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Abstract

In this contribution, we study the trade-off between energy dissipation and delay in a buffer-

aided two-hop link. First, the optimality of a two-dimensional Transmission Activation Probability

Space (TAPS) partitioning is shown formally boh in the presence and absence of an outage region.

Then, the relationship between the packet energy dissipation and the block delay is found, which

is established with the aid of a buffer state transition matrix. Moreover, the concept of ‘artificial

outage’ is introduced and applied for striking a trade-off between the energy dissipation and block

delay. Then an algorithm is provided for finding the matching block delay and energy dissipation

pairs. Our analysis and performance results showed that the proposed methods outperform all other

methods, resulting in a reduced average packet delay and reduced energy dissipation.
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I. INTRODUCTION

Mitigating the energy dissipation is one of the key goals in contemporary wireless commu-

nications research. It may benefit both the telecommunications operators in terms of a cost

reduction and the mobile users in terms of an extended battery recharge period. Naturally,

the classic relaying technique, which reduces the single-hop transmission span should be

considered [1, 2]. However, it may impose an increased delay. The trade-offs between the

throughput and delay were discussed in [3, 4]. As a further advance, in this paper, we discuss

the trade-off between the energy dissipation and delay in a buffer-aided system conceived

for near-capacity transmission.

The buffer-aided multihop transmission regime relying on activating the most appropriate

link from the set of all links was proposed in [5–7]. In [5, 6], a multi-hop link (MHL)

is assumed to have buffers for temporarily storing the received packets. Hence, the RNs

are operated under the so-called Store-and-Forward (SF) relaying scheme. As a benefit of

storing packets at the RNs, during each time-slot (TS) the best hop having the highest

signal-to-noise ratio (SNR) can be activated from the set of those hops that have packets

awaiting transmission in the buffer. A packet is then transmitted over the best hop. Later,

this buffer-aided transmission regime was combined with adaptive modulation in [8]. The

authors of [9, 10] also discussed buffer-aided systems, which were characterized with the aid

of queuing theory. The buffer-aided systems are also capable of enhancing the security of

communications [11].

However, the cost of achieving the above-mentioned buffer-aided benefits is an increased

delay. As mentioned in [12, 13], there are two basic types of delay: block delay and packet

delay. The block delay is defined as the time required for a block of packets generated by the

source node (SN) to reach the destination node (DN), which is inversely proportional to the

throughput. By contrast, the packet delay is the time required for delivering a specific packet

from the SN to the DN, when assuming that there is an infinite number of packets ready for

transmission in the buffers. Buffer-aided multi-hop transmission has the same block delay

as the conventional multi-hop transmission scheme of [14]. This is because both schemes

transmit a single packet over a single hop per TS. By contrast, the packet delay is a random

variable, which is distributed across a dynamic range bounded by the minimum and maximum
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packet delays. We assume that the minimum delay is two TSs in the two-hop link, while

the maximum delay is infinite. In this paper, we concentrate our attention on the trade-off

between the block delay (throughput) and the average end-to-end normalized packet energy

dissipation (PED). The authors of both [9] and [15] observed the trade-off between the packet

delay and the capacity. Therefore, we will consider these methods as our reference.

Achieving low-complexity, yet accurate channel estimation [16], for near-capacity commu-

nication is becoming realistic. Explicitly, based on turbo or LDPC codes as well as EXIT-chart

aided designs [17], it is possible to have a vanishingly low BER when the received SNR

is higher than a near-capacity threshold. The state-of-the-art was summarized in [18]. Near-

capacity communications allows us to jointly design the upper layers and the physical-layer

forward error correction (FEC), therefore it makes our discussions practical at the packet

level.

The remainder of this paper is organized as follows. Section II presents our system model

followed by the concept of TAPS. The optimality of the TAPS concept is shown in Section

III. The optimization of the channel activation scheme under a delay-constraint is proposed

in Section IV, while in Section V we provide our numerical and simulation results. Finally,

our conclusions are offered in Section VI.

II. SYSTEM MODEL

The system model under consideration is a typical two-hop wireless link [12–14], which

is shown in Fig. 1. This model is portrayed in the next three sections in terms of its buffering

scheme, the physical layer and the transmission scheme.

A. Buffering at the RN

The two-hop link consists of three nodes, a SN , a buffer-aided Relay Node (RN ) and a

DN . The distance from the SN to the RN is d1, while the distance from the RN to the DN is

d2. We assume that the RN is capable of storing a maximum of B packets and that the classic

Decode-and-Forward (DF) protocol [19] is employed for relaying the signals. Note that if

no packets are stored in the RN, the RN-DN channel must not be activated. By contrast, if

the buffer at the RN is full, the SN-RN channel must not be activated. Finally, each node
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Fig. 1. System model for a two-hop wireless link, where source node SN sends messages to destination node DN via

RN node.

is capable of adjusting its transmit power between zero and the maximum transmit power

Pmax.

B. Physical Layer

In this paper, a near-capacity [20] FEC scheme is assumed, so that the BER becomes

vanishingly low when the received SNR exceeds a near-capacity threshold. Therefore, we

assume that the receiver is capable of perfectly decoding the transmitted packet, when the

receiver’s SNR is higher than a specific SNR threshold γTh . Based on this assumption and

on the knowledge of the instantaneous CQ, the transmitter adjusts its transmit power for

ensuring that the required SNR of γTh is indeed achieved at the receiver. Hence, the transmit

power required is inversely proportional to the instantaneous CQ.

