorporates the slope of the soil line. It should be noted that the self-adjusting L means MSAVI 

adjusts SAVI, an index based around the NDVI, by NDVI and WDVI and in the process results in a 

loss in the vegetation dynamic response (Qi et al. 1994). Other VIs have also been developed to 

account for aerosol variation such as the atmospherically resistant vegetation index (ARVI) which 

makes use of aerosol resistance coefficients to reduce atmospheric influences (Kaufman and 

Tanré 1992). Sequentially a combination of SAVI and ARVI was presented by Huete et al. (2002) as 

the enhanced vegetation index (EVI). Although NDVI refinements have aimed to account for, or 

mitigate, many of the uncertainties in VIs through doing so they often require additional scene 

specific information. Acquiring and applying such scene specific information can adversely affect 

the universal application of VIs as well as their dynamic response. 
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A wealth of VIs have been developed to estimate canopy chlorophyll content with varying 

strengths and levels of robustness (e.g., Daughtry et al. 2000, Broge and Mortensen 2002, Dash 

and Curran 2004, Gitelson et al. 2005). Many such VIs presented band variations of the NDVI 

formula such as the Green Normalized Difference Vegetation Index (GNDVI) (Gitelson et al. 1996) 

which challenged the approach of using red reflectance and instead used the green reflectance in 

its place. It was argued to be at least five times more sensitive to chlorophyll-a concentration than 

the NDVI and specifically useful for differentiation in stressed and senescent vegetation. Daughtry 

et al. (2000) presented a modified chlorophyll absorption in reflectance index (MCARI) which was 

developed for minimising the effects of non-photosynthetic materials. Work reported strong 

response to LCC variation while noting that the index encounters issues at low LAI due to higher 

influence of background variation.  

After the success of the NDVI and its specialised refinements subsequent work made use of 

developments in spectral capabilities to provide better characterisation of the RE which is the 

prominent spectral feature of vegetation located between the red absorption maximum and high 

reflectance in the NIR. Quantification of the RE is often achieved through calculation of the REP 

which is recognised as the point of maximum slope along the RE and has been argued to provide 

enhanced estimates of LCC and canopy chlorophyll content (Horler et al. 1983, Curran et al. 1990). 

Evaluation of the REP at a global scale with high temporal resolution was first achieved using data 

from the MERIS sensor. MERIS had a spectral band located directly on the RE (band 9 708.75 ± 5 

nm) which led to the development of the MERIS Terrestrial Chlorophyll Index (MTCI) (Dash and 

Curran 2004) a surrogate REP index which has been implemented operationally as a standard 

level 2 global product from the Envisat MERIS sensor. The MTCI has demonstrated that it is 

possible to use the REP parameter to estimate chlorophyll content over very extensive spatial 

areas at a high temporal resolution (Dash and Curran 2006). 

Table 4.1: Spectral bands of Sentinel-2 MSI. 

S-2 Band 1 2 3 4 5 6 7 8 8a 9 10 11 12 

Central 
Wavelength (nm) 

443 490 560 665 705 740 783 842 865 945 1375 1610 2190 

Bandwidth (nm) 20 65 35 30 15 15 20 115 20 20 30 90 180 

Spatial 
Resolution (m) 

60 10 10 10 20 20 20 10 20 60 60 20 20 
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As S-2 will enable multiple operational reflectance measurements on and around the RE at a 

greatly enhanced spatial resolution of 20 m with a short revisit time it holds much appeal for 

vegetation monitoring. The combination of S-2 bands 5 and 6 (Table 4.1) provide the opportunity 

for improved characterisation of the RE than was previously possible operationally at a global 

scale. Consequently there is much scope for the development of algorithms to retrieve the 

biophysical parameters of vegetation using S-2. Some algorithms have already been presented in 

work by Delegido et al. (2011b) which specifically investigated the optimal bands to use in the 

NDVI formula with synthesised S-2 data. Research found that bands 4 and 5 were the optimal 

combination and the formula will be further investigated in this analysis and referred to as the 

NDI45. There are many different VIs each designed for a separate purpose and validated at 

varying levels using different datasets. Consequently each has its own strengths and weaknesses 

in application and some are more optimal at retrieving certain parameters of vegetation than 

others. With the caveat of saturation considered, this chapter will investigate the strength of VIs 

presented in Table 4.2 for the SicilyS2EVAL and SEN3Exp field campaigns. VIs have been selected 

that do not self-normalise or linearise which forfeits sensitivity to vegetation variance. Also VIs 

that require the use of scene specific information that consequently affects their universal 

applicability and operational use with S-2 have also been excluded from analysis. 

Table 4.2: A list of Vegetation Indices that have been analysed for use with Sentinel-2 using field 

data. 

Vegetation 

Index 
Formulation S-2 Bands Used Original Author 

NDVI (NIR-R)/(NIR+R) (B7-B4)/(B7+B4) Rouse et al. 1973 

NDI45 (NIR-R)/(NIR+R) (B5-B4)/(B5+B4) Delegido et al. 2011b 

MTCI (NIR-RE)/(RE-R) (B6-B5)/(B5-B4) Dash and Curran 2004 

MCARI [(RE-R)-0.2(RE-G)]*(RE-R) [(B5-B4)-0.2(B5-B3)]*(B5-B4) Daughtry et al. 2000 

GNDVI (NIR-G)/(NIR+G) (B7-B3)/(B7+B3) Gitelson et al. 1996 

PSSRa NIR/R B7/B4 Blackburn 1998 

 

4.2. Data and Methods 

The approach adopted in this chapter compared simulated S-2 data with field measurements and 

the output of an established vegetation canopy model (PROSAIL) (Baret et al. 1992, Jacquemoud 

et al. 2009). The simulated data were derived from two airborne hyperspectral sensors, an Itres 
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Instruments Compact Airborne Spectrographic Imager (CASI-1500) and a Specim AISA Eagle 

instrument collected during two field campaigns: SEN3Exp (SEN3Exp 2011), and SicilyS2EVAL. 

SEN3Exp was conducted in June and July 2009 to prepare for the Sentinel-3 mission and to aid the 

development of scientific algorithms; however, ground data is highly suitable for S-2 

investigations. 

 

Figure 4.1: Location of test site (courtesy of google earth, Landsat 04/10/2013) with flight lines 

added from the SEN3Exp campaign acquisition report (SEN3Exp 2011). 

 SicilyS2EVAL was a campaign conducted in Sicily 2010 which was funded by ESA specifically to 

support validation of vegetation products for S-2. The combination of these two field campaign 

datasets provided 60 elementary sampling units (ESUs), from which ground canopy chlorophyll 

content measurements were obtained from sample areas of 10 x 10 m and 20 x 20 m to represent 

the spatial resolution of S-2.  
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Figure 4.2: SicilyS2EVAL test site with example of the crop canopy. 

4.2.1. PROSAIL Model Data 

PROSAIL is the combination of the PROSPECT-5 leaf optical properties model (Jacquemound and 

Baret 1990) and the 4SAIL canopy bidirectional reflectance model (Verhoef 1984, 1985). The 

model was used to simulate canopy reflectance for a range of leaf biochemistry and canopy 

parameters (Table 4.3). During the model simulation both LAI and LCC were varied to provide a 

good range (LAI was varied from 0-8, whereas LCC was varied from 5-70 µg cm-²). Other 

parameters were taken as an average value from the literature; this was to ensure that the 

changes in the modelled spectral reflectance are only due to changes in LAI and leaf chlorophyll 

content. Two datasets were generated; All PROSAIL Data and SEN3Exp PROSAIL. The ‘All PROSAIL 

Data’ was the correlation between reflectance and canopy chlorophyll content for a wide range of 

biophysical variables between the wavelengths of 500-800 nm. Alternatively, the SEN3Exp 

PROSAIL dataset represented reflectances generated from the PROSAIL model while using the 

same ESU biophysical variables of the SEN3Exp campaign. SicilyS2EVAL was not considered due to 

the low range of LAI and LCC compared to SEN3Exp. 

Table 4.3: Biophysical parameters chosen for PROSAIL data set. 

Model Variables Units Range 

PROSPECT       

N    Leaf structure index Unitless 1.5 

Cab     Leaf chlorophyll content [µg cm-²] 5-70 

Cm       Leaf dry matter content [g cm-²] 0.009 

 SAIL     

LAI  Leaf area index [m² m-2] 0-8 

ALA  Average leaf angle [°] 35 

HotS  Hot spot parameter [m  m-1] 0.01 

S Sun zenith angle [°] 30 

V View zenith angle [°] 10 
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4.2.1.1. In Situ Data Collection: SicilyS2EVAL 

SicilyS2EVAL targeted a single crop type, grillo (grapevine) during May 2010. Each of the 25 ESUs 

was a composition of multiple LAI and LCC measurements representing a 10 x 10 m sample area. 

LAI was systematically sampled 18 times at different locations within each ESU using the Li-Cor 

LAI-2000 near dusk and dawn under diffuse radiation conditions.  

 

Figure 4.3: Sampling strategy for LAI measurements from SicilyS2EVAL campaign. 16 readings 

were taken below the canopy spread throughout the 10 x 10 m sampling area centred on a GPS 

coordinate. Two above the canopy readings were taken to adjust for changes in solar intensity. 

A total of 81 Relative LCC measurements were taken using a Minolta SPAD-502™ (Delegido et al. 

2011a), these measurements were spread evenly across the canopy of 9 separate plants at each 

ESU. In addition to the SPAD measurements leaf cuttings (5 mm diameter) were removed from 30 

separate plants selected using a systematic sampling strategy. The leaf cuttings were taken at a 

consistent position of each leaf and stored in dimethylformamide for later analysis. Absorption in 

647 nm and 664 nm were measured using a Rayleigh UV-1800™ spectrophotometer and used to 

estimate chlorophyll a and chlorophyll b of the sample using Eq. (4.1) and Eq. (4.2) (Moran and 

Porath 1980, Moran 1982). Total chlorophyll concentration estimated from this analysis was 

correlated with the SPAD measurements to provide an absolute LCC value using Eq. (4.3). 

Chlorophyll a = 11.65*A664-2.69*A647 Eq. (4.1)  

Where A647 and A664 are sample absorptions at wavelengths of 647 nm and 664 nm. 

Chlorophyll b = 20.81*A647 - 4.53*A664 Eq. (4.2) 
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Where A647 and A664 are sample absorptions at wavelengths of 647 nm and 664 nm. 

Total Chlorophyll = 3.79*S + 79.79 Eq. (4.3) 

Where S is the representative SPAD value. 

4.2.1.2. In Situ Data Collection: SEN3Exp 

Data from the SEN3Exp campaign, which took place in June and July 2009, included 35 canopy 

chlorophyll content measurements from agricultural sites in the Barrax region of Spain (SEN3Exp 

2011). The crop dataset composition consisted of: corn, garlic, oat, onion, potato, sunflower, 

alfalfa and grapevine. Within each of the 20 x 20 m ESUs, 24 LAI field measurements were taken 

using a Li-Cor LAI-2000™ (SEN3Exp 2011) and relative LCC measurements were made using a 

SPAD. Relative LCC measurements were converted to absolute LCC using destructive leaf sampling 

of a subset of five samples per ESU in a Varian spectrophotometer after extraction of chlorophyll 

with dimethylformamide (SEN3Exp 2011). Table 4.4 provides a summary of the field campaign 

data used in this analysis. 

Table 4.4: Summary of field campaign data used in analysis. 

4.2.2. Airborne Acquisitions 

SEN3Exp hyperspectral data was collected using a CASI-1500 sensor operating at 2.4 nm spectral 

and 1.5 m spatial resolution. Five flight lines were acquired with an overlap of 50% at an altitude 

of 2743 m. Atmospheric conditions were good with some reported high cloud appearing during 

the survey (SEN3Exp 2011). For the SicilyS2EVAL campaign hyperspectral airborne data was 

collected and processed to level 1B by the natural environment research council (NERC) airborne 

research and survey facility (ARSF) using a Specim EAGLE sensor. The sensor operated at a 

spectral resolution of 2.2 nm between the range of 400-1000 nm with a spatial resolution of less 

than 1.5 m flying at an altitude of 5000 m under clear sky conditions with a solar zenith angle of 

70o. All ESUs were contained within two flight lines with an overlap of 50%.  

4.2.3. Band Weighting and Data Processing 

Prior to simulating S-2 bands, the Eagle data from SicilyS2EVAL were geometrically corrected 

using a parametric method, AZGCORR (Azimuth Systems 2005) based on in-flight altitude and 

Campaign Location Number of ESUs ESU Size Date 

SicilyS2EVAL Castelvetrano - Sicily 25 10 x 10 m May 2010 

SEN3Exp Barrax – Spain 35 20 x 20 m June/July 2009 
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heading data. Geometrically corrected images were atmospherically corrected using ATCOR-4 

(ReSe Applications 2011) which is based around an atmospheric look-up table (Richter 2008) that 

contains the results of radiative transfer calculations from the MODTRAN-4 model. After 

atmospheric correction the available S-2 bands were synthesised from CASI and Eagle data using a 

weighting function based on the S-2 spectral response files. 

4.3. Designing Optimal Indices for Biophysical Variable Retrieval from 

Sentinel-2 Data 

Direct assessments have been made between canopy chlorophyll content measurements and 

spectral reflectances for available wavelengths. Canopy chlorophyll content (g m-2), the product of 

LCC and LAI, is the total amount of chlorophyll in a given area. The following results show how 

reflectance is affected for a range of canopy chlorophyll contents over a large part of the visible 

and NIR spectrum. The method aimed to highlight the strongest vegetative absorption and 

reflectance signatures and subsequent analysis explored how well they could be harnessed using 

the available S-2 bands with the goal of formulating the optimal vegetation index for deriving 

each of the key biophysical variables previously outlined in section 2.1.. An optimal index, for all 

intents and purposes, is the most accurate combination of reflectance measurements to provide a 

surrogate measure, over the entire natural range, of the biophysical variable in question. 

4.3.1. Relationship Between Spectral Reflectance Generated from PROSAIL and Canopy 

Chlorophyll Content. 

Analysis of the PROSAIL results provided insight into; (i) how reflectance related to the biophysical 

variables of interest, and; (ii) how these correlations compared to ground data from the field 

campaigns presented in this chapter. This method of investigation highlighted the most highly 

correlated vegetative features with respect to wavelength for the two PROSAIL datasets and is 

presented in Figure 4.4. 
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Figure 4.4: Comparing the correlation coefficient (R) between spectral reflectance and canopy 

chlorophyll content with changing wavelength for both PROSAIL datasets. 

LAI and LCC were varied between 0-8 using increments of 0.2 and 5-70 µg cm-2 using increments 

of 5 µg cm-2 respectively for the All PROSAIL Data while SEN3Exp PROSAIL represented 

reflectances generated from the PROSAIL model by inputting biophysical variables attributes as 

the SEN3Exp campaign. There were issues with using the all PROSAIL dataset in this correlation 

analysis as the difference between the lower and higher step values of LCC cause the RE to be 

more drawn out, as can be seen in Figure 4.4, in comparison to the smaller SEN3Exp PROSAIL 

dataset. PROSAIL was found to highlight the correlation between reflectance and canopy 

chlorophyll content in the red to peak between 705-735 nm and after a very steep and narrow RE 

it can be seen that spectral reflectance is positively correlated to canopy chlorophyll content 

above 750 nm.   

4.3.2. Relationship between Spectral Reflectance and Canopy Chlorophyll Content for 

SicilyS2EVAL. 

