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Abstract The setting of a process mean for a manu-

facturing process which frequently produces scrap and

rework, can significantly affect profitability. Optimal

mean setting is a methodology by which the process

mean is adjusted to maximise profit. This paper stud-

ies the dynamics of the problem and investigates the

possibility of applying different process means to each

rework iteration, to further maximise profit. A proof is

given confirming there is only one optimal mean that

applies over all rework iterations in the single feature

case. However, applying similar reasoning to a dual fea-

ture case led to the development of a new optimal mean

setting methodology which outperformed the existing

approach in terms of the maximum expected profit.

Keywords Optimum process mean · Dual quality

characteristics · Optimisation · Quality control

1 Introduction

Optimal mean setting is the practice of adjusting man-

ufacturing parameters and machine settings to control

the location of the process mean to maximise profit.

The principle has a long standing history originating

as the ‘canning problem’ posed by Springer in 1951
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[1]. The motivation for the practice stems from the dif-

ferences between scrap and rework costs and generally

applies to manufacturing processes where the common

cause variation of the process is greater than the feature

specification limits (tolerance bands). A normal distri-

bution is often used to model the manufacturing process

variation, as illustrated in Figure 1. Rework is created

when a manufacturing operation produces a feature (or

quality characteristic) outside the specification limits

(non-conforming), where additional manufacturing op-

erations can bring that feature inside the specification

limits. For material removal type operations, rework is

typically generated when the inspected feature is larger

than the upper specification limit (U), illustrated by

the striped region in Figure 1. Scrap is created when a

feature is non-conforming and no additional manufac-

turing operations can make that feature conform. For

material removal operations this typically implies the

feature is under the lower specification limit (L), illus-

trated by the cross hatched region in Figure 1.

The cost of scrapping components is generally higher

than the costs of reworking thus, in Figure 1, the sum

of scrap and rework cost would be reduced by shifting

the mean (µ) to the right. This would increase the pro-

portion of features requiring rework while reducing the

proportion of features that would lead to scrap. The

fundamental requirement of optimal mean setting is to

maximise profit (rather than minimise scrap and re-

work cost) by maximising an expression in the form of

Equation 1. The number of items sold, scrap cost and

rework cost are functions of the process mean, µ. The

processing cost is the cost of the initial manufacturing

operation and is generally considered to be constant.

Profit = Items Sold− Processing Cost

− Scrap Cost− Rework Cost.
(1)
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Fig. 1 Illustration of the rework (pr), conformance (pa) and
scrap (ps) probabilities

It is possible for several features to be manufactured,

either by serial or parallel manufacturing operations.

In a serial manufacturing system, one feature is man-

ufactured and then inspected, before the next feature

is manufactured and inspected. In a parallel manufac-

turing system two or more features are manufactured

before being inspected. Dual feature (or dual quality

characteristic) manufacturing is parallel manufacturing

with exactly two features. In both serial and parallel

cases it is possible for a feature to be reworked mul-

tiple times before being deemed scrap or conforming.

Furthermore, for parallel production, different types of

rework are possible as only one feature or multiple fea-

tures may require rework. In such cases different mean

values may be applied to each rework iteration or type

of rework. This article establishes how such an approach

can increase in the maximum expected profit obtainable

through optimal mean setting compared to the existing

literature.

2 Literature Review

Several researches [2–5] extended the original work of

Springer’s can filling problem [1], where the optimal

filling level of a can was sought by adjusting the speci-

fication limits. One of the assumptions in these models

was the existence of a secondary market, where non-

conforming product could be sold at a discounted rate.

Bettes [6] proposed an alternative model for products

such as pharmaceuticals, where no secondary market

existed and all products had to conform. The upper

limit was optimised to reduce the loss incurred when

customers received extra product but at the standard

price. The concept was advanced by Golhar [7], Schmidt

and Pfeifer [8] and Liu and Raghavachari [9]. Wen and

Mergen [10] were the first to apply optimal mean set-

ting to a feature manufacturing problem. The mean for

a grinding operation was optimised for the production

of an inner ring of a bearing race. Several researchers

([11–14] introduced the Taguchi loss function [15] to the

Wen and Mergen problem, this addition limited the ex-

tent to which the mean was biased towards rework.

A number of researchers [16–19] investigated opti-

mal mean setting of dual features (parallel manufac-

turing), where the quality loss was modelled using the

bivariate normal distribution function. Chen and Chou

[14] extended the work by considering different non-

conformance costs depending if a feature was greater

or lower than the upper and lower specification limits,

respectively. Al-Sultan and Pulak [20] were the first to

consider multiple feature in series, which was an exten-

sion of [21] but for two manufacturing stages. Bowling

et al. [22] and Khasawneh et al. [23] introduced Marko-

vian modelling to the optimal mean setting problem for

serial and parallel process, respectively. Prior to this, re-

work was considered as a static one-off cost, however,

rework is dynamic and several rework operations maybe

required before features either conform or are scrapped.

The assumption that a feature will conform following a

single rework operation underestimates the total rework

required and scrap produced.

Selim and Al-Zu’bi [24] further refined the Marko-

vian model presented by Bowling et al. [22] and cor-

rected an error in the model for multiple features man-

ufactured in series. Peng and Khasawneh [25] modified

the dual feature approach proposed by Khasawneh et

al. [23] and applied it to a production system where

a sampling plan was used to inspect feature quality,

rather than a 100% inspection. The effect of correlation

between features was studied as well as a two stage pro-

duction system where dual features were produced at

each stage.