In our system, only a single packet is transmitted in a time slot. 1 The channels are assumed

to experience independent block-based flat Rayleigh fading, where the complex-valued fading

envelope of a hop remains constant within a TS, but it is independently faded for different

TSs, which is ensured for example by using frequency hopping. In addition to the fading

model, the pathloss is assumed to obey the negative exponential law of d−α, where α is the

pathloss exponent having a value between 2 to 6. It is also assumed that the instantaneous

1Practical measurements showed that the average of the 90% of the coherence time is typically around 30ms for fixed

wireless communication and 3ms for a vehicular velocity of 70km/h [21]. Based on these measurements, it is reasonable

to partition the time into Time Slots (TS) and to assume that the channel is quasi-static within a TS.
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channel fading values are denoted by γSR and γRD. The instantaneous transmit power ESD,

ERD or ERD of each node can then be calculated with the aid of κ = 9.895× 10−05 and the

noise power of N = 10−14W which corresponds to a receiver sensitivity of −110dBm. An

example of calculating Ei, i = SR,RD is given by

Ei =
γTh
γi

dαi N

κ
=
γ̄reci

γi
, Ei ≤ Pmax, (1)

where γ̄reci =
γThd

α
i N

κ
. An outage event will occur, when the receiver’s SNR becomes lower

than γTh , despite using the maximum transmission power of Pmax, therefore we have

Pmax =
γTh
γout1SR

dαSRN

κ
=

γTh
γout1RD

dαRDN

κ
, (2)

where γout1SR and γout1RD are defined as the Type 1 outage thresholds2 of the corresponding chan-

nel. Assuming that each packet contains I information per bit, the Type 1 outage thresholds

γout1SR and γout1RD may be calculated based on Shannon’s capacity formula of I = log 2(1+γTh)

and (2).

C. Transmission Scheme

The proposed transmission scheme has two stages. The first stage is constituted by the

system analysis, which is carried out before any real data transmission. Based on all our

assumptions and on the independent parameters, all dependent parameters, including the key

parameters of γout2SR , γout2RD and Effe may be calculated, leading to our theoretical performance

results. In the second stage, simulations are carried out with the aid of all the parameters

used in the first stage. Our studies are based on the following assumptions:

• The SN always has information to send, hence the system operates in its steady state.

• Both the SN S and DN D can store an infinite number of packets. By contrast, each of

the limited-complexity RN can only store at most B packets.

• The MAC layer protocol conceived [8] for our multihop diversity scheme can be applied

here for supporting the link-activation process. In the following, let us assume that the

RN knows the channel qualities of both the SN-RN and the RN-DN channels. Based

on the specific channel activation method to be considered in the next two sections, the

RN will inform all other nodes to activate the corresponding link.

2The type of outage will be detailed later.
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III. REVIEW OF TAPS AND PROOF ITS OPTIMALITY

The concept of TAPS was firstly introduced in our previous papers [22–24]. Although

we proposed and applied the TAPS concept in several scenarios, the optimality of TAPS

has not been formally shown. Here, we systematically revisit the TAPS concept and prove

its optimality. TAPS is an analysis tool, which relies on a specific metric. In this paper,

the Packet Energy Dissipation (PED) is adopted as our optimization cost-function or metric.

For other metrics, such as the capacity, please see Appendix-A for a reference. In order to

augment the relevant concept as explicitly as possible, three examples of a two-hop link are

shown below. We commence from a two-hop link having a RN exactly in the middle and

conclude by outlining the rationale of our non-linear channel space partitioning.

The first example is a simple one relying on the conventional buffer-aided selection

combining (SC) philosophy, where the link having the highest SNR is activated. Again, we

consider a two-hop link with d1 = d2, as shown in Fig. 1. In the two hops, the receive SNRs

γrecSR and γrecRD are given by the product of the corresponding instantaneous channel fading

values (γSR, γRD) and the related average receive SNRs (γ̄SR, γ̄RD), respectively. The pair

of instantaneous channel fading values (γSR and γRD) form a so-called channel space, as

shown in Fig. 3(a). The X-axis represents the fading value γSR of the SN-RN channel, while

the Y-axis represents the fading value γRD of the RN-DN channel. In each time slot, the

instantaneous fading values of both the SN-RN (γSR) and of the RN-DN (γRD) channels

map to a specific point (γSR, γRD) in the 2D channel space. Obviously, if the mapped point

is in the region below the OE line, because we have γRD < γSR, then the SN-RN link should

be activated. By contrast, if the mapped point is in the region above the OE line, because

γRD > γSR, then the RN-DN link should be activated. The boundary is the OE line and the

slope of it is one. The activation probabilities of the two hops are identical, because both

channels obey the same distribution. Therefore, the system can be operated in its steady

state.

The second example discusses a buffer-aided two-hop link associated with non-identical

average receive SNRs, because the RN is not half-way between the SN and DN. Let us

assume that the average receive SNR γ̄SR of the SN-RN channel is higher than the average

receive SNR γ̄RD of the RN-DN channel. If the channel having the higher received channel
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SNR (γ̄SRγSR or γ̄RDγRD) is activated, the boundary of the two activation regions should

be the OE0 line seen in Fig. 3(b). However, the area of the region encompassed by the

points γSROE0 is higher than that of the other region determined by EPγRD. Therefore,

the activation probability of the two hops is different and the system operates in an unstable

mode, potentially leading to a buffer overflow.

In order to allow the system to operate in its steady state rather than in the unstable mode

of E0 seen in Fig. 3(b), there are two plausible methods of adjusting the boundary OE0:

a) If we force the boundary OE0 to be linear, OE0 should be moved back to OE. However,

this method is not optimum;

b) If the OE0 boundary is non-linear.