Figure 4.5 illustrates the relationship between canopy chlorophyll content and spectral 

reflectance for 25 ESU locations in SicilyS2EVAL. Firstly, assessing the NIR correlation showed that 

the relationship was consistently positive above 745 nm. Increased reflectance in the NIR due to 

vegetation is a well-documented feature of vegetation density due to internal leaf scattering 

(Gausman 1974, Knipling 1970). The correlation coefficient (R value) of the relationship between 

the canopy chlorophyll content and wavelength in the NIR was low partly due to the vegetative 

sample having a relatively low LAI range (0.16-1.05) but also due to the influence of soil 

background reflectance at low LAI. Although the resulting correlation strength was low (Figure 
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4.5) and the p value of > 0.05 indicated that the result was not significant, the change in 

correlation with respect to the transition of the RE is noteworthy when compared to results from 

SEN3Exp highlighted in section 3.3. During atmospheric correction several bands in the red (680-

690 nm) had to be removed due to sensor saturation issues. Noting this caveat, the red part of 

the spectrum was found to have a strong and statistically significant (p < 0.05) negative 

relationship between spectral reflectance and canopy chlorophyll content with maximum 

correlation at 678 nm. This was primarily due to absorption by canopy chlorophyll content. The 

strength of the red correlation decayed either side of this narrow peak, especially above 690 nm. 

Correlation between visible light reflectance and canopy chlorophyll content can be seen to decay 

to a minimum strength in the green (543 nm +/- 15 nm) where chlorophyll absorption reached a 

minimum. The green relationship had a negative correlation with canopy chlorophyll content due 

to the sparse ESU locations of bright soil having higher reflectance than the vegetated pixels.  

Nevertheless, the trend specifically showed the strongest green signal according to this dataset 

(528-558 nm).

 

Figure 4.5: Comparing the correlation coefficient (R) between spectral reflectance and canopy 

chlorophyll content with changing wavelength for the SicilyS2EVAL and SEN3Exp field campaigns 

with indications of S-2 band positions and dashed lines to show where p = 0. 
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4.3.3. Relationship between Spectral Reflectance and Canopy Chlorophyll Content for 

SEN3Exp 

Figure 4.5 displays the correlation between the spectral reflectance and canopy chlorophyll 

content at specific wavelengths for the 35 ESU SEN3Exp dataset. The NIR correlation can be seen 

to be stronger and statistically significant (p < 0.05) compared to the SicilyS2EVAL data above 750 

nm reaching maximum strength above 770 nm. The correlation between red reflectance and 

canopy chlorophyll content reached a maximum at 680 nm and, as with the SicilyS2EVAL dataset, 

quickly decayed above 690 nm. Similar to the SicilyS2EVAL results the SEN3Exp results show 

visible absorption correlation decayed to a minimum in the green at 540 nm (+/- 15 nm). 

4.3.4. Comparison between Field Campaign Data and PROSAIL.  

Table 4.5 summarises the outcomes of the correlation coefficient analysis for both SEN3Exp, 

SicilyS2EVAL and the PROSAIL SEN3Exp data. The ‘central wavelength’ is the point at which the 

correlation reaches a maximum strength of R in the NIR, red and green.  However, in the case of 

‘RE 0’ it was where the correlation in the RE = 0. It should be noted that ‘RE 0’ was not a REP 

measurement but used as a statistical measure to compare between datasets. In Table 4.5 the 

‘range of correlation’ is the extent of the strongest correlation with regards to wavelength for 

each dataset that can be used to characterise the three key spectral reflectance features in the 

green, red and NIR. 

Table 4.5: Outcomes of correlation signal investigation. 

 Central Wavelength Range of Correlation 

Part of 

Spectrum 
SicilyS2EVAL SEN3Exp 

PROSAIL 

SEN3Exp 
SicilyS2EVAL SEN3Exp 

PROSAIL 

SEN3Exp 

NIR 750 nm 770 nm 770 nm 750 nm+ 750 nm+ 760 nm+ 

RE 0 730 nm 730 nm 742 nm n/a n/a n/a 

Red 678 nm 677 nm 725 nm 660-685 nm 600-690 nm 705-735 nm 

Green 543 nm 540 nm 555 nm 528-558 nm 525-555 nm 545-565 nm 

 

Table 4.5 highlights close similarities between the two field campaigns in most parts of the visible 

and NIR spectrum with the only noticeable differences being; (i) the width of the red correlation 

feature which is narrower in SicilyS2EVAL towards the green than SEN3Exp, and; (ii) the strength, 

but not position, of the NIR reflectance feature. However there are significant differences 
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between the field and PROSAIL datasets. 

 

Figure 4.6: Comparing the correlation coefficient (R) between canopy chlorophyll content and 

spectral reflectance for the SEN3Exp field campaign and SEN3Exp PROSAIL with changing 

wavelength. 

The PROSAIL model data was compared with SEN3Exp data in which is displayed in Figure 4.6. It is 

interesting to note that the PROSAIL data had a strong negative correlation with canopy 

chlorophyll content until 735 nm. This was not the same for the  SEN3Exp and SicilyS2EVAL field 

data where the correlation between spectral reflectance and canopy chlorophyll content in the 

red part of the spectrum rapidly decreased above 690nm (see Figure 4.5) and is positive above 

730 nm. 
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Figure 4.7: Comparison of PROSAIL SEN3Exp (b and d) and SEN3Exp field data (a and c) at 680nm 

(a and b) and 730nm (c and d). 

In light of the differences in correlation between the field and PROSAIL data in the RE reflectance 

was compared at 680 nm and 730 nm (Figure 4.7). It can be seen that at 680 nm the field data 

(Figure 4.7(a)) and the PROSAIL data (Figure 4.7(b)) show a decline in reflectance with an increase 

in chlorophyll content. However, at 730 nm no relationship was present for the field data (Figure 

4.7(c)) while the RTM (Figure 4.7(d)) remained negative with an R2 of 0.87 where p < 0.001. 

Although the slope between reflectance and canopy chlorophyll content at this wavelength was 

0.05 for the RTM this still results in a 23% reduction in absolute reflectance over the range of 

0.05-1.84 g m-2 canopy chlorophyll content. In the NIR part of the spectrum, RTM results are 

similar to the field campaign data becoming strongly positive at 750 nm and reaching maximum 

strength at 770 nm (Figure 4.7). There was also a difference between the datasets in the green. 

The field data showed a weakening of the negative relationship while the PROSAIL data showed 

the negative relationship becoming slightly stronger. Upon further investigation the cause of this 

difference with the PROSAIL data was an issue of saturation of canopy chlorophyll content with 

change in green reflectance. When ESUs with high canopy chlorophyll content values were 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.5 1 1.5 2

R
e

fl
e

ca
tn

ce
 

Canopy Chlorophyll Content (g m-2) 

a 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.5 1 1.5 2

R
e

fl
e

ct
an

ce
 

Canopy Chlorophyll Content (g m-2) 

b 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.5 1 1.5 2

R
e

fl
e

ct
an

ce
 

Canopy Chlorophyll Content (g m-2) 

c 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 0.5 1 1.5 2

R
e

fl
e

ct
an

ce
 

Canopy Chlorophyll Content (g m-2) 

d 



William James Frampton    

70 
 

removed the R2 between canopy chlorophyll content and spectral reflectance in the green was 

weaker than in blue and red for the SEN3Exp PROSAIL dataset correlating with the SEN3Exp field 

data trend. 

4.3.5. Suitability of S-2 Bands for Retrieval of Biophysical Variables. 

SicilyS2EVAL and SEN3Exp field campaigns correlation results at specific wavelengths are 

combined in Figure 4.5 which also highlights the available bands for S-2 near the RE (Table 4.2). 

Firstly, according to the two field campaign datasets, S-2 band 3 (542.5-577.2 nm, green band) 

does not cover the optimal wavelengths where, due to increased canopy chlorophyll content, the 

green reflectance is less strongly correlated to canopy chlorophyll content than in the red and 

blue parts of the visible spectrum. Using a band width of 525 to 555 nm would be theoretically 

optimal for the datasets presented. Secondly S-2 band 4 (red band) captures absorption due to 

chlorophyll as its bandwidth extends until just before the RE where spectral reflectance beings to 

shift from a negative to positive relationship with canopy chlorophyll content. Furthermore, the 

bandwidth of S-2 band 4 is not adversely wide whereas, according to the two datasets and 

especially SicilyS2EVAL, if the lower band limit extended below 650 nm the bands strength of 

characterising the chlorophyll absorption feature would be weakened. The MERIS continuation RE 

band (S-2 band 5: 705 nm +/-7.5 nm) has increased spectral bandwidth compared to MERIS band 

9 (708.75 nm +/-5 nm). However, with the central band position only slightly changed this should 

not make significant impact for RE characterisation considering it is situated over a linear part of 

the RE. S-2 band 6 is a new RE/NIR band with respect to previous satellite sensors such as 

RapidEye and MERIS. Considering vegetative monitoring and capturing the NIR feature S-2 band 6 

will, as a replacement for MERIS band 10 (753.75 nm +/- 3.75 nm), receive increased mixed signal 

from the RE as it is situated at the peak of the RE rather than slightly beyond it. However the 

position of the band and its combination with S-2 band 5 will, consequently, provide the 

opportunity for enhanced estimation of the REP compared to MERIS or RapidEye. Finally S-2 band 

7, which is similar to MERIS band 12 (775 nm +/- 7.5 nm), is the optimal band in the NIR for 

capturing the vegetative signal in the NIR based on SicilyS2EVAL and SEN3Exp data sets. 

It should be highlighted that, with reference to Table 4.5, the correlation in vegetation spectral 

reflectance and canopy chlorophyll content shown between these two separate field campaigns is 

consistent considering their differences with respect to airborne sensor, location, operating team, 

time of year and field campaign procedures. Taking this into account gives confidence in using this 

presented dataset to compare methods for canopy chlorophyll content, LAI and LCC retrieval from 

S-2 data. 
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4.3.6. New Vegetation Indices for S-2 

Based on the relationship between spectral reflectance in individual S-2 MSI bands and canopy 

chlorophyll content, LAI and LCC, this chapter proposes two new methods to estimate biophysical 

variables for use with S-2 MSI data. First, the Inverted Red Edge Chlorophyll Index (IRECI, Eq. (4.4)) 

which incorporates the reflectance in four S-2 bands to estimate canopy chlorophyll content, and 

second, the Sentinel-2 Red Edge Position (S2REP, Eq. (4.5)); a version of REP estimation for S-2 

using linear interpolation (Guyot and Baret 1988, Clevers et al. 2000).  

 𝐼𝑅𝐸𝐶𝐼 =
𝑟𝑁𝐼𝑅−𝑟𝑅

𝑟𝑅𝐸2/𝑟𝑅𝐸1
=  

𝑟783−𝑟665

𝑟705/𝑟740
 Eq. (4.4) 

IRECI makes use of both RE bands, that S-2 will provide, to characterise the RE slope by using the 

reflectance at 740nm and 705nm (Table 4.1) while also making use of the maximum and 

minimum vegetation reflectances found in the NIR and red at 783 nm and 665 nm respectively. By 

using the LCC indicative RE reflectance IRECI does not put heavy emphasis on the red, which will 

help to avoid saturation, while still utilising the strong contrast of the SR sensitive to LAI. Based on 

field dataset from SEN3Exp and SicilyS2EVAL campaigns, IRECI is a near direct calculation of field 

measured canopy chlorophyll content (g m-2) with a slope of 0.9004 and intercept of 0.1795 with 

a coefficient of determination of 0.87 (see section 4.3., Table 4.6). However, further validation will 

be required with other datasets and specifically a larger range of canopy chlorophyll content. 

𝑆2𝑅𝐸𝑃 = 705 + 35 ∗
(

𝑟𝑁𝐼𝑅+𝑟𝑅

2
)−𝑟𝑅𝐸1

𝑟𝑅𝐸2−𝑟𝑅𝐸1
= 705 + 35 ∗

(
𝑟783+𝑟665

2
)−𝑟705

𝑟740−𝑟705
 Eq. (4.5) 

S2REP ( Eq. (4.5)) is based on linear interpolation as presented by Guyot and Baret (1988) where 

the reflectance at the inflexion point is estimated and in turn the REP is retrieved through 

interpolation of S-2 band 5 and 6 which are positioned on the RE slope. This linear interpolation 

method has been previously applied to MERIS data by Clevers et al. (2000) and was found to be 

more robust than the Lagrangian method (Dawson and Curran 1998) with the benefit of requiring 

a limited number of spectral bands making it suitable for spaceborne sensors (Clevers et al. 2002). 

S-2 has a key benefit compared to MERIS for the application of the linear interpolation method. S-

2 band 6 (740 nm) measures the reflectance situated at the top of the linear part of the RE slope 

whereas MERIS band 10 (753.75 nm) measures reflectance slightly above the linear part of the RE 

where the gradient in decreasing as it reaches the NIR plateau. In theory this means that S2REP 

should provide better characterisation of the RE slope compared to application of the method 

using the MERIS or the future Sentinel-3 sensors.  
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4.4. Evaluation of the Spectral Indices 

Each VI output was derived from the synthesised S-2 data for the field campaigns presented in 

Table 4.4. The correlation with LAI, LCC and canopy chlorophyll content for each assessed VI is 

presented in Table 4.6.  

Table 4.6: Coefficient of determination results of each Vegetation Index for varying field data sets 

and biophysical variables, light green highlights where 0.7 < R2 < 0.8 and dark green highlights 

where 0.8 < R2. Results denoted with * have p values of <0.001. 

4.4.1. Leaf Chlorophyll Concentration 

Although majority of VIs had poor correlation with LCC (Table 4.6) the MTCI and S2REP achieved 

strong correlation with LCC with R2 of 0.77 and 0.91 respectively Figure 4.8. 

 

Figure 4.8: Coefficient of determination comparisons between MTCI, S2REP and LCC. 

The MTCI and S2REP are the only two VIs in the analysis that solely characterise the RE which has 

been shown to be sensitive to variation in LCC (Horler et al. 1983, Curran et al. 1990, Dash and 

Curran 2004). Increases in LCC result in a broadening of the major red absorption feature which 

causes a shift in the REP towards longer wavelengths (Boochs et al. 1990). Previous experimental 
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Canopy 
Chlorophyll 

Content 

Combined 0.70* 0.78* 0.51* 0.42* 0.66* 0.72* 0.47* 0.87* 

SicilyS2EVAL 0.83* 0.78* 0.65* 0.66* 0.45* 0.84* 0.35 0.64* 

SEN3Exp 0.62* 0.70* 0.24 0.75* 0.58* 0.59* 0.23 0.84* 

LAI 

Combined 0.63* 0.76* 0.39 0.55* 0.58* 0.61* 0.36 0.88* 

SicilyS2EVAL 0.86* 0.84* 0.55* 0.72* 0.42* 0.83* 0.19 0.74* 

SEN3Exp 0.57* 0.68* 0.15 0.88* 0.49* 0.51* 0.12 0.84* 

LCC 

Combined 0.56* 0.30* 0.77* 0 0.58* 0.36 0.91* 0.24 

SicilyS2EVAL 0.62* 0.63* 0.39 0.35 0.54* 0.62* 0.24 0.35 

SEN3Exp 0 0 0.25 0 0.02 0.03 0.51* 0 
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studies have shown low LCC to be associated with REP values near 700 nm and high LCC to attain 

REP results closer to 725 nm (Boochs et al. 1990, Horler et al. 1980, Lamb et al. 2002). S2REP 

performed with similar results for the combined SicilyS2EVAL and SEN3Exp datasets producing 

REP results of 711-728 nm for LCC values of 0.16-0.41 g/m2. The high MTCI outliers are discussed 

later in the thesis.  

4.4.2. Leaf Area Index. 

 

Figure 4.9: IRECI and NDI45 compared for LAI from SEN3Exp and SicilyS2EVAL field campaigns. 

The IRECI and the NDI45 were the best performing VIs with respect to LAI with R2 values of 0.88 

and 0.76 respectively. Although developed for correlation with canopy chlorophyll content IRECI is 

shown in Figure 4.9 to be linear with LAI. When compared for lower values of LAI below 2 the 

IRECI and the NDI45 have an R2 of 0.77 and 0.62 (p < 0.001) respectively. 
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4.4.3. Canopy Chlorophyll Content. 

 

 

Figure 4.10: IRECI, NDI45, NDVI and PSSR compared to canopy chlorophyll content for field data 

from SicilyS2EVAL and SEN3Exp field campaigns. 