Goethals and Cho [26] derived the most cost effec-

tive process mean and variation through observation

and design of experiment. This is in contrast to the lit-

erature discussed up to this point, where the variance

of a process was assumed to be fixed. A response sur-

face for the process mean and variance was modelled in

response to several process variables and optimised to

minimise total cost. Goethals and Cho [27] and Boylan

and Cho [28] extended the problem for multiple qual-

ity characteristics and also employed the skew normal

distribution [29] to represent different quality charac-

teristics. This approach was not taken in the article

presented here as the mean and variance of manufac-

turing processes are assumed to be known.

The Markovian approach to optimal mean setting is

a truer representation of a manufacturing system where

rework is produced [23, 24]. In such a system it is feasi-

ble to adjust the process mean for each operation or set

different target means for different types of reworks in

an effort to further increase profit (for parallel manufac-

turing). This has not been considered in the literature.
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Fig. 2 Process flow diagram with a rework loop

In this article, the equations for expected profit are de-

rived to allow different mean settings for each rework

operation. The production of a single feature in series,

with multiple rework means is considered in Section 3.

Section 4, develops a dual feature model with multi-

ple rework means specifically allowing the means of the

different rework types to be optimised separately. An

increase in the maximum profit is shown to be achiev-

able compared to the methodology outlined by Kha-

sawneh et al. [23] and used by Peng and Khasawneh

[25]. The effect correlation between features has on the

maximum profit is also considered for both the Kha-

sawneh’s method and the new implementation.

3 Optimal Mean Setting - Single Feature

A manufacturing method involving rework is an iter-

ative process starting with an initial cut which gener-

ates features in three states; rework, conforming and

scrap. This is illustrated by Figure 2 where an inspec-

tion operation is used to determine which states the

features belong to. Subsequent operations convert the

rework into just two states, conforming and scrap. For

example, after manufacturing a batch of components a

certain number of features may be designated rework.

This initial manufacturing operation is referred to as

the first iteration. The processing of this rework is re-

ferred to as the second iteration. After the second iter-

ation it is possible some items will still require rework,

the reprocessing of this rework is referred to as the third

iteration. The process continues until all rework items

are either conform or are scrapped. The probability of

features conforming, being scrapped or requiring rework

is determined by evaluating the areas under the prob-

ability density function illustrated for two iterations in

Figure 3. The left plot shows the initial manufactur-

ing operation, which was positioned with an off-centre

mean, µx1 = 6.5, to minimise scrap in favour of rework.

The standard deviation was set at σ = 1. The striped

area represents the features requiring rework while the

white area under the curve represents conforming fea-

tures, there was no appreciable scrap. The second it-

eration (right plot in Figure 3) indicates the result of

reprocessing the rework features. The grey dashed line

shows the resulting distribution from this second iter-

ation. The solid black line in Figure 3 is the sum of

the conforming components from the first and second

iterations and represents the distribution of manufac-

tured geometry after the second iteration. The smaller

striped area indicates further rework is required. Subse-

quent iterations would steadily reduce this rework until

all components were either conforming or scrap.

To maximise profit from such a process, an optimal

reworking strategy must be identified, specifically the

mean values for each iteration. It would be feasible to

alter the mean values for each iteration such that the

initial mean may be µx1 = 6.5, followed by a differ-

ent mean for subsequent iterations. However, it can be

shown for the production of a single feature, only one

optimal mean exists (to maximise profit) for the initial

manufacturing stage and all subsequent rework opera-

tions. It is assumed;

– the manufacturing variation of the initial operation

and all rework operations are the same, i.e. the same

or a similar machine is used.

– the specification limits for the initial operation and

all rework operations are the same, i.e. the nominal

geometry of the feature is unchanged.

The expected profit can be expressed as,

E(PR) = SP

[
n∑
i=1

[F (U, µi, σ)− F (L, µi, σ)]

n∏
i=2

[1− F (U, µi−1, σ)]

]
− PC −

[
n∑
i=1

(Sc [F (L, µi, σ)]

+Rc [1− F (U, µi, σ)])

n∏
i=2

[1− F (U, µi−1, σ)]

]
,

(2)

which corresponds to Equation 1 but in mathematical

form. The constants, SP , PC, Sc, and Rc are the sell-

ing price, processing cost, scrap cost and rework cost

respectively. The means, µi for i = 1, 2, . . . ,∞, are the

target means for each iteration and the standard devi-

ation is given by σ. The initial operation is i = 1 and

i ≥ 2 are rework iterations. For i = 1, the first term

in the square parentheses relates to the white area un-

der the ‘Initial distribution’ in the first plot of Figure

3. The second set of parentheses relates to the area

of the rework (striped region) and scrap regions (first

plot in Figure 3). The scrap area, given by F (L, µ1, σ)

is close to zero in Figure 3. When i = 2 the product

terms become relevant, accounting for the number of
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Fig. 3 Two iterations of a process with rework

items that were designated rework from the previous

iteration. Thus, the first term in the square parenthe-

ses (Equation 2) relates to the white area under the

‘Distribution from 2nd iteration’, (second plot of Fig-

ure 3). Similarly the second set of parenthesis in Equa-

tion 2 relates to the rework and scrap regions under

the ‘Distribution from 2nd iteration’ curve in Figure

3. For practical situations n is a large number defining

the total number of iterations necessary to complete all

the rework such that only scrap and conforming items

remain. The function F (•) is the cumulative normal

distribution function (CDF) given by,

F (X,µ, σ) = Pr[X ≤ x] =

∫ x

−∞
fX dt, (3)

where fX is the normal distribution function given by,

f(x, µ, σ) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
. (4)

Equation 2 determines the difference between the in-

come generated from the components that can be sold

(first term) and the production cost. The production

cost includes the costs of scrap and rework, enclosed

within the second set of large square parenthesis, and

the initial processing cost (PC).