Let us discuss the second method directly, which is more beneficial than the first method,

because we may arrive at an optimum boundary, as detailed below.

In order to elaborate on the process of transmission-probability adjustment, let us partition

the TAPS into perfectly tiling squares, as shown in Fig. 2. The light-grey region represents

the activation-region of the SN-RN channel, while the dark-grey region represents that of

the RN-DN channel. Now, the activation probability of the SN-RN channel is higher. Let us

now move some of the dark-grey tiles to the light-grey region, albeit we realize that this is

achieved at a performance penalty, as detailed below.

When considering a tile ∆S, the question arises: what is the energy dissipation (E∆S∈SR)

caused by ∆S, when ∆S belongs to the activation region of the SN-RN hop? This is

quantified as

E∆S∈SR = p∆S

(
CSR
γSR

)
, (3)

where, p∆S is the probability of the point (γSR, γRD) falling into the ∆S region of Fig. 2,

CSR is a constant value and CSR
γSR

indicates that the energy dissipation imposed is inversely

proportional to the channel quality experienced. By contrast, what is the energy dissipation

(E∆S∈RD) caused by ∆S, when ∆S belongs to the activation region of the RN-DN hop? This

is given by

E∆S∈RD = p∆S

(
CRD
γRD

)
, (4)

March 17, 2015 DRAFT



8

O

E0∆S γRD

γSR

Fig. 2. The transmission activation probability space (TAPS) of a two-hop link, where the average receive SNR of the

SN-RN hop and of the RN-DN hop are non-identical. The transmission activation probability space is partitioned into tiles.

where, CRD is a constant value and again, CRD
γRD

indicates that the energy dissipation is

inversely proportional to the RN-DN SNR encountered. If the region ∆S is reassigned from

the SN-RN channel to the RN-DN channel, how much extra energy in dissipated? This is

quantified by E∆S∈RD −E∆S∈SR, which should be as low as possible. Then the transmission

probability is modified by p∆S . Therefore, the power-dissipation cost of this probability

adjustment is

Effe =
E∆S∈RD − E∆S∈SR

p∆S

(5)

=
CRD
γRD

− CSR
γSR

. (6)

By contrast, if we are willing to tolerate a higher energy-dissipation penalty for the sake of

having the same transmit probability for the unequal-SNR links, the OE0 boundary may be

reshaped, as seen in Fig. 3(b).

In order to allow the two-hop link to operate in its steady state, we may continue increasing

Effe, until the probability represented by the region γSROE2 becomes the same as that

represented by E2OγRD. In this reassignment process, the tiles imposing a lower Effe are

adjusted firstly, followed by those imposing a higher power-dissipation penalty Effe, until

the above-mentioned condition is satisfied. Let us now show formally that this boundary is
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Fig. 3. (a), the TAPS of a two-hop link, where the average SN-RN channel SNR γ̄SR and the average RN-DN channel

SNR γ̄RD are identical. (b), the TAPS (plane) of a two-hop link, where the SN-RN channel and the RN-DN channel are

non-identical. The transmission-probability boundary is reshaped for various values of Effe.

optimal.

In Fig. 4(a), the TAPS is now partitioned into unequal tiles by assuming that each tile

represents the same probability. The fading envelope of the channel usually does not obey a

uniform distribution. In order to allow each tile to represent the same probability, the area

of each tile may be different. Below we will show that the boundary OE2 is optimum by

invoking the method of contradiction.

Contradiction statement: Let us assume that there is an optimal TAPS partitioning, which

is different from the partitioning OE2 seen in Fig. 3(b) and 4(a). Due to this assumption, the

energy dissipation of this partitioning is lower than that of the partitioning OE2 seen in Fig.

3(b).

Due to having the same probability of encountering the regions of γSDOE2 and E2OγRD,

there are N(N > 0) tiles in the region E2OγRD representing the activation of the SN-RN

hop, while there are also N tiles in the region γSDOE2 corresponding to the activation of the

RN-DN hop. Let us now consider a specific pair of them (say ∆S1A and ∆S2A), as shown in

Fig. 4(a). Correspondingly, there is a tile ∆S1B on the boundary OE2, which has the same X

coordinate value as ∆S1A. Similarly, there is also a tile ∆S2B on the boundary OE2, which

has the same Y coordinate value, as ∆S2A. Let us now consider three different actions:
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∆S2A ∆S2B

γRD

γSR

(c)

Y

O X

E2

∆S1A

∆S1B

∆S2A ∆S2B

γRD

γSR

(d)

Fig. 4. The TAPS (plane) of a two-hop link, where the SN-RN channel and the RN-DN channel are non-identical. The

TAPS is partitioned into many small tiles, each of which has the same probability. Compared to (a), the TAPS affiliation of

∆S1A and ∆S1B has been exchanged in (b). Then, the TAPS affiliation of ∆S2A and ∆S2B has been exchanged in (c).

In (d), both the tiles ∆S1B and ∆S2B are on the boundary OE2. Hence exchanging the TAPS affiliation of ∆S2A and

∆S2B does not affect the energy dissipation.

1) exchange the affiliation of ∆S1A and ∆S1B by remapping them between the two parts

of the TAPS;

2) exchange the affiliation of ∆S2A and ∆S2B;

3) exchange the affiliation of ∆S1B and ∆S2B.

This has the same transmit probability effect, as exchanging the affiliation of ∆S1A and

∆S2A, but their energy-dissipation effects are rather different, when compared to ‘no action’.