The four best performing VIs (NDVI, PSSR, NDI45 and IRECI) (Table 4.6) in terms of correlation 

coefficient with respect to canopy chlorophyll content are compared in Figure 4.10. Saturation is 

noticeably present above a canopy chlorophyll content value of 1 g/m2 for the NDVI (R2 = 0.70) 

due to saturation of red reflectance (Kanemasu 1974, Tucker 1979, Horler et al. 1983, Buschmann 

and Nagel 1993.) The PSSR (R2 = 0.72) functions linearly with canopy chlorophyll content although 

its spread increases significantly at higher values. When comparing the NDVI and the NDI45 this 

dataset suggests the change from using reflectance measurements in the NIR (band 7) to RE1 

(band 5) has increased spread at lower canopy chlorophyll content values but made NDI45 more 

linear with less saturation at higher values than the NDVI. The IRECI was the best performing 

measure of canopy chlorophyll content using synthesised S-2 field data for the two presented 

campaigns. The index can be seen to have a strong linear relationship with canopy chlorophyll 

content without saturation at higher values. As highlighted earlier in section 5, the IRECI also has 
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the useful trait of being a near direct calculation of canopy chlorophyll content in g/m2 for this 

dataset. The inclusion of RE bands improved correlation over the entire data set while mitigating 

the saturation effect at higher canopy chlorophyll content.  However, the inclusion of these bands 

also increased the spread of the IRECI at very low canopy chlorophyll content (<0.13 g/m2) 

compared to the NDVI and PSSRa. 

4.5. Conclusions    

S-2 provides a great opportunity for global vegetation monitoring due to its enhanced spatial, 

spectral and temporal characteristics compared with Landsat and SPOT. Simulated S-2 data has 

been compared to a combined field dataset of 60+ ESUs across two field campaigns covering eight 

separate crops. Although the field campaigns varied with respect to year, location, airborne 

sensors and field teams, similar relationships between spectral reflectance and canopy 

chlorophyll content were obtained. All bands around the RE have been shown to be useful in 

assessing vegetation condition, specifically canopy chlorophyll content. However, there is a need 

for further investigation of the green reflectance region 525-555 nm and its potential role in 

estimating canopy chlorophyll content. The results suggest that the wavelengths covered by the 

S-2 green band may not be optimal to capture the changes in reflectance due to canopy 

chlorophyll content.   

It has been highlighted that many VIs attempt to correct for uncertainties or inaccuracies through 

incorporation of scene specific parameters or normalisation functions. Application of such 

methods affects the universal applicability and ease of operational use. S2REP has been presented 

and shown as the most suitable method for quantifying LCC using these datasets; nevertheless 

the MTCI also had noteworthy results. A novel index the IRECI has been shown to be linearly 

related to canopy chlorophyll content at a near 1:1 ratio in g m-2 while still performing well for LAI 

up to and beyond the common saturation point. It achieves this as it utilises the opportunities S-2 

bands 5 and 6 present for RE characterisation while still incorporating the robustness of the SR. 

Further validation is required with other field campaigns and synthetic S-2 data to reinforce 

findings.  
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 Investigating the Opportunities for Chapter 5:
Application of MTCI using Sentinel-2 and Sentinel-3 and 
the Feasibility to Downscale 

5.1. Introduction 

The MTCI is an already well-established algorithm for the retrieval of biophysical parameters in 

vegetation, specifically as a surrogate measure of chlorophyll content. During the 10 years MERIS 

was active the MTCI was produced as an operational product. With the loss of Envisat on the 8th 

of April 2012 the future of the MTCI will therefore be dependent on the S-2 and S-3 missions. S-2 

is currently planned for launch in April 2015 while S-3 is tentatively set for Mid-2015 (ESA 2011a). 

Although due to this there will be a gap in MTCI coverage long running datasets can be integral to 

certain vegetative studies. Furthermore while S-3 will continue global acquisitions of the MTCI at 

300 m spatial resolution S-2 will allow operational calculation of the MTCI at 20 m spatial 

resolution. Consequently there is need for research to investigate the opportunities of application 

of the MTCI with S-2 and S-3 and the possible differences that must be accounted for. The 

availability of reflectance bands of S-3 and S2 compared to MERIS is summarised in Table 5.1 and 

bands of specific interest between 500 and 800 nm are overlaid onto a typical vegetative 

reflectance spectra in Figure 5.1, Figure 5.2 and Figure 5.3 for MERIS, S-2 and S-3 respectively. 
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Table 5.1: Summary of Spectral band of MERIS, Sentinel-2 and Sentinel 3. 

MERIS   Sentinel-3   Sentinel-2   

Band 
Central 

Wavelength 
(nm) 

Bandwidth 
(nm) 

Band 
Central 

Wavelength 
(nm) 

Bandwidth 
(nm) 

Band 
Central 

Wavelength 
(nm) 

Bandwidth 
(nm) 

      1 400 15       

1 412.5 10 2 412.5 10       

2 442.5 10 3 442.5 10 1 443 20 

3 490 10 4 490 10 2 490 65 

4 510 10 5 510 10       

5 560 10 6 560 10 3 560 35 

6 620 10 7 620 10       

7 665 10 8 665 10 4 665 30 

      9 673.75 7.5       

8 681.25 7.5 10 681.25 7.5       

9 708.75 10 11 708.75 10 5 705 15 

10 753.75 7.5 12 753.75 7.5 6 740 15 

11 760 3.75 13 761.25 2.5       

      14 764.375 3.75       

      15 767.5 2.5       

12 775 15 16 778.75 15 7 783 20 

13 865 20 17 865 20 8 842 115 

14 890 10 18 885 10       

15 900 10 19 900 10       

      20 940 20 8a 865 20 

      21 1020 40 9 945 20 

            10 1375 30 

            11 1610 90 

            12 2190 180 

 



William James Frampton    

78 
 

 

Figure 5.1: Positions of MERIS reflectance bands with width indicators overlaid onto the spectra of 

sunflower ESU from Sen3EXP measured using the hyperspectral AISA Eagle sensor. 

 

Figure 5.2: Positions of S-2 reflectance bands with width indicators overlaid onto the spectra of 

sunflower ESU from Sen3EXP measured using the hyperspectral AISA Eagle sensor. 
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Figure 5.3: Positions of S-3 reflectance bands with width indicators overlaid onto the spectra of 

sunflower ESU from Sen3EXP measured using the hyperspectral AISA Eagle sensor. 

5.2. Continuation of the MTCI using S-3 

Continuation of the MERIS dataset is one of the mission objectives of S-3. Fortunately for the 

MTCI, all bands that were used in its formulation are available using the Ocean and Land Colour 

Imager (OLCI) on-board S-3. Application of the MTCI using S-3 will hereby be referred to as OTCI 

(Eq. (5.1); Ocean and Land Colour Imager Terrestrial Chlorophyll Index).  

𝑂𝑇𝐶𝐼 =  
𝑟𝑁𝐼𝑅−𝑟𝑅𝐸

𝑟𝑅𝐸−𝑟𝑅𝑒𝑑
=

𝑟753.75 𝑛𝑚−𝑟708.75 𝑛𝑚

𝑟708.75 𝑛𝑚−𝑟681.25 𝑛𝑚
=

𝑂𝐿𝐶𝐼 𝑏12−𝑂𝐿𝐶𝐼 𝑏11

𝑂𝐿𝐶𝐼 𝑏11−𝑂𝐿𝐶𝐼 𝑏10
  Eq. (5.1) 

5.2.1. Spectral Changes 

S-3 bands used in the OTCI share central wavelengths and bandwidths with the heritage MERIS 

bands used in the MTCI formula. Furthermore the spectral response function of the shared bands 

is identical meaning the two sensors are directly comparable. 
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5.2.2. View Angle Changes 

One of the unique aspects of OLCI is that unlike MERIS the sensor will be tilted by 12.58o away 

from the sun to minimise the glint impact. Consequently the view angle will not be symmetrical 

with the centre of the swath in the image as visualised in Figure 5.4. 

 

Figure 5.4: Representation of the view angle across a scene using MERIS and OLCI to emphasise 

the tilt of S-3 and the resulting increased view angle compared to MERIS. 

The tilt of the OLCI will mean that the maximum view angle observed will be 55.6o at the far side 

of the image, 15.6 o higher than the maximum in a MERIS scene.  

 

Figure 5.5: Average MTCI output of dataset over the 2009 growing season. 

To perform preliminary investigations for the effect this difference in view angle will have 

MTCI/OTCI was tracked over the growing season for 12 MERIS acquisitions from 2009 (Figure 5.5) 

for locations in Barrax Spain. Spectral reflectances were extracted from randomly selected pixels 

that exhibited maximum canopy extent during the summer (based upon MTCI) and subsequently 

canopy variables were estimated through inversion of the PROSAIL model (Baret et al. 1992; 

Jacquemoud et al. 2009). In turn, canopy variables retrieved by the inverted model were used to 
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simulate reflectance using the PROSAIL model in forward mode with the change in view angle 

accounted for from MERIS to OLCI. Subsequently MTCI and OTCI were calculated for given 

locations according to the new MERIS view angle and the corresponding OLCI view angle as can be 

seen in Figure 5.6 where values for two example cases are presented with the relative percentage 

difference between OTCI and MTCI.  

 

Figure 5.6: OTCI and MTCI generated from PROSAIL data over an entire growing season for 

example locations in Barrax, Spain. 

It can be seen that due to the view angle disparity between MERIS and OLCI that the differences 

between MTCI and OTCI ranged between 0.35% and 5.3% with a mean relative difference of 2.3%. 

A key goal of S-3 is the continuation of MERIS. This analysis gives a preliminary idea of what the 

possible difference between MTCI and OTCI should be based on the changed view angle. It should 

be noted that when S-3 is operational there will be much scope for investigation into this 

difference using image based studies rather than the model approach used here. However it is 

unfortunate that there will be no overlap in operation of MERIS and OLCI as it would have given 

excellent opportunity for investigations of this nature.  Consequently there is much scope for 

analysis in the difference in performance of the sensors and methods will have to be devised to 

test this without contemporaneous operation. Nevertheless the MTCI will be continued by OLCI as 

an operational product and with so few changes between the sensors after initial comparisons are 

made validation of the MTCI that was performed using MERIS should be carried over and 

continued using OLCI.     

5.3. Estimation of the MTCI Using S-2 

Due to the high spatial resolution of the MSI sensor aboard S-2, extensive swath and global 

coverage the data volume will be substantial. As an example the Level-2A product, which will 

provide bottom-of-atmosphere reflectances in cartographic geometry, will be 600 MB for each 
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100x100 km2 (ESA 2014). Consequently, unlike MERIS which provided biophysical operational 

products for each downloaded scene, S-2 will only provide band reflectances to minimise data 

volume. While initial application of the MTCI using synthetic S-2 data has been shown in 

previously in Chapter 4 analysis in this chapter aims to more thoroughly highlight the important 

differences in spectral band positions and the consequences they will have on the output of the 

MTCI. It can be seen in Table 5.1 that unlike S-3 bands that were used to calculate the MTCI using 

MERIS will not be available using S-2. Therefore application of the MTCI using S-2 will require new 

spectral bandwidths and will be labelled as S2TCI (Eq. (5.2)).    

𝑆2𝑇𝐶𝐼 =  
𝑟𝑁𝐼𝑅−𝑟𝑅𝐸

𝑟𝑅𝐸−𝑟𝑅𝑒𝑑
=

(𝑟783 𝑜𝑟 740 𝑛𝑚)−𝑟705 𝑛𝑚

𝑟705 𝑛𝑚−𝑟665 𝑛𝑚
 Eq. (5.2) 

5.3.1. Spectral Changes 

There are three key changes for the S2TCI: a choice of NIR bands to use, the RE band is now 

positioned at 705 nm rather than 708.75 nm and the red band is situated further from the RE at 

665 nm. To investigate the impact of these changes hyperspectral data are required to accurately 

generate synthetic S-2 data using spectral weighting estimations of sensor performance. The 

SEN3Exp field campaign that was used during the analysis in Chapter 4 was reprocessed to 

generate additional MERIS bands according to spectral weighting files from the CASI hyperspectral 

data. The three key changes are highlighted in Figure 5.7 and Figure 5.8. 

Figure 5.7: S-2 and MERIS band positions located on a CASI hyper-spectral reflectance curve 

between 500-800 nm for a potato ESU evaluated during the SEN3Exp field campaign. 
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Figure 5.8: MERIS and S-2 spectral bands located near the RE generated from CASI hyperspectral 

data of a potato ESU evaluated during the SEN3Exp field campaign. Annotated with absolute 

reflectance values and bandwidth indicators. 

5.3.1.1. Spectral Changes in the Red 

Compared to MERIS, S-2 only has one available band in the red part of the spectrum at 665 nm. 

MERIS band 7 has the same band central wavelength at 665 nm however S-2 band 4 has an 

increased bandwidth of 30 nm compared to MERIS band 7 which is a narrower 10 nm. 

Nevertheless the MTCI does not use MERIS band 7 but MERIS band 8 which has a central 

wavelength of 681.25 nm. As this spectral bandwidth is not available with S-2 the impact of using 

a band focused at 665 nm must be considered. The percentage difference between MERIS band 8 

and S-2 band 4 was calculated with each ESU from the SEN3Exp field campaign. The average 

difference between the bands was -1.5% in relative reflectance for the 33 ESU dataset. Upon 

further investigation the percentage change was found to be not random; when the ESU locations 

were compared based on their chlorophyll content there was a statistically significant (p < 0.05) 

relationship between the two red bands shown in Figure 5.9. It should be noted that the 

difference between the bands will be described in a standard format in this discussion where the 

percentage denotes how S-2 changes compared to MERIS; i.e. 5% would mean reflectance in S-2 

would be 5% greater than the comparable MERIS band while -6% indicates 6% less relative 

reflectance. 
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Figure 5.9: Comparing percentage change in absolute reflectance from MERIS band 8 to Sentinel-2 

band 4 by chlorophyll content for 33 ESUs from the SEN3Exp field campaign. 

It can be seen that at very low chlorophyll values the change in S-2 band 4 relative reflectance is 

up to -3.5% less than reflectance for the same ESU location using the synthesised MERIS band 8 

whereas at higher chlorophyll contents there is minimal change in reflectance between the two 

bands. The relationship exhibits a statistically significant (p < 0.05) moderate correlation where 

the coefficient of determination (R2) is 0.47. There is a clear reason why this relationship would 

occur: lower chlorophyll contents indicate sparse canopy cover which would suggest spectra 

dominated by a soil line, consequently, in at such locations, the reflectance at 681.25 nm will be 

higher than 665 nm. On the other hand the spectra of dense canopies with high chlorophyll 

contents would exhibit a prominent, and saturating, absorption feature in the red. The width of 

this feature would consequently mean there was little difference in reflectance between 681.25 

and 665 nm. With this relationship in mind and consideration given to the formulation of the 

MTCI algorithm a lower absolute reflectance in the red, which is incorporated negatively into the 

denominator of the equation, in turn means a lower overall value of MTCI. As this is the case only 

at lower chlorophyll content values there is likely to be a slight improvement in signal for the 

S2TCI compared to the MTCI as the index value of sparsely vegetated pixels are reduced while 

closed canopy locations are retained. 

5.3.1.2. Spectral Changes on the Red Edge 

The situation for RE band availability using S-2 is similar to that of the red band. The MTCI used 

MERIS band 9 centrally located at 708.75 nm whereas the first band available directly on the RE 

using S-2 is centred at 705 nm. Although the difference between the spectral bands (3.75 nm) is 

smaller than that of the red bands the change in reflectance for vegetation is much greater in this 
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part of the spectrum as the bands are located directly on the RE. Consequently we find that the 

average relative change in reflectance for the SEN3Exp dataset is -12.12% between MERIS band 9 

and S-2 band 5, much higher than the difference observed between the red bands. Like the red 

band dissimilarity there is a clear correlation when the relative difference in reflectance is plotted 

against chlorophyll content for the two RE bands as shown in Figure 5.10. 