It is conjectured that to maximise the profit an op-

timal mean can be found which is the same for every

iteration (the initial processing and all rework itera-

tions). This is proven here.

Theorem 1 There is only one µopt that satisfies

max
µ∈R

{
TC(µ)

}
,

where µ = [µ1, µ2, . . . , µ∞]. Such that µi = µopt, ∀ i ∃ [1,∞].

Proof Setting Equation 2 to zero and differentiating

with respect to each µi, ∂TPi/∂µi gives the stationary

point (maximum)1 for each iteration i. A general ex-

pression for the maximum for each iteration is sought.

Although i→∞, in general the number of rework itera-

tions for a batch of components will be finite. However,

there is always a diminishingly small probability that

rework will exist and more iterations will be required.

Let the total number of rework iterations be n where

in practical cases n will be a large number but in the

general case n = ∞. Consider the optimal means for

the last three rework iterations,

µoptn =
1

2(L− U)

{
2σ2ln

[
SP +Rc

SP + Sc

]
+ L2 − U2

}
,

(5)

µoptn−1
=

1

2(L− U)

{
2σ2ln

[
1

2α

(
ξ(ϕn)α

−ξ(υn)β + 3Rc+ 2SP + Sc

)]

+L2 − U2

}
,

(6)

µoptn−2
=

1

2(L− U)

{
2σ2ln

[
1

4α

(
(−ξ(ϕn)α

−ξ(υn)β − 3Rc− 2SP − Sc) ξ(υn−1)

+ξ(ϕn)α+ ξ(υn)β − 2ξ(ϕn−1)α

+7Rc+ 4SP + 3Sc

)]
+ L2 − U2

}
.

(7)

1 The stationary point is shown to be a maximum after the
proof is completed, rather than showing each stationary point
is a maximum for every i. This is shown in the Appendix,
Section 6.1.
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There are two cost terms defined as α = SP + Sc and

β = SP +Rc and ξ is the error function given by,

ξ(ϕi) =
2√
π

∫ ϕi

0

e−t dt and ξ(υi) =
2√
π

∫ υi

0

e−t dt

(8)

where,

ϕi =

√
2(−µi + L)

2σ
and υi =

√
2(−µi + U)

2σ
(9)

For i = n, µoptn is purely a function of the relative

costs and relationship between the specification limits

(L and U) and the manufacturing variation σ. The sec-

ond to last optimal mean, µoptn−1
, is a function of the

costs, specification limits, the standard deviation and

the last optimal mean, µoptn . The third to last opti-

mal mean, µoptn−2
, is a function of the costs, specifi-

cation limits, standard deviation and the last two op-

timal means, µoptn−1
and µoptn . Notice that the earlier

optimal means are functions of all subsequent optimal

means; thus to establish the value of the first optimal

mean, one must first establish the value of the last opti-

mal mean, then the second to last optimal mean and so

on. Accordingly, a new subscript j is defined such that

j = [n, n − 1, . . . , 1]. From Equations 5 to 7 a general

expression for µoptj can be constructed where,

µoptj =
1

2(L− U)

{
2σ2ln

[
Γj

2n−jα

]
+ L2 − U2

}
(10)

and Γj is given by,

Γj =− 1[Γj+1 ξ(υj+1)]

+ Γj+1 + 2n−(j+1)ξ(ϕj+1)α

+ 2n−jRc+ 2n−(j+1)SP + 2n−(j+1)Sc.

(11)

The nth term is always

µoptn =
1

2(L− U)

{
2σ2ln

[
β

α

]
+ L2 − U2

}
. (12)

Lemma 1 Given that L, U and σ remain constant

for each iteration, to prove the conjecture, µi = µopt,

∀ i ∃ [1,∞], it must be shown that,

Γj
2n−jα

=
Γj+1

2n−j+1α

∣∣∣∣
n→∞

which reduces to

Γj = 2Γj+1

∣∣
n→∞,

(13)

as the denominator for the j + 1 term is double the jth

term. The last three terms of Γ , Equation 11, increase

as a factor of two for each iteration. The third term,

2n−(j+1)ξ(ϕj+1)α, can increase up to a maximum of a

factor of two for each iteration, when ϕj+1 = 1. Thus,

it remains to be shown the maximum rate of increase,

per iteration, for the first two terms of Γ is two, in the

limit n → ∞. This is shown by implementing linear

stability analysis. A new subscript m is defined where

m = [n−1, n−2, . . . , 1] where m is the next point after

m+ 1. Let f(Γ ) = Γm/2
n−mα and let a fixed point be

defined such that

Γm = Γm+1 = Γ ∗ = f(Γ ∗). (14)

A small deviation from this fixed point is,

Γm+1 = Γ ∗ + δΓm+1.