To elaborate a little further, if we exchange the TAPS affiliation of ∆S1A and ∆S1B, as

shown in Fig. 4(b), the activation probability of each hop remains the same. However, the

energy dissipation is reduced due to the fact that the energy dissipated within the tile ∆S1B

of Fig. 4(b) is lower than that within ∆S1A of Fig. 4(a), because γRD is higher for ∆S1B

than for ∆S1A, while the energy dissipated by the SN-RN hop remained the same due to

having the same γSD ordinate values both for ∆S1A and for ∆S1B.
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Similarly, if we exchange the TAPS affiliation of ∆S2A and ∆S2B as shown in Fig. 4(c),

the activation probability of each hop remains the same. However, the energy dissipation is

reduced due to the fact that the energy dissipated within the tile ∆S2B of Fig. 4(c) is lower

than that of ∆S2A in Fig. 4(b), while the energy dissipated by the RN-DN hop remained

the same during the above process, since both ∆S2A and ∆S2B have the same γRD ordinate

values.

Lastly, both the tiles ∆S1B and ∆S2B are on the boundary OE2, as shown in Fig. 4(d).

Hence, exchanging the TAPS affiliation of ∆S2A and ∆S2B does not affect the energy dissi-

pation. Following the above three actions, the TAPS affiliation of the tiles ∆S1A and ∆S2A

was exchanged and the energy dissipation imposed was decreased. The energy dissipation of

the partitioning seen in Fig. 4(d) is lower than that observed in Fig. 4(a) and the probabilities

represented by the light-grey and dark-grey tiles are the same in both figures. This however

contradicts to the statement that there is a better boundary than OE2, which demonstrates

that the tile-based partitioning seen in Fig. 4(a) is not optimal. Therefore, no better tile-based

TAPS partitioning can be found than OE2.

IV. OPTIMIZATION OF THE LINK ACTIVATION UNDER A DELAY-CONSTRAINT

In the previous section, the TAPS concept was revisited and its optimality was proven.

However, this reliability improvement is achieved at the cost of an increased delay. Our basic

idea is to adjust the values of the elements in the Markov State Transition Matrix (MSTM)

TTT . The original concept of ‘State’ and MSTM were proposed in the context of buffer-aided

systems in [5, 13, 23–25]. Upon assuming that the buffer size of the RN is B packets, its state

is defined as Sb = b, when b packets are stored in the RN. Therefore, the total number of

states is (B+1). Given (B+1) states, a state transition matrix denoted by TTT can be populated

by the state transition probabilities {TTT i,j = P (s(t + 1) = Sj|s(t) = Si), i, j = 0, 1, . . . , B}.

This adjustment will affect two specific relationships, as shown in Fig. 5. In the following,

firstly the relationship between the MSTM TTT and the average packet delay is derived. Then

the minimum PED may be designed based on the MSTM TTT . Lastly, an algorithm will be

conceived for finding the input values of the MSTM TTT .
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block delayPED
Minimum Exact averageT

Input values

Fig. 5. Based on the existing values input into TTT , both the PED and the block delay may be obtained.

A. Relationship Between the MSTM TTT and Block Delay

Having obtained the MSTM TTT , the steady-state transmission probabilities can be computed

according to [15, 26] as

πππ = TTT Tπππ, (7)

where we have πππ = [π0, π1, . . . , πB]T and πi is the steady-state probability that the 2-hop link

is in state Si [2]. The steady-state probability of a state is applied as the expected value of the

probability of this specific state in the system. The knowledge of the steady-state probability

of every state allows us to determine the Probability Mass Function (PMF) of the buffer

occupancy.

Based on our assumptions, in each row of the MSTM TTT , there are up to three non-zero

values, representing the probability of activating the first/second hop or the probability of

the outage event. Let us define the outage probability as TTT i,i, i = 0, · · · , B when there are i

packets in the buffer and the probability of activating the first hop is TTT i,i+1, i = 1, · · · , (B−1),

when there are i packets in the buffer. Naturally, the probability of activating the second hop

is the remaining complementary probability in each row of the MSTM TTT . Therefore, the

MSTM TTT may be expressed as

TTT =



T0,0 1− T0,0

T1,0 T1,1 T1,2

T2,1 T2,2 T2,3

. . . . . . . . .
. . . . . . . . .

1− TB,B TB,B


, (8)
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where we have Ti,i−1 = 1− Ti,i − Ti,i+1, i = 1, · · · , (B − 1). Upon substituting (8) into (7),

the πi, i = 0, · · · , B values may be obtained as follows:
π̃B = ΠB−1

i=0 Ti,i+1

π̃j = Πj−1
i=0Ti,i+1ΠB−1

i=j Ti+1,i, j = 1, · · · , (B − 1)

π̃0 = ΠB−1
i=0 Ti+1,i ,

(9)

where we have

πj =
π̃j∑B
i=0 π̃i

. (10)

Proof : See Appendix-B

Finally, the block delay Dblc and the end-to-end throughput Φ may be expressed as

Φ(TTT ) =
1

Dblc

(TTT ) =
B∑
i=1

πiTi,i−1. (11)

B. Relationship Between the MSTM TTT and the PED

Having determined the relationship between the MSTM TTT and the block delay, let us now

discuss the relationship between TTT and PED. In each time slot, only a single row in TTT is

in use. In each row of TTT , there are upto three non-zero values representing the activation

probability of the SN-RN hop, of the RN-DN hop and the outage probability. Therefore the

key problem is how to partition the TAPS with the aid of these probabilities.