 

Figure 5.10: Comparing percentage change in absolute reflectance from MERIS band 9 to Sentinel-

2 band 5 by chlorophyll content for 33 ESUs from the SEN3Exp field campaign. 

It can be seen that the relative change in reflectance increases with chlorophyll content. The 

correlation of the relationship was found to be statistically significant (p < 0.05) with a moderate 

strength R2 of 0.56. The reason for this is that higher chlorophyll contents should have a steeper 

RE with a greater rate of change in reflectance compared to a less densely vegetated soil line. 

Consequently even the small difference in central spectral band position of 3.75 nm can result in a 

change in measured reflectance of up to -19.29%. This is very significant for S2TCI as the central 

RE band is incorporated twice into the formula. The decreased measured reflectance using S-2 

band 5 will mean an increased numerator and decreased denominator in the M/S2TCI formula, 

accordingly the output of the algorithm will be significantly increased especially at higher 

chlorophyll contents which in theory increases the ability of S2TCI to retrieve biophysical 

parameters of vegetation compared to the MTCI. 

5.3.1.3. Spectral Changes in the NIR 

Investigating the differences in the capabilities between S-2 and MERIS in the NIR is a different 

case to the red and central RE as there are two optional bands. MERIS band 10 is located at 

753.75 nm while S-2 has bands located at 740 nm and 783 nm. The average relative difference in 

reflectance between MERIS band 10 and S-2 band 6 is -11.54% for the SEN3Exp dataset. The 
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reason for difference is the same as for the bands at the centre of the RE. MERIS band 10 is 

located just above the RE at the start NIR plateau while S-2 band 6 at 740 nm is located on the RE 

meaning the band has lower measured reflectance. When the relative difference is compared 

with the chlorophyll content of each ESU as can be seen in Figure 5.11 the relationship is clearly 

negative with a statistically significant (p < 0.05) R2 of 0.73. High chlorophyll contents have up to -

19.15% less reflectance using the 740 nm S-2 band rather than the 753.75 nm MERIS band while 

the difference at very low chlorophyll contents is much less.  

 

Figure 5.11: Comparing percentage change in absolute reflectance from MERIS band 10 to MSI 

band 6 by chlorophyll content for 33 ESUs from the SEN3Exp field campaign. 

If band 6 is incorporated into the S2TCI formula the large change in measured reflectance will 

have significant impact on the output of the algorithm. The decreased reflectance of S-2 band 6 

included in the numerator of the S2TCI formula would reduce the output of the algorithm, more 

so at higher chlorophyll content values than lower values. Consequently in theory this would 

decrease the ability of S2TCI to retrieve biophysical parameters of vegetation compared to the 

MTCI.      

While S-2 band 6 should be recognised as a second band directly on the RE, S-2 band 7 is a 

definitive NIR band situated at 783 nm on the plateau. Consequently compared to MERIS band 10, 

which has a central bandwidth of 681.75 nm, S-2 band 7 has increased reflectance which, for the 

SEN3Exp dataset, was on average 7.48% higher. Comparing the change in relative reflectance with 

chlorophyll content as shown in Figure 5.12 yields a statistically significant (p < 0.05) positive 

relationship with an R2 of 0.69. This relationship can be attributed to the higher relative increase 

in reflectance  from leaf structure at high chlorophyll contents compared to the lower NIR 

observed in sparse canopies typically demonstrating a soil line. With consideration given to the 
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M/S2TCI formula the increased reflectance measured in the NIR would mean the output of S2TCI 

would be higher than the MTCI, especially at higher chlorophyll contents. In theory this would 

slightly increase the ability of S2TCI to retrieve biophysical parameters of vegetation compared to 

the MTCI. 

 

Figure 5.12: Comparing percentage change in absolute reflectance from MERIS band 10 to MSI 

band 7 by chlorophyll content for 33 ESUs from the SEN3Exp field campaign. 

5.3.2. Comparison of NIR S-2 Bands 6 and 7 

NIR reflectance is incorporated into the M/S2TCI formula in positive way so that increased 

reflectance increases the output of the algorithm which indicates increased chlorophyll content. 

Consequently it is undesirable for reflectance to decrease with increased chlorophyll content as 

the output of the algorithm will be lower for higher chlorophyll contents; such is the case if S-2 

band 6 is used in the S2TCI formula as a replacement for MERIS band 10. Conversely if S-2 band 7 

is used the relative reflectance between the two bands increases at higher chlorophyll contents 

which subsequently should improve the ability of the algorithm to retrieve chlorophyll content. 

Therefore analysis suggests that when applying the MTCI to S-2 band 7 is used as the NIR band.      

5.3.3. Impact of Each Band on the S2TCI Output 

To investigate the effect each individual band change has on the output of the MTCI MERIS band 

reflectances was calculated from the CASI hyperspectral imagery from the SEN3Exp dataset. One 

by one the red, RE and NIR bands were replaced in the formula with synthetic S-2 bands to 

investigate the quantitative change attributed to each band in the algorithm. It is important to 
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establish the difference between the MTCI and the S2TCI to investigate the possible comparability 

of the algorithms across sensor. 

 

Figure 5.13: Correlation of the MTCI with chlorophyll content for the SEN3Exp field campaign. 

Figure 5.13 highlights the relationship of the MTCI with chlorophyll content from the SEN3Exp 

field campaign. The correlation has a moderate strength with an R2 of 0.45 and is statistically 

significant (p < 0.05). Having established the correlation of the MTCI with chlorophyll content 

subsequent sections will investigate the change in correlation using S-2 bands.    

5.3.3.1. S-2 Red Band 4 

Section 5.3.1.1. highlighted that using S-2 band 4 will reduce the measured reflectance at low 

chlorophyll contents more than in dense canopies compared to MERIS band 8. Consequently a 

lower absolute reflectance in the red in turn means a lower output value of S2TCI compared to 

the MTCI at lower chlorophyll contents. To quantify the change in TCI output for the SEN3Exp 

dataset the MTCI formula was modified to use S-2 band 4 instead of MERIS band 8 as the input of 

red reflectance while using still using MERIS band 10 and 9 and will be described as TestTCI1 (Eq. 

(5.3)). 

 𝑇𝑒𝑠𝑡𝑇𝐶𝐼1 =  
𝑟𝑁𝐼𝑅−𝑟𝑅𝐸

𝑟𝑅𝐸−𝑟𝑅𝑒𝑑
=  

𝑀𝐸𝑅𝐼𝑆 𝑏10−𝑀𝐸𝑅𝐼𝑆 𝑏9

𝑀𝐸𝑅𝐼𝑆 𝑏9−𝑆2 𝑏4
=

𝑟753.75 𝑛𝑚−𝑟708.75 𝑛𝑚

𝑟708.75 𝑛𝑚−𝑟665 𝑛𝑚
 Eq. (5.3) 
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Figure 5.14: Changing relative percentage difference between the TestTCI1 and the MTCI with 

chlorophyll content taken from the SEN3Exp field campaign. 

It can be seen in Figure 5.14 that incorporation of S-2 band 4 causes significant reduction to the 

MTCI at low chlorophyll content values of up to -13.3%. Conversely, the wide, prominent red 

absorption feature and resulting stable reflectance in the red region produced at higher 

chlorophyll content values mitigates the change of using reflectance at 665 nm rather than 681.25 

nm which results in negligible change above a chlorophyll content of 0.5 g/m2.  

 

Figure 5.15: Comparing the correlation of the MTCI and the TestTCI1. 

Figure 5.15 compares the relationships between the MTCI, the TestTCI1 and chlorophyll content. 

As the reduction in reflectance, which results in a lower TCI output, only occurs only at low 
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chlorophyll content values there is a slight improvement in correlation for the TestTCI1 compared 

to the MTCI with an R2 of 0.50 and 0.45 respectively where p < 0.05.  

5.3.3.2. S-2 Red Edge Band 5 

Section 5.3.1.2. highlighted that using band 5 will reduce the measured reflectance at high 

chlorophyll contents more than in sparse canopies using the S2TCI compared to the MTCI. 

Consequently a lower absolute reflectance in the RE in turn means a significantly higher output of 

the S2TCI compared to the MTCI. To quantify the exact change for the SEN3Exp dataset the MTCI 

formula was modified to use S-2 band 5 instead of MERIS band 9 as the input of RE reflectance 

while using still using MERIS band 10 and 8 and will be described as TestTCI2 (Eq. (5.4)). 

 𝑇𝑒𝑠𝑡𝑇𝐶𝐼2 =  
𝑟𝑁𝐼𝑅−𝑟𝑅𝐸

𝑟𝑅𝐸−𝑟𝑅𝑒𝑑
=  

𝑀𝐸𝑅𝐼𝑆 𝑏10−𝑆2 𝑏5

𝑆2 𝑏5−𝑀𝐸𝑅𝐼𝑆 𝑏 8
=

𝑟753.75 𝑛𝑚−𝑟705 𝑛𝑚

𝑟705 𝑛𝑚−𝑟681.25 𝑛𝑚
  Eq. (5.4) 

 

Figure 5.16: Changing relative percentage difference between the TestTCI2 and the MTCI with 

chlorophyll content taken from the SEN3Exp field campaign. 

It can be seen that the output of TestTCI2 is significantly higher than the MTCI by between 54.14% 

and 41.89% over a range of chlorophyll contents. The lower increase in output at higher 

chlorophyll contents can be attributed to the rate of change in reflectance of the RE between 

708.25 nm and 705 nm. As the RE is typically only linear between 740 nm and 715 nm the 

gradient of the RE decreases between 708.25 nm (MERIS band 9) and 705 nm (S-2 band 5). 

Conversely for soil line reflectance and very sparse canopy cover there is very little to no decrease 

in gradient. This means that the difference in rate of change between high and low chlorophyll 

contents becomes less between 708.25 nm and 705 nm. The resulting undesirable decrease in 
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TestTCI2 output at higher chlorophyll contents means it has a slightly lower correlation with 

chlorophyll content with an R2 of 0.41 compared with the MTCI of 0.45 (Figure 5.13).   

5.3.3.3. S-2 NIR Band 7 

Section 5.3.1.3. highlighted that using S-2 band 7 will increase the measured reflectance at high 

chlorophyll contents more than in sparse canopies with the S2TCI compared to using MERIS band 

10 with the MTCI. Consequently a higher absolute reflectance in the NIR also means a higher 

output of the S2TCI. To quantify the exact change for the SEN3Exp dataset the MTCI formula was 

modified to use S-2 band 7 instead of MERIS band 10 as the input of NIR reflectance while using 

still using MERIS band 9 and 8 and will be described as TestTCI3 (Eq. (5.5)). 

𝑇𝑒𝑠𝑡𝑇𝐶𝐼3 =  
𝑟𝑁𝐼𝑅−𝑟𝑅𝐸

𝑟𝑅𝐸−𝑟𝑅𝑒𝑑
=  

𝑆2 𝑏7−𝑀𝐸𝑅𝐼𝑆 𝑏9

𝑀𝐸𝑅𝐼𝑆 𝑏9−𝑀𝐸𝑅𝐼𝑆 𝑏 8
=

𝑟783 𝑛𝑚−𝑟708.75 𝑛𝑚

𝑟708.75 𝑛𝑚−𝑟681.25 𝑛𝑚
 Eq. (5.5) 

 

Figure 5.17: Changing relative percentage difference between the TestTCI3 and the MTCI with 

chlorophyll content taken from the SEN3Exp field campaign. 

TestTCI3 is between 6.08% and 20.34% higher than the MTCI over a range of chlorophyll contents. 

Compared to the replacement of the red and RE bands changing the NIR exhibits a weaker 

correlation between change in TCI output and chlorophyll with an R2 of 0.18 but is still statistically 

significant (p < 0.05). The reason for this is likely due to variation in soil reflectance exhibited by 

sparse canopy locations with low LAI. A smaller relative change in reflectance of a very bright soil 

will increase TCI output more than a darker soil location. If the SEN3Exp dataset is filtered to only 

include ESUs with an LAI above 1 the relationship instead exhibits a statistically significant (p < 

0.05) moderate strength correlation where the R2 is 0.46. Although the relationship is weak the 
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increased output of TestTCI3 at higher chlorophyll contents compared to the MTCI means the 

index has a slightly stronger R2 of 0.47 compared to the MTCI where R2 = 0.45 (Figure 5.13). 

5.3.4. S2TCI 

Section 5.3.1. began by highlighting the three key changes that must be considered when applying 

the MTCI using S-2. Having analysed each affect individually amalgamating these spectral impacts 

can be seen to result in a significantly higher TCI output. 

 

Figure 5.18: Changing relative percentage difference between the S2TCI and the MTCI with 

chlorophyll content taken from the SEN3Exp field campaign. 

The output of the S2TCI is between 44.28% and 68.8% higher than MTCI. The change is linear with 

increasing chlorophyll content with an R2 of 0.61. When compared to chlorophyll content for the 

SEN3Exp dataset S2TCI has an R2 of 0.52 which is higher than the MTCI R2 of 0.45. The 

improvement in correlation can be attributed to the better performance of the red and NIR bands 

which more than compensate for the slight loss in signal from the RE. 
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Figure 5.19: Comparison between S2TCI and the MTCI derived from CASI hyperspectral 

reflectance data for the SEN3Exp field campaign. 

Comparing the MTCI and S2TCI for the SEN3Exp dataset results in a relationship with an R2 of 0.99 

for the following equation. 

𝑆2𝑇𝐶𝐼 =  1.6866 ∗ 𝑀𝑇𝐶𝐼 − 0.3406 Eq. (5.6)  

This equation is a starting point for direct comparison between the MTCI or OTCI and S2TCI with 

the caveat that it is highly likely to be scene specific. Any change in a range of variables such as 

the sensor type used to generate the synthetic data, vegetation type, view geometry and 

background condition would almost certainly result in a different comparison equation. Although 

this analysis has given an initial insight into how the MTCI will change with application using S-2 

much further validation with other datasets at different locations would be required to enable a 

method to be developed to allow direct comparison between data of the two sensors. It should 

be noted that there is great worth in such a development as the ten year MERIS MTCI dataset 

could be compared with the high spatial resolution opportunities available using S-2 to monitor 

change in phenology where mixed pixels are a problem. Although such preliminary equations can 

be developed using hyperspectral data to generate synthetic bands a true comparison equation 

will only likely be available when both satellites are in operation where they will provide great 

opportunity for cross-validation through contemporaneous acquisitions in large, homogenous 

fields where mixed pixels will not be a problem.       
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5.4. Feasibility to Downscale to S-2 from S-3 and MERIS Data 

Downscaling is the practice of combining high temporal, low spatial resolution imagery with low 

temporal, high spatial acquisitions. The method aims to create a synergy product that enables a 

high temporal, spatial and spectral resolution dataset. Consequently development of such a 

technique between S-2 and S-3 has high appeal for studies in areas where heterogeneous 

vegetation cover mean that the even in 300 m full resolution mode S-3 spatial resolution would 

be insufficient and lead to significant uncertainty due to the mixed pixels. There are multiple 

methods that have created fusion products such as work by Gao et al. (2006) creating the Spatial 

and Temporal Adaptive Reflectance Fusion Model (STARFM) with Landsat and MODIS data (see 

Walker et al. 2012) or Zurita-Milla et al. (2009) using MERIS. Recently Amorós-López et al. (2013) 

tested a fusion approach to monitor small and medium sized crops using the spatial 

characteristics of Landsat while retaining the fine spectral and temporal resolution of MERIS. 

Earlier work by Núñez et al. (1999) merged SPOT and Landsat data which was very interesting as it 

used panchromatic SPOT data, which had a spatial resolution of 10 m, to enhance multispectral 

Landsat data (30 m). 