Therefore at the next step

δΓm = Γm − Γ ∗

= f(Γm+1)− Γ ∗

= f(Γ ∗ + δΓm+1)− Γ ∗
(15)

Since δΓm+1 << Γ ∗ a Taylor series expansion around

Γ ∗ can be implemented giving,

f(Γ ∗+δΓm+1) = Γ ∗+δΓm+1

(
df

dΓ

)
Γ=Γ∗

+O(δΓ 2
m+1).

Close to the fixed point the second order termsO(δΓ 2
m+1)

are very small and can be neglected. Recognising f(Γ ∗) =

Γ ∗, from Equation 14, the above equation can be rewrit-

ten as

δΓm = f ′(Γ ∗) δΓm+1

where f ′ = df/dΓ and

f ′(Γ ∗) = −ξ(υ) + 1. (16)

The maximum value of Equation 16 is f ′(Γ ∗) = 2 for

all values µ ∃ R. Thus, the equality in Equation 13 is

satisfied in the limit as n → ∞ proving Lemma 1 and

hence completing the proof, confirming the same op-

timal mean must be applied for each rework iteration

to maximise profit. Thus, the Markovian method (out-

lined by Bowling et al. [22] and Selim and Al-Zubi [24]),

which implicitly uses the same mean for every iteration,

is justified.

3.1 Single Feature Numerical Example

The solution to a single feature optimal mean setting

problem was solved using the proof that the same op-

timal mean must be applied over all rework iterations

to maximise profit (proof in Section 3). The specifi-

cation limits, process variation, selling price and costs

(taken from Bowling et al. [22]) are given by Table 1.
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Fig. 4 Profit, scrap, rework, and total production costs

Equation 2 was solved for 8 ≤ µ ≤ 12, the profit,

scrap cost, rework cost and production cost are plot-

ted on Figure 4. The results are the same as those

produced by the Markovian model from Bowling et

al. [22] with a maximum expected profit of 93.4377 at

µ = 10.6144. This confirms the iterative expression for

expected profit (Equation 2) is equivalent to the Marko-

vian model when µi = µopt. Figure 4 also highlights

that the optimal mean for minimum production cost is

not the same as the optimal mean to maximise profit

at µ = 10.0875 and µ = 10.6144, respectively. This

is due to the increased conformance achieved by more

heavily biasing rework and consequently reducing the

probability of scrap.

Variable Value Costs Value
U [12 12] SP 120
L [8 8] PC 25
σ 1 SrC 15

RwC 10

Table 1 Inputs for the single feature numerical example

4 Optimal Mean Setting - Dual Features

A logical extension to optimal mean setting with one

feature is a dual feature case, where two features are

processed prior to inspection. In the previous section it

was shown that maximum profit was attained when the

optimal mean for the initial operation and all rework

operations were the same. In a dual feature case, three

types of rework are produced, where only one state is

exactly equivalent to the initial processing operation.

Optimal mean setting for dual features was considered

Fig. 6 Dual feature rework, conformance and scrap

by Khasawneh et al. [23] and Peng and Khasawneh

[25], however, the Markovian approach used assumed

the means remained the same as the initial processing

stage irrespective of the rework type. A greater profit

is sought here by investigating whether the means for

the various rework types should be treated separately.

Figure 5 indicates the processing of two features

prior to inspection, reminiscent of the one feature case

in Figure 2. Inspection processes are implicit at the end

of the initial state and the three rework states. The

three rework states are initially fed from the first man-

ufacturing operation (I), which can also cause scrap and

conformance. After initial processing, the single feature

rework states (2 and 3) may receive components from

themselves (i.e. items are reworked but still don’t con-

form and require further rework) or from the dual fea-

ture rework state (4) (i.e. only one feature conforms

when reworked in state 4). The dual feature reworking

state (4) can receive components from the initial oper-

ation, and also from itself, if after dual feature rework

both features still require rework. As in the single fea-

ture rework case, all components eventually conform or

are scrapped. The initial probabilities of scrap (pI,S),

conformance (pI,C) and the three rework states (pI,2,

pI,3 and pI,4) are illustrated in Figure 6. These same

probabilities apply to state 4. The axes on Figure 6

have been reversed (∞ to −∞ rather than −∞ to ∞)

to reduce the number of cumulative distribution func-

tion (CDF) evaluations required to find the probability

of rework, scrap and conformance. In order to derive an

expression to determine the optimal means it is neces-

sary to define expected profit as was done in the one

feature example in the Section 3, (Equation 2). Thus,

the probabilities of rework, conformance and scrap in

the rectangular regions in Figure 6 must be evaluated.

Following the principles outlined by Nelson [30], in the

general case (for n features) a rectangular region can

be defined by; L = (L1, . . . , Ln) and U = (U1, . . . , Un)
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Fig. 5 Manufacturing flow for a two-feature parallel process

where Li ≤ U i ∀ i = 1, 2, . . . , n where (L,U) is an n-

dimensional rectangle and n is the number of features

at a given stage. The vectors L and U represent the

lower and upper specification limits for each feature as

indicated in Figure 6. Taking the Cartesian product of

n intervals, A = (L1, U1)×(L2, U2)×, . . . ,×(Ln, Un). A

cumulative distribution function (CDF) F: Rn → [0, 1]

is given by the integral of the multivariate distribution
function,

F (X,µ,Σ) =

∫ xn

−∞
. . .