In Section III, we proved that the activation boundary is optimal, when there is no outage

region. When we do have an outage region, it may be classified into two types. Type 1:

the outage occurs due to having low channel qualities. The corresponding probability is

formulated as T out1i,i = (1− e−γout1SR )(1− e−γout1RD ); Type 2: the channel qualities are adequate,

but an ‘artificial outage’ is declared in order to reduce the energy dissipation. The total outage

probability Ti,i, i = 0, · · · , B is the sum of the Type 1 and Type 2 outage probabilities. Now

we claim that the outage region in the TAPS is a rectangle.

Proof : See Appendix-C.

Theoretically, the final optimal TAPS partitioning is shown in Fig. 6. The coordinates of

the upper-left corner are defined as (γout2SR , γout2RD ). The region ‘Odeg’ represents the Type

1 outage region for the SN-RN hop, while the upper-left corner of the total outage region

is moving along with ‘elck’ upon increasing the Type 2 outage region. The region ‘Oach’
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Fig. 6. The TAPS of a two-hop link with Type 1 outage region ‘Odeg’. Then with the increasing of the Type 2 outage

region, the total outage region enlarges from ‘Odeg’ to ‘Odlm’, then ‘Oach’, and so on. As shown in Appendix-C that

the outage region is always a rectangular with the upper-left corner along the ‘elck’ line. The region ‘Oach’ is the outage

region, the activation region of the SN-RN hop is ‘Xhck’, while the activation region of the RN-DN hop is ‘Ykca’.

exemplifies the outage region, while the activation region of the SN-RN hop is ‘Xhck’ and

that of the RN-DN hop is ‘Ykca’.

In the following, let us firstly consider when the upper-left corner of the total outage

region is on the line ‘lck’. In this TAPS partitioning, we have three parameters: γout2SR , γout2RD

and Effe. The following equations give the unique solutions for these three parameters. The

probability represented by the region ‘Oach’ is

(1− e−γout2SR )(1− e−γout2RD ) = Ti,i. (12)

The point ‘c’ is on the boundary E2, yielding

γ̄recRD

γout2RD

− γ̄recSR

γout2SR

= Effe. (13)

When we have Effe ≥ 0, the probability represented by ‘Xhck’ is∫ ∞
γout2SR

e−γ(1− e
− γ̄recRD
γ̄rec
SR
γ +Effe )dγ = Ti,i+1. (14)

By contrast, if we have Effe < 0, the curve Ock bends towards the Y-axis. Therefore the
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probability representing the activation of the SN-RN hop is given by:

Ti,i+1 =

∫ −γ̄recSR
Effe

γout2SR

e−γ(1− e
− γ̄recSR
γ̄rec
SR
γ +Effe )dγ + e

− γ̄recSR
Effe . (15)

Theoretically, the three unknowns may be found based on (12) to (14) or (12), (13) and (15).

From a practical perspective, a computationally efficient method is required, which may be

found in Appendix-D.

If the upper-left corner of the total outage region is on the line ‘el’, we have γout2RD = γout1RD

and

γout2SR = − ln

1− Ti,i

1− e−
γout1
RD
γ̄rec
RD

 . (16)

Having γout2SR and γout2RD , the last unknown Effe may be found based on the activation proba-

bilities of the two hops, which relies on the same principle, as mentioned in the context of

Fig. 3(b).

Given the knowledge of the ith row of TTT (TTT i) and the key parameters, the energy dissipation

of the SN-RN and the RN-DN hops may be readily obtained. If the upper-left corner of the

total outage region is on the line ‘lck’ and we have Effe ≥ 0, then the corresponding energy

dissipations are

ESR,i(TTT i) =

∫ ∞
γout2SR

γ̄recSR

γ
e−γ(1− e

− γ̄recRD
γ̄rec
SR
γ +Effe )dγ (17)

ERD,i(TTT i) =

∫ γ̄recRD
Effe

γout2RD

γ̄recRD

γ
e−γ(1− e

− γ̄recSR
γ̄rec
RD
γ +Effe )dγ

+

∫ ∞
γ̄rec
RD
Effe

γ̄recRD

γ
e−γdγ. (18)

Similar procedures can also be used for other scenarios. The total energy dissipation of both

hops associated with TTT i is given by the sum of each hops’ consumption, yielding

Ei(TTT i) = ESR,i(TTT i) + ERD,i(TTT i). (19)

Finally, the total energy dissipation of the system is given by:

E(TTT ) =
B∑
i=0

πiEi(TTT i). (20)
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C. Finding the Input Values of the MSTM TTT

Having determined the relationship between TTT -PED and TTT -Dblc, our next ambition is to

find an optimal MSTM TTT , which should provide the minimum PED for a given Dblc. However,

there are (3B + 1) non-zero values in TTT , hence it is quite a challenge to find the optimal

solution. To make progress, Algorithm 1 based on the classic greedy algorithm was conceived

for finding suboptimal, but beneficial solutions. The output of this algorithm is a series of

TTT (k), k = 1, · · · , corresponding to a number of PED-Dblc pairs.

Algorithm 1: The algorithm of finding the MSTM TTT .

1 Initiation: Set T (1)
0,0 = 1− e−γout1SR , T (1)

0,1 = 1− T (1)
0,0 ; T (1)

i,i−1 = 1− e−γout1RD , T (1)
i,i = T out1i,i ,

T
(1)
i,i+1 = 1− T (1)

i,i − T
(1)
i,i−1, i = 1, · · · , (B − 1); T (1)

B,B = 1− e−γout1RD , T (1)
B,B−1 = 1− T (1)

B,B.