5.4.1. Data and Methods 

5.4.1.1. Data and Study Site 

To investigate the opportunities of downscaling using S-2 and S-3 either synthetic or surrogate 

multi-temporal contemporaneous data was needed with ground based knowledge of vegetative 

condition. To generate synthetic data for S-2 hyperspectral, high spatial resolution data is needed 

which is rare at the multi-temporal level required for analysis. Consequently a review was 

conducted into the suitability of sensors with capabilities of reflectance measurements in the RE 

region to use as a surrogate for S-2. The most suitable is Proba-1 ESA’s smallest satellite. The main 

sensor of Proba-1 is the Compact High Resolution Imaging Spectrometer (CHRIS). CHRIS is an 

opportunistic sensor which targets planned sites at specified times. Typically only one or two sites 

are observed each day with irregular revisit times to accommodate accepted research proposals. 

In operational mode 1 CHRIS acquires reflectance in 63 separate spectral bands for a ground area 

of 13 km2 at a spatial resolution of 34 m. Band positions are similar to S-2 and are presented in 

Table 5.2. 

 

http://www.sciencedirect.com/science/article/pii/S0303243412002449
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Table 5.2: Most suitable CHRIS bands as surrogate data of Sentinel 2. 

CHRIS (Mode 1)   Sentinel-2   

Band 
Central 

Wavelength 
(nm) 

Bandwidth 
(nm) 

Band 
Central 

Wavelength 
(nm) 

Bandwidth 
(nm) 

2 442 9 1 443 20 

7 490 9 2 490 65 

14 561 10 3 560 35 

24 661 11 4 665 30 

30 703 6 5 705 15 

36 742 7 6 740 15 

42 785 8 7 783 20 

47 841 9 8 842 115 

50 868 9 8a 865 20 

 57 940 20 9 945 20 

 

Section 5.2. highlighted the considerable variance in measured reflectance and algorithm output 

with spectral changes between S-3 and S-2. However the differences between CHRIS and S-2 are 

significantly smaller than those analysed previously and should not have a significant impact in 

assessing the feasibility of a synergy product between S-2 and S-3. Fortunately, FR MERIS imagery 

is a much simpler surrogate for S-3 and is widely available globally.  

To investigate the feasibility of downscaling from S-3 to S-2 vegetation with both homogenous 

and heterogeneous fields, with respect to FR-MERIS pixels, would be required. The availability of 

CHRIS data was the key limiting factor in site selection due to the irregular revisit time of the 

sensor and that few test sites were adequately documented with ground data, specifically crop 

information. Ideally monthly CHRIS acquisitions were required with availability of 

contemporaneous FR-MERIS imagery. In the summer of 2004 the ESA and the University of 

Valencia organised SPectra bARrax Campaign (SPARC) (ESA 2004) which occurred in tandem with 

CHRIS acquisitions. Vegetative ground measurements and specific crop information were 

documented. It should be noted that this is the same test location as the SEN3Exp 2009 field 

campaign previously used in this chapter as well as in Chapter 4 and is highlighted in Figure 5.20 

and Figure 5.21.  
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Figure 5.20: Location of Barrax test site in Spain. Landsat image (04/10/2013) courtesy of NOAA, 

accessed via Google Earth.  

 

Figure 5.21: CHRIS true colour image of Barrax test site (16/07/2004). 
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CHRIS availability was analysed using the Earth Observation Link (EOLI) portal via ESA. Six CHRIS 

acquisitions were found for Barrax in 2004 with a large portion of the 13 km2 scene shared 

between them. In turn the availability of FR-MERIS data was analysed using EOLI with the 

intention of matching each CHRIS scene with a clear sky MERIS image as close as possible to the 

date of each CHRIS acquisition.  

Table 5.3: Summary of CHRIS and MERIS images used and the gap between possible base pairs. 

CHRIS MERIS Difference 

Image Name Date Image Name Date 

in Days 

CHRIS_BR_040323_3F20_41 23/03/2004 MER_FR__2PNEPA20040321 21/03/2004 -2 

CHRIS_BR_040527_416E_41 27/05/2004 MER_FR__2PNEPA20040520 20/05/2004 -7 

CHRIS_BR_040630_42C7_41 30/06/2004 MER_FR__2PNEPA20040628 28/06/2004 -2 

CHRIS_BR_040716_436C_41 16/07/2004 MER_FR__2PNEPA20040720 20/07/2004 +4 

N/A N/A MER_FR__2PNUPA20040824 24/08/2004 N/A 

N/A N/A MER_FR__2PNUPA20040922 22/09/2004 N/A 

N/A N/A MER_FR__2PNUPA20041023 23/10/2004 N/A 

CHRIS_BR_041116_49CF_41 16/11/2004 MER_FR__2PNEPA20041118 18/11/2004 +2 

CHRIS_BR_041228_4BAF_41 28/12/2004 MER_FR__2PNEPA20041223 23/12/2004 -5 

 

It can be seen that there is at most seven days between the paired images and for half the dates 

there is only two days difference. It is desirable to minimise the difference in time between 

acquisitions to mitigate the uncertainty from change in vegetative state in the base pairs. 

Unfortunately the CHRIS images are not equally distributed throughout the year with a significant 

four month gap between acquisitions in July to November. In agricultural terms for summer crops 

this means the period of senescence and harvesting will be missed at high spatial resolution. 

MERIS imagery was available for the period and obtained to generate synthetic high resolution 

imagery for the period using the other base pairs. All CHRIS images are provided in Figure 5.22. 
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Figure 5.22: All CHRIS acquisitions for the Barrax test site. A geometrically similar red ring has 

been added to aid visual comparison.     

Level 2 FR-MERIS data is delivered as top of the canopy reflectance data. Consequently the only 

processing required was to investigate pixel positional error between the MERIS dates. User 

supervised geometric correction was consequently applied to the images to ensure pixels can be 

directly compared throughout the time series. Processing of the CHRIS data however was 

computationally more strenuous and performed using Basic ERS & Envisat (A)ATSR and MERIS 
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(BEAM) software and the CHRIS Toolbox plugin available. Noise reduction was performed first 

which helps to remove vertical striping caused by the slit effect and superposition of high-

frequency noise. The algorithm can be reviewed in more depth in a paper by Gómez-Chova et al. 

(2008). Subsequently atmospheric correction was applied to convert top of the atmosphere 

radiance to top of the canopy reflectance measurements. The process uses MODTRAN4 (Berk et 

al, 2003) to update the spectral characterisation of the CHRIS data and uses the aerosol optical 

thickness at 550 nm and columnar water vapour at 940 nm to retrieve surface reflectance. Finally 

the process performs spectral polishing on the data. The processes can be reviewed in more 

depth in papers by Guanter et al. (2005a, 2005b). Finally after atmospheric correction the data 

was geometrically corrected using CHRIS telemetry files which are available for all CHRIS 

acquisitions. It was found that the correction performed by the CHRIS Toolbox required some 

further user supervised geometric correction using ground control points from georeferenced 

SPOT imagery. 

5.4.1.2. Methods 

STARFM is a widely used blending algorithm (Gao et al. 2006; Hilker et al. 2009; Walker et al. 

2012; Emelyanova et al. 2013) that combines low spatial, high temporal resolution MODIS data 

with high spatial, low temporal resolution Landsat data to create a high spatial product with 

enhanced temporal coverage. This chapter will continue by outlining the theoretical basis of 

STARFM and investigate if it will be suitable for use with S-2 and S-3. The process relies on 

creating a base pair, from an as near as possible contemporaneous acquisition by both sensors 

that are to be fused. The selection of this pair is paramount as the strength of final synthetic 

product is dependent on conditions being as similar as possible for the acquisitions (Walker et al. 

2012). The theoretical foundation of STARFM is that the difference in pixel reflectance between 

the base pair images will remain constant for both preceding and succeeding acquisitions (Gao et 

al. 2006). Therefore if the difference can be calculated it can be used to adjust the high temporal, 

low spatial resolution data to generate synthetic high spatial resolution data as will be explained 

in the following steps. 

S2(x,y,t0) = S3(x,y,t0) + d 

Where S2 and S3 represent Sentinel-2 and Sentinel-3 reflectances at pixel locations (x, y) at the 

acquisition window t0 where the difference in reflectance between the sensors is d. 

Therefore through rearranging the previous equation d can be established in terms of S-2 and S-3 

pixel reflectance. 

d = S2(x,y,t0) - S3(x,y,t0) 

javascript:searchAuthor('G%C3%B3mez-Chova,%20L')
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If constant and known then the difference (d) between the base pair can be applied to other 

acquisitions of the high temporal imagery (S-3) where high resolution acquisitions (S-2) are not 

available to create synthetic high resolution data. 

S2(x,y,tn) = S3(x,y,tn) + S2(x,y,t0) - S3(x,y,t0) 

Therefore S-2 reflectance for the acquisition date tn is the S-3 pixel reflectance for that date plus 

the difference in reflectance between the S-2 and S-3 base pair. Consequently using this method 

high resolution synthetic S-2 data can be generated where S-3 data is available if a base pair of 

suitable compatibility exists (see Gao et al 2006 for more examples).  

CHRIS and MERIS reflectance bands will be linked according to Table 5.4 below. 

Table 5.4: Linking of nearest spectral bands between sensors. 

CHRIS (Mode 1) Sentinel-2 Sentinel -3 / MERIS 

Band 
Central 

Wavelength 
(nm) 

Band 
Central 

Wavelength 
(nm) 

Band 
Central 

Wavelength 
(nm) 

2 442 1 443 2 442.5 

7 490 2 490 3 490 

14 561 3 560 5 560 

24 661 4 665 7 665 

30 703 5 705 9 708.75 

36 742 6 740 10 753.75 

42 785 7 783 12 775 

50 868 8a 865 13 865 

 

Of specific interest is the best time to select base pairs for the model. Walker et al. (2012) 

suggested that when the dates of the base pair are close to the time of maximum vegetation 

growth it is probable that the synthetic images will demonstrate less disparity with regards to 

vegetation dynamics than they would do if the base pair was observed during the more volatile 

growth of spring. Use of such base pairs consequently results in a greater level of accuracy of 

spectral correspondence between the images. To investigate the best time to establish base pair 

selection multiple base pairs were selected to assess which would provide the most accurate 

predictions of synthetic data. Consequently base pairs were established for all available CHRIS 

data except December due to similarities with November to assess any disparity in their 

performance. It should be noted that the lack of CHRIS data between August and October means 

that a large part of the senescent period will be missed from base pair analysis. 
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Test sites were established for the following crops: alfalfa, corn, sunflower, potato, sugar beet and 

garlic which was possible through using maps from the SPARC 2004 field campaign data 

acquisition report (ESA 2004) which can be seen in Figure 5.23. 

 

Figure 5.23: Crop map from SPARC 2004 taken directly from the final acquisition report (ESA 2004) 

highlighting the various crops and their locations. 

Spectra of the CHRIS data were assessed for all the months available for all the crop types to 

establish phenological state in each image. It was found that for some fields of alfalfa there were 

two distinct production cycles in the space of a year while summer crops exhibited growth in May 

with a canopy maximum established in June or July. The average MTCI of each crop was 

calculated using the available CHRIS acquisitions and each base pair was used to predict high 

spatial imagery for all the months where MERIS data was available (Table 5.3). Initial assessment 

indicated that the CHRIS data had some issues for November and December that only affected the 

reflectance measurements directly on the RE. CHRIS reflectance measurements adjacent to band 

30 were affected too meaning that a replacement could not be used. Consequently NDVI was 

calculated in addition to the MTCI to enable assessment of the fusion model during the senescent 

period in November. 
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 Figure 5.24: Predicted CHRIS imagery using STARFM for the July base pair for the NIR. 
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5.4.2. Results 

Synthetic CHRIS data was produced for all available MERIS dates using the four base pairs. In total 

40 predicted images were produced generating high spatial resolution data for any date that the 

medium spatial resolution MERIS was available. 

 Figure 5.24 provides an example output of the fusion model for the July base pair. While eight 

predicted images were produced for all MERIS dates that are outlined in Table 5.3 the figure 

presents the NIR reflectance for half of these: March, June, September and November. The fusion 

model can be seen to utilise the difference in MERIS reflectance in conjunction with the base 

pairing to predict reflectance at a high spatial resolution. Visually the data matches well and 

differences between the base pair and other MERIS dates are reproduced in the high spatial 

predicted data. For example the central dark patch of low NIR reflectance that is present in June, 

but not July, is modelled well in the June predicted CHRIS image. Also changes of the two adjacent 

fields with very high NIR reflectance located at the eastern limit of the July image are reproduced 

well by the fusion model. To investigate this in more detail the MTCI and NDVI of six different 

crops was calculated for each base pair and compared to the measurements from actual CHRIS 

acquisitions.              

 

Figure 5.25: Base pair performance at predicting NDVI for alfalfa. 

The dashed line in Figure 5.25 represents the NDVI calculated from actual CHRIS acquisition dates, 

hence why data is unavailable between August and October. The other series denote the 

estimated NDVI for each base pair which can be used to assess performance compared to the 

actual field measurements. It can be seen that the Alfalfa canopy was certainly harvested in June 

and predicted data suggests also a smaller partial loss of the canopy in August. Although each 
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base pair has predicted the NDVI with varying success June has significantly underestimated NDVI. 

This is likely due to the fact that the base pairing was made when the field NDVI was at its 

minimum which as previously mentioned has been found to be suboptimal in previous studies 

(Walker et al. 2012). Pairings that were made during canopy maxima, such as: March, July and 

November, do respond to measured reductions as can be seen clearly in Jun and December. 

However the results of these canopy maxima pairings do not predict low enough NDVI values for 

the minima found in June and December. 

 

Figure 5.26: Base pair performance at predicting NDVI for corn. 

In Figure 5.26 corn can be seen to develop a dense canopy between May and July which is not 

tracked well by the March and May pairings which were before growth began. Nevertheless as 

was previously highlighted with alfalfa pairings that were made during the vegetative maximum 

predict exaggerated NDVI values in months where canopy cover is low. Differences were 

calculated between the measured and predicted NDVI values for all the crop types for each 

month of the year where MERIS data was available and the percentage differences are 

summarised in Table 5.5 for NDVI and Table 5.6 for MTCI.  

 

Table 5.5: Average Difference in NDVI values for each pairing. 

 
Alfalfa Corn Sunflower Potato 

Sugar 
Beet Garlic Average 

March 19.94% 151.28% 37.74% 207.33% 281.93% 85.50% 130.62% 

May 28.73% 311.87% 167.49% 72.35% 139.52% 41.72% 126.95% 

June 94.71% 58.84% 62.62% 46.94% 47.63% 41.85% 58.76% 

July 20.80% 51.94% 42.51% 48.18% 49.15% 40.90% 42.25% 

November 19.04% 92.54% 45.08% 74.88% 53.23% 171.05% 75.97% 
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Table 5.6: Average difference in MTCI values for each pairing except November. 

 
Alfalfa Corn Sunflower Potato 

Sugar 
Beet Garlic Average 

Mar 31.44% 112.65% 106.06% 66.26% 115.31% 36.38% 78.02% 

May 34.95% 156.89% 325.53% 36.97% 44.97% 23.97% 103.88% 

Jun 53.72% 58.20% 64.90% 32.86% 48.70% 29.41% 47.96% 

Jul 49.25% 48.27% 84.95% 19.77% 13.09% 26.78% 40.35% 

 

It can be seen in Table 5.5 that different parings were able to predict some crops better than 

others. Assessment of this indicated again that the best performing pairings were those made at 

maximum canopy extent. As an example the pairing with the highest average variance, March, 

performed well for alfalfa and sunflower, the only two crops where there were already canopies 

in March. As the universal applicability of this downscaling method is important the differences 

were averaged to see what individual pairing would produce the best results for any crop. July 

provided the best results with an average NDVI prediction difference of 42.25% while March and 

May resulted in very poor averages at 130.62% and 126.95% respectively. Results for the MTCI 

show similar to findings with the July and June base pairs having the best overall average 

prediction difference of 40.35% and 47.96% respectively. Results strongly suggest that the best 

time of the year to make a pairing using STARFM is when the canopy is the fullest and for the 

Barrax region that is in July for the majority of crops. 