∫ x1

−∞

1√
(2π)k|Σ|

exp

{
−
(
t− µ)TΣ−1(t− µ

)
2

}
t.1 . . . t.n

(17)

whereX is a k-dimensional random vectorX = [X1, . . . , Xk],

µ is a k-dimensional mean vector µ = [E[X1], . . . , E[Xk]]

andΣ is a k×k covariance matrix,Σ = [Cov[Xi, Xj ]] , i =

1, . . . , k; j = 1, . . . , k. The probability of conformance

(pI,C) is given by:

pI,C = P (L1 < X1 ≤ U1, . . . , Ln < Xn ≤ Un)

which can be expressed as,

pI,C =

1∑
i1=0

· · ·
1∑

in=0

(−1)i1+···+inF (xi1 , . . . , xin). (18)

where,

{
xij = Lj if ij = 0,

xij = Uj if ij = 1
∀ j = 1, 2, . . . , n.

The total probability of rework is simply,

PRw = F (U ,µ,Σ)− pI,C

and the the probability of scrap,

PSr = 1− F (U ,µ,Σ). (19)

The profit equation for two features corresponds to gen-

eral form illustrated by Equation 1. It follows the same

principles as the one feature profit equation (Equation

2), albeit the rework and scrap terms are more com-

plex. As a continuation of the proof, given in Section 3,

the means for each iteration are kept constant however,

a distinction is made between the dual feature rework

means µ = [µ1,1, µ1,2] and the single feature rework

means µ2,1 and µ2,2, for the first and second features

respectively (this distinction is justified later in this sec-

tion). The rework costs for the two single features and
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the dual feature rework state are given by:

RwP 2 = F ([L1, U2],µ,Σ)− F (L,µ,Σ)

+

∞∑
i=2

RwP 2i−1
[1− F (U1, µ2,1, σ1)] + F (L,µ,Σ)i−1

[F ([L1, U2],µ,Σ)− F (L,µ,Σ)] ,

RwP 3 = F ([U1, L2],µ,Σ)− F (L,µ,Σ)

+

∞∑
i=2

RwP 3i−1 [1− F (U2, µ2,2, σ2)] + F (L,µ,Σ)i−1

[F ([U1, L2],µ,Σ)− F (L,µ,Σ)] ,

RwP 4 =
∞∑
i=1

F (L,µ,Σ)i.

(20)

The F (L,µ,Σ)i−1 term is a recursive term defining

the rework entering the dual rework stage, equivalent

to the last term in Equation 2. The scrap probabilities

generated from the three rework states are given by

Equation 21,

SrP 2 = {F ([L1, U2],µ,Σ)− F (L,µ,Σ)

+

∞∑
i=2

RwP 2i−1 [1− F (U1, µ2,1, σ1)] + F (L,µ,Σ)i−1

[F ([L1, U2],µ,Σ)− F (L,µ,Σ)]}F (L1, µ2,1, σ1)

SrP 3 = {F ([U1, L2],µ,Σ)− F (L,µ,Σ)

+

∞∑
i=2

RwP 3i−1 [1− F (U2, µ2,2, σ2)] + F (L,µ,Σ)i−1

[F ([U1, L2],µ,Σ)− F (L,µ,Σ)]}F (L2, µ2,2, σ2),

SrP 4 = SC4

∞∑
i=1

(1− F (U ,µ,Σ))F (L,µ,Σ)i.

(21)

To condense the notation let TSrP = SrP 2 + SrP 3 +

SrP 4. Also the initial scrap cost is given from,

SrP I = 1− F (U ,µ,Σ), (22)

The total profit for this two feature parallel processing

example can be written as,

E(PR)2 = SP [1− (TSrP (µ, µ2,1, µ2,2) + SrPI((µ)))]

− [Rc2RwP 2(µ, µ2,1) +Rc3RwP 3(µ, µ2,2)

+Rc4RwP 4(µ) + Sc2SrP 2(µ, µ2,1)

+Sc3SrP 3(µ, µ2,2) + Sc4SrP 4(µ)]− PC.
(23)

The single feature rework and scrap probabilities (RwP 2,

RwP 3, SrP 2 and SrP 2) are functions of four means,

µ = [µ1,1, µ1,2] for dual feature rework and µ2,1 and µ2,2

for the two single feature reworks. This is because state

4 can feed state 2, associated with F ([U1, L2],µ,Σ) and

F (L,µ,Σ) and also state 3 associated with F ([L1, U2],µ,Σ)

and F (L,µ,Σ). States 2 and 3 can feed themselves with

components dependent on the probability of rework

into states 2 and 3, F (U1, µ2,1, σ1) and F (U2, µ2,2, σ2)

respectively. Although µ1,1 and µ2,1 both apply to the

feature X1, the first mean only applies when the sec-

ond feature is also processed along with the first feature

prior to inspection. The second mean (µ2,1) only applies

when the first feature is processed and inspected inde-

pendently from the second feature (X2). This also ap-

plies in a similar manner to the X2 feature means. The

reason for this distinction becomes apparent by con-

sidering what the optimal means would be for a single

iteration of a dual feature example and a single feature

example. Consider Figure 7 which shows the scatter of

2000 points drawn randomly from a joint normal distri-

bution. The mean of the scattered points lies in the cen-

tre of the conformance region but due to the geometry

of the scrap and rework regions, a greater proportion of

these points lie in the scrap region since the scrap region

is larger by 2L1L2 (difference between the scrap and re-

work areas). To ensure equal scrap and rework probabil-

ity for the illustration in Figure 7, µx1 = µx2 = 5.0617.