Set ∆ to a small number. k = 1;

2 Calculate E(TTT (1)) and Dblc(TTT
(1)) based on (11) and (20);

3 while Dblc(TTT
(k))>10 min(Dblc) do

4 for i=all non-zero values in TTT (k) do

5 TtempTtempTtemp(k,i) = TTT (k);

6 Increase ∆ for the ith non-zero value in TtempTtempTtemp(k,i);

7 Decrease ∆ for other values in the same row in TtempTtempTtemp(k,i);

8 Calculate E(TTT (k,i)) and Dblc(TTT
(k,i));

9 end

10 Find the index i′ of min

(
D

(k,i)
blc −D

(k)
blc

E(TTT (k))−E(TTT (k,i))
|E(TTT (k)) > E(TTT (k,i))

)
;

11 TTT (k+1) = TTT (k,i′), E(TTT (k+1)) = E(TTT (k,i′)) and Dblc(TTT
(k+1)) = Dblc(TTT

(k+1,i′));

12 k=k+1;

13 end

In Algorithm 1, the initiation of the MSTM TTT is set in line 1. In order to find a lower

block delay, all the outage probabilities Ti,i are set as small as possible, while all activation

probabilities Ti,i−1 of the RD hop are set as high as possible. Naturally, the activation

probabilities of the SR hop are the complementary probabilities. In line 3, the algorithm

will be terminated, when the current block delay is 10 times higher than its minimum value,
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which may be considered as the upper bound of the practical region. From line 4 to 9, one

of the non-zero elements of the MSTM TTT is increased by a unit step ∆, while the other

probabilities in the same row should be decreased. The corresponding PED and block delay

are also calculated. In line 10, the index of the minimum ratio of the block delay increment

and of the PED increment is found. Lastly, Algorithm 1 updates the MSTM TTT , E(TTT ) and

Dblc(TTT ).

V. PERFORMANCE RESULTS

In this section, we provide a range of numerical and/or simulation results for characterizing

both the energy dissipation and the MSTM TTT of the buffer-aided two-hop link considered in

order to illustrate the effects of the probability adjustments in the MSTM TTT . In all experi-

ments, the SN is at the position [100m, 100m], while DN is at the position [1100m, 100m].

The parameters of N , κ, Pmax and pathloss alpha are N = 10−14, κ = 9.895 × 10−05,

Pmax = 0.0003Watt and α = 3. We set I = 1, which implies that the threshold is 0dB.

In Fig. 7 to 10, the legend ’Sim’ indicates that the results are from simulations, while the

legend ’The’ means that the results are from our theoretical analysis.

Given a row of the MSTM TTT , the TAPS partitioning may be calculated based on Section

IV-B, before the simulations commence. Once the simulations have been started, the instan-

taneous fading values (γSR, γRD) may be directly mapped to a specific point in a region

of the TAPS. The corresponding link will then be activated. The first set of results seen

in Fig. 7 characterizes the impact of the RN’s buffer size both on the PED and on the

block delay. The X-coordinate represents the block delay, while the Y-coordinate represents

the PED. The curves marked by the cross, star and plus markers represent the PED-Dblc

relationship evaluated from Algorithm 1 as well as from (11) and (20). Observe in Fig.

7 that as expected, the PED performance improved upon increasing the buffer size. These

results are also compared to four existing transmission protocols. Specifically, the Starving

the Buffer (SB) and the Limiting the Queue Size (LQS) regimes constitute a pair of protocols

proposed in [9] for striking a delay-performance trade-off. In the SB protocol, the channel

activation criterion remains the same, regardless of the buffer occupancy in the RN while

in the LQS protocol, a trade-off is struck based on the adjustment of the buffer size. Both
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Fig. 7. The PED and the block delay relationship evaluated from (11), (20) and Algorithm 1. The results are compared

to four other protocols.

the SB and LQS protocols disregard the Type 2 outages, therefore the corresponding trade-

off region is limited. Additionally, a conventional buffer-aided transmission protocol (Conv.)

was proposed in [14]. The data of the SN was firstly transmitted to the RN and then it was

relayed to the DN. This protocol has a fixed PED-Dblc relationship and it is distinguished

by the diamonds in Fig. 7. For all two-hop relaying protocols, the block delay was found to

be higher than 2, while it may be lower than two for the classic direct transmission (Dir)

associated with a higher PED. The Dir curve is associated with a Type 2 outage and it

exhibits a worse performance than our proposed method for Dblc > 2.01.

Fig. 8 characterizes the updating of the elements in the MSTM TTT , when the buffer size is

B=2. The X-coordinate represents the adjustment index when we have ∆ = 0.01 in Algorithm

1, while the Y-coordinate represents the element values in the MSTM TTT . Observe in Fig. 8 that

all outage probabilities (TTT i,i, i = 0, 1, 2) were increased, while the transmission probabilities

of both hop1 and hop2 were reduced.

Fig. 9 shows the distribution of the packet delay, when stipulating the same MSTM TTT at

the point A, B and C seen in Fig. 7. The theoretical results obtained from the algorithm in
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[8] are represented by the lines, while the simulation results are represented by the markers.

It is clear from Fig. 9 that the probability of long packet delays was increased, when the

PED reduced.
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Fig. 10. The relationship between the PED and the average packet delay, which was evaluated from the algorithm in [8]

and confirmed by simulations. The Results are compared to the simulation results evaluated by three other protocols.

Fig. 10 characterizes the relationship between the PED and the average packet delay.

There are two methods of evaluating the average packet delay. Firstly, it can be evaluated

from the PMF of the packet delay, which may be obtained from the algorithm advocated in

[8]. The other method is based on Little’s Law and on the distribution of the buffer fullness,

as mentioned in (36) of [9]. In order to arrive at a precise expression, the first method is

preferred. Observe in Fig. 10 that our proposed method outperforms both the SB, LQS and

the Conv. protocol for Dblc > 3.