Although efforts to mitigate uncertainty have been made there are several areas that should be 

highlighted. Firstly, while extensively geometrically corrected linking 300 m MERIS and 32 m 

CHRIS data is challenging. Secondly, as noted in Table 5.3 the difference in time between the 

CHRIS and MERIS base pair acquisitions was up to seven days within which both canopy, solar and 

background conditions could have changed. Thirdly, there is no way to establish what crops were 

growing outside of the observations made in July during SPARC 2004. This means that what is 

presented as corn is only certain to be so during July. Nevertheless as this method is tracking 

changes in MTCI and NDVI, which are not crop specific, even if a field was harvested and a 

different crop was sown the downscaling method should account for this. Finally, the fusion of 

data from different sensors is problematic with differences in view geometry as well as spectral 

bands especially considering Proba-1 is a technology demonstrator, albeit a highly successful one 

that resulted in continuation of the series with Proba-2 launched in November 2009 and Proba-V 

(Proba Vegetation) in May 2013 (ESA 2014b). 
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5.5. Conclusions 

This chapter has investigated application of the MTCI using the future Sentinel optical sensors. 

With regards to S-3 findings indicate that only the effect of increased view angle between MERIS 

and OLCI will vary the MTCI by up to 5.3%. For S-2 there are many more considerations. Firstly as 

the MSI will have only one band in the red part of the electromagnetic spectrum the MTCI will 

effectively have to use MERIS band 7 rather than 8. Results indicate that as the red absorption 

feature is wide and relatively stable in vegetated areas the transition will reduce the MTCI by up 

to 13% more in sparse, than developed, canopies. A much greater difference is caused by the use 

of a RE band at 705 nm rather than 708.75 nm where results imply that measured reflectance on 

the RE will decrease by on average 12.12% meaning the MTCI increases by 42-54%. Furthermore 

findings suggest that using MSI band 7 will be more favourable than band 6 in the S2TCI formula. 

When all the differences are amalgamated results indicate band changes will mean S2TCI is 

between 44.28% and 68.8% higher than the MTCI and consequently an initial formula has been 

provided to convert between S2TCI and MTCI. Nevertheless it should be considered that results 

were derived from a single field campaign and future work using other data would increase 

confidence in the preliminary findings that have been presented. 

It has been shown that it is possible to downscale from S-3 to S-2 using methods previously 

developed by Gao (et al. 2006) for the MODIS and Landsat sensors. Results produced reflectance 

values at the 32 m CHRIS resolution from 300 m MERIS data. Data indicates that better 

predictions can be made when base pairs are linked during closed canopy conditions supporting 

previous findings by Walker (et al. 2012). Future work strongly suggests refining the model by 

possibly adding in multiple pairs of data that document the canopy maximum and minimum. This 

will effectively give the correct range of values between which the predictions can operate and 

use the S-3 data to track changes during the phenological transitions of the target vegetation. 
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 Quantification of Change in Photosynthetic Chapter 6:
Capabilities of Deforested Locations and Opportunity for 
Future Recovery under the REDD+ Framework 

6.1. Introduction 

Forests are important areas for biodiversity and are a source of livelihood for many as they cover 

30% of the total land surface (FRA 2010). Monitoring the rate of deforestation is important as 

forests account for 90% of the annual interchange of carbon between the atmosphere and the 

land surface. The Global Forest Resources Assessment 2010 (FRA 2010) highlights that there is 

more carbon in the world’s forest than in the atmosphere or remaining oil stocks. An estimated 

net loss of 13.5 million hectares of forest has occurred in the last 20 years although there was 

37% less net deforestation in 2000-2010 than in 1990-2000 which suggests the rate is slowing. 

The Reduced Emissions from Deforestation and Degradation (REDD) policy was launched at the 

United Framework Convention on Climate Change (UNFCCC) summit 2008 with the key aim to 

provide the framework for financial compensation to countries who are able to reduce emissions 

from deforestation (REDD 2009). REDD+ adds to this by recognising that it is possible to not only 

prevent deforestation and degradation but also enhance the carbon stock (increasing 

sequestration) in forests. REDD+ is effectively a mitigation mechanism that non-Annex I Parties 

(developing countries) are encouraged to utilise to gain compensation for the results of policies 

that have sequestered carbon.  

There are several key sections of the REDD+ proposal; defining which activities are eligible, how 

emission reductions are calculated over a defined time period, what entity finances the reduction 

and where the compensation goes.  Satellite acquisitions can be used to derive measurements of 

the photosynthetic capabilities of forests over large areas while also monitoring changes that may 

occur through regular temporal coverage. Consequently these characteristics make Earth 

Observation sensors of paramount importance to REDD+ as they can economically quantify the 

amount of carbon sequestered over a defined period. Therefore there is a need for robust 

methods for measuring the mitigation performance of a country to enhance the confidence of 

both the benefactor and the beneficiary. The UNFCCC has called for development of monitoring, 

reporting and verification (MRV) techniques (UNFCC 2011). Depending on the study or source 

different MRV approaches are recommended. A tier based performance approach was 

recommended by the Intergovernmental Panel on Climate Change (IPCC). The highest confidence 

levels are achieved at Tier 3 which utilises data spatially specific to a REDD+ policy. When Tier 3 is 

unachievable Tier 2 country specific data could be used and failing that the most universal and 
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easily applicable Tier 1 incorporates globally available data. Herold and Skutsch (2011) called for 

MRV strategies to be aligned into three groups: conservation, reduced deforestation and positive 

impacts on the forest stocks. Furthermore they emphasised focus of Tier 3 MRV activities in areas 

where key drivers are the most active and therefore the threats, and possible economic 

compensation, are the highest.  

Satellite data, with suitable spatial and temporal resolutions, can be used to validate REDD+ 

activities. Sentinel-3 which is planned for launch in mid-2015 (ESA 2011a) will continue the 10 

year MERIS dataset with enhanced temporal resolution. With multiple spectral measurements 

taken in the RE region MERIS is highly suitable for retrieving chlorophyll content. This analysis will 

use MERIS data to establish and investigate a methodology to derive the change in photosynthetic 

capabilities of an area due to deforestation. However it should be considered that the use of 

optical remote sensing might not be optimal for rainforest locations and the use synthetic-

aperture radar (SAR) would allow coverage irrelevant of weather conditions which is a significant 

concern within these areas. While SAR data is not available operationally, ESA plan to launch 

Biomass (ESA 2012d), such a device, in 2020 which has been supported by campaigns such as 

BioSAR 2010 (Gustavsson et al 2011). Nevertheless the performance of Biomass, planned to 

operate at 200 m spatial resolution (ESA 2014c), is yet to be seen and furthermore there will be a 

significant period between the launch of the Sentinels and Biomass where optical remote sensing 

will be the only possibility for global monitoring at a high temporal resolution.     

6.1.1. Study Location 

In 2005 Nigeria was found to have the highest rate of deforestation in the world according to the 

Food and Agriculture Organisation of the United Nations (FAO 2010). Deforestation continued 

between 2005 and 2010 at 410,100 hectares per year according to Batta et al. (2013). The high 

level of deforestation is driven by rapid population growth stimulating agricultural development 

and the need for fuel for cooking (Famuyide et al. 2011). Rising energy prices make cooking gas 

and kerosene unaffordable for many who consequently rely more heavily on wood. The majority 

of Nigeria’s primary forests are tropical and located in the southern part of the country. Benin 

City, one of the major cities in this region and the capital of the Edo State, is the centre of 

Nigeria’s rubber and palm oil industries. 17,802 km2 in size the Edo State is dominated by large 

areas of primary and secondary forest accounting for 76.5% of the total land area (Formecu 

1999). Preliminary analysis utilising a readily available Global Forest Change product derived from 

Landsat data (Hansen et al. 2013) showed Edo to have some of the most concentrated 

deforestation in Nigeria between 2000 and 2012. Consequently Edo was set as the focus of the 

analysis. 
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6.2. Data and Methods 

Global Land Cover (GLC) data from 2000 (Mayaux et al. 2003) for Africa was acquired to 

distinguish areas of forest from woodland and shrub land (Figure 6.1). According to this the north 

east of Edo is primarily deciduous wood and mixed shrub land. Benin City, at the centre of south 

west Edo, is also surrounded by shrub land. Further away from the city there are large areas of 

mosaicked forest and croplands that constitute 39% of Edo’s total land cover. The majority of 

evergreen forests are near the borders of Edo and make up 15% of the total land cover. GLC 2000 

data was used to focus test sites at areas of forest and to help distinguish primary deforestation.  

 

Figure 6.1: Global Land Cover of the Edo State Nigeria generated using GLC2000 data from 

Mayaux et al. (2003). 

MERIS data was accessed using the EOLI-SA portal for the lifecycle of the sensor. It was quickly 

established that the cloud cover for the region was extensive throughout the majority of the year. 

To understand the pattern of the typical cloud characteristics of Nigeria four years of the MOD06 

(MODIS Cloud Product) were acquired from the NASA Earth Observations portal biannually 

between 2005 and 2011 at a monthly resolution. The data was then extracted within the 

boundaries of Nigeria, provided by Global Administrative Areas (GADM 2014), and converted to 

total cloud cover. 
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Figure 6.2: Monthly cloud cover as a percentage of Nigeria’s total land area for 2005, 2007, 2009 

and 2011 using the MOD06 product. 

Figure 6.2 indicates that the total cloud cover of Nigeria, based on the years 2005, 2007, 2009 and 

2011, follows a consistent monthly pattern. The maximum cloud extend for the country occurs in 

August for each year ranging between 88.2-91.5% whereas the minimum cover happened in 

December for 2005, 2009 and 2011 and January for 2007. December had the lowest average 

cloud cover of 15.5% with January and November following with 25.4 and 27.2% respectively. All 

the other months had more than 40% on average with half the year above 70%. This makes the 

occurrence of clear sky MERIS imagery very unlikely outside of the November-January minimum. 

Moreover cloud cover was found to not be distributed evenly across Nigeria. The majority 

occurred over the rainforests located in the south near Edo which meant that clear sky parts of 

the MERIS scenes more often than not occurred in areas irrelevant to the focus of the study. To 

further investigate this issue MERIS data, which has a repeat acquisition period of three days of 

average as this latitude, was assessed. Occurrence of a cloud free acquisition outside of the three 

month window was nearly non-existent and consequently analysis would have to work within 

these constraints. Accordingly cloud free MERIS images were acquired annually for 2005-2011, as 

clear sky acquisitions were not available for 2004 and 2012, which are shown in Table 6.1. 
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Table 6.1: Details of MERIS Acquisitions used in analysis. 

Year Date  

2005 2004-11-30 MER_FR__2PNUPA20041130_093109_000000982032_00308_14390_3647 

2006 2005-12-29 MER_FR__2PNUPA20051229_094800_000000982043_00437_20030_3628 

2007 2006-12-11 MER_FR__2PNUPA20061211_094226_000000982053_00394_24997_3630 

2008 2007-12-25 MER_FR__2PNUPA20071225_093057_000000982064_00308_30422_3634 

2009 2008-12-28 MER_FR__2PNUPA20081228_093346_000000982075_00079_35704_3636 

2010 2010-01-23 MER_FR__2PNUPA20100123_094501_000000982086_00165_41301_3639 

2011 2011-01-19 MER_FR__2PNUPA20110119_094515_000000983098_00338_46473_3646 

 

It can be seen that each acquisition occurred during the cloud free window during January or the 

two months prior, e.g. 2009 was acquired between 01-11-2008 and 31-1-2009 under clear sky 

conditions with little to no haze. All the data has been processed to level 2 which has the MERIS 

Bottom of Atmosphere Vegetation Index (BOAVI) available; a version of the MTCI which is already 

atmospherically corrected. 

6.3. Total Deforestation in the Edo State 

The extent and degree of deforestation that occurred in Edo between 2005 and 2011 can be 

indicated by the change in MTCI over that time period. To investigate this the BOAVI (MTCI) data 

was cleaned, subset and masked using the closed and degraded evergreen forest GLC 2000 data 

to ensure the exclusion of cropland and secondary forest.  

Figure 6.3: Comparison of MTCI histograms for evergreen forests in Edo between 2005 (left) and 

2011 (right). 
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Figure 6.3 shows that in 2005 99.5% of the evergreen forest had an MTCI of >2.25 which falls to 

91.3% in 2011. In 2011 4.28% of pixels, amounting to an area of 107.19 km, previously designated 

as primary forest had an MTCI of < 2 which is clearly within the range of soil pixels as established 

in Chapter 3 (see Figure 3.7). Comparison between the years in Figure 6.3 highlights that there has 

been significant change in pixel MTCI values for evergreen forest in Edo between 2005 and 2011. 

There are similarities in the distributions such as the mode which is 2.88 and 2.81 in 2005 and 

2011 respectively and the distinct lack of pixels with an MTCI value higher than 3.8. This suggests 

consistency between the two images and gives an upper limit of primary evergreen forest MTCI 

values. However it can be seen that there are also large changes between the distributions, 

namely the group of pixels where MTCI values are < 2 in 2011 which could be argued to have 

degraded from prior values of 3.25 in 2005 suggesting a change in MTCI of > 1 to represent 

deforestation. To further test the compatibility of MERIS imagery from 2005 and 2011 and 

establish the consistency of the change the difference in MTCI pixel values was calculated and the 

resulting distribution is presented in Figure 6.4. 

 

Figure 6.4: MTCI difference for evergreen forest pixels between 2005 and 2011, Edo state, 

Nigeria. 

As expected it can be seen that the majority of evergreen forest pixels had little to no change in 

MTCI between 2005 and 2011 with a consistent symmetrical curve between +/- 0.25 where the 

mode is 0.02. Positive MTCI pixel values indicate recovery or growth over the time period. 99% of 

the pixels where MTCI increased did so by less than 0.5 and 95% by less than 0.33. On the other 

hand of the pixels that decreased over the time period 37.6% were by more than 0.33 and 25.1% 

by more than 0.5. Not one of the 18,360 evergreen forest pixels increased in MTCI by over 0.85 

yet 1101 decreased by more than 1. As the mode is close to 0 at the centre of a skewed 
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distribution it suggests the MERIS imagery and application of the MTCI is stable between the 

years for these single images. With the caveat in mind that this is a comparison between two 

single images the skewed data suggests that there has been strong deforestation in the Edo state. 

Calculating the area of deforestation inside Edo using MTCI requires a threshold to be configured 

for which a given pixel is considered to have been deforested. Considering 99% of pixels that 

increased with regards to MTCI between 2005 and 2011 did so by less than 0.5 pixel decreases by 

more than 0.5 could be argued to be an acceptable threshold to indicate deforestation, or at least 

substantial degradation in the forest condition, while a decrease in MTCI of more than 1 suggests 

total deforestation. These thresholds will consequently be used to geographically and temporally 

present the extent of degradation and deforestation for the region. Nevertheless it should be 

noted that change in photosynthetic capability can be represented by absolute change in MTCI 

irrelevant of using a threshold for which results are exhibited later on in this chapter in section 

6.6.  

Table 6.2: Deforestation in the Edo State between 2005-2011 *based from 2000 GLC estimates of 

evergreen forest 

Threshold Pixels Flagged Area 
Percentage of 
Total Forest* 

0.5 MTCI 4619 415.71 km2 16.4% 

1 MTCI 1101 99.09 km2 4.0% 
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Figure 6.5: MTCI loss in evergreen forest for the Edo state between 2005-2011. Locations of test 

sites are provided for further discussion. 

Figure 6.5 shows the extent of deforestation with respect to evergreen forests between 2005 and 

2011. It can be seen that the forests in the south west were not significantly affected albeit there 

has been 17.1 km2 of flagged deforestation at location A. There has been a similar situation in the 

narrow band of forest that follows the Ossiomo River at location B where 14.31 km2 of intensive 

deforestation has occurred in the northern parts of the forest. Interestingly no deforestation was 

found to the south of the river which itself is likely an inconvenience to access from Benin City. 

Forests near the north-western borders of Edo at location C are relatively untouched. The same 

can also be said about the eastern forests at location D where only minor degradation has 

occurred. The most extensive and complete deforestation was found in areas north north east of 
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Benin City at location E where 259.29 km2 has been flagged as deforested. These findings 

correlate with those by Hansen (et al. 2013).    