However, in a single feature case (Figure 1) there are

equal probabilities of scrap and rework with the mean

centred, µ = 5. This illustrates the optimal mean set-

tings are different for dual and single feature manu-

facutring. To further complicate the balance between

scrap and rework cost, the various rework regions (Fig-

ure 7) may have different costs associated with them

and the cost of dual feature rework is likely to be the

sum of the single feature rework costs. Therefore, to

maximise the profit described by Equation 23, which
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Fig. 7 Scatter plot with no correlation

has a mixture of dual feature and single feature rework,

a total of four means must be adjusted such that,

µ̂opt = max
µ̂∈R

{
E(PR)2(µ1,1, µ1,2, µ2,1, µ2,2)

}
. (24)

The vector, µ̂opt, is the four element vector containing

the optimal means for the dual features as well as the

single features. Note that the dual feature scrap and

rework equations (RwP 4 and SrP 4) only involve dual

feature probabilities and thus only the first two means

of µ̂opt apply to these states. Clearly the exact val-

ues of the optimal means depend on the relative scrap

and rework costs associated with the probabilities. A

numerical example is shown in the following section to

illustrate the impact of optimising the means for dual

features separately from the single feature means.

4.1 Dual Feature Numerical Example

A dual feature optimal mean setting example was im-

plemented to compare optimal mean setting using ex-

isting methodology (Khasawneh et al. [23]) and a new

methodology. The existing methodology is referred to

as Case I, where the means for each feature were kept

constant for dual and single feature processing. The

new methodology is referred to as Case II, where the

means for dual feature processing were optimised in-

dependently of the means for single feature processing.

Therefore, two means were optimised using the case

I methodology and four means were optimised in the

case II methodology. Two sets of cost values and sta-

tistical moments applicable to the dual feature optimal

mean setting problem were available from Khasawneh

et al. [23] and Peng and Khasawneh [25]. Different val-

ues have been used here to better graphically highlight

Fig. 8 Profit surfaces for Case I and Case II (optimisation
of two and four means respectively)

the profit differences between the Case I and Case II

methods. The cost values and statistical moments of

the problem are shown in Table 2.

Variable Value
U [6 6]
L [4 4]
Rc [25 25 50]
Sc [100, 100+Rw2, 100+Rw3, 100+Rw4]
SP 500
PC 50
Σ [2, 0; 0, 2]

Table 2 Dual feature numerical example input parameters

The expected profit given from Equation 23 was

plotted for values of µ1,1 and µ1,2 in Figure 8. Case I

represents the variability of expected profit for µ1,1 and

µ1,2. The case II surface was generated by inputting a

µ1,1, µ1,2 pair and resolving the µ2,1 and µ2,2 values by

satisfying Equation 24 for the specified µ1,1 and µ1,2

inputs. The Matlab function ‘fmincon’ was used to im-

plement this. The case II surface is higher at every point

due to optimising the single feature rework means sepa-

rately from dual feature processing. This also yielded a

slightly different µ1,1 and µ1,2 optimum values, as there

was no compromise between dual feature and single fea-

ture cost. The dual feature means were lower than the

single feature means, primarily due to the RX1,X2
rect-

angle in (Figure 10). Components falling into this re-

gion (RX1,X2 rectangle) experienced double the single

feature rework cost as well as the increased probabil-

ity of further rework. This double feature rework state

does not exist for a single feature, which allows the

single feature means to be biased to a greater extent



10 C. Dodd et al.

Fig. 9 Scrap and rework costs from the initial and rework
states

towards rework than the double feature case, without

incurring a cost penalty. The profits and optimal mean

settings are displayed in Table 3 which correspond to

the markers on Figure 8.

Value
Case I Profit 103.26
Case II Profit 105.29

Case I Production Cost 143.10
Case II Production Cost 140.84
Case I means (µI

1,1, µ
I
1,2) 6.85, 6.85

Case II means (µII
1,1, µ

II
1,2, µ

II
2,1, µ

II
2,2) 6.69, 6.69, 7.11, 7.11

Case I Final Conformance Prob. 0.5927
Case II Final Conformance Prob. 0.5922

Case I Final Scrap Prob. 0.4073
Case II Final Scrap Prob. 0.4078

Table 3 Optimisation results

The bar plot in Figure 9 shows the rework and scrap

costs from the initial and rework states, illustrated on

Figure 5. The initial scrap cost was less for case I com-

pared to case II (SrI bar in Figure 9)) as µI
1,1 and µI

1,2

were more rework biased than µII
1,1 and µII

1,2. Conse-

quentially, the dual feature rework cost Rw4 was com-

paratively high due to this rework bias. The last two

Case II means, µII
2,1 and µII

2,2, which applied to single

feature rework, were higher than µI
1,1 and µI

1,2, gen-

erating less Sr2 and Sr3 scrap from Case II but more

Rw2 and Rw3 rework. The greater cost of dual feature

scrap, Sr4 for case I, was due to the increased proportion

of components in the Rw4 state. Overall, the reduced

scrap and dual feature rework costs from the case II

led to a 1.92% increase in profit over case I. It is also

important to note from Table 3, that the number of

items eventually conforming was slightly higher in case

Fig. 10 Scatter plot with correlation (ρ = −0.8 and ρ = 0.8)

I and hence more components could be sold, however

this was offset by the reduction in scrap and rework

cost achieved in case II.