VI. CONCLUSIONS

In this contribution, the optimality of TAPS partitioning associated with two activation

regions and an outage region has been proven. Based on this proof, the relationship between

the MSTM and the minimum PED as well as the block delay may be evaluated. Moreover,
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the concept of ‘artificial outage’ was applied in order to strike a trade-off between the energy

dissipation and block delay. Then an algorithm was conceived for finding the sub-optimal, but

beneficial block delay and PED pairs. Our analysis and performance results showed that the

proposed methods significantly reduced the energy dissipation, even for a small buffer. Our

future research will concentrate on finding the minimum block delay both with and without

an energy dissipation constraint in a more complex network.

APPENDIX

A. Appendix-A

In Section III, we proved the optimality of TAPS using an energy dissipation metric. By

contrast, let us now consider the capacity as our metric. We will show that the TAPS provides

optimal results, as in [9].

Let us consider the same scenario as in Fig. 1. Given the initial boundary E0 in Fig. 4(a),

the capacity CSR of the SN-RN hop is higher then the capacity CRD of the RN-DN hop. The

end-to-end capacity CSD is given by the smaller value of CSR or CRD. The difference between

CSR and CRD is (CSR−CRD). Similar to (3) and (4), if the region ∆S is assigned to the SN-

RN or the RN-DN hop, the corresponding capacity difference caused by reassigning ∆S is

given by ∆CSR = p∆S log2(1 + γ̄recSRγSR) and ∆CRD = p∆S log2(1 + γ̄recRDγRD), respectively.

If ∆S is reassigned from the SN-RN hop to the RN-DN hop, how much is the capacity

difference reduced between the two hops? This is given by

∆(CSR − CRD)

=p∆S [log2(1 + γ̄recSRγSR) + log2(1 + γ̄recRDγRD)] . (21)

Since the end-to-end capacity is defined as the smaller of the values of CSR or CRD, the

increment value of the end-to-end capacity is given by p∆S[log 2(1 + γ̄recRDγRD)]. Therefore

the ratio of the capacity increment to the capacity difference reduction is

Effe =
p∆S[log 2(1 + γ̄recRDγRD)]

∆(CSR − CRD)
. (22)

Note that during the reassignment process, we wish to increase the capacity as much as

possible, which should be considered as the denominator, while ensuring that the capacity
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difference between the links becomes as slow as possible, which should be considered as the

numerator.

Based on the same procedure and the same algorithm as mentioned in Section III, the

optimal TAPS boundary may be found. Zlatanov et. al [9] solved this problem with the aid

of queuing theory and as expected, we arrive at the same boundary. More explicitly, if we

set

− log2(1 + γ̄recRDγRD)

log2(1 + γ̄recSRγSR)
= µ, (23)

and

Effe =
−1

ρ
, (24)

then we arrive at (18) of [9]. However, the TAPS relies on a different method, which is

easier to interpret physically and may be more readily applied to diverse metrics, such as the

energy dissipation metric.

B. Find πj

3Following from (7), the jth j = 2, · · · , (B − 2) equation can be expressed as

πj = πj−1Tj−1,j + πjTj,j + πj+1Tj+1,j. (25)

Upon substituting (9) and (10) into the right hand side of (25), we have

πj−1Tj−1,j + πjTj,j + πj+1Tj+1,j (26)

=
1∑B
i=0 π̃i

(
Πj−2
i=0Ti,i+1ΠB−1

i=j−1Ti+1,iTj−1,j

+ Πj−1
i=0Ti,i+1ΠB−1

i=j Ti+1,iTj,j

+ Πj
i=0Ti,i+1ΠB−1

i=j+1Ti+1,iTj+1,j

)
(27)

=
Πj−1
i=0Ti,i+1ΠB−1

i=j Ti+1,i∑B
i=0 π̃i

(Tj,j−1 + Tj,j + Tj,j+1)︸ ︷︷ ︸
=1

(28)

=πj. (29)

3In Appendix-B of [27], the authors suggested the reversibility of the related Markov Chain. Although a Markov Chain

having symmetric state transition matrix is indeed reversible, the general Markov Chain dose not obey reversibility. Moreover

in [27], AAA is a symmetric matrix based on Eq. (8-9). Therefore, the chain is reversible and Appendix-B of [27] may be

further simplified from πiAAAi,j = πjAAAj,i to πi = πj and finally we have πi = 1
(L+1)K

, i = 1, · · · , (L+ 1)K .
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Based on a similar procedure, the solution may also be readily found for j = 0, 1, (B−1), B.

The solution is unique due to the fact that we have the same number of unknowns as well

as equations and det |TTT | 6= 0.

C. Optimal Partitioning for a Pair of Known Activation Probabilities and an Outage Prob-

ability

Y

O X
a

b

df

c
A

B

C1

C2

e

h

i

g

γSR

E2

∆S3B

γRD ∆S3A

Fig. 11. The TAPS of a two-hop link with Type 2 outage region. The outage region is C1 and C2. The regions A and B

represent the SN-RN or the RN-DN hops are activated.

In TAPS, the boundary between a single outage region and a single transmission region

should be a straight line, otherwise the convex and the concave curves may be exchanged.