6.4. Deriving Deforestation by Year 

Until the launch of Sentinel 2, which will retrieve multiple spectral measurements directly on the 

RE at 20 m spatial resolution, the MTCI is limited to acquisitions of 300 m using the MERIS dataset 

that will be continued with the launch of Sentinel 3. Consequently by using the MTCI to assess 

deforestation means the method is unable to compete with very high spatial resolution maps that 

have been produced with sensors such as Landsat at 30 m (Hansen et al. 2013). However MERIS 

data has the advantage of excellent temporal resolution which can allow deforestation to be 

monitored more frequently or have an increased probability of a clear sky acquisition within a set 

time period. The aforementioned Nigerian tropical climate limits the scale of this method to an 

annual assessment but it could be used at a higher temporal resolution in other parts of the 

world. 

The difference in pixel based MTCI measurements was calculated for each of the years between 

2005 and 2011 for the entire Edo state. Preliminary histogram analysis of the resulting product 

indicated that there were differences between the years. This can be attributed to issues with 

atmospheric correction and view geometry in the calculation of BOAVI (MTCI). Examples of this 

are shown in Figure 6.6. 

 

Figure 6.6: MTCI pixel differences in the Edo state for a) 2005-2006 and b) 2006-2007. 

It can be seen that there is minimal difference between average MTCI for 2005 and 2006 (Figure 

6.6(a)) while there is significant difference for 2006 and 2007 (Figure 6.6(b)). The centre of the 

distribution for 2006-2007 is 0.19 which would give the false indication of decreased MTCI across 
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the majority of the image in locations where no actual change occurred. Consequently the 

differences in distributions were noted so that they could be later applied during threshold 

analysis which would enhance continuity throughout the timespan of the dataset. The differences 

in MTCI are displayed in Table 6.3. It should be noted that, while there are some variations, the 

MTCI for the Edo state is consistently decreasing with time from 2005-2011. This was to be 

expected from a region with some of the highest rates of deforestation in Nigeria and will be 

further investigated later. 

Table 6.3 Differences in average MTCI between 2005 and 2011. 

Year 
2005-
2006 

2006-
2007 

2007-
2008 

2008-
2009 

2009-
2010 

2010-
2011 

Average 

Normalised 
Difference 

0.02 0.19 0.06 0.04 -0.02 0.06 0.06 

Area 
Flagged 

337 km2 163 km2 380 km2 334 km2 562 km2 278 km2 342 km2 

 

To visualise deforestation in the Edo state by the year that it happened a fixed threshold of 0.5 

MTCI which then was adjusted by the difference between the years outside of the 0.06 average. 

As an example for a pixel to be flagged between 2006-2007 there had to be a change of 0.63 MTCI 

whereas for 2009-2010 a smaller change of 0.42 resulted in the pixel being flagged for 

deforestation that year. The results are presented in Figure 6.7. 
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Figure 6.7: Deforestation by year for the Edo State, Nigeria. 

 As the MTCI is a statistical measure of chlorophyll content the method is unable to distinguish 

between loss of photosynthetic capability of primary and secondary forest as well as woodland or 

agricultural land. To investigate the performance of the method sites of extensive deforestation in 

primary forests that had been established previously in Figure 6.5 were selected to further 

investigate at an annual scale. 
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Figure 6.8: Annual deforestation at sites a, b and e. 

Theoretically deforestation should be seen to progress inwards over the temporal period which 

has been indicated by the arrows on Figure 6.8. At site A it should be noted that deforestation 

was focused at three points from where it spread into the forest (Figure 6.9). 

 

Figure 6.9: MERIS (300 m) imagery highlighting three point deforestation during 2005-2011 for 

site A.  

 



William James Frampton    

120 
 

Data indicates there was a large deforestation event during 2007 in middle and south of the test 

site. Sequentially in 2009 the central deforestation was expanded and a large new event occurred 

towards the north which continued deeper into the forest in 2011. Overall the direction of the 

deforestation appears to expand chronologically into the forest. However there are some smaller 

discrete areas that were flagged during 2007 and 2008 which are situated deeper than the 2011 

deforestation events. These locations are likely to be localised events separate to the continuous 

expansions from the east and were not flagged in the 2005-2011 data suggesting partial recovery. 

Site B shows strong continuity of the deforestation from the extents of the forest inwards. 

Deforestation events that occurred in 2011 are adjacent to events in the previous year and so on. 

At site E there is a general trend of deforestation inwards with the 2011 events deepest in the 

forest and those that occurred in 2005 furthest out towards the northwest. However between 

these two dates the other years of deforestation are not chronological as might be expected. The 

data suggests that deforestation has occurred from towards the centre of the site outwards. With 

regards to assessing the performance of the annual deforestation data a key assumption has to be 

made; that the deforestation begins at the borders of the forest and develops inwards. Without 

ground data it is difficult to hypothesise otherwise.      

6.5. Establishing Recovery of the Forest. 

To be able to investigate how a deforested location recovers an event must be documented early 

within the timespan of the dataset. This can be established by subtracting the MTCI of Edo in 

2006 from that in 2005. MTCI data for each year was firstly cleaned for erroneous pixels and 

subsetted via the evergreen forest GlobCover to ensure only primary forests were assessed. Using 

this dataset test sites were established which exhibited the largest levels of deforestation in 2005 

which could then be monitored for recovery throughout the remaining time period. Sites are 

shown in Figure 6.10 and their areas are documented in Table 6.4. It can be seen that there are 

areas of pixels that are within the Edo boundaries but omitted from the analysis as they were 

flagged during the BOAVI processing chain. 
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Figure 6.10: 2005-2006 deforestation test site locations. 

Table 6.4: Size of primary forest deforestation test sites in the Edo state. 

Test Site 1 2 3 4 5 

Area 5.04 km2 5.22 km2 15.57 km2 26.37 km2 9.9 km2 

 

Test sites were assigned as irregular polygons as each localised case of deforestation was equally 

irregular. At sites 1 and 2 two polygons were selected to increase the overall size of the test site 

as the heaviest deforestation was separated by several kilometres. Average MTCI of the test sites 

was extracted for each year to assess the deforestation event and if it subsequently recovers. To 

investigate the continuity of the data set the average MTCI values of several large areas, totalling 

65.34 km2, deep inside south-western and northern evergreen forests were extracted and 

compared throughout the time span (Figure 6.11). With the assumption that the MTCI of these 

central locations should be stable differences could consequently be attributed to solar and view 

geometry variations and then used to normalise the 2005 recovery test site data. 
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Figure 6.11: Average MTCI of forest calibration test site. 

 It can be seen that for the stable forest area the MTCI varied between 2.91 and 3.30. The 

percentage difference between the areas MTCI value and the average over the time period was in 

turn used to normalise the test sites MTCI data which is presented in Figure 6.12.    

  

Figure 6.12: Monitoring the MTCI of test sites after a deforestation event. 

Results suggest no recovery occurred at any of the sites, in fact MTCI continued to decrease 

consistently at every site throughout the time period. This suggests that not the entire canopy 

was removed entirely with further degradation in the sequential years. It was considered that this 

could be a problem of scale and so 300 m2 pixel values were tracked individually in an attempt to 

find discrete locations within the test sites that recovered, however results were no different. In 

turn locations were investigated that were deforested for the first time during 2007. These 
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locations showed the same post event degradation as test sites that were first deforested in 2005. 

To monitor the recovery of the photosynthetic capabilities of forest it would ideally require 

complete removal of the entire canopy in the space of a year or so. Locations such as this could 

not be found at 300 m spatial resolution. These findings suggest that while forest loss year is a 

useful indication of when and where deforestation begins, which can be used when establishing 

policies and focusing resources for sustainable management, degradation of the photosynthetic 

capabilities of the forest occurs over a longer timespan than year of initial detection.    

6.6. Predicting the loss of potential carbon sequestration. 

Without availability of ground data there is limited possibility to equate localised above-ground 

biomass (AGB) values for the evergreen forests in the state of Edo and then quantify the changes 

in AGB. There are default values as suggested by the IPCC (2006) under Tier 1 guidance which 

states for primary tropical forests the AGB is 30,000 t/km2 with a sequestration rate of 700 

t/km2/yr. This can be combined with the levels of deforestation that have been previously 

presented in Table 6.2 to provide an overall figure in changes in AGB. 

Table 6.5: Total loss of AGB and potential sequestration for the Edo region between 2005 and 

2011 due to deforestation of primary forests. 

Deforestation 
Threshold 

Pixels 
Flagged 

Area 
(km2) 

AGB 
(t) 

AGB 
Growth 

(t/yr) 

> 0.5 MTCI 4619 415.71 12,471,000 290,997 

> 1 MTCI 1101 99.09 2,972,700 69,363 

 

The estimates of how much carbon and potential sequestration that has been lost largely differ 

depending on the threshold of MTCI that is considered to have been deforested. Realistically 

sequestration rates of locations that changed by 0.5 MTCI between 2005 and 2011 will not have 

fallen completely to 0 but have certainly degraded below their original values. To gain an estimate 

of this the average MTCI value of the entire area of evergreen forest cover (based on 2000 GLC) 

was calculated for each year and normalised based on forest locations which remained 

unchanged through the time period. 
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Figure 6.13: Average MTCI of evergreen forest for the Edo state between 2005 and 2011 based on 

land category from GLC2000 data. 

Results indicate that the average MTCI of evergreen forest in Edo has decreased by 0.025 every 

year between 2005 and 2011 with a coefficient of determination of 0.87. It should be considered 

that the MTCI does not scale linearly from 0 and that locations without any photosynthetic 

capabilities can have values of 1 to as high as 1.8. What this means it that the total reduction of 

0.15 MTCI is likely to be a 7.5% drop in photosynthetic capability of the total area. Considering 

that the estimated area of evergreen forest was 2497.05 km2 in 2005 which should be able to 

sequestrate 700 t/km2/yr the likely loss in carbon sequestration per year due to deforestation in 

Edo is 131,095 t/yr. 

6.7. Conclusions 

Results have shown that the MTCI is capable of annually investigating deforestation at a Tier 1 

level. Estimates suggest 4% of the total evergreen forest present in Edo has been completely 

deforested between 2005 and 2011 and 16.4% has been significantly degraded. Analysis into the 

average cloud cover of the rainforests of Nigeria suggest that there is a 2-3 month time window of 

opportunity each year between November and January in which clear sky acquisitions are likely. 

Although one of the key strengths of MERIS is frequent temporal coverage the abundant cloud 

cover significantly limits analysis throughout the year. Consequently the use of Landsat or SPOT 

focused between November and January would provide enhanced spatial resolution irrelevant of 

poor temporal coverage throughout the rest of year compared to MERIS. Using the changes in 

MTCI values between years, it was demonstrated that it may be possible to distinguish between 

deforestation and degradation. However, the unavailability of any field data and the coarse 
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spatial resolution limits this analysis to provide broad assessment of a region rather than 

providing location specific information on change in forest cover/condition.  It should also be 

considered that the use of optical remote sensing might not be optimal for rainforest locations 

and the use SAR would allow coverage at a monthly scale rather than annual. ESA plan to launch 

Biomass (ESA 2012d), such a device, in 2020. Although this chapter has focused on 300 m 

resolution MERIS data which will be continued by OLCI aboard S-3, the methodology described 

will easily be reproducible using S-2’s MSI which will operate at 20 m resolution. 
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 Conclusions and Future Work Chapter 7:

7.1. Summary 

For over 40 years since the launch of Landsat in 1972 the difference between the maximum 

absorption of red light due to chlorophyll and the high reflectivity of the cell structure in the 

adjacent NIR has been used to estimate the biophysical variables of vegetation at a global scale. 

The NDVI, first reported by Rouse et al. (1973) and popularised by Tucker (1979), is still today the 

most commonly used method for calculating many aspects of vegetation dynamics. During the 20 

years after its introduction many investigations sought to enhance calculation of the NDVI 

(Clevers 1988; Huete 1988; Kaufman and Tanré 1992; Qi et al. 1994; Rondeaux et al. 1996; 

Gilabert et al. 2002) with adjustments that often required additional information to mitigate 

uncertainties. The main problem with such adjustments is that incorporation of additional scene 

specific information affects the universal applicability, operational use and dynamic response of 

the algorithm. During this time many papers were published that looked towards the REP as a 

viable calculation of chlorophyll content, a key driver in photosynthesis (Gates et al. 1965; Collins 

1978 Horler et al. 1983; Curran 1989; Dawson and Curran 1998), yet no satellite sensors were 

capable of its retrieval operationally. These approaches were novel as the majority of studies that 

had used the NDVI focused purely on its relationship with LAI. In 2002 the launch of Envisat MERIS 

enabled the operational measurement of reflectance directly on the RE at a medium spatial 

resolution. While planned as a research and development sensor the success of MERIS lead to 

Copernicus (previously GMES) operational services. One such product was the MTCI a surrogate 

REP index that was implemented as a standard level 2 global product (Dash and Curran 2004) due 

to its correlation with chlorophyll.  

Advances in the radiometric, temporal, spectral and spatial attributes of satellite sensors drive 

innovation of entirely new algorithms as well as enabling the refinement and validation of current 

methods. Out of the five Sentinel missions two will retrieve reflectances in the optical region as 

well as measurements directly on the RE which enables estimation of REP. S-3 will continue the 

long running MERIS dataset and with three sensors planned for launch the resulting tandem 

operation will mean the entire terrestrial environment is monitored every two days at the 

equator improving with increasing latitude (ESA 2011b). Long running datasets such as these are 

paramount in providing perspective for investigations into surface and climate change and the 

impacts they bring for ecological viability and phenological transitions in vegetation (Zhu et al. 

2013). On the other hand with two spectral bands measuring reflectance directly on the RE the 

radiometric capabilities of S-2 will be unparalleled for an operational satellite sensor for use with 
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vegetative studies. Furthermore the sensor will have a fine spatial resolution of 20 m which 

should enhance the accuracy of the retrieval of the biophysical parameters of vegetation.     

The MTCI-EVAL project was conducted to evaluate and validate the MTCI algorithm. Several key 

factors were established that influenced its performance; the soil background, view geometry and 

aerosol optical thickness. It was found that as the MTCI puts large weight on the reflectance of 

the RE band in relation to the position of the red and NIR the effect of the soil background 

reflectance at low canopy covers can cause significant uncertainty. Consequently there is much 

scope for research to devise a method to account for or mitigate this uncertainty. Current 

methods of accounting for the influence of soil have been argued to have significant issues as 

without extensive ground data they result in loss of dynamic vegetation response. To further 

investigate this issue on the MTCI MERIS training data were investigated to explore the green up 

period for vegetation and subsequently used to establish an algorithm to enhance the capabilities 

of the MTCI at low canopy covers which typically have values of below two. Test sites were 

selected in Iowa to characterise the phenological development of corn and soybean over an entire 

growing season in 2005. Various stages of canopy development were documented for both crops 

and subsequently each had their spectral reflectances contrasted with background soil 

measurements using MERIS data. The largest differences were found using MERIS bands 5, 8 and 

10 which were combined to form the Soil Discrimination Index (SDI). Initial investigations showed 

that the SDI was more sensitive to low density vegetative changes than the NDVI or the MTCI. 

Consequently a suggested threshold was calibrated for the SDI by applying it to 40 separate soils 

from the ASTER spectral soil library which found most common soil types varied between 0.6 and 

0.9. Sequentially this was applied to a separate data set from Dalhart Texas which found only 

0.04% of pixels with an MTCI above 2.1 were flagged with an SDI of 0.9. Application of the SDI as a 

soil flag will notify the user that a given MTCI result is likely due to a soil background with a 

naturally high VI output thereby increasing the robustness of the MTCI at values below 2. The flag 

will be most useful when using the MTCI across large scenes with many varying canopy covers and 

soil background types and conditions. Of specific note is that the flag should increase the accuracy 

of the MTCI when used to estimate photosynthetic capabilities of an area. As a by-product of the 

research it was also found that corn and soybean can be differentiated between using the MTCI 

over the growing season. Subsequently the SDI was applied to two study sites in Spain as an initial 

validation of the flag. While it performed well analysis highlighted two issues that are worth 

investigating in future study. Firstly, that inclusion of green reflectance into the formula results in 

less robust flagging of senescent vegetation and secondly, that the flag performs better in a forest 

environment than an agricultural setting. While work has applied the SDI to three separate 
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environments in different parts of the world utilising multiple datasets further application is 

recommended to validate its performance as a soil discriminator.  