4.2 Influence of Correlation

Correlation alters the probability of components falling

into single and dual feature rework states, which in turn

may influence the optimal means. Figure 10 indicates

the scatter of points with correlation, ρ = 0.8 and ρ =

−0.8 where the correlation matrix is

Σ =

[
σ1 ρσ1σ2

ρσ1σ2 σ2

]
.

The darker points correspond to the ρ = 0.8 value,

while the lighter points correspond to ρ = −0.8. Ta-

ble 4 indicates the differences between the number of

points falling in the various regions after one processing

operation (defined in Figures 6 and 7) compared to the

uncorrelated example, where ρ = 0. Both positive and

negative correlation almost halved the probability of

points falling in the single feature rework regions com-

pared to no correlation. Conformance was increased in

both cases. The changes in scrap and dual feature re-

work depended on the sign of the correlation parameter

ρ. Positive correlation almost quadrupled the probabil-

ity of dual feature rework and reduced the probability

of scrap by around a quarter. Negative correlation re-

duced the probability of dual feature rework by a fac-

tor of over 500 and slightly increased the probability of

scrap. This is clear from the orientations of the point

clusters in Figure 10.

The effect of correlation on the optimal means and

profits are tabulated in Table 5. For ρ = 0.8, profits
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Region Ratio, ρ = 0.8 Ratio, ρ = −0.8
Rx1 0.5632 0.5623
Rx2 0.5632 0.5623

Rx1,x1 3.8730 0.0022

C 1.203 1.203
S 0.7515 1.0880

Table 4 Impact of correlation on the probability of compo-
nents falling into rework, scrap and conformance

were greater for both Case I and II over the uncorre-

lated example due to a reduced scrap and rework cost

and higher overall conformance. The profit increase for

ρ = −0.8 for cases I and II was solely due to the re-

duction in production cost (scrap and rework cost), the

final conformance was slightly lower than the uncorre-

lated example (Table 3).

The case I means for ρ = 0.8 are lower than the case

I means with no correlation (ρ = 0). The means were

required to be lower to reduce the proportion of com-

ponents falling into the RX1,X2
region given correlation

increased the probability of RX1,X2
rework. The µII

1,1

and µII
1,2 means for ρ = 0.8 are lower than the µII

1,1 and

µII
1,2 means for ρ = 0, for the same reason. They were

also lower than the µI
1,1 and µI

1,2 means (for ρ = 0.8)

as they were optimised separately to the single feature

means. Note, the µII
2,1 and µII

2,2 means are very similar to

the uncorrelated case (ρ = 0). Recall, these means only

applied to single feature rework and were unaffected by

correlation. The reason they were not exactly the same

is due to the dual feature processing. With correlation,

the probability of producing single feature rework was

reduced, while the probability of producing dual fea-

ture rework was increased. Equation 20 indicates this

reduced the single feature rework probabilities faster

than the increased probability of dual feature rework,

thus the rework cost was reduced allowing slightly more

rework biased means for the same cost.

The case I means for ρ = −0.8 were also lower than

in the uncorrelated case. To reduce cost, the extremi-

ties of the negatively correlated scatter region in Figure

10 moved to reduce the probability of scrap but not so

far to make rework, specifically Rx1Rx2 too significant.

This was achieved by shifting the mean of the distribu-

tion towards to (0,0) compared to the uncorrelated case

(ρ = 0), but to a lesser extent than in the positive cor-

related case (ρ = 0.8). The µII
1,1 and µII

1,2 means of case

II, where ρ = −0.8, are also lower than the uncorrelated

case for the same reason and again lower than µI
1,1 and

µI
1,2 due to the differences between the case I and case

II methodologies (as explained in Section 4.1). The µII
2,1

and µII
2,2 means from Case II were very similar to the

positive correlated case and the uncorrelated case due

to the fact they only applied to single feature rework

and therefore were not directly affected by correlation.

However, there were slight differences in the third dec-

imal point due to different probabilities of single and

dual feature rework from dual feature processing, as

explained in the previous paragraph.

ρ Cases Value
0.8 Case I Profit 117.43
0.8 Case II Profit 120.96
0.8 Case I Production Cost 139.65
0.8 Case II Production Cost 136.75
0.8 Case I Final Conformance 0.6142
0.8 Case II Final Conformance 0.6154
0.8 Case I means 6.63, 6.23
0.8 Case II means 6.45, 6.45, 7.12, 7.12
−0.8 Case I Profit 109.72
−0.8 Case II Profit 114.25
−0.8 Case I Production Cost 132.86
−0.8 Case II Production Cost 125.17
−0.8 Case I Final Conformance 0.5852
−0.8 Case II Final Conformance 0.5788
−0.8 Case I means 6.79, 6.79
−0.8 Case II means 6.45, 6.45, 7.11, 7.11

Table 5 Optimisation results for correlated features

The sensitivity of profit to correlation is plotted in

Figure 11 for both cases. The difference between the

two cases is shown by the grey dotted line and cor-

responds to the scale on right hand y-axis. In general,

the greater the degree of positive or negative correlation

the higher the profit with a minimum profit existing at

ρ ≈ 0.3. The actual minimum profit for a given correla-

tion depended on the geometry of the scrap and rework

regions and relative standard deviations and tolerance

bounds of each feature. As ρ→ 1 the difference between

the two and four mean case diminished as all compo-

nents designated rework lay in the dual feature rework

region. Thus, the benefit of separately optimising the

single feature rework means was lost as there was little

or no single feature rework. This is evident by consid-

ering Figure 10, the darker points would converge on

a single diagonal as ρ → 1. The same converging type

effect occurs for ρ → −1, although the line orientation

is changed by 90 degrees. However, as can be seen from

Figure 10 (the lighter) points will remain in the single

feature rework regions as ρ→ −1. It is also likely dual

feature rework will exist (depending on the geometry of

the scrap and rework regions and the standard devia-

tion of the feature variation) thus, there is still a benefit

to optimising dual and single feature means separately.