More explicitly, both the ‘fd’ and ‘ba’ in Fig. 11 are straight lines. Then, the Type 1 outage

region is a rectangle shown as ‘Oghi’. There should be two boundaries between the activation

regions and the outage region. The outage region covers the Type 1 outage region based on

its definition. The boundaries here are ‘ba’ and ‘fe’, while the outage region boundary is

‘OfebaO’. The outage region is a rectangle, which implies that the boundaries between the

outage region and the pair of activation regions share a common point. In other words ‘b’

and ‘e’ are coincident points. Below we will show that this statement is true by invoking

the method of contradiction.
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Contradiction statement: Let us assume that the two optimal boundaries do not share a

common point. This situation is depicted in Fig. 11. In this figure, the outage regions are C1

and C2, while the regions A and B represent that either the SN-RN or the RN-DN hop is

activated, respectively. The boundary between the activation regions and outage region are

‘fe’ and ‘ba’. Let us consider a pair of small regions, namely ∆S3A of region C1 and ∆S3B

of region A, which represent the same probability. Exchanging the TAPS affiliation of ∆S3A

and ∆S3B does not affect the outage probability. On the other hand, the energy dissipation of

the SN-RN hop is reduced after exchanging them. This however contradicts to the statement

that ‘fe’ and ‘ba’ are two optimal boundaries, which demonstrates that the partitioning seen

in Fig. 11 is not optimal. Therefore, point ‘b’ and ‘e’ should be a pair of coincident points.

An alternative interpretation of this principle is that the region having a better channel

quality cannot be an outage region. Let us denote the coordinates of e by (ex, ey) and those

of b by (bx, by). The lower bound of the RD transmission region should be higher than the

upper bound of the SR outage regions, which is formulated as ey > bx, while the lower bound

of the SR transmission region should be higher than the upper bound of the RD outage region

represented by bx > ey. Therefore, we have ey = bx.

Note that the boundary E2 of Fig. 11, which is associated with the outage probability

region may be different from the boundary without an outage probability region. However,

all the procedures and the proof of optimality provided in Section III are still valid for the

TAPS having an outage probability.

D. Solving Eq. (12) to (14)

Let us now consider an efficient method of solving equations (12) to (14). A similar

procedure is also available for (12), (13) and (15).

Upon substituting (12) and (13) into (14), we arrive at (35). In the following, the closed-

form expression of F in (35) is obtained and then we prove that F is a monotonically

decreasing function of γout2SR .

1) The closed-form expression of F: Let us consider a more general integral of the form

seen in (35), yielding

G =

∫ ∞
A

e−Bγ
−1

e
D
γ

+C
dγ. (30)
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Upon substituting t = Bγ + γ
D+Cγ

into (30), we have

G =
1

2B
e−(BA+ A

D+CA
)

+
1

2B

∫ ∞
BA+ A

D+CA

e−t
Ct+BD − 1√

(Ct+BD − 1)2 + 4BD
dt. (31)

Then, upon substituting s = Ct+BD − 1 and E = CBA+ CA
D+CA

+BD − 1 into (31), we

arrive at

G =
1

2B
e−(BA+ A

D+CA
) +

e
BD−1
C

2BC

∫ ∞
E

e−
s
C

s√
s2 + 4BD

ds. (32)

The finite integral may be expressed as an infinite integral with the aid of the Meijer-G

function [28], where the Meijer-G function is defined in [29] (9.301). Furthermore, 1√
s2+4BD

may also be expressed using the Meijer-G function [30](07.19.26.0002.01). Then we arrive

at

G =
1

2B
e−(BA+ A

D+CA
) +

e
BD−1
C

4Γ(1
2
)B

3
2CD

1
2

×
∫ ∞

0

se−
s
CG0,1

1,1

 s2

E2

∣∣∣∣∣∣ 1

0

G1,1
1,1

 s2

4BD

∣∣∣∣∣∣
1
2

0

 ds. (33)

The product of two Meijer-G functions may be expressed as a single Meijer-G function

associated with two variables [31, 32]. Using [33] Eq. (2.1), the final closed-form result is

obtained as

G =
1

2B
e−(BA+ A

D+CA
) +

Ce
BD−1
C

2πB
3
2D

1
2

× S



 2, 0

0, 0


 0, 1

1, 1


 1, 1

1, 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1, 3
2
)

−

1

0

1
2

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2C)2

E2

(2C)2

(4BD)


. (34)

The corresponding MATHEMATICA code may be found in [32]. However, there are some

bugs in this code. The correct code may be download from [34]. 4

4In the code, ’Past’, ’Qast’, ’Qbst’ and ’Mst’ should contain both ’u’ and ’v’ and ’Ms[s]Mt[t]’ is missing in the integral.
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F = Ti,i+1 =

∫ ∞
γout2SR

e−γ

1− e

− 1
γ̄rec
SR
γ −

γ̄rec
SR

γout2
SR

+
γ̄rec
RD

− ln

1−
Ti,i

1−e−γ
out2
SR


 dγ. (35)

Finally, let A = γout2SR , B = 1, C = − γ̄recSR

γout2SR
+

γ̄recRD

− ln

(
1−

Ti,i

1−e−γ
out2
SR

) and D = γ̄recSR. Then the

closed-form expression of F may be readily obtained.

2) F is a monotonically decreasing function of γout2SR : Given the closed-form expression

of (35), let us now prove that F is a monotonically decreasing function. In (35), the only

unknown is γout2SR . If we differentiate F with respect to γout2SR , we arrive at:

dF
dγout2SR

= −e−γ Ti,i

1− e−γout2SR

< 0, (36)

which shows that F is a monotonically decreasing function. Based on this property, γout2SR may

be found by searching from γout1SR to infinity and stopping the search when (14) is satisfied.

Then γout1RD and Effe can be readily found.
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