During the investigation to mitigate the influence of soil while working with multiple VIs, datasets 

and test sites it became apparent that ground data would greatly enhance confidence in the 

derivation of methods to retrieve the biophysical parameters of vegetation. As S-2 will be the first 

sensor to have multiple spectral bands directly on the RE at a high spatial resolution operating at 

a global scale it holds much promise for vegetative monitoring. Two field campaigns, SicilyS2EVAL 

and SEN3Exp, were used to create a 60 ESU dataset of LAI and LCC measurements to compare 

with synthetic S-2 data generated from contemporaneous hyperspectral acquisitions using CASI-

1500 and Specim EAGLE sensors. Investigations into the correlation between LAI, LCC and canopy 

chlorophyll content also incorporated data from PROSAIL models (Jacquemound and Baret 1990; 

Verhoef 1984, 1985). It was found that the PROSAIL models compared well with the field data in 

the NIR and green bands but failed to agree in the red part of the spectrum. The parts of the 

spectrum that were most strongly correlated with chlorophyll were between 660-690 nm and 

750+ nm. Of note is that S-2 band 3 (542.5-577.2 nm), according to the data presented, will not be 

retrieving the optimal wavelengths that were found between 525-555 nm. S-2 band 6, which is a 

new RE/NIR band with respect to previous satellite sensors such as RapidEye and MERIS, was 

found to, as a replacement for MERIS band 10 (753.75 nm +/- 3.75 nm), receive increased mixed 

signal from the RE as it is situated at the peak of the RE rather than slightly beyond it. This meant 

that S-2 band 7, which is similar to MERIS band 12 (775 nm +/- 7.5 nm), was found to be the 

optimal band for capturing the vegetative signal in the NIR based on the SicilyS2EVAL and 

SEN3Exp data sets. Two new methods were proposed to estimate the biophysical variables of 

vegetation using S-2 MSI data, IRECI and S2REP. IRECI incorporates four bands on, and either side 

of, the RE while S2REP is a version of REP estimation for S-2 using linear interpolation as used on 

previous sensors by Guyot and Baret (1988) and Clevers et al. (2000). Each method utilises direct 

estimation of the slope of the RE the main capability of S-2 MSI which differentiates it from other 

globally operational sensors. IRECI was found to have the highest correlation with canopy 

chlorophyll content followed by NDI45 (Delegido et al. 2011b) and the NDVI. A similar conclusion 

was drawn for LAI with IRECI and NDI45 the best performers. However for LCC S2REP and the 

MTCI, the only two indices that solely characterise the RE, were the methods with the best 

correlations. Unlike many previous studies this work incorporates multiple field campaigns with 

many sampling points and a wide range of vegetation types.  

Following the assessment of the new avenues for investigation that S-2 will bring work proceeded 

to evaluate the application of MTCI using S-2 and S-3. With regards to S-3 OLCI it was important to 

assess the continuity the platform would have with Envisat MERIS. The only significant difference 
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that could be established was that of the view angles as S-3 will be tilted 12.58o away from the 

sun to minimise glint. This leads to a maximum observed view angle of 55.6o, 15.6o higher than 

that of MERIS. This difference found to cause a mean relative difference of 2.3% to the MTCI by 

using an annual data set from Spain with canopy variables forward modelled using the PROSAIL 

model (Baret et al. 1992, Jacquemoud et al. 2009). Application of the MTCI using S-2 is much more 

complicated than S-3 due to the large spectral differences the sensor has with Envisat MERIS. The 

combined effect means that S2TCI will be between 44.28% and 68.8% higher than the MTCI and 

an initial formula has been provided to convert between the indices. Also of note is that findings 

suggest that using MSI band 7 will be more favourable than band 6 in the S2TCI formula. It should 

be noted that this investigation used field campaign data to evaluate the impact of spectral 

changes on the MTCI algorithm. This study highlighted the spectral similarities between the 

sensors and since both will be in orbit at the same time there is much interest in downscaling 

between S-3 and S-2 as it could increase the temporal coverage of S-2 dramatically; especially so 

until a pair of S-2 satellites are working in tandem. By using methods which were originally 

developed by Gao et al. (2006) for Landsat and MODIS work has synergised MERIS and CHRIS data 

to investigate the opportunities for the future Sentinel satellites. Synthetic S-2 imagery was 

successfully generated from MERIS images at times of the year where it was not available.  

Nevertheless the optimal pairing during July could only achieve a relative accuracy of 20-50% 

throughout the year which suggests the use of a single paired image, while useful for certain 

applications, is insufficient. Findings strongly indicate that the time of the year that S-2 and S-3 

imagery is linked will be of critical importance and the best results were achieved when the 

canopy was at maximum density. It should be noted that the point spread function was not 

considered which is a possible limitation and should be investigated in future work (Amorós-López 

et al. 2013). Nevertheless this study is unique in the sense that it covered the complete growing 

season to provide a detailed understanding of the fusion models performance throughout the 

year. 

A final investigation was devised to showcase a potential application of Sentinel data within a 

REDD+ framework. The evergreen forests of Edo, a state in Nigeria, were assessed for degradation 

using MERIS data as a surrogate for S-3. The aim of the work was to assess the change in 

photosynthetic capabilities of the land cover under the REDD+ framework. It was immediately 

found that extensive cloud cover in the area prevented measurements using optical sensors 

outside of an annual resolution. A dataset was created using MOD06 to further investigate the 

cloud coverage over Nigeria which indicated that there is a window of opportunity, between 

November to January, during which clear sky acquisitions are obtainable. By using the MTCI to 

estimate changes in forest cover it was found that between 2005 and 2011 99.09 km2 of 
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evergreen forest had been completely deforested while 415.71 km2 had been significantly 

degraded or deforested. These figures are between 4% and 16.4% of the total area of evergreen 

forest that had covered the Edo state in 2005. The investigation showed that will be possible to 

indicate deforestation by year using S-3 data with a method easily quantifiable using threshold 

analysis and while it has been demonstrated at a regional scale it could easily be applied 

nationally or even globally. In addition several sites were investigated for post 

degradation/deforestation recovery, however over the studies six year time scale none 

experienced overall site regrowth. In fact it was found that the photosynthetic capabilities of the 

sites continued to decrease past the initial event. This suggests that deforestation in Edo, at least 

at a 300 m scale, is progressive rather than absolute and without ground data a sensor with high 

spatial resolution would be required for further investigation. By using the default Tier 1 guidance 

values of AGB from the IPCC (2006) the MTCI was used to predict the total loss of potential carbon 

sequestration. It was estimated that the primary forests of the Edo state sequestered 131,095 t 

less of carbon in 2011 than in 2005. Nevertheless it should be considered that the use of optical 

remote sensing might not be optimal for rainforest locations and the use synthetic-aperture radar 

(SAR) would allow coverage at a monthly scale rather than annual. While currently technology 

such as this does not exist ESA plan to launch Biomass (ESA 2012d), such a device, in 2020. 

Although this chapter focused on 300 m resolution MERIS data which will be continued by OLCI 

aboard S-3, the methodology described will easily be reproducible using S-2 MSI which will 

operate at 20 m resolution substantially enhancing confidence in results. 

7.2. Key Outcomes 

 Many investigations have sought to enhance calculation of VIs through adjustments that 

often require additional information to mitigate uncertainties. The main problem with 

such adjustments is that incorporation of additional scene specific information affects the 

universal applicability, accessibility for the user, operational use and dynamic response of 

VIs and so should be avoided. 

 Application of the SDI using a threshold of 0.9 has been shown to increase the robustness 

of the MTCI at low canopy covers and has been initially validated in three separate parts 

of the world. 

 The MTCI has been shown to be a robust measure of LCC and will be applicable to S-2 and 

S-3. This study has also suggested which bands to use in the algorithms; S2TCI and OTCI. 

 With two spectral bands measuring reflectance directly on the RE the radiometric 

capabilities of S-2 will be unparalleled for an operational satellite sensor for use with 

vegetative studies allowing accurate characterisation of the RE region and enhanced 

estimation of the REP. 
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 Multiple field campaigns have been used to develop and validate algorithms to optimally 

retrieve the biophysical variables of vegetation using S-2. The following were found as 

optimal methods. 

o To measure LAI research suggests using the IRECI or the NDVI. 

o To measure LCC research suggests using S2REP or the MTCI. 

o To measure canopy chlorophyll content research suggests using the IRECI or the 

NDVI. 

 Preliminary comparison between the S-2 and S-3 sensors using S2TCI and OTCI has been 

conducted and an equation: 𝑆2𝑇𝐶𝐼 =  1.6866 ∗ 𝑀𝑇𝐶𝐼 − 0.3406 (Eq. (7.1)) has been 

suggested to directly contrast results between sensors. 

 The possibilities of a S-2/S-3 fusion model have been demonstrated through integration of 

the STARFM algorithm. Synthetic S-2 data was successfully generated from MERIS 

imagery at times of the year where high resolution acquisitions were unavailable. 

 The MTCI was used to showcase an application of S-3 within the REDD+ framework. 

o Deforestation and degradation was presented geographically, a method that is 

easily reproducible. 

o  It was found that 415.71 km2 of rainforest was deforested between 2005 and 

2011 within the state of Edo, Nigeria; 16.4% of the total primary forest that Edo 

had in 2005. 

7.3. Limitations 

 Inclusion of the green band makes the SDI more sensitive at low canopy covers when 

vegetation is growing and healthy yet, according to preliminary validation, depreciates 

the correlation during senescence. 

 Accurately reproducing S-2 data requires hyperspectral acquisitions which consequently 

limits the scope of available field campaigns for validating algorithms pre-launch. While 

multiple campaigns have been used to derive the IRECI and S2REP further validation is 

required to see if the algorithms produce similar results for other campaigns. 

 An algorithm has been provided to directly compare between the MTCI and S2TCI, 

however, further investigation is required to validate this equation for other datasets in 

different parts of the world. 

 While STARFM was used to synergise S-2 and S-3 there was an average pixel error of 20-

50% for the optimal base pair. A suggestion to enhance this error is provided in 7.4.2.. 

 Using optical sensors such as S-2 and S-3 to monitor rain forest is problematic due to 

cloud cover during the majority of the year. Consequently it may indeed be more suitable 

to use SAR data in future REDD+ applications. Nevertheless Biomass, which will be the 

first operational SAR sensor, is not planned for launch until 2020. 
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7.4. Future Work 

During the course of research a series of lessons have become apparent from which a number of 

recommendations can be proposed for future work to follow. 

7.4.1. Enhanced Field Campaign Procedure 

Through participation in multiple field campaigns, and processing of many conducted by 3rd 

parties, during the research of this thesis it has been found that methodologies within vegetative 

remote sensing vary considerably. Datasets differ with respect to: sensor, location, operating 

team, time of year, view geometry and field campaign procedures. As the discovery of new 

methods of retrieving vegetative biophysical parameters, as well as refining current ones, 

depends on the quality data sets the aforementioned differences can not only add considerable 

uncertainty but affect the compatibility of research. This can consequently result in the 

fragmentation of methods and lack of further validation following a successful finding. 

Involvement in the validation of the MTCI has emphasised the benefits of extensive research 

using a specific vegetation index as the robustness of the product increases with each step taken. 

If there was an opportunity to conduct a follow up field campaign, ignorant of project constraints, 

this work proposes that several key points are considered. 

 LCC and LAI must be treated individually and given equal importance.  

 Measurements of LCC should have destructive calibration that follows well 

documented procedure (Moran and Porath 1980, Moran 1982)   

 ESU size should be well documented and linked as closely as possible to the sensor 

being investigated. 

 Radiometric and atmospheric adjustments should be as contemporaneous as possible 

with the sensor flight. 

 While having multiple measurements in the same field will strengthen the 

characterisation of an individual ESU they should be combined and are not a 

substitute for variety with respect to crop and spatial distribution.   

 Although multiple hyperspectral acquisitions are likely to be costly ideally a field 

campaign should be conducted over the length of a growing season thus allowing 

methods to account for phenological changes in the study site. 

Of significant concern is that methods are only strongly correlated to the field campaign in which 

they occurred or even the ‘snapshot’ of the phenological state of the vegetation. Two novel 

indices that were presented in Chapter 4, S2REP and IRECI, require extensive cross validation in 
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the future to avoid this pitfall. However validating indices of the future Sentinel sensors is 

problematic as it requires hyperspectral data before their launch. 

7.4.2. Downscaling Method with Multiple Pairings 

Chapter 5 highlighted that fusion models used in downscaling perform best when the high and 

low spatial pairing is made during the maximum canopy extent. However while such a pairing was 

accurate in predicting dense vegetation it overestimated vegetative cover during sparse canopy 

conditions. By adding in multiple pairs of data that document the canopy at the maximum and 

minimum vegetative states the model could effectively be assigned the correct range of values 

between which the predictions can operate. Consequently the use of low spatial resolution data 

to track changes during the phenological transitions of the target vegetation should have 

significantly increased accuracy. Furthermore as most downscaling methods consider linear 

mixture models which may not hold true in a dynamic environment of crops there is opportunity 

to perform class based modelling through the analysis of spectral information. Combining 

modelling of each class separately and maximum and minimum canopy measurements should 

increase robustness of the model and hold many prospects for a S-2 S-3 fusion model.   

7.4.3. Retrieval of Biophysical Variables 

During the early stages of vegetative remote sensing research focused on correlation with canopy 

density. Many studies and field campaigns did not give adequate consideration to LCC and canopy 

chlorophyll content which resulted in indices that focused on the SR and sequential enhancing of 

the NDVI. Later on the chemistry and biology of vegetation became a significant interest within 

remote sensing and focus shifted to the behaviour of the RE to deepen understanding of 

vegetation dynamics. LAI, LCC and their combination canopy chlorophyll content all have distinct 

uses and equally separate methods of optimal calculation. It is highly recommended that all those 

who undertake future research connected to the remote sensing of vegetation realise this. There 

is great scope for research in upscaling leaf scale chemistry and the effects of phenological 

transitions to help further understand canopy dynamics.  

7.4.4. Further Comparison of OTCI and S2TCI 

Although this analysis has given an initial insight into how the MTCI will change with application 

using future Sentinel sensors using field campaign data further validation with other datasets at 

different locations would be required to validate and improve the presented algorithm to directly 

compare between data of the two sensors. To achieve this before launch hyperspectral data 
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would be required such as CHRIS or airborne acquisitions contemporaneously with a field 

campaign that considers discussion in 7.4.1..   

7.5. Concluding Remarks 

Review of literature suggests LAI, LCC and chlorophyll content are frequently not, as they should 

be, treated separately at each stage of vegetative investigation. The findings of this thesis suggest 

that LAI is best measured using the SR/NDVI while an estimate of REP is a more robust measure of 

LCC. The combination of these two variables, canopy chlorophyll content, is therefore best 

derived through characterising each of the spectral regions sensitive to vegetation; the red, RE 

and NIR with an index such as IRECI. Findings emphasise that the L2 MERIS product the MTCI, 

which has been explored in detail, is a robust measure of LCC and also canopy chlorophyll 

content. Finally, it is recommended that emphasis is placed on deriving and validating retrieval 

methods using S-2 MSI as the two bands directly on the RE mean it is not only spatially, but 

radiometrically superior to S-3 and will consequently allow better characterisation of the RE. This, 

and future sensor improvements, will help overcome the problem of saturation and enable the 

remote acquisition of the biophysical parameters of vegetation in unprecedented detail.  
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