This led to a profit difference between case I and II for

negative correlation.
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Fig. 11 Profit vs. correlation

5 Conclusion and Future Work

There were three primary contributions made by this

article. Firstly, a single feature optimal mean setting

problem was examined from first principles to investi-

gate the impact on expected profit with multiple means

for each rework iteration. It was proven that expected

profit was maximised when the same optimal mean

was applied for each iteration. Thus, the application

of Markovian modelling to find the optimal mean set-

ting (introduced by Bowling et al. [22]) was justified

(Markov modelling implicitly assumes the same mean

is applied to all rework iterations). Secondly, the max-

imum obtained profit for dual feature optimal mean

setting was increased by 1.92% in comparison to the

results attained by the method presented in the lead-

ing articles in the field. This was achieved by optimising

the dual and single feature means separately, following

from the speculation in the single feature rework prob-

lem, that a separate mean could be assigned to each

rework iteration. Finally, the effect of correlation on

profit was considered. Correlation was generally found

to have a positive effect on the expected profit, where

again a greater profit was attainable by optimising the

dual feature means separately from the single feature

means, for a dual feature example.

A natural extension to this work would be to inves-

tigate the effect of more than two features being pro-

cessed prior to inspection. For example, applying this

methodology to processing three features prior to in-

spection would involve optimising the means for triple

feature processing, dual feature processing and single

feature processing, nine individual means. This will yield

greater differences in profit compared to using the case I

methodology, (solely optimising the three feature means).

The effect of optimal mean setting on the final geometry

of the features is also worth considering. The geometry

will be represented by a truncated Gaussian mixture

model where two or more features are processed prior

to inspection.
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6 Appendix

6.1 The Nature of the Stationary Points

Theorem 1 was proven and total profit is maximised

when the same optimal mean is applied over all rework

iterations such that, µ = µopt. Thus the expression for

total profit, Equation 2, can be formulated as a geo-

metric series and written,

TP = SP

(
F (U, µ, σ)− F (L, µ, σ)

1− [1− F (U, µ, σ)]

)

− PC − Sc
(

F (L, µ, σ)

1− [1− F (U, µ, σ)]

)

−Rc
(

1

1− [1− F (U, µ, σ)]
− 1

)
.

(25)

The nature of the stationary point which maximised

TP is given by,

d2TP

dµ2
=

√
2√

πσ3G(µ)

(
(L− µ)A(µ)ξ(υ)α

−(U − µ)B(µ)ξ(ϕ)α− (2Rc+ α)(U − µ)B(µ)

+(L− µ)A(µ)

)
+

4B(µ)

πσ2G(µ)3
(A(µ)ξ(υ)α

−B(µ)ξ(ϕ)α+ (2Rc+ α)B(µ)−A(µ)α

)
.

(26)

The functions A,B and G are given by

A(µ) = exp

(
− (L− µ)2

2σ2

)

B(µ) = exp

(
− (U − µ)2

2σ2

)

G(µ) = 1 +
2√
π

∫ (U−µ)
√

2

2σ2

0

e−t dt

The stationary point of Equation 25 is only a maxi-

mum when d2TP/dµ2 < 0. This condition is generally

satisfied for SP > Sc > Rc, which ensures that the op-

timal mean lies to the right of the nominal mean, µnom.

While µopt < USL there are only two positive con-

tributing terms in Equation 25, the third and eighth

terms, −(U − µ)B(µ)ξ(ϕ)α and −B(µ)ξ(ϕ)α, because

ξ(ϕ) may be negative as indicated by Figure 12. How-

ever, the absolute value of the fourth and ninth terms

Fig. 12 Illustration of the A,B, ξ(ϕ), ξ(υ), G(µ) functions
for L = 4, U = 6 and σ = 1

is always greater than the third and eighth respectively

such that,

|(2Rc+ α)(U − µ)B(µ)ξ(ϕ)| > |(U − µ)B(µ)ξ(ϕ)α|

and

|(2Rc+ α)B(µ)| > |B(µ)ξ(ϕ)α|

making the sum negative, and thus Equation 26 remains

negative.

While µopt > USL the second and seventh terms

from Equation 26 make a positive contribution due to

ξ(υ) becoming negative, as illustrated on Figure 12.

Never-the-less the absolute value of the fifth term and

tenth terms are greater than the second and seventh

terms respectively such that,

|(L− µ)A(µ)| ≥ |(L− µ)A(µ)ξ(υ)|

and

|A(µ)α| ≥ |A(µ)ξ(υ)α|

which again ensures Equation 26 is negative confirm-

ing the stationary point is a maximum ∀µ ∈ R where

µopt > µnom. It is worth clarifying in practical cases

µopt > µnom since the selling price must be greater

than the scrap cost which in general is greater than the

rework cost (SP > Sc > Rc).


